
DECLARATION

This project, as presented in this report, is my original work and has not been
presented for any other University award.

Date:

JACKSON MWITI
P58/70485/2008

This project has been submitted as partial fulfillment of the requirements for the
Master of Science degree in Computer Science of the University of Nairobi with my
approval as the University supervisor.

Dale:

Project supervisor
School of Computing and Informatics
University of Nairobi

11

ABSTKACJ
Users continue to be overwhelmed by massive amount of information spread across the
network with which they are confronted on a daily basis. Most network operations
continue to use client server technology which has effects on bandwidth. Due to this,
mobile agents promise a bright future in distributed systems because of their ability to
reduce network bandwidth. This project shows how mobile agent can be used in
distributed environment to connect to a computer residing in a remote location
allowing the user to search for files, delete, and copy files without compromising on
bandwidth.

The main objective of this project is to implement a method that uses mobile agents in a
networked environment. The implementation consists of a control server that disperses an
agent to a remote computer allowing the user to manipulate data as if in a local computer.
A comparison of the performance is made between this approach and the traditional
client server model. The results show that significance performance is obtained using
mobile agents.

Virtualization being a new technology, many companies are moving to this realm due to
the benefits that comes with it. This project has been implemented on a virtual
environment to show that mobile agents can be used in situations where operations are
running on virtual platform in a distributed environment.

in

TABLE OF CONTENT
DECLARATION.. j,
ABSTRACT.. iij
TABLE OF CONTENT..jv
Acknowledgement...vi
CHAPTER 1:... 1

1.1 Background.. 1

1.2 Search Service.. 1

1.3 AIM...2
1.4 PROBLEM STATEMENT... 2
1.5 Motivation.. 3
1.6 Mobile agents are inevitable... 3
1.7 Outcome... 3
1.8 Assumptions... 3
1.9 OBJECTIVES...4
1.10 The Concepts of Agents and Mobile Agents... 4
CHAPTER 2 :... . 9
LITERATURE REVIEW..9
2.1 Working of Mobile Agents... 10
2.2 Agent communication.. 10
2.3 Mobile agents in a distributed environment..12
2.4 Mobile Agents and Mobile Agent Environment...12
2.5 The life cycle of a mobile agent.. 12
2.6 Applications of Mobile Agents... 13
2.7 MOBILE AGENTS IN A DISTRIBUTED ENVIRONMENT.........................17
2.8 Code Mobility.. 19
2.9 Mobile Agent Development Environments..19
2.10 CHARACTERISTICS OF MOBILE AGENT LANGUAGE............................22
2.12 Virtualization..29
CHAPTER 3 :..35
METHODOLOGY.. 35

iv

3.1 Introduction..35

3.2 Information Gathering.. 33

CHAPTER 4 :.. 37

4.1 ANALYSIS AND DESIGN...37

4.2 Creating IDL..3g
4.3 The control Server..38
4.4 The search... 39

4.5 interface... 39

4.6 Listing Directories... 39

4.7 Download.. 39
4.8 Synchronize:... 40
4.9 Defining IDL Interfaces.. 40
4.10 Pattern Used.. 40
4.11 The Monitor interface...40
CHAPTER 5 :..41
IMPLEMENTATION..41
5.3 Setting up Virtual Environment: VMWare.. 42
5.4 Corba/ multiagent.. 43
CHAPTER 6: ..45
6.1 EXPERIMENTAL RESULTS... 45
CHAPTER 7 :..47
7.1 CONCLUSIONS AND FUTURE WORK... 47
7.2 Contribution made and achievements... 48
7.3 Future Research... 48
REFERENCES...49
7.4 APPEDIX..51

v

Acknowledgement.

My sincere gratitude to the Almighty God for good health I enjoyed during the time of doing this project.
Secondly, I am indebted to my supervisor Andrew Mwaura (University of Nairobi) for his supervision and
invaluable contribution he made without whom this project would not have been a success. Many thanks to
members of the Panel that included Dr. Waiganjo and Mr. Ogutu for their advices and highlighting areas
that needed improvements during oral presentations. Finally, I thank my family especially my Dad for the
special role he played during the entire time of doing this project.

Vl

List of Tables.
Tabic 1 Threat Classes and Corresponding Suitable Countermeasures .. 34
Table 2 showing requirements for operating system...42

Vll

List of Figures

Figure 1 The trends leading to mobile agents.................. ..5
Figure 2 A virtual machine..6
Figure 3 Communications using client-server paradigm...11
Figure 4 The life cycle of a mobile agent..13
Figure 5 client-server and mobile agent application in network..14
Figure 6 sequence of processes carried out during the agent’s lifetime...15
Figure 7 Framework architecture. Belkhelladi, P. Chau vet and A. Schaal(2009).................................. 16
Figure 8 Model of Search.. 16
Figure 9 Illustration of a graphical scenario of a client seaching...18
Figure 10 Degree of Mobility vs. Sensitivity of Agent... 24
Figure 11 Virtual Machine Monitor - Virtual Machine Relationship.. 30
Figure 12 . (a) Client / Server binding with an activation daemon, (b) CORBA Agents:......................31
Figure 13 Virtual Machine environment... 35
Figure 14 Agent System M odel... 36
Figure 15 Conceptual M odel... 37
Figure 16 Comparison between client server and agent based remote file locator................................45

Vlll

List of Abbreviations

• ACL- Agent Communication Language
• VM-Virtual Machine
• IR- Information Retrieval
• MA-Multiagent
• RMI-Remote Method Invocation

IX

CHAPTER 1:

INTRODUCTION

1.1 Background
Currently, distributed systems employ models in which processes are statically attached to hosts and
communicate by asynchronous messages or synchronous remote procedure calls. Mobile agent technology
extends this model by including mobile processes, i.e., processes which can autonomously migrate to new
hosts. This basic idea results in numerous benefits including flexible, dynamic customization of the
behavior of clients and servers and robust remote interaction over unreliable networks.

According to David Kotz and Robert S. Gray(1999),Rapidly evolving network and computer technology,
coupled with the exponential growth of the services and information available on the Internet, will soon
bring us to the point where hundreds of millions of people will have fast, pervasive access to a phenomenal
amount of information, through desktop machines at work, school and home, through televisions, phones,
pagers, and car dashboards, from anywhere and everywhere.

In his paper David Kotz and Robert S. Gray(1999) argues that bandwidth to many end users will remain
limited by several technical factors. Many users will still connect via modem, or at best, ADSL over the old
copper loop. Many other users will connect via low-bandwidth wireless networks. Most users can expect to
see no more than 128 Kbps to 1 Mbps available at their desktop or palmtop, although some asymmetric
cable modems may reach 10 Mbps (for downloads) Corey Grice(1999), Amitava Dutta-Roy(1999).

Mobile agents will be an essential tool for allowing such access. Mobile agents are an effective choice for
many reasons, and although not all applications will need mobile agents.
A traditional file search on a set of network computers requires mapping each drive to be searched on the
local file system. This is a tedious task. During the search operation, the results are frequently returned to
the requestor on a continuous basis consuming valuable network resources. The wider context of this
research project is to explore how agents can be used in searching of files to eliminate problems associated
with traditional methods. The likely users of this project include private networks, individuals, corporations
and governments.

1.2 Search Service

The WSS organizes the extracted features of a collection of documents. The Windows Search Protocol
enables a client to communicate with a server that is hosting a WSS, both to issue queries and to enable an
administrator to manage the indexing server. When processing files, WSS analyzes a set of documents,

1

extracts useful information, and then organizes the extracted information so that properties o f those
documents can be efficiently returned in response to queries.

A collection o f documents that can be queried comprises a catalog, which is the highest-level unit of
organization in Windows Search. A catalog represents a set of indexed documents that can be queried. A
catalog consists o f a properties table with the text or value and corresponding location (locale) stored in
columns o f the table.

The following conditions cause the service to throttle back or pause indexing:

• High CPU usage by non-search-related processes.
• High system I/O rate including file reads and writes, page file and file cache I/O, and mapped file

I/O.
• Low memory availability.
• Low battery life.
• Low disk space on the drive that stores the index.

With growing application deployment on virtualized hardware, hardware resources are increasingly shared
across multiple virtual machines.

1.3 AIM

The aim of this project is to research on mobile agent mechanism and their applicability in a networked
environment. It also aims to demonstrate how agent can be deployed in a remote machine to enable users in
a networked environment to search for files, synchronize and traverse directories

1.4 PROBLEM STATEMENT

Searching and manipulating of files on a remote computer is a challenge facing users on every day of their
operation. Users in a distributed environment by their nature applications are distributed across multiple
computers continue to face challenges due to distribution of their files across network. This is because of
one or more of the following reasons:

• The data used by the application are distributed

• The computation is distributed
• The users of the application are distributed

2

A traditional file search on a set of network computers requires mapping each drive to be searched on the
local file system. This is a tedious task. During the search operation, the results are frequently returned to
the requestor on a continuous basis consuming valuable network resources. Users in a network arc faced
with the following issues;

• network bandwidth

• Disconnected operation

• Low-latency interaction.

1.5 Motivation
Mobile agent has continued to gain popularity in filtering information, automation of process and also in
buying and selling of goods in the field of ecommerce. Being a new technology, there is so much attention
from researchers across the globe on agent technology. Despite all this, very little has been done in the area
of distributed systems and how agents can help users in a distributed environment can benefit from them.

The basic idea of this project is to research on agent technology and its application in file operation

1.6 Mobile agents are inevitable
David Kotz and Robert S. Gray (1999) argues that not because mobile code makes new applications
possible, nor because it leads to dramatically better performance than (combinations of) traditional
techniques, but rather because it provides a single, general framework in which distributed, information
oriented applications can be implemented efficiently and easily, with the programming burden spread
evenly across information, middleware, and client providers. In other words, mobile code gives providers
the time and flexibility to provide their users with more useful applications, each with more useful features.

1.7 Outcome
The outcome of this research project is a project report, academic paper and a prototype that implements an
agent based remote file locator in a virtual environment.

1.8 Assumptions
• That users in a networked environment posses certain rights to access a machine located

somewhere in a remote location.

• Only trusted users are allowed to execute commands outlined.

• Those computers in the network will be registered. This will enable the local machine (acting as
the server) to access the registered clients.

3

1.9 OBJECTIVES
• To conduct comprehensive literature review on mobile agents and evaluate their application in a

distributed environment.
• Study Agent mobility and identify an appropriate way in which agents can be used in locating file

stored in a remote location.
• To study code migrations and its application in agent environment.
• To develop agent based application that connects to a remote machine and allow user to locate file,

synchronize files.

1.10 The Concepts o f Agents and Mobile Agents

1.10.1 Agents

According to Michael Luck, Peter McBumey and Chris Preist (2003), Agents can be defined to be
autonomous, problem-solving computational entities capable of effective operation in dynamic and open
environments. Agents are often deployed in environments in which they interact, and maybe cooperate,
with other agents (including both people and software) that have possibly conflicting aims. Such
environments are known as multiagent systems. Agents can be distinguished from objects (in the sense of
object oriented software) in that they are autonomous entities capable of exercising choice over their
actions and interactions. Agents cannot, therefore, be directly invoked like objects. However, they may be
constructed using object technology.

4

1.10.2 Mobile Agents
Mobile agents are programs that can move around on the network, while performing their duly,
which may be a calculation, a database lookup or some other service.

Figure 1: The trends leading to mobile agents

5

David Kotz and Robert S. Gray (1999) present the explanation of the above diagram where they say that
both the amount of information available on the Internet (a), and the number and diversity of its users (b),
are growing rapidly. This diverse population of users will not settle for a uniform interface to the
information, but will demand personalized presentations and access methods (c) This personalization will
range from different presentation formats to complex techniques for searching, filtering and organizing the
vast quantities of information (d). Today, such personalization facilities are provided at the information
source in a site- specific manner (e), at a proxy Web site (f), or (occasionally) as client software.
Meanwhile, the network technology will lead to an increased gap in the bandwidth of the core Internet
versus the fringes of the Internet (g). Thus, most client hosts will shun large transfers of data (h). That trend
encourages the migration of application functionality from clients into proxy sites (f), which are
presumably better connected to the core Internet, and need send only the final results over the slower
connection to the client. Furthermore, the dramatic availability of core bandwidth will allow these proxy
sites to be aggressive in gathering, prefetching, and caching information on behalf of their clients.
Mobile users (i) will frequently disconnect from the network, and perhaps connect later at another location
with poor bandwidth (j). This tendency again leads to the use of proxies (f). It also encourages application
programmers to choose a mobile-code solution to dynamically install the necessary client code (k) onto the
Web terminal or portable device. Moving code (applets) to the client allows a high level of interaction with
the user despite a high-latency, low-bandwidth, or disconnected network.

1.10.3 Virtualization
A virtualized system is a system that is built by abstracting computer resources such as hard disks, network
cards, memory, processors and other important resources using virtualization tools such as hypervisors and
device emulators.

Figure 2: A virtual machine
A virtual machine monitor provides a virtual machine abstraction in which standard operating systems and
applications may run. Each virtual machine is fully isolated from the rest of the virtual machines.

6

1.10.4 Agent technologies
Agent-based approaches have been a source of technologies to a number of research areas, both theoretical
and applied. These include distributed planning and decision-making, automated auction mechanisms,
communication languages, coordination mechanisms, matchmaking architectures and algorithms,
ontologies and information agents, negotiation, and learning mechanisms. Moreover, agent technologies
have drawn from, and contributed to, a diverse range of academic disciplines, in the humanities, the
sciences and the social sciences.

1.10.5 Technological Challenges
Arising from this picture of the future of agent research, there are a number of broad technological
challenges for research and development over the next decade.

• Increase quality of agent software to industrial standard. One of the most fundamental obstacles to
large-scale take-up of agent technology is the lack of mature software development methodologies
for agent-based systems. Clearly, basic principles of software and knowledge engineering need to
be applied to the development and deployment of multi-agent systems, but they also need to be
augmented to suit the differing demands of this new paradigm.

