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ABSTRACT

Renewable energy has gained momentum over the last decade, with wind power

technology leading by the number of projects implemented worldwide and

academia as research[1]. Worldwide the growth of wind energy generation[2] has

increased tremendously over the last 10 years, for instance, in 2000, installed

capacity was 60GW and in 2010 it was 160GW. Furthermore, by 2015 the total

global installation to 433GW.

With that kind of growth, energy sector professionals have had to keep pace

finding better, reliable and efficient ways in the management of wind power farms

and turbine designs that are cost effective. Numerical Weather Prediction

software’s (NWP) systems and meteorological tools are too expensive to acquire

and maintain, therefore, these constraints have necessitated the development of

accurate prediction system that are simple, fast and cheaper that can be used by

system planners, power regulatory experts and the academic community through

research.

Short term wind speed to wind-power predicting model is the main object for this

research , the model will be optimized using a hybrid of particle swam

optimization (PSO) and neural networks. Matlab modeling environment has been

used extensively in this research work.
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The hybrid prediction model performance will be evaluated, see chapter 4 and

obtained the following values, using the mean square errors (MSE) of 0.26, the

mean average error(MAE) of 0.62 and the mean average percentage error(MAPE)

of 18.2.
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CHAPTER 1:

INTRODUCTION

1.1. Background
Power and energy from either steam or horses was the main ingredient that

propelled industrial revolutions in the 18th and 21st century. Modern methods of

energy production being developed today lay a strong emphasis on Energy

Efficient Designs and Environmental Conscience Power Generation.

Conventional sources of energy faces lots of challenges one being the cost of oil

which is constantly increasing, making oil as a source of generation expensive

especially when thermal sources are used in generating power, more still, the oil

reserves are getting depleted more rapidly than earlier predicted

Green energy systems have been given attention in research and a huge number of

green energy projects are being funded as seen through the wind power and

electric vehicles projects. Wind energy is unpredictable in nature, this means that

its applications are limited to the when and where the prevailing winds will be

experienced. The development of wind power forecasting techniques and research

has borne a center stage as per the following aspects of grid operations reliability,

stability, power planning, maintenance, economic load dispatch and generator

scheduling of the conventional energy sources, wind power integration to the
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traditional power grids[3] combined economic dispatch hybrid systems (wind–

diesel hybrid) together with storage systems like pumped hydro to cut down

running or operating cost by eliminating huge diesel generator loads. Properly

designed wind power plants can be utilized to supply short interval power demand.

For this to be achieved, forecasting as a tool can be used in power planning and

scheduling of demand(load)[4].

Global warming from fossil fuel for instance oil, coal and natural gas used in

various processes including the production of electrical power, has pioneered the

birth of green energy research in better and cleaner energy sources [5][6] [7].

Hence, wind power has become a favorable area of energy research especially

stabilizing wind power systems and the turbine blade design [8].

The electrical power consumers of today’s modern world has grown to expect

reliable and quality power at all times. While the conventional power generation

still provide base load supply they are over-subsidized, expensive, the grid

networks are ancient and are exhaustible, which leads to renewable energy being

looked at as the cleaner and affordable alternative. Wind-speed-to-power

forecasting, is therefore, an important area of interest in setting up wind power

projects in a country especially for scheduling, dispatch and reserve allocations

can be performed easily planned , like the European wind power development
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project; A.N.E.M.O.S as abbreviated as ( A NExt generation wind resource

forecasting systeM for the large scale integration of Onshore and offShore wind

farms) [9].

Wind power is purely dependent on the prevailing wind flow, and since most

modern power grids are a variation of hybrid systems/micro grids, the

intermittency of wind can affect the grid negatively by limiting the total wind

power being dispatched to the grid and total wind plant capacity [10]. Developing

countries, energy is ever on an ever increasing demand, therefore, wind energy can

be being pursued as an alternative power source though the ratio or the percentage

of wind to other energy sources has to be checked. For instance the Greek island of

Crete(20% to 40%) has high penetration of wind power and unpredicted changes

can affect reliability and reduction in the operating economy[11]. Power operators

hence to cover for the unexpected changes in speed, they maintain a huge spinning

reserve[12].

Modern wind power plants are huge; requiring large pieces of land for both

onshore and offshore wind farm, long and complex design stages, lack of

standardization, erratic wind flow patterns, wind farm sites are often in remote

places and huge farms require expansive pieces of land. The mechanical

anemometer on the nacelle, is also a source of error in wind speed measurement.
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These anemometers have calibration issues, measurement accuracy and raise the

initial cost of the generation system, need to replace the mechanical speed

measurement system with wind speed estimators designed on the turbine

characteristics and data loggers which will provide reliable data that is used in the

wind farm management and wind power planning.

Apart from these, there are several factors and challenges for an efficient hybrid

power grid system before integrating into the generation mix, power system and

dispatch planners look into the following challenges mentioned[13]:

(i) Wind power farm/plant capacities and energy balance management for short-

term prediction of wind power, load profile management, energy

storage/reserves, and system optimization.

(ii) Existing power grid network with special attention to: optimizing the present

power network infrastructure, extensions and reinforcements, improving the

grid interconnection or coupling points.

(iii)Grid-tied coupling connection and wind power integration, power quality and

wind power plant/farm capacity while observing the grid codes.

(iv) For developed countries, market redesigns issues: market aggregation or the

adapted market for power trading and spot market.



5

Therefore, this thesis and works recorded gives a development journey of a simple,

wind-speed-to-wind-power prediction algorithm that works from a hybrid of

Particle Swarm Optimisation and a cascade of Artificial Neural Networks. This

hybrid model works on the scientific works illustrated from numerous research

from various authors and numerical models like autoregressive integrated moving

averages.

The Ngong’ Hills wind farm by Kengen, is used as a case study it has a total of 31

turbines with only 16 Gamesa V52 being utilised as wind speed and wind power

data was avaible, they have a generation capacity of 1.36MW of power.

1.2. Problem Statement

Different prediction models have various requirements, for instance Numerical

weather prediction algorithms, require huge computing abilities as they have a lot

of parameters to be considered, and also need huge financial backing to develop

them. Other models that are simpler to develop are not so accurate themselves

especially when considering longer forecasting horizons. Therefore, there is a big

gap in finding an algorithm that is not only simple and less complex but designed

to achieve an improved forecasting accuracy.

1.3. Justification

Unpredictable wind patterns increases the cost of wind power generation affecting

the spinning reserves allocation, large ramp moments and other potential factors
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that influence the reliability of wind and stability of a power grid, hence, wind

forecasts have become vital parameters for effective grid management with high

wind penetrations (>5%).

Forecasting wind power dispatch, and the accuracy of the forecasting technique is

an ongoing research problem [14] and several institutions are researching on

different models for wind power prediction. Basin Electric Cooperative, has

experienced poor forecasts where next hour generation forecasts errors are more

than 50%[15]. Accurate wind power predictions has become an important power

planning tool in regulating generation of power, scheduling and unit commitment

of both conventional and nonconventional power sources as discussed in [16][17]

for different forecast horizons example the short term horizon, that is forecasting

for a period between 30 minutes to 360 minutes ahead.

Wind power integration into the grid is made possible through forecasting, the

design and implementation of an efficient short term wind prediction for both wind

speed and power will aid in planning both current and future renewable energies.

Globally, wind potential is huge as a power source that is competitive, both

reducing the unit cost of energy and reduction of green gases. The Kenyan
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government has made tremendous power plans and is in the process of changing

the base load power source from hydro to geothermal, wind and solar have been

identified as vital sources of clean electrical energy, just as well, the first wind

power was installed at Ngong Hills while, larger wind farms are being constructed

in Turkana and Naivasha. Kipeto wind energy project already completed at

Kajiado county, will also benefit especially in short term power forecasting[18].

Kenya has wind energy potential of 346 W/m2 with speeds of over 5.9 m/s in

certain areas such as Kajiado, Marsabit, Meru, Laikipia, and Turkana Counties

where wind power can be or is currently being explored as energy source for the

future.

The current installed electricity generation from wind is 25.7MW developed at

Ngong' Hills , a project undertaken by the Kenya Electricity Generating Company

(KenGen) and a further 300 MW completed at Lake Turkana , by the Lake

Turkana Wind Development company.

The following wind projects are currently under construction or in their

completion phase that will benefit from this research.

(i) 13.6 MW Ngong’ phase II wind farm,

(ii) 100MW Kipeto (Ngong’) wind power

(iii)6.8MW Ngong’ phase III wind farm,

(iv)100MW Isiolo wind farm
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On the operational aspect of wind farms, the voltages and current profiles plus the

frequency component on the generated values have erratic profiles which might

introduce harmonics into the grid, interfere with the voltage levels due to

variability of wind sources, again, turbine curtailment, this is the stalling/stopping

of the turbine blades due to excess wind flow, is a major issue as it limits the

aggregated power output from the farm.

With this kind of development in the country, accuracy in data logging for

prediction becomes a fundamental requirement at project feasibility studies and

consideration, later on, when the project  is implemented, wind speed data is

managed, several; authors have proposed wind speed estimation approaches that

are used to create prediction models are given below [18];

(i) Equation for wind power relies on the wind turbine power coefficient of

performance function and tip speed ratio, that are used to model higher

order polynomials and the power coefficient is used to estimate the accuracy of

the model, but the procedure requires real time calculation of the polynomial

roots.

(ii) Look up table, requires external memory for accurate estimation, also, the

execution time and accuracy depends on the size of the lookup table[19].
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By now, the importance of intermediate and short-term wind forecasting should be

clear and the complexity of such models, therefore, this has a created a gap in that

cheaper and faster prediction techniques should

Artificial intelligence (AI) through efficient deep learning neural networks will

play a major part in developing and designing faster predicting models that use

fewer resources and designed for each specific need and time scale.

Prediction modeling is mostly based on historically recorded data and of

importance is the wind speed and power, the data is used to develop algorithms on

the given data set for analysis, assuming weather parameters like temperature,

direction , air density are constant, this technique maintains speed and power of

wind as base data for designing the model, this simplification is advantageous in

that it reduces the development time since the prediction models are now simpler

to design and highly accurate as the parameters are less.

Hybrid methods provided a promising gateway to improve speed of prediction and

accuracy for the forecasted values, the hybrid model developed can me designed to

be more efficient with a better improved accuracy by combining several artificial

intelligence (AI) models for the forecasting engine.
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1.4. Objectives

The objective here is to design a forecasting model by combining two algorithms

particle swam optimization (PSO) and Artificial Neural Networks, the algorithm

will predict wind values, that is wind speed and the wind speed will be converted

to wind power for short term horizon [20]

The specific objectives are;

(i) To formulate a wind energy prediction technique based on Artificial

Intelligence and statistical hybrid models.

