

SYSTEMATIC VARIANCE CORRECTION METHODS FOR PEPTIDE MICROARRAY DATA

MUTUA JOHN MUTISO

W62/86996/2016

A Thesis Submitted in Partial Fulfilment for the Master’s Degree in Medical Statistics in

the Institute of Tropical and Infectious Diseases (UNITID) in the University of Nairobi

2019

 i

DECLARATION

This thesis is my original work, and it has not been presented in any other University.

Signature: Date:

Mutua John Mutiso

W62/86996/2016

Supervisors’ Approval

This thesis has been submitted for final submission with my/our approval as supervisor(s).

1. Dr. Anne Wang’ombe, Institute of Tropical and Infectious Diseases – University of

Nairobi (UNITID)

Signature: Date:

2. Dr. Charles Sande, KEMRI | Wellcome – Trust Kilifi

Signature: Date: 18th November, 2019

3. Dr. Nelson Kibinge, KEMRI | Wellcome – Trust Kilifi

Signature: Date: 18th November, 2019

 ii

DEDICATION

I dedicate this work to my nuclear family; my wife Berndatte and our son Lincoln; our mum

Joyce and sister Mercy; and my long-term friend Dan; thank you for the support and

encouragements during this period since I enrolled for the master's degree. My special regards

go to my grandaunt Grace Kitonyi and my late granduncle Joseph Kitonyi, for their generosity

in financing my master's degree. Thank you to the Almighty God for keeping me healthy and

strong during the entire period.

 iii

ACKNOWLEDGEMENTS

I wish to acknowledge the following individuals whose contribution has made it possible to

develop this piece of work. Timothy Chege who worked on the peptide microarray chip as part

of his post-graduate diploma work at KEMRI - Wellcome Trust and he scanned and extracted

the data from the slides using GenePix microarray scanner; Elijah Gicheru and Jacqueline

Waeni who worked on the assay long before I came at KEMRI – Wellcome Trust Bioscience

labs. Thank you to my supervisors for the endless guidance and training meetings we had,

especially in the introduction to microarrays. Thank you to the Virus Epidemiology and Control

Research Group (VEC) for the research guidance and support; and to the Initiative to Develop

African Research Leaders (IDeAL) and the KEMRI-Wellcome Trust as a whole for funding

my master's research project.

 iv

Table of Contents

DECLARATION ... i

DEDICATION .. ii

ACKNOWLEDGEMENTS ... iii

List of Tables ... vi

List of Figures ... vii

List of Appendices ... ix

List of Abbreviations .. x

Abstract ... xi

CHAPTER 1: INTRODUCTION ... 1

1.1 Background of the Study .. 1

1.2 Statement of the Problem.. 3

1.3 Justification of the study ... 4

1.4 Study Questions .. 5

1.5 Research Objective ... 5

1.5.1 General Objective .. 5

CHAPTER 2: LITERATURE REVIEW .. 6

2.1 Introduction .. 6

2.2 Batching ... 6

2.3 Microarray Data Transformation and Normalisation Methods 7

2.3.1 Log2 Transformation ... 7

2.3.2 Quantile Normalisation.. 7

2.3.3 Linear Models ... 8

2.3.4 Data-Driven Haar-Fisz Transformation for Microarrays .. 9

2.3.5 Variance Stabilizing Normalisation ... 9

CHAPTER 3: RESEARCH METHODOLOGY ... 12

3.1 Study Type and Design ... 12

3.2 Study Site.. 12

3.3 Study Population .. 12

3.4 Study Samples .. 12

3.5 Design of the Microarray Chip ... 12

3.6 The Microarray Immunoassay Design .. 13

3.7 Data Extraction .. 13

3.8 Data Management... 14

3.9 Applied Data Transformation and Normalisation Methods 14

3.9.1 Log transformation .. 14

 v

3.9.2 Local background subtraction .. 15

3.9.3 Combating Batch Effects (ComBat) Algorithm.. 15

3.9.4 Quantile normalisation .. 16

3.9.5 Variance Stabilising Normalisation (VSN) .. 16

3.9.6 Data-Driven Haar-Fisz Transformation (DDHF).. 17

3.9.7 Linear Models ... 18

3.10 Microarray Data Quality Check ... 19

3.10.1 Principal Components Analysis (PCA) ... 19

3.10.2 Wilcoxon Sign Rank Sum Test ... 19

CHAPTER 4: RESULTS ... 20

4.1 Sources of Variation ... 20

4.2 Background Intensity Correction Methods ... 24

4.3 Normalisation Methods... 27

4.4 Comparison between normalised and non-normalised data 31

CHAPTER 5: DISCUSSION ... 35

5.1 Discussion ... 35

5.2 Conclusion .. 36

5.3 Recommendations ... 36

5.4 Study Limitations and Future Research ... 37

References ... 38

Appendices .. 44

 vi

List of Tables

Table 1: Examples of studies working methods of correcting systematic variation in

microarray data .. 10

Table 2: ANOVA table for model significance test comparing with model 0 26

 vii

List of Figures

Figure 1: A graphic depicting the overall study design; showing the peptide microarray chip

design, the lab assay flow diagram and the data analysis flow diagram.................................. 13

Figure 2: A scatter plot for fluorescence intensities of peptide duplicates (the axis is in log2

scale) .. 20

Figure 3: A PCA variable plot for fluorescence intensities of buffer spots 21

Figure 4: Effect of PAS dilution on the distribution of buffer spots fluorescence intensities . 22

Figure 5: Boxplots comparing distributions of peptide and buffer spots fluorescence

intensities across slides for the PAS sample in mini-array 1 (Wilcoxon Sign Rank test p-

values included) ... 23

Figure 6: Boxplots comparing distributions of peptide and buffer spots fluorescence

intensities across slides for the buffer sample (Wilcoxon Sign Rank test p-values included). 24

Figure 7: PCA individuals scatter plot for buffer spots fluorescence intensities; clustering by

sample type (PAS in mini-array 1, buffer and study samples) .. 25

Figure 8: Individual PCA plots of log2 transformation of raw values; local background

subtraction and log2 transformation; and background subtraction using local background

minimum smoothing and log2 transformation ... 25

Figure 9: Distribution density plot across normalisation methods; coloured by the sample

group .. 28

Figure 10: PCA individual scatter plots for the normalisation methods; ellipses show

clustering by sample type... 29

Figure 11: Distributions of peptide spots fluorescence intensities of PAS in mini-array 1;

compared across normalisation and technical variance stabilisation methods 30

 viii

Figure 12: Pairwise comparison of peptide spots fluorescence intensities distributions in PAS

in mini-array 1, using Wilcoxon Sign Rank Sum test; each box represents a Bonferroni

adjusted Wilcoxon Sign Rank Test p-value; red colour shows p-values less than 0.05, and the

red colour fades towards green as the p-value increases. .. 31

Figure 13:Distribution plots for peptide spots fluorescence intensities by dilution of PAS

sample; compared before (log2 transformation) and after (local background correction using

minimum smoothed background fluorescence intensities and PAS stabilisation) normalisation

.. 32

Figure 14: A plot of Spearman correlation between fluorescence intensities for IgG and the

first six months of life, comparing before and after normalisation; blue colour shows that the

correlation is statistically significant with 95% confidence level. ... 33

 ix

List of Appendices

Appendix 1: Mini-array layout, 20 rows by 12 columns; the last subscript indicate the

replicate number... 44

Appendix 2: Description of the peptides ... 45

Appendix 3: Project R code – the analysis framework .. 46

Appendix 4: Research proposal KNH-UON ERC research ethics approval letter 65

Appendix 5: Turnitin plagiarism report page... 66

 x

List of Abbreviations

CGMRCCSC → Centre for Geographic Medicine Research, Coast Centre Scientific

Committee

DDHF → Data-Driven Haar-Fisz Transformation

DDHFm → Data-Driven Haar-Fisz Transformation for Microarrays

DNA → Deoxyribonucleic acid

ELISA → Enzyme-linked immunosorbent assay

ELISPOT → Enzyme-linked immune absorbent spot

HT → High throughput

IgA → Immunoglobulin A

IgG → Immunoglobulin G

IgM → Immunoglobulin M

KCH → Kilifi County Hospital

KEMRI → Kenya Medical Research Institute

LMM → Linear Mixed Model

nm → Nanometre

PAS → Positive Adult-Sera

PCA → Principal Components Analysis

VSN → Variance Stabilisation Normalisation

 xi

Abstract

Study background

Protein/peptide microarrays are high throughput (HT) methods with the potential of

investigating tens to thousands of probes in a single experiment. However, technical variance

creates an inevitable challenge for their application, hence the need for pre-processing

strategies. Most methods of correcting to the technical variance have been developed based on

DNA microarrays, from which this technology was adopted; however, key chip design

differences limit their direct implementation. Microarray designs are flexible, which allows

researchers to customise their targets and quality control strategies, hence, there is a need for

design-specific pre-processing frameworks. The broad objective of this study was to evaluate

sources of technical variation in peptide microarray data and compare performances of

technical variance correction methods.

Study design and site

The study was a nested non-experimental study using peptide microarray data assayed for

archived plasma samples, of children and infants admitted at Kilifi County Hospital (KCH)

with suspected infections. The data was used in the development of the pre-processing

framework in the R software environment.

Materials and methods(s)

A peptide microarray chip targeting 49 infectious diseases was used for the assay and GenePix

array scanner used for the data extraction. The analysis framework will be developed using the

R programming environment.

Findings

The standard methods; local background subtraction, log transformation, combating batch

effects algorithm (ComBat), variance stabilising normalisation (VSN) and linear models, did

not correct the technical variance significantly from the peptide microarray data. However,

 xii

background subtraction using locally smoothed background intensities, and data scaling based

on scale parameters calculated from Pooled-Adult Sera (PAS) sample fluorescence intensities

achieved maximum technical variance stabilisation.

Conclusion and Recommendation

Technical variance stabilisation in peptide/protein microarray data is achievable.

Morphological spot identification should be considered while estimating local background

intensities, or spatial smoothing of the estimated intensities to reduce the background intensity

estimation bias.

 1

CHAPTER 1: INTRODUCTION

1.1 Background of the Study

Protein/peptide microarrays are a high throughput technology that have gained prominence in

the last few decades for their ability to investigate tens to thousands of protein or peptide probes

on a single slide. The development of microarrays is based on a concept that as first initiated

by Roger Ekins in 1989, and the idea aimed at developing an effective platform for protein

functional analysis; which would then use immense biological knowledge attained in decades

of genetics and molecular biology.

Protein microarrays are grouped into; peptide microarrays, protein microarrays (purified

protein or protein domains) and antibody microarrays (capture arrays) (Berrade, Garcia, &

Camarero, 2011; Stoevesandt, Taussig, & He, 2009). Biochemical experiments such as protein-

protein binding and enzyme-substrate relationship, biochemical activities and immune

responses are investigated using the functional protein microarrays (Sutandy, Qian, Chen, &

Zhu, 2013).

The ‘proteomics era’ has prompted the development of methodologies and technologies for

quantification, identification, and characterisation of proteins functions involved in biological

processes. Most of these technologies are high-throughput; therefore, extensive application of

these methods in drug development and biomarker discovery research is on the rise. Protein

microarrays are a great research potential for their capability to provide detailed analysis for

the protein functions; which advances knowledge on chemical and biological state of cells.

Further, the protein/peptide microarrays are also applied in the evaluation of quality,

effectiveness and the safety of newly developed medical products, through detection of adverse

events (Bertone & Snyder, 2005; Yu, Schneiderhan-Marra, & Joos, 2010).

 2

Traditional detection methods of antibodies such as ELISA and ELISpot are limited to the

analysis of single protein at an instance; however, proteomic analysis demand multiplexed

technologies because of limited resources. Protein/peptide microarrays ease proteomic

research because of their potential to include tens to thousands of protein/peptide probes, and

process multiple study samples in a slide (Yu et al., 2010). The quality of data obtained from

microarrays is controlled by control samples and probes (Gagnon-Bartsch & Speed, 2012;

Kricka et al., 2009).

Besides the benefits and the promising future of the protein/peptide microarrays, technical

variation is a major drawback. As a result, a number of methods and approaches are

recommended to correct the technical variation in the data. Mostly, these methods have been

developed under DNA microarray platforms, hence, limited research focus on protein/peptide

arrays regarding correction of the technical variance. Despite the similarities of DNA and

protein/peptide microarrays, there are critical design-related differences that limit direct

application of most of the recommended technical variance correction methods; such as

variance stabilising normalisation (VSN), Combating Batch Effects (ComBat), linear and non-

linear models that have majorly been implemented in DNA microarrays.

While implementing the technical variance correction methods in the data, the identified

sources of the variation are used as covariates in the models to stabilise the introduced variance.

In peptide microarrays, the key sources of technical variation include; experimental differences

by time of sample hybridisation or data scanning; performing assay in different laboratories;

different laboratory technicians conducting the assay or processing samples in different slides

(Nahtman et al., 2007; Scherer, 2009; Watson et al., 2009). Furthermore, technical variation in

microarrays can also be introduced during probe miniaturisation or due to sample

contaminations. As a result, technical variation in microarrays is quantified by variation

observed in controls samples and control probes among arrays.

 3

Control features in arrays such as spot replication, control probes and samples are used to

evaluate effectiveness of technical variance stabilisation methods in microarrays (Lee, Kuo,

Whitmore, & Sklar, 2000). Therefore, statistical techniques such as supervised clustering and

kernel density plots are useful in comparing performance of different technical variance

correction methods – based on their ability to maintain expected data distribution and structure

between the negative and positive control samples (Gagnon-Bartsch & Speed, 2012). For

example, negative and positive control samples are expected to cluster separately. Therefore

this study evaluated the sources of technical variation in peptide microarray data and compared

performances of technical variance correction methods.

