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Abstract 

Study background 

Protein/peptide microarrays are high throughput (HT) methods with the potential of 

investigating tens to thousands of probes in a single experiment. However, technical variance 

creates an inevitable challenge for their application, hence the need for pre-processing 

strategies. Most methods of correcting to the technical variance have been developed based on 

DNA microarrays, from which this technology was adopted; however, key chip design 

differences limit their direct implementation. Microarray designs are flexible, which allows 

researchers to customise their targets and quality control strategies, hence, there is a need for 

design-specific pre-processing frameworks. The broad objective of this study was to evaluate 

sources of technical variation in peptide microarray data and compare performances of 

technical variance correction methods. 

Study design and site 

The study was a nested non-experimental study using peptide microarray data assayed for 

archived plasma samples, of children and infants admitted at Kilifi County Hospital (KCH) 

with suspected infections. The data was used in the development of the pre-processing 

framework in the R software environment.   

Materials and methods(s) 

A peptide microarray chip targeting 49 infectious diseases was used for the assay and GenePix 

array scanner used for the data extraction. The analysis framework will be developed using the 

R programming environment.  

Findings 

The standard methods; local background subtraction, log transformation, combating batch 

effects algorithm (ComBat), variance stabilising normalisation (VSN) and linear models, did 

not correct the technical variance significantly from the peptide microarray data. However, 
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background subtraction using locally smoothed background intensities, and data scaling based 

on scale parameters calculated from Pooled-Adult Sera (PAS) sample fluorescence intensities 

achieved maximum technical variance stabilisation.  

Conclusion and Recommendation 

Technical variance stabilisation in peptide/protein microarray data is achievable. 

Morphological spot identification should be considered while estimating local background 

intensities, or spatial smoothing of the estimated intensities to reduce the background intensity 

estimation bias.  
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CHAPTER 1: INTRODUCTION 

1.1 Background of the Study 

Protein/peptide microarrays are a high throughput technology that have gained prominence in 

the last few decades for their ability to investigate tens to thousands of protein or peptide probes 

on a single slide. The development of microarrays is based on a concept that as first initiated 

by Roger Ekins in 1989, and the idea aimed at developing an effective platform for protein 

functional analysis; which would then use immense biological knowledge attained in decades 

of genetics and molecular biology.  

Protein microarrays are grouped into; peptide microarrays, protein microarrays (purified 

protein or protein domains) and antibody microarrays (capture arrays) (Berrade, Garcia, & 

Camarero, 2011; Stoevesandt, Taussig, & He, 2009). Biochemical experiments such as protein-

protein binding and enzyme-substrate relationship, biochemical activities and immune 

responses are investigated using the functional protein microarrays (Sutandy, Qian, Chen, & 

Zhu, 2013).  

The ‘proteomics era’ has prompted the development of methodologies and technologies for 

quantification, identification, and characterisation of proteins functions involved in biological 

processes. Most of these technologies are high-throughput; therefore, extensive application of 

these methods in drug development and biomarker discovery research is on the rise. Protein 

microarrays are a great research potential for their capability to provide detailed analysis for 

the protein functions; which advances knowledge on chemical and biological state of cells. 

Further, the protein/peptide microarrays are also applied in the evaluation of quality, 

effectiveness and the safety of newly developed medical products, through detection of adverse 

events (Bertone & Snyder, 2005; Yu, Schneiderhan-Marra, & Joos, 2010).   
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Traditional detection methods of antibodies such as ELISA and ELISpot are limited to the 

analysis of single protein at an instance; however, proteomic analysis demand multiplexed 

technologies because of limited resources. Protein/peptide microarrays ease proteomic 

research because of their potential to include tens to thousands of protein/peptide probes, and 

process multiple study samples in a slide (Yu et al., 2010). The quality of data obtained from 

microarrays is controlled by control samples and probes (Gagnon-Bartsch & Speed, 2012; 

Kricka et al., 2009).  

Besides the benefits and the promising future of the protein/peptide microarrays, technical 

variation is a major drawback. As a result, a number of methods and approaches are 

recommended to correct the technical variation in the data. Mostly, these methods have been 

developed under DNA microarray platforms, hence, limited research focus on protein/peptide 

arrays regarding correction of the technical variance. Despite the similarities of DNA and 

protein/peptide microarrays, there are critical design-related differences that limit direct 

application of most of the recommended technical variance correction methods; such as 

variance stabilising normalisation (VSN), Combating Batch Effects (ComBat), linear and non-

linear models that have majorly been implemented in DNA microarrays. 

While implementing the technical variance correction methods in the data, the identified 

sources of the variation are used as covariates in the models to stabilise the introduced variance. 

In peptide microarrays, the key sources of technical variation include; experimental differences 

by time of sample hybridisation or data scanning; performing assay in different laboratories; 

different laboratory technicians conducting the assay or processing samples in different slides 

(Nahtman et al., 2007; Scherer, 2009; Watson et al., 2009). Furthermore, technical variation in 

microarrays can also be introduced during probe miniaturisation or due to sample 

contaminations.  As a result, technical variation in microarrays is quantified by variation 

observed in controls samples and control probes among arrays.   
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Control features in arrays such as spot replication, control probes and samples are used to 

evaluate effectiveness of technical variance stabilisation methods in microarrays (Lee, Kuo, 

Whitmore, & Sklar, 2000). Therefore, statistical techniques such as supervised clustering and 

kernel density plots are useful in comparing performance of different technical variance 

correction methods – based on their ability to maintain expected data distribution and structure 

between the negative and positive control samples (Gagnon-Bartsch & Speed, 2012). For 

example, negative and positive control samples are expected to cluster separately. Therefore 

this study evaluated the sources of technical variation in peptide microarray data and compared 

performances of technical variance correction methods.                                                                                            

1.2 Statement of the Problem 

Peptide microarray technology is a powerful high throughput tool with the potential of 

investigating broad humoral immunity based on serum samples or other biological fluids such 

as sputum. The technology is advantageous because it uses small amounts of samples needed 

and the design flexibility to target infections of interest; which are investigated using 

miniaturised peptides. The assay is based on immunofluorescence technology; whereby, 

signals are expected within peptide spots due to antigen-antibody biological reactions. 

However, signals are not always observed within the spots due to non-specific binding. The 

non-specific reactions might be due to sample contamination during or before the assay; 

quality-related issues with the miniaturisation process; or due to sample-specific factors. The 

non-specific binding might vary because of the discussed sources of technical variation in 

microarrays. Therefore, the observed foreground signal is due to the biological antigen-

antibody reactions with some influence of the non-specific binding with in the background 

signal. Among other quality control features, empty spots (miniaturised by buffer only) are 

included in the microarray chip design to infer the amount of non-specific binding experienced 

in a mini-array.  
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The non-specific binding, which is influenced by other sources of technical variation is a 

significant source of unwanted variation based on data obtained from microarray in previous 

studies. For instance, variation in experimental factors such as time and laboratory location, 

slides and laboratory technician, or data extraction machine may introduce systematic bias in 

the data. The systematic variances ought to be corrected before using the data to answer 

biological questions. Several methods of correcting systematic variation in microarray data are 

recommended; most of them are based on statistical approaches of analysis of variance. 

However, there is no consensus on the best method to adopt, based on its ability to remove the 

technical variation from microarray data, hence a significant drawback for the application of 

microarray technology.  

1.3 Justification of the study 

Microarray designs are flexible, which allow researchers to determine the targets (genes for 

DNA and antigens for the case of peptide/protein) and the control features to incorporate in the 

chip. For this reason, specific data pre-processing framework is needed for each microarray 

chip design developed for specific research work. This specific pre-processing framework 

allows effective use of the quality control features used in the design. Having a standard 

microarray data pre-processing framework is a challenge because of these design-related 

factors. Therefore, adopting existing pre-processing frameworks might not stabilise the 

technical variance as desired because of key differences in design. There are a number of 

methods shown to correct for technical variation, especially data from DNA microarrays (Chen 

et al., 2011; Motakis, Nason, Fryzlewicz, & Rutter, 2006; Sboner et al., 2009). However, their 

application to peptide/protein microarray data would require critical changes, to map the chip 

design features.  Ultimately, developing the peptide microarray data pre-processing framework 

that corrects for the technical variation will enhance reproducibility and application of the 

technology in research (Díez et al., 2012).  
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1.4 Study Questions 

i. What are the sources of the technical variation in the peptide microarray data?  

ii. Which method(s) effectively correct the technical variation in the peptide microarray 

data? 

1.5 Research Objective  

1.5.1 General Objective 

The main objective of this study was to evaluate sources of technical variation in peptide 

microarray data and compare performances of technical variance correction methods. 

Specific objectives  

i. To evaluate the sources of technical variation in the peptide microarray data. 

ii. To compare different methods of correcting the technical variation in the peptide 

microarray data. 

iii. To compare the normalized and non-normalized data based on the best method of 

correcting technical variation in the peptide microarray data.
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CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction 

In this chapter, systematic variance correction methods used in microarray data are reviewed. 

Although this study focuses on peptide microarray data, the methods are reviewed regardless 

of whether they have been applied to DNA or protein microarrays because the technologies are 

based on the immunofluorescence technique.  

2.2 Batching  

Batching is a major source of systematic variation in microarrays, and it has been reported that 

experimental factors such as time, location, personnel or chip might lead to significant 

differences in expression levels. Therefore, systematic variance correction strategies need to 

be applied before analysing the data. In a study done by Watson et al. (2009) on comparison 

of data normalisation methods used by the EADGENE network established that, based on 

positive control genes,  the distribution of the gene expression values had systematic variation 

across ten arrays. In their study, they simulated ten arrays by assuming homogeneity of 

variance across the arrays. In a similar study conducted by Lazar et al. (2013), they found 

significant differences in distributions of randomly selected expression data for the same gene 

in two lung cancer studies of the multiple microarray gene expression (MAGE) project. 

Kupfer et al. (2012) did a study which focused on evaluating the effect of removing batch 

effects from microarray data on gene expression differentiation, where the date of sample 

acquisition was regarded as a source of systematic variation. Using ComBat – an empirical 

Bayes algorithm implemented in R software, they were able to significantly reduce the effect 

of technical variation. Based on hierarchical clustering, they observed clusters of rheumatoid 

arthritis and osteoarthritis groups – confounded by the date of acquisition batching. Similarly, 

Chen et al. (2011) recommend batch-effect correction in microarray data. In their study, they 
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aimed at finding a batch adjustment method that would correct variation caused by batching 

either due to reagents, changes in technicians, scanner effects or environmental conditions and 

so forth. Among five evaluated methods of correcting for batching, ComBat method stabilised 

the variation significantly.   

2.3 Microarray Data Transformation and Normalisation Methods 

Several methods of correcting and stabilising variance in microarray data have been 

recommended from previous research, especially in gene expression studies. these methods 

vary from simple scaling such as log transformation methods for more sophisticated statistical 

methodologies such as mixed models.  

2.3.1 Log2 Transformation 

Log transformation is widely used, especially in biological studies, to reduce data variation and 

make data conform to a normal distribution. This method has also been applied in microarray 

data to reduce variation (Quackenbush, 2002). A small constant is added before applying log 

transformation to minimise missing values since negative values are observed, especially when 

local background correction is applied leading to zero or negative values for spots with same 

or higher values of the background (Feng et al., 2014).  

2.3.2 Quantile Normalisation 

Studies have reported that quantile normalisation works is effective in standardising variance 

and scaling data across arrays. Pan and Zhang (2018) did a study that focused on applying 

molecular signatures on several datasets. Since each dataset was obtained in different studies, 

the researchers aimed at removing the inter-study variation. They argued that sources of 

unwanted variation were unknown – limiting the application of linear models to determine the 

unknow variation. Therefore, quantile normalisation was used to remove the inter-slide 

variation, hence reducing classification errors based on the combined dataset.  
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Qiu et al. (2013) conducted a study to evaluate the impact of rank and quantile normalisation 

methods on testing power in gene differential analysis. They found that normalising gene 

expression data before analysis has potential influence on the findings. Comparing the non-

normalised data with rank and quantile normalised data, the number of observed true positives 

had higher standard errors compared with the normalised. 

Qiu et al. (2013) performed a study to evaluate the impact of quantile and rank normalisation 

methods on testing the power of gene differential analysis. Both rank and quantile 

normalisation improved the power of differential expression analysis. As the effect size 

increase, the testing power, for instance the number of observed true positive, converge to fixed 

numbers – which confirms theoretical understanding.  

