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ABSTRACT 
 
This thesis is devoted to the study of commutants and spectral properties of 

operators in Hilbert spaces.  This is done via the following operator equations: 

AB BAλ= , where λ∈ℂ, AX XB=  and .AXB X=  In the operator equation 

,AB BAλ=  conditions on A  and B  under which 1λ =  are investigated.  This 

indeed is a sufficient condition for the operators A  and B  to belong to the 

commutant of each other. In the operator equations AX XB=  and ,AXB X=

conditions that ensure the existence of the operator equations ( , ) 0C A B X = and 

( , ) 0=R A B X  are given.  Finally, in the operator equation ,AB BAλ=  the equality 

of the general spectra and other subsets of the spectra, namely essential and 

approximate point spectra of  AB  and BA  or B  and ,Bλ are established.  This 

final bit justifies the spectral properties part of our thesis.   
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CHAPTER ONE 

PRELIMINARIES  
 

1.0 Introduction 
 
The mathematical concept of a Hilbert space, named after David Hilbert who 

formulated Hilbert spaces, generalizes the notion of a Euclidean space.  It 

extends the methods of vector algebra and calculus from the two dimensional 

Euclidean plane and three dimensional space to spaces with any finite or infinite 

number of dimensions. 

 

Before the development of Hilbert spaces, other generalizations of Euclidean 

spaces were known to mathematicians and physicists.  One of them was realized 

towards the end of the 19th century.   The idea of a space whose elements can 

be added together and multiplied by scalars, known as an abstract linear space, 

gained some traction here.  At the turn of the 20th century functions were added 

together or multiplied by constant scalars.  In the first decade of the 20th century, 

parallel developments led to the introduction of Hilbert spaces. 

 

The first development arose during David Hilbert and Erhard Schmidt’s study of 

integral equations.  Here, they showed that two square integrable real-valued 

functions f  and g on an interval [ ],a b have an inner product given by: 

( ) ( ), .

b

a

f g f x g x dx= ∫  

 
The second development was the Lebesgue integral, an extension to the 

Riemann integral introduced by Heine Lebesgue in 1904.  The Lebesgue integral 

made it possible to integrate a much broader class of functions.  In 1907, Frigyes 

Riesz and Ernst Sigismund Fischer independently proved that the space 2L of 

square integrable functions is a complete metric space.  Thereafter, the 19th 
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century results of Joseph Fourier, Friedrich Bessel and Marc-Antoine Parseval 

on trigonometric series easily carried over to more general spaces. 

 
Further basic results were proved in the early 20th century by other scholars and 

in particular, John von Neumann coined the term abstract Hilbert space in his 

work on unbounded hermittian operators.  He gave the first complete and 

axiomatic treatment of these Hilbert spaces, using them in his work on the 

foundations of quantum mechanics.  The name Hilbert space was soon adopted 

by others, like Weyl in 1931. The significance of the concept of a Hilbert space 

was underlined with the realization that it offers one of the best mathematical 

formulations of quantum mechanics.  The states of a quantum mechanical 

system are vectors in a certain Hilbert space, the observables are self adjoint 

operators on that space, the symmetries of the system are unitary operators and 

measurement are orthogonal projections.  The relation between quantum 

mechanical symmetries and unitary operators provided an impetus for the 

development of the unitary representation theory of groups initiated by Weyl in 

1931.  See [44].   

 
With this historical background in mind, a connection between the importance of 

this thesis to areas like quantum mechanics and physical chemistry was made. 

As a result it has been a vibrant area for recent study. 

 

Operators are commonly used to perform a specific mathematical operation on 

another function.   The operation can be to take the derivative or integrate with 

respect to a particular term, or to multiply, divide, add or subtract a number or 

term with regards to the initial function.  Operators are commonly used in 

physics, mathematics and chemistry, often to simplify complicated equations 

such as the Hamiltonian operator used to solve the Schrodinger equation in order 

to figure out the energy of a wave function.  See [40] 
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This thesis is devoted to the study of commutants and spectral properties of 

some operators in the algebra of all bounded linear operators on an infinite 

dimensional complex Hilbert space ,H denoted by ( )B H . The operator equations

AB BAλ= , AX XB= and AXB X= are used. To begin with, the importance of this 

research to quantum mechanics and physical chemistry is given briefly, followed 

by an account of the work done by several authors as far as these operator 

equations are concerned and the above subject matter.  

 
Certain problems in quantum theory have motivated research in pure 

mathematics and more so in matrix and operator theory. One of these 

mathematical problems is the commutator. The study of � − commuting 

operators is important for the interpretation of quantum mechanical observables 

and the analysis of their spectra.  

 
Operators in these application areas are generally characterized by a hat.  Thus, 

they generally appear like the following equation with Ê  being the operator 

operating on ( ).f x  

( ) ( ) ( )ˆ ............................................................................................ .Ef x g x i=  

For instance if ˆ ,
d

E
dx

= then ( )i  above becomes: 

 ( ) ( ).g x f x′=  

One property of operators is that the order of operation matters.  

( )ˆ ˆˆ ˆ ( )AEf x EAf x≠ unless the two operators Â  and Ê commute.   

  

For two physical quantities to be simultaneously observable in quantum 

mechanics, their operator representations must commute.  Notable pairs for 

observation are position and momentum, and energy and time.  If the operators 

do not commute, they cannot be measured simultaneously to precision. See [40]. 

  



4 

  

In physical chemistry, if two operators commute then both quantities can be 

measured at the same time.  Otherwise, there will be a tradeoff in the accuracy in 

the measurement for one quantity versus the other. See [31]. 

 
 

1.1 Literature review 
 
Wintner (1947), made the first important contribution to the study of commutators 

when he proved that the identity operator is not a commutator. This result has its 

roots in physics where the quantum-mechanical momentum and position satisfy 

the commutation relation ,
2

ih
PQ QP I

π
− − =  

 
 where h  is the Plank’s constant, I  is 

the identity operator, P the quantum-mechanical momentum and Q  the position.  

The problem here was to investigate the structure of a commutator and a non-

commutator.  This notion makes the study of the operator equations 

,AX XB C− = AX XA C− = and others an important study to physicists.     

 

Embry (1970) proved that if A , J and ( )K B H∈ such that AJ KA= , with J and 

K  commuting normal operators and ( ),0 AW∉  then J K= .  This result acted 

like a lemma to the key result, namely Theorem 2.5 in chapter two, where an 

improvement of Brooke et al.’s (2002) result was made. It should be noted here 

that Embry’s (1970) equation is similar to the main operator equation .AB BAλ=   

Allowing J B=  and K Bλ=  in ,AJ KA=  we end up with the operator equation 

, 0,AB BA ABλ= ≠  where λ∈ℂ,  which has its applicability in interpretation of 

quantum mechanical observables and analysis of their spectra. 

 

Moajil (1976) proved that if � is a normal operator such that 2 2� X X�= and 

3 3 ,� X X�=  for some ( )X B H∈ , then �X X�= . Kittaneh (1986) generalized 

this result to cover subnormal operators by taking A  and *B  to be subnormal 

operators. In other words, if 2 2A X XB= and 3 3A X XB= , then AX XB= . Bachir 
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(2004) generalized the above two results further to cover the classes of dominant 

and p-hyponormal operators and proved that, if A  is a dominant operator and *B

is a p-hyponormal or log-hyponormal operator, then 2 2A X XB=  and 3 3A X XB=  

implies .AX XB=   Thus, the same results were achieved despite going on to 

bigger classes of operators. Similar results have been obtained in the third 

chapter of this thesis, with no class specification being made to the operators A  

and .B  Instead the property of A  and B
 
being quasiaffinities was used to 

achieve the same result.   

 
Hlandik and Omladic (1988) had picked two operators A  and B  on a Hilbert 

space H  and showed that ( ) ( ) ( ),AB BA PAPσ σ σ= = if the operator B  is positive 

and P  is the positive square root of the operator B .  We show similar results, but 

working with two λ − commuting operators A  and B .  Furthermore, we look at 

subsets of the spectra.  Diverting to this situation, Williams (1981), proved that if 

T  is a pure and dominant operator, K  compact and having dense range with 

KT TK= , then the essential spectrum of T and the spectrum of T are equal. It is 

noted that the spectrum of an operator, say T , is simply its eigen- values in finite 

dimensional spaces and that the essential spectrum is a subset of the spectrum.  

With A  and ,B  λ − commuting non-trivially, conditions under which AB  and BA  

or B and Bλ have same spectrum or same essential spectrum, were reported in 

chapter four.  

 

Brooke et al. (2002) showed that, if ( ), HA B B∈  such that 0AB ≠  and AB BAλ=  

for λ∈ℂ, with A  and B  self-adjoint and one of them positive, then 1λ = .  

Looking at bigger classes of operators in this thesis like the normal operators, 

this result becomes a mere corollary thus, making an improvement on this 

theorem. 
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Khalagai and Nyamai (2006) studied the operator equations AXB X=  and 

* * .A XB X=  Their study, motivated parallel results to be obtained in chapter three 

such as  3 3A XB X=  and 2 2 ,A XB X=  to imply ,AXB X=  without necessarily 

specifying the classes in which A  and B
 
belong to. These properties are one of 

the operators being injective and the other having dense range. 

 

1.2 Definitions and Notations 
 

• Inner product space: Let X be a vector space over the complex scalars ℂ.  

If there exists a complex number , ,x y for each pair of vectors ,x y X∈  

satisfying the following: 

i. , 0x x ≥ for all x  in X and , 0x x = if and only if 0.x =  

ii. , ,y x x y=  for all xand y in .X  

iii. , , ,x y z x z y z+ = + for all ,x y and z in .X  

iv. , ,x y x yλ λ= for all x  and y in X and all λ∈ℂ. 

          Then ,x y is an inner product space. 

• A complex vector space X having the inner product is called an inner 

product space or a pre-Hilbert space. 

• Complete space: a space M  is said to be complete, if every Cauchy 

sequence of points in M  has a sequence that converges in .M    

• Hilbert space:  A complete inner product space is said to be a Hilbert 

space.  

• A linear operator T  on a Hilbert space is said to be bounded, if there 

exists � > 0 such that ,Tx c x≤ for all x H∈ where;  

T = inf 
� > 0: Tx c x≤ �  for all }x H∈ . 
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• If H and K  are (complex) Hilbert spaces, the (bounded linear) operator 

:X H K→ is said to be quasi-invertible, if and only if it is injective and has 

dense range. 

• Two operators A  and B are quasi-similar provided there exists quasi-

invertible operators :X H K→  and :Y K H→ such that XA BX= and 

.YB AY=  

• Let ( )B H denote the algebra of bounded linear operators on an infinite 

dimensional complex Hilbert Space H  to itself.   

• ( , )C A B X  and  ( , )R A B X are defined by the following relations: 

( , )C A B X AX XB= −  and ( , )R A B AXB X= − . 

• The range of an operator A  is denoted by ( ).R A  

• ( ) { }: .R A Ax x H= ∈   

• Spectrum of an operator ( )A B H∈ denoted by ( )Aσ  is the set  

( )Aσ = {λ∈ℂ: A Iλ−  is not invertible}. 

• ( ),p Aλ σ∈
 
where ( )p Aσ denotes the point spectrum of  ,A  if λ  is such 

that 
1( )A Iλ −−  does not exist. It is the ( )Aσ  in a finite dimensional space, 

otherwise it is a decomposition of the ( ).Aσ  

• The essential and approximate point spectrum of an operator A , is also a 

decomposition of ( ),Aσ  denoted by ( )e Aσ  and ( )Aπσ respectively. 

• ker A =  kernel of A  ( ){ }0 ,:v V vA∈ ==  where :V WA →  is any linear 

transformation.  

• Cokernel of A  is given by: ( ){ }* *ker ker : 0 .co A A v V A v= = ∈ =  

• Let * .AA B B=   Then B  has dense range if * .AA I=  

• An operator A  is said to be Fredholm, if its range is closed and both ker A
 

and *ker A are finite dimensional.  
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• ( ),e Aλ σ∈
 
where ( )e Aσ  denotes the essential spectrum of ,A

 
if λ  is such 

that A Iλ−  is not Fredholm.  

• ( ),Aπλ σ∈
 
where ( )Aπσ denotes the approximate point spectrum of  ,A  if 

λ  is such that A Iλ−  is not bounded below.  

• Numerical range of ,A  denoted by ( )W A , is the set { }, : 1Ax x x =  for 

x H∈ . 

• The adjoint of an operator A  will be denoted by *.A  

• An operator ( )C B H∈ is a commutator, if there exists ( ),A B B H∈  such 

that .C AB BA= − . 

• The commutator of A  and B  will be denoted by [ ],A B  where;  

           
[ ], .A B AB BA= −   

• If the commutator [ ], 0,C A B= =  then A  is said to be in the commutant of 

,B  while B  is said to be in the commutant of A .   This is denoted by 

{ }A B ′∈ and { }B A ′∈  respectively.  Thus, the commutant of A  will be 

denoted { }A ′
 
and is given by the set { } ( ) [ ]{ }: , 0 .A X B H A X′ = ∈ =  

• The class  ℋ ∪ ��� denotes the class of p-hyponormal operators A  with 

the polar decomposition ,A U A=  where ( )
1

* 2A A A=  and U  is unitary. 

 

The operator A  will be said to be: 

 

• Self-adjoint if *.A A=  

• A projection if 2A A=  and * .A A=  

• An involution if 2A I= .  In other words a projectivity of period 2. 

• Normal if * ** .A A AA or Ax A x x H= = ∀ ∈  
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• Dominant if to each λ∈ℂ there corresponds a number 1Mλ ≥  such that 

for all ,x H∈ ( ) ( )*
A I x M A I xλλ λ− ≤ − . 

• M − hyponormal if there is a constant M such that M Mλ ≤ for all λ∈ℂ 

such that  ( ) ( )*
.A I x M A I xλ λ− ≤ −  

• Alternatively, A  is M − hyponormal if there exists a positive number M

such that: ( ) ( ) ( )( )* *2M A A A Aλ λ λ λ λ− − ≥ − − ∀ ∈ℂ.  