• Provide effective agreed standards to allow open systems development. In addition to standard
languages and interaction protocols, open agent societies will require the ability to collectively
evolve languages and protocols specific to the application domain and to the agents involved.
Some work has commenced on defining the minimum requirements for a group of agents with no
prior experience of each other to evolve a sophisticated communications language, but this work is
still in its infancy. Research in this area will draw on linguistics, social anthropology, biology, the
philosophy of language and information theory.

• Provide semantic infrastructure for open agent communities. At present, information agents exist
in academic and commercial laboratories, but are not widely available in real world applications.
The move out of the laboratory is likely to happen in the next ten years, but requires: a greater
understanding of how agents, databases and information systems interact; investigation of the
real-world implications of information agents (for example, including the economic effects of
shopbots); and development of benchmarks for system performance and efficiency. In order to
support this, further needs include: new web standards that enable structural and semantic
description of information; and services that make use of these semantic representations for
information access at a higher level. The creation of common ontologies, thesauri or knowledge
bases play a central role here, and merits further work on the formal descriptions of information
and, potentially, a reference

7

1.10.6 SIGNIFICANCE OF THE STUDY
This project aims at coming up with a way of locating files on a remote machine by use of agent mobility to
enable the enterprises eliminate issues related with traditional search method. It aims to benefit the
organizations in the following ways.

a) Asynchronous task execution: While the agent acts on behalf of the client on a remote
computer, the client may perform other tasks.

b) Reduced communication bandwidth: network bandwidth is an essential resource in any
enterprise. Bandwidth has limitations and therefore need to be utilized efficiently.

c) Higher degree o f robustness: A dispatched agent will deal with potential problems such as
unavailable servers (e.g., go to alternate sources or retry at some later time). Although
mobility introduces new failure cases, in general fault tolerance is promoted because a
mobile agent has the potential to react dynamically to adverse situations.

8

CHAPTER 2:
I.IIEKATURE REVIEW

Helena Nunes and Sofiane Labidi, (2002) define Information Retrieval (IR) as the computer science area
that deals with the representation, storage, organization, and access to information items. The main
objective of IR systems is to satisfy the user information needs in the best possible way Baeza-Yates, R.
and Ribeiro-Neto, B. (eds.),(1999). Helena Nunes and Sofiane Labidi, (2002) designed the MathNet
Searching Tool based on mobile intelligent agents (specifically aglets) that access the resources base in the
system and interact with the Learner Modeling Agent and with the Strategist Agent to give to the learner
the right information, in the right time, and using the correct means.

According to Parineeth M Reddy, (2002) A software agent is an intelligent program that acts as a user’s
personal assistant. Software agents endowed with the property of mobility are called mobile agents. Mobile
agents perform a user’s task by migrating and executing on several hosts connected to the network. In his
article Parineeth M Reddy,(2002) Software agents have the following properties, which distinguish them
from other programs:

In his publication Parineeth M Reddy,(2002) argues that software agents employ techniques from the field
of artificial intelligence, which empower them with a fair degree of intelligence and common sense. For
example, the travel agent program should realize that people generally do not prefer traveling by flights that
depart or arrive at the airport late in the night and the agent should avoid booking tickets on such flights.
The travel agent program should be smart enough to bargain and arrange the trip so that the overall
expenditure for the trip is as low as possible without compromising on the user’s preferences.

As Russell and Norvig (1995) stipulate, one of the most desirable properties of an agent is its rationality. It
is said that an agent is rational if it always does the action that will cause the agent to be the most
successful. The rationality of an agent depends on: The performance measure that defines what is a good
action and what is a bad action, the agent's knowledge about the environment and the agent's available
actions.

Parineeth M Reddy, (2002) add that Software agents should provide a user friendly interface so that the
user can easily interact with the agent Agents are social entities and often communicate and collaborate
with one another in order to complete their tasks. For example, the travel agent program of one user must
be able to communicate with other travel agents to find out about hotels which customers disliked and
avoid such hotels. He proposes an agent-based platform which allows users to receive and exchange
multimedia data from distributed sources, e.g. digital libraries, image databases and video databases.

9

In his publication, Kunal Shah (2003), illustrates that mobility is an orthogonal property of agents I hat is,
all agents are not necessarily required to be mobile. An agent can remain stationary and communicate with
the surroundings by conventional means like remote procedure calls (RPC) and remote object invocation
(RMI) etc. The agents that do not or cannot move arc called stationary agents. On the other side, a mobile
agent is not bound to the system where it begins execution. The mobile agent is free to travel among the
hosts in the network. Once created in one execution environment, it can transport its state and code with it
to another execution environment in the network, where it resumes execution.

The use of mobile agents in a distributed has been supported by U.P.Kulkami, Prof A R Yardi (2005),
where he says that Distributed system employs models in which processes are statically attached to hosts
and communicate by asynchronous messages or synchronous remote procedure calls. Mobile agent
technology extends this model by including mobile processes, which autonomously migrate to new hosts.

2.1 Working of Mobile Agents
Parineeth M Reddy, (2002) states that mobile agent consists of the program code and the program
execution state (the current values of variables, next instruction to be executed, etc.). Initially a mobile
agent resides on a computer called the home machine. The agent is then dispatched to execute on a remote
computer called a mobile agent host (amobile agent host is also called mobile agent platform or mobile
agent server). When a mobile agent is dispatched the entire code of the mobile agent and the execution state
of the mobile agents transferred to the host.

The host provides a suitable execution environment for the mobile agent to execute. The mobile agent uses
resources (CPU, memory, etc.) of the host to perform its task. After completing its task on the host, the
mobile agent migrates to another computer. Since the state information is also transferred to the host,
mobile agents can resume the execution of the code from where they left off in the previous host instead of
having to restart execution from the beginning. This continues until the mobile agent returns to its home
machine after completing execution on the last machine in its itinerary.

2.2 Agent communication
An ACL provides agents with a means of exchanging information and knowledge; Michael R. Genesereth
has gone as far to equate agency with the ability of a system to exchange knowledge using an ACLM.R.
Genesereth and S.P. Katchpel, (1994).

Communication plays an important key rule in agent technology. Agents communicate with users,
resources, and with each other to cooperate or negotiate. A common language is required to support full
agent functionalities. The most famous common languages are K.QML and FIPA ACL. The former was
developed by US Government’s Agency ARP A, the latter from the Foundation for Intelligent Physical

10

Agents. Both only deal with agent-to-agent communication. Much work has to be done for human
computer interface issues if agents are supposed to act on behalf of a human. The agent model employs two
different architectures: Purely reactive agents that operate in a simple stimulus-response fashion and that
do not embed concepts of plans or beliefs; the Jade platform Jade: Java agent development framework
(jade.tilab.com.) uses this kind of agents; Deliberate agents that implement the BD1 model (beliefs, desires,
intentions) and that embed the concept of intelligent agent; for instance the JACK (JACK Autonomous
Software, www.aosgrp.com.) and JADEX (Jadex Agent System, vsis-www.informatik.uni-
hamburg.de/projects/jadex.) platforms implement those kind of agents.

Figure 3 Communications using client-server paradigm.

In Telescript agents communicate by holding meetings. An agent can request a meeting with another agent
at the same place, which is the same execution environment. The Telescript system passes the meeting
request to the relevant agent. Every Telescript agent must implement the operation meeting. This is called
when an agent receives an invitation to hold a meeting. The implementation of the meeting method
contains the agents negotiating strategies, which may include rejecting holding a meeting under certain
conditions or with certain types of agents.

Agent Tel provides extensions to the Tel language for agent communication. These extensions allow
agents to communicate through either asynchronous message passing, or through remote procedure calls.

Java has no built in support for agent communication. In Aglets, each Java agent has a proxy object.
Communication from one agent to another happens through the proxy. This is to protect the agent objects
from being directly modified. The proxy object provides a set of methods for communicating to the
represented object. These include requests for aglets to take actions, such as migration, cloning, destroying
and suspending. There are also two methods for sending synchronous and asynchronous messages to the
aglets.

11

http://www.aosgrp.com
http://www.informatik.uni-hamburg.de/projects/jadex
http://www.informatik.uni-hamburg.de/projects/jadex

2.3 Mobile agents in a distributed environment
J.Waldo, G.Wyant, A.Wollrath, and S. Kendall (1994) writes that it is argued that cases exist, especially in
large-scale computer networks, where interaction among participants residing on remote hosts is rather
different in terms of latency and access to application services. Hiding such differences might end up in
unexpected performance problems. Therefore the location of system components such as agents in wide-
area networks (e.g. the Internet) has to be actively taken into consideration. In the context of mobile agents
this includes the capability to reconfigure dynamically, at run-time, the binding between software
components (e.g. agents) of the application and their physical location within a computer network, as
discussed in World Wide Web Consortium (W3C), (2000)

2.4 Mobile Agents and Mobile Agent Environment
A mobile agent must contain all of the following models: an agent model, a life-cycle model, a
computational model, a security model, a configuration model and finally a navigation model. A working
definition of a mobile agent can be given as follows (Jain, Anjum, and Umar 2000):
“A mobile agent consists o f a self-contained piece o f software that can migrate and execute on different
machines in a dynamic networked environment, and that senses and (re) acts autonomously and proactively
in this environment to realize a set o f goals or tasks. ”
The software environment in which the mobile agents exist is called mobile agent environment. Following
is the definition of mobile agent environment (Mahmoud 2001):
“A mobile agent environment is a software system distributed over a network o f heterogeneous computers.
Its primary task is to provide an environment in which mobile agents can execute. It implements the
majority o f the models possessed by a mobile agent. "
The above definitions state the essence of a mobile agent and the environment in which it exists. The
mobile agent environment is built on top of a host system. Mobile agents travel between mobile agent
environments. They can communicate with each other either locally or remotely. Finally, a communication
can also take place between a mobile agent and a host service.

2.5 The life cycle of a mobile agent
According to Kunal Shah (2003), Agent undergoes the following stages in its lifetime

1. The mobile agent is created in the Home Machine.
2. The mobile agent is dispatched to the Host Machine A for execution.
3. The agent executes on Host Machine A.

12

Home
Mechne

Host
Machine B

HostMachne C

Figure 4 The life cycle of a mobile agent

4. After execution the agent is cloned to create two copies.

One copy is dispatched to Host Machine B and the other is dispatched to Host Machine C.

5. The cloned copies execute on their respective hosts.
6. After execution, Host Machine B and C send the mobile agent received by them back to the Home
Machine.
7. The Home Machine retracts the agents and the data brought by the agents is analyzed. The agents are
then disposed.

2.6 Applications of Mobile Agents
Abdelkader Outtagarts(2009)outlines that mobile agent applications in different domains such as network
management, electronic commerce, energy efficiency and metering; Wireless Multimedia Sensors, grid
computing and grid services, distributed data mining, multimedia, human tracking, security, affective
computing, climate environment and weather, e-leaming, location, recommendation and semantic web
services.

13

Although no universally used application (normally called killer application) has been developed for them,
mobile agents are suitable for the following applications.

2.6.1 Network management
Outtagarts et al. (1999), propose a solution which is based on mobile agent paradigm instead clicnt-servci
paradigm based in SNMP protocol. The reducing of network bandwidth occupation with mobile agenis is
more interested, when network administrators have more than one node to manage. The authors
demonstrate the benefits of mobile agent by studying the performances of the two paradigms.

Administration station Administration station

Client-Server (SNMP) Mobile Agent

Figure 5 client-server and mobile agent application in network

Management. Outtagarts et al. (1999),Manvi et al(2009), use mobile agent to find multiple QoS paths and
select a best path among them to increase call success ratio and network bandwidth. One of the most
significant example of mobile agents applications is the management of commercial telecommunication
networks. Currently if an optical cable in the WAN is accidentally cut, the time required to locate the
problem may extend ridiculous because of the slow response of the network itself Thanh (2001). Alarms
will be sent to all systems attached to this network and data protection can be lost.

2.6.2 Electronic commerce
Electronic commerce is another good fit for mobile agent technology. A mobile agent could do your
shopping for you, including making orders and potentially even paying. Al-Jaljouli et al (2009) have
implemented mobile agent in e-commerce to search and to filter information of interest from electronic
markets. They describe also robust security techniques that ensure a sound security of information gathered
throughout agent’s itinerary against various security attacks, as well as truncation attacks.

14

Mobile agents can travel to different trading sites and help to locate the most appropriate deal, negotiate the
deal and even finalize business transactions on behalf of their owners. A mobile agent can be programmed
to bid in an online auction on behalf of the user. 1 he user himself need not be online during the auction

Visited Hosts

Initiating Host

k) MA
«1

H

MA

c *2

» ■

MA

c
SAf 5 6

^MA MA

C
rm~ l

MA

0 T
>5 u

Figure 6 sequence of processes carried out during the agent’s lifetime.

Nipur et al. (2009) propose a fault tolerant comparison internet shopping system BestDeal. The author has
conducted the simulation by launching nine shopping mobile agents where each has to visit five supplier
sites to get the best deal for different products. Performance is measured in terms of execution steps as well
as execution time of the simulation. The mobile agent survives even if failure rate is more than 80%
however for higher failure rate performance degraded significantly. Li et al. (2009) have studied mobile
agent oriented M-commerce platform. The design and implementation of a mobile agent platform for M-
commerce applications is discussed in this paper. According to the authors, the advantage of adopting
mobile agents for M-commerce is to scale up to large, dynamic world market places distributed over the
Internet and to ease the access and participation of mobile users.

2.6.3 Parallel Computing
Solving a complex problem on a single computer takes a lot of time. To overcome this, mobile agents can

be written to solve the problem. These agents migrate to computers on the network, which have the
required resources and use them to solve the problem in parallel thereby reducing
the time required to solve the problem(http://www.itswtech.org).

