
UNIVERSITY OF NAIROBI

SCHOOL OF COMPUTING AND INFORMATICS

AGENT BASED SYSTEM FOR

REALTIME DATABASE AUDIT MONITORING

BY

BONIFACE AKUKU

P58/73079/2009

SUPERVISOR

MR. CHRISTOPHER MOTURI

August 2011

A research report submitted in partial fulfillment for the requirements of Master of
Science in Computer Science

University of NAIROBI Library

0439225 4

Table of Contents
Table of Contents.. „... ii

Abstract... iii

Dedication... iv

Acknowledgement..v

Declaration.. vi

Abbreviations...vii

List of Tables...viii

List of Figures...ix

CHAPTER 1-INTRODUCTION...1

1.1 Background... 1

1.2 Problem Definition...2

1.3 Objectives..3

1.4 Research Questions...3

1.5 Proposed Solution...4

1.6 Agent Based System Algorithms...4

1.7 The scope of the study.. 4

1.8 Significance of the study.. 5

1.9 Conceptual Model of Agent Based System for Real-Time Database Audit Monitoring................. 6

CHAPTER 2 -LITERATURE REVIEW ... 9

2.1 Introduction...9

2.1.1 Inbuilt database audit log or audit trail system...9
2.1.2 Example Scenarios...10
2.1.3 Fingerprinting Scheme...11
2.1.4 Real-Time, Policy-Based Activity Monitoring.. 12
2.1.5 Agent Based Platform..12
2.1.6 Multi-Agent Concept and Approach..13
2.1.7 Reviewing and Evaluation of Available Database Auditing Tools and Solutions............................. 13
CHAPTER 3 -RESEARCH METHODOLOGY...14

3.1 Data collection methods...14

3.1.1 Sources of data....v...14
3.1.2 Data collection tools..14
3.2 Data analysis method....................... .7... 15

3.3 Multi-Agent Methodology...15

3.4 Multi-Agent design.. 17

CHAPTER 4 -ANALYSIS AND DESIGN..18

4.1 Database Auditing Monitoring Requirements Analysis... 18

4.2 System Specification.. 18

Page i

4.2.1 Functional Requirements..18
4.2.2 Scenarios... 19
4.3 Architectural Design.. 25

4.3.1 Agents system overview...25
4.3.2 Agents Acquaintances using use case diagram...26
4.3.3 Agent messages communication.. 27
4.4 Agents Detailed Design... 28

4.4.1 Agent Based System Overview Diagram..28
4.5 Agents Internal Process... 28

4.5.1 Event Descriptors...28
4.5.2 Agents Plan Descriptors...29
4.6 Algorithms.. 29
4.7 Database Design... 30
CHAPTER 5- SYSTEM IMPLEMENTATION AND RESULTS..31

5.1 Implementation of the System...31

5.2 System T esting... 31

5.3 Discussion of Results...31

5.3.1 Challenges Facing Database Auditing... 31
5.3.2 Evaluation of available database auditing tools and solutions.. 32
5.3.3 System Results.. 32
CHAPTER 6- CONCLUSION...37

6.1 Achievements.. 37

6.2 Research Contributions..38

6.3 Recommendation/ Future work...38

6.4 Assumptions and limitations...38

Page ii

ABSTRACT

Database auditing is the examination of audit or transaction logs for the purpose of tracking changes

with data or database structure. Existing database audit tools exerts performance overhead onto the

database when logging audit activities. In proactive database auditing the agents track the database

activities through database command execution and provide real time alert notification.

The research aims to develop a proactive database auditing system/prototype using multi-agent

technology that provide real time audit reports and alerts to the auditors, independent of the database

system, non-proprietary while overcoming performance overhead issues on the database system and

enhances database audit logs availability. In this research we use Prometheus methodology which has

been proven effective in the design and building of agent system, it is detailed and complete (start to

end).

The Agent based database audit monitoring system utilizes agent properties and providing ability to

monitor local or remote activities and events within the database with real time alerting and notification.

The challenges facing existing database auditing are met by the agent system ability to enlist other

agents including people to accomplish the alerting and notification tasks.

Page iii

DEDICATION

I would like to dedicate this Master of Science Research Project to my wife Mrs. Christine Mwai Opiyo, my

daughter Precious Haggie Okelo and my son David Omondi Okelo. There is no doubt in my mind that without

their inspiration and counsel I could not have completed this process.

Page iv

ACKNOWLEDGEMENT

We are extremely grateful to our supervisor Mr. Christopher Moturi for providing us an opportunity to

get the in-depth knowledge of agent based system for real time database audit monitoring. We also

acknowledge to Dr. Peter Waiganjo, Mr. Andrew Mwaura and Mr. Ogutu for their support and

encouragement and given us an opportunity to work on this project.

We are thankful to Mr. Alfayo Adede for his intuitive ideas. Last but not the least we owe this

achievement to the Almighty God for the strength and no to forget our family for their encouragement

though being hundred miles away.

DECLARATION

The project presented in this report is my original work and has not been presented for any other
university award.

Signature ___________________ Date \ O \ \

Boniface Akuku (P58/73079/2009)

This project has been submitted in partial fulfillment of the requirements of the Master of Science in
Computer Science of the University of Nairobi with my approval as the University supervisor.

Signature Date

Mr. Christopher Moturi
Deputy Director
School of Computing and Informatics

Page vi

Abbreviations

SQL- Standard Query Language

SYS.AUDS table - log table

Sys.fga_log$ table -Fine grained log table

COBIT - Control Objectives for Information and related Technology

CD2FA - Content Addressed Delayed Input Deterministic Finite Automata

NTFS -NT files system

JCAP- JAVA packet capturing (JCAP) library

SYS -Systems

SMS -Short Message services

JADE - Java Agent Development Framework

I/O -Input output

GUI - Graphical User Interface

E-book- Electronic book

DBMS- Database Management systems

OS- Operating systems

CPU- Central Processing Unit

DBA- Database Administrators

TCP/IP- Transport Control Protocol/ Internet protocol

r ~

List of Tables

Table 1: Agents and their functions

Table 2: Oracle Database Auditing Parameters that define specific conditions that must take place for

the audit to occur

Table 3: Oracle Database 11.2.01 Standard Audit Trail with 50% CPU System Load

Table 4: Oracle Database 11.2.01 Fine Grained Audit Trail with 50% CPU System Load

Table 5: Summary analysis of existing database audit and monitoring tools and solutions

Table 6: Agents types, categories and responsibilities

Table 7: The Major Models of Prometheus

Table 8: Summary of existing database auditing tools and solutions

/

Page viii

\

List of Figures

Figure 1-Agent based system for real time database audit monitoring conceptual model

Figure 2- Process flow diagram of agent based system for real time database audit monitoring

Figure 3- Prometheus Methodology

Figure 4- Database design

Figure 5: Exceptional analysis agent receives notification and send the SMS and email to the auditor

Figure 7: Formatted database audit report for all cases

Figure 6: Formatted audit report on exceptional cases

Figure 8: alert messages to the auditor

Figure 9 and 10: User Interface of the system

Page ix

\

CHAPTER 1

INTRODUCTION
1.1 Background

Database auditing is the examination of audit or transaction logs for the purpose of tracking changes

with data or database structure. Databases can be set to capture alterations to data and metadata, along

with modifications to the database system storing the data for auditing purpose. Most organizations

business-critical data are stored in databases, therefore data confidentiality, availability or integrity of

audit data is very important.

Database auditing involves monitoring and recording of selected user database actions and can be

based on individual actions, such as the type of SQL statement executed, or on combinations of factors

that can include user name, application, time, and so on. Most databases applications (DMBS) have

inbuilt audit capabilities and stores auditing information (records/logs) when specified elements in

databases are accessed or altered.

Currently in database auditing the recorded audit data is stored in either a data dictionary table, called

the database audit trail, or in operating system files, called an operating system audit trail. Standard

audit records can be written either to DBA_AUDIT_TRAIL (the sys.audS table) or to the operating

system. Fine-grained audit records are written to DBA_FGA_AUDIT_TRAIL (the sys.fga_log$ table)

and the DBA_COMMON_AUDIT_TRAIL view, which combines standard and fine-grained audit log

records. The recording of audit data are inbuilt within the database system or operating system, leading

to negative database performance issues such as response time, locking of log file system , database

unavailability, crashing of file system especially NTFS, corruption of the log files and are non-real time

lacking agents based capabilities, and logs extraction process overheads can be quite high.

According to Sushila (2008), best practices such as Control Objectives for Information and related

Technology (COBIT) recognizes the need for database audit monitoring to use agent based solutions to

overcome the challenges inherent with database auditing tools. Agent based system for database audit

monitoring tracks the database activities through database command execution, provides a real time

alert notification on exceptional cases at the execution of commands statements within the database.

The emerging conclusion here is that agents role adds value to database auditing domain and database

auditing needs to adopt multi-agent technology to overcome the present challenges it is faced with.