1.2 Statement of the Problem

Peptide microarray technology is a powerful high throughput tool with the potential of

investigating broad humoral immunity based on serum samples or other biological fluids such

as sputum. The technology is advantageous because it uses small amounts of samples needed

and the design flexibility to target infections of interest; which are investigated using

miniaturised peptides. The assay is based on immunofluorescence technology; whereby,

signals are expected within peptide spots due to antigen-antibody biological reactions.

However, signals are not always observed within the spots due to non-specific binding. The

non-specific reactions might be due to sample contamination during or before the assay;

quality-related issues with the miniaturisation process; or due to sample-specific factors. The

non-specific binding might vary because of the discussed sources of technical variation in

microarrays. Therefore, the observed foreground signal is due to the biological antigen-

antibody reactions with some influence of the non-specific binding with in the background

signal. Among other quality control features, empty spots (miniaturised by buffer only) are

included in the microarray chip design to infer the amount of non-specific binding experienced

in a mini-array.

 4

The non-specific binding, which is influenced by other sources of technical variation is a

significant source of unwanted variation based on data obtained from microarray in previous

studies. For instance, variation in experimental factors such as time and laboratory location,

slides and laboratory technician, or data extraction machine may introduce systematic bias in

the data. The systematic variances ought to be corrected before using the data to answer

biological questions. Several methods of correcting systematic variation in microarray data are

recommended; most of them are based on statistical approaches of analysis of variance.

However, there is no consensus on the best method to adopt, based on its ability to remove the

technical variation from microarray data, hence a significant drawback for the application of

microarray technology.

1.3 Justification of the study

Microarray designs are flexible, which allow researchers to determine the targets (genes for

DNA and antigens for the case of peptide/protein) and the control features to incorporate in the

chip. For this reason, specific data pre-processing framework is needed for each microarray

chip design developed for specific research work. This specific pre-processing framework

allows effective use of the quality control features used in the design. Having a standard

microarray data pre-processing framework is a challenge because of these design-related

factors. Therefore, adopting existing pre-processing frameworks might not stabilise the

technical variance as desired because of key differences in design. There are a number of

methods shown to correct for technical variation, especially data from DNA microarrays (Chen

et al., 2011; Motakis, Nason, Fryzlewicz, & Rutter, 2006; Sboner et al., 2009). However, their

application to peptide/protein microarray data would require critical changes, to map the chip

design features. Ultimately, developing the peptide microarray data pre-processing framework

that corrects for the technical variation will enhance reproducibility and application of the

technology in research (Díez et al., 2012).

 5

1.4 Study Questions

i. What are the sources of the technical variation in the peptide microarray data?

ii. Which method(s) effectively correct the technical variation in the peptide microarray

data?

1.5 Research Objective

1.5.1 General Objective

The main objective of this study was to evaluate sources of technical variation in peptide

microarray data and compare performances of technical variance correction methods.

Specific objectives

i. To evaluate the sources of technical variation in the peptide microarray data.

ii. To compare different methods of correcting the technical variation in the peptide

microarray data.

iii. To compare the normalized and non-normalized data based on the best method of

correcting technical variation in the peptide microarray data.

 6

CHAPTER 2: LITERATURE REVIEW

2.1 Introduction

In this chapter, systematic variance correction methods used in microarray data are reviewed.

Although this study focuses on peptide microarray data, the methods are reviewed regardless

of whether they have been applied to DNA or protein microarrays because the technologies are

based on the immunofluorescence technique.

2.2 Batching

Batching is a major source of systematic variation in microarrays, and it has been reported that

experimental factors such as time, location, personnel or chip might lead to significant

differences in expression levels. Therefore, systematic variance correction strategies need to

be applied before analysing the data. In a study done by Watson et al. (2009) on comparison

of data normalisation methods used by the EADGENE network established that, based on

positive control genes, the distribution of the gene expression values had systematic variation

across ten arrays. In their study, they simulated ten arrays by assuming homogeneity of

variance across the arrays. In a similar study conducted by Lazar et al. (2013), they found

significant differences in distributions of randomly selected expression data for the same gene

in two lung cancer studies of the multiple microarray gene expression (MAGE) project.

Kupfer et al. (2012) did a study which focused on evaluating the effect of removing batch

effects from microarray data on gene expression differentiation, where the date of sample

acquisition was regarded as a source of systematic variation. Using ComBat – an empirical

Bayes algorithm implemented in R software, they were able to significantly reduce the effect

of technical variation. Based on hierarchical clustering, they observed clusters of rheumatoid

arthritis and osteoarthritis groups – confounded by the date of acquisition batching. Similarly,

Chen et al. (2011) recommend batch-effect correction in microarray data. In their study, they

 7

aimed at finding a batch adjustment method that would correct variation caused by batching

either due to reagents, changes in technicians, scanner effects or environmental conditions and

so forth. Among five evaluated methods of correcting for batching, ComBat method stabilised

the variation significantly.

2.3 Microarray Data Transformation and Normalisation Methods

Several methods of correcting and stabilising variance in microarray data have been

recommended from previous research, especially in gene expression studies. these methods

vary from simple scaling such as log transformation methods for more sophisticated statistical

methodologies such as mixed models.

2.3.1 Log2 Transformation

Log transformation is widely used, especially in biological studies, to reduce data variation and

make data conform to a normal distribution. This method has also been applied in microarray

data to reduce variation (Quackenbush, 2002). A small constant is added before applying log

transformation to minimise missing values since negative values are observed, especially when

local background correction is applied leading to zero or negative values for spots with same

or higher values of the background (Feng et al., 2014).

2.3.2 Quantile Normalisation

Studies have reported that quantile normalisation works is effective in standardising variance

and scaling data across arrays. Pan and Zhang (2018) did a study that focused on applying

molecular signatures on several datasets. Since each dataset was obtained in different studies,

the researchers aimed at removing the inter-study variation. They argued that sources of

unwanted variation were unknown – limiting the application of linear models to determine the

unknow variation. Therefore, quantile normalisation was used to remove the inter-slide

variation, hence reducing classification errors based on the combined dataset.

 8

Qiu et al. (2013) conducted a study to evaluate the impact of rank and quantile normalisation

methods on testing power in gene differential analysis. They found that normalising gene

expression data before analysis has potential influence on the findings. Comparing the non-

normalised data with rank and quantile normalised data, the number of observed true positives

had higher standard errors compared with the normalised.

Qiu et al. (2013) performed a study to evaluate the impact of quantile and rank normalisation

methods on testing the power of gene differential analysis. Both rank and quantile

normalisation improved the power of differential expression analysis. As the effect size

increase, the testing power, for instance the number of observed true positive, converge to fixed

numbers – which confirms theoretical understanding.

2.3.3 Linear Models

Espín-Pérez et al. (2018) did a comparison study for the performance of statistical methods in

correcting batch effects in transcriptome data. They found that linear mixed models (LMM)

and ComBat were not significantly different in stabilising the batching variance. However,

ComBat had higher sensitivity and specificity than LMM. On the other hand, LMM identified

stronger relationships between gene expression and big effect sizes.

Reilly and Valentini (2009) proposed the application of either a linear model with and without

interaction effect to correct for systematic variation in spots for both peptide and controls spots.

Similarly, Sboner et al. (2009) applied a robust linear model with array, subarray and protein

feature as the covariates to normalise the data. They used only the array and subarray effects

as the sources of the unwanted variation during prediction, while keeping the variation between

protein features. They control protein to estimate the inter- and intra-slide normalisation by

comparing with different methods of technical variance correction. Robust linear model

performed better in normalising the data compared with global and quantile normalisation

methods.

 9

2.3.4 Data-Driven Haar-Fisz Transformation for Microarrays

Motakis et al. (2006) established that the DDHF method was able to stabilise variance and

produce fluorescence intensities that assumes normal distribution better compared to other

existing methods such as log, generalised log and spread-versus-level plot transformation.

Further, they affirmed that the method has a wider range of applicability on the various

distribution as much as they have an increasing mean-variance dependence. This method can

be applied to microarray data using the DDHFm R package. In comparison with log,

generalised log and spread-versus-level plot transformation method, DDHFm strengthens the

replicate correlation more efficiently compared to the other methods. This decision is based on

the assumptions that the correlation values between the replicates should there was consistency

by spot replication.

2.3.5 Variance Stabilizing Normalisation

Variance stabilising normalisation is shown to reduce technical variance better than standard

methods such as local background subtraction among other model based methods (Ritchie et

al., 2007). In another paper, Thomassen et al. (2009) highlighted that application of standard

method of correcting for systematic variance, VSN being among them, worsened signal-to-

noise ratio. However, this method has been used to stabilize variance in microarray data in later

research (Kamuyu et al., 2018).

 10

Table 1: Examples of studies working methods of correcting systematic variation in microarray data

Author Type of

microarray

Sources of variation Methods of systematic variance

correction

Applied methods

(Espín-Pérez et

al., 2018)

DNA microarray Batching • Local background correction

• Linear mixed models (LMM)

• Linear models

• ComBat

There were small differences between

the performance of LMMs and

ComBat

o ComBat identified more true and

false positives.

(Gagnon-Bartsch

& Speed, 2012)

DNA microarray Batching with

unknown factors

• Background correction

• Quantile normalisation

• Location and scale adjustment

• Remove Unwanted Variation, 2-

step (RUV-2) was introduced and

compared to the existing method

• Combating Batch effects (ComBat)

• Surrogate Variable Analysis (SVA).

• The RUV-2 performs better than

ComBat and ordinary least

squares

(Nahtman et al.,

2007)

Peptide

microarray

Batching

Unspecific binding

• Linear mixed models (LMM)

• Log-ratio (base 2) between

foreground and background

The LMM allows estimation of the

various sources of variability in the

peptide microarray data

 11

Author Type of

microarray

Sources of variation Methods of systematic variance

correction

Applied methods

(Pan & Zhang,

2018)

DNA microarray Batching • Quantile normalisation

• Remove unwanted variation

model

Quantile normalisation performed

better by correcting of inter-dataset

variation.

(Sill, Schröder,

Hoheisel,

Benner, &

Zucknick, 2010)

Antibody

microarray

Within-array variation • Modified rank-invariant

selection algorithm (In-vMod)

• Global loess normalisation

• Variance stabilising

normalisation (VSN)

• Rank-invariant selection

algorithm (InvTseng)

• Rank difference weighted

global loess (RDWGL)

• The Generalized Procrustes

Analysis (GPA) - a least-

squares method.

• Modified rank-invariant

selection algorithm (In-

vMod) outperforms the other

normalisation methods

o Selecting non-differentially

expressed genes were

house-keeping genes are

not available

o Use linear instead of local

regression to reduce the

effect of extreme values

 12

CHAPTER 3: RESEARCH METHODOLOGY

3.1 Study Type and Design

This study is a nested non-experimental study which aims at comparing and assessing methods

of removing technical variability in data obtained from a microarray chip. The study is nested

in the ‘Identification of molecular signatures of serious acute infections in children’ study.

3.2 Study Site

The serum samples used were extracted from blood samples of infants and children who were

presented at Kilifi county hospital (KCH). Kilifi county is located in the northern coastal region

of Kenya.

3.3 Study Population

The samples used in this study were from infants and children aged 25 days to 18 months who

were presented at KCH with symptoms of suspected infections.

3.4 Study Samples

Archived plasma samples for infants and children who were admitted at the paediatric ward of

Kilifi County Hospital (KCH) with community-onset of suspected infections were used in the

peptide microarray assay.

3.5 Design of the Microarray Chip

The microarray chip has 24 mini arrays and 240 (20 rows by 12 columns) spots per mini array.

In the mini array, 98 distinct peptides are investigating antigen-antibody interactions of 49

infectious diseases which are printed in duplicates. Further, IgG commercial control peptide

and landmark control peptides for the IgG, IgA, and IgM have also been printed in duplicates.

Also, 36 spots within the microarray were left blank to provide fluorescence information on

background fluorescence.

 13

Figure 1: A graphic depicting the overall study design; showing the peptide microarray chip

design, the lab assay flow diagram and the data analysis flow diagram

3.6 The Microarray Immunoassay Design

In each mini-array, either serum, positive or negative samples were incubated. All the eight

mini arrays in the first column of the microarray chip were dedicated to the PAS; which was

the positive reference sample. A decreasing 10-fold concentration level approach was used for

the PAS samples, which were incubated from the first to the last mini arrays within the first

column. Also, a mini array was set for the buffer (the negative reference sample) in each slide.

Eleven slides were assayed by incubating the 161 serum samples to investigate IgG and IgA

classes of antibodies. Further, additional eleven slides were assayed to for the IgM antibodies.

3.7 Data Extraction

GenePix 4300 microarray scanner with a GenePix Pro software version 7.3.0.0 was used to

extract data from the incubated, dried and electronically saved slides. Different scanning power

and wavelengths were used to extract spot fluorescence levels for the IgG, IgA, and IgM. For

the reactivity of IgG antibodies, 40% scanning power and the data extracted from the red

 14

channel (635nm). Data on the reactivity of IgA antibodies were scanned using 100% scanning

power, and data was extracted from the green channel (532nm) from the same slides. For the

IgM antibodies, different slides were used and were scanned using 40% scanning power and

data extracted from the red channel (635nm). The GenePix scanner produced GenePix Array

Lists (.gal file extension), which were converted into text files with a .txt (TEXT format) file

extension.

3.8 Data Management

Data was imported into the R programming environment, it was cleaned and managed,

transformed and analysed. Sample identifiers were created from the microarray chip design;

hence no participants’ personal information was used.

3.9 Applied Data Transformation and Normalisation Methods

The technical variance corrections methods that were evaluated on the peptide microarray data

are described in this section. In these methods, the spot median fluorescence intensity (MFI) is

the dependent variables and the potential sources of technical variation are used as the

covariates. The methods include; log2 transformation, local background subtraction,

Combating Batch Effects algorithm (ComBat), Variance Stabilising Normalisation (VSN),

quantile normalisation, Data-Driven Haar-Fisz transformation (DDHF), and linear models.

More than one method can be combined to achieve the required technical variation

stabilisation.