(ii) To develop a forecasting engine based on the formulated prediction

technique and cost function.

(iii) To evaluate the forecasting technique performance and compare with  other

models consider J. P. S. Catalao, H. M. I. Pousinho, and V. M. F. Mendes

through their work in intelligent hybrid short term forecasting in Portugal

obtained average  MAPE of 5.99%[21].

1.5. Research questions

i) How can a hybridized network of nonlinear autoregressive neural networks

and particle swarm optimization with statistical techniques models be

combined to formulate a wind energy prediction technique?

ii) How will the forecasting engine be developed and integrate with the other

techniques for the hybrid model proposed?
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iii) How will the proposed model fair in comparison to the models currently being

used?

1.6. Scope of work

Modern design of predictive architecture combines several aspects and parameters

of the real world physical system. In forecasting, lots of historical data has to be

processed and analyzed in order to design a forecasting engine or any other system

that closely follows a real world problem and hence, the accuracy of the developed

model is vital and therefore, a forecasting engine is optimized to reduce the

prediction error.

Nonlinear neural networks was utilized to establish the moving average error

between forecast and the actual data, the neural weights continuously optimized by

a particle swarm algorithm in the following way:

i) Given that the Ngong’ II wind farm has 16 , Gamesa G52 wind turbines, an

aggregated average of the wind speeds is first determined and stored in an

excel file.

ii) The data is then clustered into training, test and the validation data and fed

into a nonlinear autoregressive net (narnet) at the input stage:

a) At this stage, a nonlinear neural network (narnet) is implemented to

do an initial regression of the test data.
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b) A cascadefeedforward neural-network is used to give a linear

output of values from the first stage (a) above and target values.

Here, the cascade feed forward net, its weights are optimized by the

PSO algorithm.

c) Finally, the output stage which is composed of a closed-loop model,

which is a nonlinear autoregressive neural network with external

inputs (narxnet) is used to predict up to 2 hours.

d) The simulated wind speed data values are then converted to an

equivalent aggregated mean wind power expected.

1.7 Concluion

Though most research in the country focus on the wind profiles and anticipated

wind power potential, none has focused on wind power forecasting as a tool to

explore the future wind farm capacity upon completion of the wind power project

at a given site.

The running and efficient management of wind farms in Kenya will benefit from

this research work especially in scheduling and dispatching generating systems ,

power system planning and maintenance of the grid network.
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Raw aggregated wind data for the model was retrieved from the Ngong II wind

farm , therefore, parameters like wind direction, site humidity or temperature are

assumed constant for an easier and since simplicity of the model is paramount and

therefore, we are not able to evaluate how these parameters affect the overall

performance of the hybrid model.
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CHAPTER 2:

LITERATURE REVIEW

2.1. Introduction

Power generated from the wind turbine, has to be integrated into the grid network.

This if not carefully done will pose many challenges in terms of planning and

power dispatch as to system stability has to take center stage and again accurate

wind power forecasting is the biggest concern[22]. More so, the unpredictable

wind patterns affects how much wind power is injected into the power grid, hence

a probability model can be designed that caters for the intermittency or a statistical

analysis as presented in [10].

Given that wind energy is erratic in nature as illustrated in [23] the accuracy of the

forecasting model is desirable since wind prediction modelling is inherently

complex and its flow is not easily predictable, the authors, proposed a hybrid

Gaussian process with a numerical weather prediction for a day ahead prediction,

performance evaluation and comparisons are made with the performance of

artificial neural networks (ANN) using mean absolute error (MAE) as a metric for

accuracy measurement.
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This chapter introduces several works from other authors who have researched

wind prediction using either speed or power or both to develop their models.

.Persistent models assume that prevailing weather conditions will persist into the

next moment, therefore, this model suffers bias and is not accurate for longer

forecasting horizons.

Physical models uses weather parameters and considers the topography of the area

to predict, requires lots of data and complex to develop, but accurate for day ahead

predictions.

Statistical models focuses on the dependency of forested data and the original data,

statistical methods are used for these, like mean, correlations etc., this model uses

time series based data or the neural network models in its design.

Hybrid models tries to combine several models to come up with a unique

parameterized model for forecasting, the design utilizes the strengths of the models

used while at the same time eliminating the shortfalls of each through

compensation.
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Spatial relation models tries to model through generalities such as, weather

patterns between two closely located regions will be similar and as such,

prediction in one site can be used on the other.

Artificial Intelligent models are designed to emulate human brain functions and

are considered to be more versatile, since these models learns from the data

presented and tries to make predictions based on the parameters designed into the

model itself.
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Table 2.1 : Literature Review and related works

Persistence and probability Models
No. Author Contribution

1
T. Al Awami and M. a.

El Sharkawi [10]

Proposed a model based on statistics  and utilizing
wind using a conditional probability density function,
Beta and Extreme value, verifies that extreme value
function outperforms the Beta function at high wind
power forecasts while Beta functions perform better at
moderate forecasts ( 6hours to 24 hours window).
Persistence model is used for hourly wind predictions...

2
J. Juban, N. Siebert and
G. N. Kariniotakis [23]

Proposed a probability prediction technique based on
kalman filtering density estimation.
This model performs equally as well as the persistence.

3

T. S. Nielsen, A.
Joensen, H. Madsen,
L. Landberg, and G.

Giebel [24]

Developed a model based on probability and
statistics, the model was used for predicting wind
power values for up to a few hours.

4
Bri-Mathias Hodge and
Michael Milligan [25]

Analyses the statistical distribution of the persistence
error model distribution for 10 wind power plants in
ERCOT, proposes a Cauchy distribution to model the
distribution for forecast errors, and obtains the
difference in confidence using Cauchy and normal
distributions for comparison.

5
Sideratos, G. and

Hatziargyriou, N.D.[26]

Presented a probability based wind power forecasting
model using radial basis function (RBF) neural
networks, it worked by predicting a set of quartiles
with predefined nominal probabilities.

6 J. P. Palutikof [27]

Presented a methods to calculate extreme wind speeds,
he used a classical methods are reviewed based on
generalized extreme wind values,(GEWV) distribution
and the generalized pareto distribution(GPD).
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Physical Models

7
Niya Chen, Zheng Qian ,

Nabney, I.T. and
Xiaofeng Meng, [22]

Combined a Gaussian Process as a probabilistic
component to the numerical weather prediction (NWP),
the NWP was used for prediction of upto 1 day ahead.
The method showed an improvement in performance of
9% to 14% to ANN mode.

8
R. J. Bessa, V.
Miranda, A. Botterud,
and J. Wang[24]

Used a kernel based model based with the Nadaya
Watson Estimator to evaluate two wind farms, the
performance of the model is benchmarked against
a spline regression model.

9
Ghadi, M.J. ,Gilani, S.H.

,Sharifiyan, A. and
Afrakhteh, H.[30]

Presented a new algorithm called the Imperialistic
Competitive Algorithm-Neural Network (ICA-NN)
method, it had a higher predictive accuracy and was
used for short term forecast. Using data from
Numerical Weather Prediction (NWP), the data was
from online SCADA. Environmental factors (i.e. wind
speed, temperature, Humidity, geographical conditions
and other factors) are considered and the neural
networks weight are adjusted using the then,
Imperialist Competitive Algorithm .

Statistical and Time Series Models

10 P. Gomes [4]

Presents a model that uses statistics for wind power and
speed forecasting using Artificial neural networks
(ANN) plus an autoregressive moving averages
(ARMA) model. Statistical models try to establish
correlation between in the variables used for
performing estimation; it achieves this through training
and prediction.

11
Bhaskar, K. and Singh,

S.N. [29]

Proposed wind power forecasting using statistics
without the use of the numerical weather prediction
(NWP) inputs .The model was designed to have two
stages, stage-I, comprised of a wavelet decomposition
of wind time series data and an adaptive wavelet neural
network (AWNN) that was used to decomposed signal
for 30h ahead prediction, then stage-II, a model
composed of a feed-forward neural network (FFNN)
that was used for mapping the nonlinear wind speed
and wind power output values.
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12
S. Wang, M. E. Baran,
and S. Member [30],

proposed an ARMA model for hourly prediction while
focusing on power system reliability for a 50 unit
power system, to achieve this, he used Monte Carlo
production to simulate the actual system performance
while introducing erratic system behavior.

13
Sideratos, G and

Hatziargyriou N.D. [31]

Proposed a statistical model with an artificial
intelligence techniques, the wind data values speed and
direction, uniquely the method provided a way to
estimate the quality of the meteorological data
forecasts which improved the predictions and gave
forecast of up to 48h.

14
Ozkan, M.B. and
Karagoz, P.[32]

Proposed a hybrid model using statistics to predict
short term wind power forecast of up to 48h ahead.
Here weather events are clustered according to how
important the forecasts are and also combined power
forecasts from other different NWP sources and create
hybrid final results. It required fewer historical data as
opposed to neural networks (ANN) and support vector
machines (SVM)

15
Junrong Xia, Pan Zhao

and Yiping Dai [33]

Proposed a statistical hybrid model with numerical
intelligence that applied fuzzy logic on neural networks
for the forecasting architecture for a forecast of up to
36 hours at every half hour intervals with a reference
point of wind.

16 Skittides [34]

Developed a statistical model based on the Principal
Component Analysis (PCA). This model was used to
give forecasts of wind data, speed, from an ensemble of
similar events from the past. This model was used for
predictions of up to 24h ahead and had better
performance over the persistence model for forecasting
up to 10 hours ahead.

17 Rachel Baile [35]

Proposed an autoregressive (AR) seasonal model using
multi-fractal fluctuations, which could predict wind
speed data up to 2-days ahead, the performance of the
model showed an improvement over the standard
models.

18 Jeon Jooyoung [36]

Modeled wind power into wind speed and direction
with focus on intra-day prediction between 1hour to 72
hours ahead. The approach used a bivariate Vector
ARMA generalized AR conditional heteroscedastic.
Then a Conditional Kernel Density is used for
modelling wind data values, speed, power and
direction.
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19
Guglielmo D’Amico

[37]

Developed a non-parametric approach to predict wind
speeds based on semi-markov chain model that could
be reproduced as the statistical nature of wind speed
accurately, the developed model is compared to the
persistence model.