Page 1

1.2 Problem Definition

Database management systems (DBMS) has become almost the main respiratory of organizations

critical data, database auditing therefore needs to capture every single transaction taking place in the

database. However the constant reading and writing of audit data results in substantial disk input/output

operation slowing down the database performance (Herlands, 2007) and leads to slow database

operation response time, locking of log file (sysfile), database unavailability due to crashing of file

system especially NTFS, corruption of the log files on the database systems. Because of these

performance issues database auditing and database performance are in constant conflict often resulting

to database auditing being ignored.

It has also been argued that there are some limitations with database auditing because data access

statements, commonly referred to as SELECT statements, are not collected attributed to the reasons

above. Additionally, inbuilt database audits seldom capture the original query or variables passed by the

user; rather they record a synthesized view of the event. The logs capture data values, both the before

and after changes were made, according to Lane (2010) that makes audit trails much more useful for

detecting what was changed, rather than what was accessed.

Several approaches and solutions have been developed to enhance database auditing however they are

neither is real time nor proactive besides they do not address fully the database performance issues.

These database auditing tools are susceptible to failure sometimes preventing auditing actions from

completing in cases where the audit records cannot be stored due to database destination for audit data

becoming full, therefore may be unable to accept new records, making recording auditing actions

impossible.

This research project seek to develop an agent based system for real time database audit monitoring that

both enhances and add value to database auditing domain by employing and utilizing multi-agent

technology.

Page 2

1.3 Objectives
The aim of this research project is develop a proactive real time agent based system/prototype that

provides the auditor with overall visibility to the operations taking place within the database system and

add value by enhancing database audit logging techniques to overcome the database performance

problems mentioned above in the previous section. This will definitely contribute knowledge, value

and technology option to database auditing domain in readiness for the future. The specific objectives of

the agent based technology to make database auditing real time, proactive and platform independent are

to:-

1. Develop database audit and monitoring agent based system using multi-agent technology that is
proactive, real time, platform independent (non-proprietary), without performance overhead on the
database and enhances audit logs availability.

2. Identify and apply a suitable algorithm in developing agent based database audit monitoring system
via TCP/IP.

3. Develop a logical database structure for audit logs that meets the increasing demand for database
security, compliance and regulatory requirements driving the database auditing.

4. Develop analysis agent that performs real-time notification.

1.4 Research Questions

Findings from other studies indicates that there is a relationship between the quality of service auditors
provides for their organizations and the database auditing tools and solutions provided for the audit
function, for this reason a number of third party solutions are in use today by auditors in trying address
the problems and challenges with database auditing. Thus a better understanding of database auditing
tools and solutions plays a critical role in the design and implementation of database audit monitoring
solution. This research project attempt to answer several fundamental questions to database auditing
such as:

1. Do the current database auditing tools have agent based audit and monitoring capabilities?

2. Is agent based real time system for database audit monitoring an appropriate proactive solution to
overcome database performance overheads and audit log availability issues found in inbuilt database
audit tools?

3. Are the database audit logs, file systems and log extraction process independent from the database
system being audited?

4. What value additions does agent based audit monitoring system adds to database auditing and
auditors?

Page 3

1.5 Proposed Solution
The Agent based for real time database audit monitoring system utilizes agent properties and agent

characteristics that is data driven execution, the ability to monitor local or remote data activities and

events within the database, determining for itself the nature of database activities and SQL command

statement being executed using production rules and regular expression parsing and communication

protocols, the agent ability to enlist other agents including people to accomplish the alerting and

notification tasks.

1.6 Agent Based System Algorithms

The agent based system for real time database audit monitoring uses using agent technology to

capture network packets and will be built on JAVA packet capturing (JCAP) library to capture all

packet to the database then passes control to the next level (Level one) agent for deep packet inspection

through content (packet body) analysis. Several algorithms exists for deep packet inspection however

in this project Advanced Algorithm for fast and scalable deep packet inspection and a fast multi-pattern

matching algorithm are used by employing Content Addressed Delayed Input Deterministic Finite

Automata (CD FA) technique for parsing regular expression due to its suitability for low memory

resource requirement.

In deep packet inspection both the header and the body of the packet are analyzed at the same time

performing packet matching using fast multi-pattern matching algorithm due to their low memory cost

ability (Jia Ni et al, 2007) . These algorithms offers a high speed performance and low memory cost

besides they reduces false positive ratio by using hash function (Williams et al, 2008).

r The research study uses SQL statement commands packets, SQL syntax algorithm in this case SQL

parser is used to implement the execution of invalid SQL query statements and to join the command

statements.

1.7 The scope of the Study

Database auditing monitoring was selected for the reason that database management system has become

key to organizations operations hence a critical resource in the present world today. The need we

employ agent based system in database auditing and monitoring is because database audit trails should

include the individual SQL query, the database response, the timestamp, and, most importantly, the

individual user or computer that accessed or changed database data. Multi-agent technology is

considered a viable solution in achieving the research project objectives stated above in the following
ways:

1 ■ Database auditing need to move to the next level that supports real time/proactive auditing

Page 4

2. The need to include audit monitoring of the SELECT, UPDATE, DELETE, and INSERT

statements, SQL query command statements.

3. There is need for databases to offer high availability of audit logs

4. There need to employ a technology that overcomes performance overheads and other

weaknesses of existing database auditing tools and solution.

5. The demand to have logical database audit data structure for database security, compliance and

regulatory requirements.

1.8 Significance of the Study

For most organizations database management system has become the central main data and information

repository. The financial systems and mission critical business operations have shifted from paper-based

to digital based, database systems have from single systems to enterprise resource planning (ERP)

systems however database auditing tools and solutions used still face a number of challenges mainly

database performance problems, none real time, platform and database independency.

Software agent technology is an emerging and promising technology which attracts great interest in

recent years, research and development is currently ongoing in the multi-agent domain, with anticipated

benefits of additional new functionalities that agents brings to database auditing and monitoring

including, intelligence, autonomy, scalability, logging of the information flows, real time alerts and

notifications, non-proprietary, platform independence of audit records/data from the database itself and

no database resource overhead.

19 Conceptual Model of Agent Based System for Real-Time Database Audit Monitoring

Department 1 Department 2 Department 3

(Ethernet 222.22.0.2 Q

4 *

f

Page 6

Figure 2: Process flow diagram

Page 7

"^nTcategories Tasks

Packet data capturing Agent • Listen to all the open ports

• Captures all packets from the network to

the database

SQL Command Extraction Agent • Extracts SQL commands for analysis and

storage in a persistent database

Exceptional Cases Analysis Agent • Analyses the SQL commands on

exceptional cases

Real time Alert Notification Agent • Sends alerts and notification

Querying and Reporting module Agent • Generate audit reports

Table 1: Agents in database audit monitoring and their functions

Page 8

CHAPTER 2

LITERATURE REVIEW
2.1 Introduction

From the inception of database age there has been significant development and implementation of

database auditing and monitoring tools have been developed to assist both financial auditors and

information system auditors including security risk managers. In attempting to analyze database audit

data or information a number database tools and solutions are employed in different aspects of

computing setup. Network monitoring tools for example, are used to identify problems to quantify

expected performance. Most database monitoring tools are employed to monitor specific aspects of the

database, for this reason several monitoring tools are employed in order to get full picture of the nature

of activities taking place within the database.

It is noted that most database management systems (DMBS) have database auditing or “Logging”

systems, including capability to log database transactions. This system appears to be adequate solution

for capturing records of all the database activities in the sense that when audit log function is turned on,

it can be set to capture a great deal of information, including, who connected to the database, who made

changes to the database, what changes were made, and who accessed records. While this functionality is

powerful, the main drawbacks are negative database performance and database and audit log availability

j should the database crash. As stated by (Herlands, 2007), it is also possible to turn off this functionality

by privileged users.

2.1.1 Inbuilt Database Audit log

Inbuilt database audit log (also known as the audit system) function is built within the database, and is

part and parcel of the database system though very effective and almost adequate but has adverse effect

on database system’s performance. This is especially true when attempts are made to record every

access to certain data; the constant reading and writing of audit data results in substantial disk

input/output (I/O) on the database system,.creating a bottleneck that significantly slows down database

system performance. As argued by (Newman, 2009), that since auditing data is stored in the SYS.AUDS

table, it ends up sharing disk space with user data, resulting into possible application downtime when

log files get filled up.

Page 9

\

2 .1.2 Example Scenarios

Oracle is the leading database management system in use today across the globe, below are the

configuration parameters of inbuilt auditing system in Oracle and summary of simulated performance

analysis when audit trail is configured and turned on.

Parameter Value Description

audit_trail DB Write the standard audit content to sys.aud$

table
--1------ DB, EXTENDED Write standard audit content to sys.aud$ along

with the SQL text and bind variable content that

was executed for that SQL

OS Write the standard audit content to text files

XML Write the standard audit content and FGA audit

content to an XML formatted file

XML, EXTENDED Write the standard audit content and FGA

content to an XML formatted file along with

SQL text and bind variable content.

audit_sys_operations TRUE/FALSE Audits all top-level SYSDBA and SYSOPER

activity. These audit records are only written to

OS files regardless of the audit_trail parameter

setting.

audit_syslog_level <FACUITYJCLAUSE.