K. Belkhelladi, P. Chauvet and A. Schaal (2009) has developed a framework that uses mobile agents
launched into different hosts on available networked PCs and cooperating among them to solve large
combinatorial problems efficiently. The execution environment framework is based on the JADE,
technology. In addition, we define a new information exchange strategy based on a dynamic migration
window method and a selective migration model. A parameters adaptation model is also proposed. This

15

http://www.itswtech.org

model is used to adjust different parameters/opcrators of the genetic algorithm executed by each mobile
agent. The proposed framework has been experimented on an extended set of Itarlincss and Tardiness
Production Scheduling and Planning Problem (ETPSP).

Figure 7 Framework architecture. Belkhelladi, P. Chauvet and A. Schaal(2009)

2.6.4 Data Collection
Consider a case wherein, data from many clients has to be processed. In the traditional client-server model,
all the clients have to send their data to the server for processing resulting in high network traffic. Instead
mobile agents can be sent to the individual clients to process data and send back results to the server,
thereby reducing the network load.

information needinformation source "the real world"

F ig u re 8 M odel o f S ea rch

[adapted from Belkin & Croft, 1992]

16

2.6.5 Mobile Computing
\V ireless Internet access is likely to stay slow and expensive. Power consumption of wireless devices and
high connection fee deter users from staying online while some complicated query is handled on behalf of
the user. Users can dispatch a mobile agent, which embodies their queries, and log off, and the results can
be picked up at a later time.

2.6.6 Human Tracking
To enhance video monitoring system in the automatic human tracking system, Kakiuchi et al. (2009)
introduce mobile agent paradigm. The mobile agent utilizes the algorithm of determination of neighbor
video cameras to pursue the human efficiently. Actually, since e-leaming systems don’t consider the
emotional intelligence in the context of instruction, Wang et al. (2008) construct an emotional intelligent e-
leaming system based on mobile.

The emotion of a student is recognized by facial expression captured by a camera. The get the student’s
learning psychology by analyzing the facial expression of students using two-dimension model to describe
a student’s emotion.

2.7 MOBILE AGENTS IN A DISTRIBUTED ENVIRONMENT

The development of distributed systems has been affected by the need to accommodate an increasing
degree of flexibility, adaptability, and autonomy. The Mobile Agent technology is emerging as an
alternative to build a smart generation of highly distributed systems ,Yousry El-Gamal, Khalid El-Gazzar,
and Magdy Saeb,(2007).
Yousry El-Gamal, Khalid El-Gazzar, and Magdy Saeb,(2007),argue that exploiting agent-based
technologies significantly enhances the performance of distributed systems in the domain of information
retrieval.

Yousry El-Gamal, Khalid El-Gazzar, and Magdy Saeb, (2007), state that a mobile agent can abandon the
portable device, move onto the network locations of the needed information resource and perform a locally
custom retrieval task. Only the results are transmitted back to a portable device. Moreover, the mobile
agent can carry on a task while the connection to the portable device is temporally lost and then continue
once the link returns to send the found result.
Yousry El-Gamal, Khalid El-Gazzar, and Magdy Saeb, (2007), propose an analytical model that describes
the network load and the response time in order to compare the performance o f both the mobile agents and
the Remote Method Invocation (RMI). RMI is an object equivalent of the classical client-server approach.
In their research, they only concerned with the parameters that can be useful in the comparative evaluation.

17

For example, the number of requests that arrives to the server can affect the total processing time of the
request.
The task is terminated once the data item is found. We assume that the client begins to send a request Breq
in bytes and the servers reply by Bres if the requested data are found otherwise, a reply BNF is returned
The same process is repeated on the next server until the required data are fetched. On the other hand, the
mobile agent approach visits sequentially the set of servers until it obtains the desired information.
The mobile agent compresses the data which are found at the server before transmitting it back to the client
by a compression ratio s , where 0 = s = 1.

They assume that the mobile agent consists of code BC, data state BD, where BD is the sum of the bytes of
the result, and BS is the execution state. The probability of Finding data at server i is given by pi, where 0 *
pi = 1. The migration process consists of marshalling data and state, transmitting the code, data and state to
the destination, unmarshalling data and state then, resuming the agent execution. We assume that the time
to marshalling and unmarshalling one byte is tm. The time to process the request at the server is tp. The
time to transfer one byte from location LI to location L2 over the direct link L1-L2 is BL 1 L 2 t - . That is,
indirect routes are ignored. They emphasize that; each server will be visited only once. Therefore, there is
no reusing of the same server again in one searching task. The load due to TCP header is ignored. There is
no network queuing time. For sake of simplicity, they assume that the returned result has a constant size,
additionally they assume a constant overhead scheduling time (ts) in the case of mobile agents. That is, the
agent action is considered as a heavy task. Finally, they neglect the authentication overhead.

Figure 9 Illustration of a graphical scenario of a client seaching

Based on the above experiment, mobile agents performed better in a distributed environment that RMI in
information retrieval.

18

2.8 Code Mobility
Iris Reinhartz-Berger, Dov Dori, and Shmuel Kat/ (2002), each operation that involves code mobility can
be divided into three steps: determining the code operation targets, transferring the code, and integrating the
code into the target system. In static system architecture, the target determination step can be done at
compilation time. If the system architecture is dynamic, such that it is determined at run time, then the
operation targets should be computed immediately prior to transferring the code.

Following the target determination, the code is transferred by applying one of the design paradigms for
code mobility, which extend the traditional client-server paradigm from data to code. Once transferred, the
code can be integrated with the local target system by activating an instance of it, connecting it to existing
data or code, or continuing its transfer over the network.

Li Jingyue (2002) Mobile code is an important programming paradigm and opens up new possibilities for
structuring distributed software systems in an open and dynamically changing environment. It can improve
speed, flexibility, structure, or ability to handle disconnections and it is particularly well suited if
adaptability and flexibility are among the main application requirements. It has applications in many areas,
such as mobile computing, active networks, network management, resource discovery, software
dissemination and configuration, electronic commerce, and information harvesting

2.9 Mobile Agent Development Environments

Many different languages have been used to implement mobile agents. The following are the main
languages used in agent development.

2.9.1 Telescript
Peter DOmel(1997) proposes that Teleseript is a computer language which was designed to program the
network by enabling programs to autonomously move themselves from host to host in order to do their job.

A proprietary system developed by General Magic. The Telescript language has been specifically designed
for implementing mobile agent systems. Telescript was designed with the vision for the computer
networks become a programmable platform. General Magic's ambition was for 1 elescript to become for
communications what Postscript is for printing. Contrary to the name, Telescript is not a scripting
language. It is a complete object oriented language. Telescript supports objects, classes and inheritance.
The object oriented model and the syntax is in many way similar to that of C++. Telescript has a library of
built-in classes for writing mobile agents. There are special classes for agents and locations. Agents are a
base class for mobile agents. Locations are objects that represent sites. The Telescript language has a set
of built-in commands for agent migration and inter agent communication. The Telescript system includes

19

notions of which authority the agent is representing. I elescript programs arc compiled into a portable
intermediate representation, called low Telescript, analogous to Java byte code. I clcscnpt programs can
run on any computer with a 1 elescript execution engine. 1 he Telescript execution engine was designed to
be able to run on even small communication devices. I he T elescript language has had a great influence on
the development of mobile agents, and mobile agent languages. It was General Magic who first coined the
term mobile agent.

2.9.2 Java
The Java language M. Campione and K. Walrath, (1998)] and its virtual machine seem to be very
appropriate to implement an agent system. Java is platform independent, allows for serialization and
persistency and comes with security built into the virtual machine. These are just some of the features
needed to create an agent system.

Java is a general purpose language. Despite its relatively young age, it is already establishing itself as the
de facto standard for developing internet and intranet applications. Java is an object oriented language. It
uses the classes object oriented model. Its syntax is similar to that of C and C++. While Java was not
specifically designed for writing mobile agents, it has most of the necessary capabilities for mobile agent
programming. Java is multi-threaded. Java programs are compiled to Java byte codes, binary instructions
for the Java Virtual Machine, Steven Versteeg (1997).

Java programs are able to run on any platform with a Java Virtual Machine interpreter. This makes Java
programs highly portable. The Java libraries have good support for communication procedures. Java has
been used as the basis for many implementations of mobile agent systems. Nearly all of the systems make
use of Java 1. l's RMI (Remote Method Invocation). Some systems of note include:

• IBM's Aglets - under development by IBM Research Centre, Japan. An aglet is a mobile agent.
All aglets are derived from an abstract class called Aglet. Aglets uses an event driven approach to
mobile agents, that is analogous to the Java library Applet class. J. Kiniry and D. Zimmerman,
(1997) Each aglet implements a set of event handler methods that define the aglets behaviour.
Some of these methods are:

o OnCreation() - called when a new aglet is created,
o OnDispatch() - called when an aglet receives a request to migrate,
o OnReverting() - called when the aglet receives a request from its ownei to come home,
o OnArrival() - called after an aglet is dispatched

• General Magic's Odyssey - A mobile agent system under development by General Magic, that
attempts to achieve the functionality of Telescript, using Java.

20

• ObjectSpaces Voyager - The Voyager tystCfl % model of mobile computing . 1 Jar to that
of Obliq. I he system provides a mechanism for converting objects into a distributed objects. This
allows objects at remote sites to be semantically treated in the same way as objects at the local
site. Objects can be easily copied between remote sites.

2.9.3 Obliq
Obliq is an experimental language under development by Digital Equipment Corporation’s Systems
Research Center. Obliq is a lexically scoped, object-based, interpreted language that supports distributed
computation. The language supports objects, but not classes. It uses the prototype-based model of object-
oriented programming. New objects can be created directly, or cloned from other objects. Obliq uses
runtime type checking. Obliq has built-in procedures for importing and exporting procedures and objects
between machines. Obliq adheres to lexical scoping in a distributed context. When procedures and objects
are dispatched to a remote site for execution, any references they contain point to the same objects as on the
machine from which they were dispatched, A. H. Boming (1986).

The Obliq distributed semantics is based on the notions of sites, locations, values and threads. A site is a
computer on the network. A location is a memory address on a site that stores a value. A value can be of a
basic type or an object. Threads are virtual sequential instruction processors. Threads may be executed
concurrently on the same site or at different sites. Values may be transmitted over the network. When an
object is transmitted, basic values are copied exactly. Locations that the object contains are copied, such
that they point to the same address on the same site, at the destination site as they did at the original site.

Obliq's semantics of network computing is fundamentally different to the other languages considered.
Where as other languages see each computer as independent worlds that can communicate with each other
through the network, Obliq treats the network as a single computer with sites as components.

2.9.4 Agent Tel

Agent Tel is a mobile agent system being developed by Dartmouth College. The Agent Tel language is an
extension of the Tool Command Language (Tel), the language originally developed by Dr. John
Ousterhout. The Agent Tel extensions add commands for agent migration and message passing. The extra
commands give Agent Tel scripts similar mobility capabilities to Telescript. Agent Tel uses a modified
Safe Tel interpreter to execute scripts.

2.9.5 Perl 5

Penguin is a Perl 5 module with functions enabling the sending of Perl scripts to a remote machine for
execution and for receiving perl scripts from remote machines for execution. The scripts are digitally
signed to allow authentication and are executed in a secure environment. Mobile agents written in Perl are

21

restricted in that they must always restart execution at the same point. There is also no support for agents
saving their state on migration. A new Agent Module v3.0 is being created to give Perl 5 more
sophisticated mobile agent capabilities. 1 he extra features include giving agents the ability to save their
state on migration.

2.9.6 Python

Python is an object-oriented scripting language. The Corporation for National Research Institution, uses
Python as a language for implementing Knowbot programs.

This is by no means a complete list of the languages being used for mobile agents. For a more complete
list, the reader is referred to Kiniry and Zimmerman .

The languages that will be mainly considered in the following discussions are Telescript, Java, Agent Tel
and Obliq. Collectively, these languages represent most of the approaches presently taken to languages for
mobile agents. Aglets will be most referred to of the Java libraries. The reason for this is the techniques
associated with the other two Java libraries mentioned are represented by Telescript and Obliq.

2.10 CHARACTERISTICS OF MOBILE AGENT LANGUAGE

2.10.1 Migration
Steven Versteeg Supervisor: Leon Sterling (1996) proposes the agent language must be able to support an
agent migrating. Ideally, it should be possible to suspend an agent's execution at any point, save the state,
including the heap, the stack and even the registers, move the agent to another computer, and restart
execution, with the agents execution state exactly restored.

Telescript has built-in support for agent migration. Agents may move to any location with the go
statement. Upon the execution of this command, the agent is transported to the target site, where it
continues execution from the line after the go statement. All the agents properties and the program
execution state, including those of local variables in methods and the program counter, are restored
exactly. The agent migration is process is handled completely by the Telescript operating system. 1 he
programmer does not need to worry about saving the relevant state information just before migration.

Agent Tel uses a similar migration model to that of Telescript. The built-in statement for agent migration
is called agentjump. As with the Telescript go, when this statement is issued the execution environment
handles the transportation of the agent, and restores the agent execution state. Since the Tel language
provides absolutely no support for capturing program state, this is an Agent Tel extension of the language.

22

Java was not specifically designed for implementing mobile agents so it docs not have in built-in support
for migration. Saving the program state in Java is much more difficult. Java's security architecture makes
it impossible to directly save the virtual machine execution state. However Java 1.1 supports class
serialization. Serialization allows an entire class instance to be written to file, including the object's
methods, attributes and their values. Serialization will not save the program stack, that is, the values of
local variables in methods. The Java virtual machine does not allow the explicit referencing of the stack,
for security reasons. Workarounds have been developed for saving the program stack state. In Aglets,
each aglet implements a method called onDispatch(). This method is called when an aglet receives a
request to migrate. The request may have come from the aglet itself or from another process. In this
method, the programmer must define a procedure for placing everything an aglet needs to restore its state
on the heap. The aglet is then serialized and transported to its destination.