2.3.3 Linear Models 

Espín-Pérez et al. (2018) did a comparison study for the performance of statistical methods in 

correcting batch effects in transcriptome data. They found that linear mixed models (LMM) 

and ComBat were not significantly different in stabilising the batching variance. However, 

ComBat had higher sensitivity and specificity than LMM. On the other hand, LMM identified 

stronger relationships between gene expression and big effect sizes.  

Reilly and Valentini (2009) proposed the application of either a linear model with and without 

interaction effect to correct for systematic variation in spots for both peptide and controls spots. 

Similarly, Sboner et al. (2009) applied a robust linear model with array, subarray and protein 

feature as the covariates to normalise the data. They used only the array and subarray effects 

as the sources of the unwanted variation during prediction, while keeping the variation between 

protein features. They control protein to estimate the inter- and intra-slide normalisation by 

comparing with different methods of technical variance correction. Robust linear model 

performed better in normalising the data compared with global and quantile normalisation 

methods. 
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2.3.4 Data-Driven Haar-Fisz Transformation for Microarrays 

Motakis et al. (2006) established that the DDHF method was able to stabilise variance and 

produce fluorescence intensities that assumes normal distribution better compared to other 

existing methods such as log, generalised log and spread-versus-level plot transformation. 

Further, they affirmed that the method has a wider range of applicability on the various 

distribution as much as they have an increasing mean-variance dependence.  This method can 

be applied to microarray data using the DDHFm R package.  In comparison with log, 

generalised log and spread-versus-level plot transformation method, DDHFm strengthens the 

replicate correlation more efficiently compared to the other methods. This decision is based on 

the assumptions that the correlation values between the replicates should there was consistency 

by spot replication.  

2.3.5 Variance Stabilizing Normalisation 

Variance stabilising normalisation is shown to reduce technical variance better than standard 

methods such as local background subtraction among other model based methods (Ritchie et 

al., 2007). In another paper, Thomassen et al. (2009) highlighted that application of standard 

method of correcting for systematic variance, VSN being among them, worsened signal-to-

noise ratio. However, this method has been used to stabilize variance in microarray data in later 

research (Kamuyu et al., 2018).  
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Table 1: Examples of studies working methods of correcting systematic variation in microarray data 

Author Type of 

microarray 

Sources of variation  Methods of systematic variance 

correction  

Applied methods 

(Espín-Pérez et 

al., 2018) 

DNA microarray Batching • Local background correction 

• Linear mixed models (LMM) 

• Linear models  

• ComBat 

There were small differences between 

the performance of LMMs and 

ComBat 

o ComBat identified more true and 

false positives.   

(Gagnon-Bartsch 

& Speed, 2012) 

DNA microarray Batching with 

unknown factors 

• Background correction 

• Quantile normalisation 

• Location and scale adjustment 

• Remove Unwanted Variation, 2-

step (RUV-2) was introduced and 

compared to the existing method 

• Combating Batch effects (ComBat) 

• Surrogate Variable Analysis (SVA).  

• The RUV-2 performs better than 

ComBat and ordinary least 

squares  

(Nahtman et al., 

2007) 

Peptide 

microarray 

Batching  

Unspecific binding 

• Linear mixed models (LMM) 

• Log-ratio (base 2) between 

foreground and background 

The LMM allows estimation of the 

various sources of variability in the 

peptide microarray data 
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Author Type of 

microarray 

Sources of variation  Methods of systematic variance 

correction  

Applied methods 

(Pan & Zhang, 

2018) 

DNA microarray Batching  • Quantile normalisation 

• Remove unwanted variation 

model  

Quantile normalisation performed 

better by correcting of inter-dataset 

variation. 

(Sill, Schröder, 

Hoheisel, 

Benner, & 

Zucknick, 2010) 

Antibody 

microarray 

Within-array variation • Modified rank-invariant 

selection algorithm (In-vMod) 

• Global loess normalisation 

• Variance stabilising 

normalisation (VSN) 

• Rank-invariant selection 

algorithm (InvTseng)  

• Rank difference weighted 

global loess (RDWGL) 

• The Generalized Procrustes 

Analysis (GPA) - a least-

squares method. 

• Modified rank-invariant 

selection algorithm (In-

vMod) outperforms the other 

normalisation methods 

o Selecting non-differentially 

expressed genes were 

house-keeping genes are 

not available 

o Use linear instead of local 

regression to reduce the 

effect of extreme values 
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CHAPTER 3: RESEARCH METHODOLOGY 

3.1 Study Type and Design  

This study is a nested non-experimental study which aims at comparing and assessing methods 

of removing technical variability in data obtained from a microarray chip. The study is nested 

in the ‘Identification of molecular signatures of serious acute infections in children’ study.  

3.2 Study Site 

The serum samples used were extracted from blood samples of infants and children who were 

presented at Kilifi county hospital (KCH). Kilifi county is located in the northern coastal region 

of Kenya.  

3.3 Study Population 

The samples used in this study were from infants and children aged 25 days to 18 months who 

were presented at KCH with symptoms of suspected infections.     

3.4 Study Samples 

Archived plasma samples for infants and children who were admitted at the paediatric ward of 

Kilifi County Hospital (KCH) with community-onset of suspected infections were used in the 

peptide microarray assay.  

3.5 Design of the Microarray Chip 

The microarray chip has 24 mini arrays and 240 (20 rows by 12 columns) spots per mini array. 

In the mini array, 98 distinct peptides are investigating antigen-antibody interactions of 49 

infectious diseases which are printed in duplicates. Further, IgG commercial control peptide 

and landmark control peptides for the IgG, IgA, and IgM have also been printed in duplicates. 

Also, 36 spots within the microarray were left blank to provide fluorescence information on 

background fluorescence.  
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Figure 1: A graphic depicting the overall study design; showing the peptide microarray chip 

design, the lab assay flow diagram and the data analysis flow diagram 

3.6 The Microarray Immunoassay Design 

In each mini-array, either serum, positive or negative samples were incubated. All the eight 

mini arrays in the first column of the microarray chip were dedicated to the PAS; which was 

the positive reference sample. A decreasing 10-fold concentration level approach was used for 

the PAS samples, which were incubated from the first to the last mini arrays within the first 

column.  Also, a mini array was set for the buffer (the negative reference sample) in each slide. 

Eleven slides were assayed by incubating the 161 serum samples to investigate IgG and IgA 

classes of antibodies. Further, additional eleven slides were assayed to for the IgM antibodies. 

3.7 Data Extraction 

GenePix 4300 microarray scanner with a GenePix Pro software version 7.3.0.0 was used to 

extract data from the incubated, dried and electronically saved slides. Different scanning power 

and wavelengths were used to extract spot fluorescence levels for the IgG, IgA, and IgM. For 

the reactivity of IgG antibodies, 40% scanning power and the data extracted from the red 
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channel (635nm). Data on the reactivity of IgA antibodies were scanned using 100% scanning 

power, and data was extracted from the green channel (532nm) from the same slides. For the 

IgM antibodies, different slides were used and were scanned using 40% scanning power and 

data extracted from the red channel (635nm). The GenePix scanner produced GenePix Array 

Lists (.gal file extension), which were converted into text files with a .txt (TEXT format) file 

extension. 

3.8 Data Management 

Data was imported into the R programming environment, it was cleaned and managed, 

transformed and analysed. Sample identifiers were created from the microarray chip design; 

hence no participants’ personal information was used. 

3.9 Applied Data Transformation and Normalisation Methods 

The technical variance corrections methods that were evaluated on the peptide microarray data 

are described in this section. In these methods, the spot median fluorescence intensity (MFI) is 

the dependent variables and the potential sources of technical variation are used as the 

covariates. The methods include; log2 transformation, local background subtraction, 

Combating Batch Effects algorithm (ComBat), Variance Stabilising Normalisation (VSN), 

quantile normalisation, Data-Driven Haar-Fisz transformation (DDHF), and linear models. 

More than one method can be combined to achieve the required technical variation 

stabilisation.  

3.9.1 Log transformation 

Log transformation reduces skewness in data and the transformed data conforms to normality. 

Also, it is a simple scaling normalisation method that reduces the data variation. However, log 

transformation is only limited to non-zero positive values, where log transformation of zero 

and negative value leading to infinite numbers and non-numbers respectively. A small constant 
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is added to all the values before log transformation to reduce the number of missing values 

resulting due zeros and non-positive numbers. 

3.9.2 Local background subtraction 

Local background subtraction is a standard method of correcting non-specific binding in 

immunofluorescence assays. The observed fluorescence intensity in a spot is additively 

influenced by the background intensity as shown below.  

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑠𝑝𝑜𝑡 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 = 𝑡𝑟𝑢𝑒 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 + 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 

Therefore, an increase in the background intensity, the observed fluorescence intensity in a 

spot increase at the same rate. As a result, subtracting the observed background intensities from 

the spots intensities is assumed to result to less biased values that are closer to the true 

intensities. Therefore, the corrected intensities are then log transformed to reduce the variation 

and bring the data distribution closer to normality.  

3.9.3 Combating Batch Effects (ComBat) Algorithm 

The ComBat-based normalisation method assumes a Location and Scale (L/S) adjustment 

model, described by Johnson et al. (2007). This batch correction algorithm is implemented in 

R via the sva package through the ComBat function. It adjusts data for known batching factors, 

using either parametric or non-parametric empirical Bayes frameworks. Therefore, it estimates 

the prior batch probabilities from the observed fluorescence data. The ComBat algorithm is 

developed based on the following model. 

𝑌𝑖𝑗𝑘 = 𝛼𝑘 + 𝑋𝛽𝑘 + 𝛾𝑖𝑗 + 𝛿𝑖𝑗𝜀𝑖𝑗𝑘 

Where: 

𝑖 ~ 1,2,3, … , 240 spots 

𝑗 ~ 1,2,3, … , 12 arrays 

𝑘 ~ 1,2,3, … , 24 mini-arrays 
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𝑌𝑖𝑗𝑘 ~ log2 transformed MFI intensity 

𝛼𝑖 ~ the overall MFI intensity.  

𝑋 ~ design matrix for slide-level (array-level) batching 

𝛽𝑗 ~ Regression coefficients corresponding to X 

𝛾𝑖𝑗 𝑎𝑛𝑑 𝛿𝑖𝑗  ~ Represent additive and multiplicative batch effects of 𝑗𝑡ℎ batch for 𝑖𝑡ℎ spot.  

The errors 𝜀𝑖𝑗𝑘, assume normal distribution and a constant variance 

3.9.4 Quantile normalisation 

Quantile normalisation is a method used to standardise distribution of data from two or more 

distributions. This method assumes that data obtained from each processed sample follow 

similar distributions. Therefore, by applying the quantile normalisation, distributions of the 

observed data in all samples are coerced to an average distribution (Hicks & Irizarry, 2014). 

Below are steps followed in implementing the quantile normalisation in peptide microarray 

data. 

- Spot fluorescence intensities are sorted either ascending or descending in each of 

the samples (each mini-array). 

- Average values are calculated for each rank 

- The spot fluorescence intensities are replaced with the average values in each rank 

- The resulting data is returned to its original format, hence, quantile normalised.  

 

3.9.5 Variance Stabilising Normalisation (VSN) 

VSN assumes a measurement model that has both multiplicative and additive error terms 

shown below.  

𝑌 = ∝ +𝜇𝑒𝑛 + 𝜀 

Where;  
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𝑌 ~ The observed intensity  

∝ ~ Intensity offset 

𝜇  ~ an intensity without error in arbitrary values 

𝑛 ~ multiplicative error term 

𝜀 ~ additive error term 

VSN is a combination of two components: (i) affine transformation which calibrates the 

systematic factors, and (ii) generalized log (equivalent to log2 for large intensities) to stabilise 

the variance (Huber, 2004). 

The affine transformation is as shown below: 

𝑥∗ =
𝑥 − 𝑎

𝑠
 

𝑥∗ – transformed MFI intensity 

𝑥 – raw MFI intensity 

𝑎 – shifting factor 

𝑠 – scaling factor 

Different scaling and shitting factors used for each column, but the same for all rows within a 

column. For stratified VSN normalisation, different scaling and shifting factors are used for 

different groups of rows according to the defined categorical variables. In R, VSN is 

implemented in the VSN and limma (linear models for microarrays) R packages. 

3.9.6 Data-Driven Haar-Fisz Transformation (DDHF) 

Data-Driven Haar-Fisz Transformation (DDHF) is a data transformation method that is part of 

Haar-Fisz variance stabilisation methods introduced by Fryzlewicz and Nason (2004). This 

method is applied on data with monotone increasing mean-variance dependence – a 

characteristic of microarray data. The DDHF method works effectively when the data is 

arranged according to mean sequence.  In practice, the fluorescence intensities need to be sorted 
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based on increasing replicate means; and it assumes that the observed mean of replicates define 

their true ordering. This method has been applied in R programming environment under the 

DDHFm package.  

