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Abstract: Droughts, with their increasing frequency of occurrence, especially in the Greater Horn
of Africa (GHA), continue to negatively affect lives and livelihoods. For example, the 2011 drought
in East Africa caused massive losses, documented to have cost the Kenyan economy over 12 billion
US dollars. Consequently, the demand is ever-increasing for ex-ante drought early warning systems
with the ability to offer drought forecasts with sufficient lead times The study uses 10 precipitation
and vegetation condition indices that are lagged over 1, 2 and 3-month time-steps to predict future
values of vegetation condition index aggregated over a 3-month time period (VCI3M) that is a proxy
variable for drought monitoring. The study used data covering the period 2001-2015 at a monthly
frequency for four arid northern Kenya counties for model training, with data for 2016-2017 used as
out-of-sample data for model testing. The study adopted a model space search approach to obtain the
most predictive artificial neural network (ANN) model as opposed to the traditional greedy search
approach that is based on optimal variable selection at each model building step. The initial large
model-space was reduced using the general additive model (GAM) technique together with a set of
assumptions. Even though we built a total of 102 GAM models, only 20 had R? > 0.7, and together
with the model with lag of the predicted variable, were subjected to the ANN modelling process.
The ANN process itself uses the brute-force approach that automatically partitions the training data
into 10 sub-samples, builds the ANN models in these samples and evaluates their performance using
multiple metrics. The results show the superiority of 1-month lag of the variables as compared to
longer time lags of 2 and 3 months. The best ANN model recorded an R? of 0.78 between actual
and predicted vegetation conditions 1-month ahead using the out-of-sample data. Investigated as a
classifier distinguishing five vegetation deficit classes, the best ANN model had a modest accuracy of
67% and a multi-class area under the receiver operating characteristic curve (AUROC) of 89.99%.

Keywords: general additive model; drought risk management; early warning system; model selection;
overfitting; cross-validation

1. Introduction

A drought is a recurrent event marked by lack of precipitation for extended period of times [1,2].
Droughts are one of the most complex and less understood disasters, while having the greatest impacts
on people and usually affecting large regions [1,3]. The different types of drought and their progression
(Figure 1), are depicted in UNOOSA [4]. The progression is characterized by deficiency of precipitation,
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effects on surface to sub-surface water sources, followed by reduced vegetation growth and finally a
culmination on socio-economic effects on people and livelihoods.

Meterological drought Hydrological Agricultural Socio-Economic

drought drought Drought

Figure 1. Conceptualization of various drought types and their progression. The impacts on people
and livelihoods is a function of the vulnerability of the livelihoods as well as the severity, duration and
spatial extent of the drought.

There is an increase in both the frequency of droughts and the cost of economic losses as a
result of droughts, particularly in the Greater Horn of Africa (GHA). For example, Government of
Kenya [5] documents the 2008-2011 drought in Kenya as having made 3.7 million people food insecure,
with economic losses approximated at 12.1 billion US dollars. The 2014 California drought was
projected to have cost a total of 2.2 billion US dollars in losses [6]. Further documentation of losses due
to drought, especially at household level, are reviewed in Udmale et al. [7] and in Ding et al. [8].

The losses from droughts has necessitated a shift from reactive systems to drought risk management,
which is characterized by both early warning systems and drought mitigation. As advocated by
Mariotti et al. [9], drought risk identification and drought early warning systems are the starting points
to a sound drought risk management that can greatly reduce the severity of social and economic
damage by droughts. On the other hand, drought risk mitigation aims to reduce impacts of droughts.

Drought early warning systems (EWS) are in most cases based on remote sensing data, and in some
cases socio-economic data is incorporated to measure the impacts of droughts [10]. Remote sensing
data is documented to permit a cost-effective spatio-temporal assessment of vegetation conditions
and crop yield [11] and the assessment of the performance of seasonal vegetation development
like the case in Meroni et al. [12]. Meroni et al. [12] uses fraction of absorbed photosynthetically
active radiation (FAPAR) to compute a seasonal proxy of gross primary production (GPP) in the
context of the Horn of Africa. Remote sensed data on precipitation and vegetation are some of the
most used in drought monitoring. Important precipitation indicators include Rainfall Estimates
(RFE) and the rainfall anomaly-based indices like Rainfall Condition Index (RCI) as calculated in the
form of Precipitation Condition Index (PCI) in Du et al. [13] and Standardized Precipitation Index
(SPI) [14]. Other precipitation derived composite indices includes Crop Moisture Index (CMI) [15],
and Standardized Precipitation-Evapotranspiration Index (SPEI) [16]. Vegetation-based indices includes
the Normalized Difference Vegetation Index (NDVI) and its anomalies like the Vegetation Condition
Index (VCI). A comprehensive review of the drought indices is found in Mishra and Singh [17]. The use
of SPI in drought monitoring and also in drought forecasting is well documented in Bordi et al [2],
in Huang et al. [18], Khadr [19] and Wichitarapongsakun [20]. The VCl is widely used, for example in
the US Drought Monitor (USDM) [21]. In the USDM, the VCl is used as a component of the vegetation
health index (VHI) that is one of the six key physical indicators used at national scale.

Klisch and Atzberger [22] documents the drought monitoring system for Kenya as implemented
by the University of Natural Resources and Life Sciences, Vienna (BOKU). The system uses vegetation
and precipitation indices and their anomalies. The indices include the NDVI and the VCI aggregated
over 1- and 3-months periods and SPI aggregated over the same time periods. The BOKU system
supports a two-pronged approach to drought mitigation in Kenya. First of is the disbursement of social
security funds to the population in the four most vulnerable counties of Turkana, Marsabit, Mandera
and Wajir as outlined in Beesley [23]. These counties comprise our study area. Second is the drought
contingency fund (DCF), which is used to provide essential services across the sectors of livestock,
water, health and nutrition, education and security. The disbursement of the funds follows a no-regrets
approach, using the VCI aggregated over 3 months (VCI3M), in a setting where proactive decisions
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are acceptable even when foreseen risks do not materialize. Ultimately, the system thresholds the
VCI3M to create five classes of the VCI3M anomaly (Above Normal, Normal, Moderate, Severe and
Extreme vegetation deficit conditions). These classes are used as proxy classes for drought conditions.
The BOKU system in Klisch and Atzberger [22] together with the extended-MODIS (eMODIS) from
the widely used Famine Early Warning Systems Network (FEWSNET) [24] are near real-time (NRT).
Other NRT systems are found in Hayes et al. [25] and in AghaKouchak and Nakhyjiri [26]. AghaKouchak
and Nakhjiri [26] implemented a combination of real-time and long-term satellite observations that is
indicated to have detected the 2010 drought in the Horn of Africa (HA).

Increasingly, there is need for predictive EWS. As recognised in Mariotti et al. [9], there exists a
supply deficit for predictive systems at regional, national and local scales. The IGAD [27], for example,
documents a drought predictive approach in the GHA that employs a statistical downscaling of five
global models to provide a prediction of conditions 1-2 months in advance.

The differences between drought prediction approaches are based on the data used and the methods
deployed. Most of the approaches are based on the use of single variables of either precipitation or
vegetation conditions. Predictions based on SPI are demonstrated in Ali et al. [3], Huang et al. [18] and
in Khadr [19]. Streamflow indices, for example, are used in Yuan et al. [28] to investigate the impact of
hydrological drought. Some studies are based on SPEI as either the main indicator, or in addition to SPI
as documented in Morid et al. [1], Le et al. [29] and in Maca and Pech [30]. Other studies define a super
index of drought indices as documented in AghaKouchak [31], Shah et al. [32] and Enenkel et al. [33]
that define multi-variate standardised dry index (MSDI), drought defining index (DDI) and enhanced
combined drought index (ECDI), respectively. The approach in Enenkel et al. [33] uses a weighted
approach on the four datasets used to define ECDI. The use of multiple indices and variables in
Tadesse et al. [34] stands out in the use of eleven variables from oceanic, environmental, climate and
satellite data in the prediction of vegetation outlook (VegOut). This approach of using multiple
indices in the prediction of vegetation conditions as a proxy of drought effects is also documented
in Tadesse et al. [35] and Wardlow et al. [36]. The use of multiple indices is as opposed to Klisch and
Atzberger [22], who directly assessed vegetation conditions in NRT.

In terms of methods and approaches, most of the studies focus on a single technique that is
ether purely statistical or machine learning (ML). Statistical methods have a range in complexity from
simple forecasting to multiple regression tree techniques [34], and to ensemble approaches that employ
more than one modelling technique. The ML methods range from neural networks in Morid et al. [1],
Ali et al. [3] and Le et al. [29]; hidden Markov models in Khadr [19], and Kalman filters [37].

In this study, we used a multi-variate analysis approach which uses a combination of two
techniques, one statistical and the other machine learning, to predict vegetation conditions and thereby
predict drought conditions up to three months ahead. This approach also evaluates and selects the
model from the space of all possible models based on objective evaluation metrics. To study the
performance of the proposed models, four arid northern counties of Kenya were selected as a case study
region. In Kenya, an operational drought risk management (DRM) system is in place, as droughts in
the past led to food insecurity and heavy economic losses.

2. Materials and Methods

Despite the differences in the formulation of the predictive modelling steps, the main steps
can be grouped into three stages: pre-modelling, model building and model deployment stages.
The pre-modelling stage involves all the steps at definition of the modelling objective, data acquisition,
data preparation and variable selection. The model building stage involves the formulation of multiple
models, their evaluation, validation and subsequent selection. The ANN models realized from the
study are computationally costly and have substantial random components. The best model was saved
as an R data file to disk and executed from within Microsoft SQL server (MsSQL) which was used
as the data store. In most cases, the modelling processes and stages are iterative in the search for the
optimum model as provided by the best set of predictors.
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2.1. Study Area

The study area is shown in Figure 2. The study area comprises four counties of Kenya: Turkana,
Marsabit, Mandera and Wajir. The selected region lies in the northern part of Kenya, which is
characterized as part of the arid and semi-arid lands (ASALs) of Kenya. The selected counties are
classified as arid and part of the ASALs monitored by the National Drought Management Authority
(NDMA) of Kenya. The four counties cover a combined area of 215,242 km? with a total population
of around 2.8 million. The annual average rainfall is 250 mm (Turkana, Marsabit and Mandera) to
370 mm (Wajir). Rainfall patter is bimodal with the long rains in March, April and May (MAM) and the
short rainy season between October, November and December (OND) with 6 months considered wet
months. The monthly average NDVI for the period 20032015 from the NDMA's operational drought
monitoring system, is shown in Figure 3. The low values indicate sparse vegetation cover, even during
the wettest months (e.g., May and December).
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Figure 2. Study area: Mandera, Marsabit, Turkana and Wajir counties (right) in Kenya. The map of

Kenya groups its counties into arid and semi-arid lands (ASAL) and non-ASAL.
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Figure 3. Average Normalized Difference Vegetation Index (NDVI) (2003-2015) across months by
county based on the National Drought Management Authority (NDMA) operational Early Warning
System (EWS).