• Hyponormal if from above * * *1 .M or A A AA or Ax A x x H= ≥ ≥ ∀ ∈    

• P-hyponormal if ( ) ( )* *
p p

A A AA≥  for 0 1.p< <   

• 
Log-hyponormal if A  is an invertible operator such that 

( ) ( )* *log log .A A AA≥
 

• Paranormal if 
2 2Ax A x≤   for any unit vector x H∈  or 

2 2 .Ax A x x≤  

• Subnormal if A  has a normal extension. More precisely, an operator A  on 

a Hilbert space H is subnormal if there exists a normal operator B on a 

Hilbert space K  such that H  is a subspace of .K  

• Quasinormal if * , 0.A A A  =   

• 2 – normal if * 2 2 *A A A A=  and binormal if 
* *

, 0.A A AA  =   

• Posinormal if there exists a positive operator ( )P B H∈ called the 

interrupter such that * * .AA A PA=   

• Totally posinormal if the translates A λ−
 
are posinormal λ∀ ∈ℂ.  

• Partial isometry if * .A AA A=   

• Isometry if 
* .A A I or Ax x= =  

• Co-Isometry if * .AA I=  

• Unitary if * * .A A AA I= =  
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• Compact if for each bounded sequence { }nx in the domain H , the 

sequence { }nAx  contains a subsequence converging to some limit in the 

range. 

• Contraction if 1.A ≤   

• Positive if A
 
is self adjoint and ,Ax x ≥ 0 for 0 .x H≠ ∈  Positive definite 

(strictly positive) if in addition ,Ax x  is real. 

• Quasinilpotent if ( ) { }0 .Aσ =   

• Nilpotent if 0nA = for some positive integer .n  

• a class � � operator for 1α ≥  if there exists a positive number kα  such 

that ( ) ( )** *AA A A k A A
α

α λ λ− ≤ − − for all λ∈ℂ.  Note that  � � ⊂ � � if  

1 ≤ � ≤ �.  Also note that � =
1α≥
U� � so as to have a class � operator.    

 

A Hilbert space H  is said to be infinite dimensional, if the space is too big 

to be spanned by any finite set of vectors. 

 

Other terminologies are given below. 

 

• The direct sum, denoted by ,⊕  of any pair of matrices A  of size m n×  and 

B  of size ,p q× is a matrix of size ( ) ( )m p n q+ × + defined as 

0
.

0

A
A B

B

 
⊕ =  

 
 

• A symmetric matrix is a square matrix that is equal to its transpose. 

• The adjoint of a square matrix is its conjugate transpose. 
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1.3   Inclusions of Classes of Operators in Hilbert Spaces 
 
We have the following inclusions of classes of operators:  

 

• Projection⊆Self-adjoint ⊆ Normal ⊆ Hyponormal ⊆ Dominant. 

• Self-adjoint⊆  Unitary⊆  Normal⊆  Hyponormal⊆  Paranormal. 

• Normal⊆Quasinormal⊆  Subnormal⊆  Hyponormal⊆  M-hyponormal⊆

Dominant. 

• Self-adjoint⊆  Unitary⊆  Normal⊆  Quasinormal⊆  Binormal. 

• Self-adjoint ⊆  Normal ⊆Hyponormal ⊆M-hyponormal ⊆Dominant  

• Unitary⊆  Isometry⊆  Partial Isometry⊆  Contraction. 

• Unitary⊆   Isometry⊆2-Normal⊆  Binormal. 

• Normal⊆   Quasinormal⊆Subnormal⊆  Hyponormal⊆Paranormal. 

• Normal⊆Quasinormal⊆Subnormal⊆Hyponormal⊆P-hyponormal⊆ log-

hyponormal. 

• Normal ⊆  Hyponormal ⊆  P-hyponormal ⊆ -Hyponormal. 

• Hyponormal⊆M-hyponormal⊆Quasi M-hyponormal. 

• Normal ⊆Quasinormal ⊆Subnormal ⊆  Hyponormal ⊆  M-hyponormal. 

• Hyponormal ⊆  M-hyponormal ⊆  Dominant ⊆  Posinormal.  

 
It is also important to note that among some classes of operators, it is impossible 

to relate them in terms of subsets of each other.  For instance, unitary⊆  normal 

and unitary⊆  isometry, but for normal and isometric operators we cannot put 

them in terms of subsets.  Other pairs of operators that behave like this are:  

partial isometric with 2-normal, quasinormal with partial isometric and 

quasinormal with 2-normal. 

 

1.4   Berberian’s technique 
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Let �  and M be normal operators. If 
0

,
0

�
L

M

 
=  
 

 
0 0

,
0

Y
X

 
=  
 

 then L  is 

normal on H H⊕ and .LY YL=  Hence, using Fuglede’s theorem * *.LY YL=  

Berberian (1959), used the entries of * *LY YL= , commonly known as “Berberian’s 

trick”, to show that the Putnam-Fuglede theorem follows from the Fuglede 

theorem. These two theorems are given below: 

 
Theorem 1.4.1- Fuglede [ Fuglede (1950) ] 

 Let T and �  be in ( )B H such that T� �T= where � is normal then * * .T� � T=   

 
Theorem 1.4.2- Putnam-Fuglede [ Putnam (1951) ] 

 Let A  and B  be normal operators and X be an operator such that .XA BX=  

Then * * .XA B X=  

 
Remark 1.4.3 
For the entire thesis, unless stated otherwise, all the operators dealt with belong 

to ( )B H the set of all bounded linear operators on a complex Hilbert space .H   

The fundamental results on linear operators in this chapter are mostly based on 

matrix theory, since ( ) ,B H the set of all bounded linear operators on a complex 

Hilbert space ,H is regarded as an extension of the set of all 2 2×  matrices.  See 

[17] and [21].  
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CHAPTER TWO  

ON λλλλ-COMMUTING OPERATORS IN HILBERT SPACES  
 
2.0   Introduction 

 

Two   operators A  and B  in ( )B H are said to λ − commute for a scalar 

λ∈ℂ, provided 0AB BAλ= ≠ . In this chapter, some properties satisfied by 

the operators A  and ,B  so that 1λ =  are studied. When 1,λ =  then A  

and B  are said to commute.  It is shown among other results that; if one of 

the operators raised to some power is normal and 0  does not belong to 

the numerical range of the other operator, then  1.λ =    

 
To begin with, some results by other authors that will be useful in this 

chapter are given.     

 
Theorem 2.1 [ Brooke et al. (2002), Theorem 1.1, p. 110 ]  

Let 0,AB BAλ λ= ≠ ∈ℂ . Then; 

(i) if A  or B  is self-adjoint then λ∈ℝ. 

(ii) if both A  and B  are self-adjoint then { }1,1 .λ ∈ −   

(iii) if A  and B  are self-adjoint and one of them is positive then 1.λ =  

 
 
Theorem 2.2 [ Brooke et al. (2002), Theorem 1.2, p. 110 ] 
Let A  and B  be self-adjoint operators. Then the following statements are 

equivalent; 

(i) AB UBA= for some unitary .U  

(ii) 2 2AB B A= and 2 2BA A B= . 

If Aor B  is positive then (i) is equivalent to .AB BA=    
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Theorem 2.3 [ Embry (1970), Theorem 1, p. 331 ] 

Let ,A J and K
 
be operators such that .AJ KA=  If J  and K are commuting 

normal operators and ( )0 ,W A∉  then .J K=  

 
Theorem 2.4 [ Sheth and Khalagai (1987), Theorem 3, p. 34 ] 

Let A  and B  be operators such that 2, 0.B A  =   Then [ ], 0,B A =  under any one 

of the following conditions; 

(i) ( ) ( ) .A Aσ σ∩ − = ∅  

(ii) A  is normal and ( )0 .W A∉  

(iii) 2{ } { }mA A′ ′=  for a positive integer .m  

(iv) A  is normal and ( )0 Re .W A∉  

(v) A  is normal and ( ) ( )Re Re .A Aσ σ∩ − = ∅  

 
The following theorem is an improvement of Theorem 2.1 and Theorem 2.2 

above. 

  
Theorem 2.5 [ Khalagai and Kavila (2012a), Theorem 1, p.28 ] 

Let 0,AB BAλ λ= ≠ ∈ℂ . Then we have: 

(i) If 0nB ≠  is normal for some positive integer n  and ( )0 ,W A∉ then 

[ , ] 0.nB A =  

(ii) If 0nA ≠  is normal for some positive integer n  and ( )0 ,W B∉  then 

[ , ] 0.nA B =  

Proof 

(i) Given ,AB BAλ=  we have, 2 2 2 .AB BAB B BA B Aλ λ λ λ= = =   That is, 

2 2 2 .AB B Aλ=  

Post multiplying by B again yields; 3 2 2 2 2 3 3 .AB B AB B BA B Aλ λ λ λ= = =   
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Thus, by induction, n n nAB B Aλ=  is true for all n J +∈ . Now nB and n nBλ are 

commuting normal operators. Hence, by Theorem 2.3, n n nB Bλ=  since ( )0 .W A∉  

This implies:  

0.n n nB Bλ− =  Factoring out nB  gives, ( )1 0.n nBλ− =   

But 0nB ≠  meaning 1 0nλ− =  which implies 1.nλ = Thus, n nAB B A=  meaning

, 0.nB A  =     

(ii) Given ,AB BAλ=  we have 2 2 2.A B A BA ABA BAA BAλ λ λλ λ= = = = That is 

2 2 2.A B BAλ=
 
Pre-multiplying by A

 
yields; 

 
3 2 2 2 2 3 3.A B A BA A BAA ABAA BAAA BAλ λλ λ λ λ λ= = = = =

 

Thus, by induction, n n nA B BAλ=  is true for all n J +∈  which means 

( ) .n n nB A A Bλ =  But n nAλ and nA  are commuting normal operators. Since 

( )0 ,W B∉  by Theorem 2.3, .n n nA Aλ=  Thus, 0.n n nA Aλ− =   Factoring out nA  

gives ( )1 0.n nAλ− =
 
But 0nA ≠ meaning 1 0nλ− =  which implies 1.nλ =  Thus, 

n nA B BA=  meaning , 0.nA B  =    

 
Remark 2.6 
Theorem 2.5 gives the equivalent result that if one of the operators raised to 

some power is normal and 0  does not belong to the numerical range of the other 

operator, then 1nλ =  in 0.AB BAλ= ≠ The following illustration, using matrices, 

shows that indeed AB BAλ=  implies n n nAB B Aλ=  for .n J +∈   

 
Example 2.7 

Let 
1

2

i
A

i

 
=  − 

 and 
2

.
1

i
B

i

− 
=  

 
  Then .AB BA=  Thus 1.λ =  

Let  3.n =  Then .n n nAB B Aλ=  That is, 3 3 3 .AB B Aλ=  
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3
5 3

3 2

i
AB

i

− 
=  

 
 and 

3 3 3
5 3

3 2

i
B A B A

i
λ

− 
= =  

 
.   This works for all values of  

� ≠1.  

 

For let 

2 0 0

3 6 0

4 9 18

A

 
 =  
 
 

and 

0 0 0

1 0 0 .

0 1 0

B

 
 =  
 
 

 Then 

0 0 0

6 0 0

9 18 0

AB

 
 =  
 
 

and 

0 0 0

2 0 0 .

3 6 0

BA

 
 =  
 
 

 

Therefore, 3 .AB BA=  

Let 2.n = Then, 2

0 0 0

0 0 0

18 0 0

AB

 
 =  
 
 

and 2 2

0 0 0

0 0 0 .

18 0 0

B Aλ
 
 =  
 
 

 

          

In Theorem 2.5 above, if we put 1n =
 

the following corollary follows. 

 

Corollary 2.8 [ Khalagai and Kavila (2012a), Corollary 1, p.29 ] 

Given 0,AB BAλ λ= ≠ ∈ℂ,  then [ ], 0A B =  under any one of the following 

conditions: 

(i) A  is normal and ( )0 .W B∉  

(ii) B is normal and ( )0 .W A∉  

 
Proof 

By putting 1n =  in Theorem 2.5 it follows;  

(i) If 0B ≠  is normal  and ( )0 ,W A∉ then [ , ] 0.B A =  

(ii) If 0A≠  is normal  and ( )0 ,W B∉  then [ , ] 0.A B =  
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Since [ ][ , ] , ,A B B A= then [ ][ , ] , 0.A B B A= =  Thus, [ , ] 0A B =  takes care of (i) and 

(ii). 

 
Remark 2.9 
The above corollary gives the equivalent result that, if one of the operators is 

normal and 0 does not belong to the interior of the numerical range of the other 

operator, then 1.λ =  This is since the condition [ , ] 0A B =  implies .AB BA=   The 

corollary has summarily shown that what has been achieved using self adjoint 

operators in Theorem 2.1,  has been achieved using a bigger class of operators 

specifically the normal operator under further hypothesis, namely ( )0 W A∉ or 

( )0 .W B∉  Note also, Theorem 2.1’s condition that  A  or B  be positive is more 

stringent than a mere requirement that 0  does not belong to the numerical range  

of an operator.  More precisely, the following corollary is an improvement of 

Theorem 2.1. 