3.9.7 Linear Models 

Technical variance in microarray data can also be corrected using linear models to predict spot 

intensities by using arrays, subarrays, replicates, control samples and blocks as either fixed 

effect or random effect variables. Reilly and Valentini (2009) recommended application of 

linear models, with and without interactions, with array, mini-array and blocks as covariates in 

removing technical variation.  

𝑌𝑖𝑗𝑘 =  𝑖 + 
𝑗

+ 
𝑘

+ 𝑖𝑗𝑘      

𝑌𝑖𝑗𝑘 ~ observed spot intensity at the slide 𝑖, mini-array 𝑗 and block 𝑘. 

𝑖 ~ the slide (array) effect 


𝑗
 ~ the mini-array effect 

𝜀𝑖𝑗𝑘 ~ the residual signal, with assumed normal distribution, a mean of zero and constant 

variance. 

Linear mixed effects models can also be applied to correct the technical variance. According 

to Espín-Pérez et al. (2018), arrays and mini-arrays among other assay design related factors 

can be used as covariates in a mixed model aimed at correcting the observed technical variance. 

The technical model is modelled as shown in the equation below.  

𝑌 = 𝑋𝑏 + 𝑍𝑢 + 𝜀 

 

𝑌 ~ log2 transformed MFI intensities 

𝑋 ~ Design matrix of the fixed variables 
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𝑏 ~ Fixed effects 

𝑍 ~ Design matrix of the random variables 

𝑢 ~ Random effects 

𝜀 ~ Residual 

3.10 Microarray Data Quality Check 

3.10.1 Principal Components Analysis (PCA)  

The Principal Components Analysis (PCA) was used to evaluate data quality based on the 

control reference samples and spots. For instance, there were 36 buffer spots in each mini-array 

aimed at estimating non-specific binding, hence, estimating the background fluorescence. 

Since the data had multiple variables that were measure on the same scale, that are assumed to 

produce similar fluorescence intensities, PCA was used to check quality of the buffer spots 

based on clustering visualised using first and second principal components.  

A PCA analysis was performed for each transformation method applied, based on the peptide 

fluorescence intensities data. the first and second components of the PCA analysis were plotted 

using scatter plots to identify data clustering based on the sample type. A distinct clustering 

was expected between data for the negative and positive reference samples.  

3.10.2 Wilcoxon Sign Rank Sum Test 

The PAS sample in mini-array 1 (PAS sample with the lowest dilution) was used to compare 

technical variance stabilisation across slides. Wilcoxon Sign Rank Sum non-parametric method 

was used to test the similarity of fluorescence intensities distributions among slides at 5% level 

of significance.  
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CHAPTER 4: RESULTS 

4.1 Sources of Variation  

Local background subtraction and log transformation are the standard methods used in 

microarray data for normalisation and stabilisation of technical variance. First, the data were 

transformed using a log to base 2; then, the transformed data used to investigate sources of 

technical variation.  Performances of the microarray chip were assessed by first checking the 

correlation of the duplicates; then the consistency of the reference samples (PAS and buffer) 

across slides.  

 

Figure 2: A scatter plot for fluorescence intensities of peptide duplicates (the axis is in log2 

scale) 

A strong correlation (𝜌 = 0.95;  𝑝𝑣𝑎𝑙𝑢𝑒 < 0.001) for the fluorescence intensities was found 

between the duplicate peptides (figure 2). Therefore, data from the duplicates were combined 

by taking their arithmetic mean.  
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Figure 3: A PCA variable plot for fluorescence intensities of buffer spots 

Quality of the buffer spots was evaluated by performing a PCA analysis on a matrix for 

foreground fluorescence intensities observed in the buffer spots. As shown in figure 3, some 

of the buffer spots clustered significantly differently; and they were found to have higher 

fluorescence intensities compared to the other buffer spots. Surprisingly, these buffer spots that 

clustered differently compared with the other buffer spots were adjacent to either commercial 

epitope or landmark epitope. Therefore, all the buffer spots that neighbourhood commercial 

epitopes or landmark epitopes were removed from the dataset.  
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Figure 4: Effect of PAS dilution on the distribution of buffer spots fluorescence intensities  

Further analysis was performed to investigate the stability of buffer spots to determine whether 

they are optimum in explaining non-specific binding. A comparability plot shows that the 

distribution of buffer spots fluorescence intensities reduce as the dilution of the PAS increases 

(figure 4).  



  23 

 

Figure 5: Boxplots comparing distributions of peptide and buffer spots fluorescence intensities 

across slides for the PAS sample in mini-array 1 (Wilcoxon Sign Rank test p-values included) 

The distributions of fluorescence intensities of peptide spots were compared with those of 

buffer spots across slides for both PAS and buffer samples. In a number of the slides, the 

distributions of the peptide spots fluorescence intensities were not statistically different with 

the distribution of the fluorescence intensities of buffer spots in the PAS (mini-array 1; see 

figure 1) sample; however, the median statistics of the peptide spots were consistently higher 

(figure 5).  

In the buffer sample, the distribution of fluorescence intensities for peptide spots was 

significantly different from the distribution of the buffer spots at 5% level of significance. 
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Figure 6: Boxplots comparing distributions of peptide and buffer spots fluorescence intensities 

across slides for the buffer sample (Wilcoxon Sign Rank test p-values included) 

However, the distribution of fluorescence intensities for the peptide spots was not consistently 

higher across slides (figure 6). A PCA analysis was conducted to determine whether sample 

type influenced the fluorescence intensities of the buffer spots. As shown in figure 7, the 

fluorescence intensities of the buffer spots clustered by sample type; PAS (mini-array 1) 

sample, buffer sample and the study samples.  

4.2 Background Intensity Correction Methods 

The local background intensities, estimated by the GenePix microarray scanner, were 

subtracted from the foreground intensities to correct for non-specific binding. The background 

intensity estimation method assumed by the spots were of fixed sizes, and they were circular. 

Therefore, median fluorescence intensity was estimated as the local background intensity for 

the areas surrounding the assumed circular spot. By subtracting the local background intensities 

from the foreground intensities, some spots ended up with negative intensities.  While 
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transforming the background-subtracted data using log transformation, values less than one 

were fixed at a value of one, to avoid infinite numbers, non-numbers and negative values in 

the log-transformed dataset.  

 

Figure 7: PCA individuals scatter plot for buffer spots fluorescence intensities; clustering by 

sample type (PAS in mini-array 1, buffer and study samples)  

 

Figure 8: Individual PCA plots of log2 transformation of raw values; local background 

subtraction and log2 transformation; and background subtraction using local background 

minimum smoothing and log2 transformation
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Table 2: ANOVA table for model significance test comparing with model 0. The table show model selection criteria for the linear mixed-effects 

method that was compared with other technical variance correction methods discussed in the methodology section.  

 Fixed 
Variables 

Random 
Variables Weighted DF AIC BIC Log 

Likelihood deviance 
Chi-
square 
statistic 

Chi-
Square – 
DF 

P-value 

Model 0 Background 
intensity Sample No 4 156411 156446 -78201 156403    

Model 1 Background 
intensity Sample, Spot No 5 124665 124708 -62327 124655 31748.10 1 < 0.001 

Model 2 
Background 
intensity, 
Sample type 

Slide, Miniarray, 
Spot No 8 124593 124662 -62288 124577 10347.03 1 < 0.001 

Model 3 
Background 
intensity, 
Sample type,  

Slide, Miniarray, 
Spot 

Yes (mini-
array buffer 
median) 

8 122888 122957 -61436 122872 1704.89 0 < 0.001 

Model 4 Background 
intensity Sample, Spot 

Yes (mini-
array buffer 
median) 

5 122952 122995 -61471 122942 1712.92 0 < 0.001 

Model 5 
Background 
intensity, slide 
scanning time 

Sample, Spot 
Yes (mini-
array buffer 
median) 

7 122942 123002 -61464 122928 14.63 2 0.00067 

Model 6 Background 
intensity 

Slide, Sample 
type, Miniarray, 
Spot 

No 8 124620 124689 -62302 124604 0 0 1 

Model 7 Background 
intensity 

Slide, Sample 
type 

Yes 
(scanning 
time) 

8 127184 127253 -63584 127168 0 0 1 

Model 8 Sample type, Slide, Miniarray, 
Spot No 7 134938 134998 -67462 134924 0 0 1 
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Local background subtraction was found to be ineffective in removing unwanted variation in 

the data. According to the PCA unsupervised clustering analysis for the sample types, local 

background subtraction removes significant biological differences from the data (figure 8). 

Since local background subtraction performed poorly, other methods of background intensity 

estimation were sought. Buffer spots were not an option because they were found to be 

unreliable due to their instability by dilution and sample types. Therefore, model-based 

methods and spatial methods were assessed. Based on the methods’ capability to retain 

biological differences by showing distinct clustering of the PAS and buffer samples, local 

background minimum smoothing provided the more reliable results (figure 8).  

4.3 Normalisation Methods 

Several data normalisation and technical variance stabilisation methods were evaluated. 

Among the methods of variance stabilisation and data normalisation evaluated include; log to 

base 2 transformation and ComBat algorithm for correcting batch effects, variance stabilising 

normalisation (VSN) and quantile normalisation, Data-driven Haar-Fisz transformation and 

linear mixed-effects model (LMM) (assessed LMM models shown in table 2) and a custom 

variance stabilisation method that uses PAS (mini-array 1; see figure 1) reference sample 

fluorescence intensities to calculate stabilisation factors as shown in equation (8). Across all 

the methods, the data was scaled in a log to base 2. Some of the methods were combined to 

improve their performance, while others were applied individually.  

𝑆𝐹𝑖𝑗 =
𝑆𝑖𝑗(𝑃𝐴𝑆1)

𝑀𝑆𝑖(𝑃𝐴𝑆1)
                             (8) 

𝑆𝐹𝑖𝑗 → Stabilisation factor for the 𝑖𝑡ℎ spot in 𝑗𝑡ℎ slide 

𝑆𝑖𝑗(𝑃𝐴𝑆1) → Background uncorrected fluorescence intensity for 𝑖𝑡ℎ spot in 𝑗𝑡ℎ slide in PAS 

sample in mini-array 1 
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𝑀𝑆𝑖(𝑃𝐴𝑆1)  → Background uncorrected fluorescence intensity for 𝑖𝑡ℎ spot across slides in 

PAS sample in mini-array 1 

The variance stabilisation factor was calculated based on the observed raw spot intensities. The 

calculation of the factor assumed that the variation observed in the PAS sample in mini-array 

1 is an overall claim of the data shift from the actual spot intensity. Therefore, the raw 

intensities are used to calculate the stabilisation factor because they explain maximum variance 

experienced.   

 

Figure 9: Distribution density plot across normalisation methods; coloured by the sample 

group 

The distributions of the fluorescence intensities by the sample group were compared among 

the applied methods of technical variance stabilisation (figure 9). The distributions of 
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fluorescence intensities observed that the buffer sample was expected to have a significantly 

lower median compared to the PAS sample. The distribution of the spot fluorescence intensities 

for the study sample should overlap the buffer sample distribution and the PAS sample 

distributions. Figure 9 shows that DDHF and quantile normalisation methods did not perform 

well in stabilising the technical variance; the quantile normalisation estimates a significantly 

higher median of the study sample fluorescence intensities compared to the PAS, which is 

unlikely possible. DDHF method does not stabilise the variable; the data shows multi-modal 

distributions.  

 

Figure 10: PCA individual scatter plots for the normalisation methods; ellipses show 

clustering by sample type 

Figure 10 shows that the data normalisation and variance stabilisation methods retained the 

expected biological differences. Some study samples cluster together with the buffer and PAS 

samples. The amount of variation explained by the first and second principal components vary 
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by method. Since the biological is retained based on the methods presented in figure 10, 

technical variance stabilisation is assessed based on the distributions of peptide fluorescence 

intensities in PAS sample in mini-array 1. These distributions are expected to be the same 

because it is the same sample run multiple times.  

 

Figure 11: Distributions of peptide spots fluorescence intensities of PAS in mini-array 1; 

compared across normalisation and technical variance stabilisation methods 

Pairwise Wilcoxon Sign Rank Sum tests, corrected for multiple testing using Bonferroni 

method were performed to identify slides whose peptide spots fluorescence intensities in PAS 

mini-array 1 are significantly different.  
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Figure 12: Pairwise comparison of peptide spots fluorescence intensities distributions in PAS 

in mini-array 1, using Wilcoxon Sign Rank Sum test; each box represents a Bonferroni adjusted 

Wilcoxon Sign Rank Test p-value; red colour shows p-values less than 0.05, and the red colour 

fades towards green as the p-value increases. 