2.2. Modelling Scheme

2.2.1. Pre-Modelling

The dataset for the study as documented in Klisch and Atzberger [22], was realized from the
cooperation between BOKU and the NDMA. The data is used in an operational setting at the NDMA
with statistics on drought generated monthly with an option for on-demand processing.



Remote Sens. 2019, 11, 1099 5 of 30

The variables used in this predictive study (Table 1) comprises both precipitation and vegetation
indices. Moderate resolution imaging spectroradiometer (MODIS) at 250 m ground resolution is the
source of the vegetation data, while Tropical Applications of Meteorology using SATellite (TAMSAT)’s
version 3 product [38] is the source of the precipitation data. Both the precipitation and vegetation data
are directly provided by BOKU [22]. BOKU does only post-processing (for example spatial sub-setting
and temporal aggregation) on the TAMSAT data.

Table 1. A description of the index calculation formulas. NDVIi indicates the Normalized Difference
Vegetation Index (NDVI) observed at time i; NDVImin and NDVImax are minimum and maximum
NDVI observed for each pixel for every dekad in the period 2003-2013. Near infrared (NIR) and Red
are the spectral reflectances in near infrared and red spectral channels of MODIS satellite, respectively.
Before use, the NDVI time series is smoothed and filtered to remove negative impacts of poor
atmospheric conditions and undetected clouds [22].

Variable/Index Index Calculation Index Description

Predictor variable; sourced from MODIS,

NDVI NDVI = (NIR-Red)/(NIR+Red) the average monthly NDVI quantifying
the average monthly vegetation greenness

Aggerated over 1- and 3-months period

ver ! VClc,i = 100 x (NDVIc,i-NDVImin (i = 1,3) for each county (c) in the study
¢,i)/(NDVImax ¢,i—NDVImin c,i) [22] areas. The 3-month aggregation of the
VCl is predicted variable.
RFE BOKU Rainfall estimate calculated from Predictor variable; average monthly
TAMSAT version 3 product (in mm) [38] rainfall estimate
Predictor variable; RFE values normalized
RCI 1 RCl¢,i = 100x(RFEc,i—RFEmin c,7)/(RFEmax in the 0-1 range (both end points
¢,i—RFEmin ¢,i) [13] included) for each extent (c) and for each
time period (7).
For each location, c and period i, the
long-term record of TAMSAT RFE was Predictor variable; standardised RFE for
SPI fitted to a probability distribution then each county (c) and for each time period

transformed to a normal distribution so that i=13)
SPImean ¢,i = 0 [39]

1 The Vegetation Condition Index (VCI) and the Rainfall Condition Index (RCI) are relative range indices and are
thus susceptible to effects from the occurrence of extreme values in the historical data. The confidence of their use in
this approach lies on the fact that the indices are calculated at pixel level prior to aggregation. Moreover, in the
case of RCI, the Standardised Precipitation Index (SPI) is an alternative transformation realized from the same base
dataset—the Rainfall Estimate (RFE).

The vegetation datasets were smoothed using a modified Whittaker smoothing algorithm.
For operational monitoring, the indicators and indices calculated at pixel level are then aggregated over
the administrative units of interest at either 1 or 3-month time steps. In addition, uncertainty modeling
is provided at each time step for each pixel or the MODIS derived vegetation data. The details and
formulae for the computation of these indices are as provided in Table 1. The precipitation includes
RFE, RCI and SPI. Vegetation conditions are characterized through NDVI and VCI.

Klisch and Atzberger [22] and Meroni et al. [40] document the use of the VCI as a temporal and
spatially aggregated anomaly of the NDVI. While the NDVI gives absolute vegetation status for a given
spatial extent at a given time, the VCI scales the actual NDVI value in the range between a historical
minimum (VCI = 0%) and maximum (VCI = 100%) for a given time unit. Widely used time units are
dekads (10-day periods), months and seasons (3 months). The choice of and the definition of drought
conditions using the VCI3M is two-fold. First, the VCI as a variable is appropriate for monitoring
vegetation conditions. The northern parts of Kenya are mainly pastoral lands, therefore pasture
conditions and their monitoring remains key. Second, the VCl is a direct measurement, as opposed to
say RFE, which is a modelled output. Several studies have evaluated the BOKU dataset including
comparisons against similar products [40,41].
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The input data for this study could suffer various errors. Noise as a result of cloud cover and
other atmospheric disturbances is one such source of error. The data pre-processing stage of the
BOKU datasets as provided in Klisch et al. [42] however mitigates this through Whittaker smoothing,
which uses the vegetation indicator (VI) usefulness quality indicator in the data smoothing process.
In addition, the BOKU vegetation input data are NRT and have an element of forecasting that makes the
input prone to estimation errors. This is however mitigated by the use of a constrained NRT filtering
approach. The precipitation data from TAMSAT potentially could suffer estimation errors arising from
a limitation in the spatial distribution of in situ observation gauges at the point of historical calibration.

Drought events are defined in-terms of VCI3M for each administrative unit. The variables,
with the exception of the variable ‘Month’, were lagged at 1-3 month time steps for each county to
ensure that the lagged variables conform to the time series data for each county. The non-lagged
variables were then dropped from the study, with the exception of VCI3M, which is the dependent
variable. The resultant dataset is as described in Table 2.

Table 2. Variables used for modelling. All the indicated variables are lagged predictor variables.
The dependent variable is non-lagged values of VCI3M. The month of year was added to
model seasonality.

Index Variable Description 1-Month Lag  2-Month Lag 3-Month Lag
NDVI_Dekad NDVI for last dekad of month
VCI_Dekad V(I for the last dekad of month
VCIIM VCI aggregated over 1 month X X X
RFEIM Rainfall Estimate aggregated over 1 month
RFE3M Rainfall Estimate aggregated over the last 3 months X X X
SPIIM Standardised Precipitation Index aggregated over 0
1 month
SPI3M Standardised Precipitation Index aggregated over
the last 3 months
RCIIM Rainfall Condition Index aggregated over 1 month
RCI3M Rainfall Condition Index aggregated over the last 3
months
Month ! Denotes the month of year O O O

VCI aggregated over the last 3 months. The

VeBsM non-lagged value is the dependent variable

X
X
X

! Variable only used in GAM models but excluded from the corresponding ANN models. The lag for the predictor
variables ranges from 1 to 3 months and thus for instance, for VCI3M we consider VCI3M,_;, VCI3M,_,, VCI3M;_3.

Random sampling is used to partition the data into training and validation datasets. The partitions
follow on the 70:30 rule for training and validation data sets, respectively.

To support decision making processes, products of operational drought monitoring systems
should be easy to interpret. For example, readability of maps is improved by reducing the real value
outputs to a few classes. The classes are generally subjective and are adjusted in operational systems
based on practical applications. This study adopts the drought classification in Table 3 as used in
Klisch and Atzberger [22], Meroni et al. [40] and Klisch et al. [42]. Even though the classes might
appear subjective, the process for realizing them as documented in Klisch et al. [42] was validated
retrospectively and shown to be fit for purpose in the capture of the documented drought years (2006,
2009 and 2011).
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Table 3. Classification of drought based on vegetation deficit classes following values proposed by
Klisch and Atzberger [22], Meroni et al. [40] and Klisch et al. [42].

VCI3M Limit Lower =~ VCI3M Limit Upper Description of Class Drought Class

<0 <10 Extreme vegetation deficit

10 <20 Severe vegetation deficit

20 <35 Moderate vegetation deficit 3

35 <50 Normal V.e.getatlon 4
conditions

50 >100 Above normjal' vegetation _
conditions

2.2.2. Model Building

The study uses multiple indices and combines two techniques in the prediction of drought.
The prediction of drought is, for operational purposes, formulated as the prediction of future VCI3M
values using the predictor variables presented earlier (Table 2). We focus here on predictions
1-month ahead, while 2-month and 3-month predictions ahead were also tested for the GAM process.
Two approaches are combined (Figure 4):

e A statistical approach—generalized additive models (GAM), and
e  Artificial neural networks (ANN).

GAM models are used to arrive at the set of models that offer the best predictions. These set of
variables are then used to build ANN models. GAM models are thus used for model space reduction
in a set-up similar to variables selection prior to subjecting the chosen models to the ANN modelling
process. GAM models are reviewed for example in Hastie [43] and a good description of ANNSs is
provided in Ramos and Martinez [44].

a) b) ¢)
Build multiple GAM Evaluate & Select GAM ~ ——» Build multiple ANN
models models models

e) d)
Deploy ANN model on out- | ¢— Validate & Select best «—
of-sample data ANN model

Figure 4. Schema of the modelling process. In the sub-processes (a) and (b), General Additive Models
(GAM) models are used to arrive at the set of variables that offer the best predictions. These combinations
of variables are then used to build Artificial Neural Network (ANN) models. GAM are thus used,
essentially, as a model variable selection method to the subsequent ANN modelling sub-processes.

The modelling process in Figure 4 is automated using scripts written in the free statistical
computing R software developed by the R Core Team. The inputs into and outputs out of the R
script are provided as comma separated value (csv) files. Each of the models and their parameters are
serialized and saved to disk for making predictions on new data. The two modeling techniques (GAM
and ANN) are described below in detail.

General Additive Models

The GAM technique was selected because it does not assume linearity between the predictor and
the response variables [43]. In addition, GAM is free form and does not require the ascertainment of
the functional form of the relationship and has the ability to model complex non-linear relationships,
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even in the presence of multiple predictors. This makes GAM models a viable tool for weather-based
data modelling which exhibits non-linearity in the relationship between predictors and dependent
variables. GAM models are expressed as shown in Equation (1).

Y =a+ fi(x1) + fa(x2) + -+ fu(xn) + € (1)

where 4 is an intercept and f are smooth functions; Y is the response function and x; to x;, are the n
predictor variables.

Smoothing functions are either local linear regression (loess) or splines. In practical application,
caution is advised, since smoothing generally leads to model overfitting.

The model space for the study, as given by Equation (2) is around 2.15 billion. This space would
be impractical to navigate in the search for the best predictor model.

31

|
Z ﬁ ~ 2.15 billion @)
: 17!

