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a b str a c t

Many empirical studies have shown strong evidence against some of the underlying 

assumptions of the Black Scholes Model. However this paper has focussed on the constant 

value that is assumed for the volatility. Empirical research shows that the volatility of 

financial asset prices is following a stochastic process and varies through time. This paper has 

highlighted the different that determine volatility, and some of them act as alternatives or 

improvement from earlier models.

We have compared three models: ARCH, GARCH and the Moving Average Model. GARCH 

is a good description of the evolution of the variance process of the asset returns. It provides 

a better evolution of asset returns than compared to the ARCH model. It also captures 

volatility clustering quite well.
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CHAPTER ONE

INTRODUCTION

1.1 BACKGROUND

An option is a security giving the right to buy or sell the asset subject to certain conditions, 

within a specified period of time. In general, options can be either American or European, a 

distinction that has nothing to do with geographical location. American options can be 

exercised at any time up to the maturity, whereas European options can only be exercised at 

the maturity. The price that is paid for the asset when the option is exercised is known as the 

strike price or exercise price. The last day at which an option can be exercised is known as 

the maturity date or expiration date.

There are two basic types of options. A call option gives the holder of the option the right to 

buy an asset by the maturity date for the strike price. A put option gives the holder of the 

option the right to sell an asset by the maturity date for the strike price. Nevertheless, 

European options are generally easier to analyze than American options, and some of the 

properties of an American option are usually derived from those of its European counterpart.

The first options were used in ancient Greece to speculate on the olive harvest. Earlier 

studies tell of a man who purchased the right to use olive presses. It was mid-winter, and the 

owner of the olive presses was happy to sell the right to use the olive presses during the 

harvest season. It generated income for the olive press owner during the off season. The man 

purchasing the rights ensured that he would have use of the presses during the busy season. 

If the olive harvest was really good, the purchaser might be able to even resell his right to 

use the olive presses for a profit. The use of the options is the same.
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1.1.1 BIRTH OF THE MODERN OPTION

The established financial markets have had options available for decades. The options 

contract was originally an "over the counter" product. This meant that only people with 

specialized needs and information tended to engage in the purchase and sale of options. This 

original options contract was not standardized in its terms or conditions. There was also no 

secondary market for options and no way to properly and consistently assess the value of the 

options contract.

In 1973, the modern financial options market came into existence. The Chicago Board of 

Trade (CBOT) opened the Chicago Board Options Exchange (CBOE). The CBOE instituted a 

new "exchange traded options contract". This contract was standardized in its terms and 

conditions. An options buyer and seller no longer had to sit down and negotiate terms of the 

contract every time he or she sought to buy an option. Thus, the CBOE could publish quoted 

options prices for the first time, and could establish a market maker system to make sure that 

there was a secondary or resell market for options.

At the same time, the Options Clearing Corporation was formed to make sure that the 

contract would be honored by all members. Lastly, the whole process came under the 

regulatory control of the Securities and Exchange Commission. Thus, the trading of the 

modern option, "exchange traded options contract" had begun. On the first day the contracts 

traded, April 26, 1973, a total of 911 contracts were traded. Since that time, options trading 

has grown enormously. In 2007, there were over 2.8 billion contracts cleared by the Options 

Clearing Corporation.

Options are now widely traded in variety of financial instruments: from stocks and bonds to 

exchange-traded funds, commodities and currency futures.
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There are two main reasons for using options: to speculate and to hedge. Speculation is 

described as the betting on the movement of a security. Speculation is the territory in which 

the big money is made and lost. The use of options in this manner is the reason options have 

the reputation of being risky. This is because when you buy an option, you have to be correct 

in determining not only the direction of the stock's movement, but also the magnitude and 

the timing of this movement. To succeed, you must correctly predict whether a stock will go 

up or down, and you have to be right about how much the price will change as well as the 

time frame it will take for all this to happen.

The other function of options is hedging. This is the making an investment to reduce the risk 

of adverse price movements in an asset. This is an area of risk management. The main 

objective of risk management is to assess risk and develop strategies that minimize it. This is 

because bond prices, stock prices, current rates and interest rates fluctuate and thereby 

creating risk. Also the diverse range of potential underlying assets and payoffs alternatives 

lead to a huge variety of option contracts available to be traded on the markets.

The financial market provides a number of financial instruments which began as theory of 

option pricing in the 1900 when French mathematician Louis Bachelier deduced an option 

pricing formula based on the assumption that stock prices follow a Brownian motion with 

zero drift. However, the Black-Scholes (1973) option pricing model laid the foundation for a 

new era of option valuation theory.

In 1973, Fischer Black and Myron Scholes proposed a formula to price for the stock options, 

which made a major breakthrough in the field of mathematical finance. Later on, Robert 

Merton, student of Fisher Black, published a paper expanding the mathematical 

understanding of the options pricing model and coined the term "Black-Scholes" options 

pricing model. The model has had a huge influence on the way that trader’s price and hedge 

options. Finally, Merton and Sqholes received the 1997 Nobel Prize in Economics for this

1.2 USES OF OPTIONS
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and related work. Though ineligible for the prize because of his death in 1995, Black was 

mentioned as a contributor by the Swedish academy.

13 THE BLACK SCHOLES MODEL

1.3.1 ASSUMPTIONS FOR BLACK SCHOLES MODEL

Before we derive the formula for the value of an option in terms of price of the stock, we 

should first create an “ideal condition” in the market both for the stock and for the option. 

As written is Black & Scholes (1973).

1. The short-term interest rate is known and is constant through time.

2. The stock price follows a random walk in continuous time with a variance rate 

proportional to the square of the stock price. Thus, the distribution of possible stock prices at 

the end of any finite interval is lognormal. The variance rate of the return on the stock is 

constant.

3. The stock pays no dividends or other distributions.

4. The option is “European”, that is, it can only be exercised at maturity.

5. There are no transaction costs in buying or selling the stock or the option.

6. It is possible to borrow any fraction of the price of a security to buy it or hold it, at the 

short-term interest rate.

7. There are no penalties to short selling. A seller who does not own a security will simply 

accept the price of the security from a buyer, and will agree to settle with the buyer on some 

future date by paying him an amount equal to the price of the security on that date.

1.3.2 DERIVATION OF THE BLACK SCHOLES FORMULA

We derive the Black-Scholes formula within a self-finance portfolio using Black-Scholes 

5artial differential equation approach based on Hull (2008).

1-3.2.1 GENERALIZED WIENER PROCESS

•  f

The drift rate is known as the m,ean change per unit time for a stochastic process and the
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variance rate is the variance per unit time. The basic Wiener process, dw, has a drift rate of 

zero and a variance rate of 1.0. The drift rate of zero means that the expected value of w at 

any future time is equal to its current value while the variance rate of 1.0 means that the 

variance of the change in w is a time interval of length T equals T. Then, a generalized 

Wiener process for variance x is defined in terms of dw as:

dw = mdt  + ndw ...................................................................................................................... 1.1

Where m and n are constants.

1.3.2.2 THE PROCESS FOR A STOCK PRICE

We assume the price process of a non-dividend-paying stock is a stochastic process which 

follows a generalized Wiener process with a constant expected drift rate and a constant 

variance rate.

Obviously, the assumption of constant expected drift rate is inappropriate and needs to be 

replaced by the assumption that the expected return is constant. If 5 is the stock price at time 

t, then the expected drift rate in S should be assumed to be [xS for some constant parameter (X. 