20 George Sideratos [38]

The method developed depends on artificial
intelligence, inputs are wind speeds and direction
interpolated at wind farms, after a preliminary
prediction, the method then gives an estimation on
the quality of meteorological prediction and it
improves the predictions. It can predict up to
48hours ahead for wind farm operators in the
electricity market.

21
Y. Min, W. Bin, Z.

Liang-ii, and C. Xi [39].

Proposes an Ensemble Empirical Mode Decomposition
and autoregressive integrated moving avarages
(ARIMA) model that was used to estimate the wind
characteristics. The wind speed time series is broken
into Intrinsic Mode Functions and a singular residual
series using the EEMD, the final predicted series is the
summed up from the individual IMF and the residue
component. They managed to achieve better result
using this technique than using EMD-ARIMA model
or the ARMA model.

22
X. Han, X. Zhang, F.
Chen, Z. Song, and C.

Wang [40].

Looked at the wind time series as a frequency
component and used the wavelet theory to separate the
data into low and high frequency sections. Then
ARMA is used to forecast the high frequency sectors
while least square support vector machine (LS-SVM) is
used to predict the low frequency parts

Spatial correlation

23 I.G Damousis et al [11]

Developed a fuzzy logic model that picked wind data
values of speed and direction and trained by a genetic
algorithm, the data from various stations located
around the wind park and turbines. Then an
autocorrelation and cross correlation functions were
used to measure the improvement and the efficiency of
the local and remote wind speed time series.

24
Y. Han and L. Chang

[12]

They analysed the prediction accuracy of the forecast
error from a distributed wind farm in the maritime
Canada. The winds sites data considered are then
aggregated as forecast error versus single wind farms; a
spatial correlation function is developed to calculate an
ensemble of wind forecast errors.
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25
M. Khalid and A. V.

Savkin [41]

Presented an alternative approach of improving short
term prediction by proposing a model that extracts
information from a wind site turbines and also from
distributed observation points in the Australian wind
farm. The model is a two stage model where wind
speed is predicted using the model and then the data is
converted to power by use of power curve model. The
developed model performance is benchmarked with the
persistence and grey predictor model with the mean
absolute error and root mean square as the performance
metrics.

26 L. Soder [42]

Presented a multidimensional ARMA series wind
power forecasting technique, data from several regions
is assumed to be correlated in terms of the forecast
errors for wind speeds.

27 L. Xie et al [43]

Proposed a statistical model for spatio-temporal
forecast correlation between wind speed and direction
of sites located at different points, wind data is from
Texas, improves the model by considering an advanced
robust with look ahead capabilities, it is tried on a
modified IEEE RTS 24 bus system

Artificial intelligence

28
S. Saroha and S. K.

Aggarwal[7]

Presented a time series multi-step Neural Network of
neural networks and feedforward net optimised by a
genetic algorithm(GA), trained using the Levenberg-
Marquardt algorithm. The mean average error (MAE)
and the mean average percentage error ( MAPE) are
used the performance metrics indicators. The model
performance is benchmarked with the persistence
model, GANN based models show better results using
MAE and MAPE as benchmarking indicator against
FFNN.based models

29
Thanasis G. Barbouniset

al[44]

Presented an AI model to power generated from the
wind turbines and information used for long term wind
farm management of spinning reserves and economic
scheduling..
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30 Adnan Anwar [45]

Developed a Particle Swarm Optimization with a
constriction factor parameter model (CF-PSO) tthat
could optimally determine the parameters of an
autoregressive (AR) model to achieve accurate
predictions. The method is benchmarked with three
models Forward-Backward approach, Geometric lattice
approach, Least Squares approach and Yule-Walker
approach, these models worked on error minimization
of the AR model.

31 Andrew kusiak [46]
Proposed a method utilizing data from different
timescales and forecast horizons, it was used for
wind prediction of short and long term power.

32
X. Wu, B. Hong, X.

Peng, and F. Wen [47]

Proposes a radial basis function (RBF) for short term
prediction for upto an hour, this method had a superior
evaluation of linear and nonlinear algorithms and faster
convergence of results. The input values included wind
speed, environmental temperature and power
generation.

Hybrid Approach

33
F. Keynia, N. Amjady
and H. Zareipour [14]

Proposed a model that applies a filter on irrelevancy
and a redundancy to a set of candidate inputs , the
model used an optimized predictive engine that worked
with an enhanced and modified particle swarm
optimisation (EPSO) plus a hybrid neural network.
Data is provided by the wind power producers in
Alberta, Oklahoma and Canada , the model showed a
considerable efficiency as compared to other
techniques.

34
R. Ak, V. Vitelli, E. Zio,

and S. Member [48]

This model used a multilayer neural network that is
trained to identify and group interval-based outputs, the
neural network is trained by a genetic algorithm for
optimised prediction accuracy. This approach shows a
significant improvement over the single-valued, crisp
method.

35

P. K. Panigrahi, S.
Mukhopadhyay ,A.

Mitra, and P.
Bhattacharya, [49]

They combined two methods wind values
prediction,speed  and wind power generation
forecasting using a Discrete Hilbert Transform as a
filter to characterize and forecast wind speed while a
special neural network variant called radial basis
function (RBF) converted the speed to power
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36
J. Shi, W. Lee, U. S. A.
Tx, and P. Wang [50]

proposed a HHT which is an adaptive analytical
method used in a variety of data having both nonlinear
and non-stationary dimensions, the model has an EMD
and the HSA and is used extensively in geographical
studies. Treats wind power output as signals with
characteristics that can be forecasted just like wind.
The time series of wind is taken separated into various
frequencies, then using the signal as data input and it’s
joined with the wind velocity data to the ANN model.
The HHT- ANN forecasting model is applied to a wind
farm in Texas.

37
Michael Negnevitsky

[51]

Developed an ANFIS system to predict future
power generation for wind power from wind
turbines, the developed system is for short term
wind while it is evaluated with the persistence
model.

38 Peter Johnson [52]

Proposed a hybrid model using fuzzy logic and
artificial neural networks (ANN) in a hybrid
model called ANFIS to predict very short term
wind speed on frame of up to 2.5 minutes ahead.

39
Cameron W. Potter

[53]

Developed an ANFIS system to predict wind
vector rather than speed or power since wind
turbines are directed towards oncoming wind, the
system is used for very short term wind prediction.

40
Sivanagaraja Tatinati

[54]

Proposed an adaptive model with Intrinsic Mode
Functions (IMFs) utilizing empirical
decomposition. In the model, IMFs and Least-
Square-SVMs are used for IMFs with weak
correlations, further, autoregressive models with
Kalman filter were used with IMFs with high
correlation factor, the model developed was called
(hybrid EMD-LS-SVM-AR model).

41
Haque, A.U. Nehrir,

M.H and Mandal,P[56]

Developed a hybrid model that used probability and
wavelet transform with fuzzy ARTMAP (FA) network.
Firefly (FF) algorithm was used as the optimizing
algorithm. It used wind power data from a wind farm
in, Colorado called Cedar Creek

42
Haque, A.U., mandal,

P.,Nehrir, H.M and
Bhuiya, [57]

Proposed a hybrid model from techniques in signal
processing, artificial intelligence AI, and data mining.
The signal processing aspect was used to filter out
intermittent wind power time series data.
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43
Jie Shi ,Zhaohao Ding ,

Wei-Jen Lee and
Yongping Yang [58]

Proposed a model that combined GRA and wind speed
distribution. Weights for each independent model was
determined by considering different wind speed
subsection and frequency and could give prediction of
up to 15 minutes

44
L. Ran, Ke Yong-Qin
and Z. Xiao-Qian [59]

Proposed a technique combining least squares (LS) and
support vector machines (SVM) to improve prediction
accuracy for short term wind velocity. The genetic
algorithm in this model was used as the optimal
parameter regularization selector for the LS-SVM
kernel sigma.

46
J. Shi and Wen –Jen Lee

[60]

proposes a weighed parallel forecasting algorithm for
an improved short term prediction accuracy, the model
operates by adjusting and increasing the performance
sections of several models. The author compares the
model with a SVM and ANN while using the mean
relative errors as the performance metric.

Conclusion
Different models for forecasting have been looked at in this chapter, it is evident that the
more complex a model is, the more accurate it can be, this is in the case of physical
models especially the Numerical Weather Prediction models, this is mainly due to the
fact that, it combines different parameters of the weather e.g., wind pressure,
temperature, humidity, speed etc. and at the same time considers the topography.
Physical models, are therefore, a more expensive and complex model of prediction, the
other models discussed suffer accuracy limitations even though they might be simpler to
design and use.
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CHAPTER 3:

METHODOLOGY AND DESIGN IMPLEMENTATION

3.1. Introduction

Wind turbines generate power when wind cuts across the wind turbine blades; the

blades are subjected to a force and hence turn in a given direction which could be

clockwise or anticlockwise. Wind velocity characteristic determination is the

initial consideration in designing a predictive system or in other words, it is the

time series that is measured and converted into electrical power by a mechanical

turbine. This chapter models wind turbines structure, wind speed data processing,

nonlinear autoregressive models and the hybrid techniques predictive model.

Wind speed probability densities are used to simulate the variability nature of wind

occurrences in nature; these models are discussed together with their basic

functional equations in the preceding chapter. Algorithms discussed in this chapter

outline the structure of Non-Linear Auto-Regressive Neural Networks (Narnet)

and Cascade Feedforward - Particle Swarm Optimization (PSO) Forecasting

model.
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3.2. Wind Forecasting Approach

Currently, researchers are looking into grid stability with higher wind power

penetrations. Accurate wind forecasting has been identified as an important area of

both speed and power, the data is used for scheduling, capacity evaluation and

determination of power costs e.g. tariffs

Wind forecasting and load forecasting allows wind turbine connection and

disconnection scheduling with the conventional generators hence achieving low

spinning reserve requirement and minimizing or maintain an optimal operating

cost.

To design wind power forecasting models, two main approaches exist, either the

single-steps or the several steps ahead wind power prediction[7]. Single step

(deterministic, spot or point forecast) produce single forecast for each horizon as

opposed to multi step that produce several time horizons.

All the forecasting models , statistical approach are the most promising since they

can be simple in design though require a huge amount of information to be

processed and analysed [25].
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Wind power forecasting will bridge the gap for power system operators and

generating companies in scheduling wind power to the general grid[25], areas in

reserve requirements, unit commitment, generator scheduling and load

management will directly benefit from the efforts carried out in developing

efficient forecasting techniques.