To minimize the space complexity, we make some prior assumptions to avoid the futility of
bias-free learning and also follow Occam’s razor [45]. First, we assume that a maximum of two variables
in the GAM models will give us reasonably simple models while still remaining predictive. Second,
we assume that including multiple variables of the same category (vegetation or precipitation) is an
unnecessary increase of the complexity of the model space at marginal possible increased performance.
Together with these two assumptions, we further use a rule of thumb to not use different lag times of
the same variable in a single model. To capture seasonality, we further include an additional variable
for the month of the year of the instances as a sine wave. Seasonality is expected to exist in precipitation
and vegetation cover data. The month was added as an extra variable to the model formula for each
GAM model as a smoothed sine function of the month number. The smoothing uses cyclic cubic
regression splines (cc) that has start and end points and is thus appropriate for modelling seasonality.
These assumptions achieve a reduction of the model space from an initial 2.15 billion to 102 models.
With the model space reduced, we brute-forced the process of training and evaluating the models in an
automated process. Multiple model evaluation metrices were used and the results logged for both
model training and model evaluation. Results are reported separately for training and validation data.

Artificial Neural Networks (ANN)

ANN are a machine Learning (ML) approach that mimic the interconnectedness of the brain
in the modelling process [45]. ANNSs have several characteristics making them suitable for the
purpose of predictive modelling; (i) instances can be represented by many attribute value pairs; (ii) the
target function is either discrete, real or vector valued; (iii) training examples may contain errors;
(iv) non-linear relations can be modelled, and; (v) execution (after training) is very quick.
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To avoid overfitting, which is the most common limitation of ANNs, we chose models that were
not judged overly to lose performance in the evaluation datasets as compared to the training datasets
using R? as the measure of model performance. Our working definition of overfitting is presented in
Equation (3) and implies a loss of more than 3% in performance between training and validation is
deemed as overfitting.

Yes, dif f(RsquaredT, RsquaredV') > 0.03

Over fitmodel = { No, otherwise

®)

where RsquaredT indicates the R? in training set and RsquaredV is the R? in the validation set.

The ANNSs were built using the back-propagation algorithm. For the limitation of complexity,
the modelling process was set to have a formation of 2-5-3-1 and thus had two hidden layers that
were able to learn any arbitrary function. The formation was realized from both a rule of thumb and
an experimentation process. The rule of thumb is based on Equation (4) from Huang [46] with m as
number of output neurons and N as the number of samples to be learnt with negligibly small error.
The total number of hidden nodes was thus set at eight.

Sqrt(N x (m +2)) + 2 x Sqrt(N/ (m + 2), 1sthiddenlayer

m x Sqrt(N/(m + 2), 2ndhiddenlayer @

Numbero fnodes = {
The maximum step (stepmax) was set to 1 million iterations, which represented the maximum
steps for the training of the neural network at whose attainment the network’s training process was
stopped. The maximum step size was a failsafe condition for the ANNSs, should the pre-selected set of
hidden layers not lead to convergence majorly due to partitions in the training and validation datasets.
The process for the execution of the artificial neural networks modelling is as presented in Figure 5
and was built on normalized variables. For the ANN modeling, variable normalization was done prior
to model training to ensure the input variables were all at a comparable range. The input variables were
normalized by scaling each input’s data values to the 0-1 range (both end points included). The values
were centered at the minimum value for each variable, then linearly scaled between the minimum
and maximum values. The process for building the models (Figure 5) is automated including sample
selection and the performance evaluation. Training each of the models over the 10 partitions of the
data (diamond shapes in Figure 5) are the decision points in the model building process.
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Input selected GAM
models + dataset

Folds(k)
<=107?

All models
trained?

Figure 5. Outline of the ANN modelling process. The process sequentially inputs selected GAM
models and the panel dataset followed by the iteration of the performance of the models against the
data. The data is randomly partitioned in the ratio 70:30 for training and validation, respectively,
for each and every iteration of the k times a model is run against the data. The k-fold iteration was
chosen to minimize impacts of the random initialization of the network weights.

2.2.3. Model Evaluation

For all the models run, both GAM and ANN, the validation metrics used are mean absolute error
(mae), mean squared error (mse), root mean squared error (rmse), mean percentage error (mape),
and R?. Even though these measures of performance were generated, only R? is presented in the
results. The evaluation of the performance of the models is done as part of the model training process
using the validation dataset and also using the out of sample dataset.

3. Results and Discussion

3.1. Analysis of Past Drought Events

The occurrence of drought episodes, based on the classification of Vegetation Condition Index
aggregated over 3-months (VCI3M) as the proxy variable for drought conditions is shown in Table 4.
The thresholds used are documented in Klisch and Atzberger [22], Meroni et al. [40] and Klisch et al. [42].
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Table 4. Summary of monthly drought phases for the counties in the study region (March 2001 to
December 2015). The 3-monthly aggregated VCl is classified according to thresholds proposed in Klisch
and Atzberger [22], Meroni et al. [40] and Klisch et al. [42]. The 3-monthly VCI is provided for each
county leading to 712 possible episodes.

County Extreme Severe Moderate  Combined
Mandera 8 31 43 82
Marsabit 8 26 70 104
Turkana 4 28 64 96
Wajir 9 25 61 95
Total 29 110 238 377

Over the 178 months period, 377 out of a possible 712 (52%) drought episodes are reported at
county level, 29 (4%) of which are classified as extreme (VCI < 10) and are therefore signaling a possible
collapse of community coping capabilities.

3.2. GAM Model Results

A plot of the performance of the 102 models in the GAM process, grouped by R? is presented
in Figure 6. The models are noted to post R?> between 0.09 and 0.86 in model training and model
validation. The performances of the models in training and validation datasets (blue and orange bars
respectively) indicate relative stability in model numbers across the models.
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Figure 6. Model performance by range of R? in the GAM process.

The performance of the models by the lag-time of the variables (between 1- and 3-month lags)
is provided in Figure 7. As expected, the analysis of the GAM process by lag time indicates that the
1-month lag of the predictors perform better in predicting VCI3M as used to define drought (in green).
While a lag time of 2 month (in blue) still has some predictive power (R? > 0.5), even longer lags fail to
produce good correlations (in yellow).
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Figure 7. Lag-time based performance of the GAM model selection space reduction process.

It is deducible that the GAM process models with R? > 0.7 (Table 5) are all 1-month lag variables.
In fact, the first 2-month lag variable first appears at a model ranked at position 22 with an R? of 0.61
while the first 3-month lag variable is in a model ranked at position 52 with an R? of 0.33. The poor
performance of higher lags of these variables is expected, since longer lags are contributing less to
current vegetation status and the chances of unexpected climate variations occurring between time of
forecasting and the forecasted event increasing.

Table 5. GAM models with R? > 0.7 in decreasing order. Also provided is the overfit index
(Equation (3)) indicating that none of the models are overfitting. The full list of all 102 models is

provided in Appendix B.
R? R? Overfit . .
No Model Training Validation Index Overfit  Lag Time
1 VCIDekad_lagl+SPI1M_lagl 0.86 0.85 0.01 No 1
2 VCIDekad_lag1+SPI3M_lagl 0.86 0.85 0.01 No 1
3 VCIDekad_lagl+RFEIM_lagl 0.85 0.85 0.01 No 1
4 VCIIM_lagl+SPI3M_lagl 0.85 0.84 0.01 No 1
5 VCIIM_lagl+SPI1M_lagl 0.85 0.84 0.01 No 1
6 VCI1M_lagl1+RFEIM_lagl 0.85 0.84 0.01 No 1
7 VCIDekad_lagl+RCIIM_lagl 0.85 0.84 0.01 No 1
8 VCIIM_lagl1+RCI1M_lagl 0.84 0.83 0.01 No 1
9 VCIDekad_lag1+RCI3M_lagl 0.84 0.83 0.01 No 1
10 VCIDekad_lagl+RFE3M_lagl 0.84 0.83 0.01 No 1
11 VCIIM_lag1+RCI3M_lagl 0.84 0.83 0.01 No 1
12 VCIIM_lagl+RFE3M_lagl 0.83 0.83 0.01 No 1
13 VCI3M_lagl+SPI3M_lagl 0.82 0.82 0.01 No 1
14 VCIDekad_lagl 0.81 0.80 0.01 No 1
15 VCI3M_lag1+RCI3M_lagl 0.81 0.80 0.01 No 1
16 VCIIM_lagl 0.81 0.80 0.01 No 1
17 VCI3M_lag1+SPIIM_lagl 0.81 0.79 0.01 No 1
18 VCI3M_lagl1+RCIIM_lagl 0.78 0.77 0.01 No 1
19 VCI3M_lagl1+RFE3M_lagl 0.78 0.77 0.01 No 1
20 VCI3M_lagl1+RFE1IM_lagl 0.78 0.76 0.01 No 1
21! VCI3M_lagl 0.72 0.69 0.02 No 1

! The VCI3M_lagl model (No. 21) marginally fails the threshold. However, we included it in the selection for the
ANN process since it is the interesting case of the base model with the lag of the predicted variable.
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With the definition of overfitting based on Equation (3) presented earlier, it is shown that none of
the 21 GAM models were judged to have suffered over-fitting. All the 21 models are thus noted to
have acceptable deterioration in performance in validation.

The alternative measures of performance (MAE, MSE, RMSE, MAPE, NMSE and NAME) are
noted to be consistent with R? since they all have a non- monotonic and non-linear relationships (not
shown). An increase in R? translates to a change, but in reverse direction of the other measures of
model performance. The use of the GAM modelling process for model space reduction resulted in the
selection of the above 21 models were selected for the ANN process.

3.3. Artificial Neural Network Model Results

The study uses the ANN as the example technique of choice. Following on the model space
search approach, we produced all the 21 models using the ANN process through a bagging and brute
force approach in the search for the best model. For uniformity, overfitting is defined for ANN as in
GAM models.

3.3.1. Artificial Neural Network Performance in Training and Validation

Using the model overfit index (Equation (3)), it emerges from the results (Table 6) that the ANN
models are generally not overfit except for only one model (No. 19) that is overfit. This implies a
non-overfit rate of 95%.

Table 6. ANN model performances in training and validation datasets. The only overfitting model
(No. 19) is indicated using an asterisk (*) and the min, max and mean performances are calculated over
10 partitions of the training data.