This means that in a short interval of time, At, the expected increase in S is [xSAt. The 

parameter fx is the expected rate of return on the stock.

We should also consider the volatility of a stock price. A reasonable assumption is that the 

variability of the percentage return in a short period of time, At, is the same regardless of the 

stock price. This suggests that the standard deviation of the change in short period of time At 

should be proportional to the stock price and leads to the model:

dS = ixSdt + aSdw .................................................................................................................... 1.2

where a is the volatility of the stock price, \x is its expected rate of return, and w is a 

generalized Wiener process.
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1.3.2.3 ITO’S LEMMA

The Ito’s Lemma, was presented by K. I to in 1951. In order to understand Ito's formula in its 

most simple form, we start with a Taylor expansion to the lowest orders for a function of two 

variables F(t, 5):

dF dF 1 d2F ,  d2F 1 d2F
dF(t.s) = - ^ d t + — ds + + "

Where S is described by stochastic process given by:

dS = li(x, t)dt  + o{x, t )d W ...................................................................................

Wis Wiener Process with a property (dIV)2 = dt

(dS)2 = n2(x , t ) (d t)2 + o 2( x , t ) (d W y  + 2 n(x , t )a (x , t )d tdW  = o 2(x,t)dt. .

Substituting equation 1.3 and 1.4 into the Taylor’s expansion above yields:

dF dF ,  N 1 d2F
d F ( t , S ) = — dt + —  0 0 ,  t)dt  + a(x, t)dW)  + -  (dS) 2

dF dF 1 , d2F
=  dt dt +  ~dS ^ X' ^ dt +  0(<X' ^ dW) +  2 °  X̂’ ^  ~dS*

=  (ft  + £) + l v H x ,0 0)  dt +  <r(x,£) g  I .....................................

1.3

1.4

1.5

Which is the Ito's formula.

The generalized expression is given by:

d n t . s , . . s j  = E dt + I l i i L dSl+ 1 ^ ^ ^95(95; 1.6

1.3.2.4 VOLATILITY

The volatility is a measure of the uncertainty about the return provided by the stock. It can 

be defined as the standard deviation of the return provided by the stock in 1 year when the
• t

return is expressed using continuous compounding.
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In this study, I will concentrate on finding the volatility of a stock by estimating volatility 

from historical data. Therefore, in order to estimate the volatility of a stock empirically, we 

should obverse the stock price at fixed intervals of time (e.g. daily, weekly, or monthly).

We define:

n + 1: number of observations 

5.: stock price at the Ah interval, with i  = 0, 1, ..., n 

t: length of time interval in years 

and let a* = In where i= 1, 2, n.

the usual estimate, a, of the standard derivation of the at is given by:

Where a is the mean of a*.

It’s not easy to choose an appropriate value for n. Generally, more data lead to more 

accuracy, but the volatility does change over time and data that are too old may not be

1.7

or

1.8

relevant for predicting the future volatility. A compromise that seems to work reasonably 

well is to use closing prices from daily data over the most recent 90 to 180 days. An often- 

used rule of thumb is to set n equal to the number of days to which the volatility is to be 

applied. Thus, if the volatility estimate is to be used to value a 2-year option, daily data for 

the last 2 years are used.
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This relies on one market containing a risk-free bond B that pays an interest rate r  and a 

stock 5. The price of the stock follows a Wiener process (Geometrical Brownian Motion) 

with a constant drift aand a stochastic term aSdW, where a is the volatility. The two 

securities are given by

fdB(t) = r - B ( t ) d t  19
lfi(0) = 1

On rearranging 1.9 yields B(t) = ert

1.3.2.5 DERIVATION OF THE BLACK-SCHOLES-MERTON DIFFERENTIAL

EQUATION

fdS(t) = a ■ S(t)dt  + a • S(t)dW(t)  
lS (0 )  = s

The initial condition of the bond is 1 and the initial stock price is s. We now consider a 

portfolio h of the bond and the stock: h = (h0/!1), where h holds the number of each 

security. After the comparison between relative self-finance portfolio and the derivation 

from Ito's Lemma get:

.............................................................................................. 1.10

This is the Black-Scholes partial differential equation. Note that this equation is independent 

from a. In a risk neutral word, we can explain the terms in the partial differential equation

dF_
dt

.dF_ . 1 

dS 2T7 + rS ~h + r  o 2S 2 = rFd 2F
d S 2

as:
d F
dt the change of value with respect to time t.

r$ ds the change of value with respect to underlying price

1 2 r*2
2 °  ^ the change of value with respect to volatility 

rF the expected change of value of derivative security.
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For one European option with strike price K, the price of this option FT at maturity T will be 

p = max[ST — K, 0} which is called the boundary condition of the Black-Scholes partial 

differential equation. Therefore, we have

(Ft + rSFs + \ o2S 2Fss —rF = 0 i ^
(  Ft = max{ST -  K, 0}

We assume that F(t, St) is a solution to the partial differential equation above, where

(dS = r  ■ Sdt  + a • SdV
(S(t) = s

Where r is the risk-free interest rate and V is a Wiener process under risk neutral probability 

measure Q..

Under risk neutral probability measure Q, the stochastic part vanishes and we get:

F(t,S) = e~rV~t)E^_s[max{ST -  A", 0}]................................................................................. 1.12

We can write 1.12 as

n it. S] = 5 ■ N ( - Z 0 + a ■ V f^ T )  -  K • e~r^ N ( - Z 0y ...................................................1.13

1.13 is equal to: = s • N(dx) — K • e - r T̂-t)A(d2)

Where
2 >

1.3.2.6 THE SOLUTION OF THE BLACK-SCHOLES-MERTON PARTIAL

DIFFERENTIAL EQUATION

d1 — ln ©  + ( r +  T ) ( T _ t )
o' ■

d2 — di — o ■ VT — T

this is the final expression of the Black-Scholes formula. Here, s is the initial underlying 

price, K

is the strike price of the option, o is the volatility on the market, r  is the current interest rate 

on the market, t is the initial time and T is the maturity. We therefore substitute the data 

into the formula and find the corresponding option price under Black-Scholes model.
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1 4 CRITICISM OF IMPLICIT PROPERTIES OF BLACK-SCHOLES

Despite the Black Scholes model’s popularity and wide spread use, the model is built on some 

non-real life assumptions.

Firstly, the BSM assumes a geometric Brownian motion model. This implies that the series of 

first differences of the log prices must be uncorrelated. For example the S&P 500 as a whole, 

observed over several decades, daily from 1 July 1962 to 29 Dec 1995, there are in fact small 

but statistically significant correlations in the differences of the logs at short time lags (Hull 

2002). At its core, neither people nor a model can consistently predict the direction of the 

market or an individual stock. The Black Scholes theorem assumes stocks move in a manner 

referred to as a random walk; random walk means that at any given moment in time, the 

price of the underlying stock can go up or down with the same probability. However, this 

assumption does not hold as stock prices are determined by many factors that cannot be 

assigned the same probability in the way they will affect the movement of stock prices. 

Moreover, the price of a stock in time f+1 is independent from the price in time t; the 

martingale property of Brownian motion. There may not be a single source or factor driving 

two assets even if one is a derivative of the other as is stated in the martingale representation 

theorem.