There are advantages to Telescript and Agent Tel's built-in support for agent migration. In Telescript it is
possible to migrate from any point in the program, including in the middle of method calls. In Java the
agent program must be structured so that everything needed to restore execution state is stored in the heap,
before migration. It is left to the programmer to make sure that all variables are correctly saved. In
Telescript and Agent Tel, the implementation of agent migration is completely hidden from programmer.
This is a source of error that Telescript programmers do not need to worry about.

Obliq takes a different view of agent migration. In Obliq, an agent can be written as a procedure that takes
a state object as an argument. A site can make its execution engine available for threads at other sites to
use. A procedure can be executed at a remote site, by passing the name of the procedure as a parameter to
the execution engine. The following code fragment shows how an agent can be sent to another site for
execution.

let state = { .. .} ; (define agent state)
let agent = proc(state, arg)... end; (define agent procedure)

(get a handle to remote site execution enginej
let remoteSite = net_import("RemoteServer", Namer);

(Execute the agent at the remote site.)
remoteSite(proc (arg) agent(copy(state), arg) end)

2.10.2 Interface to server resources
The fundamental purpose of mobile agents is to get the program closer the source of the information. The
agent implementation language must provide an easy way to access the resources on the host machine.

23

In Telescript, local resources are treated as another agent. There is an agent present at the server to
represent the local resources. This model provides an elegant and consistent interface to local resources at
different computers, but it requires writing a Telescript wrapper.

Obliq has categories different types of services provided by a site. A program may request a list of the
services provided by a site in a particular category.

Agent Tel and Aglets use a similar method to interacting with local resources to Telescnpt. In Aglets, an
aglet is associated with an AgletContext object. This object describes the environment that the aglet is in.
Through the aglet context object, an aglet is able to find out what other aglets are also in its current
environment. Like in Telescript, a stationery aglet is used to represent the local computer’s services.

2.10.3 Security
Security is a critical part of mobile agent systems. Kaijoth, Lange and Oshima identify three security
issues specific to mobile agent systems. These are: Protecting the host from the mobile agent, Protecting
the mobile agent from other mobile agents, and Protecting the mobile agent from the host. Researchers
have so far only found solutions to the first two issues.

Two major techniques are used to protect the host computer:

• Executing agents in an isolated environment. Agents cannot directly access any parts of the host
system outside their execution environment. The agent system may grant some agents special
privileges to access resources outside of their execution environment.

• Authenticating the source of mobile agents, and granting execution privileges to agents on the
basis of how trusted their source is. Some agents may be denied execution altogether.

Sensitivity
▲

• S t i t le
:
:
\

M obile

\

--------------------------------- ►

Mohlllty

Figure 10 Degree of Mobility vs. Sensitivity of Agent

24

I lie level of security required for the application and the sensitivity of the mobile agent's code and data
directly influences the degree of mobility of a mobile agent. As shown in Figure 2, as the sensitivity of the
agent’s task increases, the designer of the agent may decrease the degree of mobility of the agent. The
shaded vertical bar represents a cut-off point for the designer to decide which agents will be static and
which agents will be mobile. This decision will be made based on the available security mechanisms,
performance requirements, sensitivity of the agent's code and data, maximum acceptable risk, and the level
of functionality required. Java, Agent Tel and Telescript use both of these mechanisms in their security
models.

Java programs each run in their own environments. There are security mechanisms built into the Java
Virtual Machine instruction set to prevent programs from accessing outside of their environment. These
are:

• Type-safe reference casting.
• Structured memory access.
• Automatic garbage collection.
• Array bound checking.
• Checking references for null.

The effects of these mechanisms is that Java programs run in a sandbox. That is they are limited to the
environment allocated to them by the Java Virtual Machine, and the Java byte code instruction set
disallows them from directly accessing anything outside of this environment. Accesses outside of the
sandbox can only be done by using some of the Java libraries, allowing disk access, network access, and
printing, or by calling native methods. The Java Security Manager controls which programs are permitted
access outside of the sandbox, and the nature of the outside access. For example, by default, applets are
permitted to make network connections to their original source computer, but not to any other computers.
The Security Manager may grant special privileges to all classes from the same author, or to just some
classes.

Agent Tel enforces runtime security checks with a technique similar to that used by the Safe-Tcl
interpreter. Mobile agents are run within their own safe interpreters. In the safe interpreters commands
that access outside resources are hidden. When an agent invokes a hidden command, it is redirected to the
master interpreter. The master interpreter implements a security policy o f what commands may be
available to which agents. If the security policy allows the command for a particular agent, then the master
interpreter calls the hidden command in the safe interpreter. The security policy is user-defined by the
administrator of the server.

25

In I elescript all agents and places have an authority property. I he authority a class that defines the
individual or organisation in the physical world that the agent or place represents Agents and places must
reveal their authority to another agent of place on request. They may not falsify or withhold their authority.
The network of places is divided into regions under the same authority. When an agent tries to move from
one region to another, the source region must prove the authority of the agent to the destination region.

The Telescript language also has permits. Authorities limit what agents can do by assigning them permits.
Permits are used to limit what instructions agents execute, and to limit their resources to a budget. For
example the agent's permit can limit its lifetime or the amount of computation it may do. Telescript was
designed with electronic commerce in mind, so the same resource permits can be used to allocate agents an
amount of money. If an agent ever tries to violate the conditions of its permit it is destroyed

The Telescript language provides a very powerful and flexible framework for protecting the host computers
from untrusted sources, but at the same time not getting in the way of doing business with trusted sources.

The common way for the host to authenticate incoming mobile agents is through digital signing. Most Java
mobile agent systems and Agent Tel use this method. When an agent is transported, the message
containing it is signed by the sender agent server. The receiver agent server authenticates the mobile agent
message on arrival. If any part of the agent message was altered in transit, the digital signature is no longer
valid. The sender agent server signs the agent rather than the original author because an agent includes the
program plus the state. The state will change.

Obliq has a completely different mechanism of achieving security. Obliq relies on the lexical scoping of
the semantics of the language, together with strong runtime checking. When a agent is given to a remote
site for execution, because of lexical scoping these agents can only access data or resources that they can
reference via free identifiers, or that are given in as procedure parameters. Lexical scoping dictates that the
free identifiers refer to values that are available at the client site. Hence, the only way an agent can obtain
access to a server's resources is by assigning variables to resources that the server exports to the client site.
The values of these variables can then be passed as parameters to the agent. Hence, the agent is only able
to access server resources that the server explicitly exports.

The following code ffagement illustrates. Agent 1 uses a local resource. Agent 2 is able to use a remote
resource by obtaining a binding to an exported remote resource, and passing this as a parameter to the agent
L. Cardelli (1995).

let agent 1 = proc(arg)
resource = getResource();
use(resource)

end;

26

let agent2 = proc(resource, arg)
use(resource)

end;

(get a handle to remote site execution engine)
let remoteSite * net importCRemoteServer'’, Namer);

(Execute the agent 1 at the remote site - local resource is used)
remoteSite(proc (arg) agent 1 (arg) end)

(Get resource that the remote site exports)
resource = getResource(remoteSite)

(Execute the agent2 at the remote site, remote resource is passed as parameter)
remoteSite(proc (arg) agent2(resource, arg) end)

2.10.4 Cross platform
In most cases it is desirable for a mobile agent to be able to migrate across a heterogeneous network.
Certainly, for a mobile agent to be used on the Internet this is a requirement. For this to be possible, the
agent must be written in a language that is supported on all its potential host computers. This is one of the
reasons why nearly all mobile agent systems use interpreted languages. All the languages looked at are
interpreted.

Telescript, Java and Agent Tel agents are all interpreted at execution. Interpreters for these languages exist
across different platforms. (Obliq interpreters are currently only available for UNIX.) Despite this Java
has a number of advantages in this area. First, Java Virtual Machine interpreters already exist on many
computers. Most major operating system vendors, including Microsoft, Sun, IBM, Novell and Apple have
announced that they plan to include the Java Virtual Machine as part of the next releases of their respective
operating systems. Mobile agents written in Java will not require a special purpose interpreter to run. The
mobile agent interpreter can be expected to be already available on most machines. Agent Tel requires a
special purpose interpreter. Telescript programs require a Telescript execution engine, a closed standard
commercial product. One cannot realistically expect the Telescript execution engine to become as widely
spread as Java Virtual Machine interpreters. Second, a general problem with cross platform technology is
that, despite the intentions, some parts of the implementation act differently on different platforms. While
this is certainly a problem with Java now, one might optimistically expect these bugs to be fixed, simply
because of the magnitude of the resources involved in Java research and development.

As a sign perhaps that General Magic accepts that Java has become the cross platform standard, it is
attempting to implement a Java-based equivalent of its Telescript technology.

27

2.11 1 ro p e rtie s o f Jav a th a t m ake it a good language fo r m obile agent p ro g ra m m in g

2 .1 1 . 1 Platform-independence.

Java is designed to operate in heterogeneous networks. To enable a Java application to execute anywhere
on the network, the compiler generates architecture-neutral byte code, as opposed to non-portable native
code. For this code to be executed on a given computer, the Java runtime system needs to be present. There
are no platform-dependent aspects of the Java language. Primitive data types are rigorously specified and
not dependent on the underlying processor or operating system. Even libraries are platform-independent
parts of the system. For example, the window library provides a single interface for the GUI that is
independent of the underlying operating system. It allows us to create a mobile agent without knowing the
types of computers it is going to run on.

2.11.2 Secure execution.
Java is intended for use on the Internet and intranets. The demand for security has influenced the design in
several ways. For example, Java has a pointer model that eliminates the possibility of overwriting memory
and corrupting data. Java simply does not allow illegal type casting or any pointer arithmetic. Programs arc
no longer able to forge access to private data in objects that they do not have access to. This prevents most
activities of viruses. Even if someone tampers with the byte code, the Java runtime system ensures that the
code will not be able to violate the basic semantics of Java. The security architecture of Java makes it
reasonably safe to host an untrusted agent, because it cannot tamper with the host or access private
information.

2.11.3 Dynamic class loading.

This mechanism allows the virtual machine to load and define classes at runtime. It provides a protective
name space for each agent, thus allowing agents to execute independently and safely from each other. The
class-loading mechanism in extensible and enables classes to be loaded via the network.

2.11.4 Multithread programming.

Agents are by definition autonomous. That is, an agent executes independently of other agents residing
within the same place. Allowing each agent to execute in its own lightweight process, also called a thread
of execution, is a way of enabling agents to behave autonomously. Fortunately, Java not onl> allows
multithread programming, but also supports a set of synchronization primitives that are built into the
language. These primitives enable agent interaction.

28

2.11.5 Object serialization.
A key feature of mobile agents is that they can be serialized and deserialized. Ja\a conveniently provides a
built-in serialization mechanism that can represent the state of an object in a serialized form sufficiently
detailed for the object to be reconstructed later. The serialized form of the object must be able to identify
the Java class from which the object's state was saved, and to restore the state in a new instance
Objects often refer to other objects. Those other objects must be stored and retrieved at the same time, to
maintain the object structure. When an object is stored, all the objects in the graph that are reachable from
that object are stored as well.

2.11.6 Reflection.
Java code can discover information about the fields, methods, and constructors of loaded classes, and can
use reflected fields, methods, and constructors to 5 operate on their underlying counterparts in objects, all
within the security restrictions. Reflection accommodates the need for agents to be smart about themselves
and other agents.

2.12 Virtualization
Robert Rose(2004), defines virtual machine concept allows the same computer to be shared as if it were
several. IBM defined the virtual machine as a fully protected and isolated copy of the underlying physical
machine’s hardware R. J. Creasy,(1981).
Today’s x86 computer hardware was designed to run a single operating system and a single application,
leaving most machines vastly underutilized. Virtualization lets you run multiple virtual machines on a
single physical machine, with each virtual machine sharing the resources of that one physical computer
across multiple environments. Different virtual machines can run different operating systems and multiple
applications on the same physical computer

2.12.1 Virtual Infrastructure

A virtual infrastructure lets you share your physical resources of multiple machines across your entire
infrastructure. A virtual machine lets you share the resources of a single physical computer across multiple
virtual machines for maximum efficiency. Resources are shared across multiple virtual machines and
applications. Your business needs are the driving force behind dynamically mapping the physical resources
of your infrastructure to applications—even as those needs evolve and change.

29

Applications
1

Operating System

Virtual Machine 1

Applications

Operating System

Virtual Machine n

Virtual Machine Monitor (VMM)

System Hardware

Figure 11 Virtual Machine Monitor - Virtual Machine Relationship

According to Robert Rose(2004), the VMM provides a virtual processor and other virtualized versions of
system devices such as I/O devices, storage, memory, etc. The VMM also provides isolation between the
virtual machines it hosts so that problems in one cannot effect another.

2.12.2 Virtual Machine Monitor
Robert Rose(2004), in his article, states that the idea of a Virtual Machine Monitor (VMM) goes hand-in-
hand with virtual machines. The VMM is the software component that hosts guest virtual machines. In fact,
the VMM is often referred to as the host and the virtual machines as guests. The VMM is a software layer
that abstracts the physical resources for use by the virtual machines.

The CORBA Platform
The CORBA platform is based on the concept of interoperable objects, providing inter-connection support
common to all the objects. Thus, client components use the basic services (naming, persistence, events,
trading, etc.) and common facilities for component collaboration. Some of the CORBA features are:
interoperability among objects, client request transparency, portability, object reuse, etc. I he four key
elements of this architecture are:

a) Object Interconnection Support - ORB (Object Request Broker): The client objects are separated from
mechanisms used for communication, activation, or storage of the server objects.

b) Object Services: Packed as components with well defined interfaces, these services extend the Object
Interconnection Support capabilities. The following services may be adopted: naming, acknowledgement of
events, persistence, management of life cycle, transactions, concurrence control, relationships and
external isation.