Model Training (R?) Validation (R?) Overfit

No Min Max Mean Min Max Mean Index Overfit
1 VCIDekad_lagl+RFEIM_lagl 0.83 0.86 0.84 0.78 0.86 0.83 0.01 No
2 VCI1IM_lag1+RFE1IM_lagl 0.82 0.85 0.84 0.78 0.85 0.83 0.01 No
3 VCIDekad_lag1+SPI1M_lagl 0.82 0.85 0.84 0.79 0.87 0.82 0.02 No
4 VCIDekad_lagl+SPI3M_lagl 0.82 0.86 0.84 0.78 0.88 0.82 0.02 No
5 VCIDekad_lag1+RCI3M_lagl 0.82 0.86 0.84 0.79 0.87 0.82 0.02 No
6 VCI1IM_lag1+SPI3M_lagl 0.81 0.85 0.84 0.78 0.87 0.82 0.02 No
7 VCI1IM_lagl1+RCI3M_lagl 0.82 0.85 0.84 0.79 0.86 0.82 0.02 No
8 VCI1M_lag1+SPI1M_lagl 0.82 0.85 0.84 0.77 0.86 0.82 0.02 No
9 VCIDekad_lag1+RCI1IM_lagl 0.81 0.84 0.82 0.76  0.85 0.81 0.02 No

10 VCIIM_lagl+RCIIM_lagl 0.80 0.84 0.82 0.75 084 0.80 0.02 No
11 VCIDekad_lagl+RFE3M_lagl 0.79 0.84 0.82 0.75 0.83 0.80 0.02 No
12 VCI1M_lagl1+RFE3M_lagl 0.79 0.84 0.81 0.74 0.83 0.79 0.02 No
13 VClIDekad_lagl 0.77 0.82 0.79 0.72 0.82 0.78 0.01 No
14 VCIIM_lagl 0.76 0.81 0.78 0.72 081 0.77 0.02 No
15 VCI3M_lagl1+SPI3M_lagl 0.76  0.81 0.79 0.73 0.84 0.77 0.03 No
16 VCI3M_lag1+RFE1IM_lagl 0.76  0.79 0.77 0.72 0.80 0.77 0.01 No
17 VCI3M_lag1+RCI3M_lagl 0.76 0.81 0.79 0.72 0.83 0.76 0.03 No
18 VCI3M_lagl+RCIIM_lagl 0.74 079 0.77 0.71 0.80 0.75 0.02 No

19* VCI3M_lagl1+SPI1M_lagl 0.73  0.80 0.78 0.70 0.82 0.74 0.04 Yes

20 VCI3M_lagl1+RFE3M_lagl 0.71  0.77 0.74 0.65 0.76 0.72 0.02 No

21 VCI3M_lagl 0.64 071 0.68 0.60 0.73 0.66 0.02 No

Since the methodology used runs the same ANN model across 10 different partitions of the
training data, a review of model results indicates that almost all the models post an R? of at least 0.7
in all the partitions of the training data except for two models (No 20 and 21 in Table 6). Model 21
from the GAM process that was earlier marked as a special case (with lag of the dependent variable)
is shown to post a low performance (R? = 0.66) in the ANN process. The best model from the ANN
process is different from that of the GAM process. In fact, the best ANN model (R? = 0.83) (No 1 in
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Table 6) was ranked the third best model in the GAM modelling process in Table 5 (R? = 0.85). Figure 8
illustrates the performance of the ANN models as compared to the GAM models.
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Figure 8. Performance of the ANN models in validation as compared to similar GAM models.

In general, as indicated in Figure 8, the GAM models outperform ANN models except for model
16, for which the ANN slightly out-performs GAM by an R? of 0.01. This is an important property since
the GAM process is proved to be more optimistic in performance as compared to ANN, and therefore
fewer deserving models would be excluded from the ANN process. In the training and validation,
the best ANN model has the best subset performance of R? = 0.86 as shown in Figure 9.

VCIDekad_lagl

VCI3M

RFEIM_lagl

Error: 1.78 Steps: 3044

Figure 9. The best ANN model with the 1-month lag of the variables VCIDekad and RFEIM. The plot
is from the 4th partition of the training data that recorded the best performance. Blue nodes and lines
indicate bias nodes and bias terms respectively, the red nodes are the input nodes. The yellow nodes
are the hidden nodes while the output node is in green.
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A detailed analysis of the lag-time performance of the ANN models in model training is provided
in the Appendix A which has the results for the 102 possible ANN models similar to the GAM process.

3.3.2. Performance of the Best ANN Model in the Test Dataset

The out-of-sample test dataset has 96 data points across a 2-year period. The out-of-sample data
was neither used in the training nor the validation processes of the ANN and even of the GAM process.
It represents the model’s performance in the real world. We describe the performance of the best ANN
models both as a regressor and as a classifier.

Performance of ANN in Regression: the ANN prediction was formulated as a regression problem.
The performance of the best ANN model in regression is indicated in the plot of the actuals versus the
predicted real values for all the counties ordered by county and time period as shown in Figure 10.
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Figure 10. Plot of the actual values of VCI3M versus the best ANN model’s predicted values in test
data over 24 months for (a) Mandera (R? = 0.71); (b) Marsabit (R? = 0.77); (c¢) Turkana (R? = 0.83) and
(d) Wajir (R% = 0.71). Predictions were done 1 month ahead.

The plot of the actual versus the predicted values represents quite a good agreement. In the test
data, the best model posted an R? of 0.78 and RMSE of 7.03 on the actual data values. The above
performance over the 96 data points for testing is an acceptable performance in the prediction of
drought events.
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Performance of ANN in classification. Operational drought monitoring involves the definition
of thresholds on indices used for drought monitoring so as to realise a phase approach to drought
monitoring. We use the approach documented in Klisch and Atzberger [22], Meroni et al. [40] and
Klisch et al. [42] and earlier presented in Table 3 to classify drought in five phases.

The best model had an overall accuracy of 67% over all the counties, with the highest accuracy
of 71% for Wajir and Marsabit counties as indicated in the matrix provided in Figure 11. Additional
analysis of the classification performance of the model in the prediction of moderate to severe drought
is provide in Appendix C with an accuracy of 54% (Mandera), 71% (Marsabit), 74% (Wajir) and 58%
(Turkana).

Month No

Predicted
Difference

Month No
Actual

Predicted
Difference

Month No

Predicted
Difference

Month No 17| 18 19| 20| 21 22| 23] 24

Actual
Predicted

Difference

Figure 11. Performance of the classifier for the each of the counties showing months of difference in
grey and those of agreement in blue. Predictions are done 1 month ahead. The classification accuracies
are: (a) 63% for Mandera county; (b) 71% for Marsabit county; (c) 63% for Turkana county and; (d) 71%
for Wajir county.

When formulated as a multi-class classification problem and multiple receiver operating
characteristic (ROC) curves plotted for each of the pairwise comparisons of the classes following on
the approach in Hand and Till [47], we obtained the ROC plot in Figure 12. The multi-class area under
the curve (AUROC) is the average of the 10 areas under all the ROCs. The ROC for the five classes
provides a reasonable trade-off between sensitivity and specificity at an overall AUROC of 89.99%.
The AUROC indicates quite a good trade-off between sensitivity and specificity and is ranked within
the good performance category, as it is way above the 50%, which represents a worthless test (in gray).
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Figure 12. Multi-class ROC plot of the best model as a drought phase classifier. The curves represent
the pairwise comparison of the five classes. The overall area under the multi-class ROC is the average
of the areas under each of the ROCs for the pairwise class comparisons.

3.4. Validation of the Key Assumption of the Study

3.4.1. Appropriateness of the Use of GAM

To validate the key assumption on the appropriateness of the GAM modelling technique in the
reduction of the model space, we ran the extra 81 models through the ANN process. The best performer
from the set of non-selected models had an R? of 0.50. A summary of the performance of the non-GAM
selected models in the test dataset is provided in Figure 13.
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Figure 13. Distribution of non-selected models ANN performance on training, validation and testing.
No model is noted to post an R? of at least 0.5 in testing.

The results validate the assumption of the utility of GAM in modelling non-linearity as well
as in their use in this study for model space reduction prior to the use of computationally intensive
algorithms like artificial neural networks. The models that are not selected by the GAM process are not
expected to perform any better in the ANN process than the GAM selected models. The GAM process
is, in essence, more optimistic in performance ranking than the ANN process. This property is useful
as it generally guarantees that good models are not filtered out of the ANN process.

3.4.2. Investigation of Multi-Collinearity

The collinearity-matrix in Figure 14 gives the correlation coefficients between the predictor (X)
variable pairs together with a proposed interpretation scheme.

VCI3M_lagl | NDVIDekad_lagl | VCI1M_lagl | VCIDekad_lagl | RCIIM_lagl | RCI3M_lagl | RFEIM_lagl | RFE3M_lagl | SPI1IM_lagl | SPI3M_lagl

VCI3M_lagl
NDVIDekad_lagl
VCIIM_lagl
VClDekad_lagl
RCIIM_lagl
RCI3M_lagl
RFEIM_lagl
RFE3M_lagl
SPI1IM_lagl
SPI3M_lagl

Interpretation of correlation
=0.0: No linear relationship
0.0 - <0.3: Weak
0.3 - <0.5: Low
0.5 - <0.7: Moderate
>=0.7: High to vey high

Figure 14. Collinearity-matrix for the input (X) variables. Absolute correlation coefficient between the
pairs in X is provided together with a proposed interpretation of the correlations.

From the collinearity matrix in Figure 14, the correlation between vegetation input variables
is between moderate to very high correlations (min = 0.53, max = 0.87). This is as opposed to the
relationship between the pairings between vegetation and precipitation datasets, which is between no
linear relationship to moderate (min = 0.0, max = 0.54). The assumption to use the pairings between
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precipitation and vegetation datasets will therefore generally result in pairings of weak to barely
moderate correlations.

In addition to the collinearity matrix, we investigated the problem of multi-collinearity between
the independent variables in a two-step process—first for a model of all variables and second for
the pairing of precipitation and vegetation variables. For each approach, we obtained the variable
inflation factor (VIF) with the rule of thumb that a VIF > 5 indicates high multi-collinearity, while a
VIF > 10 indicates multi-collinearity that has to be handled in the modeling process. The results for the
investigation of VIF for all the model variables is presented in Table 7

Table 7. Variable inflation factor (VIF) for single model with all 1-month lag variables.

Variable Variable Inflation Factor (VI)F

VCI3M_lagl 6.14
NDVIDekad_lagl 1.41

VCI1M_lagl 976.21

VClIDekad_lagl 1057.46
RCI1IM_lagl 4.41
RCI3M_lagl 5.90
RFEIM_lagl 2.63
RFE3M_lagl 2.88
SPI1M_lagl 3.34
SPI3M_lagl 5.24

The full model (with all variables) indicates the presence of multi-collinearity with VIF > 10 for

2 of the predictor variables. A further analysis for the models fed in to the GAM process obtained the
results provided in Figure 15.
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Figure 15. Variable inflation factor (VIF) for GAM models.

The results in Figure 15 confirm that using the vegetation-precipitation variable pairs
(corresponding to low correlation portions of the correlation matrix in Figure 14) ensures models that
are not affected by multi-collinearity.