Secondly, the model assumes that log normally distributed underlying stock prices are 

normally distributed. However, as observed by Clark, asset returns have a finite variance and 

semi-heavy tails contrary to stable distributions like log normal with infinite variance and 

heavy tails. As noted by Hull, experience has shown that returns are leptokurtic, i.e., have 

much more of a tendency to exhibit outliers than would be the case if they were normally 

distributed. An example is provided by the returns on the S&P 500 series. There is 

overwhelming evidence that the returns are not normal, but instead have a leptokurtic (i.e., 

long-tailed) distribution. ’

10



Thirdly, the model assumes a constant volatility. However, ever since the 1987 and 2008 

stock market crash, this assumption has proven false. While volatility can be relatively 

constant in very short term periods, it is never constant in the long term. In other words, it is 

often found that for financial time series, after taking logs (if needed) and first differences, 

the level of volatility seems to change with time. Often, periods of high volatility follow 

immediately after a large change (often downward) in the level of the original series. It may 

take quite some time for this heightened volatility to subside. For example, the plot of 

differences of the logs of the S&P 500 shows very long periods of high volatility interspersed 

with periods of relative calm. This type of pattern is often referred to as volatility clustering 

(Hull 2002). Consequently, more recent option valuation models substitute Black-Scholes’s 

constant volatility with a stochastic process generated estimates. However, given its 

simplicity and mathematical tractability as compared to some of its more recent variations, 

the Black-Scholes model continues to be in widespread use.

Fourthly, Black-Scholes model assumes that interest rates are constant and known. This 

assumption is also unrealistic. The model uses the risk-free rate to represent this constant and 

known rate. While the Kenyan Government Treasury Bill 90 day rate can be used as a part of 

the model, there is no such thing as a risk-free rate. The most recent recession of 2008 

indicates that even government securities can have default risk as is the case of Greece which 

was downgraded. Furthermore, treasury rates can and do change in times of increased 

volatility.

Fifthly, the model assumes that the underlying stock does not pay dividends during the 

option s life. However, this assumption does not apply in all, or actually, most cases since 

most public companies pay dividends to their shareholders. This assumption relates to the 

basic Black-Scholes formula, and typically the model is adjusted by subtracting the 

discounted value of a future dividend from stock prices to account for dividends.

/
11



Finally, one of the most significant assumptions of the theorem is its assumption that there 

are no fees for buying and selling options and stocks and no barriers to trading. However, 

this is hardly the case in the real world. More crucially, the model assumes that markets are 

perfectly liquid and it is possible to purchase or sell any amount of stock or options or their 

fractions at any given time. This assumption is implausible. For one thing, as demonstrated 

by the events of 1987, 1998, 2007-2008 markets are not perfectly liquid. Moreover, in most 

instances, due to company policies, or other factors, investors are limited by the amount of 

money they can invest and, it is not possible to sell fractions of options.

Given the above criticisms the focus of this paper will be mainly in relation to the constant 

volatility assumption. Volatility is a measure of the dispersion of an asset price about its mean 

level over a fixed time interval. Careful modeling of an asset’s volatility is crucial for the 

valuation of options and of portfolios containing options or securities with implicit options as 

well as for the success of many trading strategies involving options.

1.5 STATEMENT OF THE PROBLEM

Many empirical studies have shown strong evidence against some of the underlying 

assumptions of the Black-Scholes Model. However my main focus will be of particular 

interest in the constant value that is assumed for the volatility. However, empirical research 

shows that the volatility of financial asset prices is following a stochastic process and varies 

through time. It means that while other properties of an option such as exercise price, time 

to maturity, current price of underlying asset; can be observed directly from the market, the 

return volatility is the uncertainty factor in the Black Scholes model. As volatility increases, 

the probability that stock price will rise or fall increases, which in response will also increase 

the value of both call and put options. Return volatility thus plays a major role in option 

pricing. Therefore, accurate measures and good forecasts of volatility are critical for option

12



pricing theories as well as trading strategies. At present, there have been many models 

developed to determine volatility, and some of them act as alternatives or improvement from 

earlier models.

The family of GARCH models is an example, starting from the autoregressive conditional 

heteroskedasticity (ARCH) model of Engle (1982). We therefore try to compare the 

suitability of the ARCH and the GARCH model as a superior measure of volatility to the 

historical volatility that is used for the Black Scholes Model.

1.6 OBJECTIVES

General Objectve: To highlight the various time dependent volatility models

Specific Objective: To determine the superiority between the GARCH and ARCH in

explaining the volatility of return

13



CHAPTER TW O

litera tu r e  r e v ie w

INTRODUCTION

M odeling volatility is challenging because volatility in financial and commodity markets 

appears to be highly unpredictable. There has been a proliferation of volatility specifications 

since the original, simple constant volatility assumption of the famous option pricing model 

developed by Fischer Black and Myron S. Scholes (1973). This model is based on historical 

volatility however it should be based on future volatility which is difficult to estimate.

Suppose that the value of the asset at the end of day i  is Sj. Define iqas the percentage change 

of asset price between the end of day i-1 and the end of day i, so that: tq = 5‘ 5|-1 or
s i-1

\ui =
S t- l

Is the log relative prices for i  = 1, 2, ..., n  with n the number of returns in the historical 

sample. The historical volatility estimate is then given by

tf2 = ^ X ? =1( i h - u ) 2..............................................................................................................2.1

In the equation above, u is the mean of the uis:
n

U = n Y j Un~i
I i= l

u is usually close to zero (especially for daily data). This gives noncentered volatility estimate 

given by:

2a2 = iv * ? , u :>
n Z j J = l  u] .2.2

While the historical volatility of an asset return is readily computed from observed asset 

returns, this measure may be an inaccurate estimate of the future volatility expected to 

prevail over the life of an option. The future volatility is unobservable and may differ from 

the historical volatility. Hence, unlike the other parameters that are important for pricing

14



options, the volatility input has to be modeled. In addition the Black-Scholes model assumes 

that volatility is constant. However evidence points to volatility being time-varying 

(Bollerslev et. al 1992) and also the variation may be random or stochastic. Randomness 

means that future volatility cannot be readily predicted using current and past information.

2.1 VOLATILITY SMILE

For the Black Scholes model, the only input that is unobservable is the future volatility of the 

underlying asset. One way to determine this volatility is to select a value that equates the 

theoretical Black Scholes price of the option to the observed market price. This value is often 

referred to as the implied (or implicit) volatility of the option. Under the Black Scholes 

model, implied volatilities from options should be the same regardless of which option is 

used to compute the volatility. However, in practice, this is usually not the case. Different 

options (in terms of strike prices and maturities) on the same asset yield different implied 

volatilities, outcomes that are inconsistent with the Black Scholes model.

The pattern of the Black Scholes implied volatilities with respect to strike prices has become 

known as the volatility smile. The existence of a smile also means that if only one volatility is 

used to price options with different strikes, pricing errors will be systematically related to 

strikes. The smile has also been shown to depend on options’ maturities. Therefore the 

existence of the smile is an indication of the inadequacy of the constant volatility Black 

Scholes model.