3.9.1 Log transformation

Log transformation reduces skewness in data and the transformed data conforms to normality.

Also, it is a simple scaling normalisation method that reduces the data variation. However, log

transformation is only limited to non-zero positive values, where log transformation of zero

and negative value leading to infinite numbers and non-numbers respectively. A small constant

 15

is added to all the values before log transformation to reduce the number of missing values

resulting due zeros and non-positive numbers.

3.9.2 Local background subtraction

Local background subtraction is a standard method of correcting non-specific binding in

immunofluorescence assays. The observed fluorescence intensity in a spot is additively

influenced by the background intensity as shown below.

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑠𝑝𝑜𝑡 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 = 𝑡𝑟𝑢𝑒 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 + 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦

Therefore, an increase in the background intensity, the observed fluorescence intensity in a

spot increase at the same rate. As a result, subtracting the observed background intensities from

the spots intensities is assumed to result to less biased values that are closer to the true

intensities. Therefore, the corrected intensities are then log transformed to reduce the variation

and bring the data distribution closer to normality.

3.9.3 Combating Batch Effects (ComBat) Algorithm

The ComBat-based normalisation method assumes a Location and Scale (L/S) adjustment

model, described by Johnson et al. (2007). This batch correction algorithm is implemented in

R via the sva package through the ComBat function. It adjusts data for known batching factors,

using either parametric or non-parametric empirical Bayes frameworks. Therefore, it estimates

the prior batch probabilities from the observed fluorescence data. The ComBat algorithm is

developed based on the following model.

𝑌𝑖𝑗𝑘 = 𝛼𝑘 + 𝑋𝛽𝑘 + 𝛾𝑖𝑗 + 𝛿𝑖𝑗𝜀𝑖𝑗𝑘

Where:

𝑖 ~ 1,2,3, … , 240 spots

𝑗 ~ 1,2,3, … , 12 arrays

𝑘 ~ 1,2,3, … , 24 mini-arrays

 16

𝑌𝑖𝑗𝑘 ~ log2 transformed MFI intensity

𝛼𝑖 ~ the overall MFI intensity.

𝑋 ~ design matrix for slide-level (array-level) batching

𝛽𝑗 ~ Regression coefficients corresponding to X

𝛾𝑖𝑗 𝑎𝑛𝑑 𝛿𝑖𝑗 ~ Represent additive and multiplicative batch effects of 𝑗𝑡ℎ batch for 𝑖𝑡ℎ spot.

The errors 𝜀𝑖𝑗𝑘, assume normal distribution and a constant variance

3.9.4 Quantile normalisation

Quantile normalisation is a method used to standardise distribution of data from two or more

distributions. This method assumes that data obtained from each processed sample follow

similar distributions. Therefore, by applying the quantile normalisation, distributions of the

observed data in all samples are coerced to an average distribution (Hicks & Irizarry, 2014).

Below are steps followed in implementing the quantile normalisation in peptide microarray

data.

- Spot fluorescence intensities are sorted either ascending or descending in each of

the samples (each mini-array).

- Average values are calculated for each rank

- The spot fluorescence intensities are replaced with the average values in each rank

- The resulting data is returned to its original format, hence, quantile normalised.

3.9.5 Variance Stabilising Normalisation (VSN)

VSN assumes a measurement model that has both multiplicative and additive error terms

shown below.

𝑌 = ∝ +𝜇𝑒𝑛 + 𝜀

Where;

 17

𝑌 ~ The observed intensity

∝ ~ Intensity offset

𝜇 ~ an intensity without error in arbitrary values

𝑛 ~ multiplicative error term

𝜀 ~ additive error term

VSN is a combination of two components: (i) affine transformation which calibrates the

systematic factors, and (ii) generalized log (equivalent to log2 for large intensities) to stabilise

the variance (Huber, 2004).

The affine transformation is as shown below:

𝑥∗ =
𝑥 − 𝑎

𝑠

𝑥∗ – transformed MFI intensity

𝑥 – raw MFI intensity

𝑎 – shifting factor

𝑠 – scaling factor

Different scaling and shitting factors used for each column, but the same for all rows within a

column. For stratified VSN normalisation, different scaling and shifting factors are used for

different groups of rows according to the defined categorical variables. In R, VSN is

implemented in the VSN and limma (linear models for microarrays) R packages.

3.9.6 Data-Driven Haar-Fisz Transformation (DDHF)

Data-Driven Haar-Fisz Transformation (DDHF) is a data transformation method that is part of

Haar-Fisz variance stabilisation methods introduced by Fryzlewicz and Nason (2004). This

method is applied on data with monotone increasing mean-variance dependence – a

characteristic of microarray data. The DDHF method works effectively when the data is

arranged according to mean sequence. In practice, the fluorescence intensities need to be sorted

 18

based on increasing replicate means; and it assumes that the observed mean of replicates define

their true ordering. This method has been applied in R programming environment under the

DDHFm package.

3.9.7 Linear Models

Technical variance in microarray data can also be corrected using linear models to predict spot

intensities by using arrays, subarrays, replicates, control samples and blocks as either fixed

effect or random effect variables. Reilly and Valentini (2009) recommended application of

linear models, with and without interactions, with array, mini-array and blocks as covariates in

removing technical variation.

𝑌𝑖𝑗𝑘 = 𝑖 + 
𝑗

+ 
𝑘

+ 𝑖𝑗𝑘

𝑌𝑖𝑗𝑘 ~ observed spot intensity at the slide 𝑖, mini-array 𝑗 and block 𝑘.

𝑖 ~ the slide (array) effect


𝑗
 ~ the mini-array effect

𝜀𝑖𝑗𝑘 ~ the residual signal, with assumed normal distribution, a mean of zero and constant

variance.

Linear mixed effects models can also be applied to correct the technical variance. According

to Espín-Pérez et al. (2018), arrays and mini-arrays among other assay design related factors

can be used as covariates in a mixed model aimed at correcting the observed technical variance.

The technical model is modelled as shown in the equation below.

𝑌 = 𝑋𝑏 + 𝑍𝑢 + 𝜀

𝑌 ~ log2 transformed MFI intensities

𝑋 ~ Design matrix of the fixed variables

 19

𝑏 ~ Fixed effects

𝑍 ~ Design matrix of the random variables

𝑢 ~ Random effects

𝜀 ~ Residual

3.10 Microarray Data Quality Check

3.10.1 Principal Components Analysis (PCA)

The Principal Components Analysis (PCA) was used to evaluate data quality based on the

control reference samples and spots. For instance, there were 36 buffer spots in each mini-array

aimed at estimating non-specific binding, hence, estimating the background fluorescence.

Since the data had multiple variables that were measure on the same scale, that are assumed to

produce similar fluorescence intensities, PCA was used to check quality of the buffer spots

based on clustering visualised using first and second principal components.

A PCA analysis was performed for each transformation method applied, based on the peptide

fluorescence intensities data. the first and second components of the PCA analysis were plotted

using scatter plots to identify data clustering based on the sample type. A distinct clustering

was expected between data for the negative and positive reference samples.

3.10.2 Wilcoxon Sign Rank Sum Test

The PAS sample in mini-array 1 (PAS sample with the lowest dilution) was used to compare

technical variance stabilisation across slides. Wilcoxon Sign Rank Sum non-parametric method

was used to test the similarity of fluorescence intensities distributions among slides at 5% level

of significance.

 20

CHAPTER 4: RESULTS

4.1 Sources of Variation

Local background subtraction and log transformation are the standard methods used in

microarray data for normalisation and stabilisation of technical variance. First, the data were

transformed using a log to base 2; then, the transformed data used to investigate sources of

technical variation. Performances of the microarray chip were assessed by first checking the

correlation of the duplicates; then the consistency of the reference samples (PAS and buffer)

across slides.

Figure 2: A scatter plot for fluorescence intensities of peptide duplicates (the axis is in log2

scale)

A strong correlation (𝜌 = 0.95; 𝑝𝑣𝑎𝑙𝑢𝑒 < 0.001) for the fluorescence intensities was found

between the duplicate peptides (figure 2). Therefore, data from the duplicates were combined

by taking their arithmetic mean.

 21

Figure 3: A PCA variable plot for fluorescence intensities of buffer spots

Quality of the buffer spots was evaluated by performing a PCA analysis on a matrix for

foreground fluorescence intensities observed in the buffer spots. As shown in figure 3, some

of the buffer spots clustered significantly differently; and they were found to have higher

fluorescence intensities compared to the other buffer spots. Surprisingly, these buffer spots that

clustered differently compared with the other buffer spots were adjacent to either commercial

epitope or landmark epitope. Therefore, all the buffer spots that neighbourhood commercial

epitopes or landmark epitopes were removed from the dataset.

 22

Figure 4: Effect of PAS dilution on the distribution of buffer spots fluorescence intensities

Further analysis was performed to investigate the stability of buffer spots to determine whether

they are optimum in explaining non-specific binding. A comparability plot shows that the

distribution of buffer spots fluorescence intensities reduce as the dilution of the PAS increases

(figure 4).

 23

Figure 5: Boxplots comparing distributions of peptide and buffer spots fluorescence intensities

across slides for the PAS sample in mini-array 1 (Wilcoxon Sign Rank test p-values included)

The distributions of fluorescence intensities of peptide spots were compared with those of

buffer spots across slides for both PAS and buffer samples. In a number of the slides, the

distributions of the peptide spots fluorescence intensities were not statistically different with

the distribution of the fluorescence intensities of buffer spots in the PAS (mini-array 1; see

figure 1) sample; however, the median statistics of the peptide spots were consistently higher

(figure 5).

In the buffer sample, the distribution of fluorescence intensities for peptide spots was

significantly different from the distribution of the buffer spots at 5% level of significance.

 24

Figure 6: Boxplots comparing distributions of peptide and buffer spots fluorescence intensities

across slides for the buffer sample (Wilcoxon Sign Rank test p-values included)

However, the distribution of fluorescence intensities for the peptide spots was not consistently

higher across slides (figure 6). A PCA analysis was conducted to determine whether sample

type influenced the fluorescence intensities of the buffer spots. As shown in figure 7, the

fluorescence intensities of the buffer spots clustered by sample type; PAS (mini-array 1)

sample, buffer sample and the study samples.

4.2 Background Intensity Correction Methods

The local background intensities, estimated by the GenePix microarray scanner, were

subtracted from the foreground intensities to correct for non-specific binding. The background

intensity estimation method assumed by the spots were of fixed sizes, and they were circular.

Therefore, median fluorescence intensity was estimated as the local background intensity for

the areas surrounding the assumed circular spot. By subtracting the local background intensities

from the foreground intensities, some spots ended up with negative intensities. While

 25

transforming the background-subtracted data using log transformation, values less than one

were fixed at a value of one, to avoid infinite numbers, non-numbers and negative values in

the log-transformed dataset.

Figure 7: PCA individuals scatter plot for buffer spots fluorescence intensities; clustering by

sample type (PAS in mini-array 1, buffer and study samples)

Figure 8: Individual PCA plots of log2 transformation of raw values; local background

subtraction and log2 transformation; and background subtraction using local background

minimum smoothing and log2 transformation

 26

Table 2: ANOVA table for model significance test comparing with model 0. The table show model selection criteria for the linear mixed-effects

method that was compared with other technical variance correction methods discussed in the methodology section.

 Fixed
Variables

Random
Variables Weighted DF AIC BIC Log

Likelihood deviance
Chi-
square
statistic

Chi-
Square –
DF

P-value

Model 0 Background
intensity Sample No 4 156411 156446 -78201 156403

Model 1 Background
intensity Sample, Spot No 5 124665 124708 -62327 124655 31748.10 1 < 0.001

Model 2
Background
intensity,
Sample type

Slide, Miniarray,
Spot No 8 124593 124662 -62288 124577 10347.03 1 < 0.001

Model 3
Background
intensity,
Sample type,

Slide, Miniarray,
Spot

Yes (mini-
array buffer
median)

8 122888 122957 -61436 122872 1704.89 0 < 0.001

Model 4 Background
intensity Sample, Spot

Yes (mini-
array buffer
median)

5 122952 122995 -61471 122942 1712.92 0 < 0.001

Model 5
Background
intensity, slide
scanning time

Sample, Spot
Yes (mini-
array buffer
median)

7 122942 123002 -61464 122928 14.63 2 0.00067

Model 6 Background
intensity

Slide, Sample
type, Miniarray,
Spot

No 8 124620 124689 -62302 124604 0 0 1

Model 7 Background
intensity

Slide, Sample
type

Yes
(scanning
time)

8 127184 127253 -63584 127168 0 0 1

Model 8 Sample type, Slide, Miniarray,
Spot No 7 134938 134998 -67462 134924 0 0 1

 27

Local background subtraction was found to be ineffective in removing unwanted variation in

the data. According to the PCA unsupervised clustering analysis for the sample types, local

background subtraction removes significant biological differences from the data (figure 8).

Since local background subtraction performed poorly, other methods of background intensity

estimation were sought. Buffer spots were not an option because they were found to be

unreliable due to their instability by dilution and sample types. Therefore, model-based

methods and spatial methods were assessed. Based on the methods’ capability to retain

biological differences by showing distinct clustering of the PAS and buffer samples, local

background minimum smoothing provided the more reliable results (figure 8).

4.3 Normalisation Methods

Several data normalisation and technical variance stabilisation methods were evaluated.

Among the methods of variance stabilisation and data normalisation evaluated include; log to

base 2 transformation and ComBat algorithm for correcting batch effects, variance stabilising

normalisation (VSN) and quantile normalisation, Data-driven Haar-Fisz transformation and

linear mixed-effects model (LMM) (assessed LMM models shown in table 2) and a custom

variance stabilisation method that uses PAS (mini-array 1; see figure 1) reference sample

fluorescence intensities to calculate stabilisation factors as shown in equation (8). Across all

the methods, the data was scaled in a log to base 2. Some of the methods were combined to

improve their performance, while others were applied individually.