PRIORITY_CLAUSE>

Provides level information for the syslog.

audit_file_dest <OS_DIRECTORY> Specifies the OS directory location to write the
OS and XML audit files

Table 2 - Oracle Database Auditing Parameters that define specific conditions that must take place for

the audit to occur (Bednar, 2010).

Bednar (2010) argues from the analysis of throughput and additional CPU utilization after auditing

function is turned on using Oracle database results tabulated in table 2 and 3 below from a real-world

simulation scenario with 50% CPU System Load, that when audit is written to a text file it minimizes

performance impact on the database however it still results in substantial performance effects.

This fact is supported by a summary of simulated results from a test created to generate approximately

audit records per second using the Oracle database standard database auditing command.

Page 10

'AuditTraH Setting Additional Throughput Time
(Additional time used by the
transaction after auditing was
turned on)

Additional CPU Usage
(Measured additional CPU
after auditing was turned on)

OS 1.39% 1.75%

XML 1.70% 3.51%

XML, Extended 3.70% 5.26%

DB 4.57% 8.77%

DB, Extended 14.09% 15.79%

Table 3: Oracle Database 11.2.0

A summary of test results for fine

per second is tabulated .

Standard Audit Trail with 50% CPL

grained auditing, created to generate

System Load (Tammy, (2010).

approximately 200 audit records

Audit Trail Setting Additional Throughput Time Additional CPU Usage

XML 3.66% 4.35%

XML, Extended 4.62% 9.09%

DB 6.60% 11.11%

DB, Extended 9.61% 20%

Table 4: Oracle Database 11.2.01 Fine Grained Audit Trail with 50% CPU System Load

From the results, it shows that writing audit records to Operating System file, has least impact to system

resources (Tammy, 2010), however inbuilt auditing functions has performance overheads on the

database, configuration nightmares, database platform dependent and lacking autonomy regardless of

the audit trail file destination..

2.1.3 Fingerprinting Scheme

The main capability provided by the fingerprinting scheme (also called learning based or behavioral

analysis) is that, under reasonable assumptions, it can embed and detect arbitrary bit-string marks in

relational databases. This capability, which is not provided by prior techniques, permits this technique

to be used as a fingerprinting scheme. The models demonstrate that fingerprints embedded by this

scheme are detectable and robust against a wide variety of breaches including conspiracy attacks.

Research efforts have been made to improve, among other things intelligent auditing monitoring

solutions to rely on behavioral “fingerprinting” or “learning” and behavioral analysis. However these

techniques often result in false positives and incomplete or inaccurate information. Once base lining of

Page 11

database activity is completed, a task that often takes months of data collection, requires skilled and

knowledgeable staff with privileged access or knowledgeable database users, in many cases must then

invest a significant amount of time editing and refining the collected data to eliminate undesirable

entries and false positives (Rakesh et al 2003) using this type of system in automatic mode often

provides an organization with a false sense of security and results in an incorrect assumption that the

| system is smart enough to identify when a new user is performing an illegitimate activity in the

database, without agent-based capabilities, this technique cannot provide a proactive solution.

2.1.4 Real-Time, Policy-Based Activity Monitoring

Arguably the most efficient and effective method of monitoring database activities is implementing a

solution that relies on real-time activity analysis and policy based auditing and monitoring.

Organizations that need to monitor database activities have shown a preference for deploying database

monitoring solutions which are real time. While solution attempts to address the need for real time

activity monitoring, policy-based solutions collect the data as defined by the monitoring policy, when

the environment changes, the policy needs to be changed too, this ensures that all changes to the system

are legitimate and planned for and that abnormal activity is detected (Herlands, 2007), practically it

mean making frequent changes to the system as changes occur is the environment which is quite costly.

2.1.5 Agent Based Platform

The concept of agent based database audit monitoring involves agent software in which agents are

developed and designed to achieve specific goals. Several agent development platforms exist including,

Agent Builder (Acronymics, Inc., 2006), Aglet (IBM Research, 2002) and JADE (Telecom Italia Group,

2007), JACK (Agent Oriented Software Pty. Ltd., 2006) and more research is ongoing, in this research.

There are several agent development platforms that exist such as JADE for agent’s development and

FIPA for agent communication, JADE has been developed by the Telecom Italia Lab and the Agent and

Object Technology Lab at the University of Parma and is selected based on two criteria. The research

project study utilizes JADE because it is well-proven and scalable. It provides complete control to the
I 4
agent framework (Bellifemine et al., 2007). Java Agent Development Environment (JADE) also

simplifies the implementation of multi-agent systems through a middle-ware that complies with the

Foundation for Intelligent Physical Agents (FIPA) specifications and through a set of graphical tools

that supports the debugging and deployment phases

Page 12

2.1.6 Multi-Agent Concept and Approach

The emergence of multi-agent technology is radically transforming software development, design and

implementation of software solution. The Agent based system for real time database audit and

monitoring is considered effective due to multi-agent capabilities. The desired optimal solution should

be proactive, database platform independence and should include an up-to-date persistent log database.

Our view of the demonstrated and implemented agent based system we believe that the system provide

real time alert notification of database operations, independent audit logs from the database system,

reduces performance overheads of critical resources of the database and offer availability of audit logs.

The audit data logs are analyzed, reported in real time through agent technique in a proactive manner

showing exceptional cases .This provide proactive data of the “who, what, when, where, and how” of

all database transactions.

2.1.7 Reviewing and Evaluation of Available Database Auditing Tools and Solutions

Inbuilt database audit
log function

Fingerprinting/
Learning-Based
scheme

Real-Time, Policy-
based Activity
Monitoring

Agent based system
(Proposed)

The constant reading
and writing of audit
data results in
substantial disk
input/output operation
slowing down the
database (Herlands,
2007).

Although detects bit
strings however it gives
false positive
(inaccurate and
incomplete
information)

(Rakesh et al, 2003)

Collect the data as
defined by the
monitoring policy, when
the environment
changes, the policy need
to be changed too
(Bednar, 2010).

A proactive system, include
an up-to-date persistent audit
log database, with platform
database independence

(Natan, 2005)

Table 5: Summary analysis of available catabase audit and monitoring tools and solutions

CHAPTER 3

RESEARCH METHODOLOGY

The research project study was conducted in two phases, where phase one was for data collection

through literature review and phase two involved system development. Research methods were critical

in order to achieve the objectives outlined in section 1.3 above and include:

3.1 Data Collection Methods

3.1.1 Sources of Data
The Study utilized both secondary and primary data in generating additional facts on the subject.

Literature review formed a major source of data; other methods involved included understanding and

i observation of the available database auditing tools and solutions. Other sources data has been from

books, academic, journals, and internet.

3.1.2 Data Collection Tools

Three different methods were used to collect data and are outlined below; these methods were not used

exclusive.

Interviews

Interviewing of the both conventional and information systems auditors was very necessary for gaining

in depth understanding of database audit and monitoring domain. The thinking behind this tool was that

interviews were used as a means of sampling the target users. Simple interviews questions were used

with both conventional and system auditors and the data gathered provided insight into the development

and implementation of the system in line with the objective.

Questionnaires

The questionnaires were used to supplement interviews and particularly to reach respondents that could

not be available for face to face interviews^also for confidence and confidentiality of the information.

Experiments and observations

This method proved very useful, a number of tests and trials were done with existing database audit

tC)ols and the process of log extraction was observed.

Page 14

3 2 Data Analysis Method

This research partially bases its findings through both quantitative and qualitative research methods for

flexibility. During data gathering the choice and design of methods was constantly modified, based on

progress of the system development. Qualitative research method helped to find and build on theories

that explain the relationship between different outcomes and results from the system.

3.3 Multi-Agent Methodology
The system developed uses Prometheus methodology because it is detailed and complete in the sense of

covering all activities required in developing intelligent agent systems. Three phases of Prometheus

Methodology followed are outlined below.

i. System specification - Where the focuses is on identifying the basic functionalities of the system,

along with inputs (percepts), outputs (actions) and any important shared data sources. Agent based

system for real time audit monitoring involves 5 types of agents:

Type & level Agent categories Responsibilities

Level 0-Interface

Agent

Packet data capturing Agent 1. Listen to all the open ports

2. Captures all packets from the network to the

database

Level 1 -

Extraction Agent

SQL Command Extraction

Agent

Extracts SQL commands for analysis and storage in

a persistent database

Level 2- Analysis

Agent

Exceptional Cases Analysis

Agent

Analyses the SQL commands on exceptional cases

Level 3

Notification

Agent

Real time Alert Notification

Agent

4-

Sends alerts and notification

Level 4.