 
Corollary 2.10 [ Khalagai and Kavila (2012a), Corollary 2, p.29 ] 

 Let A  and B  be self-adjoint operators such that 0,AB BAλ λ= ≠ ∈ℂ. Then 1λ =

under any one of the following conditions: 

(i) ( ) ( ) .A Aσ σ∩ − = ∅  

(ii) ( )0 .W A∉  

(iii) ( ) ( )Re Im .A Aσ σ∩ − =∅  

(iv) ( ) ( )Re Re .A Aσ σ∩ − =∅  

(v) 2{ } { }mA A′ ′=  for a positive integer .m  

(vi) ( ) ( ) .B Bσ σ∩ − =∅  

(vii) ( )0 .W B∉  

(viii) ( ) ( )Re Im .B Bσ σ∩ − =∅  

(ix) ( ) ( )Re Re .B Bσ σ∩ − =∅  
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(x) 2{ } { }mB B′ ′=  for a positive integer .m  

 
Proof 

Given ,AB BAλ=  we have: 2A B A BAλ= = ABAλ = . BAAλ λ = 2 2.BAλ   By Theorem 

2.1, 2 1.λ =  Thus, 2 2.A B BA=  Which means 2, 0.B A  =    In view of Theorem 2.4,  

each of the conditions (i) to (v) in this corollary, imply [ ], 0A B =  and consequently 

1.λ =   Also 2AB BABλ= B BAλ λ= 2 2 .B Aλ=   By Theorem 2.1 again, 2 1.λ =  Thus, 

2 2 .AB B A=   This means 2, 0.A B  =   Similarly in view of Theorem 2.4 above, 

each of the conditions (vi) to (x) in this corollary implies [ ], 0A B =  and 

consequently 1.λ =  

 
Remark 2.11 
Commutators give rise to commutants, (see Sec. 1.2). With this in mind, we have 

the following theorem that is crucial in justifying the title of the thesis.  This 

theorem establishes Corollaries 2.13 and 2.14 that make further improvements to 

Theorem 2.1. 

 
Theorem 2.12 [ Khalagai and Kavila (2012a), Theorem 2, p.29] 

Let 0,AB BAλ λ= ≠ ∈ℂ . Then we have: 

(i) A  is self-adjoint implies { }*B B A ′∈ and { }* .BB A ′∈  

(ii) B  is self-adjoint implies { }*A A B ′∈ and { }* .AA B ′∈  

 
Proof  

(i) Let .AB BAλ=  Taking adjoints on both sides of the operator equation yields; 

* * * *.B A A Bλ=  Since A  is self adjoint, we get; * *.B A ABλ= From Theorem 2.1, 

since A  is self-adjoint, then λ ∈ℝ meaning .λ λ=  Thus; * *.B A ABλ=  Post 

multiplying by B  gives; * * .B AB AB Bλ=   But ,AB BAλ=  which means 
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* * .B BA AB Bλ λ=
  

Since λ  is a scalar, * * .B BA AB Bλ λ=
 
Factoring out the scalar 

yields; ( ) ( )* * .B BA AB Bλ λ=
 

Thus, ( )* * 0B BA AB Bλ − = .  
 

Since 0,λ ≠ * * 0.B BA AB B− =   Hence, *, 0.A B B  =   Thus, { }* .B B A ′∈
 

Similarly, starting by pre-multiplying * *B A ABλ=  by B  gives;  

* * * *.BB A B AB BAB ABBλ λ= = =   That is, * *BB A ABB=  which implies that 

*, 0.BB A  =  Hence { }* .BB A ′∈  

(ii)  Since B is self-adjoint, from * * * *B A A Bλ=
 

we have; * * .BA A Bλ=  From 

Theorem 2.1, since B  is self-adjoint, then λ ∈ℝ meaning .λ λ=  Thus, 

* * .BA A Bλ=  Post multiplying by A  yields; * * .BA A A BAλ=  Since λ is a scalar, 

* * .BA A A BAλ=  But .AB BAλ=  Thus, * * .BA A A AB=  Hence, * , 0.A A B  =   Thus, 

{ }* .A A B ′∈  

Also pre-multiplying * *BA A Bλ=  by A  gives; * * .ABA AA Bλ=  But .AB BAλ=    

Hence, * * .BAA AA Bλ λ=
 

Thus, ( )* * 0.BAA AA Bλ − =
 

But 0.λ ≠   Thus, 

* * 0.BAA AA B− =   

Hence, *, 0.AA B  =   Thus, { }* .AA B ′∈  

 
Corollary 2.13 [ Khalagai and Kavila (2012a), Corollary 3, p.30 ] 
Let 0,AB BAλ λ= ≠ ∈ℂ with B  having the polar decomposition ,B UP=  (Polar 

decomposition with U  unitary).  If A  is self adjoint and [ ], 0,A U =  then 1.λ =  

 
Proof 

Since A  is self adjoint, by Theorem 2.12, { }* .B B A ′∈  This implies { }P A ′∈ . That 

is .AP PA=
  

By hypothesis, [ ], 0A U =  which means .AU UA=  Post multiplying by 

P  gives: .AUP UAP=
 
But AP PA=

 
hence, .AUP UPA=  
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Thus, [ ], 0.A UP =
 
Since ,B UP= [ ], 0A B =

 
and the result 1λ =  is attained.  

 
Corollary 2.14 [ Khalagai and Kavila (2012a), Corollary 4, p.30 ] 

Let 0,AB BAλ λ= ≠ ∈ℂ  with A  having the polar decomposition ,A UP=  (Polar 

decomposition with U  unitary).  If B  is self adjoint and [ ], 0,B U =  then 1.λ =  

 
Proof 

Since B  is self adjoint, by Theorem 2.12, { }* .A A B ′∈  This implies { } .P B ′∈  That 

is, .BP PB=
 
By hypothesis, [ ], 0B U =  which means .BU UB=  Post multiplying by 

P  gives: .BUP UBP=
 
But, BP PB=

 
hence, .BUP UPB=  

Thus, [ ], 0.B UP =
 
Since ,A UP= [ ], 0B A =

 
and the result 1λ =  is attained. 

 

The following lemma assists in providing an alternative proof to Corollaries 2.13 

and 2.14 above. 

 
Lemma 2.15

 
For any operator A

 
with polar decomposition ,A UP=  where U is unitary and P  

is positive, * 2 *.AA UP U=
 
Similarly, if B UP=  then * 2 *.BB UP U=

 
 
Proof 

Note, ( )** * * * 2 *.AA UP UP UPP U UPPU UP U= = = =
 

Similarly, ( )** * * * 2 *.BB UP UP UPP U UPPU UP U= = = =  

 
  



21 

  

Alternative proof to Corollary 2.13 

Since A  is self adjoint, we have by Theorem 2.12 { }* .BB A ′∈  That is, 

* * .ABB BB A=   Since ,AB BAλ=  we have by post multiplying by *,B  

* *.ABB BABλ=  

This means * *.BB A BABλ=  But * 2 *BB UP U=  from Lemma 2.15 and .B UP=
 

This means ( ) ( )*2 * .UP U A UP A UPλ=  This implies 2 * *.UP U A UPAPUλ=
 

But 

.AP PA=   

2 * *.UP U A UPPAUλ=
 
By hypothesis AU UA=

 
therefore, 2 * 2 *.UP AU UP AUλ=  

This implies .U Uλ =
 
Thus, 0.U Uλ − =   Factoring out U

 
gives  ( )1 0Uλ − =  

But 0,U ≠
 
hence 1 0.λ − =

 
Thus, 1.λ =

  

 
Alternative proof to Corollary 2.14 

Since B  is self-adjoint we have by Theorem 2.12 { }* .AA B ′∈  

That is, * * .BAA AA B=  Since ,AB BAλ=  post multiplying by *A yields:           

* *.ABA BAAλ=  But * 2 *AA UP U=  from Lemma 2.15 and .A UP=
 

This means ( ) ( )* 2 *.UP B UP BUP Uλ=  Thus, * 2 *.UPBPU BUP Uλ=    

By hypothesis .BU UB=  Thus * 2 *.UPBPU UBP Uλ=  But .BP PB=
  

Thus, 
 

* *.UPBPU UPBPUλ=
  

This implies .U Uλ=
 
Thus, 0.U Uλ− =   Factoring 

out U
 
gives  ( )1 0.Uλ− =  

But 0,U ≠
 
hence 1 0.λ− =

 
Thus, 1.λ =

  

 
Similar results yielding 1λ = in ,AB BAλ=  are given in the theorem below.  This is 

done by letting the operators A   and B  satisfy another operator equation.  

 
Theorem 2.16 

Let A  satisfying 0,AB BAλ= ≠ where λ ∈ ℂ, be isometric such that * *.A B BA=   Let 

0B ≠  be any operator, then 1.λ =  
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Proof 

Let .AB BAλ=  Pre-multiplying both sides by *A  yields * * .A AB A BAλ=    

By hypothesis * *.A B BA=   Therefore, * *A AB BA Aλ= .  But * ,A A I=  since A is an 

isometry.  Thus, .B Bλ=  This implies 0.B Bλ− =  Thus, ( )1 0.Bλ− =   

But 0.B ≠  Hence,  1 0.λ− =   This means 1.λ =  

 
Remark 2.17 

Since Unitary⊆  Isometry, Theorem 2.16 will still hold with A  being unitary.  

Remodelling the operator equation to *,AB BA= the following theorem proved by 

Moore et al. (1981) was useful in giving the proof of Corollary 2.19 below.  This 

time round, another value of λ  is attained.  

 

Theorem 2.18 [ Moore et al. (1981), Theorem 1, p. 514 ] 

Let A  be M − hypornormal and suppose that *,AB BA=  then * .A B BA=  

 
Corollary 2.19 

Let 0,AB BAλ= ≠ with  A  being M − hypornormal such that *,AB BA=   then,  

λ∈{1, -1}. 

 
Proof 
 Let ............................................................................( ).AB BA iλ=    

Since *,AB BA= ( )i becomes * .BA BAλ=   Post multiplying by B  gives 

( )* ............................................................................. .BA B BAB iiλ=    

By Theorem 2.18, since A  is M − hypornormal, *AB BA=  implies * .A B BA=   Thus 

( )ii becomes: 

 ( )............................................................................... .BBA BAB iiiλ=    

But .AB BAλ=  Hence, ( )iii becomes .BBA B BA BBAλ λ λλ= =  This implies that 

1.λλ =  Meaning that either 1λ = or 1.λ = −  
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The following theorem was required in order to prove Corollary 2.21. 
 

Theorem 2.20 [ Cho et al. (2010), p. 2630 – p. 2631 ] 

A necessary and sufficient condition for normal operators 1 2A A iA= + and 

1 2B B iB= +  to λ − commute is that: 

i. .AB BAλ=  

ii. * *.A B BAλ=  

iii. * * .AB B Aλ=  

iv. * * * *.A B B Aλ=  

 
Corollary 2.21 

Let A  and B  be normal such that 0,AB BAλ λ= ≠ ∈ℂ.  Then λλ = 1.  
 
Proof 

Let 0.AB BAλ= ≠  Taking adjoints both sides we get: 

λ=* * * *
.B A A B  

Multiplying by λ  both sides yields: 

 λ λλ=* * * *
.B A A B  

But by Theorem 2.20 part ( ),iv  λ=* * * *
.A B B A   Thus:  

λ λλ= =* * * * * *
.B A A B A B  

Hence 1.λλ =  

 
Remark 2.22 
Recently, Zhang et al. (2011) had the following results on the operator equation

.AB BAλ=   These results are stated to conclude this chapter and show that the 

equation continues to form a buzz in research. Starting from 1,λ =  they studied 

the properties of the product AB  given certain conditions of the operators A  and 

.B  On the other hand, given certain spectral properties of the product ,AB the 
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values attained by λ were also investigated.  Thus, the theorems stated below 

will aid in suggesting areas for future research in chapter five.   

 
Theorem 2.23 [ Zhang et al. (2011), Theorem 5, p. 1689 ] 
Let A  be a paranormal operator and B  be an isometry such that 

 0,AB BAλ λ= ≠ ∈ℂ.   Then  

i) 1λ = ⇒  AB is paranormal. 

ii) ( ) { }0 1ABσ λ≠ ⇒ = . 

 

Theorem 2.24 [ Zhang et al. (2011), Theorem 4, p. 1688 ] 
Let A  be a hyponormal operator and B  be a normal operator such that 

 0,AB BAλ λ= ≠ ∈ℂ.   Then: 

i) 1λ = ⇒  AB is hyponormal. 

ii) ( ) { }0 1ABσ λ≠ ⇒ = .  

 
Remark 2.25  
Note that the above theorems by Zhang et al., remind us of the well-

known result that states that the product of two normal operators that 

commute is again normal.  This result is non-trivial and it follows from 

Putnam-Fuglede’s theorem stated in Theorem 1.4.2.  In general, if two 

normal operators A  and B  do not λ − commute, then the product AB  fails 

to be normal. Specifically, Cho et al. (2011), Theorem 4, p.74, proved that 

for product invariance in normal operators to hold, we should have 1λ =  

where 1.λ ≠  
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CHAPTER THREE 

ON COMMUTANTS AND OPERATOR EQUATIONS 

 

3.0   Introduction 

 

This chapter is based on the operator equations AX XB=  and .AXB X=  Some 

properties satisfied by the operators A  and ,B  so that 
2 2( , ) 0=C A B X  and 

3 3( , ) 0=C A B X  imply ( , ) 0,C A B X =  without necessarily specifying the classes of 

operators A  and B  belong to, are given. It is shown among other results that if 

A  is one-one and B  has dense range, then 
2 2( , ) 0=C A B X and 

3 3( , ) 0=C A B X  

imply ( , ) 0.C A B X =  Similarly, if 
2 2( , ) 0=R A B X  and 

3 3( , ) 0,R A B X =  then 

( , ) 0.R A B X =  

 

To start with, we look at some authors who have proved the above results 

and thereafter prove parallel results obtained in this subject matter.   