𝑆𝐹𝑖𝑗 =
𝑆𝑖𝑗(𝑃𝐴𝑆1)

𝑀𝑆𝑖(𝑃𝐴𝑆1)
 (8)

𝑆𝐹𝑖𝑗 → Stabilisation factor for the 𝑖𝑡ℎ spot in 𝑗𝑡ℎ slide

𝑆𝑖𝑗(𝑃𝐴𝑆1) → Background uncorrected fluorescence intensity for 𝑖𝑡ℎ spot in 𝑗𝑡ℎ slide in PAS

sample in mini-array 1

 28

𝑀𝑆𝑖(𝑃𝐴𝑆1) → Background uncorrected fluorescence intensity for 𝑖𝑡ℎ spot across slides in

PAS sample in mini-array 1

The variance stabilisation factor was calculated based on the observed raw spot intensities. The

calculation of the factor assumed that the variation observed in the PAS sample in mini-array

1 is an overall claim of the data shift from the actual spot intensity. Therefore, the raw

intensities are used to calculate the stabilisation factor because they explain maximum variance

experienced.

Figure 9: Distribution density plot across normalisation methods; coloured by the sample

group

The distributions of the fluorescence intensities by the sample group were compared among

the applied methods of technical variance stabilisation (figure 9). The distributions of

 29

fluorescence intensities observed that the buffer sample was expected to have a significantly

lower median compared to the PAS sample. The distribution of the spot fluorescence intensities

for the study sample should overlap the buffer sample distribution and the PAS sample

distributions. Figure 9 shows that DDHF and quantile normalisation methods did not perform

well in stabilising the technical variance; the quantile normalisation estimates a significantly

higher median of the study sample fluorescence intensities compared to the PAS, which is

unlikely possible. DDHF method does not stabilise the variable; the data shows multi-modal

distributions.

Figure 10: PCA individual scatter plots for the normalisation methods; ellipses show

clustering by sample type

Figure 10 shows that the data normalisation and variance stabilisation methods retained the

expected biological differences. Some study samples cluster together with the buffer and PAS

samples. The amount of variation explained by the first and second principal components vary

 30

by method. Since the biological is retained based on the methods presented in figure 10,

technical variance stabilisation is assessed based on the distributions of peptide fluorescence

intensities in PAS sample in mini-array 1. These distributions are expected to be the same

because it is the same sample run multiple times.

Figure 11: Distributions of peptide spots fluorescence intensities of PAS in mini-array 1;

compared across normalisation and technical variance stabilisation methods

Pairwise Wilcoxon Sign Rank Sum tests, corrected for multiple testing using Bonferroni

method were performed to identify slides whose peptide spots fluorescence intensities in PAS

mini-array 1 are significantly different.

 31

Figure 12: Pairwise comparison of peptide spots fluorescence intensities distributions in PAS

in mini-array 1, using Wilcoxon Sign Rank Sum test; each box represents a Bonferroni adjusted

Wilcoxon Sign Rank Test p-value; red colour shows p-values less than 0.05, and the red colour

fades towards green as the p-value increases.

Figure 12 shows the pairwise comparison of distributions of peptide spots fluorescence

intensities in PAS in mini-array 1; the comparison tests were done using Bonferroni corrected

Wilcoxon Sign Rank Sum test for all the pairs of slides. The six methods of normalisation and

technical variance correction were compared, and the PAS stabilisation method, which

corrected background intensity using local background minimum smoothed fluorescence

intensities and applied the stabilisation factor produced most desirable results.

4.4 Comparison between normalised and non-normalised data

Log2 transformed raw fluorescence intensities were compared with background-corrected

fluorescence intensities using local background minimum smoothed, and variance stabilisation

using factors calculated as shown in equation 8. As shown in figure 10, the biological variance

is retained, and the variance is stabilised, as shown in figure 11 and 12. Therefore, the non-

normalised data is compared with normalised data based on the effect of PAS dilution on the

 32

distribution of peptide spots fluorescence intensities. Also, the decay of maternal antibodies,

IgG, is used to compare before and after normalised.

Figure 13:Distribution plots for peptide spots fluorescence intensities by dilution of PAS

sample; compared before (log2 transformation) and after (local background correction using

minimum smoothed background fluorescence intensities and PAS stabilisation) normalisation

Figure 13 shows that the effect of the 10-fold PAS dilution on the distribution of peptide spots

fluorescence intensities is retained after the variance stabilisation.

 33

Figure 14: A plot of Spearman correlation between fluorescence intensities for IgG and the

first six months of life, comparing before and after normalisation; blue colour shows that the

correlation is statistically significant with 95% confidence level.

 34

Before technical variance stabilisation and data normalisation, few peptides were observed to

decay in the first six months of life. After technical variance stabilisation and data

normalisation, the number of peptides indicating that maternal antibodies decayed increased

significantly (figure 14).

 35

CHAPTER 5: DISCUSSION

5.1 Discussion

The objective of this study was to apply technical variance correction methods to peptide

microarray; correct the technical variance and normalise the data while retaining the biological

differences. Difference approaches and methods were applied, seeking a stabilisation method

that does not affect the credibility of the dataset. Further, the study was to develop a pre-

processing framework that applies the suggested method, to be used on pre-processing of data

obtained from the chip.

Several standard methods used in stabilising technical variance on biological data, especially

DNA microarray data, were assessed. Amongst the assessed method is log transformation,

background correction, linear models and batch effects correction algorithms among others.

The analysis found that the technical variance influenced the dataset by mini-array and slide.

Local background correction is an effective method of reducing technical variance in

microarrays while stabilising the technical variance. Therefore, local background subtraction

was the first method to apply, aiming at stabilising the variance.

The local background subtraction method removed meaningful biological differences.

Although it is assumed that subtracting local background corrects for the technical variation,

local background estimation bias could have been introduced by the scanning machine because

of the spot properties; size and shape which influences the definition of the background area

(Fardin et al., 2007; Lourido et al., 2014; Yang, Buckley, Dudoit, & Speed, 2002).

Since the local background subtraction methods did not yield desirable results, other methods

of background estimation were sought because it was evident that non-specific binding was a

significant source of unwanted variation. Local minimum background smoothing estimated

less biased background intensities compared with buffer spots estimates and NormExp

 36

modelled background intensities (Schützenmeister & Piepho, 2010; Silver, Ritchie, & Smyth,

2009).

The standard method of correcting for technical variance in microarrays did not achieve

desirable technical variance stabilisation. These methods include ComBat, log2

transformation, VSN and linear mixed model (Nahtman et al., 2007; Sill et al., 2010). The

linear model stabilised the variance better compared with the other methods; however, antibody

decay could not be established; hence the data was not quality.

Finally, a more data-driven approach was applied by calculating a stabilisation factor for each

peptide based on the PAS sample in mini-array 1. This approach assumed that the spots

immunogenicity varied by peptide, hence spot specific stabilisation factored could produce

optimal results. Secondly, the method assumed that fluorescence intensities within a slide were

all influenced by non-specific binding at the same level. Maximum variance stabilisation was

achieved by applying the stabilisation factor on the background-corrected intensities.

5.2 Conclusion

In conclusion, the standard techniques used to stabilise technical variance in microarray did

not achieve variance stabilisation. Local background smoothing performs better in correcting

the effect of non-specific binding than subtracting the raw estimated local background

intensities. A combination of the background correcting using smoothed intensities and the

stabilisation factor calculated based on the PAS, the positive reference sample, achieved

maximum variance stabilisation compared with existing methods.

5.3 Recommendations

Based on the findings of this study, identifying sources of technical variation and effectively

correcting for their effect is essential before the analysis of peptide/protein microarray data. I

recommend the use of local background smoothing or morphological spot detection while

estimating the background fluorescence intensity. These rigorous methods of background

 37

intensity estimation reduce the bias introduced by the assumption of constant size and

circularity (or any other distinct structure) of the spot.

5.4 Study Limitations and Future Research

The peptide microarray data used in this study was processed by one laboratory technician in

the same lab and in the same day. As a result, it was difficult to quantified the observed

technical variation, although it was observed that the data varied by slide. Therefore, more

research should be done on background correction methods for peptide microarrays to provide

evidence in this area of research.

 38

References

Berrade, L., Garcia, A. E., & Camarero, J. A. (2011, July 30). Protein microarrays: Novel

developments and applications. Pharmaceutical Research.

https://doi.org/10.1007/s11095-010-0325-1

Bertone, P., & Snyder, M. (2005). Advances in functional protein microarray technology.

FEBS Journal, 272(21), 5400–5411. https://doi.org/10.1111/j.1742-4658.2005.04970.x

Chen, C., Grennan, K., Badner, J., Zhang, D., Gershon, E., Jin, L., & Liu, C. (2011).

Removing batch effects in analysis of expression microarray data: An evaluation of six

batch adjustment methods. PLoS ONE. https://doi.org/10.1371/journal.pone.0017238

Díez, P., Dasilva, N., González-González, M., Matarraz, S., Casado-Vela, J., Orfao, A., &

Fuentes, M. (2012). Data Analysis Strategies for Protein Microarrays. Microarrays,

1(3), 64–83. https://doi.org/10.3390/microarrays1020064

Espín-Pérez, A., Portier, C., Chadeau-Hyam, M., van Veldhoven, K., Kleinjans, J. C. S., & de

Kok, T. M. C. M. (2018). Comparison of statistical methods and the use of quality

control samples for batch effect correction in human transcriptome data. PLoS ONE,

13(8), e0202947. https://doi.org/10.1371/journal.pone.0202947

Fardin, P., Moretti, S., Biasotti, B., Ricciardi, A., Bonassi, S., & Varesio, L. (2007).

Normalization of low-density microarray using external spike-in controls: Analysis of

macrophage cell lines expression profile. BMC Genomics, 8, 1–19.

https://doi.org/10.1186/1471-2164-8-17

Feng, C., Wang, H., Lu, N., Chen, T., He, H., Lu, Y., & Tu, X. M. (2014). Log-

transformation and its implications for data analysis. Shanghai Archives of Psychiatry,

26(2), 105–109. https://doi.org/10.3969/j.issn.1002-0829.2014.02.009

 39

Fryzlewicz, P., & Nason, G. P. (2004). A Haar-Fisz algorithm for poisson intensity

estimation. Journal of Computational and Graphical Statistics, 13(3), 621–638.

https://doi.org/10.1198/106186004X2697

Gagnon-Bartsch, J. A., & Speed, T. P. (2012). Using control genes to correct for unwanted

variation in microarray data. Biostatistics, 13(3), 539–552.

https://doi.org/10.1093/biostatistics/kxr034

Guthke, R., Pohlers, D., Huber, R., Kinne, R. W., Kupfer, P., Koczan, D., … Kinne, R. W.

(2012). Batch correction of microarray data substantially improves the identification of

genes differentially expressed in Rheumatoid Arthritis and Osteoarthritis. BMC Medical

Genomics, 5(1), 23. https://doi.org/10.1186/1755-8794-5-23

Hicks, S. C., & Irizarry, R. A. (2014). When to use Quantile Normalization? Detection of

Highly Dangerous Pathogens: Microarray Methods for BSL 3 and BSL 4 Agents,

234(4), e15. https://doi.org/10.1101/012203

Huber, W. (2004). Robust calibration and variance stabilization with VSN. Differences, 1–14.

Johnson, W. E., Li, C., & Rabinovic, A. (2007). Adjusting batch effects in microarray

expression data using empirical Bayes methods. Biostatistics (Oxford, England), 8(1),

118–127. https://doi.org/10.1093/biostatistics/kxj037

Kamuyu, G., Tuju, J., Kimathi, R., Mwai, K., Mburu, J., Kibinge, N., … Osier, F. H. A.

(2018). KILchip v1.0: A Novel Plasmodium falciparum Merozoite Protein Microarray

to Facilitate Malaria Vaccine Candidate Prioritization. Frontiers in Immunology, 9,

2866. https://doi.org/10.3389/fimmu.2018.02866

Kricka, L. J., Master, S. R., Burt, S. M., Kennedy, J. H., Holder, R. L., Halliday, M. I., …

Wisdom, G. B. (2009). Quality control and protein microarrays. Clinical Chemistry,

55(6), 1053–1055. https://doi.org/10.1373/clinchem.2009.126557

 40

Lazar, C., Meganck, S., Taminau, J., Steenhoff, D., Coletta, A., Molter, C., … Nowe, A.

(2013). Batch effect removal methods for microarray gene expression data integration: a

survey. Briefings in Bioinformatics, 14(4), 469–490. https://doi.org/10.1093/bib/bbs037

Lee, M. L., Kuo, F. C., Whitmore, G. A., & Sklar, J. (2000). Importance of replication in

microarray gene expression studies: statistical methods and evidence from repetitive

cDNA hybridizations. Proceedings of the National Academy of Sciences of the United

States of America, 97(18), 9834–9839. Retrieved from

http://www.ncbi.nlm.nih.gov/pubmed/10963655

Lin, S. M., Du, P., Huber, W., & Kibbe, W. A. (2008). Model-based variance-stabilizing

transformation for Illumina microarray data. Nucleic Acids Research, 36(2), e11–e11.

https://doi.org/10.1093/nar/gkm1075

Lourido, L., Sanidade, C. De, Dasilva-freire, N., Ruiz-romero, C., Marko-Varga, G., &

Wang, X. (2014). Genomics and Proteomics for Clinical Discovery and Development.

(G. Marko-Varga, Ed.) (Vol. 6). Dordrecht: Springer Netherlands.

https://doi.org/10.1007/978-94-017-9202-8

Motakis, E. S., Nason, G. P., Fryzlewicz, P., & Rutter, G. A. (2006). Variance stabilization

and normalization for one-color microarray data using a data-driven multiscale

approach. Bioinformatics, 22(20), 2547–2553.

https://doi.org/10.1093/bioinformatics/btl412

Nahtman, T., Jernberg, A., Mahdavifar, S., Zerweck, J., Schutkowski, M., Maeurer, M., &

Reilly, M. (2007). Validation of peptide epitope microarray experiments and extraction

of quality data. Journal of Immunological Methods, 328(1–2), 1–13.

https://doi.org/10.1016/j.jim.2007.07.015

Pan, M., & Zhang, J. (2018). Quantile normalization for combining gene-expression datasets.