15



Rubinstein (1985) reports that short-maturity out of the money calls on equities have market 

prices that are much higher than the Black Scholes model would predict. On the other hand, 

since the stock market crash of 1987, the volatility smile has had a persistent shape, 

especially when derived from equity index option prices as the strike price of index equity 

options increases, their implied volatilities decrease. Thus, an out of the money put (or in the 

money call) option has a greater implied volatility than an in-the-money put (or out of the 

money call) of equivalent maturity. Because the option price, for calls or puts, increases as 

volatility rises, higher option prices are associated with higher implied volatilities. Thus, 

relatively high out of the money put prices are mirrored in high implied volatilities for those 

options.

2.2 EMPIRICAL RESEARCH

Since Black & Scholes published their formula, a lot of empirical research has been 

undertaken to compare the Black & Scholes model price of options to market prices (Rowley 

1987). Much of this research focused on the volatility because this is the only parameter that
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needs to be estimated. People started to realize that historical and implied volatility changes 

through time. They also observed the implied variance rate declines as the exercise price 

increases (Macbeth and Mervile 1979). People thus observed a volatility skew. This then 

started the quest to understand volatility better and the search for better estimates thereof. 

We therefore consider various approaches for treating time varying volatility; deterministic 

volatility and stochastic volatility approaches.

2.2.1 DETERMINISTIC VOLATILITY

The simplest relaxation of the constant volatility assumption is to allow volatility to depend 

on its past in such a way that future volatility can be perfectly predicted from its history and 

possibly other observable information. Suppose the variance of asset returns crt2+1 is 

described by the following equation:

° h i  = 0 + K°? ............................................................................................................................2.3

The future volatility depends on a constant and a constant proportion of the last period’s 

volatility. In this case, the constant variance of the asset returns in the Black Scholes formula 

can be replaced by the average variance that is expected to prevail from time t until time T, 

which is approximately given by —y Zu=t °u and the Black Scholes formula can continue to 

be used.

A more general case specifies volatility as a function of other information known to market 

participants. One alternative of this kind presents volatility as a function of the level of the 

asset price a(S). One particular model of this type, known as the constant elasticity of 

anance (CEV) model, in which^ volatility is proportional to the level of the stock price raised
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to a power, appeared early in the option pricing literature (Cox and Steve Ross 1976). 

However, the CEV model proved not to be free of pricing biases (David Bates 1994). A more 

recent variation on this volatility specification was developed by Rubinstein (1994). Instead 

of assuming a particular form of the volatility function, Rubinstein’s method effectively 

infers the dependence of volatility on the level of the asset price from traded options at all 

available strike prices. He calls the model “implied binomial trees” because the implied risk- 

neutral distribution (which depends on the volatility) of the asset price at maturity is 

inferred from option prices by constructing a binomial tree for movements of the asset price. 

Related models have been proposed by Emanuel Derman and Iraz Kani (1994), Bruno Dupire 

(1994), and David Shimko (1993).

In a recent empirical test of deterministic volatility models, including binomial tree 

approaches, Bernard et. al (1996) show that the Black Scholes model does a better job of 

predicting future option prices. The option delta, which is derived from an option pricing 

model and measures the sensitivity of the option price to changes in the underlying asset 

price, can be used to specify positions in options that offset underlying asset price 

movements in a portfolio. The authors demonstrate that the Black Scholes model resulted in 

better hedges than those from models based on deterministic volatility functions. The 

authors note that one reason for the better performance of the Black Scholes model is that 

errors, from various sources, in quoted option prices distort parameter estimates for 

deterministic volatility models and consequently degrade these models’ predictions.

2.2.2.1 ARCH MODELS.

Autoregressive conditional heteroscedasticity (ARCH) models for volatility are a type of 

jdeterministic volatility specification that makes use of information on past prices to update 

the current asset volatility. The term autoregressive in ARCH refers to the element of 

persistence in the modeled volatility, and the term conditional heteroscedasticity describes
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he presumed dependence of current volatility on the level of volatility realized in the past. 

VRCH models provide a well established quantitative method for estimating and updating 

volatility.

\.RCH models were introduced by Robert F. Engle (1982) for general statistical time-series 

nodeling. An ARCH model makes the variance that will prevail one step ahead of the 

:urrent time a weighted average of past squared asset returns, instead of equally weighted 

quared returns, as is done typically to compute variance. ARCH places greater weight on 

nore recent squared returns than on more distant squared returns; consequently, ARCH 

nodels are able to capture volatility clustering, which refers to the observed tendency of 

ligh-volatility or low-volatility periods to group together.

iome features of ARCH models also make them attractive compared with many other types 

)f option pricing models that allow for time varying volatility. In an ARCH model, the 

variance is driven by a function of the same random variable that determines the evolution 

)f the returns. In other words, the random source that affects the statistical behavior of 

•eturns and volatility through time is the same. As a result, volatility can be estimated 

lirectly from the time series of observed returns on an asset. In contrast, the direct 

estimation of volatility from the returns process is very difficult using stochastic volatility 

nodels.

rhere are many different types of ARCH models that have a wide variety of applications in 

nacroeconomics and finance. In finance, the two most popular ARCH processes are 

generalized ARCH (GARCH) (Bollerslev 1986) and exponential GARCH (EGARCH) (Daniel 

B. Nelson 1991). Researchers have tended mostly to use the GARCH process and its 

variations for option pricing. * 

fhe GARCH {p, q) model is specified as:
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2.4L  2 s 0 ) ^ l U a i H n - i 2 + ^ U P i ffn-i2..................................................................................
un

In this equation, *> >0,^*0 ,  and f e  0 hold.

IA in ARCH models, variables p  and q are the order of dependency. The distinction of 

GARCH model is that the conditional variance is specified not only as a linear function of 

I past sample variances, but also including lagged conditional variances to enter the equation

I as well.

The simplest GARCH model is GARCH(l.l) model, which is expressed as:

i O 2 = a) + oc^i-i2 + Pffi - 12..................................................................................................................2.5

The weights assigned to both conditional and unconditional volatility - y  a, and j3 must sum 

j to one. For a stable GARCH(1,1) process, a  + /? < 1 is required, otherwise the weight applied 

to the long-term variance is negative. An interesting empirical finding is that in financial 

series, particularly in daily series, a  + (3 is often close to one.

The popularity of GARCH (1,1) may be explained by three observations. First, the model has 

only four parameters and these can be estimated easily. Second, it provides an explanation of 

the major stylized facts for daily returns. Third, it is often found that the volatility forecasts 

for this specification have similar accuracy to forecasts from more complicated specifications.

I Initially, we assume conditional normal distributions following Bollerslev (1986) and Taylor 

(1986), who independently defined and derived properties of the GARCH (1,1) model.

Although GARCH captures the evolution of the variance process of asset returns quite well, 

it turns out that there is no easily computable formula, like the Black-Scholes formula, for
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E ean option pricing under a GARCH volatility process. Instead, computer intensive 

I thods are used to simulate the returns and the volatility under the risk-neutral 

I di tribution in order to compute European option prices and hedge ratios (Kaushik and Ng 

1993- Duan 1995)- Some researchers substitute the expected average variance from a GARCEI 

m odel for the variance input in the Black-Scholes formula (Engle et al 1994). However, the 

Black Scholes formula does not hold if the variance of asset returns follows a GARCH 

process- such a substitution is theoretically inconsistent but may work in practice.