Figure 12 shows the pairwise comparison of distributions of peptide spots fluorescence 

intensities in PAS in mini-array 1; the comparison tests were done using Bonferroni corrected 

Wilcoxon Sign Rank Sum test for all the pairs of slides. The six methods of normalisation and 

technical variance correction were compared, and the PAS stabilisation method, which 

corrected background intensity using local background minimum smoothed fluorescence 

intensities and applied the stabilisation factor produced most desirable results.  

4.4 Comparison between normalised and non-normalised data 

Log2 transformed raw fluorescence intensities were compared with background-corrected 

fluorescence intensities using local background minimum smoothed, and variance stabilisation 

using factors calculated as shown in equation 8. As shown in figure 10, the biological variance 

is retained, and the variance is stabilised, as shown in figure 11 and 12. Therefore, the non-

normalised data is compared with normalised data based on the effect of PAS dilution on the 
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distribution of peptide spots fluorescence intensities. Also, the decay of maternal antibodies, 

IgG, is used to compare before and after normalised.  

 

Figure 13:Distribution plots for peptide spots fluorescence intensities by dilution of PAS 

sample; compared before (log2 transformation) and after (local background correction using 

minimum smoothed background fluorescence intensities and PAS stabilisation) normalisation 

Figure 13 shows that the effect of the 10-fold PAS dilution on the distribution of peptide spots 

fluorescence intensities is retained after the variance stabilisation.  
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Figure 14: A plot of Spearman correlation between fluorescence intensities for IgG and the 

first six months of life, comparing before and after normalisation; blue colour shows that the 

correlation is statistically significant with 95% confidence level.  
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Before technical variance stabilisation and data normalisation, few peptides were observed to 

decay in the first six months of life.  After technical variance stabilisation and data 

normalisation, the number of peptides indicating that maternal antibodies decayed increased 

significantly (figure 14).  
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CHAPTER 5: DISCUSSION  

5.1 Discussion 

The objective of this study was to apply technical variance correction methods to peptide 

microarray; correct the technical variance and normalise the data while retaining the biological 

differences. Difference approaches and methods were applied, seeking a stabilisation method 

that does not affect the credibility of the dataset. Further, the study was to develop a pre-

processing framework that applies the suggested method, to be used on pre-processing of data 

obtained from the chip.  

Several standard methods used in stabilising technical variance on biological data, especially 

DNA microarray data, were assessed. Amongst the assessed method is log transformation, 

background correction, linear models and batch effects correction algorithms among others. 

The analysis found that the technical variance influenced the dataset by mini-array and slide.  

Local background correction is an effective method of reducing technical variance in 

microarrays while stabilising the technical variance. Therefore, local background subtraction 

was the first method to apply, aiming at stabilising the variance.  

The local background subtraction method removed meaningful biological differences. 

Although it is assumed that subtracting local background corrects for the technical variation, 

local background estimation bias could have been introduced by the scanning machine because 

of the spot properties; size and shape which influences the definition of the background area 

(Fardin et al., 2007; Lourido et al., 2014; Yang, Buckley, Dudoit, & Speed, 2002).  

Since the local background subtraction methods did not yield desirable results, other methods 

of background estimation were sought because it was evident that non-specific binding was a 

significant source of unwanted variation. Local minimum background smoothing estimated 

less biased background intensities compared with buffer spots estimates and NormExp 
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modelled background intensities (Schützenmeister & Piepho, 2010; Silver, Ritchie, & Smyth, 

2009).  

The standard method of correcting for technical variance in microarrays did not achieve 

desirable technical variance stabilisation. These methods include ComBat, log2 

transformation, VSN and linear mixed model (Nahtman et al., 2007; Sill et al., 2010). The 

linear model stabilised the variance better compared with the other methods; however, antibody 

decay could not be established; hence the data was not quality.  

Finally, a more data-driven approach was applied by calculating a stabilisation factor for each 

peptide based on the PAS sample in mini-array 1. This approach assumed that the spots 

immunogenicity varied by peptide, hence spot specific stabilisation factored could produce 

optimal results. Secondly, the method assumed that fluorescence intensities within a slide were 

all influenced by non-specific binding at the same level. Maximum variance stabilisation was 

achieved by applying the stabilisation factor on the background-corrected intensities.   

5.2 Conclusion 

In conclusion, the standard techniques used to stabilise technical variance in microarray did 

not achieve variance stabilisation. Local background smoothing performs better in correcting 

the effect of non-specific binding than subtracting the raw estimated local background 

intensities. A combination of the background correcting using smoothed intensities and the 

stabilisation factor calculated based on the PAS, the positive reference sample, achieved 

maximum variance stabilisation compared with existing methods.   

5.3 Recommendations 

Based on the findings of this study, identifying sources of technical variation and effectively 

correcting for their effect is essential before the analysis of peptide/protein microarray data. I 

recommend the use of local background smoothing or morphological spot detection while 

estimating the background fluorescence intensity. These rigorous methods of background 
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intensity estimation reduce the bias introduced by the assumption of constant size and 

circularity (or any other distinct structure) of the spot. 

5.4 Study Limitations and Future Research 

The peptide microarray data used in this study was processed by one laboratory technician in 

the same lab and in the same day. As a result, it was difficult to quantified the observed 

technical variation, although it was observed that the data varied by slide. Therefore, more 

research should be done on background correction methods for peptide microarrays to provide 

evidence in this area of research.  
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Appendices 

Appendix 1: Mini-array layout, 20 rows by 12 columns; the last subscript indicate the 

replicate number. 
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Appendix 2: Description of the peptides 

 

Peptide ID Organism Peptide ID Organism 

ADV2_1 Human adenovirus 2 MEAV_2 Measles virus strain Edmonston 

ADV2_2 Human adenovirus 2 MENB_1 Neisseria meningitidis serogroup B  H44/76 

BORP_1 Bordetella pertussis MENB_2 Neisseria meningitidis serogroup B  H44/76 

BORP_2 Bordetella pertussis MRSA_1 Staphylococcus aureus subsp. aureus MRSA252 

BRUM_1 Brugia malayi MUMP_1 Mumps virus 

BRUM_2 Brugia malayi MYBB_1 Mycobacterium bovis BCG 

CMVI_1 Human herpesvirus 5 MYBB_2 Mycobacterium bovis BCG str. Pasteur 1173P2 

CMVI_2 Human herpesvirus 5 MYBT_1 Mycobacterium tuberculosis 

COB3_1 Coxsackievirus B3 MYBT_2 Mycobacterium tuberculosis 

CTET_1 Clostridium tetani ONCV_1 Onchocerca volvulus 

CTET_2 Clostridium tetani ONCV_2 Onchocerca volvulus 

DEN2_1 Dengue virus 2 PSAR_1 Pseudomonas aeruginosa 

DEN2_2 Dengue virus 2 Jamaica/1409/1983 PSAR_2 Pseudomonas aeruginosa 

DEN3_1 Dengue virus 3 PARV_1 Human parvovirus B19 

DEN4_1 Dengue virus 4 PFAL_1 Plasmodium falciparum 3D7 

EBVI_1 Human herpesvirus 4 PFAL_2 Plasmodium falciparum 3D7 

EBVI_2 Human herpesvirus 4 PIV2_1 Human parainfluenza virus 2 

ECHG_1 Echinococcus granulosus PIV3_1 Human parainfluenza virus 3 

ECHG_2 Echinococcus granulosus POLV_1 Human poliovirus 3 strain Sabin 

ENTH_1 Entamoeba histolytica POLV_2 Human poliovirus 3 strain Sabin 

ENTH_2 Entamoeba histolytica RABV_1 Rabies virus 

ESCO_1 Escherichia coli RABV_2 Rabies virus HEP-FLURY 

ESCO_2 Escherichia coli ROTV_1 Human rotavirus A 

ETVA_1 Enterovirus A71 ROTV_2 Human rotavirus MP409 

ETVC_1 Enterovirus C RSVA_1 Human respiratory syncytial virus 

FLUA_1 Influenza A virus (A/California/04/2009(H1N1)) RSVB_1 Human respiratory syncytial virus 

FLUA_2 Influenza A virus (A/California/04/2009(H1N1)) RSVF_1 Human respiratory syncytial virus 

HEPA_1 Human hepatitis A virus Hu/Australia/HM175/1976 RUBV_1 Rubella virus strain Therien 

HEPA_2 Human hepatitis A virus Hu/Australia/HM175/1976 RUBV_2 Rubella virus strain Therien 

HEPB_1 Hepatitis B virus SARS_1 SARS coronavirus 

HEPB_2 Hepatitis B virus subtype adw2 SARS_2 SARS coronavirus Tor2 

HEPC_1 Hepatitis C virus SFLX_1 Shigella flexneri 

HEPC_2 Hepatitis C virus (isolate BK) SFLX_2 Shigella flexneri 3a 

HINF_1 Haemophilus influenzae NTHi 1479 SMAN_1 Schistosoma mansoni 

HINF_2 Haemophilus influenzae Serotype B SMAN_2 Schistosoma mansoni Puerto Rico 

HPVI_1 Human papillomavirus SPNE_1 Streptococcus pneumoniae 

HPVI_2 Human papillomavirus type 16 SPNE_2 Streptococcus pneumoniae 

HPYL_1 Helicobacter pylori SPYO_1 Streptococcus pyogenes serotype M5 

HPYL_2 Helicobacter pylori SPYO_2 Streptococcus pyogenes serotype M5 

HRVA_1 Human rhinovirus A2 STAU_1 Staphylococcus aureus subsp. aureus COL 

HRVA_2 Human rhinovirus A89 STAU_2 Staphylococcus aureus subsp. aureus COL 

HRVB_1 Human rhinovirus B14 STYP_1 Salmonella enterica subsp. enterica serovar Typhi 

HRVB_2 Human rhinovirus B14 STYP_2 Salmonella enterica subsp. enterica serovar Typhi 

HSV1_1 Herpes simplex virus (type 1 / strain 17) TRBG_1 Trypanosoma brucei gambiense 

HSV1_2 Herpes simplex virus (type 1 / strain 17) TRBG_2 Trypanosoma brucei gambiense 

HV12_1 Human herpesvirus 2 or 1 TRCR_1 Trypanosoma cruzi 

HV12_2 Human herpesvirus 2 or 1 TRCR_2 Trypanosoma cruzi 

HV6B_1 Human herpesvirus 6B TSOL_1 Taenia solium 

HV6B_2 Human herpesvirus 6B TSOL_2 Taenia solium 

KPNE_1 Klebsiella pneumoniae VZOS_1 Human herpesvirus 3 H-551 

KPNE_2 Klebsiella pneumoniae VZOS_2 Human herpesvirus 3 H-551 

LDON_1 Leishmania donovani WUCB_1 Wuchereria bancrofti 

LDON_2 Leishmania donovani WUCB_2 Wuchereria bancrofti 

MEAV_1 Measles virus strain Edmonston   
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Appendix 3: Project R code – the analysis framework 

library(tidyverse) 
library(gtools) 
library(ggpubr) 
library(limma) 
library(sva) 
library(ggbeeswarm) 
library(data.table) 
library(lme4) 
library(splines) 
library(ggthemes) 
library(ggrepel) 
library(plotly) 
library(pheatmap) 
library(gplots) 
library(ggplotify) 
 
# + slide and miniarray layout directory + ---- 
slide_layout_dir <- ("DATA/Slide_Layout/") 
 
peptide_layout <- 
        read.csv(paste0(slide_layout_dir, "miniarray_layout - rep.csv")) 
 
# Raw data directory 
Raw_data_dir <- "DATA/Raw_Data/" 
 
# Age data # Sample no and Age in months 
 
age_data <- 
        read.csv("DATA/sample.list.age.csv") %>% 
        rename(sample_no = serial) %>% 
        mutate(sample_no = as.character(sample_no)) 
 
# buffer spots to filter 
bad.buffer.spots <- ("_3$|_13$|_23$|_24$|_27$|_30$|_31$|_34$") 
 
# A sample peptides to visualize dilution 
serial.dilution.spots <- c("POLV_1", "SPYO_2", "RSVA_1", "HV12-2") 
 
 
# Custom function to read Raw data files and convert to wide dataset (samples by spots) ---- 
 
Read_Array_Data <- 
        function(Ig = "IgG", data_type = "Foreground") { 
                reader <- function(filename) { 
                        df <- fread(filename, skip = "Flags") 
                        df$slide <- gsub( 
                                pattern = paste0(Raw_data_dir, "|Pmt.*", sep = ""), 
                                replacement = "", 
                                perl = T, 
                                x = filename 
                        ) 
                        df 
                } 
                 
                channel <- ifelse(Ig == "IgA", "532", "635") 
                datatype <- 
                        if (data_type == "Foreground") { 
                                "F" 
                        } else if (data_type == "Background") { 
                                "B" 
                        } 
                var_column <- 
                        paste(paste0(datatype, channel), "Median", sep = " ") 
                 