 41

Biotechnology and Biotechnological Equipment, 32(3), 751–758.

https://doi.org/10.1080/13102818.2017.1419376

Qiu, X., Wu, H., & Hu, R. (2013). The impact of quantile and rank normalization procedures

on the testing power of gene differential expression analysis. BMC Bioinformatics,

14(1), 124. https://doi.org/10.1186/1471-2105-14-124

Quackenbush, J. (2002). Microarray data normalization and transformation. Nature Genetics,

32(4S), 496–501. https://doi.org/10.1038/ng1032

Reilly, M., & Valentini, D. (2009). Visualisation and pre-processing of peptide microarray

data. In Methods in Molecular Biology (Vol. 570, pp. 373–389).

https://doi.org/10.1007/978-1-60327-394-7_21

Ritchie, M. E., Silver, J., Oshlack, A., Holmes, M., Diyagama, D., Holloway, A., & Smyth,

G. K. (2007). A comparison of background correction methods for two-colour

microarrays. Bioinformatics, 23(20), 2700–2707.

https://doi.org/10.1093/bioinformatics/btm412

Sboner, A., Karpikov, A., Chen, G., Smith, M., Dawn, M., Freeman-Cook, L., … Gerstein,

M. B. (2009). Robust-linear-model normalization to reduce technical variability in

functional protein microarrays. Journal of Proteome Research, 8(12), 5451–5464.

https://doi.org/10.1021/pr900412k

Scherer, A. (2009). Batch Effects and Noise in Microarray Experiments. (A. Scherer, Ed.),

Batch Effects and Noise in Microarray Experiments: Sources and Solutions. Chichester,

UK: John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470685983

Schützenmeister, A., & Piepho, H. P. (2010). Background correction of two-colour cDNA

microarray data using spatial smoothing methods. Theoretical and Applied Genetics,

120(2), 475–490. https://doi.org/10.1007/s00122-009-1210-3

 42

Sill, M., Schröder, C., Hoheisel, J. D., Benner, A., & Zucknick, M. (2010). Assessment and

optimisation of normalisation methods for dual-colour antibody microarrays. BMC

Bioinformatics, 11(1), 556. https://doi.org/10.1186/1471-2105-11-556

Silver, J. D., Ritchie, M. E., & Smyth, G. K. (2009). Microarray background correction:

maximum likelihood estimation for the normal-exponential convolution. Biostatistics,

10(2), 352–363. https://doi.org/10.1093/biostatistics/kxn042

Stoevesandt, O., Taussig, M. J., & He, M. (2009). Protein microarrays: High-throughput tools

for proteomics. Expert Review of Proteomics, 6(2), 145–157.

https://doi.org/10.1586/epr.09.2

Sutandy, F. X. R. R., Qian, J., Chen, C.-S. S., & Zhu, H. (2013). Overview of protein

microarrays. Current Protocols in Protein Science, Chapter 27(SUPPL.72), 1–21.

https://doi.org/10.1002/0471140864.ps2701s72

Thomassen, G. O. S., Rowe, A. D., Lagesen, K., Lindvall, J. M., & Rognes, T. (2009).

Custom Design and Analysis of High-Density Oligonucleotide Bacterial Tiling

Microarrays. PLoS ONE, 4(6), e5943. https://doi.org/10.1371/journal.pone.0005943

Watson, M., Pérez-Alegre, M., Baron, M., Delmas, C., Dovč, P., Duval, M., … de Koning,

D.-J. (2009). Analysis of a simulated microarray dataset: Comparison of methods for

data normalisation and detection of differential expression (Open Access publication).

Genetics Selection Evolution, 39(6), 669. https://doi.org/10.1186/1297-9686-39-6-669

Yang, Y. H., Buckley, M. J., Dudoit, S., & Speed, T. P. (2002). Comparison of Methods for

Image Analysis on cDNA Microarray Data. Journal of Computational and Graphical

Statistics, 11(1), 108–136. https://doi.org/10.1198/106186002317375640

Yu, X., Schneiderhan-Marra, N., & Joos, T. O. (2010). Protein microarrays for personalized

medicine. Clinical Chemistry, 56(3), 376–387.

 43

https://doi.org/10.1373/clinchem.2009.137158

 44

Appendices

Appendix 1: Mini-array layout, 20 rows by 12 columns; the last subscript indicate the

replicate number.

 45

Appendix 2: Description of the peptides

Peptide ID Organism Peptide ID Organism

ADV2_1 Human adenovirus 2 MEAV_2 Measles virus strain Edmonston

ADV2_2 Human adenovirus 2 MENB_1 Neisseria meningitidis serogroup B H44/76

BORP_1 Bordetella pertussis MENB_2 Neisseria meningitidis serogroup B H44/76

BORP_2 Bordetella pertussis MRSA_1 Staphylococcus aureus subsp. aureus MRSA252

BRUM_1 Brugia malayi MUMP_1 Mumps virus

BRUM_2 Brugia malayi MYBB_1 Mycobacterium bovis BCG

CMVI_1 Human herpesvirus 5 MYBB_2 Mycobacterium bovis BCG str. Pasteur 1173P2

CMVI_2 Human herpesvirus 5 MYBT_1 Mycobacterium tuberculosis

COB3_1 Coxsackievirus B3 MYBT_2 Mycobacterium tuberculosis

CTET_1 Clostridium tetani ONCV_1 Onchocerca volvulus

CTET_2 Clostridium tetani ONCV_2 Onchocerca volvulus

DEN2_1 Dengue virus 2 PSAR_1 Pseudomonas aeruginosa

DEN2_2 Dengue virus 2 Jamaica/1409/1983 PSAR_2 Pseudomonas aeruginosa

DEN3_1 Dengue virus 3 PARV_1 Human parvovirus B19

DEN4_1 Dengue virus 4 PFAL_1 Plasmodium falciparum 3D7

EBVI_1 Human herpesvirus 4 PFAL_2 Plasmodium falciparum 3D7

EBVI_2 Human herpesvirus 4 PIV2_1 Human parainfluenza virus 2

ECHG_1 Echinococcus granulosus PIV3_1 Human parainfluenza virus 3

ECHG_2 Echinococcus granulosus POLV_1 Human poliovirus 3 strain Sabin

ENTH_1 Entamoeba histolytica POLV_2 Human poliovirus 3 strain Sabin

ENTH_2 Entamoeba histolytica RABV_1 Rabies virus

ESCO_1 Escherichia coli RABV_2 Rabies virus HEP-FLURY

ESCO_2 Escherichia coli ROTV_1 Human rotavirus A

ETVA_1 Enterovirus A71 ROTV_2 Human rotavirus MP409

ETVC_1 Enterovirus C RSVA_1 Human respiratory syncytial virus

FLUA_1 Influenza A virus (A/California/04/2009(H1N1)) RSVB_1 Human respiratory syncytial virus

FLUA_2 Influenza A virus (A/California/04/2009(H1N1)) RSVF_1 Human respiratory syncytial virus

HEPA_1 Human hepatitis A virus Hu/Australia/HM175/1976 RUBV_1 Rubella virus strain Therien

HEPA_2 Human hepatitis A virus Hu/Australia/HM175/1976 RUBV_2 Rubella virus strain Therien

HEPB_1 Hepatitis B virus SARS_1 SARS coronavirus

HEPB_2 Hepatitis B virus subtype adw2 SARS_2 SARS coronavirus Tor2

HEPC_1 Hepatitis C virus SFLX_1 Shigella flexneri

HEPC_2 Hepatitis C virus (isolate BK) SFLX_2 Shigella flexneri 3a

HINF_1 Haemophilus influenzae NTHi 1479 SMAN_1 Schistosoma mansoni

HINF_2 Haemophilus influenzae Serotype B SMAN_2 Schistosoma mansoni Puerto Rico

HPVI_1 Human papillomavirus SPNE_1 Streptococcus pneumoniae

HPVI_2 Human papillomavirus type 16 SPNE_2 Streptococcus pneumoniae

HPYL_1 Helicobacter pylori SPYO_1 Streptococcus pyogenes serotype M5

HPYL_2 Helicobacter pylori SPYO_2 Streptococcus pyogenes serotype M5

HRVA_1 Human rhinovirus A2 STAU_1 Staphylococcus aureus subsp. aureus COL

HRVA_2 Human rhinovirus A89 STAU_2 Staphylococcus aureus subsp. aureus COL

HRVB_1 Human rhinovirus B14 STYP_1 Salmonella enterica subsp. enterica serovar Typhi

HRVB_2 Human rhinovirus B14 STYP_2 Salmonella enterica subsp. enterica serovar Typhi

HSV1_1 Herpes simplex virus (type 1 / strain 17) TRBG_1 Trypanosoma brucei gambiense

HSV1_2 Herpes simplex virus (type 1 / strain 17) TRBG_2 Trypanosoma brucei gambiense

HV12_1 Human herpesvirus 2 or 1 TRCR_1 Trypanosoma cruzi

HV12_2 Human herpesvirus 2 or 1 TRCR_2 Trypanosoma cruzi

HV6B_1 Human herpesvirus 6B TSOL_1 Taenia solium

HV6B_2 Human herpesvirus 6B TSOL_2 Taenia solium

KPNE_1 Klebsiella pneumoniae VZOS_1 Human herpesvirus 3 H-551

KPNE_2 Klebsiella pneumoniae VZOS_2 Human herpesvirus 3 H-551

LDON_1 Leishmania donovani WUCB_1 Wuchereria bancrofti

LDON_2 Leishmania donovani WUCB_2 Wuchereria bancrofti

MEAV_1 Measles virus strain Edmonston

 46

Appendix 3: Project R code – the analysis framework

library(tidyverse)
library(gtools)
library(ggpubr)
library(limma)
library(sva)
library(ggbeeswarm)
library(data.table)
library(lme4)
library(splines)
library(ggthemes)
library(ggrepel)
library(plotly)
library(pheatmap)
library(gplots)
library(ggplotify)

+ slide and miniarray layout directory + ----
slide_layout_dir <- ("DATA/Slide_Layout/")

peptide_layout <-
 read.csv(paste0(slide_layout_dir, "miniarray_layout - rep.csv"))

Raw data directory
Raw_data_dir <- "DATA/Raw_Data/"

Age data # Sample no and Age in months

age_data <-
 read.csv("DATA/sample.list.age.csv") %>%
 rename(sample_no = serial) %>%
 mutate(sample_no = as.character(sample_no))

buffer spots to filter
bad.buffer.spots <- ("_3$|_13$|_23$|_24$|_27$|_30$|_31$|_34$")

A sample peptides to visualize dilution
serial.dilution.spots <- c("POLV_1", "SPYO_2", "RSVA_1", "HV12-2")

Custom function to read Raw data files and convert to wide dataset (samples by spots) ----

Read_Array_Data <-
 function(Ig = "IgG", data_type = "Foreground") {
 reader <- function(filename) {
 df <- fread(filename, skip = "Flags")
 df$slide <- gsub(
 pattern = paste0(Raw_data_dir, "|Pmt.*", sep = ""),
 replacement = "",
 perl = T,
 x = filename
)
 df
 }

 channel <- ifelse(Ig == "IgA", "532", "635")
 datatype <-
 if (data_type == "Foreground") {
 "F"
 } else if (data_type == "Background") {
 "B"
 }
 var_column <-
 paste(paste0(datatype, channel), "Median", sep = " ")

 # Raw data file names
 filenames <-
 list.files(
 Raw_data_dir,
 pattern = paste(Ig, ".txt$", sep = ""),
 full.names = T

 47

)

 # Combine the array datasets
 full_data <-
 lapply(filenames, reader) %>%
 bind_rows(.) %>%
 dplyr::rename(miniarray = "Block")

 sample_ids <-
 read.csv(paste0(slide_layout_dir, "sample.ids.", Ig, ".csv"),
 stringsAsFactors = T)

 layout <-
 suppressWarnings(sample_ids %>% gather("slide", "sample_id", -c(miniarray)))

 names(layout) <-
 c("miniarray", "slide", "sample_id")

 # wide dataset
 mydata <-
 suppressMessages(
 layout %>%
 mutate(
 slide = str_replace(slide, "s", repl = "S"),
 slide = str_replace(slide, "\.", repl = "_")
) %>%
 left_join(full_data, .) %>% select(slide, miniarray,
sample_id, Name, var_column) %>%
 group_by(slide, miniarray, Name, sample_id) %>%
 mutate(Name_id_replicate = paste0(Name, "_", row_number()))
%>% ungroup() %>%
 arrange(slide, miniarray, Name_id_replicate) %>%
 group_by(slide, sample_id, Name_id_replicate) %>%
 mutate(
 sample_ID = paste0(
 slide,
 "_",
 sample_id,
 "_",
 row_number(),
 "_",
 "miniarray",
 "_",
 miniarray
)
) %>%
 arrange(Name_id_replicate, sample_ID) %>%
 ungroup() %>%
 select(Name_id_replicate, sample_ID, var_column) %>%
 spread(Name_id_replicate, var_column)
)
 }

A function to tidy and extract various forms of the peptide dataset ----

tidying <-
 function(dataset = Read_Array_Data("IgG", "Foreground"),
 return.data = "wide") {
 require(tidyverse, quiet = T)
 library(gtools)

 tidy <-
 function(dataset) {
 dataset %>%
 mutate(
 sample_no = str_extract(sample_ID, "\\d{4,}"),
 slide = str_extract(sample_ID, "Slide_\\d{1,2}"),
 slide = str_replace(slide, "\w+_", repl = ""),
 miniarray = str_extract(sample_ID,
"miniarray_\\d{1,2}"),
 miniarray = str_replace(miniarray, "\w+_", repl = ""),
 sample_group = case_when(
 str_detect(sample_ID, "_NC_") ~ "Buffer",
 str_detect(sample_ID, "_PAS_") ~ "PAS",