Concurvity, which has similar effects to those posed by multi-collinearity, was not a major
limitation in the approach to GAM modeling employed by this study since only one smooth term
was used in the development of the GAMs across all the models. In fact, an investigation with
smoothing on all the terms (not presented), resulted in model overfitting that limited the smoothing of
the dependent variables.
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3.4.3. Performance of Models with Lags of the Same Variable

To investigate auto-correlation, we ran both VIF and performance test on the 40 possible models
with lags of the predictor variables. Only three models of the possible 40 returned VIF > 5 implying
multi-collinearity. Despite the results showing that the lags for the same variable can be used in the
same model for the balance of 37 models, an actual investigation of their performance, as provided in
Figure 16, provides contrary evidence.

25
20
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No of models
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2 3 1 1 1 1

<0 0-0.01 0.01-0.02 0.02-0.03 0.03-0.04 0.05-0.06 0.06-0.07 >0.08

Performance gain/loss (R?)

Figure 16. Performance gain/loss in R? for models with different lags of the same predictor variable.

Only 17 models post a gain in performance of 1% or more. All the models that post an R? of
at least 0.5 either have a loss of 6% in performance to a gain of 1% implying poor return in having
multiple lags of the same variable in a model.

4. Conclusions

In this paper, multiple variables were used to predict future vegetation condition index (VCI)
as a proxy to drought conditions. The predictor variables were 1-3-month lags of precipitation and
vegetation indices. The methodology used two techniques in a setup where the general additive model
(GAM) statistical approach is first run against several possible model configurations. The GAM method
is then used to reduce the model space and by extension the set of viable variables. After variable
selection and with the model space reduced, a brute force approach is then employed using the artificial
neural networks (ANN) approach.

One month ahead forecasts of the VCI using the best ANN model showed good performances
with R? ranging between 0.71 and 0.83. After grouping into five drought classes, 63 to 71% of the
months were correctly classified—the remaining months showed a maximum difference of one class.
Prediction skills deteriorated with lag times longer than 1 month. The poor performance of variables
with longer times lags, in the prediction of drought events was established. Since the approach builds
multiple models, prior to evaluation in the search for the best model, it is possible to support model
ensembling that supports the use of multiple models in the prediction of future events.

The study demonstrated that the model space reduction is beneficial to the building of neural
networks that are known to generally have slower training times as compared to other approaches.
The automation of the model training and model validation processes, and the measure of performance
with a view to quantifying and avoiding overfitting, make for a scalable approach.
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Appendix A

The study built 102 models in the general additive model (GAM) process. The models were for 1,2
and 3 month lags on of 34 unique model variables. We present the analysis of the lag time performance
of the GAM and ANN approaches, assuming the case that the ANN method was also run on the
complete set of models.

Appendix A.1. GAM Model Performance by Lag Time

The comparison of the lag-based performance of the GAM models ordered by their performance
in 1-month lag is provided in Figure Al. A summary of the descriptive statistics of the models based
on lag time is presented in Table Al.

Model variables

W lagl Wlag2 ® Lag3

Figure A1l. Lag-based performance of the GAM models. The 1-month lags are in blue lines, the 2-month
lags in orange lines and 3-month lags in grey.

The models build using 1-month lag variables are shown to perform better than the 2-month and
3-month lags except in 8 out of the 34 cases when 2-month lag time models outperform the 1-month
lag models. Even in these 8 cases, the performance of the 2-month lags are still below R? of 0.5.

Table Al. Summary of GAM model performance by lag time.

Statistic Lagl Lag2 Lag3

Mean 0.62 0.44 0.25
Median 0.78 0.49 0.27
Range 0.76 0.47 0.24
Minimum 0.09 0.13 0.09
Maximum 0.85 0.61 0.33




Remote Sens. 2019, 11, 1099 22 of 30

From Table Al, a summary of performance of all the GAM models shows that 1-month prediction
has the best performance as compared to the 2-3 months prediction ahead. Despite posting the highest
range, 1-month predictions still post a mean performance of R? = 0.62 as compared to 0.44 and 0.25 for
2-month and 3-month lag times, respectively.

Appendix A.2. ANN Model Performance by Lag Time

The study proceeded, in the test of assumptions, to run the ANN process on the entire set of
models in the ANN process. A summary of the results is provided following on the same set as the
GAM models.

In training, as measured by the performance in the 30% (validation) dataset portion of the training
data, the performance of the ANN models is as shown in Figure A2.
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Figure A2. Lag-based performance of the full set (102) ANN models. The 1-month lags are in blue
lines, the 2-month lags in orange lines and 3-month lags in grey.

From Figure A2, it is shown that for each of the models, predictions 1-month ahead outperform
those for 2-month and 3-month ahead except for the last cases three cases (models 32-34) when
predictions 2-month ahead are better. At no point does any model have its predictions 3-month ahead
out-perform any of the short time period predictions. A summary of the descriptive statistics of the
ANN models is provided in Table A2.

Table A2. Summary of ANN model performance by lag time

Statistic Lag1 Lag2 Lag3

Mean 0.60 0.36 0.15
Median 0.76 0.38 0.15
Range 0.76 0.40 0.22

Minimum 0.07 0.11 0.03
Maximum 0.83 0.51 0.25

From Table A2, is noted that predictions 1-month ahead post the highest range but still end up
recording the highest mean of the lagged predictions. At an average R? of 0.6 for all the 102 models
the predictions 1-month ahead are judged predictive enough for use in an operational ex-ante system.
The best model for prediction 1-month ahead differs from the best model for 2-month and 3-month
ahead predictions. Both models have the variable VCIDekad while RFE for the predictions 1-month
ahead and SPI1M for both predictions 2-months and 3-months ahead.
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The full list of GAM models is presented in Table A3, while the full list of ANN models is presented
in Table A4 respectively.

Table A3. GAM models in decreasing order of R? with the overfit index provided.