                # Raw data file names 
                filenames <- 
                        list.files( 
                                Raw_data_dir, 
                                pattern = paste(Ig, ".txt$", sep = ""), 
                                full.names = T 
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                        ) 
                 
                # Combine the array datasets 
                full_data <- 
                        lapply(filenames, reader) %>% 
                        bind_rows(.) %>% 
                        dplyr::rename(miniarray = "Block") 
                 
                sample_ids <- 
                        read.csv(paste0(slide_layout_dir, "sample.ids.", Ig, ".csv"), 
                                 stringsAsFactors = T) 
                 
                layout <- 
                        suppressWarnings(sample_ids %>% gather("slide", "sample_id", -c(miniarray))) 
                 
                names(layout) <- 
                        c("miniarray", "slide", "sample_id") 
                 
                # wide dataset 
                mydata <- 
                        suppressMessages( 
                                layout %>% 
                                        mutate( 
                                                slide = str_replace(slide, "s", repl = "S"), 
                                                slide = str_replace(slide, "\.", repl = "_") 
                                        ) %>% 
                                        left_join(full_data, .) %>% select(slide, miniarray, 
sample_id, Name, var_column) %>% 
                                        group_by(slide, miniarray, Name, sample_id) %>% 
                                        mutate(Name_id_replicate = paste0(Name, "_", row_number())) 
%>% ungroup() %>% 
                                        arrange(slide, miniarray, Name_id_replicate) %>% 
                                        group_by(slide, sample_id, Name_id_replicate) %>% 
                                        mutate( 
                                                sample_ID = paste0( 
                                                        slide, 
                                                        "_", 
                                                        sample_id, 
                                                        "_", 
                                                        row_number(), 
                                                        "_", 
                                                        "miniarray", 
                                                        "_", 
                                                        miniarray 
                                                ) 
                                        ) %>% 
                                        arrange(Name_id_replicate, sample_ID) %>% 
                                        ungroup() %>% 
                                        select(Name_id_replicate, sample_ID, var_column) %>% 
                                        spread(Name_id_replicate, var_column) 
                        ) 
        } 
 
# A function to tidy and extract various forms of the peptide dataset ---- 
 
tidying <- 
        function(dataset = Read_Array_Data("IgG", "Foreground"), 
                 return.data = "wide") { 
                require(tidyverse, quiet = T) 
                library(gtools) 
                 
                tidy <- 
                        function(dataset) { 
                                dataset %>% 
                                        mutate( 
                                                sample_no = str_extract(sample_ID, "\\d{4,}"), 
                                                slide = str_extract(sample_ID, "Slide_\\d{1,2}"), 
                                                slide = str_replace(slide, "\w+_", repl = ""), 
                                                miniarray = str_extract(sample_ID, 
"miniarray_\\d{1,2}"), 
                                                miniarray = str_replace(miniarray, "\w+_", repl = ""), 
                                                sample_group = case_when( 
                                                        str_detect(sample_ID, "_NC_") ~ "Buffer", 
                                                        str_detect(sample_ID, "_PAS_") ~ "PAS", 
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                                                        str_detect( 
                                                                sample_ID, 
                                                                
"[:digit:]{1,9}_[:digit:]{1,9}_[:digit:]{1,9}" 
                                                        ) ~ "Sample", 
                                                        str_detect(sample_ID, "__") ~ "Blank" 
                                                ) 
                                        ) %>% 
                                        filter(!sample_group == "Blank") %>% 
                                        mutate( 
                                                sample_group = factor(sample_group, levels = 
unique(sample_group)), 
                                                slide = factor(slide, levels = mixedsort(unique( 
                                                        slide 
                                                ))), 
                                                miniarray = factor(miniarray, levels = 
mixedsort(unique( 
                                                        miniarray 
                                                ))) 
                                        ) %>% 
                                        select(sample_ID, 
                                               sample_no, 
                                               slide, 
                                               miniarray, 
                                               sample_group, 
                                               everything()) %>% 
                                        gather("spot", "MFI", -c(1:5)) %>% 
                                        # filter(!str_detect(spot, bad.buffer.spots)) %>% 
                                        spread("spot", "MFI") 
                        } 
                 
                wide <- tidy(dataset) 
                 
                buffer <- 
                        wide %>% 
                        gather("spot", "MFI", -c(1:5)) %>% 
                        filter(str_detect(spot, "BUFFER")) 
                 
                full.long <- 
                        wide %>% 
                        gather("spot", "MFI", -c(1:5)) %>% 
                        filter(!str_detect(spot, "BUFFER")) %>% 
                        mutate( 
                                replicate = case_when(str_detect(spot, "_1$") ~ 1, 
                                                      str_detect(spot, "_2$") ~ 2), 
                                spot = str_replace(spot, "_1$|_2$", "") 
                        ) %>% 
                        select(1:6, 8, 7) %>% 
                        bind_rows(., buffer) 
                 
                # Creating a dataframe for the first replicates 
                replicate_1 <- 
                        wide %>% 
                        select(1:5, ends_with("_1"), -matches("BUFFER")) %>% 
                        gather( 
                                "spot", 
                                "replicate.1", 
                                -c(sample_ID, sample_no, slide, miniarray, sample_group) 
                        ) %>% 
                        mutate(spot = str_replace(spot, "_1$", "")) 
                 
                # Creating a dataframe for the second replicates 
                replicate_2 <- 
                        wide %>% 
                        select(1:5, ends_with("_2"), -matches("BUFFER")) %>% 
                        gather( 
                                "spot", 
                                "replicate.2", 
                                -c(sample_ID, sample_no, slide, miniarray, sample_group) 
                        ) %>% 
                        mutate(spot = str_replace(spot, "_2$", "")) 
                 
                # Creating a dataframe for buffer spots 
                buffer_spots <- 
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                        wide %>% select(1:5, matches("BUFFER")) 
                 
                buffer.spots.long <- wide %>% 
                        select(1:5, matches("BUFFER")) %>% 
                        gather("spot", 
                               "MFI", 
                               -c(sample_ID, sample_no, slide, miniarray, sample_group)) 
                 
                # Joining into on dataframe & Flagging spots whose replicates have a difference of 
more than 20% 
                long.data.replicates <- 
                        suppressMessages(full_join(replicate_1, replicate_2)) %>% 
                        mutate( 
                                MFI = (replicate.1 + replicate.2) / 2, 
                                replicate.flag = factor( 
                                        ifelse((abs( 
                                                replicate.1 - replicate.2 
                                        )) / MFI < 0.3, 1, 0), 
                                        levels = c(0, 1), 
                                        labels = c("bad", "good") 
                                ) 
                        ) %>% 
                        select(1:6, replicate.flag, everything()) 
                 
                # Long data without the replicates and flag variables 
                antigen.spots.long <- 
                        long.data.replicates %>% select(1:6, 
                                                        everything(), 
                                                        -replicate.flag, 
                                                        -replicate.1, 
                                                        -replicate.2) 
                 
                full.long.data <- 
                        bind_rows(antigen.spots.long, buffer.spots.long) 
                 
                # Antigen spots including landmark/commercial and the treatment groups 
                antigen.spots <- 
                        antigen.spots.long %>% 
                        group_by(slide, miniarray) %>% 
                        spread("spot", "MFI") %>% 
                        ungroup() 
                 
                # wide format dataset with averaged replicates for both peptides and buffer spots 
                wide.summarized <- 
                        suppressMessages(full_join(antigen.spots, buffer_spots)) 
                 
                # Buffer subtracted dataset 
                buffer.subtracted.long <- 
                        wide %>% 
                        gather("spot", 
                               "MFI", 
                               -c(sample_ID, sample_no, slide, miniarray, sample_group)) %>% 
                        group_by(slide, miniarray) %>% 
                        mutate(MFI = MFI - MFI[str_detect(spot, "BUFFER_22")]) %>% 
                        ungroup() 
                 
                # Buffer subtracted (using median buffer) wide dataset 
                buffer.subtracted <- 
                        buffer.subtracted.long %>% spread("spot", "MFI") 
                 
                 
                mget(return.data, ifnotfound = paste0(("THIS DATASET IS NOT FOUND!!!")))[[1]] 
        } 
 
## ++ End of tidying function ++ ##---- 
 
## Neighbourhood background estimation function ---- 
 
# A function to estimate backgound intensity as the median locally estimated background using 
neighboured spots for the peptide design 
 
neighbor_bg_smoothing <- 
        function(Ig, 
                 peptide_layout = paste(slide_layout_dir, "miniarray_layout - rep.csv", 
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                                        sep = "/"), 
                 number_cols = 12, 
                 number_rows = 20) { 
                require(tidyverse, quietly = T) 
                 
                peptide_neigbor <- 
                        function(peptide_layout, 
                                 number_cols, 
                                 number_rows) { 
                                # neigbourhood data 
                                mydata <- data.frame( 
                                        x = integer(), 
                                        n1 = integer(), 
                                        n2 = integer(), 
                                        n3 = integer(), 
                                        n4 = integer(), 
                                        n5 = integer(), 
                                        n6 = integer(), 
                                        n7 = integer(), 
                                        n8 = integer() 
                                ) 
                                x <- 1 
                                while (x <= number_rows * number_cols) { 
                                        mydata[x, ] <- c( 
                                                x, 
                                                x - 1, 
                                                x + 1, 
                                                x - number_cols, 
                                                x + number_cols, 
                                                x - number_cols - 1, 
                                                x - number_cols + 1, 
                                                x + number_cols - 1, 
                                                x + number_cols + 1 
                                        ) 
                                        x <- x + 1 
                                } 
                                 
                                mydata <- mydata %>% 
                                        mutate_all( 
                                                .funs = function(x) { 
                                                        ifelse(x <= 0 | x > number_rows * number_cols, 
                                                               NA, 
                                                               x) 
                                                } 
                                        ) %>% 
                                        gather("neigbour", "value", -c(1)) %>% 
                                        select(-2) %>% 
                                        arrange(x) %>% 
                                        filter(!is.na(value)) 
                                 
                                peptide_layout <- peptide_layout %>% 
                                        gather("column", "spot", -c(1)) %>% 
                                        arrange(miniarray.layout) %>% 
                                        rownames_to_column("x") %>% 
                                        select(-c(2:3)) %>% 
                                        mutate(x = as.numeric(x)) 
                                 
                                left_join(mydata, peptide_layout, by = "x") %>% 
                                        rename(id = x, x = value) %>% 
                                        left_join(., peptide_layout, by = "x") %>% 
                                        select(-c(1:2)) %>% 
                                        rename(spot = spot.x, neighbor = spot.y) 
                        } 
                 
                suppressWarnings( 
                        Read_Array_Data(Ig, "Background") %>% 
                                gather("spot_x", "MFI", -c(1)) %>% 
                                group_by(sample_ID) %>% 
                                right_join( 
                                        ., 
                                        peptide_neigbor(peptide_layout, number_cols, number_rows), 
                                        by = c("spot_x" = "neighbor") 
                                ) %>% 
                                group_by(sample_ID, spot) %>% 
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                                mutate(min_bg = min(MFI)) %>% 
                                ungroup() %>% 
                                arrange(sample_ID) %>% 
                                select(sample_ID, spot, min_bg) %>% 
                                group_by(sample_ID, spot) %>% 
                                summarise(min_bg = min(min_bg)) %>% 
                                ungroup() %>% spread(spot, min_bg) 
                ) 
        } 
 
# << DATA TRANSFORMATION METHODS >> ---- 
# + Log2 transformation + ---- 
 
log2.transform <- function(Ig) { 
        Read_Array_Data(Ig) %>% 
                tidying(., "full.long.data") %>% 
                mutate(MFI = log2(MFI + 1)) %>% 
                spread("spot", "MFI") 
} 
 
# + Log2 & ComBat + ---- 
 
ComBat.Peptide <- function(Ig, ref.batch = NULL) { 
        x <- Read_Array_Data(Ig) %>% 
                tidying(., "wide") 
         
        x.vars <- x[, c(1:5)] 
         
        x.matrix <- x[, -c(1:5)] %>% 
                as.matrix() 
         
        attr(x.matrix, "dimnames") <- 
                list(x$sample_ID, colnames(x.matrix)) 
         
        mydata <- x.matrix %>% (function(x) { 
                log2(x + 2) 
        }) 
        mydata <- 
                suppressMessages(ComBat( 
                        t(mydata), 
                        x$slide, 
                        ref.batch = ref.batch, 
                        par.prior = F 
                )) %>% 
                t() %>% 
                cbind(x[, c(2:5)], .) %>% 
                rownames_to_column("sample_ID") %>% 
                as_tibble() %>% 
                tidying("wide.summarized") 
} 
 