 48

 str_detect(
 sample_ID,

"[:digit:]{1,9}_[:digit:]{1,9}_[:digit:]{1,9}"
) ~ "Sample",
 str_detect(sample_ID, "__") ~ "Blank"
)
) %>%
 filter(!sample_group == "Blank") %>%
 mutate(
 sample_group = factor(sample_group, levels =
unique(sample_group)),
 slide = factor(slide, levels = mixedsort(unique(
 slide
))),
 miniarray = factor(miniarray, levels =
mixedsort(unique(
 miniarray
)))
) %>%
 select(sample_ID,
 sample_no,
 slide,
 miniarray,
 sample_group,
 everything()) %>%
 gather("spot", "MFI", -c(1:5)) %>%
 # filter(!str_detect(spot, bad.buffer.spots)) %>%
 spread("spot", "MFI")
 }

 wide <- tidy(dataset)

 buffer <-
 wide %>%
 gather("spot", "MFI", -c(1:5)) %>%
 filter(str_detect(spot, "BUFFER"))

 full.long <-
 wide %>%
 gather("spot", "MFI", -c(1:5)) %>%
 filter(!str_detect(spot, "BUFFER")) %>%
 mutate(
 replicate = case_when(str_detect(spot, "_1$") ~ 1,
 str_detect(spot, "_2$") ~ 2),
 spot = str_replace(spot, "_1$|_2$", "")
) %>%
 select(1:6, 8, 7) %>%
 bind_rows(., buffer)

 # Creating a dataframe for the first replicates
 replicate_1 <-
 wide %>%
 select(1:5, ends_with("_1"), -matches("BUFFER")) %>%
 gather(
 "spot",
 "replicate.1",
 -c(sample_ID, sample_no, slide, miniarray, sample_group)
) %>%
 mutate(spot = str_replace(spot, "_1$", ""))

 # Creating a dataframe for the second replicates
 replicate_2 <-
 wide %>%
 select(1:5, ends_with("_2"), -matches("BUFFER")) %>%
 gather(
 "spot",
 "replicate.2",
 -c(sample_ID, sample_no, slide, miniarray, sample_group)
) %>%
 mutate(spot = str_replace(spot, "_2$", ""))

 # Creating a dataframe for buffer spots
 buffer_spots <-

 49

 wide %>% select(1:5, matches("BUFFER"))

 buffer.spots.long <- wide %>%
 select(1:5, matches("BUFFER")) %>%
 gather("spot",
 "MFI",
 -c(sample_ID, sample_no, slide, miniarray, sample_group))

 # Joining into on dataframe & Flagging spots whose replicates have a difference of
more than 20%
 long.data.replicates <-
 suppressMessages(full_join(replicate_1, replicate_2)) %>%
 mutate(
 MFI = (replicate.1 + replicate.2) / 2,
 replicate.flag = factor(
 ifelse((abs(
 replicate.1 - replicate.2
)) / MFI < 0.3, 1, 0),
 levels = c(0, 1),
 labels = c("bad", "good")
)
) %>%
 select(1:6, replicate.flag, everything())

 # Long data without the replicates and flag variables
 antigen.spots.long <-
 long.data.replicates %>% select(1:6,
 everything(),
 -replicate.flag,
 -replicate.1,
 -replicate.2)

 full.long.data <-
 bind_rows(antigen.spots.long, buffer.spots.long)

 # Antigen spots including landmark/commercial and the treatment groups
 antigen.spots <-
 antigen.spots.long %>%
 group_by(slide, miniarray) %>%
 spread("spot", "MFI") %>%
 ungroup()

 # wide format dataset with averaged replicates for both peptides and buffer spots
 wide.summarized <-
 suppressMessages(full_join(antigen.spots, buffer_spots))

 # Buffer subtracted dataset
 buffer.subtracted.long <-
 wide %>%
 gather("spot",
 "MFI",
 -c(sample_ID, sample_no, slide, miniarray, sample_group)) %>%
 group_by(slide, miniarray) %>%
 mutate(MFI = MFI - MFI[str_detect(spot, "BUFFER_22")]) %>%
 ungroup()

 # Buffer subtracted (using median buffer) wide dataset
 buffer.subtracted <-
 buffer.subtracted.long %>% spread("spot", "MFI")

 mget(return.data, ifnotfound = paste0(("THIS DATASET IS NOT FOUND!!!")))[[1]]
 }

++ End of tidying function ++ ##----

Neighbourhood background estimation function ----

A function to estimate backgound intensity as the median locally estimated background using
neighboured spots for the peptide design

neighbor_bg_smoothing <-
 function(Ig,
 peptide_layout = paste(slide_layout_dir, "miniarray_layout - rep.csv",

 50

 sep = "/"),
 number_cols = 12,
 number_rows = 20) {
 require(tidyverse, quietly = T)

 peptide_neigbor <-
 function(peptide_layout,
 number_cols,
 number_rows) {
 # neigbourhood data
 mydata <- data.frame(
 x = integer(),
 n1 = integer(),
 n2 = integer(),
 n3 = integer(),
 n4 = integer(),
 n5 = integer(),
 n6 = integer(),
 n7 = integer(),
 n8 = integer()
)
 x <- 1
 while (x <= number_rows * number_cols) {
 mydata[x,] <- c(
 x,
 x - 1,
 x + 1,
 x - number_cols,
 x + number_cols,
 x - number_cols - 1,
 x - number_cols + 1,
 x + number_cols - 1,
 x + number_cols + 1
)
 x <- x + 1
 }

 mydata <- mydata %>%
 mutate_all(
 .funs = function(x) {
 ifelse(x <= 0 | x > number_rows * number_cols,
 NA,
 x)
 }
) %>%
 gather("neigbour", "value", -c(1)) %>%
 select(-2) %>%
 arrange(x) %>%
 filter(!is.na(value))

 peptide_layout <- peptide_layout %>%
 gather("column", "spot", -c(1)) %>%
 arrange(miniarray.layout) %>%
 rownames_to_column("x") %>%
 select(-c(2:3)) %>%
 mutate(x = as.numeric(x))

 left_join(mydata, peptide_layout, by = "x") %>%
 rename(id = x, x = value) %>%
 left_join(., peptide_layout, by = "x") %>%
 select(-c(1:2)) %>%
 rename(spot = spot.x, neighbor = spot.y)
 }

 suppressWarnings(
 Read_Array_Data(Ig, "Background") %>%
 gather("spot_x", "MFI", -c(1)) %>%
 group_by(sample_ID) %>%
 right_join(
 .,
 peptide_neigbor(peptide_layout, number_cols, number_rows),
 by = c("spot_x" = "neighbor")
) %>%
 group_by(sample_ID, spot) %>%

 51

 mutate(min_bg = min(MFI)) %>%
 ungroup() %>%
 arrange(sample_ID) %>%
 select(sample_ID, spot, min_bg) %>%
 group_by(sample_ID, spot) %>%
 summarise(min_bg = min(min_bg)) %>%
 ungroup() %>% spread(spot, min_bg)
)
 }

<< DATA TRANSFORMATION METHODS >> ----
+ Log2 transformation + ----

log2.transform <- function(Ig) {
 Read_Array_Data(Ig) %>%
 tidying(., "full.long.data") %>%
 mutate(MFI = log2(MFI + 1)) %>%
 spread("spot", "MFI")
}

+ Log2 & ComBat + ----

ComBat.Peptide <- function(Ig, ref.batch = NULL) {
 x <- Read_Array_Data(Ig) %>%
 tidying(., "wide")

 x.vars <- x[, c(1:5)]

 x.matrix <- x[, -c(1:5)] %>%
 as.matrix()

 attr(x.matrix, "dimnames") <-
 list(x$sample_ID, colnames(x.matrix))

 mydata <- x.matrix %>% (function(x) {
 log2(x + 2)
 })
 mydata <-
 suppressMessages(ComBat(
 t(mydata),
 x$slide,
 ref.batch = ref.batch,
 par.prior = F
)) %>%
 t() %>%
 cbind(x[, c(2:5)], .) %>%
 rownames_to_column("sample_ID") %>%
 as_tibble() %>%
 tidying("wide.summarized")
}

+Variance Stabilizing Normalisation (VSN)+ ----

VSN.transform <-
 function(Ig,
 stratified = FALSE) {
 require(tidyverse)
 require(VSN)
 require(limma)

 x <- Read_Array_Data(Ig) %>%
 tidying(., "wide.summarized")

 x.matrix <- x[, -c(1:5)] %>%
 as.matrix()
 x.matrix[is.nan(x.matrix)] <- NA
 attr(x.matrix, "dimnames") <-
 list(x$sample_ID, colnames(x.matrix))

 # Stratified VSN
 VSN_slide_stratified <-
 justVSN(x.matrix,
 strata = x$slide,
 minData = 20) %>%

 52

 cbind(x[, 2:5], .) %>%
 rownames_to_column("sample_ID") %>%
 as_tibble()

 # unstratified VSN
 VSN.single_strata <-
 justVSN(x.matrix) %>%
 cbind(x[, 2:5], .) %>%
 rownames_to_column("sample_ID") %>%
 as_tibble()

 mydata <- ifelse(isTRUE(stratified),
 return(VSN_slide_stratified),
 return(VSN.single_strata))
 }

+ Quantile normalisation +----

quantile_normalize <-
 function(Ig,
 buffer.subtracted = FALSE) {
 dataset <- Read_Array_Data(Ig)
 dataset <-
 suppressMessages(tidying(
 dataset,
 ifelse(
 isTRUE(buffer.subtracted),
 "buffer.subtracted.long",
 "full.long.data"
)
))

 quantile.normalized <- list()

 data <- split(dataset, dataset$sample_group)

 for (i in 1:length(data)) {
 quantile.normalized[[i]] <- data[[i]] %>%
 # filter(sample_group == sample_group[[i]]) %>%
 group_by(slide, miniarray) %>% # grouping by the slide and sample
 arrange(MFI, .by_group = TRUE) %>% # Sorting the data ascending
 mutate(rank = row_number()) %>% # Recoding a new variable to denote
the rank
 group_by(rank) %>% # grouping by the rank value
 mutate(MFI = log2(mean(MFI))) %>% # calculating the new normalised
signal intensity
 ungroup() %>% # ungrouping to restore the original data format
 select(-c(rank)) %>% # removing the rank variable from the dataset
 as.data.frame() %>%
 spread("spot", "MFI")
 }
 bind_rows(quantile.normalized) %>% as_tibble()
 }

+ Data-Driven Haar-Fisz transformation + ----
DDHF.peptide <- function(Ig) {
 new.data.list <- list()
 id.vars <- list()
 dataset <- Read_Array_Data(Ig)
 data.list <-
 tidying(dataset, "long.data.replicates") %>%
 select(1, 6, 8, 9) %>%
 split(., .$sample_ID)

 for (i in 1:length(data.list)) {
 id.vars[[i]] <- data.list[[i]][, 1:2]

 new.data.list[[i]] <-
 data.list[[i]] %>%
 select(-c(1, 2)) %>%
 remove_rownames() %>%
 as.matrix() %>%
 DDHFm::DDHFm() %>%
 (function(x)

 53

 ifelse(x < 1 |
 is.na(x) |
 is.nan(x), 1, x)) %>%
 cbind(id.vars[[i]], .)

 colnames(new.data.list[[i]]) <-
 c("sample_ID", "spot", "rep_1", "rep_2")

 new.data.list[[i]] <-
 new.data.list[[i]] %>%
 mutate(MFI = (rep_1 + rep_2) / 2,
 MFI = ifelse(MFI < 1, 1, log2(MFI))) %>%
 select(-c(3, 4))
 }

 bind_rows(new.data.list) %>%
 spread("spot", "MFI") %>%
 left_join(tidying(return.da = "wide.summarized")[, c(1:5)], .,
 by = "sample_ID")
}

+ Linear Mixed Model (LMM) + ----

LMM.transform <- function(Ig = "IgG") {
 require(lme4)
 require(tidyverse, quiet = T)
 mydata <-
 inner_join(
 x = tidying(dataset = Read_Array_Data(Ig, "Foreground"), "full.long"),
 y = tidying(dataset = Read_Array_Data(Ig, "Background"), "full.long"),
 by = c(
 "sample_ID",
 "sample_no",
 "slide",
 "miniarray",
 "sample_group",
 "spot",
 "replicate"
),
 copy = T
) %>%
 filter(!str_detect(spot, "3|13|23|24|27|30|31|34")) %>%
 rename(bg_MFI = MFI.y, spot_MFI = MFI.x) %>%
 group_by(slide, miniarray) %>%
 mutate(
 med.buffer = median(spot_MFI[str_detect(spot, "BUFFER")]),
 med.buffer.corrected = spot_MFI - median(spot_MFI)
) %>%
 ungroup()

 # Model subset data excluding PAS with smaller concentrations
 model.data <- mydata %>%
 filter(!miniarray %in% c(4, 7, 10, 13, 16, 19, 22))

 my.model <-
 lmer(
 log2(spot_MFI + 2) ~ log2(bg_MFI + 2) + sample_group + (1 |
 slide /
miniarray) + (1 |

spot),
 data = model.data,
 REML = FALSE,
 control = lmerControl(optimizer = "bobyqa"),
 weights = log2(med.buffer + 2)
)

 mydata$spot_MFI <-
 predict(my.model,
 newdata = mydata,
 allow.new.levels = T)

 buffer <- mydata %>%
 select(1:6, 8) %>%

 54

 filter(str_detect(spot, "BUFFER")) %>%
 remove_rownames()

 mydata %>%
 filter(!str_detect(spot, "BUFFER")) %>%
 select(1:8) %>%
 spread("replicate", "spot_MFI") %>%
 rename(rep_1 = "1", rep_2 = "2") %>%
 mutate(spot_MFI = (rep_1 + rep_2) / 2) %>%
 select(-c(rep_1, rep_2)) %>%
 bind_rows(., buffer) %>%
 remove_rownames() %>%
 spread("spot", "spot_MFI")
}