Two major classifications, the physical models and the statistical models [26],

broadly stated, the physical approach considers the physical layout like terrain,

layout of the wind farm and temperate conditions and utilizes NWP models using

a mathematical model of the atmosphere [27]. The statistical approach uses

historical  wind speed or power data [7][28] and is mainly used for short term

predictions as it is more accurate than the physical models.

Physical techniques use meteorological and topological information as explained

above but can also include the technical parameters of the wind turbine, this

method utilizes the model output statistics (MOS) to estimate the local wind and

to reduce prediction error, [29].

Wind power prediction modelling is dependent on data collection and data

processing/ analysis, wind data collection is obtaining the actual wind speed data



28

from field measuring devices such as anemometers and transmitted to central

processing units in a remote location. Wind speed is then processed and the

information utilized to make decisions including prediction.

The following listed data processing models, are the main numerical data

processing models as given in [30]. Which are highlighted below:

i) Physical data design

ii) Statistics and numerical design

iii) Wind farm data design.

iv) Prediction data design for ensemble model.

3.3. Time scales classification for different forecasting methods

Since wind is a function of time, measured data from the site/farm can be

processed according to the application and the desired accuracy. For instance, one

might consider the hourly speed measurement, daily or weekly speeds. Then the

data can be used for forecasting for different time scales and applications[31].

Wind data for speed and power are clustered into 4 main forecasting horizons,

these are;

i) Very-short term wind speed or wind power forecasts: from a few second to 30

min, used in regulatory functions.

ii) Short-term wind speed or wind power forecasts: from 30 min to 6 hours, for

ELD and load adjustment i.e. increase or decrease decisions.
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iii) Medium-term wind speed or wind power: with a forecast horizon of a 6h to 1

day, for scheduling generators online and operational

iv) Long-term wind speed or wind power forecasts: with horizon of a 1-day to a

week or more, used in U.C, spinning-reserve requirements and determination

as well as scheduling maintenance to obtain the optimal operating cost.

Wind is stochastic in nature and hence accurate methods of forecasting are vital

for maintenance scheduling, integration into the grid [26]The unpredictable nature

of wind makes it practically unusable in so many ways, but by developing ways to

be able to forecast this nature, the information can assist power system planners,

developers and maintainers in wind power integration to the grid network, real

time monitoring grid operations and control, grid network interconnection, power

system voltage and frequency control, transmission capacity and expansion,

integrity of the power grid system which include the power supply chain,

generation, transmission and distribution and reduction of GHG emissions.

The power system requires a stable grid which is the main focus of the system

operator, but a grid sustaining high penetration of wind is may experience reduced

system reliability[32], since wind energy is uncertain and the systems currently

online or connected to the system are fossil based, therefore, times when wind is

unavailable the cost of fuel can be high as reserves have to be fired, system
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designers of wind power with thermal units try to minimize the cost function and

emissions[10]. For achieving proper operation of both the wind turbines and

conventional generators, forecasting has been identified as a tool for reserve

allocation and optimal operating cost more so, for better performance in increasing

the forecasting horizon, both short term and long term forecasts should run side by

side.

Uncertainty of wind is varied and depends on the geographical location and the

time scale, this is a challenge when these systems have to be incorporated to the

grid, maintain the grid stability and balance the demand at the grid.

3.4. Wind Turbines

A wind turbine is the main converter or component that utilizes the strength

existing in wind flow to generate electricity; it has the following components as

shown in Figure 3.1. Different wind turbines have different wind capturing

efficiencies and hence each blade is best suited to operate in specific wind site.

Consider figure 3.3, it shows different turbine blades and their respective

efficiencies.
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Figure 3.1: Gamesa G52 wind turbine (http://www.wind-power-

program.com/Library/Turbine_leaflets/Gamesa/Gamesa_G52_850kw.pdf)

1 Service crane 9 Hub 17 Tower

2 Generator 10 Hub cover 18 Yaw gear

3 Cooling
systems

11 Blade Bearing 19 Transmission high speed shaft

4 Top control
unit

12 Bed frame

5 Gearbox 13 Hydraulic unit

6 Mainshaft with
two bearings

14 Shock absobers

7 Rock lock
systems

15 Yaw ring

8 Blade 16 Brake
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Consider a simple illustration of power generation from a wind turbine, the rotor is

rotated from the upward (A1) side by the wind flowing through the rotor blades, a

difference in pressure is then created between the upwind (A1) and downward

(A2) sides of the blade, this then results into rotational motion of the blades that

turn the mechanical rotor, further wakes, the trail of disturbed wind lift by the

turbine, and flows downward consider Figure 3.2. below

Figure 3.2:Wind across wind turbine blades

From the theory of motion, Kinetic Energy transferred by the wind velocity across

the turbine blades is derived as shown by equation 3.1 and 3.2. the development of

equations [3.1]-[3.15] are discussed in [33].

(3.1)

) (assuming that the wind mass flow rate is

unity). (3.2)
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Where K.Eupstream = kinetic-energy of wind flow incident or across the wind
turbine blades

K.Edownstream = kinetic energy of wind flow through the turbine blades

Vup_wind = Velocity of the wind flow incident or across the blades

Vdown_wind = Velocity of the wind flow through the blades

Wind turbine Power (P) is the rate of doing work, rate at which energy is

dispensed, where is the air mass flow rate, therefore;

(3.3)

But is given as;

(3.4)

Hence;

(3.5)

To obtain the power max the rotors can extract, we have to differentiate with

respect to down word wind, and equate to zero.

Using the principle of chain differentiation rule, and assuming the P (equation 3.3)

is (y) we obtain:

(3.6)

(3.7)

Solving and simplifying;
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(3.8)

(3.9)

Therefore, the maximum power output (Pmax) from the wind turbine will

therefore be as shown by equation 3.10:

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

Where: PTOTAL = (3.15)

PTOTAL is the total amount of power contained when the wind flows across the

turbine, while Pmax is the maximum amount of electrical power that can be

extracted by the wind turbine while observing all machine limits of the wind

turbine.

Equation 3.15, is the Betz model and stipulates that the total power (PTOTAL)

extracted is relies on the cube of the wind velocity and the coefficient of

performance, as given by equation 3.14, states that the maximum amount of power
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extracted can only be 59.3% of total power generated. This is mainly due to the

internal turbine design and power conversion

3.5. Wind Farm Power Production

Wind farm evaluation, the Annual Energy Production (AEP) which is the energy

from the wind turbine considering the total running hours of the turbine, this is

further explained in [65, equation(8)], see equation 3.16 and the appendix G.

The following unction is used to estimate the AEP.

(3.16)

Figure 3.3 ; wind turbine performance curves
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Performance efficiencies of different turbine blades, see [69, figure 6], these

shows the variation in power generation while considering different blade designs

for the wind turbine.

The Betz model, see equation 3.13, states that the theoretical total power output of

any turbine to its maximum power output is limited to, see 3.14, 59.3%. This is

also the coefficient of performance of though power loss through the turbine

mechanical components and electrical efficiency reduces this power to about

0.35. The manufacturers curves as shown in figure 3.3 are used in determining the

power derived from a particular wind blade type and is useful in relating the most

appropriate wind turbine to a wind site, or can be approximated by equation 3.15

and equation 3.20,[11][35].
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The power equation, as developed can then be plotted for a given turbine to give a

plot as on shown below, figure 3.4. There are four distinct operating regions as

marked, cut-in region, average region, rated region and the cut-out regions. The

power generated closely follows the areas in the curve. They display the portions

where the turbine can effectively generate power at cut-in velocity and the cut-out

velocity points.

Figure 3.4 Wind power curve of a turbine as illustrated in [71,figure 3]

The power curves shown by equations 3.17 to equation 3.19, indicate the different

power generation between the cut-in velocity to the cut-out velocity where the

turbine will seize to operate and stall[37] , equation 3.17 -3.19 are illustrated in

[68, eqn11].

For (3.17)

For (3.18)
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For (3.19)

From equation 3.12, equation, the theoretical power the wind turbine is given by

the following equation 3.20 after substituting equation of an area of a circle and

the coefficient of performance [38], see [68, eqn(2)] for the turbine power equation

as illustrated in equation 3.20.

(3.201)

Where;

Π = pi

According to[33], above equation is a theoretical one and the actual wind power

equation deviates from that due to the followings:
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1. Wind speed errors due to measuring instruments

2. Variations in air density

3. Misalignment of yaw and pitch

4. Shading effects and wake effects

Given that wind power and wind speed have a nonlinear relations, Weibull[39][40]

and Rayleigh PDFs have also been captured to show their relation to wind speed

and hence, we can, write the average power by the turbine from the wind speed

probability function of either Weibull or Rayleigh. Hence, in theory expected

power from a turbine can be estimated from the average values of power as given

by equations, 3.21, 3.22 and 3.23.

Average power is given as a probability function as follows:

(3.21)

(3.22)

The value of can be determined using the gamma function. The performance

curve can be derived from the coefficient of power and torque, the power

generation of the turbine can then be viewed as a term between the cut-in velocity

and the cut-out velocity leading to formulation of equation 3.23;

(3.23)



40

Simplifying: With as the subject;

(3.24)

Given velocity and height where that velocity was measured, an extrapolation of

second pair of velocity can be done using the extrapolation function and scaling as

shown in figure 3.5 and equation 3.24. Therefore, wind shear, which is the time

rate of change in wind speed at different altitudes, it allows the determination of

wind flow profile and measuring of speeds at different heights over the surface i.e.

coast lines, forests, hills or deserts.

Figure 3.5: wind speed layers at different heights

Height in
Meters
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This is a logarithmic wind profile due to the unique relationship between the wind

rise and the elevation in a logarithmic pattern, as shown in the figure above.

The following equation is used to determine the wind velocities given a standard

height,

(3.25)

Wind direction can be determined by wind rose, this is a diagram (see figure 3.6)

representing the flow of the wind from various directions. The wind rose chart is

divided in 8, 12 or 16 equal sectors that indicate wind flow from various directions

and angles as shown. The following is the type of information that is contained in

a wind rose:

1. The wind from a certain direction and amount in hours.

2. The time percentage of wind velocity from that specific direction.

3. The product of time percentage amount and third power velocity
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Figure 3.6: Wind Rose Chart

(https://www.mathworks.com/matlabcentral/fileexchange/47248-wind-rose)

3.6. Statistical Analysis: for Wind Speed Distribution Functions

A.Bizrah and M. Almuhaini [41] ,developed a wind speed modelling technique

using probability density function, autoregressive moving averages (ARMA) and

Markov-chain with several goodness fit function to check the model suitability .