R? R? Overfit . .
No Model Training Validation Index Overfit  Lag Time
1 VCIDekad_lag1+SPI1M_lagl 0.86 0.85 0.01 No Lagl
2 VCIDekad_lag1+SPI3M_lagl 0.86 0.85 0.01 No Lagl
3 VCIDekad_lagl+RFEIM_lagl 0.85 0.85 0.01 No Lagl
4 VCI1IM_lag1+SPI3M_lagl 0.85 0.84 0.01 No Lagl
5 VCIIM_lag1+SPI1M_lagl 0.85 0.84 0.01 No Lagl
6 VCIIM_lagl1+RFEIM_lagl 0.85 0.84 0.01 No Lagl
7 VCIDekad_lag1+RCIIM_lagl 0.85 0.84 0.01 No Lagl
8 VCIIM_lagl+RCIIM_lagl 0.84 0.83 0.01 No Lagl
9 VCIDekad_lag1+RCI3M_lagl 0.84 0.83 0.01 No Lagl
10  VCIDekad_lagl+RFE3M_lagl 0.84 0.83 0.01 No Lagl
11 VCIIM_lagl1+RCI3M_lagl 0.84 0.83 0.01 No Lagl
12 VCIIM_lagl1+RFE3M_lagl 0.83 0.83 0.01 No Lagl
13 VCI3M_lag1+SPI3M_lagl 0.82 0.82 0.01 No Lagl
14 VCIDekad_lagl 0.81 0.8 0.01 No Lagl
15 VCI3M_lagl1+RCI3M_lagl 0.81 0.8 0.01 No Lagl
16 VCIIM_lagl 0.81 0.8 0.01 No Lagl
17 VCI3M_lagl+SPI1IM_lagl 0.81 0.79 0.01 No Lagl
18 VCI3M_lagl1+RCI1M_lagl 0.78 0.77 0.01 No Lagl
19 VCI3M_lagl1+RFE3M_lagl 0.78 0.77 0.01 No Lagl
20 VCI3M_lagl+RFEIM_lagl 0.78 0.76 0.01 No Lagl
21 VCI3M_lagl 0.72 0.69 0.02 No Lagl
22 VCIDekad_lag2+SPI1M_lag?2 0.61 0.61 0 No Lag2
23 VCIIM_lag2+SPI1M_lag2 0.6 0.6 0 No Lag?2
24  VCIDekad_lag2+RFEIM_lag?2 0.58 0.58 0 No Lag2
25 VCIIM_lag2+RFEIM_lag2 0.58 0.57 0 No Lag2
26 VCIIM_lag2+SPI3M_lag?2 0.57 0.56 0.01 No Lag2
27  VClDekad_lag2+SPI3M_lag?2 0.57 0.56 0.01 No Lag?2
28 VCI3M_lag2+SPI1IM_lag2 0.56 0.56 0 No Lag2
29  VCIDekad_lag2+RCI1M_lag2 0.56 0.55 0.02 No Lag2
30 VCI3M_lag2+SPI3M_lag?2 0.55 0.55 0 No Lag?2
31 VCIIM_lag2+RCIIM_lag2 0.56 0.55 0.02 No Lag2
32 NDVIDekad_lagl+SPI3M_lagl 0.56 0.54 0.02 No Lagl
33  VCIDekad_lag2+RCI3M_lag2 0.55 0.54 0.02 No Lag?2
34 VCIIM_lag2+RCI3M_lag2 0.55 0.54 0.02 No Lag2
35 VCI3M_lag2+RCI3M_lag2 0.53 0.51 0.01 No Lag?2
36  NDVIDekad_lag2+SPI3M_lag?2 0.52 0.51 0.01 No Lag2
37 VCI3M_lag2+RCIIM_lag?2 0.51 0.49 0.02 No Lag2
38 VCI3M_lag2+RFE1M_lag2 0.5 0.49 0.01 No Lag?2
39  NDVIDekad_lagl+RCI3M_lagl 0.51 0.49 0.02 No Lagl
40 VCIIM_lag2+RFE3M_lag2 0.51 0.49 0.02 No Lag2
41  VCIDekad_lag2+RFE3M_lag2 0.51 0.49 0.02 No Lag?2
42 SPI3M_lag?2 0.49 0.49 0 No Lag2
43 SPI3M_lagl 0.5 0.48 0.02 No Lagl
44  NDVIDekad_lag2+RCI3M_lag?2 0.48 0.46 0.02 No Lag2
45 VCI3M_lag2+RFE3M_lag2 0.44 0.43 0.02 No Lag2
46 RCI3M_lag2 0.42 0.41 0.01 No Lag2
47 VCIIM_lag2 0.43 0.4 0.03 No Lag2
48 VCIDekad_lag?2 0.43 0.4 0.03 No Lag?2
49  NDVIDekad_lagl+RFE3M_lagl 0.41 0.39 0.02 No Lagl
50 RCI3M_lagl 0.41 0.39 0.02 No Lagl
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R2 R2 Overfit . .
No Model Training Validation Index Overfit  Lag Time
51  NDVIDekad_lag2+SPI1M_lag?2 0.4 0.37 0.03 No Lag2
52 VCIDekad_lag3+SPI1M_lag3 0.35 0.33 0.01 No Lag3
53 VCIIM_lag3+SPI1M_lag3 0.34 0.33 0.01 No Lag3
54  NDVIDekad_lag2+RFE3M_lag2 0.35 0.33 0.02 No Lag?2
55 VCI3M_lag3+SPI1M_lag3 0.33 0.32 0.01 No Lag3
56 VCI3M_lag2 0.33 0.31 0.02 No Lag2
57 RFE3M_lagl 0.32 0.31 0.01 No Lagl
58  NDVIDekad_lag3+SPI3M_lag3 0.33 0.31 0.02 No Lag3
59*  NDVIDekad_lag2+RCIIM_lag2 0.35 0.31 0.05 Yes Lag2
60 VCIIM_lag3+SPI3M_lag3 0.32 0.31 0.02 No Lag3
61 VCI3M_lag3+SPI3M_lag3 0.32 0.31 0.01 No Lag3
62 VCIDekad_lag3+SPI3M_lag3 0.32 0.31 0.01 No Lag3
63  NDVIDekad_lag2+RFEIM_lag2 0.34 0.31 0.03 No Lag?2
64 SPI3M_lag3 0.31 0.3 0.02 No Lag3
65 SPIIM_lag2 0.32 0.29 0.03 No Lag2
66  NDVIDekad_lag3+RCI3M_lag3 0.31 0.29 0.02 No Lag3
67  NDVIDekad_lag1+SPI1M_lagl 0.31 0.29 0.03 No Lagl
68 VCIIM_lag3+RCI3M_lag3 0.3 0.28 0.02 No Lag3
69 VCI3M_lag3+RCI3M_lag3 0.3 0.28 0.02 No Lag3
70 VCIDekad_lag3+RCI3M_lag3 0.3 0.28 0.02 No Lag3
71 RFE3M_lag?2 0.29 0.28 0.01 No Lag2
72 VCIDekad_lag3+RFE1M_lag3 0.31 0.28 0.03 No Lag3
73 VCIIM_lag3+RFEIM_lag3 0.31 0.28 0.03 No Lag3
74 NDVIDekad_lag3+SPI1M_lag3 0.3 0.28 0.02 No Lag3
75  VCIDekad_lag3+RCI1M_lag3 0.29 0.27 0.02 No Lag3
76 VCIIM_lag3+RCI1IM_lag3 0.29 0.27 0.02 No Lag3
77 VCI3M_lag3+RFEIM_lag3 0.3 0.27 0.03 No Lag3
78 VCI3M_lag3+RCI1M_lag3 0.28 0.26 0.02 No Lag3
79 RCI3M_lag3 0.28 0.26 0.02 No Lag3
80  NDVIDekad_lagl+RCIIM_lagl 0.28 0.26 0.02 No Lagl
81  VCIDekad_lag3+RFE3M_lag3 0.25 0.24 0.01 No Lag3
82 VCIIM_lag3+RFE3M_lag3 0.25 0.23 0.01 No Lag3
83  NDVIDekad_lagl+RFEIM_lagl 0.26 0.23 0.02 No Lagl
84 SPIIM_lag3 0.25 0.23 0.02 No Lag3
85 VCI3M_lag3+RFE3M_lag3 0.24 0.23 0.02 No Lag3
86  NDVIDekad_lag3+RCI1M_lag3 0.24 0.22 0.02 No Lag3
87* RCIIM_lag2 0.25 0.21 0.04 Yes Lag2
88 RFE1IM_lag?2 0.24 0.21 0.03 No Lag2
89  NDVIDekad_lag3+RFEIM_lag3 0.24 0.21 0.03 No Lag3
90  NDVIDekad_lag3+RFE3M_lag3 0.23 0.2 0.02 No Lag3
91 RFE3M_lag3 0.21 0.19 0.02 No Lag3
92 NDVIDekad_lagl 0.22 0.19 0.03 No Lagl
93 VCI1M_lag3 0.19 0.18 0.01 No Lag3
94 VCIDekad_lag3 0.19 0.18 0.01 No Lag3
95 RCI1M_lag3 0.19 0.17 0.02 No Lag3
96 RFE1IM_lag3 0.2 0.17 0.03 No Lag3
97 SPIIM_lagl 0.17 0.15 0.03 No Lagl
98 VCI3M_lag3 0.15 0.13 0.02 No Lag3
99 NDVIDekad_lag2 0.16 0.13 0.03 No Lag2
100 RCIIM_lagl 0.13 0.12 0.01 No Lagl
101 RFE1M_lagl 0.11 0.09 0.02 No Lagl
102 NDVIDekad_lag3 0.11 0.09 0.02 No Lag3

1 The overfit models are marked with * on the column No.
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The GAM models only have two out of 102 (under 2%) of models judged as overfit. This is as
compared to the ANN models in Table A4, which indicates 64 out of 102 models losing performance in
validation by more than an R? of 0.03 as compared to their performance in training.

Table A4. ANN models in decreasing order of R? with the overfit index provided.

R? R? Overfit . .
No Model Training Validation Index Overfit  Lag Time
1 VCIDekad_lagl+RFEIM_lagl 0.84 0.83 0.01 No 1
2 VCIIM_lagl1+RFEIM_lagl 0.84 0.83 0.01 No 1
3 VCIDekad_lagl+SPI1M_lagl 0.84 0.82 0.02 No 1
4 VCIDekad_lag1+SPI3M_lagl 0.84 0.82 0.02 No 1
5 VCIDekad_lag1+RCI3M_lagl 0.84 0.82 0.02 No 1
6 VCIIM_lagl+SPI3M_lagl 0.84 0.82 0.02 No 1
7 VCIIM_lag1+RCI3M_lagl 0.84 0.82 0.02 No 1
8 VCIIM_lag1+SPI1M_lagl 0.84 0.82 0.02 No 1
9 VCIDekad_lagl+RCIIM_lagl 0.82 0.81 0.02 No 1
10 VCIIM_lag1+RCI1M_lagl 0.82 0.80 0.02 No 1
11 VCIDekad_lagl+RFE3M_lagl 0.82 0.80 0.02 No 1
12 VCIIM_lagl1+RFE3M_lagl 0.81 0.79 0.02 No 1
13 VCIDekad_lagl 0.79 0.78 0.01 No 1
14 VCIIM_lagl 0.78 0.77 0.01 No 1
15 VCI3M_lagl+SPI3M_lagl 0.79 0.77 0.03 No 1
16 VCI3M_lagl+RFEIM_lagl 0.77 0.77 0.01 No 1
17 VCI3M_lagl1+RCI3M_lagl 0.79 0.76 0.03 No 1
18 VCI3M_lagl1+RCI1IM_lagl 0.77 0.75 0.02 No 1
19% VCI3M_lag1+SPI1M_lagl 0.78 0.74 0.04 Yes 1
20 VCI3M_lagl+RFE3M_lagl 0.74 0.72 0.02 No 1
21 VCI3M_lagl 0.68 0.66 0.02 No 1
22*  NDVIDekad_lagl1+SPI3M_lagl 0.60 0.57 0.04 Yes 1
23*  NDVIDekad_lag1+RCI3M_lagl 0.59 0.54 0.05 Yes 1
24* VCIIM_lag2+SPI1M_lag2 0.57 0.51 0.06 Yes 2
25* VCIDekad_lag2+SPI1M_lag2 0.58 0.51 0.07 Yes 2
26* VCIDekad_lag2+SPI3M_lag?2 0.54 0.51 0.04 Yes 2
27* VCIIM_lag2+SPI3M_lag?2 0.56 0.49 0.07 Yes 2
28* VCIDekad_lag2+RCI1IM_lag2 0.53 0.47 0.06 Yes 2
29* VCIDekad_lag2+RFEIM_lag2 0.52 0.47 0.06 Yes 2
30* VCIIM_lag2+RCI1IM_lag2 0.53 0.46 0.07 Yes 2
31* VCIIM_lag2+RCI3M_lag2 0.53 0.46 0.08 Yes 2
32* VCIIM_lag2+RFEIM_lag2 0.53 0.46 0.07 Yes 2
33* VCIDekad_lag2+RCI3M_lag2 0.52 0.45 0.07 Yes 2
34* VCI3M_lag2+SPI3M_lag2 0.52 0.44 0.08 Yes 2
35* VCI3M_lag2+SPI1IM_lag2 0.50 0.44 0.06 Yes 2
36* SPI3M_lagl 0.47 0.43 0.03 Yes 1
37*  NDVIDekad_lag2+SPI3M_lag2 0.48 0.43 0.05 Yes 2
38 SPI3M_lag?2 0.42 0.42 0.00 No 2
39* VCI3M_lag2+RCI3M_lag2 0.49 0.40 0.09 Yes 2
40*  NDVIDekad_lag2+RCI3M_lag2 0.45 0.40 0.05 Yes 2
41* VCI3M_lag2+RCI1IM_lag2 0.51 0.39 0.12 Yes 2
42* RCI3M_lagl 0.43 0.39 0.04 Yes 1
43* VCI3M_lag2+RFEIM_lag2 0.47 0.38 0.09 Yes 2
44*  NDVIDekad_lagl+RFE3M_lagl 0.47 0.37 0.09 Yes 1
45* VCIDekad_lag2+RFE3M_lag?2 0.46 0.37 0.09 Yes 2
46* VCIIM_lag2+RFE3M_lag2 0.46 0.37 0.09 Yes 2
47 RCI3M_lag?2 0.38 0.37 0.01 No 2
48*  NDVIDekad_lagl+SPI1M_lagl 0.43 0.36 0.06 Yes 1
49* VCIIM_lag2 0.39 0.36 0.03 Yes 2
50* VClIDekad_lag2 0.39 0.36 0.03 Yes 2
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R2 R2 Overfit . .
No Model Training Validation Index Overfit  Lag Time
51*  NDVIDekad_lag2+SPI1M_lag2 0.39 0.32 0.07 Yes 2
52*  NDVIDekad_lagl+RCIIM_lagl 0.35 0.32 0.03 Yes 1
53* VCI3M_lag2+RFE3M_lag2 0.41 0.29 0.12 Yes 2
54 NDVIDekad_lagl 0.28 0.27 0.01 No 1
55 RFE3M_lagl 0.27 0.26 0.01 No 1
56*  NDVIDekad_lagl+RFEIM_lagl 0.34 0.26 0.08 Yes 1
57* VCIDekad_lag3+SPI1M_lag3 0.31 0.25 0.06 Yes 3
58 SPIIM_lag2 0.26 0.24 0.02 No 2
59* VCI3M_lag2 0.28 0.23 0.05 Yes 2
60* VCIDekad_lag3+SPI3M_lag3 0.30 0.23 0.07 Yes 3
61* VCIIM_lag3+SPI1M_lag3 0.31 0.23 0.08 Yes 3
62* VCIIM_lag3+SPI3M_lag3 0.31 0.23 0.08 Yes 3
63*  NDVIDekad_lag2+RCI1M_lag2 0.31 0.23 0.09 Yes 2
64* VCI3M_lag3+SPI3M_lag3 0.28 0.23 0.06 Yes 3
65*  NDVIDekad_lag2+RFE3M_lag2 0.31 0.22 0.10 Yes 2
66 SPI3M_lag3 0.23 0.22 0.01 No 3
67*  NDVIDekad_lag3+SPI3M_lag3 0.27 0.21 0.06 Yes 3
68* VCI3M_lag3+SPI1M_lag3 0.32 0.20 0.12 Yes 3
69 RCI1M_lag?2 0.20 0.19 0.01 No 2
70*  NDVIDekad_lag2+RFEIM_lag2 0.24 0.19 0.05 Yes 2
71* RFE3M_lag?2 0.23 0.19 0.05 Yes 2
72*  NDVIDekad_lag3+RCI3M_lag3 0.27 0.18 0.09 Yes 3
73 SPIIM_lag3 0.20 0.18 0.02 No 3
74*  NDVIDekad_lag3+SPI1M_lag3 0.27 0.17 0.10 Yes 3
75% VCIIM_lag3+RCI3M_lag3 0.25 0.17 0.08 Yes 3
76* RCI3M_lag3 0.20 0.16 0.04 Yes 3
77* VCI3M_lag3+RCI3M_lag3 0.27 0.16 0.11 Yes 3
78* VCIDekad_lag3+RCIIM_lag3 0.27 0.16 0.11 Yes 3
79* VCIIM_lag3+RFEIM_lag3 0.23 0.15 0.07 Yes 3
80* VCIIM_lag3+RFE3M_lag3 0.21 0.15 0.06 Yes 3
81* VCI3M_lag3+RCI1M_lag3 0.30 0.14 0.15 Yes 3
82* VCIDekad_lag3+RCI3M_lag3 0.27 0.14 0.12 Yes 3
83* VCIIM_lag3+RCI1IM_lag3 0.30 0.14 0.16 Yes 3
84* VCIDekad_lag3+RFEIM_lag3 0.24 0.14 0.10 Yes 3
85*  NDVIDekad_lag3+RFE3M_lag3 0.19 0.13 0.06 Yes 3
86 RFE1M_lag?2 0.14 0.13 0.01 No 2
87* VCI3M_lag3+RFEIM_lag3 0.20 0.13 0.07 Yes 3
88* VCIDekad_lag3+RFE3M_lag3 0.22 0.13 0.09 Yes 3
89* VCI3M_lag3+RFE3M_lag3 0.19 0.12 0.07 Yes 3
90 RFE3M_lag3 0.14 0.12 0.01 No 3
91 VCIDekad_lag3 0.14 0.11 0.03 No 3
92*  NDVIDekad_lag3+RCIIM_lag3 0.18 0.11 0.07 Yes 3
93 SPI1M_lagl 0.14 0.11 0.02 No 1
94 RCIIM_lagl 0.11 0.11 (0.00) No 1
95 NDVIDekad_lag?2 0.13 0.11 0.02 No 2
96* RCIIM_lag3 0.13 0.10 0.03 Yes 3
97* VCIIM_lag3 0.15 0.10 0.05 Yes 3
98 VCI3M_lag3 0.09 0.07 0.02 No 3
929 RFE1IM_lagl 0.07 0.07 (0.00) No 1
100* NDVIDekad_lag3+RFE1IM_lag3 0.14 0.06 0.08 Yes 3
101 RFE1M_lag3 0.08 0.06 0.02 No 3
102 NDVIDekad_lag3 0.05 0.03 0.01 No 3
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Appendix C