 

Theorem 3.1 [ Moajil (1976), Proposition 3.6, p.248 ] 

If � is a normal operator, such that 2 2� X X�=  and 3 3� X X�=  for some 

operator ,X  then .�X X�=  

 

The above Theorem 3.1, was generalized by the following Corollary to 

Theorem 2, p.48 of Kittaneh (1986) by looking at a larger class of 

operators.  
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Corollary 3.2 [ Kittaneh (1986), Corollary 1, p.48 ] 

If Aand *B are subnormal operators, such that 2 2A X XB=  and 3 3A X XB=  for 

some ,X  then .AX XB=  Thus, if 
2 2( , ) 0=C A B X and 

3 3( , ) 0,C A B X =  then 

( , ) 0=C A B X  for some .X  

 

Remark 3.3 

Since dominant and p-hyponormal operators are bigger classes of operators than 

subnormal operators, (see Sec. 1.3), Bachir (2004) further generalized Corollary 

3.2 to cover the classes of dominant and p-hyponormal operators as follows: 

 

Theorem 3.4 [ Bachir (2004), Theorem 3.5, p. 115 ] 

Let A  be a dominant operator and *B be a p-hyponormal operator or log-

hyponormal such that 
2 2( , ) 0=C A B X and 

3 3( , ) 0,C A B X =  then ( , ) 0,C A B X =  for 

some operator .X  

 

Remark 3.5 

The following results on the operator equation ( ), 0,R A B X =  which will be used 

to prove similar results to those of ( ), 0,C A B X =
 
were proved by the following 

authors: 

 

Theorem 3.6 [ Khalagai and Nyamai (2006), Theorem 1, p.15 ] 

Let ,A B and X  be such that ( , ) 0.R A B X =  Then B  is one to one, whenever X  is 

one to one. 

 

Corollary 3.7 [ Khalagai and Nyamai (2006), Corollary 1, p.15 ] 

Let ,A B and X  be such that ( , ) 0,R A B X =  where X  is a quasiaffinity. Then both 

B  and *A  are one to one. 
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Corollary 3.8 [ Khalagai and Nyamai (2006), Corollary 2, p.15 ] 

Let ,A B and X  be such that ( , ) 0R A B X =  implies ( , ) 0,R A B X∗ ∗ =  where X  is a 

quasiaffinity. Then both A  and B  are also quasiaffinities.  

 

Theorem 3.9 [ Goya and Saito (1981), Theorem 2, p.128 ] 

Let A  be a paranormal contraction, B  a co-isometry and X  have dense range.   

Assume ( , ) 0.C A B X =  Then A  is a unitary operator.  In particular, if X  is 

injective and has a dense range, then B  is also a unitary operator. 

 

Remark 3.10  

The following results show properties satisfied by the operators A  and B  so that 

2 2( , ) 0=C A B X  and 
3 3( , ) 0=C A B X  imply ( , ) 0,C A B X =  without necessarily 

letting A  and B  belong to a particular class of operators. 

 

Theorem 3.11 [ Khalagai and Kavila (2012b), Theorem 1, p.101 ] 

Let A  and B  be any pair of operators such that A  is one-one and B  has dense 

range. Then we have that 
2 2( , ) 0=C A B X  and 

3 3( , ) 0=C A B X  imply ( , ) 0=C A B X  

for some operator .X  

 

Proof 

Let T AX=  and =S XB . Then from 
2 2=A X XB  and 

3 3,A X XB=  we have the 

following two relations; 

=AT SB .................................................................................................................( ).i  

2 2A T SB= ..............................................................................................................( ).ii  

Pre-multiplying ( )i by A
 
yields:

 
( )A AT ASB= ..............................................( ).iii
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From ( )ii and ( )iii we get; 2.ASB SB=  Thus; 2 0.ASB SB− =  Factoring out B  gives;  

( ) 0.AS SB B− =   Since B has dense range, we have that 0≠B  and hence 

0− =AS SB .  That is .AS SB=  Using ( )i  gives; .AT SB AS= =  This means 

0.AT AS− =  Thus, ( ) 0.A T S− =   Since A  is one to one, 0.A≠   Hence   

0.T S− =  This means .T S=   Thus, AX XB= .  This means 0.AX XB− =   Hence, 

( , ) 0=C A B X . 

 

Corollary 3.12 [ Khalagai and Kavila (2012b), Corollary 1, p.102 ] 

If A  and B  are quasi-affinities such that 
2 2( , ) 0=C A B X  and 

3 3( , ) 0,C A B X =  then 

( , ) 0,C A B X =  for some operator .X  

 

Proof 

If A  and B  are quasi-affinities then each one of them is both one-one and has 

dense range. Hence, by Theorem 3.11, the required result is achieved since in 

particular A  can be one-one and B  have dense range. 

 

Corollary 3.13 [ Khalagai and Kavila (2012b), Corollary 2, p.102 ] 

If A  is a quasi-affinity such that 
22 *( , ) 0C A A X =  and 

33 *( , ) 0,C A A X =  then, 

( , *) 0,C A A X =  for some ( )∈X B H . 

 

Proof 

Here it should be noted that if A  is a quasi-affinity then *A  is also a quasi-affinity. 

Hence, by Corollary 3.12 the result follows by simply replacing *A  with .B  

 

Corollary 3.14 [ Khalagai and Kavila (2012b), Corollary 3, p.102 ] 

Let ℑ  be the class of operators defined as follows: 

{ ( ) : 0 ( )}A B H W Aℑ = ∈ ∉ . 
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If ,A B∈ℑ  such that 
2 2( , ) 0=C A B X  and 

3 3( , ) 0,C A B X =  then ( , ) 0,C A B X =  for 

some operator .X  

 

Proof 

We only have to note that for any operator A  and B  with 0 ( )∉W A  and 0 ( )W B∉  

respectively, then both A  and B  are one to one and have dense range.  Once 

again by Theorem 3.11, 
2 2( , ) 0=C A B X  and 

3 3( , ) 0C A B X =  imply ( , ) 0.C A B X =  

 

Corollary 3.15 [ Khalagai and Kavila (2012b), Corollary 4, p.102 ] 

If A  is a quasi-affinity such that { }2 '∈A X  and { }3 ',A X∈  then { } '∈A X  for some

( )∈X B H .  This is equivalent to putting it as, If A  is a quasi-affinity, such that 

( )2 2, 0C A A X =  and ( )3 3, 0C A A X =  then ( ), 0.C A A X =    

 

Proof 

Put A B=
 
in Corollary 3.12. 

 

Theorem 3.16 [ Khalagai and Kavila (2012b), Theorem 2, p.102 ] 

Let , ( )∈A B B H  be a pair of operators, such that A  is one-one and B  has dense 

range. Then 
2 2( , ) 0=R A B X  and 

3 3( , ) 0=R A B X  imply ( , ) 0,R A B X =  for some 

operator .X  

 

Proof 

Given 
2 2 =A XB X  and 

3 3 =A XB X  we have 
2 2 3 3=A XB A XB . 

This means that 3 3 2 2 0.A XB A XB− =  

This imply 
2 2( ) 0− =A A XB AXB B ( ).................................................................... * . 
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Since A  is one-one and B  has dense range, ( )*
 
means that; 2 2 0.A XB AXB− =  

This implies ( ) 0.A AXB X B− =   Again, since A is one-one and B has dense 

range, 0− =AXB X .Hence, ( , ) 0=R A B X . 

 

Corollary 3.17 [ Khalagai and Kavila (2012b), Corollary 5, p.103 ] 

If , ( )A B B H∈ are quasi-affinities, such that ( )2 2, 0R A B X = and ( )3 3, 0R A B X = , 

then ( ), 0.R A B X =  

 

Proof 

By Corollary 3.12, a quasi-affinity is both one to one and has dense range.  

Hence, result is immediate by Theorem 3.16 above. 

 

Corollary 3.18 

If ,A B∈ℑ  such that 
2 2( , ) 0R A B X =  and 

3 3( , ) 0,R A B X =  then ( , ) 0,R A B X =  for 

some operator .X  

 

Proof 

We only have to note that for any operator A  and B  with 0 ( )∉W A , and 0 ( )W B∉  

respectively, then both A  and B  are one to one and have dense range.  By 

Theorem 3.16,  
2 2( , ) 0R A B X =  and 

3 3( , ) 0R A B X =  imply ( , ) 0.R A B X =  

 

Corollary 3.19 [ Khalagai and Kavila (2012b), Corollary 6, p.103 ] 

If A  is a quasi-affinity such that:
2 *2( , ) 0=R A A X  and 

3 *3( , ) 0,R A A X =  then 

( , *) 0=R A A X  for some .X  
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Proof 

It is immediate from Corollary 3.17 by having 
*B A=  and using the fact that if A  

is a quasi-affinity, then 
*A  is also a quasi-affinity. 

 

The following illustration will be useful in Corollary 3.21. 

 

Illustration 3.20 

If A∈ ℑ  then * .A ∈ℑ  This is equivalent to having that if 0 ( )W A∉  then *0 ( ).W A∉  

In Furuta (2001) pp. 98, we have that if ( )W Aλ∉  then ( ).Aλ σ∉
 
 This implies 

( ) ( ).A W Aσ ⊂  Furthermore, Shapiro (2003), p. 12, in his proof to show that 

( ) ( ),A W Aσ ⊂  stated within the proof that if ( )*0 ,W A∈  then 0 ( ).W A∈  We also 

know that every positive definite operator say ,A  has 0 ( ).W A∉  If A  is positive 

definite then *A  is also positive definite.  For let 
4 2

.
2 3

A
− 

=  − 
 Then this matrix is 

positive definite since it is symmetric and has positive eigenvalues namely 1.44 

and 5.56, correct to two decimal places. The adjoint of A  is *
4 2

2 3
A

− 
=  − 

. Thus, 

if A  is positive definite, then *A is also positive definite.  Which cements the fact 

that if 0 ( ),W A∉ then *0 ( ).W A∉  With this in mind, the following corollary is 

established. 

 

Corollary 3.21  

If A∈ ℑ  such that 
2 *2( , ) 0R A A X =  and 

3 *3( , ) 0,R A A X =  then ( )*, 0,R A A X =  for 

some operator .X  
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Proof 

Since ,A∈ℑ  we then have * .A ∈ℑ  Hence A  and *A  are one to one and have 

dense range.  By having 
*B A=  in Theorem 3.16, 

2 *2( , ) 0R A A X =  and 

3 *3( , ) 0R A A X =  imply ( )*, 0.R A A X =   

 

Corollary 3.22 [ Khalagai and Kavila (2012b), Corollary 7, p.103 ] 

If ( , ) 0R A B X =  implies 
*( , ) 0R A B X∗ =  for some ,X  which is a quasi-affinity, then 

2 2( , ) 0=C A B X and 
3 3( , ) 0C A B X =  imply ( , ) 0.C A B X =  

 

Proof 

( , ) 0R A B X =  Implying 
*( , ) 0,R A B X∗ =  where X  is a quasiaffinity implies A  and 

B  are quasiaffinities from Corollary 3.8.  From Theorem 3.11, the result follows 

since quasiaffinities are both one to one and have dense range. 

 

Corollary 3.23 [ Khalagai and Kavila (2012b), Corollary 8, p.103 ] 

Let ,A B and X be operators with A  a paranormal contraction, B  a co-isometry 

and X  a quasi-affinity.  If ( , ) 0,C A B X∗ =  then ( )* *( , ) 0 , .R A B X R A B X= =  

 

Proof 

First note that B  is unitary from Theorem 3.9.  By hypothesis ( , ) 0.C A B X∗ =  This 

is equivalent to having .AX XB∗=
 
Post-multiplying by B

 
yields; .AXB XB B∗=

 

Since B  is unitary, .AXB X=   This is equivalent to having 0.AXB X− =  Thus, 

( ), 0.R A B X =

 

 

On the other hand, starting again from AX XB∗= and pre-multiplying by *A  gives; 

* * .A AX A XB∗=
  

By Theorem 3.9, A  is also unitary.  Thus, * .X A XB∗=  This is 

equivalent to having * 0.A XB X∗ − =  Thus, ( )* *, 0.R A B X =  
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On the operator equation ( , ) 0,C A B X =
 
the following theorem will be used to 

prove Corollary 3.25.  

 

Theorem 3.24 [ Moore et al. (1981), Theorem 2, p. 515 ] 

Let A  and B  be M − hyponormal operators such that *( , ) 0,C A B X =  then 

*( , ) 0C A B X =   for some operator .X  

 

Corollary 3.25 

Let A  and B  be M − hyponormal operators with A  positive, such that 

*( , ) 0,C A B X =  then ( , ) 0n nC A B X =  for some operator .X   

 

Proof 

By Theorem 3.24, 
*( , ) 0.C A B X =  This means * .A X XB=   Pre- multiplying by A

 

yields;
  

* .AA X AXB=  Since A  is positive, it is self adjoint.  Thus;  2 .A X AXB=
  

But AX XB=   therefore;  2 2.A X XB=   Thus, 2 2( , ) 0.C A B X =   Again pre-

multiplying by A
 
yields;

 
 2 2.AA X AXB=   But .AX XB=   Thus, 

3 3.A X XB=   Hence 

by induction ( , ) 0.n nC A B X =     

 

We end this section with a result, which is put as a proposition, to connect these 

two operator equations ( ), 0C A B X =
 
and ( ), 0.R A B X =   

 

Proposition 3.26 

Let A  and B  be operators with B  being an involution, then ( ), 0C A B X =  if and 

only if ( ), 0.R A B X =    
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Proof 

Since ( ), 0,C A B X =  then .AX XB=   Post multiply by B
 
yields: 

2.AXB XB=
  

Since B  is an involution, 2 .B I=  Thus, .AXB X=   Hence, 

( ), 0.R A B X =  

Conversely, let ( ), 0.R A B X =
 

Then .AXB X=
 

Post multiplying by B  gives;  

2 .AXB XB=  

But B
 

is an involution, thus  2B I=   which means .AX XB=   Hence, 

( ), 0.C A B X =
 

 

Remark 3.27 

From the above Proposition 3.26, the following corollary follows. 

 

Corollary 3.28  

Let A  and *A  be operators with *A  being an involution, then ( )*, 0C A A X =  if and 

only if ( )*, 0.R A A X =    

 

Proof 

Replace B  with *A  in Proposition 3.26 
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CHAPTER FOUR 

ON SPECTRAL PROPERTIES OF λλλλ-COMMUTING OPERATORS 

 

4.0   Introduction 

 

In this final chapter the main operator equation ,AB BAλ=  where λ∈ℂ, is looked 

at again and we investigate the conditions under which AB  and BA  or B  and 

Bλ  have same spectrum or same essential spectrum. 