Reporting Agent

Querying and Reporting

module Agent

Generate audit reports

Table 6: Agents types, categories and responsibilities

Arcfl‘tectural design - Whereby the outputs from the previous phase is used by the next agent level

,n t*le system and show how they interact

Page 15

iii Detailed design - Involves looking at the internals of each agent and how it accomplishes its tasks

within the overall system. This is designed by modeling the interaction between the different agents.

Figure 3: Prometheus Methodology

Dynamic Models

A

%*

Structural Overview

Models

Entity Descriptors

bystem Specification Scenarios Goals Functionalities

actions & percepts

Page 16

A rch itectural

D esign

(interaction diagrams)

Interaction Protocols

(coupling diagram)

(agent acquaintance)

System Overview

Agents

Messages

D eta iled

D esign

Process Diagrams

rr«U1« '7. Xif •

Agent Overview

Capability Overview

Capabilities

Plans, Data, Events

Table 7: The Major Models of Prometheus

3.4 Multi-Agent Design
The research is guided by the Prometheus methodology, described above. This methodology is adopted

in developing the Agent based Real time system database audit monitoring. FIPA is used as standard

specifications supporting inter-agent communication and key middleware services. The success of the

system development and implementation had to follow the methodology by ensuring inclusion of the

fundamental steps and activities in the system design through:

• The goals of the system

• Use case scenarios

• Functionalities, and

• The interface of the system to its environment, defined in terms of actions and percepts using

interaction diagrams

CHAPTER 4

ANALYSIS AND DESIGN
4.1 Database Auditing Monitoring Requirements Analysis

Database auditing monitoring task involves monitoring and recording of activities that occurs in the

database. Most Database Management systems have been enhanced with inbuilt abilities to keep an

audit log; these inbuilt databases auditing function provides a set of auditing capabilities and varies

from one database management system to another. These capabilities are implemented as a system that

writes activity to tables, log files, or even in the Event Viewer subsystem which records login attempts

status. The audit logs contain a variety of data information including, username, terminal, timestamp,

object owner, object name and action name.

4.2 System Specification
System specification begins with a rough idea of the system, which may be simply a few paragraphs of

rough description, and proceeds to define the requirements of the system in terms of:

4.2.1 Functional Requirements

The desired system should be able to perform the following tasks:-

1. Capture data packets from the Local Area Networks

2. Extract the SQL command statements from the captured data packets.

3. Analyze exceptional cases on the SQL command using production rules of the IF...ELSE

statements

4. Store the logs captured of SQL statements into a persistent independent database system

5. Provide real-time notification through short messaging system (SMS) and electronic email

system using a PUSH facility on analyzed exceptional Cases.

6. Generate system audit reports

Page 18

4.2.2 Scenarios
Scenarios 1: Packet Data Capturing Agent

The agent program will be listening on a specific Ethernet port connected on the local area network
(LAN), it is an Ethernet Listener

The program will capture TCP/IP packets from the Ethernet port.

The program will filter all the packets captured whose destinations are to the specific internet protocol
(IP) o f the database server.

Interaction Diagram for Packet Data Capturing Agent

ACTIONS: - Packet capturing
- Packet filtering

Scenarios 2: SQL Command Extraction Agent

In this scenario the program:-

Receives a packet from the packet capturing agent

Extracts the body content o f the packet

Inspects the body content o f these packets '*

Parses the body content text

Extracts the SQL statement in the packet body

Sends the SQL statement packets to the persistent database

Sends the SQL statement to the Exceptional cases analysis agent

Page 19

r

PERCEPTS: - Data packet payload

ACTIONS: - Packet body extraction
- Packet body content inspection
- Packet body parsing
- SQL command statement extraction

Scenarios 3: Exceptional Cases Agent

In this scenario the program:-

Receives SQL Command from SQL extraction Agent

Infers from the production rule table, if the SQL Command rule meets the threshold anomaly, if it meets
the threshold THEN...

Flag the result as anomaly

...ELSE ignore the case

If flagged as anomaly then send to Real time Notification agent

Page 20

S

Interaction Diagram for Exceptional Cases Analysis Agent

PERCEPTS: - SQL Statement Extractions received

ACTIONS: - Inference

Scenarios 4: SQL Command Extraction Agent Database Persistent Module

In this scenario the program should:-

Receives SQL command statements from Extractor Agent

Captures the transaction time

Captures the source Internet Protocol (IP) address of the originating SQL command statement

Records the transaction time and the IP address origin in the log table

Interaction Diagram for SQL Command Extractor

address o f origin into the database

Page 21

Scenarios 5: Real time Alert Notification Agent

In this scenario the program:-

Receives messages from Exceptional Case Analysis Agent

Sends the message SMS Notification module

Scenarios 5.1: Real time Alert Notification Agent

Receives the test message from Real time Notification Agent

Retrieves the Phone number of the Auditor from the preconfigured system parameters in the database

Inserts the message and the receiver phone number into the outgoing table of the SMS server

SMS server pools the table and sends the SMS to the auditor through GSM modem

Interaction diagram for Real time Alert Notification Agent

Scenarios 5.2: Real time Alert Notification Agent

Receives message from real time Notification Agent

Receives the Email address of the auditor from a pre-configured system parameter to the database

Insert the message and receiver’s email address into the outgoing email table

Mail sender scheduler will pools the outgoing email table and send the email

Interaction diagram for Real time Alert Notification Agent

Page 23

Scenarios 6: User Interface and Report Module

The auditor access the interface

The auditor enters search criteria on the interface

The auditor click on generate report button

The query and reporting module generates the report

Auditor views the report

Interaction Diagram for User Interface and Report Module

4.3 Architectural Design
The architectural design describes overall system view, communication protocols and the relationships
between the agents through agent descriptors.

4.3.1 Agents System Overview

Page 25

4.3.2 Agents Acquaintances using Use Case Diagram

Page 26

4.3.3 Agent Messages Communication

c Call For Proposal
— (CFP)

Packets

cp
------------------------------------- -------------»

Proposal
4---------A A

Call For Proposal (CFP)

Proposal

Packet capturing Agent SQL Extraction Agent

Auditor

4.4 Agents Detailed Design
The detailed designed describes the process, agent overview, event descriptors and plan descriptors showing
their relationship with the overall system.

4.4.1 Agent Based System Overview Diagram

r

2.
SQL Extractor Agent

- Audit Log

+ SQLExtractor ()

3.
Exceptional Case Analysis

- Audit Log

+ PerformExceptionalAnalysis ()

4.
Alert Notification

- Audit Log

- Exceptional Message

+ SendSMS()

+ SendMail()

4.5.2 Agents Plan Descriptors
Real time audit and alert notification of database audit log with exceptional cases to the auditor

Plan 1: Capture packet

Plan 2: Extract SQL command statement and persist to the database

Plan 3: Exceptional Case Analysis

Plan 4: Notify and alert on the exceptional Cases

4.6 Algorithms

Stepl: Capture packet

Pseudocode algorithms (see Appendix 1)

Step 2: Extract SQL command statement and persist to the database

Pseudocode algorithms (see Appendix 2)

Step 3: Exceptional Case Analysis

Pseudocode algorithms (see Appendix 3)

Step 4: Notify and alert on the exceptional Cases

Pseudocode algorithms (see Appendix 4)

Page 29

4.7 Database Design

This database contains the Agents description fields and agents details.

9 to h m l [aodn.dfa) [Visual Datafaat . [auM.* on loiaMxq

de<P
t J s *>g
J ' s> A a i •**

^ £***»*« View Xooh Service* Ptugrw £picas ^Jnkm

*% ‘i a i | & if
i Dwle * J J Database* * Q ' U ’ 6 / }

Database 2 _ j

0 oudi_dbofilocah«t[au(it_*||7]

Geneial 2 J j

4 Diapam opicns j l

5 9 loceftmt-

I mA
- localhud

■d
• ■ Tat

.
*.F

i.U
■ »
flu

d <»J>.
idl rvertl.

$ sm*_4
IjJ m»_d.

F nDoind_sms
P moi
P maiLconlig
P outbound_*m*

^ e x c e p t io n a l i

J m a il

r id: INTFGFB
0 description: VARCHAR

0 occurrencejime; TIMESTAMP

B=

P id: INTEGER
VARCHAR

0 m aii.subject: VARCHAR

0 m a lc o n te n t: VARCHAR

0 status: VARCHAR

> id: IN 1EGER
$ id: INTEGER

0 operabon_time: TIMESTAMP

0 message_captured: TEXT

0 source.address: VARCHAR

0 destination address: VARCHAR

0 protocal_used: VARCHAR

0 otherJnfo: VARCHAR

o operation_type: VARCHAR

: VARCHAR

0 receiver: VARCHAR

0 msg: VARCHAR

0 senttime: VARCHAR

« receivedtim e: VARCHAR

0 operator: VARCHAR

0 m sgtype: VARCHAR

o reference: VARCHAR

0 proces*ed_status: BIT

0 valid .status: BIT

0 deletion_status: BIT

£
p Id: INTFGFR

V sender: VARCHAR

v receiver: VARCHAR

0 m sg: LONGTEXT

v bm etosend: VARCHAR

0 senttime: VARCHAR

0 receivedtim e: VARCHAR

0 reference: VARCHAR

0 status: VARCHAR

« m sgtype: VARCHAR

0 operator: VARCHAR

p maiLconlig

3 id: INTEGER

0 server_address: VARCHAR

o user_name: VARCHAR

0 recipient: VARCHAR

o recepient_number: VARCHAR

4 modem number: VARCHAR

4 password: VARCHAR

4 modem_password: VARCHAR

4 modem_port: VARCHAR

Figure 4: Database design

CHAPTER 5

SYSTEM IMPLEMENTATION AND RESULTS
5.1 Implementation of the System

The system has been implemented using a combination of frameworks under the Java Standard Edition

(JSE) platform, Jasper for reports for the front end and the back end has been implemented using the

java persistent API to interact with DBMS underlying eclipse data link API, Swing Application

framework for User Interface. The Multi-agent component has been implemented using JADE, to

capture packets Java Packet capturing (JCAP) library is used and for email java mail API, for SMS

sending SMS java library is used.