The performance of the best model as a classifier for the moderate to extreme drought events is
presented in Figure A3.
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Figure A3. Performance of the classifier for moderate to extreme drought for each of the counties
showing months of difference in grey and those of agreement in blue. Predictions are done one month
ahead. The classification accuracies are: (a) 54% for Mandera county; (b) 71% for Marsabit county;
(c) 58% for Turkana county and; (d) 74% for Wajir county.

Further analysis for severe to extreme drought, however returns very poor performance perhaps
due to low occurrence of the events in the training data at 4.92% and 10.81% for severe and extreme
droughts respectively.

One possible mitigation to this poor performance in class distribution would be model ensembling.
Given that the ANN process realized 21 models that were relatively good performers, we can have all
the models participate in the prediction process. A naive approach to model ensembling would be to
average the scores from all the models prior to the classification. This approach realizes an overall R
of 0.81 and an overall accuracy of 74%. At county level, the performance was- Mandera (R? = 0.70),
Marsabit (R? = 0.82), Turkana (R? = 0.87) and Wajir (R? = 0.76). The performance of the classification
by county for moderate to extreme drought is provided in Figure A4.
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Figure A4. Performance of the average ensemble classifier for all the vegetation deficit classes for
each of the counties showing months of difference in grey and those of agreement in blue. Predictions
are done 1 month ahead. The classification accuracies in the severe to extreme vegetation classes are:
(a) 71% for Mandera county; (b) 63% for Marsabit county; (c) 80% for Turkana county and; (d) 67% for
Wajir county.
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From Figure A4, a gain in classification accuracy is realized when the model ensembling approach

is used as compared to the use of the single best model. The model ensembling approach, however, has a
computational resources and time aspect to it and paired with ANN complicates further interpretability
of model outputs.

References

1. Morid, S.; Smakhtin, V.; Bagherzadeh, K. Drought forecasting using artificial neural networks and time series
of drought indices. Int. ]. Climatol. 2007, 27, 2103-2111. [CrossRef]

2. Bordi, I; Fraedrich, K.; Petitta, M.; Sutera, A. Methods for predicting drought occurrences. In Proceedings
of the 6th International Conference of the European Water Resources Association, Menton, France,
7-10 September 2005; pp. 7-10.

3. Ali, Z,; Hussain, L; Faisal, M.; Nazir, H.M.; Hussain, T.; Shad, M.Y.; Mohamd Shoukry, A.; Hussain Gani, S.
Forecasting Drought Using Multilayer Perceptron Artificial Neural Network Model. Adv. Meteorol. 2017,
2017,5681308. [CrossRef]

4. UNOOSA. Data Application of the Month: Drought Monitoring. UN-SPIDER. 2015. Available online:
http://www.un-spider.org/links-and-resources/data-sources/daotm-drought (accessed on 11 November 2017).

5. Government of Kenya. Kenya Post-Disaster Needs Assessment: 2008-2011 Drought. 2012. Available online:
http://www.gfdrr.org/sites/gfdrr/files/Kenya_PDNA_Final. pdf (accessed on 9 November 2018).

6. Cody, B.A.; Folger, P; Brougher, C. California Drought: Hydrological and Regulatory Water Supply Issues;
Congressional Research Service: Washington, DC, USA, 2010.

7. Udmale, P.D.; Ichikawa, Y.; Manandhar, S.; Ishidaira, H.; Kiem, A.S.; Shaowei, N.; Panda, S.N. How did the
2012 drought affect rural livelihoods in vulnerable areas? Empirical evidence from India. Int. ]. Disaster Risk
Reduct. 2015, 13, 454-469. [CrossRef]

8.  Ding, Y,; Hayes, M.].; Widhalm, M. Measuring economic impacts of drought: A review and discussion.
Disaster Prev. Manag. Int. |. 2011, 20, 434-446. [CrossRef]

9.  Mariotti, A.; Schubert, S.; Mo, K,; Peters-Lidard, C.; Wood, A.; Pulwarty, R.; Huang, J.; Barrie, D. Advancing
drought understanding, monitoring, and prediction. Bull. Am. Meteorol. Soc. 2013, 94, ES186-ES188.
[CrossRef]

10. Rembold, F.; Atzberger, C.; Savin, I; Rojas, O. Using low resolution satellite imagery for yield prediction and
yield anomaly detection. Remote Sens. 2013, 5, 1704-1733. [CrossRef]

11.  Atzberger, C. Advances in remote sensing of agriculture: Context description, existing operational monitoring
systems and major information needs. Remote Sens. 2013, 5, 949-981. [CrossRef]

12.  Meroni, M.; Verstraete, M.M.; Rembold, F; Urbano, F,; Kayitakire, F. A phenology-based method to derive
biomass production anomalies for food security monitoring in the Horn of Africa. Int. |. Remote Sens. 2014,
35, 2472-2492. [CrossRef]

13. Du, L,; Tian, Q.; Yu, T.; Meng, Q.; Jancso, T.; Udvardy, P.; Huang, Y. A comprehensive drought monitoring
method integrating MODIS and TRMM data. Int. . Appl. Earth Obs. Geoinf. 2013, 23, 245-253. [CrossRef]

14. McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales.
In Proceedings of the 8th Conference on Applied Climatology; American Meteorological Society: Boston, MA,
USA, 1993; Volume 17, pp. 179-183.