+ LMM + ComBat + ----

LMM_ComBat <- function(Ig, ref.batch = NULL) {
 require(sva, quiet = T)
 require(tidyverse, quiet = T)

 mydata <- LMM.transform(Ig)

 mydata_ComBat <-
 suppressMessages(ComBat(t(mydata[, -c(1:5)]),
 mydata$slide,
 ref.batch = ref.batch)) %>%
 t() %>%
 cbind(mydata[, c(1:5)], .) %>%
 as_tibble()
}

Variance Stabilisation using the PAS (PAS) with highest concentration -----
stabilisation factor = MFI pep_i/mean(pep_i accross slides) within the PAS

PAS_stabilisation <- function(Ig, PAS.Miniarray = 1) {
 require(tidyverse)

 data_1 <-
 inner_join(
 x = tidying(dataset = Read_Array_Data(Ig, "Foreground"), "full.long"),
 y = tidying(dataset = neighbor_bg_smoothing(Ig, peptide_layout), "full.long"),
 by = c(
 "sample_ID",
 "sample_no",
 "slide",
 "miniarray",
 "sample_group",
 "spot",
 "replicate"
),
 copy = T
) %>%
 filter(!str_detect(spot, bad.buffer.spots)) %>%
 rename(bg_MFI = MFI.y, spot_MFI = MFI.x) %>%
 group_by(slide, miniarray) %>%
 mutate(
 med.buffer = median(spot_MFI[str_detect(spot, "BUFFER")]),
 med.buffer.corrected = spot_MFI - median(spot_MFI),
 bg_subtracted = spot_MFI - bg_MFI
) %>%
 ungroup()

 # Calculating the stabilisation factor ==> MFI(spot_i)/median(MFI(spot_i)) accross positive
sample
 stabilisation_factor <-
 data_1 %>%
 filter(miniarray == PAS.Miniarray) %>%
 group_by(spot) %>%
 mutate(
 median_spot_MFI = median(spot_MFI, na.rm = T),
 stabilisation_factor = ifelse(median_spot_MFI < 5, 1, spot_MFI /
 median_spot_MFI),

 55

 stabilisation_factor = ifelse(stabilisation_factor <= 0, 1,
stabilisation_factor),
 bg_subtracted = bg_subtracted / stabilisation_factor
) %>%
 ungroup() %>%
 mutate(spot = ifelse(
 str_detect(spot, "BUFFER"),
 spot,
 paste(spot, replicate, sep = "_")
)) %>%
 select(slide, spot, stabilisation_factor)

 # Combining the dataset
 data_2 <-
 data_1 %>%
 mutate(spot = ifelse(
 str_detect(spot, "BUFFER"),
 spot,
 paste(spot, replicate, sep = "_")
)) %>%
 left_join(., stabilisation_factor, by = c("slide", "spot"))

 stabilised_data <- data_2 %>%
 select(sample_ID, spot, bg_subtracted, stabilisation_factor) %>%
 mutate(
 bg_subtracted = bg_subtracted / stabilisation_factor,
 bg_subtracted = ifelse(bg_subtracted <= 0, 1, bg_subtracted)
) %>%
 select(-stabilisation_factor) %>%
 spread(spot, bg_subtracted) %>%
 tidying("wide.summarized") %>%
 mutate_if(.predicate = is.numeric, .funs = (function(x) {
 log2(x)
 }))
}

BACKGROUND CORRECTTION METHODS ----
+ Local background subtraction + ----

Local_bg_subtract <- function(Ig) {
 inner_join(
 x = tidying(dataset = Read_Array_Data(Ig, "Foreground"), "full.long"),
 y = tidying(dataset = Read_Array_Data(Ig, "Background"), "full.long"),
 by = c(
 "sample_ID",
 "sample_no",
 "slide",
 "miniarray",
 "sample_group",
 "spot",
 "replicate"
),
 copy = T
) %>%
 filter(!str_detect(spot, bad.buffer.spots)) %>%
 rename(bg_MFI = MFI.y, spot_MFI = MFI.x) %>%
 group_by(slide, miniarray) %>%
 mutate(bg_subtracted = spot_MFI - bg_MFI) %>%
 ungroup() %>%
 mutate(
 spot = ifelse(
 str_detect(spot, "BUFFER"),
 spot,
 paste(spot, replicate, sep = "_")
),
 bg_subtracted = ifelse(bg_subtracted <= 0, 1, bg_subtracted)
) %>%
 select(sample_ID, spot, bg_subtracted) %>%
 spread(spot, bg_subtracted) %>%
 tidying("wide.summarized") %>%
 mutate_if(.predicate = is.numeric, .funs = (function(x) {
 log2(x)
 }))

 56

}

+ Neighbourhood background subtraction + ----
moving_min_bg_subtract <- function(Ig) {
 inner_join(
 x = tidying(dataset = Read_Array_Data(Ig, "Foreground"), "full.long"),
 y = tidying(dataset = neighbor_bg_smoothing(Ig, peptide_layout), "full.long"),
 by = c(
 "sample_ID",
 "sample_no",
 "slide",
 "miniarray",
 "sample_group",
 "spot",
 "replicate"
),
 copy = T
) %>%
 filter(!str_detect(spot, bad.buffer.spots)) %>%
 rename(bg_MFI = MFI.y, spot_MFI = MFI.x) %>%
 group_by(slide, miniarray) %>%
 mutate(
 med.buffer = median(spot_MFI[str_detect(spot, "BUFFER")]),
 med.buffer.corrected = spot_MFI - median(spot_MFI),
 bg_subtracted = spot_MFI - bg_MFI
) %>%
 ungroup() %>%
 mutate(
 spot = ifelse(
 str_detect(spot, "BUFFER"),
 spot,
 paste(spot, replicate, sep = "_")
),
 bg_subtracted = ifelse(bg_subtracted <= 0, 1, bg_subtracted)
) %>%
 select(sample_ID, spot, bg_subtracted) %>%
 spread(spot, bg_subtracted) %>%
 tidying("wide.summarized") %>%
 mutate_if(.predicate = is.numeric, .funs = (function(x) {
 log2(x)
 }))
}

<< VALIDATION PLOTS >> ----

+ Peptide dilution plot + ----

serial.plot <- function(data, ...) {
 data %>%
 gather("spot", "MFI", -c(1:5)) %>%
 mutate(miniarray = factor(miniarray, levels = mixedsort(unique(miniarray)))) %>%
 filter(miniarray %in% c(1, 4, 7, 10, 13, 16, 19, 22),
 spot %in% serial.dilution.spots) %>%
 ggplot(aes(miniarray, MFI, col = slide)) +
 geom_smooth(aes(group = slide), se = F, span = 1) +
 facet_wrap(~ spot, nrow = 1) +
 scale_color_brewer(palette = "Paired") +
 labs(x = "Serial Dilution", y = "MFI") +
 # scale_x_discrete(labels = c("1:30", "1:300", "1:3k", "1:30k","1:300k",
 # "1:3m", "1:30m", "1:300m"))+
 # scale_y_continuous(trans = "log2")+
 theme_bw() +
 theme(
 panel.grid.major = element_blank(),
 axis.text.x = element_blank(),
 axis.title = element_text(size = 16),
 legend.text = element_text(size = 16),
 plot.margin = unit(c(0.2, 0.2, 0.2, 0.2), "in"),
 axis.ticks.x = element_blank(),
 ...
)
}

+ Pairwise Comparison of Significant differences in PAS medians +----

 57

wilcoxon.pvalue.heatmap <- function(data, ...) {
 require(pheatmap)
 require(RColorBrewer)

 miniarray.1 <- data %>%
 gather("spot", "MFI", -c(1:5)) %>%
 filter(miniarray == 1,
 !str_detect(spot, "BUFFER|LAND|COMM"))

 diff.test <-
 kruskal.test(miniarray.1$MFI ~ miniarray.1$slide)

 pairwise.test <-
 pairwise.wilcox.test(miniarray.1$MFI, miniarray.1$slide) # , p.adj = 'bonf'

 p.values.df <- round(pairwise.test$p.value, 3)

 p.values.df <- rbind(p.values.df, "1" = NA)
 p.values.df <- cbind(p.values.df, "11" = NA)

 p.values.df <-
 p.values.df[mixedsort(row.names(p.values.df)),]

 diag(p.values.df) <- 1

 col_names <- vector("numeric")
 for (i in 1:(nrow(p.values.df))) {
 col_names[i] <- paste("Slide", i, sep = " ")
 }

 row.names(p.values.df) <- col_names
 colnames(p.values.df) <- col_names

 pheatmap(
 p.values.df,
 cluster_rows = F,
 cluster_cols = F,
 color = colorpanel(9, low = "red", high = "green")[c(2, 5:9)],
 breaks = c(0, 0.05, 0.1, 0.3, 0.7, 1),
 legend_breaks = c(0, 0.05, 0.1, 0.3, 0.7, 1),
 na_col = "snow1",
 border_color = "snow1",
 angle_col = 90,
 display_numbers = T,
 fontsize = 16,
 fontsize_number = 10,
 number_format = "%.3f",
 number_color = "snow1",
 fontsize_col = 12,
 fontsize_row = 12,
 y = unit(3, "npc"),
 ...
)
}

+ BOXPLOTS of peptides in PAS (highest concentration) accross slides + ----

PAS.Boxplots <- function(data, figure.title = "", ...) {
 data %>%
 gather("spot", "MFI", -c(1:5)) %>%
 filter(miniarray == 1,
 MFI > 1,
 !str_detect(spot, "BUFFER|LAND|COMM")) %>%
 ggplot(aes(slide, MFI)) +
 geom_boxplot(alpha = 0, size = 0.6) +
 geom_quasirandom(
 size = 0.7,
 fill = "snow1",
 col = "black",
 alpha = 0.7
) +
 scale_y_continuous(trans = "log2", ...) +
 labs(title = figure.title,
 x = "Slide Number",

 58

 y = "Fluorescence intensities") +
 theme_wsj(color = "snow2",
 title_family = "sans") +
 theme(
 text = element_text(size = 16),
 title = element_text(size = 14),
 axis.line = element_line(size = 1),
 legend.text = element_text(size = 16),
 axis.title = element_text(size = 16),
 plot.margin = unit(c(0.2, 0.2, 0.2, 0.2), "in")
)
}

+ Principal Components plot showing clusters of sample types (PAS, NC, the study Sample) + ----

PCA.plot <- function(data, figure.title, ...) {
 require(factoextra)
 require(FactoMineR)
 require(plotly)

 my.data <- data %>%
 filter(!miniarray %in% c(4, 7, 10, 13, 16, 19, 22)) %>%
 select(-matches("COMM|LAND|BUFFER")) %>%
 as.data.frame() %>%
 column_to_rownames("sample_ID") %>%
 select(-1)

 my.PCA <- PCA(
 my.data,
 quali.sup = 1:3,
 scale.unit = T,
 graph = F
)

 dims <- my.PCAindcontrib

 plot_3d <- plot_ly(
 x = dims[, 1],
 y = dims[, 2],
 z = dims[, 3],
 type = "scatter3d",
 mode = "markers",
 color = factor(my.data$sample_group)
)

 print(plot_3d)

 fviz_eig(my.PCA) %>% print()

 fviz_pca_ind(
 my.PCA,
 geom.ind = "point",
 addEllipses = T,
 pointsize = 2,
 alpha.ind = 0.6,
 habillage = 3,
 repel = T,
 title = figure.title,
 axes = c(1, 2)
) + # , ellipse.type = 'confidence'
 scale_color_brewer(palette = "Set1") +
 theme_bw() +
 theme(
 axis.text = element_text(size = 16),
 axis.title = element_text(size = 16),
 title = element_text(size = 16),
 legend.title = element_blank(),
 legend.key = element_blank(),
 panel.grid = element_blank(),
 legend.text = element_text(size = 18),
 rect = element_rect(fill = "snow1"),
 plot.margin = unit(c(0.2, 0.2, 0.2, 0.2), "in"),
 ...