The database is developed using MYSQL database version 5-4-3 while Email and SMS communication

protocol Safaricom broadband modem and Google mail for Small Mail Transport Protocol (SMTP) are

used.

5.2 System Testing
The program was tested using trial test cases of the actual happenings when SQL command statements

are executed within the database. Test cases were used for both SQL Query statements with and without

database violations or prohibited database operations.

5.3 Discussion of Results

5.3.1 Challenges Facing Database Auditing

Database auditing involves monitoring and recording of database user actions and can be based on

individual actions, such as the type of SQL statement executed. Most databases applications (DMBS)

have inbuilt audit capabilities and stores auditing information (records/logs) when specified elements in

databases are accessed or altered. However these inbuilt database audit solutions have negative database

performance such as response time, locking of log file system, database unavailability, crashing of file

system, corruption of the log files and lack real time or proactive capabilities. Existing audit trails are

much more useful for detecting what was changed, rather than what was accessed (Adrian Lane, 2010).

In view of database audit requirement for security, compliance and regulatory, software agent system is

the solution to database auditing and monitoring making it the preferred approach.

Page 31

5.3.2 Evaluation of Available Database Auditing Tools and Solutions
Database auditing tools and solutions have developed over time as summarized below.

Inbuilt database audit log
function

Fingerprinting/ Learning-
Based scheme

Real-Time, Policy-based Activity
Monitoring

The audit data is written to a table
within the database itself usually
results in substantial disk
input/output operation slowing
down the database.

Detects bit strings but do give
false positive (inaccurate and
incomplete information).

Collect the data as defined by the
monitoring policy, however when
the environment changes, the
policy need to be changed too.

Table 8: Summary of evaluation of available database auditing tools and solutions

5.3.3 System Results

The Agent based system for real time database audit monitoring is able to monitor and perform real

time alert notifications of all exceptional database operation cases as they happen. The diagram below

shows how the agents captures packets, extracts SQL command statements, analyses exceptional

database operation cases and performs alert notification where the operations are of violation or

prohibitory nature.

Alert and Notification monitoring Agent Communication

A sniff erO $Oyii|ji:10flflUADE Sniffer A ga rt D‘ tit E3

Actions About

* [S e* m b s s a |M_______________________ _________ ____________________________________
t & AgentPlatforms ^ ___

? CD TnisPiatform oth ■ m m m ■ ■
0

y ExceptionalCas
2 '" 'I

RM:0 (7-4
'

■4)
y PacketCapture,
Q RMA@Oyugl:K

UEST 1(dlt 01‘)
INF(JM.1 (drt 070 l 10)

y SQLExtractorAj REQUEST 1(dll 070)
y ams©Oyugi 10
Q df©Oyugl 109S
y snifferO-on-Mai

a
7

RE(UEST:1 (dit)
y snifferQ©Oyug . INFORM! (< t 163 070)

8 INF(JM.1 (flit 304
">
(dil 304)

to
REQUEST 1

RE(yEST3(*« 9-< >
-B)

INFORM:! « 1 368 304) "

RE1
UEST 1 (dR 3Q<)

INF! JM 1 (dH 480 : W)
REQUEST 1(dil 475) f

gEST:4(1.7 1-)1e
Z , w \

RM 4 (1-7 60^ 7)

„ INFORM :1 (d t 622 476)
RECUEST:1(dK 3*)

21 IMFCRM 1 (dll 787 t 38)
REGyESTXSGW >

mINFIRM:3 (3-e 601. -8)
RECUEST1 (drt ej«)

INF(JM.1 (Oit 000^ 18)
: 20 REQUEST 1(dil 665) ^

27 INFORM1 (d1 743 686)
RECUE8T1 (dil 74

„ INFORM:’ (d1 780 666)
INFCRM 1 (dH 637 ' 43)

. . >i *■

■■■■■■■■■■I

Figure 5: Exceptional analysis agent receives notification and send the SMS and email to the auditor

Formatted audit report on exceptional cases

Pag* 1 of 1

Figure 6: Formatted audit report on exceptional cases

Formatted database audit report for all cases

+ JMpei act E
H|*| T-l-'l D1SP .. \w

Database Audit Report
Cases

Sunday 31 July 2011

OPERATION SOURCE DESTINATION SQL COMMAND j

7/31/11 9.41 PM select 192 108 0.1 192 168.0 2 select tr trigger_scdema as trigschema tr trigger_name

7/31/11 9:41 PM select 192 1680.1 192 168.0 2 select tr trigger_scdema as trigschema, tr.tngger_name

7/31/11 9:41 PM select 192 1680.1 192 168.0 2 select p db, p name, ptype p.specific_name p.

7/31/11 9 41 PM select 192 1680 1 192 168 0 2 select p db, p name, p type p specific_name p

7/31/11 9 41 PM select 192 168 0 1 192 168 0 2 select p db, p name, p type p specific_name p

7/31/11 9 41 PM select 192 1 68 0 1 192 168 0 2 select p db, p name, p type p specific_name p

7/31/11 9 41 PM select 192 168 0 1 192 168 0 2 select * from mysql func

7/31/11 9 41 PM delete 192 168 0 1 192 168 0 2 delete from mbound_sms

7/31/11 9 41 PM delete 192 1604 1 192 168 0 2 delete from mbound_sms

7/31/11 9 52 PM delete 192 1 68 0.1 192 168.0 2 delete from mbound_sms

7/31/11 9:52 PM delete 192 1680.1 192 168.0.2 delete from mbound_sms

Figure 7: Formatted database audit report for all cases

Page 34

Alert Messages to the Auditor

SOL Miiiiogei 2000 fo r MySOL uud il_db on 192.16 8 .0 .2 [a u d it db | - [T a b le [outlMJUiid_siiis[[audit_db o il 192.168.0 .2]]

£'*ab®*a V m * loo t* Servita* Options V^mdom B«<P

91 ‘ A ' - LJl •

a ^ 192.168.0.2
13 J audit db on 192 168 0 2

□ ■ Table* |&]
F **K Jo 0
l i J axcaphonal_ca*e

F inbound_srm
mad

F mad.config
BP outboundims

A
p Ptocsdjes

H Function*

i t DDF*
Q Report*

X Ploiect*

Jki

Eafcfe Ifltfcas Foreign Key* Tnggens

Drag a tekmm httMtar t

.■8 l . i » l i g e a p B O « » l
Data i Description DDL

™ • 7 F K 1000

ild Type A

d INT|11)

tendei VARCHAR|30|

r®caiv« VAR CHAR| 301

msg LONGTEXT

hmetoMnd VAH CHAR (100)

santtima VARCHAR|100) J
raceivadlima VARCHAR|100)

rafaianea VARCRARPOO]

VARCHARI2QI V

■ K J J 758015: 10723428866

89 0717880159 0723428866

70 0717880159 0723428866

71 0717890159 0723428866

72 0717880159 0723428866

73 0717880159 0723428866

74 0717890159 0723428866

75 0717880159 0723428866

78 0717880159 0723428866

77 0717880159 0723428866

78 0717890159 0723428866

79 0717890159 0723428866

30 0717880159 0723428866

Database Audit Alert

Database Audit Alert

Database Audit Alert

Database Audit Alert

Database Audit Alert

Database Audit Alert

Database Audit Alert

Database Audit Alert

Database Audit Alert

Database Audit Alert

Database Audit Alert

Database Audit Alert

WWrUMKWIlinMfJlIWJHIIIII
Piof*bitedope«ationat5atJul30l 7:0028EAT 2011 [delete fiom mboind_sms |

piut Anted opeiation at SatJiJ 3017:07 22 EAT 2011 [delete from mbound_sros |

PiobiiitedopeiationatSatJiJ30l7.0753EAT 2011 [delete fiom nbound_ sms |

Piohijited opeiation at Sat J i i 30 1 7.12.50 EAT 2011 [delete from inboind_sms |