15.  Palmer, W.C. Keeping track of crop moisture conditions, nationwide: The new crop moisture index.
Weatherwise 1968, 21, 156-161. [CrossRef]

16. Vicente-Serrano, S.M.; Begueria, S.; Lépez-Moreno, J.I. A multiscalar drought index sensitive to global
warming: the standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696-1718. [CrossRef]

17.  Mishra, A K,; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202-216. [CrossRef]

18. Huang, Y.F; Ang, ].T,; Tiong, Y.J.; Mirzaei, M.; Amin, M.Z.M. Drought Forecasting using SPI and EDI under
RCP-8.5 Climate Change Scenarios for Langat River Basin, Malaysia. Procedia Eng. 2016, 154, 710-717.
[CrossRef]

19. Khadr, M. Forecasting of meteorological drought using hidden Markov model (case study: The upper Blue
Nile river basin, Ethiopia). Ain Shams Eng. |. 2016, 7, 47-56. [CrossRef]

20. Wichitarapongsakun, P; Sarin, C.; Klomjek, P.; Chuenchooklin, S. Rainfall prediction and meteorological

drought analysis in the Sakae Krang River basin of Thailand. Agric. Nat. Resour. 2016, 50, 490-498. [CrossRef]


http://dx.doi.org/10.1002/joc.1498
http://dx.doi.org/10.1155/2017/5681308
http://www.un-spider.org/links-and-resources/data-sources/daotm-drought
http://www.gfdrr.org/sites/gfdrr/files/Kenya_PDNA_Final.pdf
http://dx.doi.org/10.1016/j.ijdrr.2015.08.002
http://dx.doi.org/10.1108/09653561111161752
http://dx.doi.org/10.1175/BAMS-D-12-00248.1
http://dx.doi.org/10.3390/rs5041704
http://dx.doi.org/10.3390/rs5020949
http://dx.doi.org/10.1080/01431161.2014.883090
http://dx.doi.org/10.1016/j.jag.2012.09.010
http://dx.doi.org/10.1080/00431672.1968.9932814
http://dx.doi.org/10.1175/2009JCLI2909.1
http://dx.doi.org/10.1016/j.jhydrol.2010.07.012
http://dx.doi.org/10.1016/j.proeng.2016.07.573
http://dx.doi.org/10.1016/j.asej.2015.11.005
http://dx.doi.org/10.1016/j.anres.2016.05.003

Remote Sens. 2019, 11, 1099 29 of 30

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Svoboda, M.; LeComte, D.; Hayes, M.; Heim, R.; Gleason, K.; Angel, ].; Rippey, B.; Tinker, R.; Palecki, M.;
Stooksbury, D.; et al. The drought monitor. Bull. Am. Meteorol. Soc. 2002, 83, 1181-1190. [CrossRef]
Klisch, A.; Atzberger, C. Operational drought monitoring in Kenya using MODIS NDVI time series.
Remote Sens. 2016, 8, 267. [CrossRef]

Beesley, J. The Hunger Safety Nets Programme in Kenya: A Social Protection Case Study; Oxfam Publishing:
Oxford, UK, 2011.

Brown, J.; Howard, D.; Wylie, B.; Frieze, A.; Ji, L.; Gacke, C. Application-ready expedited MODIS data for
operational land surface monitoring of vegetation condition. Remote Sens. 2015, 7, 16226-16240. [CrossRef]
Hayes, M.].; Svoboda, M.D.; Wilhite, D.A.; Vanyarkho, O.V. Monitoring the 1996 drought using the
standardized precipitation index. Bull. Am. Meteorol. Soc. 1999, 80, 429-438. [CrossRef]

AghaKouchak, A.; Nakhjiri, N. A near real-time satellite-based global drought climate data record. Environ.
Res. Lett. 2012, 7, 044037. [CrossRef]

ICPAC. IGAD Climate Prediction and Applications Centre Monthly Climate Bulletin, Climate
Review for January 2019 and Forecasts for March 2019. February 2019. Available
online: http://www.icpac.net/index.php/component/osdownloads/routedownload/climate/dekadal/dekad-
2019/monthly-bulletin-2019/february-2019-bulletin.html?Itemid=622 (accessed on 31 March 2019).

Yuan, X.; Zhang, M.; Wang, L.; Zhou, T. Understanding and seasonal forecasting of hydrological drought in
the Anthropocene. Hydrol. Earth Syst. Sci. 2017, 21, 5477-5492. [CrossRef]

Le, M.H.; Perez, G.C.; Solomatine, D.; Nguyen, L.B. Meteorological Drought Forecasting Based on Climate
Signals Using Artificial Neural Network—A Case Study in Khanhhoa Province Vietnam. Procedia Eng. 2016,
154,1169-1175. [CrossRef]

Maca, P; Pech, P. Forecasting SPEI and SPI drought indices using the integrated artificial neural networks.
Comput. Intell. Neurosci. 2016, 2016, 14. [CrossRef]

AghaKouchak, A. A multivariate approach for persistence-based drought prediction: Application to the
2010-2011 East Africa drought. J. Hydrol. 2015, 526, 127-135. [CrossRef]

Shah, H.; Rane, V.; Nainani, J.; Jeyakumar, B.; Giri, N. Drought Prediction and Management using Big Data
Analytics. Int. J. Comput. Appl. 2017, 162, 27-30. [CrossRef]

Enenkel, M.; Steiner, C.; Mistelbauer, T.; Dorigo, W.; Wagner, W.; See, L.; Atzberger, C.; Schneider, S.;
Rogenhofer, E. A combined satellite-derived drought indicator to support humanitarian aid organizations.
Remote Sens. 2016, 8, 340. [CrossRef]

Tadesse, T.; Demisse, G.B.; Zaitchik, B.; Dinku, T. Satellite-based hybrid drought monitoring tool for prediction
of vegetation condition in Eastern Africa: A case study for Ethiopia. Water Resour. Res. 2014, 50, 2176-2190.
[CrossRef]

Tadesse, T.; Wardlow, B.D.; Hayes, M.].; Svoboda, M.D.; Brown, J.E. The Vegetation Outlook (VegOut): A new
method for predicting vegetation seasonal greenness. GISci. Remote Sens. 2010, 47, 25-52. [CrossRef]
Wardlow, B.D.; Tadesse, T.; Brown, ].E; Callahan, K.; Swain, S.; Hunt, E. Vegetation Drought Response
Index: An Integration of Satellite, Climate, and Biophysical Data. In Remote Sensing of Drought: Innovative
Monitoring Approaches; Wardlow, B.D., Anderson, M.C., Verdin, J.P., Eds.; CPC Press: Boca Raton, FL, USA,
2012; pp. 51-74.

Sedano, F.; Kempeneers, P.; Hurtt, G. A Kalman filter-based method to generate continuous time series of
medium-resolution NDVI images. Remote Sens. 2014, 6, 12381-12408. [CrossRef]

Tarnavsky, E.; Grimes, D.; Maidment, R.; Black, E.; Allan, R.P.; Stringer, M.; Chadwick, R.; Kayitakire, F.
Extension of the TAMSAT satellite-based rainfall monitoring over Africa and from 1983 to present. J. Appl.
Meteorol. Climatol. 2014, 53, 2805-2822. [CrossRef]

World Meteorological Organization (WMO). Standardized Precipitation Index User Guide. 2012. WMO-No.
1090. Available online: http://www.wamis.org/agm/pubs/SPI/WMO_1090_EN.pdf (accessed on 26 April 2019).
Meroni, M.; Fasbender, D.; Rembold, F; Atzberger, C.; Klisch, A. Near real-time vegetation anomaly detection
with MODIS NDVI: Timeliness vs. accuracy and effect of anomaly computation options. Remote Sens.
Environ. 2019, 221, 508-521. [CrossRef]

Atzberger, C.; Carter, M.; Fava, E; Jensen, N.; Meroni, M.; Mude, A.; Stoeffler, Q.; Vrieling, A. Does the
Design Matter? Comparing Satellite-Based Indices for Insuring Pastoralists in Kenya: Technical Report
Prepared for the BASIS Assets and Market Access CRSP. 2016. Available online: https://basis.ucdavis.edu/
sites/g/files/dgvnsk466/files/2017-05/Cornell_AMA_Technical_Report.pdf (accessed on 19 December 2018).


http://dx.doi.org/10.1175/1520-0477-83.8.1181
http://dx.doi.org/10.3390/rs8040267
http://dx.doi.org/10.3390/rs71215825
http://dx.doi.org/10.1175/1520-0477(1999)080&lt;0429:MTDUTS&gt;2.0.CO;2
http://dx.doi.org/10.1088/1748-9326/7/4/044037
http://www.icpac.net/index.php/component/osdownloads/routedownload/climate/dekadal/dekad-2019/monthly-bulletin-2019/february-2019-bulletin.html?Itemid=622
http://www.icpac.net/index.php/component/osdownloads/routedownload/climate/dekadal/dekad-2019/monthly-bulletin-2019/february-2019-bulletin.html?Itemid=622
http://dx.doi.org/10.5194/hess-21-5477-2017
http://dx.doi.org/10.1016/j.proeng.2016.07.528
http://dx.doi.org/10.1155/2016/3868519
http://dx.doi.org/10.1016/j.jhydrol.2014.09.063
http://dx.doi.org/10.5120/ijca2017913276
http://dx.doi.org/10.3390/rs8040340
http://dx.doi.org/10.1002/2013WR014281
http://dx.doi.org/10.2747/1548-1603.47.1.25
http://dx.doi.org/10.3390/rs61212381
http://dx.doi.org/10.1175/JAMC-D-14-0016.1
http://www.wamis.org/agm/pubs/SPI/WMO_1090_EN.pdf
http://dx.doi.org/10.1016/j.rse.2018.11.041
https://basis.ucdavis.edu/sites/g/files/dgvnsk466/files/2017-05/Cornell_AMA_Technical_Report.pdf
https://basis.ucdavis.edu/sites/g/files/dgvnsk466/files/2017-05/Cornell_AMA_Technical_Report.pdf

Remote Sens. 2019, 11, 1099 30 of 30

42.

43.

44.

45.
46.

47.

Klisch, A.; Atzberger, C.; Luminari, L. Satellite-Based Drought Monitoring In Kenya In An Operational
Setting. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, XL-7/W3, 433-439. [CrossRef]

Hastie, T.J. Generalized additive models. In Statistical Models in S; Routledge: Abingdon, UK, 2017;
pp. 249-307.

Ramos, E.G.; Martinez, FV. A Review of Artificial Neural Networks: How Well Do They Perform in
Forecasting Time Series? Analitika Revista de Andlisis Estadistico 2013, 6, 7-18.

Mitchell, TM. Machine Learning; WCB: New York City, NY, USA, 1997.

Huang, G.B. Learning capability and storage capacity of two-hidden-layer feedforward networks. IEEE Trans.
Neural Netw. 2003, 14, 274-281. [CrossRef]

Hand, D.J.; Till, R J. A Simple Generalisation of the Area Under the ROC Curve for Multiple Class Classification
Problems. Mach. Learn. 2001, 45, 171-186. [CrossRef]

@ © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.5194/isprsarchives-XL-7-W3-433-2015
http://dx.doi.org/10.1109/TNN.2003.809401
http://dx.doi.org/10.1023/A:1010920819831
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Area 
	Modelling Scheme 
	Pre-Modelling 
	Model Building 
	Model Evaluation 


	Results and Discussion 
	Analysis of Past Drought Events 
	GAM Model Results 
	Artificial Neural Network Model Results 
	Artificial Neural Network Performance in Training and Validation 
	Performance of the Best ANN Model in the Test Dataset 

	Validation of the Key Assumption of the Study 
	Appropriateness of the Use of GAM 
	Investigation of Multi-Collinearity 
	Performance of Models with Lags of the Same Variable 


	Conclusions 
	
	GAM Model Performance by Lag Time 
	ANN Model Performance by Lag Time 

	
	
	References