 59

)
}

+ Density plot grouped by sample groups (Filter for transformed MFI > 1 - in log2 scale) + ----
density.plot <- function(data, figure.title = "", ...) {
 data %>%
 # select(-c(cv_20[[1]])) %>%
 gather("spot", "MFI", -c(1:5)) %>%
 filter(MFI > 1) %>%
 filter(!miniarray %in% c(4, 7, 10, 13, 16, 19, 22)) %>%
 ggplot() +
 geom_density(aes(MFI, fill = sample_group),
 alpha = 0.6,
 position = "identity",
 ...) +
 scale_x_continuous(trans = "log2") +
 scale_fill_brewer(palette = "Set1") +
 labs(y = "Density",
 x = "Fluorescence intensity",
 title = figure.title) +
 theme_wsj(color = "snow1",
 title_family = "sans") +
 theme(
 title = element_text(size = 14),
 legend.title = element_blank(),
 axis.line = element_line(size = 1),
 legend.text = element_text(size = 14),
 axis.title = element_text(size = 14),
 axis.text = element_text(size = 14),
 strip.text.x = element_text(face = "bold"),
 strip.background = element_rect(colour = "grey95", fill = "grey95"),
 panel.border = element_rect(colour = "grey95"),
 plot.margin = unit(c(0.2, 0.2, 0.2, 0.2), "in"),
 ...
)
}

+ PAS dilution + ----
PAS_Dilution <- function(Ig, method, fig.title, ...) {
 PAS.labels <- c(
 "1" = "1:30",
 "4" = "1:300",
 "7" = "1:3,000",
 "10" = "1:30,000",
 "13" = "1:300,000",
 "16" = "1:3,000,000",
 "19" = "1:30,000,000",
 "22" = "1:300,000,000"
)

 method(Ig) %>%
 filter(sample_group %in% c("PAS")) %>%
 gather("spot", "MFI", -c(1:5)) %>%
 filter(MFI > 1,
 !str_detect(spot, "BUFFER|COMM|LAND")) %>%
 ggplot(aes(1, MFI)) +
 geom_jitter(size = 0.8, ...) +
 scale_y_continuous(trans = "log2", ...) +
 labs(x = "Dilution",
 y = "Fluorescence intensities",
 title = fig.title) +
 facet_grid(
 ~ miniarray,
 labeller = labeller(miniarray = as_labeller(PAS.labels)),
 switch = "x"
) +
 stat_summary(
 fun.y = median,
 col = "red",
 geom = "crossbar",
 size = 0.6,
 ymin = 0,
 ymax = 0
) +

 60

 theme_bw() +
 theme(
 axis.text.x = element_blank(),
 axis.title = element_text(size = 18),
 axis.text.y = element_text(size = 18),
 title = element_text(size = 18),
 axis.ticks.x = element_blank(),
 axis.line.x = element_blank(),
 strip.placement = "inside",
 panel.grid = element_blank(),
 panel.background = element_rect(fill = "snow2"),
 panel.border = element_blank(),
 strip.text.x = element_text(
 angle = 90,
 face = "bold",
 size = 14,
 # family = 'serif',
 vjust = 0.5,
 hjust = 1
),
 strip.switch.pad.grid = unit(0, "in")
)
}

+ Correlation between age (in months) and antibody responses (antibody decay) [Forest plot like
plot]+ ---- ## For all the peptides
Corr_plot <- function(Ig,
 method = LMM_ComBat,
 title,
 age_filter = 6,
 filter_coef = 0) {
 # Filter non-coniciding similar peptides
 peptide_corr <- suppressWarnings(
 log2.transform(Ig) %>%
 select(-matches("BUFFER|LAND|COMM")) %>%
 gather("peptide", "MFI", -c(1:5)) %>%
 mutate(
 pep_dupli = ifelse(str_detect(peptide, "_1|-1"), "p_1", "p_2"),
 peptide = str_replace(peptide, "_1|-1|_2|-2", "")
) %>%
 spread(pep_dupli, MFI) %>%
 filter(!is.na(sample_no), !is.na(p_1), !is.na(p_2)) %>%
 split(., .$peptide) %>%
 map(
 ~ cor.test(.$p_1, .$p_2, method = "spearman", na.action = "na.omit")
) %>%
 map_dfc(~ c(.$p.value, .$estimate)) %>% t() %>% as.data.frame() %>%
 rownames_to_column("peptide_id") %>%
 rename(p.value = V1, coef = V2) %>% filter(coef < abs(filter_coef))
)

 message(
 paste(
 "A List of peptides with a correlation less than absolute",
 abs(filter_coef),
 "for same target peptides",
 sep = " "
)
)
 print(peptide_corr$peptide_id)

 data_1 <- suppressWarnings(
 method(Ig) %>%
 gather("spot", "MFI", -c(1:5)) %>%
 filter(!str_detect(spot, "BUFFER|LAND|COMM")) %>%
 filter(sample_no %in% age_data$sample_no) %>%
 inner_join(., age_data, by = "sample_no") %>%
 mutate(peptide = str_replace(spot, "_1|-1|_2|-2", "")) %>%
 filter(age_m < 6, !peptide %in% peptide_corr$peptide_id) %>%
 split(., .$spot) %>%
 map(~ cor.test(.$age_m, .$MFI, method = "spearman")) %>%
 map_dfc(~ c(.$p.value, .$estimate)) %>%
 t() %>% as.data.frame() %>%

 61

 rownames_to_column("epitope") %>%
 rename(p.value = V1,
 coef = V2) %>%
 mutate(
 signif = ifelse(p.value < 0.05, 1, 0),
 signif = factor(signif, levels = c(0, 1)),
 x = seq_along(coef)
)
)

 data_1 %>%
 ggplot(aes(reorder(x, coef), coef)) +
 geom_text_repel(
 aes(
 x = reorder(x, coef),
 y = coef,
 label = epitope
),
 family = "sans",
 nudge_y = ifelse(data_1$coef < 0, -0.1, 0.1),
 size = 3,
 segment.alpha = 0.2,
 segment.size = 1,
 segment.color = "grey20",
 arrow = arrow(
 type = "open",
 ends = "first",
 length = unit(0.08, "in")
)
) +
 geom_point(
 aes(
 fill = p.value,
 col = signif,
 size = abs(coef)
),
 show.legend = F,
 alpha = 0.9
) +
 geom_linerange(
 aes(ymin = 0, ymax = coef),
 col = "snow1",
 show.legend = F,
 alpha = 0.2,
 size = 0.1
) +
 scale_color_manual(values = c("0" = "grey", "1" = "blue")) +
 scale_size_continuous(range = c(2, 6)) +
 scale_y_continuous(limits = c(min(data_1$coef) - 0.1, max(data_1$coef) + 0.1)) +
 labs(y = "Correlation Coefficient,
rho",
 x = "Peptides") +
 coord_flip() +
 labs(title = title) +
 theme_wsj(color = "brown2", title_family = "sans") +
 geom_hline(yintercept = 0,
 lty = "dotted",
 size = 0.1) +
 theme(
 axis.title.y = element_blank(),
 axis.text.y = element_blank(),
 panel.grid = element_blank(),
 axis.text.x = element_text(size = 22),
 title = element_text(size = 25),
 axis.title = element_text(size = 22, face = "bold"),
 plot.margin = unit(c(0.2, 0.2, 0.2, 0.2), "in")
)
}

Peptide boxplots compared with buffer
Spots_distribution_boxplots <-
 function(Ig, method) {
 method(Ig) %>%

 62

 select(-matches("LAND|COMM")) %>%
 gather("peptide", "MFI", -c(1:5)) %>%
 # mutate(pep_dupli = ifelse(str_detect(peptide, '_1|-1'),'p_1','p_2'),
 # peptide = str_replace(peptide,'_1|-1|_2|-2', '')) %>%
 ggplot(aes(reorder(peptide, MFI, median, na.rm = T), MFI)) +
 geom_boxplot(aes(fill = str_detect(peptide, "BUFFER"))) +
 labs(x = "spot", y = "Transformed MFI - Log2 Scale") +
 scale_y_continuous(trans = "log2") +
 theme_bw() +
 theme(
 plot.margin = unit(c(0.1, 0.1, 0.1, 0.1), "in"),
 panel.grid = element_blank(),
 axis.ticks = element_blank(),
 axis.text.x = element_text(angle = 90),
 legend.position = "none"
)
 }

fold_change_median_buffer <-
 function(Ig, method = log2.transform) {
 method(Ig) %>%
 select(-matches("LAND|COMM")) %>%
 gather("peptide", "MFI", -c(1:5)) %>%
 group_by(slide, miniarray) %>%
 mutate(fold_change = MFI - median(MFI[str_detect(peptide, "BUFFER")], na.rm =
T)) %>%
 filter(!str_detect(peptide, "BUFFER")) %>%
 ggplot(aes(
 reorder(peptide, fold_change, median, na.rm = T),
 fold_change
)) +
 geom_boxplot() +
 labs(x = "peptide", y = "fold change (ref - median BUFFER)") +
 geom_hline(yintercept = c(-2, 2), col = "red") +
 theme_bw() +
 theme(
 plot.margin = unit(c(0.1, 0.1, 0.1, 0.1), "in"),
 panel.grid = element_blank(),
 axis.ticks = element_blank(),
 axis.text.x = element_text(angle = 90),
 legend.position = "none"
)
 }

Forest plot - like correlation plot of age and antibody responses filtered based on fold difference
Compared with median of the Buffer spots

Corr_plot_FoldDiff_filtered <-

 function(Ig,
 method,
 fold_filter_method = log2.transform,
 FoldDiff = 2,
 age_filter = 6,
 ...) {
 ## Filter peptide with fold change above 2
 fold_filter_method(Ig) %>%
 select(-matches("LAND|COMM")) %>%
 gather("peptide", "MFI", -c(1:5)) %>%
 group_by(slide, miniarray) %>%
 mutate(fold_change = MFI - median(MFI[str_detect(peptide, "BUFFER")])) %>%
 ungroup() %>%
 filter(!str_detect(peptide, "BUFFER")) %>%
 group_by(peptide) %>%
 mutate(median_foldchange = median(fold_change)) %>%
 filter(median_foldchange >= FoldDiff) %>%
 distinct(peptide) -> filtered_peptides

 data_1 <- method(Ig, ...) %>%
 gather("spot", "MFI", -c(1:5)) %>%
 filter(!str_detect(spot, "BUFFER|LAND|COMM")) %>%
 filter(sample_no %in% age_data$sample_no) %>%
 inner_join(., age_data, by = "sample_no") %>%

 63

 mutate(peptide = str_replace(spot, "_1|-1|_2|-2", "")) %>%
 filter(age_m < age_filter, spot %in% filtered_peptides$peptide) %>%
 split(., .$spot) %>%
 map(~ cor.test(.$age_m, .$MFI, method = "spearman")) %>%
 map_dfc(~ c(.$p.value, .$estimate)) %>%
 t() %>%
 as.data.frame() %>%
 rownames_to_column("epitope") %>%
 rename(p.value = V1,
 coef = V2) %>%
 mutate(
 signif = ifelse(p.value < 0.05, 1, 0),
 signif = factor(signif, levels = c(0, 1)),
 x = seq_along(coef)
)

 data_1 %>%
 ggplot(aes(reorder(x, coef), coef)) +
 geom_text_repel(
 aes(
 x = reorder(x, coef),
 y = coef,
 label = epitope
),
 family = "sans",
 nudge_y = ifelse(data_1$coef < 0, -0.1, 0.1),
 size = 3,
 segment.alpha = 0.2,
 segment.size = 1,
 segment.color = "grey20",
 arrow = arrow(
 type = "open",
 ends = "first",
 length = unit(0.08, "in")
)
) +
 geom_point(
 aes(
 fill = p.value,
 col = signif,
 size = abs(coef)
),
 show.legend = F,
 alpha = 0.9
) +
 scale_color_manual(values = c("0" = "grey", "1" = "blue")) +
 scale_size_continuous(range = c(2, 6)) +
 scale_y_continuous(limits = c(min(data_1$coef) - 0.1, max(data_1$coef) + 0.1))
+
 labs(y = "Correlation Coefficient,
rho",
 x = "Peptides") +
 coord_flip() +
 theme_wsj(color = "brown2", title_family = "sans") +
 geom_hline(yintercept = 0,
 lty = "dotted",
 size = 0.1) +
 theme(
 axis.title.y = element_blank(),
 axis.text.y = element_blank(),
 panel.grid = element_blank(),
 axis.title = element_text(size = 14, face = "bold"),
 plot.margin = unit(c(0.2, 0.2, 0.2, 0.2), "in")
)
 }

<< Coeffients of Variations for the different Methods >> -----
Function to extract the CVs

coef_var_plot <- function(Ig) {
 CV.fun <- function(dataset) {
 dataset %>%
 select(-matches("BUFFER|LAND|COMM")) %>%

 64

 filter(miniarray %in% c(1)) %>%
 gather("spot", "MFI", -c(1:5)) %>%
 group_by(spot) %>%
 summarise(coef = (function(x) {
 (sd(x, na.rm = T) / mean(x, na.rm = T)) * 100
 })(MFI))
 }

 # List of the dataset
 data.list <- list(
 "Log2 transformation" = log2.transform(Ig),
 ComBat = ComBat.Peptide(Ig),
 DDHF = DDHF.peptide(Ig),
 "Moving-min BG subtraction" = moving_min_bg_subtract(Ig),
 "VSN-stratified (slide)" = VSN.transform(Ig, TRUE),
 "VSN single strata" = VSN.transform(Ig),
 LMM = LMM.transform(Ig),
 "LMM + ComBat" = LMM_ComBat(Ig),
 PAS_stabilisation = PAS_stabilisation(Ig)
)

 data.list1 <- map(data.list, CV.fun)

 Peptide.CVs <- data.list1[[1]]

 i <- 2
 while (i <= length(data.list1)) {
 Peptide.CVs <- Peptide.CVs %>%
 left_join(., data.list1[[i]], by = "spot")
 i <- i + 1
 }

 colnames(Peptide.CVs) <- c("spot", names(data.list))

 # CV distributions in all the methods applied
 # xlabels = c(seq(0,40,5), seq(40,200,60))
 # cv.trans = function(x){pmin(x,40) + 0.05*pmax(x-40,0)}

 CVs_Plot <-
 Peptide.CVs %>%
 gather("Method", "CV", -c(spot)) %>%
 filter(CV <= 20) %>%
 mutate(Method = factor(
 Method,
 labels = names(data.list),
 levels = names(data.list)
)) %>%
 ggplot(aes(reorder(Method, CV, median, na.rm = T), CV)) +
 geom_boxplot(alpha = 0, outlier.alpha = 0) +
 # geom_rect(aes(xmin = 0.3,xmax = 11.7, ymin = 40, ymax = 40.001), fill = 'grey')+
 # scale_y_continuous(limits = c(0,NA), breaks = cv.trans(xlabels), labels = xlabels)+
 geom_quasirandom(size = 0.4) +
 # scale_y_continuous(limits = c(0,100))+
 geom_hline(yintercept = 5,
 col = "red",
 size = 0.8) +
 labs(y = "Coefficient of Variation(%)",
 x = "Normalization method") +
 theme_bw() +
 theme(
 axis.text = element_text(face = "bold",
 size = 12),
 panel.grid.minor.x = element_blank(),
 panel.grid = element_line(color = "grey97"),
 axis.title = element_text(size = 16)
) +
 coord_flip()

 return(list(Peptide.CVs, CVs_Plot))
}

 65

Appendix 4: Research proposal KNH-UON ERC research ethics approval letter

 66

Appendix 5: Turnitin plagiarism report page