PiolAjited operation at SatJii 30 1 7:2011 EAT 2011 [delete fiom mboimd_sms I

PidAated operation at Sat JiJ 30 1 7.20 1 3 EAT 2011 [delete fiom inbound, sms J

PioFAitted operation at SatJd 30 18:1220 EAT 2011 [delete fiom inbound_wn*)

Piobbted operation at SatJri 30 1 8:15.44 EAT 2011 [delete from inboind_srnj |

Piet Anted operation at Sat J«J 30 1 8.24 31 EAT 2011 [delete fiom mboimd. sms)

.Violation ot database access duration time Access time occured between 2000hrs and 0800bts. Accessed at Sun Jul 31 21.41.17 EAT

Violation at database access duration time Access time occued between 2000hrs and 0800hrs. Accessed at Sun Jul 31 21:41.25 EAT

Violation of database access duration time Access time occued between 2000hrs and 0800hs. Accessed at Sim Jul 31 21.5241 EAT

| Grid View Form^iew ErmtData Blob View

Record* retched 13/13 X
L2f SQL Editor (au<H_dbon 192.. | F rbountL.sms | [F outbound_*m* j

X . M'lAJgP

. s (a r t 3 Mil research report *1 ; reject DocumentdlJU .. TjJ • '-nearoh Ducuti'esit.. ^ *.rceii sheeU[Ccmp... IjsB DRIVE if.) Managai K . . . B ? '< . • C 10:38PM

Figure 8: alert messages to the auditor

5.3.4 User Interfaces of the System

The following screens were designed for the user interface, in the below screen the auditor generates a report for
a particular period for exceptional cases.

Page 35

>

1

Figure 9: User Interface of the system

The interface below provides the auditor with the opportunity to generate different reports based on different
criteria of database operations.

Figure 10: User Interface of the system

S

Page 36

CHAPTER 6

CONCLUSION
6.1 Achievements
The objective of the project, the development of a proactive agent based real time database audit

monitoring system/prototype is considered to have been technically achieved. The database auditing

can now move to the next level where proactive database auditing and real time alert notification is

achieved without database performance overheads while maintaining high availability of database audit

logs.

The approach and technology developed as a result of this project, real time alert notification through

mobile technology short message system (SMS) and electronic mailing system (Email) has been

demonstrated where database operations of user actions which are either are violations or prohibited in

nature are extracted, analyzed and the auditor receives real time alerts and notification.

Agent based database audit monitoring implementation enabled the faster analysis of database

operations and exceptional cases as they happen. Auditors are able have visibility into the database

transaction without performance overheads to the database and does not require cumbersome audit log

extraction characterized by inbuilt database audit tools.

Since agent based real time audit monitoring system is inherently modular, it was easier to add new

agents to the multi-agent architecture to address future needs. The research project demonstrated that

through agent based real time audit and monitoring system using multi-agent technology provides real

time alerts and has several advantages through User Acceptance Testing (UAT) the following feedback

were ascertained:

• that Agent based system for real time database audit monitoring overcomes the database

performance overheads of the database since it is stores the audit data in an independent

database.

• that Agent based system were able to capture packets, extracts SQL commands statement,

analyze exceptional cases and perform real time alert notifications when the SQL commands are

executed as opposed to other tools.

• that Agent based system, agents were able to analyze all violations and prohibitory operations,

report and notify instantly.

• that the Auditor’s work was enhanced since there is no need for audit extraction exercise.

Page 37

6.2 Research Contributions

The research has focused on adding value to database auditing, this research project demonstrates the

agent based technology development approach in database auditing with agent capabilities and

characteristics notably data driven execution. The agent technology enables agents’ communication and

coordination considerations that proved instrumental in the success of this system.

6.3 Recommendation/ Future work

The following improvements/functionality can be added to agent based database auditing:

1. The system should incorporate new databases model that do not use SQL query such as

graph-based databases and geospatial databases.

2. A plug-in application programming interface with SQL commands to be added as

additional functionality within the system.

3. The deployment configuration access includes other OSI layers for profiling.

6.4 Assumptions and limitations
This research project, the system is built with certain assumptions and limitations, the communication

of the agent application and the database is purely based on SQL command query only, in case of new

database model that do not use SQL query such as graph-based databases, geospatial databases the

system may not apply, however the SQL commands can be applied as a plug-in. The deployment

configuration access is through the network, Packets and SQL command statement extraction is only

through the network connection and any Database that is not connected to the network cannot be

audited.

References
1. Adrian Lane, 2010, Learn about database security auditing tools: Information Security Magazine,

October ,2010

2. Sushila Nair, 2008, Journal Online: The Art of Database Monitoring, Information Systems Control
Journal, ISACA, 2008

3. Jia N i, Chuang Lin, Zhen Chen, Peter Ungsunan, 2007, A Fast Multi-pattern Matching Algorithm
for Deep Packet Inspection on a Network Processor: Department of Computer Science, Research
Institute of Information Technology Tsinghua University, Beijing international Conference on
parallel processing (ICPP2007), IEEE Computer Society, 2007 page 1

4. John Williams, Sailesh Kumar, Jonathan Turner, 2008, Advanced Algorithms for Fast and Scalable
Deep Packet Inspection: Cisco Systems and Washington University journal paper

5. Aaron C. Newman, CTO & Founder, 2009, Intrusion Detection and Security Auditing In Oracle
White Paper [12], application security inc, Steve's Pick of the Week 2009

6 . Andrew C. Herlands, 2007 Arrest the Threat: Monitoring Privileged Database Users, application
security inc., 2007

7. Acronymics, Inc., (2006). Agent Builder - An Integrated Toolkit for Constructing Intelligent
Software Agents, http://www.agentbuilder.com (Visited 2011 4-6-2011)

8 . IBM Research, 2002. Aglets, http://www.trl.ibm.com/aglets/ (Visited 2011 1-4-2011)

9. Tammy Bednar (2010), Oracle Database Auditing: Performance Guidelines, August, 2010

10. 9.Rakesh Agrawal, Peter J. Haas, Jerry Kieman, Watermarking relational data: framework,
algorithms and analysis, The VLDB Journal — The International Journal on Very Large Databases,
v.12 n.2, p. 157-169, August 2003

11. 10.Acronymics, Inc., 2006, Acronymics, Inc., (2006), Agent Builder - An Integrated Toolkit for
Constructing Intelligent Software Agents.

12. Telecom Italia Lab, (2007). JADE - Java Agent DEvelopment Framework, Version 3.5

13. Telecom Italia Group, (2007). Telecom Italia Lab. http://www.telecomitalia.com/ (Visited 2011 1-
2-2011)

14. Agent Oriented Software Pty. Ltd., (20Q6). JACK(TM) Intelligent Agents Agent Manual, Release
5.2, http://www.agent-software.com/shared/demosNdocs/Agent_Manual_WEB/index.html

15. AOTLab, (2007), The Agent and Object Technology Lab at University of Parma, University of
Parma, Italy, http://aot.ce.unipr.it/(Visited 2011 2-32011)

16. Bellifemine, F. L., Caire, G., Greenwood, D., (2007). Developing Multi-Agent Systems with Jade.
New York: J.Wiley.

Page 39

http://www.agentbuilder.com
http://www.trl.ibm.com/aglets/
http://www.telecomitalia.com/
http://www.agent-software.com/shared/demosNdocs/Agent_Manual_WEB/index.html
http://aot.ce.unipr.it/(

Appendix 1
package com.msc.project.parser;
import com.msc.project.ui.EtherealTreeNode;
/**

* @author Boniface Akuku
*/

public class TCPParser extends PacketParser {
TCPParser() {

dataLen = 1;
dataStart = 20;
typeLen = 2;
typeStart = 2;

}
protected byte[] strip(byte[] packet) {
int headerLen = ((packet[12] & OxFO)» 4) * 4;
byte[] ret = new byte[packet.length - headerLen];
System.arraycopy(packet, headerLen, ret, 0, ret.length);
return ret;

}

@Override
public String getProtocol(byte[] packet) {

// Look inside
if (strip(packet).length = 0)

return "TCP";
else

return "TCP (" + Registry.lookup("TCP", getType(packet)).getProtocol(strip(packet)) + ")";
}
@Override
public String getInfo(byte[] packet) {

String flags =
if ((packet[13] & 0x20) != 0) flags += "URG ";
if ((packet[13] & 0x10) != 0) flags += "ACK ";
if ((packet[13] & 0x08) != 0) flags += "PSH ";
if C(packet[13] & 0x04) != 0) flags += "RST ";
if ((packet[13] & 0x02) != 0) flags += "SYN ";
if((packet[13] & 0x01) != 0) flags += "FIN ";

if (!flags.equals(""))
flags = "(TCP " + flags + ") ";

if (strip(packet).length != 0)
flags += Registry.lookupC'TCP", getType(packet)).getInfo(strip(packet)) + " (Port

getType(packet) + ")";
return flags;

