
UNIVERSITY OF NAIROBI

COLLEGE OF BIOLOGIAL AND PHYSICAL SCIENCES

SCHOOL OF COMPUTING AND INFORMATICS

BIO-SEQUENCE SEARCH ENGINE BASED ON DAMERAU

LEVENSHTEIN DISTANCE ALGORITHM

BY

KENEI, K JONAH

P56/9080/2006

SUPERVISOR: EVANS MIRITI

SEPTEMBER 2011

Submitted in partial fulfillment of the requirements of the Master of Science in

Computer Science

/

1

DECLARATION

I hereby declare that this thesis is based on the results found by me. Materials of work

found by other researchers are mentioned by reference. This thesis, neither in whole nor

in part, has been previously submitted for any degree.

Jonah Kenei

P58/9080/2006

This project has been submitted as partial fulfillment of the requirements for the Master

of Science degree in Computer Science of the University of Nairobi with my approval as

the University supervisor.

Sign: — ^ Date: [\C?[

EVANS MIRITI

Date:

ABSTRACT

Bio-sequence databases currently require enormous computing power to processes the

vast quantities of data available. Further, DNA sequencing projects are generating data at

an exponential rate; thus, new, faster methods and techniques of processing this data are

needed. One frequently used type of processing involves searching a sequence database

for similar sequences. In this project we present a parallelized Damerau Levenshtein

distance algorithm using multi-threading programming. This algorithm efficiently

distributes the patterns to be searched on multiple threads to achieve rapid sequence

matching operation. The algorithm is designed to fully exploit thread level parallelism to

enhance searching speed. By distributing a large number of patterns over multiple

threads, the algorithm shows better performance. From detailed experiments and

performance analysis, our algorithm shows remarkable performance gain compared to the

original Damerau Levenhstein algorithm. 36% average performance gained is realized.

in

ACKNOWLEDGEMENTS

I would like to express my heartfelt appreciation to Evans Miriti for being my advisor

and mentor. His motivation, suggestions and insights for this project have been

invaluable. Without his support and guidance this project would not have been possible.

I would also like to extend my gratitude to my other evaluation panel members, Dr.

Wanjiku Ng’anga and Robert Oboko, for their time and input provided during the work.

Last, but definitely not the least, I would like to thank my wife Juliet for her

encouragement and help, and for bearing with me for the whole year while I worked on

the project.

IV

TABLE OF CONTENTS

DECLARATION...II
ABSTRACT... Ill
ACKNOWLEDGEMENTS.. IV
TABLE OF CONTENTS..V
LIST OF TABLES..VII
LIST OF FIGURES.. VIII
ACRONYNMS... IX
CHAPTER 1: INTRODUCTION...1

1.1 Introduction.. 1
1.3 Problem Statement..7
1.4 Purpose of the project...8
1.5 Objectives...8
1.6 Research Questions...8
1.7 Significant of the study.. 9
1.9 Organization of the chapters.. 9

CHAPTER 2: LITERATURE REVIEW...10
2.1 Background Theory..10
2.2 Searching Sequence Databases...11
2.3 String matching algorithms..13

2.3.1 Brute force...14
2.3.2 Knutt-Morris Pratt...15
2.3.3 Boyer-Moore...15
2.3.4 Karp Rapin...15
2.3.5 Performance Comparisons...16
2.3.6 Applicability of string searching algorithms in Bio-sequence databases........16

2.4 Sequence Alignment...18
2.4.1 Needleman-Wunsch Algorithm.. 21
2.4.2 Smith-Waterman algorithm.. 21
2.4.3 BLAST...23
2.4.4 FASTA... /................23
2.5 Challenges of sequence alignment algorithms... 23

2.5 Edit distance Algorithms... 25
2.5.1 Edit Distance and Bio-sequence similarity... 25
2.5.2 Levenhstein distance Algorithm... 25
2.5.3 Damerau Levenhstein Distance Algorithm.. 26

CHAPTER 3: METHODOLOGY... 27
3.1 Methodology..27
3.2 Limitations of methodology.. 28
3.3 Tools and Technologies... 28

3.3.1 ASP.NET 4.0...'...............28
3.3.2 Internet Information Services... 28
3.3.3 Microsoft SQL Server 2005 ... 29
3.3.4 Microsoft Visual Studio 2010... 29

CHAPTER 4: DESIGN AND IMPLEMENTATION....................... 30
4.1 Background Design.. 30

v

4.2 Parallelism through multithreading... 31
4.3 Benefits of multithreading... 31
4.4 System Architecture.. 32
4.5 Proposed Multithreaded Model for Damerau Levenhstein distance algorithm......33
4.6 Back End (Database)... 35
4.7 Pseudo code for Damerau Leveinshtein edit distance algorithm............................36
4.8 Damerau Leveinshtein edit distance algorithm analysis... 37
4.9 Performance Calculation... 37
5.0 Implementation...38
5.1 Platform................. 39

CHAPTER 5: EXPERIMENTAL RESULTS AND DISCUSSION...........................40
5.1 Presentation of results.. 40
5.1.1 Results - Single Processor Machine.. 40
5.1.2 Results - Two core processor Machine... 41
5.4 Performance under different number of threads.. 43