30

c) Common facilities: Ihese collections of components detine the engagement rules for application
objects.

d) Application Objects: These are specific objects for user application and are built based on the services
provided by Object Interconnection Support, common facilities, and object services

1 he CORBA platform has several advantageous features, besides interoperability between objects, as
follows:

• When requesting a given service, the client need not concern himself about the location of the
service provider since interaction occurs abstractly and for that reason the client does not know if
the requested object is a local or a remote one;

• The object concept reduces the number of codes that need to be written since it incorporates
concepts like polymorphism inheritance;

• The objects are application-independent, reusable and portable and can therefore be used in
heterogeneous systems;

• The objects are also self-contained, i.e., they include behavior, interaction and relationships, and
can perform actions.

Location and migration distribution transparencies are considered in the context of multi agent systems.
The extension of mobile agent facility architecture is proposed with the addition of an availability service
and a transparency service. Transparent mobility of services is explored in applications using overall load
balancing o f resources.

W
Host 1 [Host ar „_^ J -] server.

].Client contacts the activa
lion daemon to locate a

V_J>V ’ 2.Daemon activates the
I I \ I 3 I Server I serve,- an(j opens the con-
I 1........... ̂ nec,ion *° h-
I R ennestin l? \]

2. I Server 2 3.Connection to the serverRequesting a server ' .I 1.M / is passed to the client.

#Daemon waits for a new
request.

w
— ORB Core " " T

DII | Stub) f m 1 Skeletoril POA\ A t
Another ^ CORBA Agent ^

[Sk-Te. >1.1Dn Stub
UKB Core

Figure 12 . (a) Client / Server binding with an activation daemon, (b) CORBA Agents:

CORBA Naming Service. The Naming Service [Vogel97] locates object implementations and thus
it is a fundamental service for distributed object systems. It provides an extra layer of abstraction
for the identification of objects, allowing readable object identifiers and persistent identification
mechanism, i.e., objects can bind themselves under the same name regardless of their object reference.

31

Mobile Agent Security
Despite its many practical benefits, mobile agent technology results in significant new security threats
from malicious agents and hosts. The primary added complication is that, as an agent traverses multiple
machines that are trusted to different degrees, its state can change in ways that adversely impact its
functionality.
Wayne Jansen, Tom Karygiannis (2000) , Threats to security generally fall into three main classes:
disclosure of information, denial of service, and corruption of information. There are a variety of ways to
examine these classes of threats in greater detail as they apply to agent systems.

• Masquerading
When an unauthorized agent claims the identity of another agent it is said to be masquerading. The
masquerading agent may pose as an authorized agent in an effort to gain access to services and resources to
which it is not entitled. The masquerading agent may also pose as another unauthorized agent in an effort to
shift the blame for any actions for which it does not want to be held accountable. A masquerading agent
may damage the trust the legitimate agent has established in an agent community and its associated
reputation.

• Unauthorized Access
If the agent platform has weak or no control mechanisms in place, an agent can directly interfere with
another agent by invoking its public methods (e.g., attempt buffer overflow, reset to initial state, etc.), or by
accessing and modifying the agent's data or code.
Modification of an agent’s code is a particularly insidious form of attack, since it can radically change the
agent's behavior (e.g., turning a trusted agent into malicious one). An agent may also gain information
about other agents’ activities by using platform services to eavesdrop on their communications.

• Eavesdropping

A host provides the hardware and other resources that an agent executes on. A host has fairly good
opportunity to eavesdrop since it can monitor every execution the agent makes. The host not only can
access the agent’s code, state, and data, it can also infer information of the agent from the request the agent
makes.

• Alteration
A host can alter the code, the state, or the data of an agent requesting service on that host. Since the agent
normally visits a series of hosts to carry out its tasks, we may not be able to track down who made the
alteration if we do not detect it in a timely manner.

32

The mobile agents are under so many possible attacks from the host/hosts, can mobile agent protect
actively and effectively protect itself from the host/hosts? Since mobile agents are ai the mercy of the
host/hosts for resources, some researchers believe mobile agents cannot effectively protect themselves from
host(s)’ attacks. Although the research for effective methods is still in infancy, we believe it is possible to
protect mobile agents from a host/hosts.

The protection of an executable program in an insecure environment is more important for the mobile
agent. Because the mobile agent is comprised of the code and state information needed to carry out some
computation. Mobility allows an agent to move, or hop, among agent platforms.

Because the mobile agent has the loose roaming itineraries in many agent applications, many traditional
security means cannot work very well.

Because attackers can tamper the agent from the three ways as following: data , code and state.

Software solutions
Obfuscation:
Obfuscation, proposed by Hohl (www.informatik.uni-stuttgart.de)has for object the generation from an ordinary
agent A another agent A’ equivalent in functions but difficult to analyse. The idea consist in the violation of
software engineering rules like the use of GOTO instead of recommended loops, the use of insignificant variable
names, the replacement of procedure calls by the procedure body and the insertion of useless code Hamed
Aouadi and pr Mohamed Ben Ahmed (2006).

Execution traces:
In this approach every site visited by the agent generates a trace of the agent execution. This trace contains
every code line, every variable and every external variable read by the agent. Before the migration of the
agent, they calculate the hash of the trace (with a hash function like, sign that hash and associate the result
to the agent. A light version of this solution consists in the agent code split in white segments and black
segments. The trace is calculated only on the black segments where the agent interacts with the visited
platform. Hamed Aouadi and pr Mohamed Ben Ahmed (2006)

33

http://www.informatik.uni-stuttgart.de

T h r e a t C la s s T h re a t S u b d a s s S a it a b le C o u n t ft i n r a s u i es
I n te g r i ty A tta c k In teg n ty in te rfe ren ce T rusted execution e n v iro n m e n t

E ncryp tion
R eferen ce sta tes

In fo rm atio n m od ifica tio n T am p er resistan t h a rd w a re
T rusted execution e n v iro n m en t
D etection objects
Itine ra ry reco rdm g8
A nonym ous itinerary
Partial re s u lt en cap su la tio n & authen tica tion
C ryptograph ic tracing

A v a ila b il i ty R e fu sa l

D enial o f service T rusted execution en v iro n m e n t
Server replication
P a th h is to n e s
C ryp tograph ic trac ing

D elay o f service T rusted execution en v iro n m e n t
Path h is to rie s
Server rep lication

T ran sm iss io n refusal T rusted execu tion e n v iro n m e n t
Server R ep licatio n

C o n f id e n tia l ity A tta ck

E av esd ro p p in g T ru sted execu tion en v iro n m e n t
U sing a m o b ile agen t system
E ncryp tio n
E nvironm ental key g e n e ra tio n

Table 1 Threat Classes and Corresponding Suitable Countermeasures I able

34

CH AP I KK 3:
METHODOLOGY

3.1 Introduction
This chapter presents the various methodologies that were employed in doing this research project. It
explores in details how the project was carried out. It shows the major stages that were involved the
activities carried out on every stage. The project aims to find out how mobile agent can be used in a
networked environment to help users in locating, retrieving and synchronizing of files.

3.2 Information Gathering
Materials contained in this projected were collected from journals that provided vital information for
literature review section. Internet played a major role in the research because in the area of mobile agents,
very few books are available. Information was also obtained from texts books which were gotten from the
university library.

• The Prototype
The findings of the research were implemented in a prototype that was developed in a virtual environment.
The section below outlines how major activities were carried out.

• Virtualized Environment
The first step in this project involved setting up a virtual environment comprised of the following a
components.

Figure 13: Virtual Machine environment

35

Windows hypervisor. This will be the host Operating syttttB which other guest operating system will run
on top o f it. For this project I will use windows 7 home edition
The hypervisor is the single most security critical element in the system. It is the hypervisor that provides
isolation between different virtual machines.
Win Xp Operating system - this will the guest operating system which will be running in virtual box This
the operating that will have the java installed which will support the agent to execute

Hardware. This is the actual computer that the hyper visor sits on. The laptop will be the hardware in this
case.
Setting of agent environment.
The research was carried out by conducting literature review on mobile agents . Agent communication was
explored to know how agents communicate.
Agent system model was studied to get an overview of an agent in a networked environment . 1 his was
done to understand the security of agent

Figure 14: Agent System Model

Testing
Testing was to be done on a virtual environment whereby the control server was residing on a remote
location and the client also residing on a remote location. To ensure that the application was working, the
server was to successfully connect to clients and locate files residing on the client machine

36

CHAPTER 4:
4.1 ANALYSIS AND DESIGN

This chapter outlines the design of the prototype, the components of the prototype and the interfaces that
the user will be interacting with. The conceptual model comprises of the user, graphical user interface, the
network and remote computer.

CO NCEPTUAL MODEL

USER

Figure 15: Conceptual Model

The user will interacts with the application through a graphical user interface (GUI) provided, through IDL,
from this interface the user will be able to see the following modules, Commands- this interface will allow
the user to see the client machines that have been registered by the control server. The user cannot access a

37

computer that has not been registered. It should noted that client machines should be n . this can
be set in the registry so that whenever the computer is switched on, it is directly registered to avoid users
registering their machines every time they switch them on.

Download file- 1 his interface will allow the user to connect to the desired computer and be able to see the
directories that exist in the client machine. I he interface will contain a button that the user to open a folder
and select the desired file.
Upload file- will allow user to upload files to a desired destination
Search- allows the user to search for files that exist in a given coimputer

Traverse directory- this interface will allow the user to go through the directories that exist in the client
computer that is connected.
Synchronize file- this interface will allow the user to synchronize two files in the network

4.2 Creating IDL

Idl interface will be created and compiled to define the interfaces to the objects required in the system. To
define these interfaces, CORBA IDL were used.

IDL allows you to define interfaces to objects without specifying the implementation of those interfaces.
To implement an IDL interface, you define a C++ class that can be accessed through that interface and then
you create objects of that class within an Orbix server application. The following modules were
incorporated.

4.3 The control Server
The system will have a control server. The control Server will provide the implementation of the
interface, the interface will be called by network clients (monitor or bonet) to make its presence known to
other clients in the network the interface can be compared to resource discovery or monitoring component
in a distributed system environment.

The control Server will maintain a list of connected clients in an array. When the clients call this method
with their identifiers as arguments the control Server will add the client identifiers to the list (array) of
connected clients
The system will also provides a method through which the network clients can queries the list of connected
clients, a method useful when the network users want to know which clients are available.
The controlServer returns the list of connected clients as an array to the calling client, done by using the
corba’s out direction utility.

38

4.4 The search.

This module will be the one to perform the search. The search File method searches the network clients
(bonets) for files whose names match the search file (file to be searched). The monitor will send the search
string to each and every connected client. The connected clients then queries ail the directories in the
system starting from the root and then sends back the details of the files that match the search string the
request is asynchronous i.e the monitor doesn’t have to wait for the search result once it has send the
request

4.5 interface
The interface will provides access to a remote client shell, it will executes the provided string arguments
then sends back the results to the monitor
The method will makes use of java.lang library utility to interface and pass commands to the shell. For

perfomance enhancements the multithreading concept is used.
The method will make use of two threads:

I. executingThread
II. supervisingThread

The executing thread is in charge of executing the given command and handling any errors that might arise
The supervisingthread will monitor the executing thread to detect nonresponsive threads, these threads are
then terminated where necessary i.e when blocked.

4.6 Listing Directories
This method will enable listing of the contents of directories
The method receives two arguments (directory name and direction of traversal either up/down). On up it
lists the contents of the parent directory while on down it lists the contents of the supplied directory.
When it receives an empty directory argument(“ “) it queries for the root directories the method returns
asterisks(*) to designate the contents of an empty directory.
The method lists the contets of the supplied directory the method also incoporates means by which the
requesting clients determines whether the returned argument is a file or directory, enabled by use of the
flags parameter

4.7 Download
The method will use java.io library utility to read the contents of a local file (respect to the bonet) into a
string then transmit this result to the requesting client, the requesting client then use this string sequence as
an input stream to build the requested file. The method calls the copy in method with the string stream
argument (converted input stream) to complete the download request.

39

4.8 Synchronize:
The synchronize method will be used to maintain consistencies between files in remote computers by
synchronizing their contents based on the selected criterion. The ctriterion used could be by time last
modified or by their sizes. The most recent time means the most consistent. Likewise to size the largest
means that content has been added which means it is the latest thus the most suitable.

4.9 Defining IDL Interfaces

IDL interface describes the functions that an object supports in a distributed application. Interface
definitions provide all of the information that clients need to access the object across a network

4.10 Pattern Used
M aster-Slave
The Master-Slave pattern defines a scheme whereby a master agent can delegate a task to a slave agent.
The key idea of the master-slave pattern is to use abstract classes, Master and Slave, to localize the
invariant parts of delegating a task between master and slave agents: dispatching a slave back and forth to
other destinations, initiating the task’s execution, and handling exceptions while performing the task.

Master and slave agents are defined as subclasses of Master and Slave, in which only varying parts such as
what task to perform and how the master agent should handle the task’s result are implemented.

4.11 The M onitor interface

The Monitor provides the interface to the system; the monitor is in charge of connecting to remote clients,
passing a message/command to remote clients and getting back the status from remote clients. Thus its
methods are concerned with display of status and any feedback information from remote clients.
Both methods are concerned with outputting information to the Monitor’s screen

40

CHAPTER 5:
IMPLEMENTATION

5.1 Introduction.

This section provides an overview of how implementation was done including the requirements. Details of
both software and hardware requirements are given under this chapter.
Virtual machine technology is gaining in popularity daily. When installed, users can run multiple operating
systems on a single computer and can quickly switch between these applications with the click of a mouse
button.