}
@Override
public EtherealTreeNode getTree(byte[] packet) {

EtherealTreeNode root = new EtherealTreeNode("TCP Packet (" + packet.length +" bytes)1', packet);
int len = ((packet[12] & OxFO) >$• 2);
dataStart = len;

EtherealTreeNode header = new EtherealTreeNode("TCP Packet Header (" + len + " bytes)", 0, len);
root.add(header);
int src_port = ((packet[0] & OxFF) « 8) | ((packet[l] & OxFF));
int dst_port = ((packet[2] & OxFF)« 8) j ((packet[l] & OxFF));
long seq_num = ((packet[3] & OxFF) « 24) | ((packet[4] & OxFF) « 16) |
((packet[5] & OxFF) « 8) | (packet[6] & OxFF);
long ack_num = ((packet[7] & OxFF) « 24) | ((packet[8] & OxFF)« 16) |
((packet[9] & OxFF) « 8) | (packet[10] & OxFF);
header.add(makeNode("Src Port = " + src_port, 0, 2));

+

Page 40

header.add(makeNode("Dst Port = " + dst_port, 2,2));
header.add(makeNode("Sequence Number = " + seq_num, 4, 4));
header.add(makeNode("Aknowledgement Number = " + ack_num, 8,4));
header.add(makeNode("Header Size", len, 12,1));

String ecn =
if ((packet[12] & 0x01) != 0) ecn += "Nonce Sum
if ((packet[13] & 0x80) != 0) ecn += "CWR
if((packet[13] & 0x40) != 0) ecn += "ECE ";
if ((packet[13] & 0x20) != 0) ecn += "URG ";
if ((packet[13] & 0x10) != 0) ecn += "ACK ";
if ((packet! 13] & 0x08) != 0) ecn += "PSH
if ((packet! 13] & 0x04) != 0) ecn += "RST
if ((packet! 13] & 0x02) != 0) ecn += "SYN
if ((packet! 13] & 0x01) != 0) ecn += "FIN

header.add(makeNode("Control Bits = " + ecn, 13,1));
header.add(makeNode("Window", packet, 14,2));
header.add(makeNode("Checksum = Ox" + hexFormat(packet, 16, 2), 16, 2));
header.add(makeNode("Urgent Pointer", packet, 18,2));
header.add(makeNode("Options and Padding", 20, len - 20));
if (strip(packet).length != 0)
root.add(nextNode(packet, "TCP", len));
return root;

}}

Appendix 2
package com.msc.project.agent;
import com.msc.project.core.Persistencelmpl;
import com.msc.project.entity.AuditLog;
import jade.core. AID;
import jade.core. Agent;
import jade.core.behaviours.CyclicBehaviour;
import jade.domain.DFService;
import jade.domain.FIPAAgentManagement.DFAgentDescription;
import jade.domain.FIPAAgentManagement.ServiceDescription;
import jade.domain.FIPAException;
import jade.lang.acl.ACLMessage;
import jade.lang.acl.MessageT emplate;
import java.util. ArrayList;
import java.util.List;
import java.util.logging.Level;
import java.util.logging.Logger;
import java.util.regex.Matcher;
import java.util.regex.Pattem;

/**
*
* @author Boniface Akuku
*/

public class SQLExtractorAgent extends Agent {

private AID exceptionalCaseAgent;

@Override
protected void setup() {

String agentName = null;
Object[] args = getArguments();
if (args != null && args.length > 0) {

agentName = (String) args[0];

Page 41

\

} else {
// Make the agent terminate immediately
System.out.println("Error: Agent name not specified!!!!");
doDelete();

}
/*
* Create directory facilitator description (DF) for the agent
* and register this agent & its service type
* */

DFAgentDescription directorFacilatorDescription = new DFAgentDescription();
directorFacilatorDescription.setName(getAID());
ServiceDescription serviceDescription = new ServiceDescription();
serviceDescription.setType("AgentBasedDBAudit");
serviceDescription.setName("SQLExtractorAgent");
serviceDescription.setName(agentName);
directorFacilatorDescription.addServices(serviceDescription);
try {

DFService.register(this, directorFacilatorDescription);
} catch (FIPAException fe) {

fe.printStackTrace();
}
//add behaviors
addBehaviour(new ExtractSQL());

}

@Override
protected void takeDown() {

try {
DFService.deregister(this);

} catch (FIPAException fe) {
fe.printStackTrace();

}
}
private class ExtractSQL extends CyclicBehaviour {

@Override
public void action() {

MessageTemplate messageTemplate = MessageTemplate.MatchPerformative(ACLMessage.REQUEST);
ACLMessage message = myAgent.receive(messageTemplate);
if (message != null) {

try {
//Filter Packet with SQL Key words and persist
AuditLog auditLog = (AuditLog) message.getContentObject();
if (packetContainSQL(auditLog)) {

//persist log
new PersistenceImpl().persist(auditLog);
}
//reply to PacketCapture
ACLMessage reply = message.createReply();
reply.setPerformative(ACLMessage.INFORM);
reply.setContentObject(auditLog);
my Agent.send(reply);

catch (Exception ex) {
Logger.getLogger(SQLExtractorAgent.class.getName()).log(Level.SEVERE, null, ex);

}
} else {

block();
} }

public boolean packetContainSQL(AuditLog auditLog) {
if (auditLog = null) {

Page 42

return Boolean.FALSE;

Stringf] sqlKey Words = new String[]{"select", "insert", "delete", "update", "alter", "create", "drop"}
List<Boolean> matchStatus = new ArrayList<Boolean>();
for (String keyWord : sqlKeyWords) {

Pattern pattern = Pattem.compile(keyWord);
Matcher matcher = pattern.matcher(auditLog.getMessage().toLowerCase());
matchStatus.add(matcher.find());

}
if (matchStatus.contains(Boolean.TRUE)) {

System .out.println("========M ESSAGE=======");
System.out.println(auditLog.getMessage());
System .ou t.p rin tln (" = = = = M E S S A G E -------- ---------- ");

}
return matchStatus.contains(Boolean.TRUE);

}
public void locateExceptionalCaseAnalysisAgent() {

DFAgentDescription template = new DFAgentDescription();
ServiceDescription sd = new ServiceDescriptionO;
sd.setType("AgentBasedDBAudit");
sd.setName("ExceptionalCaseAgent");
template.addServices(sd);
try {

DFAgentDescription[] result = DFService.search(myAgent, template);
exceptionalCaseAgent = result[0].getName();

} catch (FIPAException fe) {
fe.printStackT race();

} } }
}

Appendix 3
package com.msc.project.agent;
import com.msc.project.core.Persistencelmpl;
import com.msc.project.entity.AuditLog;
import com.msc.project.entity.ExceptionalCase;
import com.msc.project.entity.Util;
import jade.core. AID;
import jade.core. Agent;
import jade.core.behaviours.CyclicBehaviour;
import jade.domain.DFService;
import jade.domain.FIPAAgentManagement.DFAgentDescription;
import jade.domain.FIPAAgentManagement.ServiceDescription;
import jade.domain.FIPAException;
import jade.lang.acl.ACLMessage;
import jade.lang.acl.MessageTemplate;
import java.util.ArrayList;
import java.util.Date;
import java.util. List;
import java.util.logging.Level;
import java.util. logging.Logger;
import java.util.regex.Matcher;
import java.util.regex.Pattem;

/♦*
*
* @author Boniface Akuku
*/

public class ExceptionalCaseAgent extends Agent {

private AID alertNotificationAgent;

}

Page 43

@Override
protected void setup() {

String agentName = null;
Object[] args = getArguments();
if (args != null && args.length > 0) {

agentName = (String) args[0];
} else {

// Make the agent terminate immediately
System.out.println("Error: Agent name not specified!!!!");
doDelete();

}
/*
* Create directory facilitator description (DF) for the agent
* and register this agent & its service type
* */

DFAgentDescription directorFacilatorDescription = new DFAgentDescription();
directorFacilatorDescription.setName(getAlD());
ServiceDescription serviceDescription = new ServiceDescription();
serviceDescription.setType("AgentBasedDBAudit");
serviceDescription.setName("ExceptionalCaseAgent");
serviceDescription.setName(agentName);
directorFacilatorDescription.addServices(serviceDescription);
try {

DFService.register(this, directorFacilatorDescription);
} catch (FIPAException fe) {

fe.printStackT race();
}
//add behaviors
addBehaviour(new AnalyzeExceptionalCase());

}

@Override
protected void takeDown() {

super.takeDown();
}

private class AnalyzeExceptionalCase extends CyclicBehaviour {

@Override
public void action() {

MessageTemplate messageTemplate = MessageTemplate.MatchPerformative(ACLMessage.REQUEST);
//Requested by the Referee to play

ACLMessage message = myAgent.receive(messageTemplate);
if (message != null) {

try {
AuditLog auditLog = (AuditLog) message.getContentObject();

/ / l) Time when the transaction was performed
//No operation is allowed in the database between 2000hrs and 0800hrs
if (prohibitedDuration()) {

alertMessage = "Violation o f database access duration time. Access time occured between 2000hrs and
0800hrs. Accessed at :"+new Date().toString()+" !!";