Engle et al. (1994) compared the trading profits resulting from a particular trading rule by 

using two alternatives for the variance forecasts needed for Black Scholes: the variance 

forecast from a GARCH model and the variance forecast in the form of the Black Scholes 

implied volatility from a previous period. In their experiment using S&P 500 index options, 

Engle, Kane, and Noh produced greater hypothetical trading profits using the GARCH 

volatility forecast than they did using the Black-Scholes implied volatility.

2.2.1.3 EXPONENTIALLY WEIGHTED MOMENTS MODELS.

Hobson and Rogers (1996) propose a new type of option pricing model for time varying 

I volatility that also has the potential to match the observed volatility smile. Their 

mathematical specification allows past asset price movements to feed back into current 

volatility. This characteristic is similar to the GARCH model in terms of a similar feedback 

effect; however, the type of feedback can be much more general than encountered in 

standard GARCH models. Also like GARCH, but unlike standard stochastic volatility models, 

there is only one source of uncertainty that drives both the asset price and its volatility.

I The Hobson-Rogers model captures past asset price volatility through an offset function. The 

feedback relationship is primarily embodied in the functional dependence of the volatility on 

the offset function. The intuition behind the offset function is apparent from its form:
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2.6

r  i
^(m) _. Y,u=\ 0e~dU(^t ~  ^ t-u )171....................................................................................

Where S£(m) is the value of the function at time t and m  is the order of the function.

This function simply weights deviations of a transformed current price Zt (a “discounted” 

logarithm of the price) from its value u periods ago, (Zt — Zt_u), raised to the power m. The 

power applied to the deviation, or order of the offset function, is technically the statistical 

moment of the offset that is employed. For example, a First-order offset function (m = 1) 

considers the deviation itself, whereas a second-order offset function takes the squares of 

those deviations and therefore consists of a measure related to the variances of those 

deviations. The weighting is done by an exponential function that through the parameter 6 

places more or less importance on the past relative to the present. A high value for 9 implies 

that recently experienced changes in the asset price have a much greater impact on volatility 

(and the drift) than more distant past shocks. This weighting is similar to the treatment of 

past return shocks in ARCH modeling. A low 9 gives relatively more weight to the past 

shocks. The persistence of

p;ist shocks 6 can be estimated indirectly from options prices.

The feedback mechanism in this model works primarily through the asset price volatility, 

which can take any number of functional forms. Hobson and Rogers consider a simple 

version of the offset function, with m=  1, can give option prices that when substituted into 

the Black Scholes equation generate a volatility smile in implied Black Scholes volatilities 

evaluated at different strike prices, reflecting the smile observed in actual markets. The 

model s ability to trace out a smile is suggestive and may indicate the model’s potential to 

match actual prices well.



2 3 STOCHASTIC VOLATILITY

Stochastic volatility implies that the future level of the volatility cannot be perfectly 

predicted using information available today. The popularity of stochastic volatility in option 

pricing grew out of the fact that distributions of the asset returns exhibit fatter tails than 

those of the normal distribution (Mandelbrot 1963; Fama 1965). Stochastic volatility models 

can be consistent with fat tails of the return distribution. The occurrence of fat tails would 

imply, for example, that out of the money options would be underpriced by the Black 

Scholes model, which assumes that returns are normally distributed. Stochastic volatility 

models could also be an alternative explanation for skewness of the return distribution. 

Despite the relative complexity of stochastic volatility models, they have been popular with 

researchers, and additional justification for these models has recently come to light in the 

literature on asymmetric information about the future asset price and its impact on traded 

options. In a stochastic volatility model, volatility is driven by a random source that is 

different from the random source driving the asset returns process, although the two random 

sources may be correlated with each other.

In contrast to a deterministic volatility model in which the investor incurs only the risk from 

a randomly evolving asset price, in a stochastic volatility environment, an investor in the 

options market bears the additional risk of a randomly evolving volatility. In a deterministic 

volatility model, an investor can hedge the risk from the asset price by trading an option and 

a risk-free asset based on a risk exposure computed using an option pricing formula (Cox and 

Rubinstein 1985). However, with a random volatility process, there are two sources of risk 

(the risk from the asset price and the volatility risk); a risk-free portfolio cannot be created as 

ln tlle Black Scholes model. After hedging, there is a residual risk that stems from the
9

random nature of the volatility process. Since there is no traded asset whose payoff is a 

known function of the volatility, volatility risk cannot be perfectly hedged. In order to bear
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this volatility risk, rational investors would demand a “volatility risk” premium, which has to 

be factored into option prices and hedge ratios.

A feature of stochastic-volatility models that is not shared by deterministic volatility models 

is that the price of an option can change without any change in the level of the asset price. 

The reason is that the option price is driven by two random variables: the asset rice and its 

volatility. In stochastic-volatility models, these two variables may not be perfectly correlated, 

implying that the expected volatility over the life of the option may change without any 

change in the asset price. The change in volatility alone can cause the option price to change. 

I Most stochastic-volatility models assume that volatility is mean reverting. That is, although 

volatility varies from day to day, there is a presumed long-run level toward which volatility 

settles in the absence of additional shocks. The evidence for this phenomenon is especially 

.strong in markets for interest rate derivatives (Litterman et al. 1991; Amin and Morton 

1994).

| Stochastic-volatility models can be classified into two broad categories: those that lack closed 

; form solutions for European options and those that have closed form solutions.

2.3.1 STOCHASTIC VOLATILITY OPTION MODELS WITHOUT CLOSED FORM 

SOLUTION.

Hull and White (1987), Scott (1987), and Wiggins (1987) were among the first to develop

I option pricing models based on stochastic volatility. Hull and White as well as Scott made

the questionable assumption that the risk premium of volatility is zero, that is, the volatility

risk is not priced in the options market and that volatility is uncorrelated with the returns of

the underlying asset. Wiggins, who also assumed a zero volatility risk premium, found that

the estimated option values under stochastic volatility were not significantly different from

Black Scholes values, except for long maturity options. For equity options, Lamoureux and

Lastarapes (1993) offer evidence against the assumption of a zero volatility risk premium. For
*

8 *
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rency options, Melino and Turnbull (1992) found that a random volatility model yields 

| ^on prices that are in closer agreement with the observed option prices than those of the 

Black Scholes model. While the numerical methods and computers currently available allow 

omputation of these stochastic volatility option prices, they are still largely impractical. As a 

result these stochastic volatility models may not currently be useful for practitioners. 

Nevertheless, development of stochastic volatility models continues as researchers attempt to 

find more tractable models.

2.3.2 STOCHASTIC VOLATILITY MODELS WITH CLOSED FORM SOLUTIONS.

Stein and Stein (1991) develop a European option pricing model under stochastic volatility 

that is somewhat easier to evaluate than the models without the closed form solutions and 

are also less computationally expensive. The authors make the unrealistic assumption of zero 

correlation between the volatility process and the returns of the underlying asset.

Heston (1993) was the first to develop a stochastic volatility option pricing model for 

European equity and currency options that can be easily implemented, is computationally 

inexpensive, and allows for any arbitrary correlation between asset returns and volatility. 

The model gives closed form solutions for option prices.