5.2 System Requirements:
The Physical Computer Requirements'.
The minimum system requirements for the host computer (which is the computer system that you are
physically installing the Virtual Machine software) is as follows

Supports any Pentium compatible processor with at least 400MHz (1 GHz is recommended) with L2
cache.

• At least 20 MB of hard disk space
• DVD or CD-ROM Drive
• Monitors using at least Super VGA (800x600) resolution.
• Can be installed on any of the following operating systems:

■ / Vista Enterprise
•S Vista Ultimate
V Vista Business
V Windows Server 2003 Standard Edition
V Windows Server 2003 Standard x64 Edition
V XP Professional

• Supported processors:
AMD Athlon/Duron
Intel Celeron
Intel Pentium II
Intel Pentium III
Intel Pentium 4

41

Intel Core Duo
Intel Core2 Duo

The Guest Operating System Requirements:
Caution. When installing guest operating systems keep in mind that they can quickly fill up disk space and
use up available memory. Below, the table below gives the amount of memory and disk space that is
needed to run the guest operating system:

Guest O perating System Minimum Hard Disk Space
. ___________

Minimum Memory
ij Windows 98, Windows 98 Second Edition 500 MB 64 MB

Windows Millennium Edition (Windows ME) 2 GB 96 MB

Windows 2000 Professional 2 GB 96 MB

Windows XP Home Edition 2 GB 128 MB

Windows XP Professional 2 GB 128 MB

Windows Vista Enterprise 15 GB 512 MB

Windows Vista Business 15 GB 512 MB

Windows Vista Ultimate 15 GB 512 MB

OS/2 500 MB 64 MB

Table 2: showing requirements for operating system.

5.3 Setting up Virtual Environment: VMWare
To create the environment, you need to first install VMWare on the computer. Once that is done, you need
to load an OS into the VMWare.

Aeent Design
Once the configuration is set, choose the Operating System that is going to be installed in this VM. This
doesn't install the OS, but jus. sets the environment compatible to ,ns,all the OS .ha, you have chosen from
the list.
Setting network in vm ware
Once the OS path is set, move on to Network Settings where you have four options. Setting the network
type is most important when it comes to how you would like to use this VM later, though VMWare ,s

42

created for ease of use and hence you could change the network settings at any point of tune even after the
installation is done.
There are four modes of network types to choose as shown below
Bridged mode
NAT’ted mode
Host-only mode
No Network Connection
For this project, I used Bridged Mode.
Bridged Mode:
In this mode, the guest operating system would have direct access to the external network of the host on
which VMWare is running. The guest will have its own IP address on the external network.
NAT’ted Mode:
In this mode, the guest operating system would connect to the external network using the host IP address.
Host-only Mode:
In this mode, the guest operating system would connect to the virtual network within the VMWare, and
hence this mode can be used for different VM’s to connect with each other inside the virtual environment.
No Network Connection:
In this mode, as the name suggests there will be no network connection from this guest OS.

5.4 Corba/ multiagent

The interface client provides the following methods

Execute (in string command, in string monitorName): which receives two string parameters: command -the
command to be executed by the bonet. bonetName —the name of the monitor requesting the operation, this
name is useful to communicate the results back to the monitor.

Arguments list_directory(in string directory, in string dirrection): returns arguments: a sequence of strings
(array), i.e. the contents of the given directory.

Void download(in string filename, in string dnldServer, in string destination_host, in string
destination dir): downloads a specified file to a specified host, the additional parameters arc useful in
logging details.

void copy_in(in string input_stream ,in string path,in string dnldServer): this method is invoked by a
remote host when to complete a download request.

43

Void searchFile(in string fileName,in string monitorName): a method that searches for and returns all the
Files whose name contains or similar to the specified fileName parameter. The results are communicated
back to the monitor enabled by the monitorName parameter.

Arguments list_roots(in string hostname): interface’s method that returns string sequence of root
directories the hostname parameter specifies the calling host. Used for logging and completing the request

void listdir(in string path ,out arguments dirlist, out flags fl): interface’s method that lists the contents of a
directory specified by path, the method uses out parameters to relay back the results to the calling host.

Void rename(in string oldName, in string newName, in string requestingHost): interface’s method that
renames the file oldName to newName. The requesting host is used for logging and sending back any
errors that may occur in the process.

Void delete(in string deleteFile, in string requestingHost): interface required to delete a file remotely. 1 he
details - requestingHost and the deleted file - are logged.

Void getprops(in string fileName, out long size, out boolean canread , out boolean canwrite, out boolean
isFile, out long lastModified): a method called to obtain the properties of a network file, the method uses
the out parameters for message passing.

Void synchronize (in string criteria, in string hostA, in string dirA, in string hostB, in string dirB): a method
to synchronize a pair of network files. The method uses the specified criteria i.e. by last modified or bv size
to synchronize the files.

void queryFolder (in string queryHost, in string dirName, out flags size, out booleanseqs isl ile, out flags
modified, out arguments Is, out arguments canonical): a method to obtain the details of a file or folder used
when synchronizing files.

NB
All of the methods above are contained in the bonet module and each participating client in the network can
be seen as a bonet, thus all the clients in the network are capable of providing the described services.

44

Re
spo

nse
 tim

e (i
n m

 se
con

ds)
CHAPTER 6:

6.1 EXPERIM ENTAL RESULTS
The experiment was conducted in order to test the following, Agent can be able to move in the network and
be able to access files residing on a remote machine, and the mobile agent performs better than client
server. Two different types of experimentations were done. In one of the experiments the response time
was measured against the number of users, while the other experiments tested the file size against response
time. All these experiments were conducted under the following conditions.

• The computer had a CPU of 2.13 GHz with 1.96 amount of RAM
• Microsoft window seven was the operating under which the agent was running on
• Virtual Box 4.0 was the Virtualization platform under which the operating system was running on.
• The two computers were both connected with Ethernet cable with speed of lOOMbs

Figure 16: Comparison between client server and agent based remote file locator

From the above results, mobile agent seems to perform better than client server method which seems to
experience delays. For this case mobile agent are far better that client server method which to take
more bandwidth that client base. Mobile Agents transparently use the network to accomplish their
tasks, while taking full advantage of resources local to the many machines in the network. They
process data at the data source, rather than fetching it remotely, allowing higher performance
operation. They use the full spectrum of services available at each point in the network, suc h .iv> GUIs
at the user and database interface on servers. T hey make best use of the network as they travel.

The client server seems to be taking too much time to respond as compared to agent based method.
This can be attested by the fact that Client makes a request by sending a message to the server and the

45

Server unwraps the message, decodes it and processes the request and sends the reply in th form of a
similar message back to the Client. This operation overwhelms the network whereby bandwidth is
greatly consumed. Whereas the mobile transport the code to do the processing locally, client server
model continue to transmit data over the network for processing.

46

CHAPTER 7:
7.1 CONCLUSIONS AND FUTURE WORK

Mobile agents have been found to be beneficial in distributed environment because of many benefits they
posses. The main objective of this project was to research on mobile agents an application that allow user to
connect to a remote machine and be able to manipulate data. This application was supposed to allow the
user in a given location to connect to a remote computer through a mobile agent and be able to manipulate
data. This has been implement using java programming language which offers many advantages when
dealing with mobile agents. The application that was developed allowed copying of files, deletion,
synchronization and renaming of files that reside on a remote machine.

Application areas of mobile agent were reviewed in this project. Researches carried by scholars were
reviewed to find out what they have done. Application areas of mobile agents have been discussed in
details and proposed frameworks discussed. The application areas featured are, Networking, where it was
found that mobile agents are being employed in network management by network administrators because
of the benefit that mobile agent offers. Another application area discussed is on E-commerce. It was found
that mobile agent is being employed on the internet to do shopping, including making orders and
potentially even paying. Mobile agent is being employed in parallel computing. It was found that these
agents migrate to computers on the network, which have the required resources and use them to solve the
problem in parallel thereby reducing.
Other application areas of mobile agent discussed are mobile computing, data collection and human
tracking. This section of literature review achieves the objective set for this project.

An evaluation on mobile agents and their applications in a distributed environment was conducted and it
was found that an increasing degree of flexibility, adaptability, and autonomy in distributed environments,
mobile agents plays a big role in such environments. This project found that mobile agent can carry on a
task while the connection to the computer is temporally lost and then continue once the link returns to send
the found result. Due it advantage mobile agents perform well in distributed environment than other
technologies. Mobile agent development environment was also researched where languages used in agent
development were discussed.

A study on agent mobility was conducted where it was found that code mobility can be divided into three
steps: determining the code operation targets, transferring the code, and integrating the code into the target
system. Due to agent property of transferring code instead of data, this can be employed in file searching
whereby agent can be sent into a remote machine to do local searches while freeing the client to do other
operations. Code mobility is a property that makes mobile agent appropriate in doing searches as compare
to client server paradigm

47

Agent communication was also highlighted in this project o shed light on Agents. It was found th.it agent
communicate with users, resources, and with each other to cooperate or negotiate. Common languages that
agent uses for communication were tackled in this section of literature review.

The agent based application that connects to a remote machine and allow user to locate file, synchronize
files has been developed to demonstrate agent mobility in a remote location. This application was able to
connect to a remote machine and allow user to access files, synchronize files and so on. Based on testing
and analysis performed in this project, it can be concluded that mobile agent can be used in distributed
environment to enable users perform their operations as if they were on a local machine while saving on
bandwidth.

7.2 Contribution made and achievements.
Through the prototype this project was able to prove that mobile agents can used together with CORBA
framework in a distributed environment to tap benefit of CORBA while incorporating mobile agent
benefits.

The research demonstrated that it is possible to develop mobile agent that can operate in a virtual
environment which allows user to share the resources of a single physical computer across multiple virtual
machines for maximum efficiency

This work demonstrated that it is possible to develop mobile agents based on java that are able to move to a
remote computer and manipulate data based on user needs

Through experimentation the research findings found that mobile agents are able to save on bandwidth
compared to client server architecture

7.3 Future Research
Though this project is complete, it has not fully covered mobile agents especially in terms of security.
Users in a distributed environment continue to treat mobile agents with caution because of the security
issue surrounding them. I therefore recommend further research in this aspect because security remains a
challenge. This project based it implementation in a virtual environment as a platform for development
Performance model to predict performance of mobile agent in a virtualized environment need to be
researched because during my research, I have not come across any model that address performance
prediction of virtual machine. If you can be able to predict the performance of a virtual machine and how
this performance affects mobile agents then this will be a yard stick to come up with mobile agents that
performs better.

48

R efe r e n c e s

1. Abdelkader Outtagarts , (2009). BestDeal by using Mobile Agent, International Conference on
Information Management and Engineering

2. Abdelkader Outtagarts, (2009).Mobile Agent-based Applications : a Survey. Nozay, France
3. Amitava Dutta-Roy, (1999), Bringing home the Internet. IEEE Spectrum,
4. B.Schulze, (1998). Service Migration and a Transparency Service. GMD FOKUS,German
5. Braubach, (2006). Jadex Agent System
6 . Campione, M. & Walrath, K. (1996). The Java Tutorial: Object-Oriented Programming for the

Internet. Reading, Massachusetts, Addison-Wesley
7. Carlos Arias Mendez University of Magallanes, (1999) .Agent Migration Issues in CORBA

Platforms
8 . Corey Grice, (1999).When will data change the wireless world?, CNET NEWS.COM
9. David Kotz and Robert S. Gray, (1999), The Future of the Internet .Thayer School of Engineering

Dartmouth College Hanover, New Hampshire 03755 Mobile code:
10. Do, van Thanh,(2001), Using Mobile Agents in Telecommunications, Proceedings of the

International Workshop for Internet Bots: Systems and Applications
11. Felicio et al., (2009). Platform as Support for Distributed Virtual Environments
12. Fritz Hohl,(1997).An approach to solve the problem of malicious hosts
13. H Kakiuchi at al., (2010), An Algorithm to Determine Neighbor Nodes for Automatic Human

Tracking System,.
14. Kiniry, J and D. Zimmerman, (1997), Special Feature: A Hands-On Look at Java Mobile Agents,
15. Belkhelladi ,K , Chauvet. P and Schaal .A. (2009) A mobile agent framework to support parallel

computing -Application to Multi-product Planning and Scheduling Problems
16. Kunal Shah(2003) Performance analysis of mobile agents in wireless internet applications using

simulations.
17. Li Jingyue (2002) Code Mobility Overview (Essay for DIF 8914)
18. loan M. R. and Paula S. L.,(2008).Using Mobile Agents and Intelligent Data Analysis Techniques

for ClimateEnvironment Modeling and Weather Analysis and Prediction, 10th International
Symposium on Symbolic and Numeric Algorithms for Scientific Computing.

19. Genesereth M.R. and Katchpel S.P, (1994).Software Agents,” Comm. ACM, Vol. 37, No. 7,
1994, pp. 48-53, 147.

20. Mihai Barbuceanu et al., (2004). Mobile Agents Intelligent Assistants Agent Technology:
Enabling Next Generation Computing by Building Agents toServe Customers

21. Outtagarts, A., Kadoch.(1999). Client-Server and Mobile Agent: Performances Comparative
Study in the Management of MIBs. Proceedings of the First International Workshop on Mobile
Agents for Telecommunication Applications

49

22. Parineeth M Reddy(1997), On the Internet Languages for Mobile
23. Al-Jaljouli R., Abawajy J.,(2009). Agents Based e-Commerce and Secunng Exchanged

Information
94 PATEL R. B GARG .K., (2005). A Comparative Study of Mobile Agent and Client-Serv er

Technologies in a Real Application retrieval
25. Robert,et al., (2004). A note on distributed computing Survey of System Virtualization

Techniques. Microsystems Laboratories, Nov
26. Manvi S.S. and Venkataram .P., (2007).Mobile agent based approach for QoS routing
27. Kulkami U.P. et a l (2005),Agent Tracking: A Reliable Agent Forwarding Mechanism
28. Wayne Jansen et al., (2000). Mobile Agent Security. Gaithersburg, M D: U.S. Dept, of Commerce
29. Autran G„ X. Li, (2009), Implementing an Mobile Agent Platform for M-commerce, 33rd Annual

IEEE International Computer Software and Applications Conference, 2009, p. 50-45.