# +Variance Stabilizing Normalisation (VSN)+ ---- 
 
VSN.transform <- 
        function(Ig, 
                 stratified = FALSE) { 
                require(tidyverse) 
                require(VSN) 
                require(limma) 
                 
                x <- Read_Array_Data(Ig) %>% 
                        tidying(., "wide.summarized") 
                 
                x.matrix <- x[, -c(1:5)] %>% 
                        as.matrix() 
                x.matrix[is.nan(x.matrix)] <- NA 
                attr(x.matrix, "dimnames") <- 
                        list(x$sample_ID, colnames(x.matrix)) 
                 
                # Stratified VSN 
                VSN_slide_stratified <- 
                        justVSN(x.matrix, 
                                strata = x$slide, 
                                minData = 20) %>% 
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                        cbind(x[, 2:5], .) %>% 
                        rownames_to_column("sample_ID") %>% 
                        as_tibble() 
                 
                # unstratified VSN 
                VSN.single_strata <- 
                        justVSN(x.matrix) %>% 
                        cbind(x[, 2:5], .) %>% 
                        rownames_to_column("sample_ID") %>% 
                        as_tibble() 
                 
                mydata <- ifelse(isTRUE(stratified), 
                                 return(VSN_slide_stratified), 
                                 return(VSN.single_strata)) 
        } 
 
# + Quantile normalisation +---- 
 
quantile_normalize <- 
        function(Ig, 
                 buffer.subtracted = FALSE) { 
                dataset <- Read_Array_Data(Ig) 
                dataset <- 
                        suppressMessages(tidying( 
                                dataset, 
                                ifelse( 
                                        isTRUE(buffer.subtracted), 
                                        "buffer.subtracted.long", 
                                        "full.long.data" 
                                ) 
                        )) 
                 
                quantile.normalized <- list() 
                 
                data <- split(dataset, dataset$sample_group) 
                 
                for (i in 1:length(data)) { 
                        quantile.normalized[[i]] <- data[[i]] %>% 
                                # filter(sample_group == sample_group[[i]]) %>% 
                                group_by(slide, miniarray) %>% # grouping by the slide and sample 
                                arrange(MFI, .by_group = TRUE) %>% # Sorting the data ascending 
                                mutate(rank = row_number()) %>% # Recoding a new variable to denote 
the rank 
                                group_by(rank) %>% # grouping by the rank value 
                                mutate(MFI = log2(mean(MFI))) %>% # calculating the new normalised 
signal intensity 
                                ungroup() %>% # ungrouping to restore the original data format 
                                select(-c(rank)) %>% # removing the rank variable from the dataset 
                                as.data.frame() %>% 
                                spread("spot", "MFI") 
                } 
                bind_rows(quantile.normalized) %>% as_tibble() 
        } 
 
# + Data-Driven Haar-Fisz transformation + ---- 
DDHF.peptide <- function(Ig) { 
        new.data.list <- list() 
        id.vars <- list() 
        dataset <- Read_Array_Data(Ig) 
        data.list <- 
                tidying(dataset, "long.data.replicates") %>% 
                select(1, 6, 8, 9) %>% 
                split(., .$sample_ID) 
         
        for (i in 1:length(data.list)) { 
                id.vars[[i]] <- data.list[[i]][, 1:2] 
                 
                new.data.list[[i]] <- 
                        data.list[[i]] %>% 
                        select(-c(1, 2)) %>% 
                        remove_rownames() %>% 
                        as.matrix() %>% 
                        DDHFm::DDHFm() %>% 
                        (function(x) 
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                                ifelse(x < 1 | 
                                               is.na(x) | 
                                               is.nan(x), 1, x)) %>% 
                        cbind(id.vars[[i]], .) 
                 
                colnames(new.data.list[[i]]) <- 
                        c("sample_ID", "spot", "rep_1", "rep_2") 
                 
                new.data.list[[i]] <- 
                        new.data.list[[i]] %>% 
                        mutate(MFI = (rep_1 + rep_2) / 2, 
                               MFI = ifelse(MFI < 1, 1, log2(MFI))) %>% 
                        select(-c(3, 4)) 
        } 
         
        bind_rows(new.data.list) %>% 
                spread("spot", "MFI") %>% 
                left_join(tidying(return.da = "wide.summarized")[, c(1:5)], ., 
                          by = "sample_ID") 
} 
 
# + Linear Mixed Model (LMM) + ---- 
 
LMM.transform <- function(Ig = "IgG") { 
        require(lme4) 
        require(tidyverse, quiet = T) 
        mydata <- 
                inner_join( 
                        x = tidying(dataset = Read_Array_Data(Ig, "Foreground"), "full.long"), 
                        y = tidying(dataset = Read_Array_Data(Ig, "Background"), "full.long"), 
                        by = c( 
                                "sample_ID", 
                                "sample_no", 
                                "slide", 
                                "miniarray", 
                                "sample_group", 
                                "spot", 
                                "replicate" 
                        ), 
                        copy = T 
                ) %>% 
                filter(!str_detect(spot, "3|13|23|24|27|30|31|34")) %>% 
                rename(bg_MFI = MFI.y, spot_MFI = MFI.x) %>% 
                group_by(slide, miniarray) %>% 
                mutate( 
                        med.buffer = median(spot_MFI[str_detect(spot, "BUFFER")]), 
                        med.buffer.corrected = spot_MFI - median(spot_MFI) 
                ) %>% 
                ungroup() 
         
        # Model subset data excluding PAS with smaller concentrations 
        model.data <- mydata %>% 
                filter(!miniarray %in% c(4, 7, 10, 13, 16, 19, 22)) 
         
        my.model <- 
                lmer( 
                        log2(spot_MFI + 2) ~ log2(bg_MFI + 2) + sample_group + (1 | 
                                                                                        slide / 
miniarray) + (1 | 
                                                                                                                      
spot), 
                        data = model.data, 
                        REML = FALSE, 
                        control = lmerControl(optimizer = "bobyqa"), 
                        weights = log2(med.buffer + 2) 
                ) 
         
        mydata$spot_MFI <- 
                predict(my.model, 
                        newdata = mydata, 
                        allow.new.levels = T) 
         
        buffer <- mydata %>% 
                select(1:6, 8) %>% 
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                filter(str_detect(spot, "BUFFER")) %>% 
                remove_rownames() 
         
        mydata %>% 
                filter(!str_detect(spot, "BUFFER")) %>% 
                select(1:8) %>% 
                spread("replicate", "spot_MFI") %>% 
                rename(rep_1 = "1", rep_2 = "2") %>% 
                mutate(spot_MFI = (rep_1 + rep_2) / 2) %>% 
                select(-c(rep_1, rep_2)) %>% 
                bind_rows(., buffer) %>% 
                remove_rownames() %>% 
                spread("spot", "spot_MFI") 
} 
 
# + LMM + ComBat + ---- 
 
LMM_ComBat <- function(Ig, ref.batch = NULL) { 
        require(sva, quiet = T) 
        require(tidyverse, quiet = T) 
         
        mydata <- LMM.transform(Ig) 
         
        mydata_ComBat <- 
                suppressMessages(ComBat(t(mydata[, -c(1:5)]), 
                                        mydata$slide, 
                                        ref.batch = ref.batch)) %>% 
                t() %>% 
                cbind(mydata[, c(1:5)], .) %>% 
                as_tibble() 
} 
 
### Variance Stabilisation using the PAS (PAS) with highest concentration ----- 
# stabilisation factor = MFI pep_i/mean(pep_i accross slides) within the PAS 
 
PAS_stabilisation <- function(Ig, PAS.Miniarray = 1) { 
        require(tidyverse) 
         
        data_1 <- 
                inner_join( 
                        x = tidying(dataset = Read_Array_Data(Ig, "Foreground"), "full.long"), 
                        y = tidying(dataset = neighbor_bg_smoothing(Ig, peptide_layout), "full.long"), 
                        by = c( 
                                "sample_ID", 
                                "sample_no", 
                                "slide", 
                                "miniarray", 
                                "sample_group", 
                                "spot", 
                                "replicate" 
                        ), 
                        copy = T 
                ) %>% 
                filter(!str_detect(spot, bad.buffer.spots)) %>% 
                rename(bg_MFI = MFI.y, spot_MFI = MFI.x) %>% 
                group_by(slide, miniarray) %>% 
                mutate( 
                        med.buffer = median(spot_MFI[str_detect(spot, "BUFFER")]), 
                        med.buffer.corrected = spot_MFI - median(spot_MFI), 
                        bg_subtracted = spot_MFI - bg_MFI 
                ) %>% 
                ungroup() 
         
        # Calculating the stabilisation factor ==> MFI(spot_i)/median(MFI(spot_i)) accross positive 
sample 
        stabilisation_factor <- 
                data_1 %>% 
                filter(miniarray == PAS.Miniarray) %>% 
                group_by(spot) %>% 
                mutate( 
                        median_spot_MFI = median(spot_MFI, na.rm = T), 
                        stabilisation_factor = ifelse(median_spot_MFI < 5, 1, spot_MFI / 
                                                              median_spot_MFI), 
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                        stabilisation_factor = ifelse(stabilisation_factor <= 0, 1, 
stabilisation_factor), 
                        bg_subtracted = bg_subtracted / stabilisation_factor 
                ) %>% 
                ungroup() %>% 
                mutate(spot = ifelse( 
                        str_detect(spot, "BUFFER"), 
                        spot, 
                        paste(spot, replicate, sep = "_") 
                )) %>% 
                select(slide, spot, stabilisation_factor) 
         
        # Combining the dataset 
        data_2 <- 
                data_1 %>% 
                mutate(spot = ifelse( 
                        str_detect(spot, "BUFFER"), 
                        spot, 
                        paste(spot, replicate, sep = "_") 
                )) %>% 
                left_join(., stabilisation_factor, by = c("slide", "spot")) 
         
         
        stabilised_data <- data_2 %>% 
                select(sample_ID, spot, bg_subtracted, stabilisation_factor) %>% 
                mutate( 
                        bg_subtracted = bg_subtracted / stabilisation_factor, 
                        bg_subtracted = ifelse(bg_subtracted <= 0, 1, bg_subtracted) 
                ) %>% 
                select(-stabilisation_factor) %>% 
                spread(spot, bg_subtracted) %>% 
                tidying("wide.summarized") %>% 
                mutate_if(.predicate = is.numeric, .funs = (function(x) { 
                        log2(x) 
                })) 
} 
 
# BACKGROUND CORRECTTION METHODS ---- 
# + Local background subtraction + ---- 
 
Local_bg_subtract <- function(Ig) { 
        inner_join( 
                x = tidying(dataset = Read_Array_Data(Ig, "Foreground"), "full.long"), 
                y = tidying(dataset = Read_Array_Data(Ig, "Background"), "full.long"), 
                by = c( 
                        "sample_ID", 
                        "sample_no", 
                        "slide", 
                        "miniarray", 
                        "sample_group", 
                        "spot", 
                        "replicate" 
                ), 
                copy = T 
        ) %>% 
                filter(!str_detect(spot, bad.buffer.spots)) %>% 
                rename(bg_MFI = MFI.y, spot_MFI = MFI.x) %>% 
                group_by(slide, miniarray) %>% 
                mutate(bg_subtracted = spot_MFI - bg_MFI) %>% 
                ungroup() %>% 
                mutate( 
                        spot = ifelse( 
                                str_detect(spot, "BUFFER"), 
                                spot, 
                                paste(spot, replicate, sep = "_") 
                        ), 
                        bg_subtracted = ifelse(bg_subtracted <= 0, 1, bg_subtracted) 
                ) %>% 
                select(sample_ID, spot, bg_subtracted) %>% 
                spread(spot, bg_subtracted) %>% 
                tidying("wide.summarized") %>% 
                mutate_if(.predicate = is.numeric, .funs = (function(x) { 
                        log2(x) 
                })) 
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} 
 