There are two common wind speed probability density functions, Weibull and the

Rayleigh functions. from the total power across the turbine as given by equation

3.26, the PDFs are used to estimate the wind speeds blowing in a given area, the

unknown two parameters for the probability density functions (PDFs) i.e. shape
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and scale are obtain using the Maximum Likelihood Estimation methods or the

Monte Carlo Methods though, though Maximum Likelihood Estimation technique

is the best estimator of the Weibull or Rayleigh parameters of scale and shape.

The following equations in this section gives the wind speed PDF used in

modelling and wind power analysis.

(3.26)

3.6.1 Gaussian (Normal) distribution function

(3.27)

Take and substitute, we obtain a normal distribution function of the

wind speed.

3.6.2 Weibull PDF

The suitability of the developed Weibull see [71, equation (1)]distribution is

dependent on the accuracy of k and c coefficients.

(3.28)

Where;

c = scale parameter.

k = shape parameter

If it implies a constant and steadier wind profile.

If , the weibull function changes into a Rayleigh PDF
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k and c are determined from the weighted sum of wind speed over a

few years.

3.6.3 Rayleigh PDF

(3.29)

The Rayleigh and the Weibull functions parameters can be estimated empirically

as a gamma function;

(3.30)

Make ‘c’ the subject of the formula and obtain the following, equation 2.30.

(3.31)

The estimated Rayleigh function is then expressed as;

(3.32)

The corresponding cumulative density function is also given as;

(3.33)

The standard deviation and the energy pattern formula is used to find the shape

and scale parameters, the standard deviation is utilized using the equations;
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(3.34)

After solving equation 3.32, scale and shape parameter, (c and k), can be derived

using equation 3.35 and 3.36.

(3.35)

While ‘k’ is determined as

(3.36)

The energy pattern is a shown in equation 3.37

(3.37)

(3.38)

3.6.4 Mean wind speed/velocity

The mean wind velocity from equation 3.28, to find the approximated wind power,

the mean velocity has to be weighted according to its power content, 3.29.

(3.39)

(3.40)
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3.6.5 Standard Deviation

This SD measures inconsistency in wind speed data to determine the deviation

from the average velocity. Hence, with a small standard deviation, it means that

the data is uniform.

(3.41)

3.7. Artificial Intelligent Algorithms for time series prediction systems

Forecasting is an already vital part in understanding several phenomena for

instance, natural disasters, stock prices, electrical load demands changes and the

economic performance of a country given a specific set of parameters as well the

performance of wind farms in view of wind speeds prevailing in an area.

Forecasting, therefore, forms a huge part in our day to day decision making. The

ability to forecast these areas is depended on the repeatability and understanding of

the problem set we are focusing on.

As such, there is need to develop techniques to model the problem set and simulate

them on a computer so as to better understand. Hence, the modelling and

simulation, is a complicated task since, a thorough grasp of the exact area should

be studied, documented and utilized.
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The development or the design of the models, several tools can be used, we will

design a forecasting by using hybrid techniques. It comes naturally that, where

there is intelligence, a sort of brain has to be implemented to give abstractedness

and form to any system or being.

The following section details the design of a hybrid non-linear-autoregressive-

neural-network and Particle-Swarm Optimization model for a time series

prediction engine for a wind farm in Kenya.

3.7.1 Non-Linear-Auto-Regressive  Series

A time series is a sequence of numbers arranged serially and they normally

represent real life data or values[42]. Mathematically, a time series can be

expressed in a lagged autoregressive model or a moving average:

(3.42)

Where;
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For a first order autoregressive model, a more elaborate approach is used; the

value to be predicted is expressed as shown below[43];

(3.43)

(3.44)

Where;

N = auto-regression rank,

The to determine the autoregressive coefficients, the maximum likelihood method

or the least squares can be used.

3.7.1.1 Non-Linear Autoregressive Neural Networks

Artificial Neurons were inspired by the way a brain-neurons functions, for

instance, how new memories are formed by creating new connections between

similar neurons and are activated by the firing action of the neurons and when

similar neurons fire at the same time, their cumulative effect is summed over a

node and a specific action is then performed for instance flexing a muscle.
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Biological neuron structure is as shown in figure 3.7. The neuron is composed of

the synapse, axon and the dendrites, together they combine to ensure the brain

functions depending on the type of stimuli.

Figure 3.7: Biological neuron structure

NN are powerful and flexible, they are good in approximating nonlinear functions

and give solutions where the input and output relationships neither are nor well

defined or not easily computable.

Time series predictions are either linear or nonlinear, depending on the predictive

model and the desired accuracy. Linear auto regression is achieved by using

superposition principle[43][44]. A general autoregressive model is as shown in the

equation below,
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The designing of the Nonlinear Autoregressive model in matlab can be done,

through a set of equations as defined below;

(3.45)

(3.46)

(3.47)

As stated, ANN has faster learning curve, for predictive applications, the BPNN

performs well as the error is fed back into the network and process is repeated.

Catalo et al [45],suggest that a three layered Feedforward- ANNs perform well in

forecasting applications since the sigmoid function is nonlinear while the output

function is linear and therefore, this shows that neural networks can be designed as

a powerful algorithm for detecting patterns too complex for any algorithm to

detect. ANN have dynamic learning features, are self-organized with a tolerance

ability making it ideal for wind power forecasting modeling[46].

Short term forecasting is limited to several hours[6], ANN is an Evolution

Algorithm that can be used for modelling different system and has uses in

prediction of wind turbine output power as described in [47].

3.7.1.2 Structure of an Non-Linear Autoregressive Neural Network
Nonlinear-Autoregressive-Neural-Networks are represented by a mathematical

expression that has a number of inputs, weights and a bias function that generate
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an output depending on the activation and transfer function. Consider the figure

3.8.below which shows the mathematical design of a neural network.

Figure 3.8: Artificial neural network architecture

In backpropagation neural network (BPNN), the weight update rule can be done

using the delta rule or the gradient search method, which presents an excellent

opportunity for weight adjustment in retraining the network for performance

optimization.

The sensitivity factor is a partial derivative term and can be expanded through

partial differentiation methods of calculus mathematics to evaluate the error (E).

The weights adjust the input node to the hidden node; it has a mean value lying

between 0 and 1.

The activating function equation can be thought of as the training element of the

neural network, Javad Mahmoudi et al gives it as a Bipolar Sigmoid function[7]
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though several activation functions both linear and nonlinear can be found in

literature for instance , unit step ,signum, logistic or the hyperbolic functions.

(3.47)

The Multilayer Perceptron (Bishop, 1995)  is a complex connection of neurons

arranged in layers , the hidden layers containing the hidden nodes are used to

control the behavior of the network and the size too, the neuron and layer weights

are adjusted using either of the following algorithms, Steepest-Descent ,Gradient-

Descent, Back-Propagation, Levenberg-Marquardt[48].

The Bayesian Neural Network, (Mackay, 1992) uses the Hessian matrix

introduced in the Levenberg– Marquardt algorithm to estimating the neural

network weights. The BNN treats the network parameters or weights as randomly

assigned values that obey probability distribution laws i.e. the normal distribution,

the distributions are normally decided upon by the fact that they can favor less

complex models to produce smooth fits.

The Radial Basis Function, by Moody and Darken Powell, has a structure similar

to the multilayer perceptron and functions by utilizing the Gaussian where, the

width of the Gaussian window is selected to control the fitted function

smoothness. The outputs of the nodes are combined with a linear function to give
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the final network output. The network architecture closely resembles the

multilayer perceptron architecture.

Generalised Regression Neural Network, by Nadaya and Watson , 1964, utilizes

the parameter h, called the bandwidth, in determining the smoothness of the

function to be fitted since increasing or decreasing the bandwidth parameter

controls the size if the smoothing region,[49]

The k-nearest Neighbor, calculates the shortest distance between a reference point

and all other points in a training set. The closest k-point in the training data points

are then picked to set the predicted  value as the weighted sum of the target output

values for these k-points.

The Classifier and Regression Tree is a regression model that looks like tree-like

ordered partition of the input size (Breiman, 1993). The input size is clustered into

local sections classified into a sequence of repeating parts.

SVR by (Scholkopf and Smola, 2001; Smola and Scholkopf, 2003) uses a HD

feature and to simplify the complexity of the model and a penalty added to an error

function, the support vector regression can be transformed to a nonlinear model by

use of a kernel.
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3.7.2 PSO

This optimization technique is a simplistic model that copies social aspect of

insects, certain fish species or birds e.g. sparrows, ants etc. The particles in the

ensemble try to locate the best trajectory or paths of the best location of important

resources for a colony. The particles investigate their environment while

constantly releasing pheromones or biological markers when they locate resource

to communicate between themselves and sharing information[15][50].

Position is a two dimensional space vector, while the velocity will

be . Each agent in the group notes its initial position, distance plus

velocity against the other agents: . Consider fig 3.9, it shows the

Cartesian coordinates as per equation (2.3) and equation (2.36), movement of the

swarm elements within the Cartesian coordinate space is constrained with the

following general simplistic rules.

(i) Solutions are constantly changing which are the positions and speed

adjustment.

(ii) Consideration of the search space and all limitations given a certain

search parameter or a number of all possible solutions.

(iii)Each member particle moves towards a global optimum solution at a

certain rate.
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(iv) All experiences both individual and group are recorded.

Figure 3.9: Cartesian Space for PSO agents

Many authors and texts are available, research on particle swarm optimization

techniques have been done and variations to the canonical form, [51]. 3.7.2.1 PSO

algorithm parameters

These are the variables that are considered in designing a PSO algorithm

A; the population of particles or agents

; Position of each agent say,

F; objective function

; Velocity of particle or agent,
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); neighborhoods of the agents, it’s normally fixed.

(3.48)

After iteration , the new position is:

(3.49)

The speed is updated similarly through the function;

(3.50)

(3.51)

Where:

(3.52)
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3.8. PSO algorithm

PSO optimization algorithm; steps

1) Determine the initial conditions for each agent

2) Evaluate the searching points and parameters

3) Modify each parameter as per the new values

PSO algorithm pseudo-code:

1. Randomize the population.

The iteration counter

M = swarm size or population size

N = number of parameters to be optimized

2. Evaluate every particle’s position using the fitness function and minimize.

3. If fitness criterion is not met, update the counter by 1 , if met go to 4

4. Update the velocity according to equation 4.1

(4.1)

Where;
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W= weight bias

Vt =velocity of the particle at time t.

Xt= position of the particle at time t.

C1,C2 = constriction factors 1 and 2.