50

APPEDIX
Interface specification

All the interfaces were defined in an IDL file pc.idl, the file contains all the interface specifications used
by the different system modules - controlServer, bonet, Monitor.
The controlServer comprised two interfaces
1 . interface server {
2 . typedef sequence<string> clients;
3. void register(in string hostname);
4. void get_connected_clients(out clients connectedclients);
5.
6 - };

i. Interface through which remote clients can register themselves on the network
ii. Interface through which the connected clients can query the control server to find out the names of

registered clients, useful when binding to these interfaces.

The bonet interfaces
The bonet, a remote client module that is responsible for most of the remote functions operations that the
system performs. All the clients that the system “sees” must run the bonet daemon.

interface client {
typedef sequence<string> arguments;

typedef sequence<long> flags;
typedef sequence<boolean> booleanseqs;

void execute(in string command,in string monitorName);
arguments list_directory(in string directory,in string dirrection);
void download(in string filename,in string dnldServer,in string destination_host, in string

destinationdir);
void copy_in(in string input stream ,in string path,in string dnldServer); // check invalid path
void searchFile(in string fileName,in string monitorName);
arguments list_roots(in string hostname);
void listdir(in string path,out arguments dirlist,out flags fl);
void rename(in string oldName,in string newName,in string requestingHost);
void delete(in string deleteFile,in string requestingHost);
void getprops(in string fileName,out long size,out boolean canread.out boolean canwrite,out

boolean isFile,out long lastModified); .void synchronize (in string criteria, in string hostA,in string dirA,in string hostB, in string dir 3),
void queryFolder (in string queryHost, in string dirName, out flags size, out booleanseqs isFilc,

out flags modified, out arguments Is,out arguments canonical);

51

execute(in string command, in string monitorName): which receives two string parameters: command the
command to be executed by the bonet. bonetName -the name of the monitor requesting the operation, this
name is useful to communicate the results back to the monitor.
arguments list_directory(in string directory, in string dirrection): returns arguments: a sequence of strings
(array), i.e. the contents of the given directory.
void download(in string filename, in string dnldServer, in string destination host, in string destination dir)
downloads a specified file to a specified host, the additional parameters are useful in logging details.
void copy_in(in string inputstream ,in string path,in string dnldServer): this method is invoked by a

remote host when to complete a download request.
void searchFile(in string fileName,in string monitorName): a method that searches for and returns all the
files whose name contains or similar to the specified fileName parameter. The results are communicated
back to the monitor enabled by the monitorName parameter.
arguments list_roots(in string hostname): interface’s method that returns string sequence of root directories
the hostname parameter specifies the calling host. Used for logging and completing the request.
void listdir(in string path ,out arguments dirlist, out flags fl): interface’s method that lists the contents of a
directory specified by path, the method uses out parameters to relay back the results to the calling host.
void rename(in string oldName, in string newName, in string requestingHost): interface’s method that
renames the file oldName to newName. The requesting host is used for logging and sending back any
errors that may occur in the process.
void delete(in string deleteFile, in string requestingHost): interface required to delete a file remotely. The
details - requestingHost and the deleted file - are logged.
void getprops(in string fileName, out long size, out boolean canread , out boolean canwnte, out boolean
isFile, out long lastModified): a method called to obtain the properties of a network file, the method uses
the out parameters for message passing.
void synchronize (in string criteria, in string hostA, in string dirA, in string hostB, in string dirB): a method
to synchronize a pair of network files. The method uses the specified criteria i.e. by last modified or by size
to synchronize the files.
void queryFolder (in string queryHost, in string dirName, out flags size, out booleanseqs isFile, out flags
modified, out arguments Is, out arguments canonical): a method to obtain the details of a file or folder used
when synchronizing files.
NB
All of the methods above are contained in the bonet module and each participating client in the network can
be seen as a bonet, thus all the clients in the network are capable of providing the described serv ices

I he interface client provides the following methods:

The Monitor interface
The Monitor provides the interface to the system; the monitor is in charge of connecting to remote clients,
passing a message/command to remote clients and getting back the status from remote clients. Thus its
methods are concerned with display of status and any feedback information from remote clients.

52

Both methods are concerned with outputting information to the Monitor’s screen.

IMPLEM ENTATION OF THE INTERFACES:
The IDL interfaces were implemented by writing servant classes with java language, for each interface

defined in corba a servant class was written in java and compiled, IDL to java mappings played a crucial
role. The procedure works as follows:

When for each interface named for instance foo is declared in a corba-IDL file, the idl-to-java compiler
creates an abstract class fooImplBase which must be implemented by extending the class, the concrete
class (one extending the abstract class) must implement all the methods defined in that particular interface.

Example:
controlServer functionality is defined by the interface server.

1 . interface server{
2 . typedef sequence<string> clients;
3. void register(in string hostname);
4. void get_connected_clients(out clients connected clients);
5.
6- };

Using the above example the idl-to-java compiler creates an abstract class _serverImplBase shown
below.

/**
* pc/ serverlmplBase.java.
* Generated by the IDL-to-Java compiler (portable), version 3.1
* from pc.idl
* Sunday, April 4, 2010 12:03:07 PM PDT
*/

private static java.util.Hashtable _methods - new java.util.Hashtable (),
static

methods.put ("register", new java.lang.Integer (0));
_methods.put ("get_connected_clients", new java.lang.Integer (1)),

}$rh)
{

switch (__method.intValue ())
{ case 0 : // pc/server/register

{String hostname = in.read_string ();
this.register (hostname);

53

out = $rh.createReply();
break;

ease l: / / pc/server/get connectedclients
{pc.serverPackage.clientsHolder connected clients = new pc.serverPackage.clientsHoldcr ();
this.get connected clients (connected clients);
out = $rh.createReply();
pc.serverPackage.clientsHelper.write (out, connectedclients.value);
break;

}

}

} // class serverlmplBase

Having the declared all the interfaces that the system needs as described in the preceding section, the
servant classes were then implemented in java major challenge being posed by the narrow primitive data
types offered by corba IDL, this lead us to resolve the problem using enumerated types declaration. The
enumerated data types though proved useful added complexities to the system coding more so complexities
arising from idl-to-java mappings.
The section that follows describe in detail how the system implements its functionalities, enumerated
below:

controlServer
register
get_connected_hosts

monitor
printResult
printSeachReslt

bonet
execute
listdirectory
download
copyjn
searchFile
listroots
listdir
rename
delete
getprops
synchronize
queryFolder

The controlServer

54

The controlServer provides the implementation of this interface, the interface is called by network clients
(monitor or bonet) to make its presence known to other clients in the net work the interface can be
compared to resource discovery or monitoring component in a distributed system environment
Implementation:

The controlServer maintains a list of connected clients in a array. When the clients call this method
with their identifiers as arguments the controlServer adds the client identifiers to the list(array) of
connected clients

public class serverServant extends serverlmplBasef
String[] conPcs=new String[0];
public void register(String str) {

String[] currPcs;
if(conPcs.length<l){

conPcs=new String[l];
conPcs[0]=str;

}else{
currPcs=new String[conPcs.length+l];
currPcs[currPcs.length-l]=str;
for(int i=0;i<currPcs.length-1 ;i++) {

currPcs[i]=conPcs[i];
}conPcs=null;
conPcs=new String[currPcs.length];
conPcs=currPcs;

}
}

Connecting client
The system provides a method through which the network clients can queries the list of connected clients, a
method useful when the network users want to know which clients are available.
The controlServer returns the list of connected clients as an array to the calling client, done by using the
corba’s out direction utility.
public void get_connected_clients (pc.serverPackage.clientsHolder connected_clients) {

connected_clients.value=conPcs;
}

}
T he monitor
how the system implements monitor’s printResult.

T he funciotn is called by a remote client to communnicate back the results of an execution.

class monitorlnterfaceGui extends _monitorImplBase{
private String monitorName=null;
Monitor monitorRef;
public monitorInterfaceGui(String monitorN,Monitor gui) {

monitorName=monitorN;
monitorRef=gui;

}

55

public void prinlResult(String output){
inonitorRef.appendText(output);

}

//monitor
final JTextArea tx=new JTextArea(20,20);
public void appendText(String str){

tx .append("\n"+str);
}

Implementation;
The method simply prints out the supplied string arguments to a text area in the monitors GUI

printing Seach Resit.
This method is specific to the search method implemented by the bonets. It is used by the bonets to
communicate back the search results.
Implementation:
The method call
public void printSeachReslt (String fileName){

monitorRef.appendSearchFile(fileName);
}

//monitor
DefaultListModel searchresult;
public void appendSearchFile(String file){

searchresult.addElement(file);
}The bonet

how the bonet implements the interface execute:
The interface provides access to a remote client shell, it executes the provided string arguments then sends
back the results to the monitor
Implementation:
The method makes use of java.lang library utility to interface and pass commands to the she . or
perfomance enhancements the multithreading concept is used.
The method makes use of two threads:

III. executingThread
IV. supervisingThread

The executingThread is in charge of executing the given command and handling any errors that might arise
The supervisingthread monitors the executing thread to detect nonresponsivc threads, t ese t rea s are
terminated where necessary i.e when blocked.

56

c lass executingThread extends 1 hreadj
String cmd=null;
int progressBarS;
String remoteMonitorName;
pc.monitor remoteMonitor;
String[] args;

public executingThread(){

}public executingThread(String comand,String monitorName){
cmd=comand;
remoteMonitorName=monitorName;
pimpHelper ph=new pimpHelper(new args_holder().args);
remoteMonitoi=ph.connectMonitor(monitorName);

}public void setArgs(String[] args){
this.args = args;

}public void run(){
try{

Runtime run=Runtime.getRuntime();
Process pr=run.exec(cmd);
//pr.waitFor();
BufferedReader br=new BufferedReader(new InputStreamReader(pr.getInputStream())),

String line="
while((line=br.readLine())!=null){

remoteMonitor.printResult(line);
progressBar++;
//sleep();

}
}catch(Exception e){remoteMonitor.printResult("exception caught "+e);
}

}
c la ss supervisingThread extends Thread {

int benchm arks;
executingThread supervisedThread=nu 11;
public supervisingThread(executingThread excT){

supervisedThread=excT;
}private boolean isNotProgresing(){return benchmark==supervisedThread.progressBar,
}public void run(){

while(true){
try {

sleep(1 0 0 0 0);//
if(isNotProgresing()) {

57

supervisedThread.interrupt();
bench mark+=l;

}
catch(Exception e){

}

How the sysem implements bonets interface list directory
This method lists the contents of directories
Implementation:
The method receives two arguments (directory name and direction of traversal either up'down). On up it
lists the contents of the parent directory while on down it lists the contents of the supplied directory.
When it receives an empty directory argument(“ “) it queries for the root directories the method returns
asterisks(*) to designate the contents of an empty directory.
public String[] listdirectory (String directory,String direction){

String lst[];
String directoryName = directory;
if(direction.equals("up")) {

File file = new File(directoryName);
try{ String pamt = new File(file.getParent()).getCanonicalPath();

File prFile = new File(pamt);directoryName = new File(prFile.getParent()).getCanonicalPath(),

}catch(Exception e) {
}

}if(directoryName.equals(" ")){
System.out.println("called \n\n");
File[] rootFiles = File.listRoots();
1st = new String[rootFiles.length];
for(int i=0;i<rootFiles.length;i++) {

try{ lst[i] = rootFiles[i].getCanomcalPath();
System.out.println(rootFiles[i]+" \n\n");

}catch(Exception e){
// ***** perror()!!!!