 

Remark 4.1 

The following results by Williams (1981) will be required to establish some 

of our results in this section. 

 

Theorem 4.2  [ Williams (1981), Theorem 2.1, p.130 ] 

Suppose that T  is a pure and dominant operator and K  a compact operator with 

dense range such that ,KT TK=  then essential spectrum of T  is equal to 

spectrum of .T   That is ( ) ( ).e T Tσ σ=  

 

Theorem 4.3  [ Williams (1981) ), Theorem 2.2, p.130  ]  

Suppose that T  is a pure dominant operator and K  a compact operator with 

,KT TK=  then K  is quasinilpotent. 

 

Remark 4.4 

The following lemma and proposition by Brooke et al. (2002) will also be useful in 

proving some results in this chapter. 
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Lemma 4.5  [ Brooke et al. (2002), Lemma 2.1, p.111 ]  

Let ,AB BAλ=  λ∈ℂ, 0.AB ≠  Then 0  is in either both or neither of ( )ABσ and 

( ).BAσ  Hence ( ) ( ) ( ).AB BA ABσ σ λσ= =   

 

Proposition 4.6  [ Brooke et al. (2002), Proposition 2.2. p. 112 ]  

Let ,AB BAλ=  λ∈ℂ, 0AB ≠  and assume that A  has a bounded inverse. Then; 

( ) ( ).B Bσ λσ=    

 

The following theorem provides an alternative prove to part (ii) of Theorem 2.1 

and aids in proving the corollary that follows. 

 

Theorem 4.7 [24] 

Let ,AB BAλ λ= ∈ℂ, 0AB ≠  with A  and B  self-adjoint. Then: 

(i) AB and BA  are normal commuting operators. 

(ii) 1.λ = ±  

 

Proof 

Let .T AB=  Then ( )** * *T AB B A BA= = =  for self-adjoint A  and .B  

(i) Since by hypothesis ,AB BAλ= we have *.T Tλ=   

Pre multiplying by *T  gives * *2.T T Tλ=  On the other hand, post 

multiplying *T Tλ=  by *T  also gives * *2.TT Tλ=  Thus, * *.T T TT=  

Therefore, T  is normal and *, 0.T T  =   Hence, AB  and BA  are normal 

commuting operators. 

(ii) Since *T Tλ= and λ  is real, taking adjoints of each side gives: 

 * .T Tλ=  Thus: 

       ( )*.............................................................................. 1 .T Tλ=  
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                ( )* .............................................................................. 2 .T Tλ=  

Adding ( )1  and ( )2  gives: 

( )* * .T T T Tλ+ = +  

( )Re Re .T Tλ=  

( ) ( )1 Re 0...................................................................... 3 .Tλ− =  

But subtracting ( )2  from ( )1  gives: 

    ( )* * .T T T Tλ− = −  

    ( )* .T Tλ= − −  

    That is, Im Im .T Tλ= −  

       or 

( ) ( )1 Im 0........................................................................................... 4 .Tλ+ =  

    

But, since 0,T ≠  we have that either ( )Re 0T ≠  or ( )Im 0T ≠  or both 

( )Re 0T ≠ and ( )Im 0.T ≠  

Hence, from ( )3  and ( )4 ,  1.λ = ±  

 

Corollary 4.8 [24] 

Let A  and B  be self-adjoint operators which λ − commute non-trivially. Then we 

have: 

( ) ( ) ( ).AB BA ABπ π πσ σ λσ= =  

 

Proof 

Since A  and B  are self-adjoint operators which λ − commute non-trivially, AB  

and BA  are normal commuting operators from Theorem 4.7. Hence, 

.T AB BA= =   
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Now for any normal operator ,T  ( ) ( ).T Tπσ σ=  (See Mattila (1978) Theorem 

4.7).  Therefore, ( ) ( ) ( )AB BA ABπ π πσ σ λσ= =
 
from Lemma 4.5. 

 

The following theorem will be used to prove the corollary that follows. 

 

Theorem 4.9 [24] 

Let ( ),A B B H∈  be such that ,AB BAλ λ= ∈ℂ, 0.AB ≠  We have: 

(i) If A  is normal and B  is self-adjoint then { }1, 1 .λ∈ −  

(ii) If A  is normal with ReA  positive and B  is self-adjoint then 1.λ =  

 

Proof 

(i) Given A  is normal, B  is self-adjoint and ,AB BAλ=  we have by part 

( )i  of Theorem 2.1 that λ  is real. Thus, by Theorem 1.4.1 we have: 

* *.A B BAλ=   Now from AB BAλ=  and * *A B BAλ=  we have: 

( ) ( )* * .A A B B A Aλ+ = +   

i.e. Re . . Re .A B B Aλ=  

Since both ReA  and B  are self-adjoint, we have by part ( )ii  of 

Theorem 2.1 that { }1, 1 .λ∈ −  

(ii) From proof of part ( )i  above we have: Re . . Re ,A B B Aλ=  where both 

ReA  and B  are self-adjoint. Since ReA  is positive, it follows from part 

( )iii  of Theorem 2.1 above that 1.λ =  

 

Corollary 4.10 [24] 

Let A  be normal with ReA  positive and B  be self-adjoint such that ,AB BAλ=

λ∈ℂ, 0.AB ≠  Then, AB BA=  is normal.  Thus: 
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( ) ( ) ( ) ( ).AB BA AB ABπ πσ σ σ λσ= = =  

 

Proof  

We note that under the given hypothesis 1λ =  by part ( )ii  of Theorem 4.9.  

Thus, [ ], 0.A B =   Letting ,T AB= * *.T BA=   Therefore:  

* * * * .........................................................................................(1)T T BA AB BAA B ABA B= = =
 

Applying Theorem 1.4.1, * *.A B BA=   Hence (1) becomes:  

* *.........................................................................................(2).T T ABBA=  

But * *.ABBA TT=  Therefore from (2) * *.T T TT=  

Hence T AB=  is normal. Consequently applying Lemma 4.5 we have: 

( ) ( ) ( ) ( ).AB BA AB ABπ πσ σ σ λσ= = =  

 

Let ℘ denote the class of all operators which satisfy Putnam-Fuglede property.  

Then we have the following result: 

 

Theorem 4.11 [24] 

Let ,AB BAλ λ= ∈ℂ, 0,AB ≠  we have:  

(i) if ,B Bλ ∈℘ with A
 
a quasiaffinity, then Bλ  and B are quasi-similar.

 
 

(ii) if ,A Aλ ∈℘ with B
 
a quasiaffinity, then Aλ  and A

 
are quasi-similar.

 
 

Proof   

(i) Given ( )........................................................................ 1 ,AB BAλ=   

we have since  ,B Bλ ∈℘, * * .AB B Aλ=   Taking adjoints on each side gives: 

                
( )* * ............................................................................... 2 .BA A Bλ=    

Since A  is quasi-affinity, it follows that *A  is also a quasi-affinity. Now from ( )1   

and ( )2  we have that the operators Bλ  and B  are quasi similar. 
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(ii) Note by hypothesis ( )................................................ 1 .AB B Aλ=   

Similarly, since ,A Aλ ∈℘, * *.A B B Aλ=   Taking adjoints of each side gives: 

                        
( )* *....................................................................... 2 .B A ABλ=   

Since B  is quasi-affinity, it follows that *B  is also a quasi-affinity. Now from ( )1   

and ( )2  we have that the operators Aλ  and A  are quasi similar. 

 

The following theorem by Duggal (1996) will assist in establishing the corollary 

that follows. 

 

Theorem 4.12 [ Duggal (1996), Theorem 7, p. 344 ] 

If *M  and � are p-hyponormal such that ,�X XM= then * *� X XM=  for some 

( ).X B H∈  

 

Corollary 4.13 [24] 

Let ,AB BAλ=  λ∈ℂ, 0AB ≠  with B  and *B  p-hyponormal with A  a quasiaffinity. 

Then we have Bλ  and B  are quasi similar.  

 

Proof  

Given .....................................................................( ),AB BA iλ=  

we first note that Bλ  and *B  are p-hyponormal and by Theorem 4.12, 

* * .AB B Aλ=  

Taking adjoints of each side gives: 

           
* * .................................................................( )BA A B iiλ=     

   

Since A  is quasi-affinity, it follows that *A  is also a quasi-affinity.  Thus, from ( )i   

and ( )ii  we have that the operators Bλ  and B  are quasi similar. 
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Corollary 4.14 [24] 

Let ,AB BAλ=  λ∈ℂ, 0AB ≠  with A  and *A  p-hyponormal with B  a quasiaffinity. 

Then we have Aλ  and A  are quasi similar. 

  

Proof 

Interchange A  with B  in Corollary 4.13.  

 

Remark 4.15 

We now note that equality of spectra or essential spectra for some classes of 

operators has been proved by a number of authors see [10], [13], [29], [45], [46], 

[49] and [50]. In particular, the following authors proved the following results that 

will assist in proving the corollaries that follow. 

 

Theorem 4.16 [ Williams (1980a), Theorem 3, p.65 ] 

Suppose that 1T  and 2T  are quasi-similar quasi-normal operators, then: 

( ) ( )1 2 .e eT Tσ σ=
 

 

Theorem 4.17 [ Williams (1980b), Theorem 2, p.205 ] 

Suppose that A  and B  are hyponormal operators and there exists quasi-

affinities X and Y such that XA BX= and .AY YB=   If either X or Y is 

compact, then ( ) ( ).e eA Bσ σ=  

 

Theorem 4.18 [ Yang (1990) ] 

Quasi-similar subnormal operators have equal essential spectra. 
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Theorem 4.19 [ Duggal (1996), Theorem 6, p. 343 ] 

If 1A  and 2A are quasi-similar and belong to ℋ ∪ ���, the class of p-

hyponormal operators such that 
1U and 

2U
 

are unitary in the polar 

decomposition 1 1 1A U A= and 2 2 2 ,A U A=  then: 

( ) ( )1 2A Aσ σ=  and ( ) ( )1 2 .e eA Aσ σ=    

Also Putnam-Fuglede commutativity theorem holds for the operators 1A  

and 2.A
 

 

Theorem 4.20 [ Duggal (1986), Theorem 1, p.354 ] 

If *M  is m- hyponormal and � dominant  such that ,�X XM= then * *� X XM=

for some operator .X  

 

Theorem 4.21 [ Yang (1993), Theorem 2.10, p. 210 ] 

Let M and �  be quasisimilar m-hyponormal.  Then M and �  have equal 

essential spectra. 

 

Theorem 4.22 [ Gudder and Nagy (2001), Theorem 2, p. 1127 ]   

Let A  and B  be self adjoint.  The following statements are equivalent;  

(i) 2 2 .AB A BA B=  

(ii) 2 2AB B A=  and 2 2 .BA A B=  

 

We now give the following corollaries involving essential spectra that will make 

use of some of the results stated above.  

 

Remark 4.23 

Note that in Proposition 4.6 above if we require that one of the operators say B  

in the equation ,AB BAλ=  λ∈ℂ, 0AB ≠  belongs to some appropriate class of 
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operators, then we can relax the condition on the other operator, say ,A  having a 

bounded inverse as is seen in Corollaries 4.24 and 4.25.  

 

Corollary 4.24 [24] 

Let ,AB BAλ=  λ∈ℂ, 0AB ≠  with A  a quasi-affinity. Then we have: 

(i) if B  is quasi normal then ( ) ( ) ( ).e e eB B Bσ σ λ λσ= =  

(ii) if *B  and B  are hyponormal and A  compact, then ( ) ( ).e eB Bσ λσ=   

(iii) If Bλ  and B∈ℋ ∪ ���,  then ( ) ( )e eB Bσ λσ=  and ( ) ( ).B Bσ λσ=  

(iv) if *B  and Bλ are m-hyponormal, then ( ) ( ) ( ).e e eB B Bσ σ λ λσ= =  

 

Proof 

(i) By the inclusion {quasinormal} ⊂ {p-hyponormal}, see Burnap et al. 

(2005), p. 382, and the fact that *B  is quasi-normal if B  is quasi-

normal, we have that B  and *B  are indeed also p-hyponormal. Thus, 

applying Corollary 4.13, Bλ  and B  are quasi-similar. By Theorem 4.16 

we have:  

( ) ( ) ( ).e e eB B Bσ σ λ λσ= =
 
Also to authenticate our result further, by 

Theorem 4.18, quasisimilar subnormal operators have equal essential 

spectra and the inclusion {quasinormal} ⊂ {subnormal} ensures that 

the result stands for quasinormal operators.
 

(ii) By the inclusion {hyponormal} ⊂ {p-hyponormal} and Corollary 4.13, 

Bλ  and B  are quasi-similar. Hence, by Theorem 4.17  ( ) ( )e eB Bσ λσ=   

(iii) We only have to note that it was proved in Theorem 4.19 that for the 

operators in ℋ ∪ ���, they belong to ℘ and they have same spectrum 

and same essential spectrum. 

(iv) By Theorem 4.20, Bλ and B∈℘ due to the inclusion {m-hyponormal} ⊂ 

{dominant}.  Applying Theorem 4.11 we have that the operators Bλ
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and B  are quasi similar. By Theorem 4.21 we have 

( ) ( ) ( ).e e eB B Bσ σ λ λσ= =   

 

Corollary 4.25 [24] 

Let ,AB BAλ=  λ∈ℂ, 0AB ≠  with B  a quasi-affinity. Then we have: 

(i) if A  is quasi normal then ( ) ( ) ( ).e e eA A Aσ σ λ λσ= =  

(ii) if *A  and A  are hyponormal and B  compact, then ( ) ( ).e eA Aσ λσ=   

(iii) If Aλ  and A∈ℋ ∪ ���,  then ( ) ( )e eA Aσ λσ=  and ( ) ( ).A Aσ λσ=  

(iv) if *A  and Aλ  are m-hyponormal, then ( ) ( ) ( ).e e eA A Aσ σ λ λσ= =  

 

Proof 

We only have to interchange the conditions on the operators A  and B  in the 

Corollary 4.24 above. 