Pbest = personal best position

Gbest = Group best position

5. Ensure the particles oscillates within the velocity (Vmax and Vmin)

constraints according to equation 4.2

(4.2)

6. Update particle position according to equation 4.3

(4.3)

Where  Xt+1(i) = new position

Xt(i) = current position

Vt+1(i) = new velocity

7. Check the limits and evaluate.

8. Evaluate the fitness function and compare with the previous pbest. Logic

decision, if the new value is better than the previous pbest, then set the

pbest value equal to the new value and the pbest location equal to the
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current location in the N dimensional search space, repeat for the gbest

position.

9. Evaluate the stopping criteria has been met and update the iteration and

repeat from step (5).

The process flow diagram is shown on fig 3.10

Figure 3.10: Particle swarm optimisation flow algorithm

3.9. Neural network (NN) pseudo code

1. Assign random weights to the elements in the network

2. Evaluate activation function of the hidden layers and the input elements in

step 1.

3. Using the activation rate of step 2, determine the activation value of each

output elements.
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4. Determine the output nodes errors and recalibrate the network

5. Using error and weights of the output function, apply to the hidden layers

and neuron nodes.

6. Recalibrate the network weights and repeat from 1.

7. Test for convergence and obtain the best solution.

Figure 3.11: Backpropagation neural network algorithm flow chart
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3.10. Predictive Model Design and the Hybrid PSO-NN Prediction Model

The implemented design is based on three stages neural network artificial

intelligence model with optimized by a particle swarm algorithm, see figure 3.12

The first input stage is the data input stage where, data obtained from Ngong’II

wind farm is processed and fed into the system. The first stage is the non-linear

autoregressive neural network that has an aspect of the autoregressive integrated

moving averages (ARIMA) [52].

Figure 3.12: Three stage hybrid predictive models

The data is time series in nature, this data is classified into validation data and

training data for the Narnet model. The model predicts a sequence of numbers

which are passed to a feedforward network for input-output matching and weight
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adjustment and optimization using particle swarm optimization model and finally

,through a narxnet model for final forecasting.

For short term predictions, ANN algorithms are preferred since they have the

ability to extract nonlinear relationships. It has many variants that can be adopted

for specific functions.

Auto-regressive models are used since they are better at performing actual

prediction as they take advantage of the auto-correlation and moving averages

property. The hybridized cascadefeedforward net as depicted in stage two of the

model is shown in figure 3.11, the design pseudo code is as shown ;

The feedforward network integrates the two autoregressive neural network.

1. Historical wind speed data, in this case, data collected from Ngong Hills

wind power project, will be analyzed using statistical formulas.

2. Randomize the initial neurons to make up the initial PSO population

3. The historical data will be fed into the ANN network for processing

4. PSO will use data from step 2 to train the ANN network through weight

and bias adjustment of the ANN network.

5. The MSE will be used to retrain the network for improved accuracy
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6. The neurons will be rearranged to form new connections and a new

network

7. PSO will be used to optimize the network for prediction accuracy
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Figure 3.13: Combined Cascade Feedforward NN and PSO Process Flow diagram

for Prediction Application
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Conclusion;

Different measures of the wind speed predictions have been looked at, wind speed

forecasting and turbines plus the betz model have been studied. More so, the

statistical analysis and the two main intelligent models to be utilized in the design

and implementation stage, chapter 4, have been introduced briefly here.

Optimization algorithms are inspired by nature, for instance, the movement in

swarms of animals or insect have been studied for long and have been declared to

have a distinct way under which they operate.

Ants have units of tasks and a hierarchy by which they handle matters and still

have a form of hyper intelligence by which they respond to specific stimuli

following a set of simplistic rules in that they exchange information depending on

how members of the swarm judge the situation. For instance if they are searching

for food and their home gets destroyed, they react somewhat immediately to solve

the problem and rebuild the home or if they get attacked, they respond in the same

way.

Brain neurons are also divided into tasks for instance; sensory, memory and

muscular, an outlined in the structure of a biological neuron, the neuron has

sections that help it carry out activities depending on the stimuli.

On a macro level, neurons and elements of a swarm can be thought of as similar in

the way they operate, though a distinction will arise in the number of size of the

unit under consideration. Artificial Neural Networks are good in finding solutions
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in a non-linear set of data which sets it apart from other algorithms and hence its

application in prediction techniques.

The essence of forecasting is to allow a system to extrapolate a future value after

feeding it some past data. From the literature review, probabilistic approach is

most preferred as it allows the inclusion of uncertainties that are inherent with

wind profile.
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CHAPTER 4:

CASE STUDY; NGONG II WIND FARM AND DATA ANALYSIS

4.1. Introduction

This chapter introduces the Ngong’ II wind farm .The wind farm under study is

composed of 16 wind turbines Typical wind site parameters see table 1, the

probability distribution curves, see figure 4.2 and the power from the turbines is

shown in the figure 4.1.

Wind power plants and farms are capital projects and some initial investment

scopes have to be established but the most important is the site suitability for the

project. Table 1, summerises some of the parameters of the Ngong II wind farm.

This chapter also discusses the model design and results achieved. The simulating

environment is Matlab R2017a, the software was picked mostly because it is a

detailed and well programmed simulation tool, it has several research modules that

assist in leaning such as simulink
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Figure 4.1: Ngong’II wind farm turbines



69

Table 4.1: Ngong II site summary

Site Summary

Project site Ngong Hills II

Power Installed (Watts) 13,600,000

Wind turbine used Gamesa

Annual Production in kWh 3 kWh

Standard Deviation 3.5

Average Speed 9.4583 m/s

Coefficient k 2.9473

Coefficient c 10.6

Gamma(1 + (1/k)) 0.892295

Alpha value 0.39054

Average speed at 40m 3.896273

Average speed at 60m 4.324533

Number of turbines 16

Capacity Factor (approximated)25%

4.2. Plots and Charts Analysis

Figure 4.2, show the normal distribution of wind speeds at the Ngong’ Hills using

the data from wind turbine AG01 as a sample data reference.
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Wind power has various charts and profiles defined to portray different

information as regards the wind farm power plant capacity and wind turbine

characteristics.

Between the distribution functions, wind profiles and the generated profiles ,the

normal graph shows, figure 4.2 that the wind distribution or the Ngong’-II site is

symmetrical about the mean i.e. the flow of high speeds over low speeds is

balanced though there is a slight shift leaning to the left. From the site summary

table1, average wind speed is 9.46 which translate to a power output of about

450kW of power.

Figure 4.2: Normal distribution curve for wind speed[53]
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Similarly, the combined cumulative and histogram displays the same analysis as

the normal curve, see figure 4.3, the plot gives the gamesa as illustrated in [83,

fig.4 and fig.5] These curves give an indication of the kind of turbine that can be

effectively used to harvest power at this site.

Figure 4.3: power curve verses wind speed distribution

The commercially available wind power curve data for gamesa-G52 power curve,

see figure 4.4, below, from the plot we can see that the cutting speed is 4m/s,

which us the minimum velocity required for power generation, next is the cutout

speed fixed at 25 m/s at this velocity, more wind flow, makes the mechanical and

electrical protection systems activate to protect the turbine form damage by

stalling. The normal allowable operating points/ speeds are within the following

speeds of 13 m/s to 24 m/s.
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Figure 4.4: Gamesa G52 power curve

The column graph, figure 4.5, shows the monthly contribution per turbine for the

whole year, the month of June indicates the lowest month approximately 1% in

over production for the site while March is the highest month as the power

produced was the largest, approximately 20%.
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Figure 4.5: cumulated wind power contribution

The wind turbines at Ngong II site experiences mean monthly wind speed with the

corresponding wind power generated at the site as shown by figure 4.6 and figure

4.7. the wind speeds varies for different months and the corresponding graphs are

given in the appendix section.
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Figure 4.6: Mean Monthly wind speed

Figure 4.7: Mean monthly generated power

The mean speed chart and the mean monthly generated power show a similar trend

since, the power generated is depended on the cube power of the measured

prevailing speed across the site. Similarly, the performance of the individual 16

turbines show a similar profile as shown in the following figures 4.8 and 4.9, see

appendix A.
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It is important to focus on the two months for analysis purposes, hence the

following two graphs for the two months, figure 4.8 and figure 4.9.

More so, it is of interest to note the variations in the daily power measurements for

March and June. As opposed to an aggregated mean values used to plot charts for

a bigger time scales see figure 4.8 and figure 4.9, note the difference in data point

for March and June which can be attributed to the calendar days between the two

months and most importantly, the resolution of the data recording devices.

Figure 4.8: Daily wind generated for March
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Figure 4.9: Wind power generated for june

4.3 Narnet Model

This narnet[54] model is used for data preparation and validation into testing and

training as as shown in figure 4.10, the model is composed of 3 hidden layers and

one output layer of 5-10-5-1 structure . The output from the model is a predicted

set of data that is passed to the cascade feedforward network.
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Figure 4.10 : Narnet Architecture

The model output is represented as a sequence of delayed data and the general

equation is given below; see [3, equation (1)], where the predictive equation is a

time delay as illustrated in equation (4.1)

(4.1)

The network performance charts are displayed below. They are the Best Validation

performance, which gives the mean square error performance at 0.30287.  The

error histogram of 20 bins shows the data split into testing, validation and training.

The regression chart displays the data adequacy for neural network training to the

best fit line, the dotted line shows perfect fit between the output and the target

while the solid line shows the approximation of the model to the best fit line. The

data points indicates that majority of the data points are a good fit. The best

performance occurred at iteration 32 as shown in figure 4.11. at this point, the

mean square error is at its minimum point of 0.30287. Furthermore, the predictive

model performance is further evaluated in figures 4.12, 4.13 and 4.14. Figure 4.12
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is the error histogram of 20 bins and indicates that the 6000 samples lie within the

0.1523 error.

Figure 4.11: Narnet network performance
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Figure 4.12: Network error histogram

Figure 4.13 gives the autocorrelation error parameter of the model performance at

lag 0 with a 95% confidence level, though it also shows the model could be

retrained to achieve better prediction abilities and improve the network

performance. Figure 4.14 is the regression plots for the narnet model and it

indicates that the model outputs are close to one (R-squared values) , therefore, the

narnet model was trained
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Figure 4.13: Network error 1 autocorrelation
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Figure 4.14: Network regressions

4.4 Cascade_feed_forward_net

The cascadefeedforward neural net is a fitting network and it maps the input-

output data from stage 1(narnet model- figure 4.10), see figure 4.15 with one(1)

hidden layer consisting of 5-neurons and 1-output layer ( 5-1 structure).