}
}

String comment = ("received a dir request \t " +directoryName);
log(comment);
System.out.println(comment);
1st = null;
File file = new File(directoryName);
if(file.isDirectory()) {

String[] tmplst = file.list();

58

1st = new Stringftmplst.length];
try {

for(int i=0 ;i<tmplst.length;i-H-){
File canPath = new File(File,tmplst[i]);

lst[i] = canPath.getCanonicalPath();

}
catch(Exception e){
}

}else{
1st = new String! 1];
lst[0] =

}
}return 1st;

}
How the bonet implements the download method

The method uses java.io library utility (bufferedReader) to read the contents of a local file (respect to the bonet)
into a string the transmit this result to the requesting client, the requesting client then uses this string sequence as
in input stream to build the requested file. Unfortunately the method does not work for all character sets.
The method calls the copy in method with the string stream argument (converted input stream) to complete the
download request.

public void download(String filename, String dnldServer,String destination host, String destinationdir)!
System.out.println("\n\n");
String comment = (" \n Got download request from " + destination_host + " n :: for file

"+filename + "\n “destination "+ destination_dir+ "\n\n");
System.out.println(comment);
log(comment);
int BLKSIZ = 8192;
args holder args source = new args_holder();
pimpHelper ph=new pimpHelper(argssource.args);
client remoteclient=ph.connectClient(destination_host);
String destinatioPath;
File copy file = new File(filename);
try{

if(copy_file.isFile()) {destinatioPath = destination_dir+"\\"+copy_file.getName();
FileReader fr = new FileReader(copy_file);

BufferedReader in = new BufferedReader(fr);
System.out.println("bufered reader created !");
StringBuffer sb = new StringBuffer();

char[] b = new char[BLKSIZ];
int n;
// Read a block. If it gets any chars, append them,
while ((n = in.read(b)) > 0) {

System.out.println(n);
sb.append(b, 0 , n);

>// Only construct the String object once, here.
String outFile = sb.toString();
//System.out.println(outFile);

59

}
remoteclient.copyjn(outI;iic,destinatioPath,dnldSmcri.

catch(Exception e){
System.out.println(e);

}

}

public void copy in (String input_stream, String path,String dnldServer){
String comment = ("got copy in command from :: "+ dnldServer + "for::" + path • " n"

);
System.out.println(comment);
log(comment);
try{

OutputStream out = new FileOutputStream(path);
for(int i=0 ;i<input_stream.length();i++) {

out.write(input_stream.charAt(i));
}out.close();

}catch(Exception e) {

}

}
H ow th e system implements the searchFile method
The searchFile method seaches the network clients (bonets) for files whose names match the search file
(file to be searched). The monitor sends the search string to each and every connected client. 1 he connected
c lien ts then queries all the directories in the system starting from the root and then sends back the details of
the f ile s that match the search string, the request is asynchronous i.e the monitor doesn’t have to wait for
the search result once it has send the request
Implementation:

p u b lic void searchFile (String fileName, String monitorName){
String comment = ("received search command for "+ fileName);
log(comment);
System.out.println(comment);
File[] drives = File.listRoots(); // Get list of roots
searchThread[] searchs = new searchThread[drives.length];
try{

for (int i=0 ; i<drives.length; i++){
searchs[i] = new

searchThread(drives[i].getCanonicalPath(),fileName,monitorName);
}

}catch(Exception e)

}

60

}

c *ass matcher{
public boolean match(String strl .String str2){

boolean retVal = false;
int si length = strl length!);
int s2 _length = str2 .1ength();
int margin = s2 _length - sl length;
if(strl.Iength()>str2 .length()) {

retVal = false;
}else{

int pointer = 0 ;
while((pointer+sl _length)<s2 _length+l){

String subStr2 = str2 .substring(pointer,pointer+strl.length!));
if^strl ,equalsIgnoreCase(subStr2)){

retVal = true;
break;

>

pointer^;
}

}return retVal;

H o w th e system implements the bonets interface listroots
T h e m e th o d when called queries the system for root directories. It makes us of the java file 10 library
u t i l i t i e s to obtain the root directories of the system
Im plem entation:
p u b l i c String[] list roots (String hostname)!

String[] root dirs = null;
String comment = ("find root directories called by + hostname),
log(comment);
System.out.println(comment);

File[] rootFiles = File.listRoots();
root_dirs = new String[rootFiles.length];
for(int i=0;i<rootFiles.length;i++){

try! root_dirs[i] = rootFiles[i].getCanonicalPath();
System.out.println(rootFiles[i]+" \n\n");

}catch(Exccption e)!
// perror();

}
}return root_dirs;

}
O o w th e system implements the bonets interface listdir

61

The m ethod lists the contets o f the supplit ry the method also incoporates means by which the
^q u estin g clients determines whether the returned argument is a file or directory, enabled bv e* - *• to g s param eter
implementation:
public void listdir (String path, pc.clientPackage.argumentsHolder dirlist, pc.clientPackage fiagsHolder fl);

String lst[];
String directoryName = path;
String comment = ("received a dir request \t " +directoryName);
System.out.println(comment);

File file = new File(directoryName);
String[] tmplst = file.list();
int[] flags = new int[tmplst.length];
1st = new String[tmplst.length];
try{

for(int i=0 ;i<tmpIst.length;i++){
File canPath = new File(file,tmplst(i]);
Ist[i] = canPath.getCanonicalPath();
if(canPath.isDirectory()) {

flags[i] = 3;
}else{

flags[i) = 4;
}

}
}catch(Exception e){
}dirlist. value = 1st;

fl.value = flags;
}

How the system implements the bonet’s interface rename
T he m ethod is implemented by the bonet to provide ways in which network clients can rename a remote
file. T h e method uses the java.io file library utilities to perform the operation. I he method is enclosed in try
c a tch block to capture any errors (file io errors).
Implementation:
p u b lic void rename (String oldName, String newName, String requestingHost) {

String comment = (" :: received a rename request from :"+ requestingHost);
System.out.println(comment);
try{ File f = new File(oldName); // backup of this source file.

// Rename the backup file to "junk.dat”
// Renaming requires a File object for the target.
f.renameTo(new File(newName));

}catch(Exception e){

}
}

62

S digested improvements:
T he m ethod performs the rename operations on remote hosts, security - access control list- needs to be
im p lem ented to check wheather the remote user has the previledges to perform the operation

How the system implements delete:
T he m ethod is implemented by the bonet to provide ways in which network clients can delete a remote file
T h e m ethod uses the java.io file library utilities to perform the operation. The method is enclosed in try
ca tch b lock to capture any errors (file io errors).
Im plem entation:
p u b lic void delete (String deleteFile, String requestingHost){

String comment = (" :: received a rename delete from :"+ requestingHost).
System.out.println(comment);

// Construct a File object for the file to be deleted.
File bkup = new File(deleteFile);
// Quick, now, delete it immediately:
if (!bkup.delete()){System.out.println(" * * Deleted " + deleteFile);

bkup.deleteQ;
)elseSystem.err.printlnC'Failed to delete" + deleteFile);

} wcatch (SecurityException e) { ,System.err.println("Unable to delete " + deleteFile + (+ e.getMessage(
}catch(Exception e){

}
}

S u g e s te d improvements:
L ik e th e rename method , security - access control list- needs to
r e m o te user has the previledges to perform the operation.

be implemented to check wheather die

How the system implements getprops
h e m e th o d getprops is implemnted by the bonet. It queries the ^uPP*jed J ju can be written to,•ro perties . These properties include the date the file was last modified whether the

w hether it’s a file or folder. The method makes use of mappings provided by co g
e s u l ts using out parameters.

im p lem en ta tio n :
File f = new File(fileName);

size.value = (int)f.length();
lastModified.value = (int)f.lastModified(),
canread. value = f.canRead();
canwrite.value = f.canWriteQ,
isFile.value = f.isFile();

63

The synchronize method, seeks to maintain consistencies between files in remote computers by
synchronizing their contents based on the selecred criterion. The ctriterion used could be by time last
modified or by their sizes. The most recent time means the most consistent. Likewise to size the largest
means that content has been added which means it is the latest thus the most suitable. To perform the
opration the bonet must query the properties of a remote file and make the comparison neccesarily needed
to make the synch decision.
Implementation:
public void synchronize (String criteria, String hostA, String dirA, String hostB, String dirB){

String comment;
boolean bymodified = false;
if (criteria.equals(" By Time Last Modified "))

bymodified = true;
System.out.println("\n\n\n by modified = " + by modified + "\n\n\n");
System.out.println("------------------"+ criteria + hostA +dirA + hostB -+ dirB);
args holder args source = new args_holder();
pimpHelper ph=new pimpHelper(args_source.args);
client remoteclient=ph.connectClient(hostB);

How the system implements the bonet’s synchronize:

String lst[]= null;
File file = new File(dirA);
System.out.println("\n\n\n\n----------------dirA "+ dirA+ "\n\n\n\n");
String[] tmplst;
int[] sizeA = null;
boolean[] is_fileA = null;
int[] modifiedA = null;
if(file.isDirectory()){

tmplst = file.listO;
sizeA = new int[tmplst.length];
is fileA = new boolean[tmplst.length];
modifiedA = new int[tmplst.length];
1st = new String[tmplst.length];
try{

for(int i=0;i<tmplst.length;i-H-){
File dir list = new File(file,tmplst[i]);
lst[i] = dir_list.getCanonicalPath();
if(dir_list.isDirectory()) {

is_fileA[i] = false;
}else{

is_fileA[i] = true;
}sizeA[i] = (int)dir_list.length();
modifiedA[i] = (int)dir_list.lastModified();
is_fileA[i] = dir_list.isFile();

}
}catch(Exception e){

64

}
}
else {

try {
int s = (int)file.length();

sizeA = new int[l];sizeA[0] = s,
boolean b = file.isFile();
isfileA = new boolean[l]; is fileA[0] = b;
int m = (int)file.lastModified();
modifiedA = new int[1]; modifiedA[0] = m;
String str = file.getName();
1st = new String[1] ; lst[0] = str;
}catch(Exception e) {

System.out.println(e);
}

}

pc.clientPackage.flagsHolder size = new pc.clientPackage.flagsHolder(),
pc.clientPackage.booleanseqsHolder isfile = new

pc.clientPackage.booleanseqsHolder();
pc.clientPackage.flagsHolder modified = new pc.clientPackage.flagsHolder();
pc.clientPackage.argumentsHolder Is = new

pc.clientPackage.argumentsHolder();
pc.clientPackage.argumentsHolder canonical = new

pc.clientPackage.argumentsHolder();
remoteclient.queryFolder (hostA, dirB, size, is_file, modified, Is, canonical);
System.out.println("ok !! called querty");
for(int i =0;i<ls.value.length;i-H-){

String fileN = ls.value[i];
if(contains(fileN,lst)!= -1){

//check criteria
int k = contains(fileN,lst);
if(by_modified){

//by date modified
if(modified.value[i] >modifiedA[k]){

System.out.println("modified remote +
modified.value[i] + "modified local + modifiedA[k]); //download if file or MkdirQ and
synchronize iteratively; if(is_file.value[i]){

//-------- download
File par = new File(dirA);
String destn = par.getParentQ;

remoteclient.download(canonical.value[i], hostB,hostA,destn);
}
elsc{

boolean created ■ new
File(dirA,ls.value[i]).mkdirs(); String canP = dirA + ls.value[i];

// call synchronize
pc.clientPackage.flagsHolder size2

= new pc.clientPackage.flagsHolder();

65

pc.clientPackage.booleanseqsHolder is file2 new pc.clientPackagc.booleanseqsHolderO.
pc.clientPackage.flagsHolder

modified2 = new pc.clientPackage.flagsHolder();
ls2 = new pc.clientPackage.argumentsHolder();
hostA, canP, hostB, canonical.value[i]);

pc. c 1 lentPackage.argumentsH older
remoteclient.synchronize(critena,

}else{

synchronize iteratively;

//by size
if(size.value[i] >sizeA[k]){

//download if file or Mkdir() and
if(is_file.value[i]){

//---------download
File par = new File(dirA);
String destn = par.getParent();

remoteclient.download(canonical.value[i], hostB,hostA,destn);
}else{

boolean created = new
File(dirA,ls.value[i]).mkdirs(); String canP = dirA + ls.value[i];

// call synchronize
pc.clientPackage.flagsHolder size2

= new pc.clientPackage.flagsHolder();
pc.clientPackage.booleanseqsHolder is_file2

modified2 = new pc.clientPackage.flagsHolder();
ls2 = new pc.clientPackage.argumentsHolder();

= new pc.clientPackage.booleanseqsHolder();
pc.clientPackage.flagsHolder
pc.clientPackage.argumentsHolder
remoteclient.synchronize(criteria,

hostA, canP, hostB, canonical.value[ij);
}

}
}else{ //------ download

if(is_file.value[i]){
//---------download
System.out.println("no match found");
File par = new File(dirA);
String destn = par.getParent();
remoteclient.download(canonical.value[i],

hostB,hostA,destn);
}else{ boolean created = new File(dirA,ls.value[i]).mkdirs(),

String canP = dirA + ls.value[i];
// call synchronize

66

pc.clientPackage.tlagsHolderQ;
pc.clientPackage.booleanseqsHolder(),
pc.clientPackage.flagsHolder();
pc.clientPackage.argumentsHolder();
hostB, canonical.value[i]);

pc.clientPackagc.flagsHoldcr size2 • nr*

pc.clientPackagc.boolcaiLNcqsMoldCT it file2 • new
pc.clientPackagc.flagsHolder modificd2 » new
pc.clientPackage.argumcntsHoldcr U2 *- new
remoteclient.synchronize(critena, hostA, canP

How the system implements the bonet’s quervFolder:
The method is used by the bonet when performing synchronization, the bonets uses the method to qucr> the
properties of a remote file needed to perform the synchronization operation.
Implementation:
public void quervFolder (String queryHost, String dirName, pc.clientPackage.llagsHolder size,
pc.clientPackage.booleanseqsHolder isFile, pc.clientPackage.flagsHolder modified,
pc.clientPackage.argumentsHolder Is, pc.clientPackage.argumentsHolder canonical)!

String lst[] = null;
File file = new File(dirName);

int[] sizeA = null;
boolean[] is_fileA = nu ll;
int[] modifiedA = null;
String[] canP = null;
if(file.isDirectory()) {

String[] tmplst = file.list();
sizeA = new int[tmplst.length];
is fileA = new boolean[tmplst.length];
modifiedA = new int[tmplst.Iength];
1st = new String[tmplst.length];
try{ , . wfoifint i=0;i<tmplst.length;i-H-){

File dir list = new File(file,tmplst[i]);
canP[i] = dir_list.getCanonicalPath();
lst[i] = dir_list.getName();
if(dir_list.isDirectory()) (

is_fileA[i] = false;
}else{

is_fileA[i] = true;
sizeA[i] = (int)dir_list.length();
modifiedA[i] = (int)dir_list.lastModificd(),
is_fileA[i] = dir_list.isFile();

}
}

67

catch(Exceplion e){
Systcm.out.println(e);

}
}else{

try{ int s = (int)file.length();
sizeA = new int[l];sizeA[0] = s;
boolean b = file.isFile();
isfileA = new boolean[l]; is_fileA[0] = b;
int m = (int)file.lastModified();
modifiedA = new int[1]; modifiedA[0]; m,' modifiedA -
String str = file.getName();
1st = new String[l]; lst[0] = str;
String can = file.getCanonicalPath();
canP = new Stringfl]; canP[0] = can;

}catch(Exception e){
System.out.println(e);

}
} size, value = sizeA;

isFile. value = isfileA;
modified.value = modifiedA;
ls.value = 1st;
canonical.value = canP;
//size.value(sizeA)}

68