# + Neighbourhood background subtraction + ---- 
moving_min_bg_subtract <- function(Ig) { 
        inner_join( 
                x = tidying(dataset = Read_Array_Data(Ig, "Foreground"), "full.long"), 
                y = tidying(dataset = neighbor_bg_smoothing(Ig, peptide_layout), "full.long"), 
                by = c( 
                        "sample_ID", 
                        "sample_no", 
                        "slide", 
                        "miniarray", 
                        "sample_group", 
                        "spot", 
                        "replicate" 
                ), 
                copy = T 
        ) %>% 
                filter(!str_detect(spot, bad.buffer.spots)) %>% 
                rename(bg_MFI = MFI.y, spot_MFI = MFI.x) %>% 
                group_by(slide, miniarray) %>% 
                mutate( 
                        med.buffer = median(spot_MFI[str_detect(spot, "BUFFER")]), 
                        med.buffer.corrected = spot_MFI - median(spot_MFI), 
                        bg_subtracted = spot_MFI - bg_MFI 
                ) %>% 
                ungroup() %>% 
                mutate( 
                        spot = ifelse( 
                                str_detect(spot, "BUFFER"), 
                                spot, 
                                paste(spot, replicate, sep = "_") 
                        ), 
                        bg_subtracted = ifelse(bg_subtracted <= 0, 1, bg_subtracted) 
                ) %>% 
                select(sample_ID, spot, bg_subtracted) %>% 
                spread(spot, bg_subtracted) %>% 
                tidying("wide.summarized") %>% 
                mutate_if(.predicate = is.numeric, .funs = (function(x) { 
                        log2(x) 
                })) 
} 
 
# << VALIDATION PLOTS >> ---- 
# 
# + Peptide dilution plot + ---- 
 
serial.plot <- function(data, ...) { 
        data %>% 
                gather("spot", "MFI", -c(1:5)) %>% 
                mutate(miniarray = factor(miniarray, levels = mixedsort(unique(miniarray)))) %>% 
                filter(miniarray %in% c(1, 4, 7, 10, 13, 16, 19, 22), 
                       spot %in% serial.dilution.spots) %>% 
                ggplot(aes(miniarray, MFI, col = slide)) + 
                geom_smooth(aes(group = slide), se = F, span = 1) + 
                facet_wrap(~ spot, nrow = 1) + 
                scale_color_brewer(palette = "Paired") + 
                labs(x = "Serial Dilution", y = "MFI") + 
                # scale_x_discrete(labels = c("1:30", "1:300", "1:3k", "1:30k","1:300k", 
                #                             "1:3m", "1:30m", "1:300m"))+ 
                # scale_y_continuous(trans = "log2")+ 
                theme_bw() + 
                theme( 
                        panel.grid.major = element_blank(), 
                        axis.text.x = element_blank(), 
                        axis.title = element_text(size = 16), 
                        legend.text = element_text(size = 16), 
                        plot.margin = unit(c(0.2, 0.2, 0.2, 0.2), "in"), 
                        axis.ticks.x = element_blank(), 
                        ... 
                ) 
} 
 
# + Pairwise Comparison of Significant differences in PAS medians +---- 
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wilcoxon.pvalue.heatmap <- function(data, ...) { 
        require(pheatmap) 
        require(RColorBrewer) 
         
        miniarray.1 <- data %>% 
                gather("spot", "MFI", -c(1:5)) %>% 
                filter(miniarray == 1, 
                       !str_detect(spot, "BUFFER|LAND|COMM")) 
         
        diff.test <- 
                kruskal.test(miniarray.1$MFI ~ miniarray.1$slide) 
         
        pairwise.test <- 
                pairwise.wilcox.test(miniarray.1$MFI, miniarray.1$slide) # , p.adj = 'bonf' 
         
        p.values.df <- round(pairwise.test$p.value, 3) 
         
        p.values.df <- rbind(p.values.df, "1" = NA) 
        p.values.df <- cbind(p.values.df, "11" = NA) 
         
        p.values.df <- 
                p.values.df[mixedsort(row.names(p.values.df)), ] 
         
        diag(p.values.df) <- 1 
         
        col_names <- vector("numeric") 
        for (i in 1:(nrow(p.values.df))) { 
                col_names[i] <- paste("Slide", i, sep = " ") 
        } 
         
        row.names(p.values.df) <- col_names 
        colnames(p.values.df) <- col_names 
         
        pheatmap( 
                p.values.df, 
                cluster_rows = F, 
                cluster_cols = F, 
                color = colorpanel(9, low = "red", high = "green")[c(2, 5:9)], 
                breaks = c(0, 0.05, 0.1, 0.3, 0.7, 1), 
                legend_breaks = c(0, 0.05, 0.1, 0.3, 0.7, 1), 
                na_col = "snow1", 
                border_color = "snow1", 
                angle_col = 90, 
                display_numbers = T, 
                fontsize = 16, 
                fontsize_number = 10, 
                number_format = "%.3f", 
                number_color = "snow1", 
                fontsize_col = 12, 
                fontsize_row = 12, 
                y = unit(3, "npc"), 
                ... 
        ) 
} 
 
# + BOXPLOTS of peptides in PAS (highest concentration) accross slides + ---- 
 
PAS.Boxplots <- function(data, figure.title = "", ...) { 
        data %>% 
                gather("spot", "MFI", -c(1:5)) %>% 
                filter(miniarray == 1, 
                       MFI > 1, 
                       !str_detect(spot, "BUFFER|LAND|COMM")) %>% 
                ggplot(aes(slide, MFI)) + 
                geom_boxplot(alpha = 0, size = 0.6) + 
                geom_quasirandom( 
                        size = 0.7, 
                        fill = "snow1", 
                        col = "black", 
                        alpha = 0.7 
                ) + 
                scale_y_continuous(trans = "log2", ...) + 
                labs(title = figure.title, 
                     x = "Slide Number", 
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                     y = "Fluorescence intensities") + 
                theme_wsj(color = "snow2", 
                          title_family = "sans") + 
                theme( 
                        text = element_text(size = 16), 
                        title = element_text(size = 14), 
                        axis.line = element_line(size = 1), 
                        legend.text = element_text(size = 16), 
                        axis.title = element_text(size = 16), 
                        plot.margin = unit(c(0.2, 0.2, 0.2, 0.2), "in") 
                ) 
} 
 
 
# + Principal Components plot showing clusters of sample types (PAS, NC, the study Sample) + ---- 
 
PCA.plot <- function(data, figure.title, ...) { 
        require(factoextra) 
        require(FactoMineR) 
        require(plotly) 
         
        my.data <- data %>% 
                filter(!miniarray %in% c(4, 7, 10, 13, 16, 19, 22)) %>% 
                select(-matches("COMM|LAND|BUFFER")) %>% 
                as.data.frame() %>% 
                column_to_rownames("sample_ID") %>% 
                select(-1) 
         
        my.PCA <- PCA( 
                my.data, 
                quali.sup = 1:3, 
                scale.unit = T, 
                graph = F 
        ) 
         
        dims <- my.PCA$ind$contrib 
         
        plot_3d <- plot_ly( 
                x = dims[, 1], 
                y = dims[, 2], 
                z = dims[, 3], 
                type = "scatter3d", 
                mode = "markers", 
                color = factor(my.data$sample_group) 
        ) 
         
        print(plot_3d) 
         
        fviz_eig(my.PCA) %>% print() 
         
        fviz_pca_ind( 
                my.PCA, 
                geom.ind = "point", 
                addEllipses = T, 
                pointsize = 2, 
                alpha.ind = 0.6, 
                habillage = 3, 
                repel = T, 
                title = figure.title, 
                axes = c(1, 2) 
        ) + # , ellipse.type = 'confidence' 
                scale_color_brewer(palette = "Set1") + 
                theme_bw() + 
                theme( 
                        axis.text = element_text(size = 16), 
                        axis.title = element_text(size = 16), 
                        title = element_text(size = 16), 
                        legend.title = element_blank(), 
                        legend.key = element_blank(), 
                        panel.grid = element_blank(), 
                        legend.text = element_text(size = 18), 
                        rect = element_rect(fill = "snow1"), 
                        plot.margin = unit(c(0.2, 0.2, 0.2, 0.2), "in"), 
                        ... 
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                ) 
} 
 
# + Density plot grouped by sample groups (Filter for transformed MFI > 1 - in log2 scale) + ---- 
density.plot <- function(data, figure.title = "", ...) { 
        data %>% 
                # select(-c(cv_20[[1]])) %>% 
                gather("spot", "MFI", -c(1:5)) %>% 
                filter(MFI > 1) %>% 
                filter(!miniarray %in% c(4, 7, 10, 13, 16, 19, 22)) %>% 
                ggplot() + 
                geom_density(aes(MFI, fill = sample_group), 
                             alpha = 0.6, 
                             position = "identity", 
                             ...) + 
                scale_x_continuous(trans = "log2") + 
                scale_fill_brewer(palette = "Set1") + 
                labs(y = "Density", 
                     x = "Fluorescence intensity", 
                     title = figure.title) + 
                theme_wsj(color = "snow1", 
                          title_family = "sans") + 
                theme( 
                        title = element_text(size = 14), 
                        legend.title = element_blank(), 
                        axis.line = element_line(size = 1), 
                        legend.text = element_text(size = 14), 
                        axis.title = element_text(size = 14), 
                        axis.text = element_text(size = 14), 
                        strip.text.x = element_text(face = "bold"), 
                        strip.background = element_rect(colour = "grey95", fill = "grey95"), 
                        panel.border = element_rect(colour = "grey95"), 
                        plot.margin = unit(c(0.2, 0.2, 0.2, 0.2), "in"), 
                        ... 
                ) 
} 
 
# + PAS dilution + ---- 
PAS_Dilution <- function(Ig, method, fig.title, ...) { 
        PAS.labels <- c( 
                "1" = "1:30", 
                "4" = "1:300", 
                "7" = "1:3,000", 
                "10" = "1:30,000", 
                "13" = "1:300,000", 
                "16" = "1:3,000,000", 
                "19" = "1:30,000,000", 
                "22" = "1:300,000,000" 
        ) 
         
        method(Ig) %>% 
                filter(sample_group %in% c("PAS")) %>% 
                gather("spot", "MFI", -c(1:5)) %>% 
                filter(MFI > 1, 
                       !str_detect(spot, "BUFFER|COMM|LAND")) %>% 
                ggplot(aes(1, MFI)) + 
                geom_jitter(size = 0.8, ...) + 
                scale_y_continuous(trans = "log2", ...) + 
                labs(x = "Dilution", 
                     y = "Fluorescence intensities", 
                     title = fig.title) + 
                facet_grid( 
                        ~ miniarray, 
                        labeller = labeller(miniarray = as_labeller(PAS.labels)), 
                        switch = "x" 
                ) + 
                stat_summary( 
                        fun.y = median, 
                        col = "red", 
                        geom = "crossbar", 
                        size = 0.6, 
                        ymin = 0, 
                        ymax = 0 
                ) + 
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                theme_bw() + 
                theme( 
                        axis.text.x = element_blank(), 
                        axis.title = element_text(size = 18), 
                        axis.text.y = element_text(size = 18), 
                        title = element_text(size = 18), 
                        axis.ticks.x = element_blank(), 
                        axis.line.x = element_blank(), 
                        strip.placement = "inside", 
                        panel.grid = element_blank(), 
                        panel.background = element_rect(fill = "snow2"), 
                        panel.border = element_blank(), 
                        strip.text.x = element_text( 
                                angle = 90, 
                                face = "bold", 
                                size = 14, 
                                # family = 'serif', 
                                vjust = 0.5, 
                                hjust = 1 
                        ), 
                        strip.switch.pad.grid = unit(0, "in") 
                ) 
} 
 