In this model, the asset returns rtand the variance of are assumed to evolve through time as

rt = n + ot eu
and

r  = a t - 1 + K ( o -  +  Y <yt e 2,t............................................................................................... 2.5

respectively, where E l  t and £ 2,t are two standard normal random variables that could be 

correlated with each another, either positively or negatively, with a correlation coefficient, 

P- Equivalently, this coefficient also measures the correlation between the return of the asset 

3nd rEe volatility process. In this model, the variance evolves through time in such a way

25



that its long run average level is measured by 9 and the speed with which it is pulled toward 

this long run mean is measured by K, also known as the mean reversion coefficient. The 

variable y is a measure of the volatility of variance. If y is zero, the model simplifies to a time 

varying deterministic volatility model. The particular nature of the process ensures that 

volatility “reflects” away from zero: if volatility ever becomes zero, then the non zero K 

ensures that volatility will become positive.

However of in this model is not directly comparable to the implied variance from the Black- 

Scholes model. The reason is that of represents the instantaneous variance (at time t), 

whereas the implied variance in the Black-Scholes model is the average expected variance 

through the life of an option and need not equal the instantaneous variance if the model is 

not true. In Heston’s model, the average expected variance during the life of an option is a 

function of the instantaneous variance, the long-run average variance, the speed with which 

the instantaneous variance adjusts, and the time to expiration of the option.

The option price and hedge ratios in Heston’s model are functions not only of the parameters 

that appear in the Black-Scholes formula but also of K, 6, p, y and an additional parameter, to. 

The parameter to is a constant such that totxt2 measures the risk premium of volatility. The 

volatility risk premium is assumed to be directly proportional to the level of the volatility. 

I he need for an assumption about the form of the volatility risk premium is a weakness of 

any stochastic volatility model because the form of the volatility risk premium cannot be 

deduced from the weak assumption that all investors prefer more wealth to less wealth, but 

requires assumptions on investor tolerance toward risk. In this model, the form of the 

volatility-risk premium is crucial because it enables the derivation of the closed form 

solutions for option prices and hedge ratios. However, it should not be interpreted as a 

Weakness of this model vis-a-vis other stochastic volatility models of option prices because
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make the even stronger and less plausible assumption that the risk premium ofDthers 

volatility is zero.

volatility is stochastic, as it probably is in the real world, hedging using the Black 

Scales model does not result in risk free positions. A stochastic-volatility model may do a 

better job of hedging against price and volatility risks. Nandi (1996) finds that for S&P 500 

index options the returns of a hedge portfolio constructed using Heston’s stochastic-volatility 

model come closer to matching a risk-free return through time better than hedge portfolio 

returns obtained using the Black-Scholes model.

2.3.3 VOLATILITY JUMPS.

All the time-varying volatility models that have been discussed so far assume that the 

volatility of the underlying asset as well as its price evolves “smoothly,” though randomly, 

through time:

there are no jumps in the volatility process. However, a likely cause of financial market 

volatility is the arrival of information and its subsequent incorporation into asset prices 

through trading. To the extent that information arrives in discrete lumps, it is possible that 

volatility shifts between episodes of low and high volatility. For example, uncertainty about 

an impending news release (concerning some macroeconomic variable, like an anticipated 

change in interest rates) may cause the volatility of an asset price to rise. However, after a 

few rounds of trading, with the information having been incorporated into asset prices, 

volatility may revert back to its previous level. To account for jumps like those in the 

example, Vasantlilak Naik (1993) develops a pricing model for European options in which 

volatility switches between low and high levels. Each level is expected to last for a certain 

Period of time that is not known beforehand. One version of his model assumes that the risk 

from the volatility jumps is not priced by market participants. The model takes the same 

Parameters that enter the Black Scholes formula as well as additional parameters such as the
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probability of jumps from one level to another level, given that volatility is currently in a 

particular level. Naik finds that short maturity options are much more sensitive to volatility 

shifts than long-maturity options. The reason is that, over a long period of time, expected 

upward and downward jumps in volatility are canceled by each other, resulting in a volatility 

that is close to the normal level.

This model has not been empirically tested and therefore cannot yet be evaluated against 

other stochastic volatility models. In general, jump models can be difficult to verify 

empirically because jumps occur infrequently. The parameters of such models may be 

imprecisely estimated using relatively small historical data series on option prices or 

underlying asset prices.
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^ jjAPTER THREE 

research METHODOLOGY 

3 j P R O D U C T IO N

Several volatility models have been developed to try and explain the major stylized facts for 

asset returns. It is natural to seek tests that can decide which of these models provides the 

best description of asset returns. W e therefore compare three models; ARCH model, GARCH 

(l l) and the moving average model.

3,2 MODEL SPECIFICATION 

3.2.1 ARCH MODEL

Many models are developed that correspond to stochastic volatility process characteristic. 

One widely known model is the ARCH model, introduced by Engle (1982). This model is 

setting unconditional volatility constant, while allowing the conditional volatility to change 

over time. This conditional volatility is subsequently altered by past returns. The ARCH (q) 

model is specified as:

°n2 = w +  £?=i U i U n - i 2 ..................................................................................................................... 3.1

The variable co is: co= y • VL

In this equation, co > 0, and a i s 0 hold. VL is the long-run average variance rate and y  is the 

weight assigned to VL. Daily return /q is calculated using— S‘~1. The variable q is the order of 

dependency to past returns.

An assumption underlying this model is that volatility is changing over time and there is 

tendency that a large error will be likely followed by a large error and a small error followed 

by a small error. The variable q is the period the conditional variance depends on. The larger 

the variable q, the longer is the period of volatility clustering.
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L .2 = a) + m - i 2 + P ° i - i 2 3.2

weights assigned to both conditional and unconditional volatility - y, a, and /? must sum 

to one. F°r a stable GARCH(1,1) process, a + (3 < 1 is required, otherwise the weight applied 

to the long-term variance is negative. An interesting empirical finding is that in financial 

series, particularly in daily series, a  + /3 is often close to one.

3.2.3 MOVING AVERAGE MODEL

Suppose that the value of the asset at the end of day i  is Si. Define iqas the percentage change 

of asset price between the end of day i-1 and the end of day i, so that: iq = 5‘ 5l-1
s i-1

The unbiased estimate of one-day volatility, using ui of m  days before today, is

3.3

In the equation above, u is the mean of the u is:
m

i = l

A simplified approach to estimate volatility is given by

3.4
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Some expect that more data would lead to better precision, but data that are too old might be 

unrelated to predict the future.

<■
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ch apter  f o u r

4 1 d a ta  a n a l y s is , in t e r p r e t a t io n  a n d  d is c u s s io n  o f  r e s u l t s

Data used for implementation consists of daily close prices from NSE 20 share index from the 

period September 2011 to September 2012, which are collected for the purpose of estimating 

volatility- Information will be sourced from the Nairobi Stock Exchange.

From the below analysis it seems the GARCH is a good description of the evolution of the 

variance process of the asset returns. It provides a better evolution of asset returns than 

compared to the ARCH model. It also captures volatility clustering quite well. A 

disadvantage of the GARCH model is that it is computationally demanding. The moving 

average model is used as a benchmark for the comparison of both models.