//Log exceptional case
ExceptionalCase exceptionalCase = new ExceptionalCase();
exceptionalCase.setDescription(alertMessage);
exceptionalCase.setOccurrenceTime(new Date());
new PersistenceImpl().persist(exceptionalCase);

//reply to PacketCapture
ACLMessage reply = message.createReply();

private String a lertM essage = "Testing...";

Page 44

reply.setPerformative(ACLMessage. INFORM);
reply.setContent(alertMessage);
myAgent.send(reply);

}
111) If drop statement is intercepted
//No alter or drop statement to accepted in the db
if (prohibitedSQLOperation(auditLog)) {

alertMessage = "Prohibited operation at " + new Date().toString()+ " ["+auditLog.getMessage()+"]";
ExceptionalCase exceptionalCase = new ExceptionalCase();
exceptionalCase.setDescription(alertMessage);
exceptionalCase.setOccurrenceTime(new Date());
new PersistenceImpl().persist(exceptionalCase);

//reply to PacketCapture
ACLMessage reply = message.createReply();
reply.setPerformative(ACLMessage.INFORM);
reply.setContent(alertMessage);
myAgent.send(reply);
}

} catch (Exception ex) {
Logger.getLogger(SQLExtractorAgent.class.getName()).log(Level.SEVERE, null, ex);

}
} else {

block();
}

private boolean exceptionalCase(AuditLog auditLog) {
//To do: Analyze based on dimensions {Rule based/Production rules inference ==> IF...ELSE..}

//I) Time when the transaction was performed
//No operation is allowed in the database between 2000hrs and 0800hrs
if (prohibitedDuration()) {

alertMessage = "Violation o f database access duration time. Access time occured between 2000hrs and 0800hrs"

return true;
}

//2) If drop statement is intercepted
//No alter or drop statement to accepted in the db
if (prohibitedSQLOperation(auditLog)) {

alertMessage = "Execution o f prohibited database operation a t" + new Date().toString();
return true;

}

return false;
}

private boolean prohibitedSQLOperation(AuditLog auditLog) {

String[] sqlKeyWords = new String[]{"drop", "alter", "delete"};
List<Boolean> matchStatus = new ArrayList<Boolean>();
for (String keyWord : sqlKeyWords) {

Pattern pattern = Pattern.compile(keyWord);
if (auditLog != null) {

Matcher matcher = pattem.matcher(auditLog.getMessage().toLowerCase());
matchStatus.add(matcher.find());

}

Page 45

}
return matchStatus.contains(Boolean.TRUE);

}

private boolean prohibitedDuration() {
Date currentTime = new Date();
int hours = currentTime.getHours();
if (hours > 20) {

return true;
}
if (hours < 8) {

return true;
}
return false;

}
}

public void locateAlertNotificationAgent() {
DFAgentDescription template = new DFAgentDescription();
ServiceDescription sd = new ServiceDescription();
sd.setType("AgentBasedDB Audit");
sd.setName("AlertNotificationAgent");
template.addServices(sd);
try {

DFAgentDescription[] result = DFService.search(this, template);
this.alertNotificationAgent = result[0].getName();

} catch (FIPAException fe) {
fe.printStackTrace(); } }}

Appendix 4
package com.msc.project.agent;

import com.msc.project.core.Persistencelmpl;
import com.msc.project.email.MailHandler;
import com.msc.project.email.MailSender;
import com.msc.project.entity.Mail;
import com.msc.project.entity.MailConfig;
import com.msc.project.sms.ModemHandler;
import com.msc.project.sms.SMSNotifier;
import jade.core. Agent;
import jade.core.behaviours.CyclicBehaviour;
import jade.domain.DFService;
import jade.domain.FIPAAgentManagement.DFAgentDescription;
import jade.domain.FIPAAgentManagement.ServiceDescription;
import jade.domain.FIPAException;
import jade.lang.acl.ACLMessage;
import jade.lang.acl.MessageTemplate;
/**

*

* @author Boniface Akuku
*1

public class AlertNotificationAgent extends Agent {

@Override
protected void setup() {

String agentName = null;
Object[] args = getArgumentsO;
if (args != null && args.length > 0) {

agentName = (String) args[0];
} else {

Page 46

// Make the agent terminate immediately
System.out.println("Error: Agent name not specified!!!!");
doDelete();

}
/*
* Create directory facilitator description (DF) for the agent
* and register this agent & its service type
* */

DFAgentDescription directorFacilatorDescription = new DFAgentDescription();
directorFacilatorDescription.setName(getAlD());
ServiceDescription serviceDescription = new ServiceDescription();
serviceDescription.setType("AgentBasedDBAudit");
serviceDescription.setName("AlertNotificationAgent");
serviceDescription.setName(agentName);
directorFacilatorDescription.addServices(serviceDescription);
try {

DFService.register(this, directorFacilatorDescription);
} catch (FIPAException fe) {

fe.printStackT race();
}
Persistencelmpl persistencelmpl = new Persistencelmpl();
MailConfig mailConfig = persistencelmpl.getMailConfigO;
//Schedule SMS and Email submission
ModemHandler modemHandler = new ModemHandler(mailConfig.getModemPort(),

mailConfig.getModemPassword(), "Safaricom”, "Huawei", "E220", "0.0", 115200);
MailHandler mailHandler = new MailHandler();

//add behaviors
addBehaviour(new SendSMSAndEmail());

//add behaviors
// addBehaviour(new SendEmail());

}
private class SendSMSAndEmail extends CyclicBehaviour {

@Override
public void action() {

MessageTemplate messageTemplate = MessageTemplate.MatchPerformative(ACLMessage.REQUEST);
ACLMessage message = myAgent.receive(messageTemplate);
if (message != null) {

System.out.println("======ALERT NOTIFICATION: SENDING SMS=========");
Persistencelmpl persistencelmpl = new Persistencelmpl();
MailConfig mailConfig = persistencelmpl.getMailConfigO;
SMSNotifier smsNotifier = new SMSNotifier();
smsNotifier.sendSMS("Database Audit Alert + message.getContent(), mailConfig.getRecepientNumber(),

mailConfig.getModemNumberO," Safaricom");
System.out.println("======ALERT NOTIFICATION: SENDING EMAIL=========");
MailSender mailSender = new MailSender(mailConfig.getServerIp(), mailConfig.getUserName(),

mailConfig.getPasswordO);
Mail mail = new Mail();
mail.setMailSubject("Database Audit Alert");
mail.setMailContent(message.getContentQ);
mail.setReceiver(mailConfig.getRecipient());
persistencelmpl.persist(mail);
//reply to PacketCapture
ACLMessage reply = message.createReply();
reply.setPerformative(ACLMessage.INFORM);
myAgent.send(reply);

} else {
block();

}
}

Page 47

private class SendEmail extends CyclicBehaviour {
}

@Override
public void action() {

MessageTemplate messageTemplate = MessageTemplate.MatchPerformative(ACLMessage.REQUEST);
ACLMessage message = myAgent.receive(messageTemplate);
if (message != null) {

System.out.println("======ALERT NOTIFICATION: SENDING EMAIL=========");
Persistencelmpl persistencelmpl = new Persistencelmpl();
MailConfig mailConfig = persistencelmpl.getMaiIConfig();
MailSender mailSender = new MailSender(mailConfig.getServerIp(), mailConfig.getUserName(),

mailConfig.getPassword());
Mail mail = new Mail();
mail.setMailSubject("Database Audit Alert");
mail.setMailContent(message.getContent());
mail.setReceiver(mailConfig.getRecipient());
persistencelmpl.persist(mail);
//mailSender.sendMail("Database Audit A lert:", message.getContent(), mailConfig.getRecipient());

//reply to PacketCapture
ACLMessage reply = message.createReply();
reply.setPerformative(ACLMessage.INFORM);
reply.setContent("MAIL");
myAgent.send(reply);

} else {
block();

}
}

}
private class SendSMS extends CyclicBehaviour {

@Override
public void action() {

MessageTemplate messageTemplate = MessageTemplate.MatchPerformative(ACLMessage.REQUEST);
ACLMessage message = myAgent.receive(messageTemplate);
if (message != null) {

System.out.println("======ALERTNOTIFICAT10N: SENDING SM S========");
Persistencelmpl persistencelmpl = new Persistencelmpl();
MailConfig mailConfig = persistencelmpl.getMailConfig();
SMSNotifier smsNotifier = new SMSNotifier();
smsNotifier.sendSMS("Database Audit Alert :" + message.getContent(), mailConfig.getRecepientNumber(),

mailConfig.getModemNumberO, "Safaricom");
//reply to PacketCapture
ACLMessage reply = message.createReply();
reply.setPerformative(ACLMessage.INFORM);
myAgent.send(reply);

} else {
block();

}
}

}
@Override
protected void takeDown() {

super.takeDown(); }}

Page 48