 
# + Correlation between age (in months) and antibody responses (antibody decay) [Forest plot like 
plot]+ ---- ## For all the peptides 
Corr_plot <- function(Ig, 
                      method = LMM_ComBat, 
                      title, 
                      age_filter = 6, 
                      filter_coef = 0) { 
        # Filter non-coniciding similar peptides 
        peptide_corr <- suppressWarnings( 
                log2.transform(Ig) %>% 
                        select(-matches("BUFFER|LAND|COMM")) %>% 
                        gather("peptide", "MFI", -c(1:5)) %>% 
                        mutate( 
                                pep_dupli = ifelse(str_detect(peptide, "_1|-1"), "p_1", "p_2"), 
                                peptide = str_replace(peptide, "_1|-1|_2|-2", "") 
                        ) %>% 
                        spread(pep_dupli, MFI) %>% 
                        filter(!is.na(sample_no), !is.na(p_1), !is.na(p_2)) %>% 
                        split(., .$peptide) %>% 
                        map( 
                                ~ cor.test(.$p_1, .$p_2, method = "spearman", na.action = "na.omit") 
                        ) %>% 
                        map_dfc(~ c(.$p.value, .$estimate)) %>% t() %>% as.data.frame() %>% 
                        rownames_to_column("peptide_id") %>% 
                        rename(p.value = V1, coef = V2) %>% filter(coef < abs(filter_coef)) 
        ) 
         
        message( 
                paste( 
                        "A List of peptides with a correlation less than absolute", 
                        abs(filter_coef), 
                        "for same target peptides", 
                        sep = " " 
                ) 
        ) 
        print(peptide_corr$peptide_id) 
         
        data_1 <- suppressWarnings( 
                method(Ig) %>% 
                        gather("spot", "MFI", -c(1:5)) %>% 
                        filter(!str_detect(spot, "BUFFER|LAND|COMM")) %>% 
                        filter(sample_no %in% age_data$sample_no) %>% 
                        inner_join(., age_data, by = "sample_no") %>% 
                        mutate(peptide = str_replace(spot, "_1|-1|_2|-2", "")) %>% 
                        filter(age_m < 6, !peptide %in% peptide_corr$peptide_id) %>% 
                        split(., .$spot) %>% 
                        map(~ cor.test(.$age_m, .$MFI, method = "spearman")) %>% 
                        map_dfc(~ c(.$p.value, .$estimate)) %>% 
                        t() %>% as.data.frame() %>% 
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                        rownames_to_column("epitope") %>% 
                        rename(p.value = V1, 
                               coef = V2) %>% 
                        mutate( 
                                signif = ifelse(p.value < 0.05, 1, 0), 
                                signif = factor(signif, levels = c(0, 1)), 
                                x = seq_along(coef) 
                        ) 
        ) 
         
        data_1 %>% 
                ggplot(aes(reorder(x, coef), coef)) + 
                geom_text_repel( 
                        aes( 
                                x = reorder(x, coef), 
                                y = coef, 
                                label = epitope 
                        ), 
                        family = "sans", 
                        nudge_y = ifelse(data_1$coef < 0, -0.1, 0.1), 
                        size = 3, 
                        segment.alpha = 0.2, 
                        segment.size = 1, 
                        segment.color = "grey20", 
                        arrow = arrow( 
                                type = "open", 
                                ends = "first", 
                                length = unit(0.08, "in") 
                        ) 
                ) + 
                geom_point( 
                        aes( 
                                fill = p.value, 
                                col = signif, 
                                size = abs(coef) 
                        ), 
                        show.legend = F, 
                        alpha = 0.9 
                ) + 
                geom_linerange( 
                        aes(ymin = 0, ymax = coef), 
                        col = "snow1", 
                        show.legend = F, 
                        alpha = 0.2, 
                        size = 0.1 
                ) + 
                scale_color_manual(values = c("0" = "grey", "1" = "blue")) + 
                scale_size_continuous(range = c(2, 6)) + 
                scale_y_continuous(limits = c(min(data_1$coef) - 0.1, max(data_1$coef) + 0.1)) + 
                labs(y = "Correlation Coefficient, 
rho", 
                     x = "Peptides") + 
                coord_flip() + 
                labs(title = title) + 
                theme_wsj(color = "brown2", title_family = "sans") + 
                geom_hline(yintercept = 0, 
                           lty = "dotted", 
                           size = 0.1) + 
                theme( 
                        axis.title.y = element_blank(), 
                        axis.text.y = element_blank(), 
                        panel.grid = element_blank(), 
                        axis.text.x = element_text(size = 22), 
                        title = element_text(size = 25), 
                        axis.title = element_text(size = 22, face = "bold"), 
                        plot.margin = unit(c(0.2, 0.2, 0.2, 0.2), "in") 
                ) 
} 
 
 
## Peptide boxplots compared with buffer 
Spots_distribution_boxplots <- 
        function(Ig, method) { 
                method(Ig) %>% 
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                        select(-matches("LAND|COMM")) %>% 
                        gather("peptide", "MFI", -c(1:5)) %>% 
                        # mutate(pep_dupli = ifelse(str_detect(peptide, '_1|-1'),'p_1','p_2'), 
                        #        peptide = str_replace(peptide,'_1|-1|_2|-2', '')) %>% 
                        ggplot(aes(reorder(peptide, MFI, median, na.rm = T), MFI)) + 
                        geom_boxplot(aes(fill = str_detect(peptide, "BUFFER"))) + 
                        labs(x = "spot", y = "Transformed MFI - Log2 Scale") + 
                        scale_y_continuous(trans = "log2") + 
                        theme_bw() + 
                        theme( 
                                plot.margin = unit(c(0.1, 0.1, 0.1, 0.1), "in"), 
                                panel.grid = element_blank(), 
                                axis.ticks = element_blank(), 
                                axis.text.x = element_text(angle = 90), 
                                legend.position = "none" 
                        ) 
        } 
 
 
fold_change_median_buffer <- 
        function(Ig, method = log2.transform) { 
                method(Ig) %>% 
                        select(-matches("LAND|COMM")) %>% 
                        gather("peptide", "MFI", -c(1:5)) %>% 
                        group_by(slide, miniarray) %>% 
                        mutate(fold_change = MFI - median(MFI[str_detect(peptide, "BUFFER")], na.rm = 
T)) %>% 
                        filter(!str_detect(peptide, "BUFFER")) %>% 
                        ggplot(aes( 
                                reorder(peptide, fold_change, median, na.rm = T), 
                                fold_change 
                        )) + 
                        geom_boxplot() + 
                        labs(x = "peptide", y = "fold change (ref - median BUFFER)") + 
                        geom_hline(yintercept = c(-2, 2), col = "red") + 
                        theme_bw() + 
                        theme( 
                                plot.margin = unit(c(0.1, 0.1, 0.1, 0.1), "in"), 
                                panel.grid = element_blank(), 
                                axis.ticks = element_blank(), 
                                axis.text.x = element_text(angle = 90), 
                                legend.position = "none" 
                        ) 
        } 
 
# Forest plot - like correlation plot of age and antibody responses filtered based on fold difference  
# Compared with median of the Buffer spots 
 
Corr_plot_FoldDiff_filtered <- 
         
        function(Ig, 
                 method, 
                 fold_filter_method = log2.transform, 
                 FoldDiff = 2, 
                 age_filter = 6, 
                 ...) { 
                ## Filter peptide with fold change above 2 
                fold_filter_method(Ig) %>% 
                        select(-matches("LAND|COMM")) %>% 
                        gather("peptide", "MFI", -c(1:5)) %>% 
                        group_by(slide, miniarray) %>% 
                        mutate(fold_change = MFI - median(MFI[str_detect(peptide, "BUFFER")])) %>% 
                        ungroup() %>% 
                        filter(!str_detect(peptide, "BUFFER")) %>% 
                        group_by(peptide) %>% 
                        mutate(median_foldchange = median(fold_change)) %>% 
                        filter(median_foldchange >= FoldDiff) %>% 
                        distinct(peptide) -> filtered_peptides 
                 
                data_1 <- method(Ig, ...) %>% 
                        gather("spot", "MFI", -c(1:5)) %>% 
                        filter(!str_detect(spot, "BUFFER|LAND|COMM")) %>% 
                        filter(sample_no %in% age_data$sample_no) %>% 
                        inner_join(., age_data, by = "sample_no") %>% 
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                        mutate(peptide = str_replace(spot, "_1|-1|_2|-2", "")) %>% 
                        filter(age_m < age_filter, spot %in% filtered_peptides$peptide) %>% 
                        split(., .$spot) %>% 
                        map(~ cor.test(.$age_m, .$MFI, method = "spearman")) %>% 
                        map_dfc(~ c(.$p.value, .$estimate)) %>% 
                        t() %>% 
                        as.data.frame() %>% 
                        rownames_to_column("epitope") %>% 
                        rename(p.value = V1, 
                               coef = V2) %>% 
                        mutate( 
                                signif = ifelse(p.value < 0.05, 1, 0), 
                                signif = factor(signif, levels = c(0, 1)), 
                                x = seq_along(coef) 
                        ) 
                 
                data_1 %>% 
                        ggplot(aes(reorder(x, coef), coef)) + 
                        geom_text_repel( 
                                aes( 
                                        x = reorder(x, coef), 
                                        y = coef, 
                                        label = epitope 
                                ), 
                                family = "sans", 
                                nudge_y = ifelse(data_1$coef < 0, -0.1, 0.1), 
                                size = 3, 
                                segment.alpha = 0.2, 
                                segment.size = 1, 
                                segment.color = "grey20", 
                                arrow = arrow( 
                                        type = "open", 
                                        ends = "first", 
                                        length = unit(0.08, "in") 
                                ) 
                        ) + 
                        geom_point( 
                                aes( 
                                        fill = p.value, 
                                        col = signif, 
                                        size = abs(coef) 
                                ), 
                                show.legend = F, 
                                alpha = 0.9 
                        ) + 
                        scale_color_manual(values = c("0" = "grey", "1" = "blue")) + 
                        scale_size_continuous(range = c(2, 6)) + 
                        scale_y_continuous(limits = c(min(data_1$coef) - 0.1, max(data_1$coef) + 0.1)) 
+ 
                        labs(y = "Correlation Coefficient, 
rho", 
                             x = "Peptides") + 
                        coord_flip() + 
                        theme_wsj(color = "brown2", title_family = "sans") + 
                        geom_hline(yintercept = 0, 
                                   lty = "dotted", 
                                   size = 0.1) + 
                        theme( 
                                axis.title.y = element_blank(), 
                                axis.text.y = element_blank(), 
                                panel.grid = element_blank(), 
                                axis.title = element_text(size = 14, face = "bold"), 
                                plot.margin = unit(c(0.2, 0.2, 0.2, 0.2), "in") 
                        ) 
        } 
 
 
# << Coeffients of Variations for the different Methods >> ----- 
# Function to extract the CVs 
 
coef_var_plot <- function(Ig) { 
        CV.fun <- function(dataset) { 
                dataset %>% 
                        select(-matches("BUFFER|LAND|COMM")) %>% 
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                        filter(miniarray %in% c(1)) %>% 
                        gather("spot", "MFI", -c(1:5)) %>% 
                        group_by(spot) %>% 
                        summarise(coef = (function(x) { 
                                (sd(x, na.rm = T) / mean(x, na.rm = T)) * 100 
                        })(MFI)) 
        } 
         
        # List of the dataset 
        data.list <- list( 
                "Log2 transformation" = log2.transform(Ig), 
                ComBat = ComBat.Peptide(Ig), 
                DDHF = DDHF.peptide(Ig), 
                "Moving-min BG subtraction" = moving_min_bg_subtract(Ig), 
                "VSN-stratified (slide)" = VSN.transform(Ig, TRUE), 
                "VSN single strata" = VSN.transform(Ig), 
                LMM = LMM.transform(Ig), 
                "LMM + ComBat" = LMM_ComBat(Ig), 
                PAS_stabilisation = PAS_stabilisation(Ig) 
        ) 
         
         
        data.list1 <- map(data.list, CV.fun) 
         
        Peptide.CVs <- data.list1[[1]] 
         
        i <- 2 
        while (i <= length(data.list1)) { 
                Peptide.CVs <- Peptide.CVs %>% 
                        left_join(., data.list1[[i]], by = "spot") 
                i <- i + 1 
        } 
         
        colnames(Peptide.CVs) <- c("spot", names(data.list)) 
         
        # CV distributions in all the methods applied 
        # xlabels = c(seq(0,40,5), seq(40,200,60)) 
        # cv.trans = function(x){pmin(x,40) + 0.05*pmax(x-40,0)} 
         
        
        CVs_Plot <- 
                Peptide.CVs %>% 
                gather("Method", "CV", -c(spot)) %>% 
                filter(CV <= 20) %>% 
                mutate(Method = factor( 
                        Method, 
                        labels = names(data.list), 
                        levels = names(data.list) 
                )) %>% 
                ggplot(aes(reorder(Method, CV, median, na.rm = T), CV)) + 
                geom_boxplot(alpha = 0, outlier.alpha = 0) + 
                # geom_rect(aes(xmin = 0.3,xmax = 11.7, ymin = 40, ymax = 40.001), fill = 'grey')+ 
                # scale_y_continuous(limits = c(0,NA), breaks = cv.trans(xlabels), labels = xlabels)+ 
                geom_quasirandom(size = 0.4) + 
                # scale_y_continuous(limits = c(0,100))+ 
                geom_hline(yintercept = 5, 
                           col = "red", 
                           size = 0.8) + 
                labs(y = "Coefficient of Variation(%)", 
                     x = "Normalization method") + 
                theme_bw() + 
                theme( 
                        axis.text = element_text(face = "bold", 
                                                 size = 12), 
                        panel.grid.minor.x = element_blank(), 
                        panel.grid = element_line(color = "grey97"), 
                        axis.title = element_text(size = 16) 
                ) + 
                coord_flip() 
         
        return(list(Peptide.CVs, CVs_Plot)) 
} 
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