Table 4.1 ARCH MODEL RESULTS

Ui Coefficient Standard

Error

z P > l z \ [95%confidence interval]

Ui 0.0012239 0.0003316 3.69 0.000 0.000574 0.0018738

constant

ARCH(l) 0.0122273 0.0702186 0.17 0.862 -0.1253987 0.1498532

Constant 0.0000225 2.38e-06 9.46 0.000 0.000179 0.0000272

Source: Own Calculations

Its graphical representation is given by Graph 4.2
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Figure 4.1: A R C H (l.l) RESULTS
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4.2: G A R CH (l.l) RESULTStable

Coefficient

0.0008741

Standard

Error

0.0002692 3.25

P > lz  I

0.001

[95%confidence interval]

0.0003464 0.0014017

ARCH(l)

GARCH(U)

Constant

0.0796792 0.0190636 4.18 0.000 0.0423152 0.1170432

-0.9698603 0.0140657 -68.95 0.000 -0.9974287 -0.942292

0.0000451 4.41e-06 10.23 0.000 0.0000365 0.0000538

Source: Own Calculations

Its graphical representation is given by Graph 4.2

Figure 4.2: GARCH(l.l) RESULTS
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figure 4.3 MOVING AVERAGE GRAPH RESULTS

ui

Table 4.3: Moving Average Results

Average 0.001223286

Standard deviation 0.004787981

annual standard deviation 0.076006838

Non centered volatility 2.4312E-05

Non centered standard deviation 0.004930722

Annual non centered standard deviation 0.078272791

Source: Own Calculations

Where U; =  Sl Sl 1
1 * i-l

The moving average is used as a benchmark for comparison with the other two models. The 

volatility displays clustering where periods of high are followed by consecutive periods of 

high. On the other hand when the market is low it tends to be low for some period. This is 

quite similar to the GARCH results above.
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CHAPTER fiv e

5.1 SUMMARY AND CONCLUSIONS

Many empirical studies have shown strong evidence against some of the underlying 

assumptions of the Black Scholes Model. However this paper has focussed on the constant 

value that is assumed for the volatility. Empirical research shows that the volatility of 

financial asset prices is following a stochastic process and varies through time. It means that 

while other properties of an option such as exercise price, time to maturity, current price of 

underlying asset; can be observed directly from the market, the return volatility is the 

uncertainty factor in the Black Scholes model. Accurate measures and good forecasts of 

volatility are critical for option pricing theories as well as trading strategies. This study has 

highlighted the different measures that determine volatility, and some of them act as 

alternatives or improvement from earlier models.

We have compared three models: ARCH, GARCH and the Moving Average Model. GARCH 

is a good description of the evolution of the variance process of the asset returns. It provides 

a better evolution of asset returns than compared to the ARCH model. It also captures 

volatility clustering quite well. A disadvantage of the GARCH model is that it is 

computationally demanding. Therefore the development of tractable time dependent 

volatility models as well as more efficient methods of model parameter estimation are an area 

of intensive research.
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5.2 FURTHER AREAS OF RESEARCH

The study can be extended to include other criticisms in the assumptions of the Black 

Scholes Model.

It can also be extended to investigate the effect of the volatility employed in the option 

price given that the Kenyan derivative market is at its infancy. As stated, Nairobi 

securities and derivatives market is to be established soon by the Capitals markets 

authority as part of their capitals markets master plan (CMMP) for Kenya’s securities 

market for the next 5 - 1 0  years.

/
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APPNENDIX 1: BASIC DATA

The NSE 20 share index and change of the index for each day are displayed.

NSE 20 Uj u?

1 3212.86
2 3203.35 -0.00295998 8.76148E-06
3 3220.74 0.005428692 2.94707E-05
4 3224.87 0.001282314 1.64433E-06
5 3200.46 -0.007569297 5.72943E-05
6 3180.55 -0.006220981 3.87006E-05
7 3200.8 0.006366823 4.05364E-05
8 3196.86 -0.001230942 1.51522E-06
9 3184.92 -0.003734915 1.39496E-05

10 3187.22 0.000722153 5.21505E-07
1 1 3190.78 0 .0 0 1116 9 6 1 1.2476E-06
12 3202.57 0.003695021 1.36532E-05

13 3204.76 0.000683826 4.67618E-07
14 318 5.14 -0.006122143 3.74806E-05
15 3 17 1.6 3 -0.004241572 1.79909E-05
16 3182.88 0.003547072 1.25817E-05
17 3 19 1.7 2 0.002777359 7.71372E-06
18 3188.23 -0.001093454 1.19564E-06
19 3202.34 0.004425653 1.95864E-05
20 3224.89 0.007041726 4.95859E-05
2 1 3224.18 -0.000220163 4.84715E-08
22 3205.01 -0.005945698 3.53513E-05
23 3215.7 0.003335403 1.11249E-05
24 3196.7 -0.005908511 3.49105E-05
25 3167.49 -0.009137548 8.34948E-05
26 3168.27 0.000246252 6.06399E-08
27 3167.87 -0.000126252 1.59395E-08
28 3156.87 -0.003472365 1.20573E-05
29 316 0 .51 0.001153041 1.3295E-06
30 3156 .19 -0.001366868 1.86833E-06
3 1 3142.74 -0.004261467 1.81601E-05
32 3J.43.9 0.000369105 1.36238E-07

42



33 3154.46 0.003358885 1.12 8 2 11-0 5
34 318 2.14 0.008774877 7.69985E 05

35 3176.36 -0.001816388 3.299261-06

36 318 3.0 1 0.002093591 4.383121-06
37 3199.67 0.005234039 2.739521-05

38 3208.63 0.002800289 7.84162E-06

39 3248.4 0.012394698 0.000153629

40 3258.43 0.003087674 9.53373E-06

41 3275.87 0.005352271 2.86468E-05

42 3303.75 0.008510716 7.24323E-05

43 3 3 12 .15 0.002542565 6.46464E-06
44 3329.16 0.005135637 2.63748E-05

45 3343.96 0.004445566 1.97631E-05

46 3362.59 0.005571239 3.10387E-05

47 3380.27 0.005257852 2.7645E-05
48 3394.29 0.004147598 1.72026E-05

49 3401.6 0.002153617 4.63807E-06

50 3399.97 -0.000479186 2.29619E-07

5 1 3358.6 -0 .012167754 0.000148054
52 3332.89 -0.007654975 5.85986E-05
53 3326.35 -0.001962261 3.85047E-06
54 3318.95 -0.002224661 4.94912E-06

55 3317.62 -0.000400729 1.60584E-07
56 3285.51 -0.009678625 9.36758E-05
57 3293.1 0.002310144 5.33676E-06
58 3293.91 0.000245969 6.05007E-08

59 3312.85 0.005750005 3.30626E-05
60 3312.56 -8.75379E-05 7.66289E-09
61 3339.27 0.00806325 6.5016E-05
62 3367.23 0.008373088 7.01086E-05
63 3360.12 -0 .0 0 2111528 4.45855E-06
64 3366.89 0.002014809 4.05946E-06
65 3360.12 -0.002010758 4.04315E-06
66 3363.72 0.00107139 1.14788E-06
67 3392.23 0.008475735 7.18381E-05

68 3408.7 0.004855213 2.35731E-05

69 3400.48 -0.002411477 5.81522E-06

70 3396.83 -0.001073378 1.15214E-06
7 1 3429.02 0.009476482 8.98037E-05

72 . 3454.34 0.007384034 5.4524E-05
73 3456.35 0.000581877 3.38581E-07

74 3443.94 -0.003590493 1.28916E-05

75 3461.19 0.005008798 2.50881E-05
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76 3489.24 0.008104149 6.56772E-05
77 3534.27 0.012905389 0.000166549