 

In view of Theorem 4.2 we have the following theorem about essential spectrum 

of AB  and spectrum of .BA  

 

Theorem 4.26 [24] 

Let ,AB BAλ=  λ∈ℂ, 0AB ≠  with { }1, 1 .λ∈ −  If AB is pure dominant and BA  is 

compact with dense range then: ( ) ( ) ( ) ( ).e AB AB BA ABσ σ σ λσ= = =  
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Proof 

Let T AB=  and .K BA=  Then under the conditions that { }1, 1 ,λ∈ −  we have:

[ ], 0.T K =  For if 1,λ = − then .AB BA= − Thus: 

ABBA BABA= −  and .BAAB BABA= −   This means AB and BA  commute.  Now by 

Theorem 4.2 above:  

( ) ( ).e T Tσ σ=
 

 That is ( ) ( ) ( ) ( ).e AB AB BA ABσ σ σ λσ= = =  

 

Theorem 4.27 [24] 

Let ,AB BAλ=  λ∈ℂ, 0AB ≠  with { }1, 1 .λ∈ −  If BA  is pure dominant and AB  is 

compact with dense range, then: ( ) ( ) ( ) ( ).e BA BA AB ABσ σ σ λσ= = =  

 

Proof 

Let T BA=  and .K AB=  By Theorem 4.2 ( ) ( ) ( ) ( ).e BA BA AB ABσ σ σ λσ= = =
 

 

Remark 4.28 

Let us for convenience sake say that ( )T B H∈  belongs to a class ℳ of 

operators if: 

(i) T  is pure dominant. 

(ii) T  is compact. 

(iii) T  has dense range. 

 

Thus, we have the following result. 
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Corollary 4.29 [24]  

Let ,AB BAλ=  λ∈ℂ, 0AB ≠  with { }1, 1 .λ∈ −  Also let T AB=  and .K BA=  If 

,T K ∈ℳ,  then ( ) ( ) ( ) ( ).e eT T K Kσ σ σ σ= = =   

 

Proof 

In particular, T  is pure dominant and K  is compact with dense range.  By 

Theorem 4.26 we have; ( ) ( ) ( ) ( ).e T T K Tσ σ σ λσ= = = Thus; 
 

( ) ( ) ( ) ( )...( ).e AB AB BA AB iσ σ σ λσ= = =
 

Also in particular, K  is pure dominant and T  is compact with dense range. 

By Theorem 4.27 we have; ( ) ( ) ( ) ( ).e K K T Tσ σ σ λσ= = =
 

Thus; 

( ) ( ) ( ) ( )...( ).e BA BA AB AB iiσ σ σ λσ= = =   

From (i) and (ii)  ( ) ( ).e eAB BAσ σ=  

 

Remark 4.30 

Note that it is a well-known fact that dominant operators that are compact are 

quasi-nilpotent hence, have zero as its essential spectra. 

 

The next corollary is elicited by Theorem 4.2 above and in turn produces some 

corollaries thereafter. 

 

Corollary 4.31  

Let ,AB BAλ=  λ∈ℂ, 0AB ≠  be such that 2, 0.B A  =   Then if A  is pure 

dominant and B  is compact with dense range, satisfying the following 

conditions, then ( ) ( ).e A Aσ σ=  

(i) ( ) ( ) .A Aσ σ∩ − = ∅  
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(ii) 2{ } { }mA A′ ′=  for a positive integer .m  

(iii) A  is normal and ( )0 .W A∉  

(iv) A  is normal and ( )0 Re .W A∉  

(v) A  is normal and ( ) ( )Re Re .A Aσ σ∩ − = ∅  

 

Proof 

Note that from Theorem 2.4, in the operator equation ,AB BAλ= 1λ =  

under each one of the conditions here.  From Theorem 4.2,  ( ) ( ).e A Aσ σ=   

 

Corollary 4.32  

Let ,AB BAλ=  λ∈ℂ, 0AB ≠  be such that 2, 0.A B  =   Then if B  is pure 

dominant and A  is compact with dense range, satisfying the following 

conditions, then ( ) ( ).e B Bσ σ=  

(i) ( ) ( ) .B Bσ σ∩ − = ∅  

(ii) 2{ } { }mB B′ ′=  for a positive integer .m  

(iii) B  is normal and ( )0 .W B∉  

(iv) B  is normal and ( )0 Re .W B∉  

(v) B  is normal and ( ) ( )Re Re .B Bσ σ∩ − = ∅  

 

Proof 

Interchange A  with B  in Corollary 4.31. 
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Remark 4.33 

Note that if in Corollaries 4.31 and 4.32 above, we drop the condition that B  and 

A  has dense range respectively, then in view of Theorem 4.3, we have that A
 

and B
 
 are quasinilpotent.  

 

The next result is on the spectral properties of the product AB  of operators. 

 

Corollary 4.34 

In the operator equation 0,AB BAλ= ≠ λ∈ℂ, let A  and B  be self adjoint, such 

that 2 2AB B A=  and 2 2.A B BA=   Then ( ) ( ),e AB ABσ σ=
 
provided AB  is pure 

dominant and BA  is compact with dense range. 

 

Proof 

Let T AB=  and .K BA=  Then if 2 2AB B A=  and 2 2 ,A B BA= we have ,KT TK=

from Theorem 4.22.  Thus, applying now Theorem 4.2, we have that  

( ) ( ).e AB ABσ σ=
 

 

Corollary 4.35 

In the operator equation 0,AB BAλ= ≠ λ∈ℂ, let A  and B  be self adjoint such 

that 2 2AB B A=  and 2 2.A B BA=   Then ( ) ( )e BA BAσ σ=
 

provided BA  is pure 

dominant and AB  is compact with dense range. 

 

Proof 

Let T BA=  and .K AB=   Then proof similar to Corollary 4.34. 
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Remark 4.36 

The following lemma aids in proving Corollary 4.38 and which in turn is 

used to prove Corollary 4.39.  Corollary 4.38 also offers an alternative 

proof to Theorem 4.7 (i).   

 

Lemma 4.37 

Let ( ),A B B H∈  be self adjoint such that 0,AB BAλ= ≠ λ∈ℂ.  Then, 2 2BA A B=  

and 2 2 .AB B A=   

 

Proof 

Since A  and B  are self adjoint, λ∈ℝ by Theorem 2.1 (i). Thus, if ,AB BAλ=  we 

have on taking adjoints that: 

.BA AB ABλ λ= =  

Pre-multiplying by B yields: 2 2.B A BAB ABB ABλ= = =  

Also from BA ABλ=  we have: 

2 2 .BA ABA AAB A Bλ= = =   

 

Corollary 4.38 

If ,A B  are self adjoint with 0,AB BAλ= ≠ λ∈ℂ, then [ ], 0.AB BA =
 

 

Proof 

Since by Lemma 4.37, 2 2B A AB=  and 2 2,A B BA=  we have by Theorem 4.22 that 

[ ], 0.AB BA =  

 

Thus, we have the following results. 
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Corollary 4.39  

If ,A B  are self adjoint with 0,AB BAλ= ≠ λ∈ℂ, then ( ) ( )e AB ABσ σ=
 
provided 

AB  is pure dominant and BA  is compact with dense range. 

Proof 

Let T AB=  and .K BA=  Then by Corollary 4.38, we have .KT TK=   Thus, 

applying now Theorem 4.2, we have that  ( ) ( ).e AB ABσ σ=
 

 

Corollary 4.40  

If ,A B  are self adjoint with ,AB BAλ=  then ( ) ( )e BA BAσ σ=
 
provided BA  is pure 

dominant and AB  is compact with dense range. 

 

Proof 

Let T BA=  and .K AB=  Then by Corollary 4.38, we have .KT TK=   Thus, 

applying now Theorem 4.2, we have that  ( ) ( ).e BA BAσ σ=
 

 

Remark 4.41 

Note that by Theorem 2.2 (ii), in Corollary 4.39, { }1, 1 .λ∈ −  Thus, in view of 

Theorem 4.26 and 4.9 (i), we have the following corollaries in particular. 

 

Corollary 4.42 

If A  and B  are self adjoint operators with ,AB BAλ=  

then ( ) ( ) ( ) ( )e AB AB BA ABσ σ σ λσ= = =
 
provided AB  is pure dominant and BA  

is compact with dense range and ( ) ( ) ( ) ( ),e BA BA AB ABσ σ σ λσ= = =  provided 

BA  is pure dominant and AB  is compact with dense range. 
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Corollary 4.43 

If A  is normal and B   is self adjoint with ,AB BAλ=  

then ( ) ( ) ( ) ( ),e AB AB BA ABσ σ σ λσ= = =
 
provided AB  is pure dominant and BA  

is compact with dense range and ( ) ( ) ( ) ( ),e BA BA AB ABσ σ σ λσ= = =  provided 

BA  is pure dominant and AB  is compact with dense range. 
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CHAPTER FIVE 

SUMMARY 

5.0   Conclusion 

 

In this thesis, we have made several key contributions to the study of 

commutants and spectral properties for some classes of operators in Hilbert 

spaces. We have extended some results by looking at higher classes of 

operators, provided parallel results and established new results.  We have also 

established certain parallel results without necessarily specifying the classes of 

operators the operators involved belong to. 

 

The results in this thesis have shown conditions under which two λ − commuting 

operators A  and B  happen to be commuting.  We also looked at the existence 

of the operator equations ( ), 0C A B X =
 
and  ( ), 0R A B X =  under some given 

conditions.  Finally, the spectral aspect in this thesis involved the general 

spectrum, approximate spectrum and essential spectrum that touched on the 

operator equation .AB BAλ=   

 

5.1   Chapter wise summary  

 

Chapter one was an introduction.  Here a brief history of the concept of Hilbert 

spaces was given.  Thereafter, tracing from the first contributor of commutators, 

we chronologically outlined the literature review on the subject matter mentioning 

the contribution that has been made in this thesis.  Notations and terminologies 

that were used in the entire thesis were also defined in this chapter.  The very 

important aspect of inclusions of classes of operators in Hilbert spaces, which 

were used in generalizing results or establishing parallel results from other 

scholars, was given towards the end of the chapter.  Finally, we stated the 
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Fuglede and Putnam- Fuglede theorems that were applied in establishing some 

results in the thesis. 

 

Chapter two was on λ − commutativity. Two operators A  and B  were said to λ −

commute, for λ∈ℂ, provided that .AB BAλ=  Some properties satisfied by the 

operators A  and B  in this equation so that 1λ =  were investigated.  Among 

other results, we showed in Theorem 2.5 that if one of the operators raised to 

some power is normal and 0  does not belong to the numerical range of the other 

operator, then 1nλ =   meaning that that the operators nA  and B  for instance, 

belong to the commutant of each other. This theorem resulted in a corollary that 

stated summarily that if one of the operators is normal and 0  does not belong to 

the numerical range of the other operator, then 1λ =  meaning this time that that 

the operators A  and B , belong to the commutant of each other. Theorem 2.5 as 

a consequence of this was an improvement of Theorem 2.1 and Theorem 2.2 

since the condition that the operators A  or B  be positive so that the two 

operators A  and B  belong to the commutant of each other was more stringent 

than a mere requirement that 0  does not belong to the numerical range of one 

operator with the other operator raised to some power being normal. 

Furthermore, a higher class of operator than self adjoint was used, namely the 

normal operator, thus extending the results in the above mentioned theorems.   

 

In this same chapter, another key result of commutants was established.  By 

letting A  and B  to λ − commute, we showed that If A  is self adjoint, then 

{ }*B B A ′∈ and { }* .BB A ′∈
 
On the other hand, if  B  is self-adjoint then { }*A A B ′∈

and { }* .AA B ′∈   This result generated two corollaries that were proved.  One of 

the corollaries stated that if  A  and B  do λ − commute, with B  having the polar 

decomposition ,B UP= where U  is unitary, such that { }A U ′∈  and { }U A ′∈  with
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A  self adjoint, then { }A B ′∈ and { } .B A ′∈  The other corollary just interchanged 

the two operators A  and .B   Last but not least, it was shown that if A  and B  are 

both normal then 1λλ =  provided A  and B  do λ − commute.  All in all, in chapter 

two we have extended the study of λ − commuting operators to other classes of 

operators instead of limiting ourselves to self adjoint operators.  

 

Chapter three was on commutants and operator equations in Hilbert spaces.  