At this stage, the weights from the model are then continuously adjusted particle

swarm optimization in every iteration using a mean square error (MSE)[2] cost

function while the swarm is trained using the Levenberg- Marquardt algorithm.
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Figure 4.15: cascadefeedforward network architecture

The figure 4.16 is the PSO minimization curve, best performance occurs after the

60th iteration to obtain the best possible weights for the cascadefeedforward neural

net.

Figure 4.16: PSO Iteration graph
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Figure 4.17 shows that the network reached a minimum at iteration 2 but reached

the best performance at 18 and stopped as its best validation point of 0.27588 MSE

Figures 4.18 and figure 4.19 are the regression errors and the error histograms.

These plots indicates that the predictive errors have been minimised as shown by

the performance plots.

Figure 4.17: Cascadefeedforward network performance
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Figure4.18: Cascadefeedforward network regression

Figure 4.19: Cascadefeedforward network error histogram
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4.5 Narxnet Model

This is the final stage of the forecasting engine. It has the network architecture as

shown below, both the open loop and closed loop architecture. This model is the

third stage in the predictive architecture, narxnet model with a 10-5-1 structure,

figure 4.20 and 4.21.

Figure 4.20: Narxnet open loop network architecture

Figure 4.21: Narxnet closed loop network architecture

The performance mean square error is reduced to 0.21335, see figure 4.22, from

the input stage which was at 0.30827. The nonlinear neural network with an
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external input has an improved performance since it reached its best iteration after

13 iteration.
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Figure 4.22: Narxnet network performance

Figure 4.23, 4.24 and 4.25 are the error histogram, regression plots and

autocorrelation error plots respectively. See table 2 for the performance

comparison and improvement of the predictive model from the first stage to the

third stage.
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Figure 4.23: Narxnet error histogram

Figure 4.24: Narxnet network regression
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Figure 4.25: Narxnet network autocorrelation error

Table 4.2: Performance summary

Forecasting Engine Performance Summary

Performance Parameter Narnet cascadeforwardnet Narxnet

Performance 0.3381 0.2247

Regression Training 0.98771 0.98757 0.98806

Regression validation 0.98502 0.9852 0.98835

Regression Test 0.98395 0.98751 0.98771

Mean Square Error
0.30287

at epoch 32

0.27588

at epoch 18

0.21335 at

epoch 13

Finally, the Narxnet model, as the third stage of the predicting model is used to

predict wind speed for short term horizon of 2 hours, this is the aggregated mean
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speed output from the network the wind speed is then converted to wind power for

the wind farm, see figures 4.26 and 4.27 for the graphed output values.

Table 3 gives the output performance of the 3 stage prediction engine as designed,

the power is converted from wind speed values using weibull and Rayleigh

probability density functions, see equation 6.2 and 6.3 [55].

Figure 4.26: Closed loop narxnet predicted wind speeds
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Figure 4.27: Narxnet closed loop predicted wind power

4.6 Weibull and Rayleigh distribution functions for Ngong II wind farm[55]

(6.2)

(6.3)
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Table 4.3: Predicted speed probability distribution

Predicted Wind

speed

Weibull

Dist.

Rayleigh

Dist.

Predicted

Power

10.14 0.0161 0.683 579.80

9.9 0.0165 0.698 553.37

9.6 0.0168 0.709 529.29

9.4 0.0171 0.720 507.01

9.1 0.0173 0.729 485.20

9.0 0.0175 0.735 468.97

8.6 0.0179 0.746 433.05

8.4 0.0180 0.750 418.22

8.4 0.0180 0.750 414.38

8.4 0.0180 0.750 416.56

8.5 0.0181 0.749 421.87

8.6 0.0179 0.746 432.36
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4.7 Evaluation

Different authors use different metrics to evaluate the performance of their

forecasting engines. Some of the statistical metrics used are MAE, MAPE,NMAE,

RMSE, MSE, SDE and SSE, the mathematical fomula for the metrics are

illustrated in the appendix (I) section of this thesis.

Specific forecasting models are constrained to specific geographical sites and as

such it is never a guarantee that a model will perform well in another site given the

geographcal dependency[56], classified accuracy of the forecasting models

depending on the forecasting horizon as follows, short term prediction evaluated as

the Mean Absolute Error lies in he range of 5% to 15 %, while for longer days, the

performance deteriorates to 13% to 21% for prediction of between 1 and 2 days, if

we increase the forecasting horizon to more than 3 days, the accuracy shifts to

20% to 25%.

The MHNN and EPSO [57] has an average MAE of 2.21.A predictive Deep

Boltzmann Machine was introduced in [58] intelligent hybrid wind power

forecasting engine composed of wavelets, ANFIS, support vectors and Grid Search

algorithms, the forecasting is done per season i.e. winter, summer, spring and fall.
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The performance of his model is shown in table 4 and compared to our forecasting

model.

Our hybrid model is composed of three neural network architecture optimized by

particle swarm, the performance compared to other models is as follows;

J. P. S. Catalao, H. M. I. Pousinho, and V. M. F. Mendes through their work in

intelligent hybrid short term forecasting in Portugal obtained average  MAPE of

5.99%[21].

Particle swarm based optimization of neural networks shows better improvements

in the overall prediction accuracy than neural networks alone[59].

H. Shaker, D. Wood, and T. N. Alberta employed wavelet neural networks for net

demand  forecasting using direct and indirect methods [60].
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Table 4.4 Performance comparison

Performance Comparison

Metric
Narnet+CFF+

PSO+Narxnet

MHNN+

EPSO

[91]

WT+ANFIS

+SVM+GS

[93]

WNN

[95]

Average MAE 0.62 2.21 4.02 2.732

Average MSE 0.26 4.60 5.93 3.7995

MAPE 18.20 13.02

Several other models were analysed and a similar comparison made, we can note

that the average MAE at 0.6174, the hybrid model developed shows a significant

reduction in  the prediction error as well as the average model mean square error at

0.264033. though the MAPE is quite high, this could be attributed to the huge

aggregated data points used in the analysis.

4.8 Conclusion

The model was designed in this chaper, the three stage model – Narnet, cascade

feedforward and the Narxnet is highlighted and the performance chartes for each

submitted.

The cascade feedforward net was optimised using particle swarm algorith, the

weights of the network were randomly initialised before feeding into the PSO

Model
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algorithm, in this case, the whole ensemble, i.e the conection of neuranos and the

layers was forming the swam of the PSO, and performance improved by weight

adjustment as the particles.

The narnet and narxnet stages are designed after the autoregressive models and

introduces the concept of ARIMA which after passing the data, predictive values

are generated a the model is simulated.

Data was collected from ngong’ II wind power plant operated by Kengen power

company. See figures 4.6 and 4.7, these figures shows the mean-monthly wind

speed/velocity and wind power generated for a period of 12 months on the site

aggregated. The numbers of turbines considered is 16 , see figure 4.1 and the wind

site summary for ngong’ II, in table 1.

Matlab R2017a is used for model creation and simulation of the network. Matlab

R2017a was chosen for being the most versatile modelling environment and has

many features that were utilised the results from the model are analyzed in this

section.
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CHAPTER 5:

CONCLUSION AND RECOMMENDATION

5.1 Conclusion:

From the beginning, we set out to accomplish the following three objectives;

(i) To formulate a wind energy prediction technique based on Artificial

Intelligence and statistical hybrid models.

(ii) To develop a forecasting engine based on the formulated prediction

technique and cost function.

(iii) To evaluate the forecasting technique in comparison with other methods.

Objective (i) and (ii): The three stage predictive model was developed, see page

60, it gives the architecture of the predictive model. The internal system model has

been elaborated in Chapter 4 as the neural networks i.e. nonlinear autoregressive

neural networks and a cascade feedforward network whose, neural weights are

adjusted and optimized using particle swarm algorithm has been developed.

The model has shown tremendous improvement in the general performance of the

forecasting engine. We have demonstrated through, see page 86 for the

performance summary of the model, modelling and simulation cascade of neural

networks reduces the generalities associated with a single model, either Narnet or

the Narxnet or the feedforward network. We, therefore, conclude that

Autoregressive hybrid forecasting engine offers an improvement in the general
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performance and are designed to work on machines with limited computing

abilities available for system planner as it is important to know how much power

will be availed in a few hours’ time or on spot, though special emphasis is laid to

improve the prediction accuracy neural networks are basically intelligent.

Objective (iii): The model is evaluated and compared to other forecasting models

available and, as per the evaluated performance, it has shown some improvement

in the predictive and reduction in forecasting errors are small and minimized for

such a simple model. We can attribute this to the automatic relationship between

the combined nonlinear-autoregressive-neural-network models and particle swarm.

Time series prediction data used is a single input value to the network, and these

leaves out several other parameters that can aid in improving the accuracy further,

but we should know that with more inputs to be added, the more complex the

model will.

In the design phase, the designer has to penalize and compare between model

complexity and accuracy given that design time is always limited. For wind

forecasting, several parameters have been omitted such as, temperature, humidity,

wind direction etc.
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5.2 Recommendation:

1. Increasing more parameters while still maintaining a similar goal of model

simplicity as well using other neural network architectures and

optimization algorithms such as genetic algorithms , cuckoo search to

improve neural networks performance.

2. The benefits of researching on parameter estimation areas of forecasting

functions and models, still wind power forecasting is very site-dependent

and research can be done to develop systems that reduce the dependency in

the case of regional forecasts and one model can be used across sites. But

with simple modifications, a forecasting model can be utilized in different

regions

3. Research on NWPs, taking into account local phenomena as well as

extreme events other than what is normally the weather trend of a

particular site, and also protect the power system, therefore, this kind of

research is valuable in getting to understand the dynamics of a grid-tied

renewable energy power system.
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APPENDICES

APPENDIX A: TURBINE POWER GENERATION PLOTS;

The plots were plotted using wind speed and wind power data obtained from
Kengen wind power plant and site from Ngong Hills.