78 3554.46 0.005712637 3.26342E-05

79 3571.2 0.004709576 2.21801E-05
80 3581.33 0.002836582 8.04619E-06

81 3579.57 -0.000491438 2.4 1511E -0 7

82 3557.13 -0.006268909 3.92992E-05

83 3534.53 -0.006353437 4.03662E-05

84 3546.66 0.003431857 1.17776E-05
85 3541.07 -0 .0 0 1576 131 2.48419E-06

86 3585.12 0.012439743 0.000154747

87 3 6 1 1 .1 0.007246619 5.25135E-05

88 3599.13 -0.003314779 1.09878E-05

89 3599.18 1.38922E-05 1.92995E-10

90 3585.93 -0.003681394 1.35527E-05

91 3589.43 0.000976037 9.52648E-07

92 3599.33 0.002758098 7.60711E-06

93 3628.64 0.008143182 6.63114E-05
94 3637.08 0.00232594 5.41E-06
95 3655.07 0.004946276 2.44656E-05

96 3677.81 0.006221495 3.8707E-05
97 3699.69 0.005949193 3.53929E-05
98 3708.88 0.002483992 6.17022E-06
99 3672.36 -0.009846638 9.69563E-05

100 3678.02 0.001541243 2.37543E-06

10 1 3668.21 -0.002667196 7.11393E-06
102 3634.85 -0.009094354 8.27073E-05

103 3618.53 -0.004489869 2.01589E-05
104 3627.64 0.002517597 6.33829E-06

105 3626.07 -0.000432788 1.87306E-07

106 3650.85 0.006833845 4.67014E-05

107 3653.29 0.000668338 4.46675E-07

108 3635.86 -0.004771042 2.27628E-05
109 3634.82 -0.00028604 8.18187E-08
110 3651.27 0.004525671 2.04817E-05

1 1 1 3639.46 -0.003234491 1.04619E-05

1 1 2 3657.01 0.004822144 2.32531E-05

1 1 3 3670.18 0.003601303 1.29694E-05

114 3670.75 0.000155306 2.41199E-08

1 1 5 . 3685.36 0.003980113 1.58413E-05

116 3694.23 0.002406821 5.79278E-06

1 1 7 3682.23 -0.003248309 1.05515E-05

118 36 6 3.11 -0.005192506
. -£------ ----------------- 2.69621E-05
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119 3694.55 0.008582871 7.36657E-05

120 3682.24 -0.003331935 1.110 18 E -0 5

1 2 1 3704.7 0.006099548 3.72045E-05

122 3725.55 0.005627986 3.16742E-05

123 3738.15 0.003382051 1.14383E-05
124 3739 0.000227385 5.1704E-08

125 3709.84 -0.007798877 6.08225E-05

126 3703.94 -0.001590365 2.52926E-06

127 3763.91 0.016190867 0.000262144

128 3790.07 0.006950219 4.83055E-05
129 3791.79 0.000453817 2.0595E-07

130 3795.32 0.000930959 8.66684E-07

1 3 1 3793.32 -0.000526965 2.77692E-07
132 3791.06 -0.000595784 3.54959E-07
133 3789.33 -0.000456337 2.08243E-07
134 3797.4 0.002129664 4.53547E-06
135 3802.96 0.00146416 2.14376E-06
136 3788.64 -0.003765488 1.41789E-05
137 3795.1 0.001705097 2.90736E-06
138 3778.1 -0.00447946 2.00656E-05
139 3788.52 0.002758 7.60656E-06
140 3825.93 0.009874568 9.75071E-05
14 1 3840.36 0.003771632 1.42252E-05
142 3844.61 0.001106667 1.22471E-06
143 3845.93 0.000343338 1.1788 1E-07
144 3878.49 0.008466093 7.16747E-05
145 3878.52 7.73497E-06 5.98297E-11
146 3870.51 -0.002065221 4.26514E-06
147 3854.28 -0.004193246 1.75833E-05
148 3832.42 -0.005671617 3.21672E-05
149 3825.65 -0.001766508 3.12055E-06
150 3825.08 -0.000148994 2.21993E-08
1 5 1 3843.58 0.0048365 2.33917E-05
152 3830.24 -0.003470723 1.20459E-05
153 3815.44 -0.003863988 1.49304E-05
154 3 8 15 .1 -8 .91116E-05 7.94088E-09
155 3823.49 0.002199156 4.83629E-06
156 38 31.0 1 0.00196679 3.86826E-06
157 3792.22 -0.010125267 0.000102521
158 3800.23 0.0 0 2112219 4.46147E-06
159 3801.03 0.000210514 4.4316E-08

160 3804.54 0.000923434 8.5273E-07

16 1 38 14 .1 , 0.002512787 6.3141E-06
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162 3808.47 -0.001476102 2.17888E-06
163 3819.45 0.002883048 8.31196E-06
164 3817.7 -0.000458181 2.0993E-07

165 3826.89 0.002407209 5.79465E-06
166 3839.12 0.003195807 1.02132E-05

167 3842.38 0.000849153 7.21061E-07

168 3878.13 0.009304129 8.65668E-05

169 3 8 75 .11 -0.000778726 6.06414E-07

170 3865.76 -0.002412835 5.82177E-06

1 7 1 3855.14 -0.002747196 7.54709E-06
172 3895.86 0.010562522 0.000111567

173 3897.45 0.000408126 1.66566E-07

174 3888.14 -0.002388741 5.70609E-06

175 3899.62 0.002952569 8.71766E-06
176 3860.41 -0.010054826 0.0001011

177 3903.72 0 .0 112 19 0 16 0.000125866
178 3 9 4 1.1 0.009575482 9.16899E-05
179 3953.84 0.0032326 1.04497E-05

180 3953.53 -7.84048E-05 6.14731E-09
18 1 3950.18 -0.000847344 7.17992E-07
182 3956.54 0.001610053 2.59227E-06
183 3959.1 0.00064703 4.18648E-07
184 3934.52 -0.006208482 3.85452E-05
185 3927.44 -0.001799457 3.23805E-06

186 3942.4 0.003809097 1.45092E-05

187 3950.97 0.002173803 4.72542E-06

188 3950.9 -1.7 7172 E -0 5 3.13898E-10

189 3980.53 0.007499557 5.62434E-05
190 3972.03 -0.002135394 4.55991E-06

19 1 3965.75 -0.001581056 2.49974E-06

192 3945.25 -0.005169262 2.67213E-05

193 3958.62 0.003388885 1.14845E-05
194 3961.05 0.00061385 3.76812E-07

195 3975.79 0.003721236 1.38476E-05
196 3971.68 -0.001033757 1.06865E-06

197 3983.16 0.002890464 8.35478E-06

198 3982.94 -5.52325E-05 3.05063E-09
199 3995.03 0.003035446 9.21393E-06

200 4029.5 0.008628221 7.44462E-05

201 4032.41 0.000722174 5.21535E-07
202 4014.03 -0.004558068 2.0776E-05

203 4023.55 0.002371681 5.62487E-06
204 4034.07 . 0.002614607 6.83617E-06

46



205 4053.79 0.004888363 2.38961E-05

206 4072.5 0.004615434 2.13022E-05

207 4095.26 0.005588705 3.12336E-05

208 4 119 .5 0.005919038 3.5035E-05

209 4 132.9 1 0.003255249 1.05966E-05

210 4 14 1.23 0.002013109 4.05261E-06

2 1 1 4143.35 0.000511925 2.62067E-07
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