The equations AX XB=  and AXB X=  were used. We investigated the conditions 

under which these two operator equations exist.  It was shown among other 

results that if A  is one-one and B  has dense range then 
2 2( , ) 0C A B X = and 

3 3( , ) 0=C A B X  imply ( , ) 0.C A B X =  Similarly, if 
2 2( , ) 0=R A B X and 

3 3( , ) 0=R A B X  

then ( , ) 0=R A B X  for some operator .X  Here, ( , ) = −C A B X AX XB  and 

( , ) = −R A B X AXB X . These results are parallel results to Theorem 3.1, Corollary 

3.2 and Theorem 3.4.  Our contribution here is in the fact that we achieved the 

same results as those of Theorem 3.1, Corollary 3.2 and Theorem 3.4 without 

requiring any of the operators belong to a specific class of operators.  Some 

properties that ensured both operators are one-one and have dense range were 

also given in this chapter and consequently the results given as corollaries.  For 

instance the same was achieved with both A  and B  being quasiaffinities. To 

justify once again the title of our thesis, it was then established as a result of 

these parallel results that if A  is a quasi-affinity such that { }2 '∈A X  and 

{ }3 ',A X∈  then { } '.A X∈  

 

Chapter four was on spectral properties of λ − commuting operators.  In the 

operator equation AB BAλ=  for λ∈ℂ,  some conditions under which AB  and BA  

or B  and Bλ  have same spectrum or same essential spectrum, were 

investigated.  .  On approximate spectrum it was shown among other results that 
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if A  and B  are self adjoint operators that λ − commute non-trivially, then 

( ) ( ) ( ).AB BA ABπ π πσ σ λσ= =  Also, if A  is normal with ReA  positive and B  self-

adjoint then ( ) ( ).AB ABπ πσ λσ=  On essential spectrum it was shown that if A  is 

a quasi-affinity, then we have: 

(i) if B  is quasi normal then ( ) ( ) ( ).e e eB B Bσ σ λ λσ= =  

(ii) if *B  and B  are hyponormal and A  compact, then ( ) ( ).e eB Bσ λσ=   

(iii) If Bλ  and B∈ℋ ∪ ���,  then ( ) ( )e eB Bσ λσ=  and ( ) ( ).B Bσ λσ=  

(iv) if *B  and Bλ are m-hyponormal, then ( ) ( ) ( ).e e eB B Bσ σ λ λσ= =  

 

Still on essential spectrum, it was eventually established that ( ) ( ),e eAB BAσ σ=  

where ( )e ABσ  denotes the essential spectrum of AB . This occurred by letting T  

and  K  belong to the class of operators that are pure dominant, compact and 

have dense range where T AB=  and  .K BA=  

It was also shown that if A  and B  be such that 2, 0,B A  =   
with A  pure 

dominant and B  compact with dense range, satisfying the conditions; 

(i) ( ) ( ) .A Aσ σ∩ − = ∅  

(ii) 2{ } { }mA A′ ′=  for a positive integer .m  

(iii) A  is normal and ( )0 .W A∉  

(iv) A  is normal and ( )0 Re .W A∉  

(v) A  is normal and ( ) ( )Re Re .A Aσ σ∩ − = ∅  

Then, ( ) ( ).e A Aσ σ=
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5.2   Future Research 

 

In this last section, we shall briefly present some open problems which are of 

interest for possible future work. 

 

• On commutants and higher classes of operators, by looking at higher classes of 

operators than normal operators for instance quasinormal or hyponormal, 

conditions that ensure A  and B  belong to the commutant of each other can be 

investigated.  By doing this, improvements will be made for example on Theorem 

2.5.   For more on commutants see [11].  Also, [5] offers a connection between 

commutants and compact spaces that has not been covered in this thesis. 

 

• Classification of product of operators that commute is also an area that needs 

further research and has not being covered in this thesis. For instance, Zhang et 

al. (2011) showed that if A  is paranormal and B  an isometry, then AB  is 

paranormal.  See Theorems 2.23 and 2.24.  In both cases, they showed this with 

commuting operators. Of interest here will be to study other higher combinations 

of classes of operators for these two commuting operators in a bid to classify the 

class of operators the product operator AB  falls in.  For instance, with the 

combinations of A  being paranormal and B  binormal. 

 

• Many problems in science and engineering have their mathematical formulation 

as an operator equation.  For instance, we mentioned earlier that the operator 

equation ,AB BAλ= is important in the interpretation of quantum mechanical 

observables.  Some of the results established in this thesis, may assist in 

improving the formulation of quantum mechanics observables and solve open 

problems in science and engineering since it is known that commutators offer 

one of the best formulations in these application areas.  For application of our 

work in other areas, one can refer to [3], [18], [37], [40] and [53]. 
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• On operator equations, other properties that do not specify the class of operators 

other than injectivity and dense range that establish the existence of the operator 

equations ( , ) 0C A B X =  and ( , ) 0,R A B X =  may be looked at.  For instance it is 

known that if A  and B  are strictly positive, then ( )0 .W A∉  As seen in chapter 

three, operators that have ( )0 W A∉ are one to one and have dense range which 

ensures the existence of the above equations.  

 

• Higher classes of operators like posinormal and totally posinormal, offer a rich 

supply for new results that can be obtained on the subject matter of commutants 

and spectral properties of operators in Hilbert spaces.  Posinormal operators 

were first introduced by Rhaly in 1994.  See [38].  It is a larger class of operators 

than the dominant and many others as shown in [23] and [38].  For instance, by 

investigating whether these higher operators satisfy the PF property given certain 

conditions, one can establish quasisimilarity of these operators thereby 

enhancing the chances of equality of essential spectra being realized.  This can 

make improvements to Corollaries 4.24 and 4.25.  There is no known text 

touching on the PF property of these higher classes of operators and hence there 

is a wide area of research yet to be explored.  On parallel results, Mecheri et al. 

(2006) showed if A   is p-hyponormal and B  a class � operator, then  A  and B

satisfy the PF property.  Of interest here is to note that this class � of operators 

may offer parallel results in our subject area.  See [43]. 

  

• In this thesis, we have at most showed that ( ) ( ) ( )e e eA A Aσ σ λ λσ= =
 
and   

( ) ( ) ( )e e eB B Bσ σ λ λσ= =  where A  and B  are λ − commuting operators. Other 

than that, there  is no result here to show the equality of  essential spectra of 

operators A  and .B   For instance,  if one is able to build up a scenario where 

two commuting operators are quasisimilar ω−hyponormal, then ( ) ( ).e eA Bσ σ=  

See [29].  Thus, we have the following open question.  Under what conditions do 
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λ − commuting operators A  and B
 
have ( ) ( )?e eA Bσ σ=  On the other hand if 

one of the operators is of index zero, we can realize ( ) ( ).e eAB BAσ σ=  What 

other conditions will ensure that ( ) ( )e eAB BAσ σ= other than those mentioned in 

this thesis?   For further research on essential spectrum and general spectrum 

see [6],[13],[15],[45] and [46].   
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Abstract: Let B(H) denote the algebra of bounded linear operators on a Hilbert
Space H into itself. Given A,B ∈ B(H) define C(A,B) and R(A,B) : B(H) −→
B(H) by C(A,B)X = AX − XB and R(A,B)X = AXB − X. Our task in this
note is to show that if A is one-one and B has dense range then C(A2, B2)X = 0
and C(A3, B3)X = 0 imply C(A,B)X = 0 for some X ∈ B(H). Similarly, if
R(A2, B2)X = 0 and R(A3, B3)X = 0 then R(A,B)X = 0 for some X ∈ B(H).

AMS Subject Classification: 47B47, 47A30, 47B20
Key Words: commutant, quasiaffinity and normal operator

1. Introduction

Let B(H) denote the algebra of operators, i.e. bounded linear transformations on
the complex Hilbert space H into itself.

Given A,B ∈ B(H), let C(A,B) : B(H) −→ B(H) be defined by C(A,B)X =
AX − XB and R(A,B)X = AXB − X. Moajil [5] proved that if N is a normal
operator such that N2X = XN2 and N3X = XN3 for some X ∈ B(H), then

NX = XN . Thus for a normal operator N , if N2 ∈ {X}
′

and N3 ∈ {X}
′

, then

N ∈ {X}
′

for some X ∈ B(H).

Kittaneh [4] generalized this result to cover subnormal operators by taking A

and B∗ to be subnormal operators, i.e. if A2X = XB2 and A3X = XB3 for some
X ∈ B(H), then AX = XB. Thus if C(A2, B2)X = 0 and C(A3, B3)X = 0 then
C(A,B) = 0 for some X ∈ B(H).

Bachir [1] generalized these results to cover the classes of dominant and p-
hyponormal operators as follows:
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Theorem A. Let A be a dominant operator andB∗ be a p-hyponormal operator

or log-hyponormal. If A2X = XB2 and A3X = XB3 then AX = XB, for some

X ∈ B(H). Thus we have that if A is dominant and B∗ is either p-hyponormal or

log-hyponormal then C(A2, B2)X = 0 and C(A3, B3)X = 0 imply C(A,B)X = 0

In this note we consider any operator A,B ∈ B(H) without necessarily specifying
the classes in which they belong and look for other conditions under which we can
get similar results on the operator equation C(A,B)X = 0. We will also investigate
similar results on the operator equation R(A,B)X = 0. Khalagai & Nyamai, [3] also
had the following theorem and corollaries on the operator equation R(A,B)X = 0.

Theorem B. Let A,B and X ∈ B(H) be such that R(A,B)X = 0. Then B is

one to one whenever X is one to one.

Corollary A. Let A,B and X ∈ B(H) be such that R(A,B)X = 0 where X

is quasiaffinity. Then both B and A∗ are one to one.

Corollary B. Let A,B and X ∈ B(H) be such that R(A,B)X = 0 implies

R(A∗, B∗)X = 0 where X is a quasiaffinity. Then both A and B are also quasiaffini-

ties.

Goya & Saito [2] had the following result:

Theorem C. Let A,B,X ∈ B(H) where A is a paranormal contraction, B a

coisometry and X has a dense range. Assume C(A,B)X = 0. Then A is a unitary

operator. In particular, if X is injective and has a dense range, then B is also a

unitary operator.

2. Notation and Terminology

Given an operator A ∈ B(H) we shall denote the spectrum of A by σ(A). Thus
σ(A) = {λ ∈ C : A− λIis not invertible}. The numerical range of A is denoted
by W (A) = {〈Ax, x〉 : ‖x‖ = 1} . The commutator of any two operators A and

B is defined by [A,B] = AB − BA. The commutant of A is given by {A}
′

=
{X ∈ B(H) : [A,X] = 0}. An operator A is said to be:

• Dominant if to each λ ∈ C there corresponds a number Mλ ≥ 1 such that for
all x ∈ H, ‖(A − λI)∗x‖ ≤ Mλ‖(A− λI)x‖.

• M-hyponormal if there is a constant M such that Mλ ≤ M for all λ ∈ C such
that ‖(A− λI)∗x‖ ≤ M‖(A − λI)x‖

• Hyponormal if from above M = 1

• P-hyponormal if (A∗A)p ≥ (AA∗)p for 0 < p < 1In
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• Log-hyponormal if A is an invertible operator such that log(A∗A) ≥ log(AA∗)

• Paranormal if ‖A2x‖ ≤ ‖Ax‖2 for any unit vector x ∈ H

• Normal if A∗A = AA∗

• Subnormal if A has a normal extension

• Partial isometry if A = AA∗A

• Isometry if A∗A = I

• Co-isometry if AA∗ = I

• Unitary if A∗A = AA∗ = I

• Compact if for each bounded sequence {xn} in the domain H, the sequence
{Axn} contains a sub sequence converging to some limit in the range.

• Contraction if ‖A‖ ≤ 1.

3. Results

Theorem 1. Let A,B ∈ B(H) be any pair of operators such that A is one-one

and B has a dense range. Then we have that C(A2, B2)X = 0 and C(A3, B3)X = 0
imply C(A,B)X = 0 for some X ∈ B(H).

Proof. Let T = AX and S = XB. Then from A2X = XB2 and A3X = XB3, we
have AT = SB and A2T = SB2 and moreover:

A(AT ) = ASB = (SB)B,

ASB − (SB)B = 0,

(AS − SB)B = 0.

Since B has dense range we have that B 6= 0 and hence AS−SB = 0. Therefore

AS = SB,

AT = SB = AS,

AT −AS = 0,

i.e. T − S = 0 since A is one-one, T = S. Thus AX = XB.
Hence C(A,B)X = 0.In
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Corollary 1. If A and B are quasi-affinities such that C(A2, B2)X = 0 and

C(A3, B3)X = 0 then C(A,B)X = 0 for some X ∈ B(H).

Proof. If A and B are quasi-affinities then each one of them is both one-one and has
dense range. Hence the proof of Theorem 1 can easily be traced to give the required
result.

Corollary 2. IfA is a quasi-affinity such that C(A2, A∗2)X = 0 and C(A3, A∗3)X =
0 then C(A,A∗)X = 0 for some X ∈ B(H).

Proof. If A is quasi-affinity then A∗ is also quasi-affinity. Hence by Corollary 1 the
result follows.

Corollary 3. Let ℘ be the class of operators defined as follows:

℘ = {A ∈ B(H) : 0 6∈ W (A)} .

If A,B ∈ ℘ such that C(A2, B2)X = 0 and C(A3, B3)X = 0 then C(A,B)X = 0
for some X ∈ B(H).

Proof. We only have to note that for any operator A with 0 6∈ W (A), A is both
one-one and has a dense range.

Corollary 4. If A is a quasi-affinity such that A2 ∈ {X}
′

and A3 ∈ {X}
′

then

A ∈ {X}
′

for some X ∈ B(H).

Proof. We only have to note that in Theorem 1 we let A = B.

Theorem 2. Let A,B ∈ B(H) be a pair of operators such that A is one-

one and B has dense range. Then R(A2, B2)X = 0 and R(A3, B3)X = 0 imply

R(A,B)X = 0 for some X ∈ B(H).

Proof. Given A2XB2 = X and A3XB3 = X we have A2XB2 = A3XB3,

A3XB3 −A2XB2 = 0,

A(A2XB2 −AXB)B = 0.

Since A is one-one and B has dense range we have:

A2XB2 −AXB = 0

i.e. A(AXB − X)B = 0. Since A is one-one and B has dense range we have that
AXB −X = 0.

Hence R(A,B)X = 0.In
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Corollary 5. If A,B ∈ B(H) are quasi-affinity such that R(A2, B2)X = 0 and

R(A3, B3)X = 0, then R(A,B)X = 0.

Proof. We note that the quasi-affinity is both one to one and has dense range. Hence
the result is immediate by Theorem 2 above.

Corollary 6. A is quasi-affinity such that:

R(A2, A∗2)X = 0 and R(A3, A∗3)X = 0 then R(A,A∗)X = 0 for some X ∈
B(H).

Proof. It is immediate from Theorem 2 above and the fact that if A is a quasi-affinity
then A∗ is also quasi-affinity.

Corollary 7. If R(A,B)X = 0 implies R(A∗, B∗)X = 0 for some X which is

quasi-affinity then C(A2, B2)X = 0 and C(A3, B3)X = 0 imply C(A,B)X = 0.