Figure A.1: Turbine AG01 power generated

Figure A.2: Turbine AG02 power generated
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Figure A.3: Turbine AG03 power generated

Figure A.4: Turbine AG04 power generated
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Figure A.5: Turbine AG05 power generated

Figure A.6: Turbine AG06 power generated
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Figure A.7: Turbine AG07 power generated

Figure A.8: Turbine AG08 power generated



117

Figure A.9: Turbine AG09 power generated

Figure A.10: Turbine AG10 power generated
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Figure A.11: Turbine AG11 power generated

Figure A.12: Turbine AG12 power generated
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Figure A.13: Turbine AG13 power generated

Figure A.14: Turbine AG14 power generated
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Figure A.15: Turbine AG15 power generated

Figure A.16: Turbine AG16 power generated
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APPENDIX B: NETWORK ARCHITECTURE CODES

APPENDIX B.1: The Narnet code:

close all, clear all, clc, format compact

%filename = 'C:\Users\Victor\Documents\MATLAB\Wind Power

Prediction\Project Preogress\WData.csv'

data = readtable('Data.csv','ReadVariableNames',true);

N = 41703; % total number of wind speeddata points

Nu = 8000; %the number of learning extracted samples

% data processing

y = data.AGGR;

y = y(all(~isnan(y),2),:);

%% -------------------------------------

%prepare data for the network

% training data processing

y_train = con2seq(y(1:Nu)');

% validation data processing

y_val = con2seq(y(Nu+1:end)');

%% --------------------------------------

%Create the NonLinear Autogressive Network



122

Input_Delays = 1:4; % input delay vector

Feedback_Delays = 1:4;

hiddenLayerSizes = [5 10 5]; % network structure (number of neurons)

net = narnet(inputDelays,hiddenLayerSizes);

% Change the layer activation fucntions

net.layers{1}.transferFcn = 'tansig';

net.layers{2}.transferFcn = 'logsig';

net.layers{3}.transferFcn = 'tansig';

net.layers{4}.transferFcn = 'purelin';

% create network

net.layerConnect = [0 0 0 0; 1 0 0 0; 0 1 0 0; 0 0 1 0];

net.biasConnect = [1; 0; 0; 1];

% Change the network parameters

net.trainParam.epochs = 1000;

net.trainParam.goal = 1e-5;

net.performParam.regularization = 0.5;

net.trainParam.lr = 0.1;

% Data division for training

net.divideFcn = 'divideblock';
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net.divideParam.trainRatio = 0.7;

net.divideParam.valRatio = 0.15;

net.divideParam.testRatio = 0.15;

% training function

net.trainFcn = 'trainbfg';

%performance function

net.performFcn = 'mse';

% Prepare the networks

[i,is,Ls,ts] = preparets(net,{},{},ytrain);

% train network

[net,tr] = train(net,i,ts,is,Ls);

view(net)

Y = net(i,is,Ls);

perf = perform(net,ts,Y)

%% ----------------------------------------

% prepare validation data for simulation

y_initial = ytrain(end-max(input_Delays)+1:end); % initial values from training

data

% aggregated

[i,is,Ls] = preparets(net,{},{},[y_initial y_val]);



124

% predict

predict = net(i,is,Ls);

% validate data

Yv = cell2mat(y_val);

% predict

Yp = cell2mat(predict);

% error

error = Yv - Yp;



125

APPENDIX B.2: The Cascade Forward net code

rng default % for reproducibility

input = Yv;

target = Yp;

net_CFF = cascadeforwardnet(5,'trainlm');

net_CFF = configure(net_CFF,input,target);

net_CFF.performFcn = 'crossentropy';

net_CFF.trainParam.lr = 0.01;

net_CFF = init(net_CFF);

[net_CFF,tr] = train(net_CFF,input,target);

view(net_CFF)

getwb(net_CFF);

i = net_CFF(input);

error_Normal = input - i;

L2 = 0.5*sqrt(mean(error_Normal).^2);

Cost_Function = @(x)loss(x, net_CFF,input ,target);

nvars = size(getwb(net_CFF));

[x, err_N] = pso(Cost_Function,nvars);
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net= setwb(net_CFF, x');

% get the PSO optimized NN weights and bias

Particle_weights = getwb(net);

%%obtain the generating function for the cascadeforwardnet

net = configure(net,input,target);

view(net)

genFunction(net,'net')
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APPENDIX B.3: The Narxnet Code
% create the network with delays

Input_Delays = 1:5:10;

Feedback_Delays = 1:5:10;

Hidden_Sizes = [10 5];

%-------------------------------------

input = con2seq(i);

target = con2seq(Yv);

% nonlinear autoregressive neural network

net = narxnet(inputDelays,feedbackDelays,hiddenSizes);

[X_s,X_i,A_i,T_s] = preparets(net,input,{},target);

net = train(net,X_s,T_s,X_i,A_i);

error_N = cell2mat(yp) - cell2mat(Ts);

view(net)

Y = net(X_s,X_i,A_i);

perf = perform(net,T_s,Y)

% validation data

y_initial = target(end-max(input_Delays)+1:end);

[X_s,X_i,A_i,T_s] = preparets(net,{},{},[y_initial input]);

% predict on validation data

%predict = net(Xs,Xi,Ai,Ts);

predict_2 = net(X_s,X_i,A_i);
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Yt = cell2mat(input);

% prediction

Y_P = cell2mat(predict_2);

Net_c = closeloop(net);

Net_c.name = [net.name 'Closed Loop'];

view(net_c)

[X_c,Xi_c,Ai_c,T_c] = preparets(net_c,input,{},target);

Y_closed  = netc(Xc,Xic,Aic);

y_pred = netc(cell(0,12),Xic,Aic);
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APPENDIX B.4:The Particle Swarm code
function [x,err]=particleswarm(CostFunction,nVar)

% CostFunction= Cost_Function

% n_Var= Number of Variables

tic

Var_Size=[1 n_Var]; % matrix variable decision size

Var_Min=-5; % Lower_Bound

Var_Max= 5; % Upper_Bound

Max_It= 60; % set iter_max

n_Pop=50; % set Population-Swarm-Size

we=1; % Inertial weight factor

we_damp=0.8; % Inertia_weightDamping_ratio

C_1=1.5; % Pbest Coefficient

C_2=1.5; % Gbest Coefficient

% set velocity constraints

V_Max=0.1*(Var_Max-Var_Min);

V_Min=-V_Max;

%% set the initial condtions
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EP.Pos=[];

EP._Cost=[];

EP.Velocity=[];

EP.B.Pos=[];

EP.B._Cost=[];

member=repmat(EP,n_Pop,1);

GBest.Cost = inf;

for i=1:n_Pop

% set Initial position

P(i).Position = unifrnd(Var_Min,Var_Max,Var_Size);

% set initial Velocity

P(i).Velocity=zeros(Var_Size);

% Eval

P(i).Cost=Cost_Function(P(i).Position);

% Update PBest

P(i).B.Position=P(i).Pos;

P(i).B.Cost=P(i).Cost;

% iterate GBest

if P(i).B_Cost<GBest.Cost
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GBest=P(i).Best;

end

end

B_Cost=zeros(MaxIt,1);

%% PSO Main Loop

for it=1:MaxIt

for i=1:nPop

% iterateVelocity

P(i).Velocity = we*P(i)._Velocity ...

+c1*rand(Var_Size).*(P(i).B.Pos-P(i).Pos) ...

+c2*rand(Var_Size).*(GBest.Pos-P(i).Pos);

% Add Velocity constraints

P(i).Velocity = max(P(i).Velocity,Vel_Min);

P(i).Velocity = min(P(i).Velocity,Vel_Max);

%Iterate Position

P(i).Pos = (P(i).Pos) + P(i).Vel;

% apply the Mirror for velocity

IsOutside=(P(i).Pos<Var_Min | P(i).Pos>Var_Max);

P(i).Vel(IsOutside)=-P(i).Vel(IsOutside);

% Add Pos Limits
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P(i).Pos = max(P(i).Pos,Var_Min);

P(i).Pos = min(P(i).Pos,Var_Max);

% Evaluate

P(i).Cost = Cost_Function(P(i).Pos);

% Iterate Personal Best

if P(i).Cost<P(i).B._Cost

P(i).B.Position=P(i).Pos;

P(i).B._Cost=P(i)._Cost;

% iterate Global Best

if P(i).B.Cost<GBest._Cost

GBest=P(i)._Best;

end

end

end

BCost(it)=GBest._Cost;

disp(['Iteration ' num2str(it) ': Best Cost = ' num2str(BestCost(it))]);

we_new=we*w_damp;

end

Best_Sol = GBest;
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x=BestSol.Position;

err=BestSol.Cost;

%% Display_results

figure;

%plot;

semilogy(BCost,'LineWidth',2);

xlabel('Iteration');

ylabel('Best_Cost');

grid on;

toc
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APPENDIX B.5: Cost Function

function L2 = loss( wb,net, target, input)

% wb is the weights and biases row vector obtained from the PSO algorithm.

% It is transposed when transferring the weights and biases to the network t.

net = setwb(net, wb');

% The net output matrix is given by net(input). The corresponding error matrix is

given by

error = target - net(input);

% The mean squared error normalized by the mean target variance is

L2 = 0.5*sqrt(mean(error).^2);

%L2 = mean(error.^2)/mean(var(Yv',1));

APPENDIX C: GENERALISED LEAST SQUARE REGRESSORS

(C.1)

(C.2)

(C.3)

(C.4)



135

(C.5)

(C.6)

(C.7)

(C.8)

(C.10)

(C.11)

(C.12)

(C.13)

(C.14)
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APPENDIX D: DURBIN – WATSON TEST

(D.1)

M can be expanded and simplified into a quadratic equation as shown below:

(D.2)

Equation 9D.2 has regions of operation and is therefore bound within the said

region.
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APPENDIX E: THE GEOMETRIC LAG

(E.1)

(E.2)

(E.3)
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APPENDIX F: THE POWER LAW EQUATION OF WIND SHEAR

(F.1)

Where is the height extrapolation coefficient, it can be determined using two

methods commonly found in literature as stipulated in 9F.2 and 9F.3

Method 1: From the reference values;

(F.2)

Method 2: Using the roughness length;

(F.3)



139

APPENDIX G: WIND FARM ENERGY YIELD

These equations determines the total energy generated from a given wind-farm in a

given year , calculated from wind_speed distribution curve and the wind turbine

power_curve.

(G.1)

(G.2)

Where is the probability that the wind class of that nature will blow.

(G.3)
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APPENDIX H: WIND FARM PLAT CAPACITY-FACTOR

This is the rate at which the farm operates at the rated capacity. It is given as

follows;

(H.1)

Typical capacity factors lie between 0.15 and 0.3
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APPENDIX I: PERFORMANCE METRICS

APPENDIX I.1: MEAN ABSOLUTE ERROR
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APPENDIX I.2: MEAN SQUARE ERROR
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APPENDIX I.3: MEAN ABSOLUTE PERCENTAGE ERROR
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APPENDIX I.4: SUM OF SQUARED ERRORS
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APPENDIX I.5: STANDARD DEVIATION ERROR