Proof. R(A,B)X = 0 implying R(A∗, B∗)X = 0 where X is a quasi-affinity implies
A and B are quasi-affinities from Corollary B. From Theorem 1, the result follows
since quasi-affinities are both one to one and have a dense range.

Corollary 8. Let A,B,X ∈ B(H) where A is a paranormal contraction, B

a coisometry and X is a quasi-affinity. If C(A,B∗)X = 0, then R(A,B)X = 0 =
R(A∗, B∗)X.

Proof. First note that B is unitary from Theorem C. Therefore

C(A,B∗)X = 0 ⇒ AX = XB∗,

⇒ AXB = XB∗B,⇒ AXB = X,

⇒ AXB −X = 0,

R(A,B)X = 0.

We also have that A is unitary by theorem C. Thus:

C(A,B∗)X = 0 ⇒ AX = XB∗,

⇒ A∗AX = A∗XB∗,

⇒ X −A∗XB∗ = 0,

⇒ A∗XB∗ −X = 0,

R(A∗, B∗)X = 0.
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1 Introduction

Let B(H) denote the Banach algebra of bounded linear operators on a complex Hilbert space H and
A,B ∈ B(H). Then A and B are said to λ-commute non-trivially if AB = λBA, λ ∈ C,AB 6= 0.
These types of operators have been studied by a number of authors see [3], [5], [9]. It is of interest
to determine for various classes of operators A and B what restriction this places on λ ∈ C. Also
note that this property of λ-commuting operators is important for the interpretation of quantum
mechanical observables and the analysis of their spectra. See [13]. On the other hand, results on
essential spectra aid in coming up with generalizations of Weyl’s theorem. See [1], [2] and [18].
Brooke, A.J, Busch, P and Pearson, D.B. [3], proved the following results:

Theorem A Let A,B ∈ B(H) such that AB 6= 0 and AB = λBA for λ ∈ C. Then:

i. if A or B is self-adjoint then λ is real.

ii. if both A and B are self adjoint then λ ∈ {−1, 1}.

iii. if A and B are self adjoint and one of them is positive, then λ = 1.

Lemma B Let AB = λBA, λ ∈ C, AB 6= 0. Then 0 is in either both or neither of σ(AB) and
σ(BA). Hence: σ(AB) = σ(BA) = λσ(AB).

Proposition C Let AB = λBA, λ ∈ C, AB 6= 0 and assume that A has a bounded inverse. Then
we have: σ(B) = λσ(B).

In [5] the operator equation AB = λBA, λ ∈ C was studied for normal operators A and B on a
Banach space. In this paper, we will first make an improvement on Theorem A. above before we
look at spectral properties including the essential spectrum of the operators AB and BA. We will
make use of Putnam-Fuglede property, see [11] and [12], and the following result proved by [16].

Theorem D Suppose T is a pure dominant operator, K is a compact operator with dense range
such that KT = TK. Then essential spectrum of T is equal to spectrum of T , i.e. σe(T ) = σ(T ).
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2 Notation and Terminology

• Given an operator A we shall denote the spectrum, the approximate point spectrum and
essential spectrum of A by σ(A), σπ(A) and σe(A) respectively. Thus we have:

σ(A) = {λ ∈ C : A− λI is not invertible}

σπ(A) = {λ ∈ C : A− λI is not bounded below}

σe(A) = {λ ∈ C : A− λI is not Fredholm}

• Two operators A,B ∈ B(H) are said to be commuting operators if:

[A,B] = AB −BA = 0.

• The range of A and Kernel of A are denoted by ranA and kerA respectively.

• An operator A is said to be:

– Fredholm if its range ranA is closed and both kerA and kerA∗ are finite dimensional.

– Dominant if to each λ ∈ C there corresponds a number Mλ ≥ 1 such that:

||(A− λ)∗x|| ≤Mλ ||(A− λ)x|| ∀x ∈ H.

– M-hyponormal if ∃ a constant M with Mλ ≤M for all λ ∈ C such that:

||(A− λ)∗x|| ≤M ||(A− λ)x|| ∀x ∈ H.

– Hyponormal if A∗A ≥ AA∗.

– Normal if A∗A = AA∗.

– Self-adjoint if A = A∗.

– Pure dominant if it has no invariant subspace say N on which A/N is normal.

– Compact if it maps a unit ball of H into a relatively compact set.

– p-hypornormal, 0 < p ≤ 1 if (A∗A)p ≥ (AA∗)p.

– Quasi-affinity if it is both one-one and has a dense range.

– a partial isometry if A = AA∗A.

• The class H∪ (p) denotes the class of p-hyponormal operators A for which the polar decom-
position A = U |A| is unitary where |A| = (A∗A)1/2 and U is a partial isometry.

• Note that we have the following inclusions of classes of operators:

– {self − adjoint} ⊂ {normal} ⊂ {hyponormal} ⊂ {m− hypornormal} ⊂ {dominant}
– {normal} ⊂ {hyponormal} ⊂ {p− hyponormal}
– {normal} ⊂ {quasinormal} ⊂ {p− hyponormal}
– {normal} ⊂ {quasinormal} ⊂ {subnormal} ⊂ {hyponormal} ⊂ {m− hypornormal}

3



3 Results

We first show that the following result provides an alternative prove to part (ii) of Theorem A.
above.

Lemma 1 Let AB = λBA, λ ∈ C, AB 6= 0 with A and B self-adjoint. Then:

(i) AB and BA are normal commuting operators.

(ii) λ = ±1

Proof

Let T = AB. Then T ∗ = BA for self-adjoint A and B.

(i) Thus we have T = λT ∗, i.e. T ∗T = λT ∗2 and TT ∗ = λT ∗2, i.e. T ∗T = TT ∗. Thus T is
normal and [T, T ∗] = 0. Hence AB and BA are normal commuting operators.

(ii) Since T = λT ∗ and λ is real, taking adjoint of each side gives: T ∗ = λT. Thus:

(1) T = λT ∗

(2) T ∗ = λT

Adding (1) and (2) gives:
T + T ∗ = λ(T + T ∗)

ReT = λ(ReT )

(3) (1− λ)ReT = 0

But subtracting (2) from (1) gives:

T − T ∗ = λ(T ∗ − T )

= −λ(T − T ∗)

i.e. ImT = −λImT.

(4) or (1 + λ)ImT = 0

But, since T 6= 0, we have that either (ReT ) 6= 0 or (ImT ) 6= 0 or both (ReT ) 6= 0 and
(ImT ) 6= 0.
Hence from (3) and (4), λ = ±1.

Corollary 1 Let A and B be self-adjoint operators which λ-commute non-trivially. Then we have:

σπ(AB) = σπ(BA) = λσπ(AB)

.

Proof

Since A and B are self adjoint operators which λ-commute non-trivially, AB and BA are normal
commuting operators from Lemma 1. Hence T = AB = BA
Now for any normal operator T , σ(T ) = σπ(T ).

σπ(BA) = λσπ(BA) (from Lemma B).

Hence we have the end of the proof.
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Theorem 1 Let A,B ∈ B(H) be such that AB = λBA, λ ∈ C, AB 6= 0. We have

(i) If A is normal and B is self-adjoint then λ ∈ {1,−1}.

(ii) If A is normal with ReA positive and B is self-adjoint then λ = 1.

Proof

(i) Given A is normal, B is self-adjoint and AB = λBA, we have by part (i) of Theorem A
above, that λ is real. Thus by Putnam-Fuglede’s theorem we have:

(5) A∗B = λBA∗

Now by adding the operator equation AB = λBA and (5) we have:

(A+A∗)B = λB(A+A∗)

i.e. ReA.B = λB. ReA
Since both ReA and B are self-adjoint we have by part (ii) of Theorem A above that λ ∈
{1,−1}.

(ii) From proof of part (i) above we have: ReA.B = λB.ReA, where both ReA and B are
self-adjoint. Since ReA is positive it follows from part (iii) of Theorem A. above that λ = 1.

Corollary 2 Let A be normal with ReA positive and B be self-adjoint such that AB = λBA,
λ ∈ C, AB 6= 0. Then AB = BA is normal. Thus:

σ(AB) = σ(BA) = σπ(AB) = λσπ(AB).

Proof

We note that under the given hypothesis λ = 1 by part (ii) of Theorem 1. above. Thus [A,B] = 0.
Letting T = AB and T ∗ = BA∗, we have:

T ∗T = BA∗AB = BAA∗B = ABA∗B = ABBA∗ = TT ∗.

Hence T = AB is normal. Consequently:

σ(AB) = σ(BA) = σπ(AB) = λσπ(AB)

Remark 1 We now note that in Proposition C. above, if we require that one of the operators say
B in the equation AB = λBA, λ ∈ C, AB 6= 0 belongs to some appropriate class of operators then
we can relax the condition on the operator A. But first we have the following result:

Let ℘ denote the class of all operators which satisfy the Putnam-Fuglede property. Then we
have the following results:

Theorem 2 Let AB = λBA, λ ∈ C, AB 6= 0. Then we have:

(i) If B and λB ∈ ℘ with A a quasiaffinity, then λB and B are quasisimilar.

(ii) If A and λA ∈ ℘ with B a quasiaffinity, then λA and A are quasisimilar.
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Proof

(i) Given,

(6) AB = λBA

we have since B and λB are in ℘ then AB∗ = λ̄B∗A. Taking adjoints both sides we get:

(7) BA∗ = A∗λB

Since A is quasi-affinity it follows that A∗ is also a quasi-affinity. Now from (6) and (7) we
have that the operators λB and B are quasi similar.

(ii) Similarly since A and λA are in ℘ then A∗B = Bλ̄A∗. Taking adjoints both sides we get:

(8) B∗A = λAB∗

Since B is quasi-affinity it follows that B∗ is also a quasi-affinity. Now from (6) and (8) we
have that the operators λA and A are quasi similar.

Corollary 3 Let AB = λBA, λ ∈ C, AB 6= 0 with B and B∗ p- hyponormal with A a quasiaffinity.
Then we have λB and B are quasisimilar.

Proof

Given AB = λBA...(i), we first note that λB and B∗ are p-hyponormal and by [8], AB∗ = λ̄B∗A
Taking adjoints on each side gives: BA∗ = A∗λB...(ii). Since A is a quasiaffintiy it follows that
A∗ is also a quasiaffinity. Thus form (i) and (ii) we have that λB and B are quasisimilar.

Remark 2 We now note that equality of spectra or essential spectra for some classes of operators
has been proved by a number of authors see [6],[8],[10],[14], and [15]. In our case we have the
following corollary.

Corollary 4 Let AB = λBA, λ ∈ C, AB 6= 0 with A a quasi-affinity. Then we have:

(i) if B is quasi normal then σe(B) = σe(λB) = λσe(B).

(ii) if B and B∗ are hyponormal and A compact, then σ(B) = λσ(B) and σe(B) = λσe(B).

(iii) if λB and B ∈ H ∪ (p), then σe(B) = λσe(B) and σ(B) = λσ(B).

(iv) if B∗ and λB are m-hyponormal, then σe(B) = σe(λB) = λσe(B)

Proof

(i) By the inclusion {quasinormal} ⊂ {p− hyponormal}, see [4], and the fact that B∗ is quasi-
normal if B is quasinormal, we have that B and B∗ are indeed also p-hypornormal. Thus
applying Corollary 3, λB and B are quasisimilar. By [14] we have σe(B) = σe(λ B) = λσe(B).
Also to authenticate our result further, [6] proved that quasisimilar subnormal operators have
equal essential spectra and the inclusion {quasinormal} ⊂ {subnormal} ensures that the re-
sult stands for quasinormal operators.

(ii) By the inclusion {hyponormal} ⊂ {p− hyponormal} and Corollary 3, λB and B are qua-
sisimilar. Hence by [6] and [15]: σ(B) = λσ(B) and σe(B) = λσe(B).

(iii) We only have to note that it was proved in [8] that for the operators in H∪ (p), they belong
to ℘ and they have same spectrum and same essential spectrum.
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(iv) From [7], λB and B belong to ℘ due to the inclusion {m− hyponormal} ⊂ {dominant}.
Applying Theorem 2 we have that the operators λB and B are quasisimilar. By [17],we have
σe(B) = σe(λB) = λσe(B).

Remark 3 We note that in Corollary 4 above the conditions on the operators A and B can be
interchanged so that similar results can be obtained on spectrum and essential spectrum of A. We
also note that in view of Theorem D. above we have the following result about essential spectra of
the operators AB and BA.

Theorem 3 Let AB = λBA, λ ∈ C, AB 6= 0 with λ ∈ {1,−1} . If AB is pure dominant and BA
is compact with dense range then: σe(AB) = σ(AB) = σ(BA) = λσ(AB).

Proof

Let T = AB and K = BA. Then under the conditions that λ ∈ {1,−1}, we have: [T,K] = 0 For
if λ = −1, then AB = −BA. Thus: ABBA = −BABA and BAAB = −BABA. This means AB
and BA commute. Now by theorem D above: σe(T ) = σ(T ). i.e σe(AB) = σ(AB) = σ(BA) =
λσ(AB).

Remark 4 Let us for convenience sake say that T ∈ B(H) belong to a class M of operators if:

(i) T is pure dominant

(ii) T is compact

(iii) T has a dense range

Then the following corollary to the theorem above is immediate.

Corollary 5 Let AB = λBA, λ ∈ C, AB 6= 0 with λ ∈ {1,−1}. Also let T = AB and K = BA.
If T,K ∈M, then: σe(T ) = σ(T ) = σ(K) = σe(K).

Proof

Since the operators T,K ∈M,then from Theorem 3 above we get σe(K) = σ(K) = σ(T ) = σe(T ).
Hence σe(AB) = σe(BA)

Remark 5 Note that it is a well known fact that dominant operators that are compact are quasinilpo-
tent hence have zero as its essential spectra.
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