5.4.1 One processor machine... 43
5.4.2 Two core processor machine.. 44

5.2 Discussion of results...45
5.2.1 Experimental results of serial and Multi-threaded algorithm...........................45
5.2.2 Experimental results using different number of threads...................................45

5.3 Recomendations... 46
CHAPTER 6: CONCLUSION AND FUTURE WORK.. 47

6.1 Conclusion... 47
6.2 Future Work... 48

REFERENCES...49
APPENDIXES...54

1.1 Damerau Levenshtein algorithm... 54
1.2 Bio-sequence search engine... 57
1.3 Database connection.. 60
1.4 Sample screens for Bio-sequence search engine... 64
1.5 Sequential Search.. 64
1.6 Sequential search results.. 64
1.7 Parallel search...... '... 65
1.8 Parallel search results.. 65
1.9 Performance comparisons.. 67

/

VI

LIST OF TABLES

Table 1.1 Bio-sequences alphabet... 3
Table 2.1 String searching algorithms..16
Table 2.2 Dynaming programming and Heuristic algorithms... 20
Table 4.1 Edit distance operations... 30
Table 4.2 Three Tier Model Description... 33
Table 4.3 Sequence table structure.. 35
Table 5.1.1 Results performance on uni-processor machine... 40
Table 5.1.2 Results performance on two core processor machine.....................................42
Table 5.4.1 One core processor performance of threads... 43
Table 5.4.2 Two processor machine performance of threads.. 44

Vll

LIST OF FIGURES

Figure 1.1 DMST graphical interface with highlighted matches.. 5
Figure 4.1 Three Tier Model...32
Figure 4.2 Proposed Multithreaded Model for Damerau Levenshtein algorithm.............33
Figure 4.3 Detailed parallel model.. 35
Figure 4.3 Client browser Web server interactions... 38
Figure 4.4 Search Engine Graphical User Interface.. 39
Figure 5.1.1 Performance Comparison.. 41
Figure 5.1.2 Performance comparison... 42
Figure 5.4.1 One core processor performance of threads.. 43
Figure 5.4.2 Two processor machine performance of threads.. 44

viii

ACRONYNMS

DNA - Deoxyribonucleic acid, Molecule that encodes genetic information

RNA - Ribonucleic acid, Molecule that plays a role in transferring information from

DNA to protein forming system of the cell

BLAST- Basic Local Alignment Search Tool

BLOSUM- Blocks Substitution Matrix

PAM - Percent accepted mutation

HMM - Hidden Markov Model

DFA- Deterministic Finite Automaton

NFA- Non Deterministic Finite Automaton

IX

CHAPTER 1: INTRODUCTION

1.1 Introduction

Sequence searching remains a computational problem as the total number of sequences in

the underlying databases grows exponentially with the progress of research. Searching

large biological sequence databases calls for the need for highly efficient algorithms.

DNA sequences are generally very long chains of sequentially linked nucleotides

(Gusueld D 1973). Algorithms devised for the comparison of molecular sequences are

based on the concept of string matching. DNA sequences which hold the code of life for

every living organism can be abstractly viewed as very long strings over a four letter

alphabet of A, C, G and T (Fahim Sufi 2005).

The field of bioinformatics aims to develop techniques which enable the analysis of bio

sequences (DNA, RNA and protein sequences). The DNA sequences make up the

genome of living organisms and are massively long strings of four different nucleotides:

Adenine, Cytosine, Guanine, and Thymine. A frequent challenge given DNA sequences

is motif detection, i.e., the detection of patterns of nucleotides that are of some biological

significance. Research on motif detection has benefited the development of many exact as

well as approximate string search algorithms as well as more elaborate techniques for

inferring second-level properties (Richard Durbin et al 1998).

The analysis of nucleic acid and protein sequences is one of the oldest problems in

computational biology. The comparison of biological sequences has become a

fundamental aspect of molecular biology and its success as a scientific tool has/
transformed the science of Biology. Sequence comparison has proven to be a powerful

means to infer evolutionary and functional relationships. It has enabled biologists to find

families of related genes and proteins and to clarify the workings evolution at the

molecular level.

Biologists use sequence comparison algorithms to:

i. Measure the degree of difference or similarity between sequences

ii. Construct optimal alignments

iii. Search for similar sequences in databases.

Large databases of sequence data have been compiled and it is standard practice to

compare and submit newly discovered sequences to the databases. The human genome

and the genomes of hundreds of (mostly microbial) model organisms have been

1

completely sequenced. The Genbank nucleic acid database at the NCBI held roughly 45

billion base pairs as of 2004. The human genome alone is 3 billion base pairs long (J.

Christopher Bare 2005).

Nucleic acids (DNA and RNA) are the molecular carriers of hereditary information in

living organisms. These molecules are polymers of four nucleotides. DNA sequences are

usually represented as strings of characters over the alphabet {A, C, G, T}, where each

character corresponds to a nucleotide base. Similarly, RNA sequences are represented as

strings over the alphabet {A, C, G, U}. The size of the DNA or RNA of an organism (its

genome size) varies significantly. For example, the size of viral genomes ranges from few

thousand to around million nucleotide base pairs; bacterial genomes sizes range from

hundreds of thousands to less than ten million base pairs, and the size of mammalian

genomes ranges between one and eight billion base pairs (Gregory 2005), e.g. a human

genome comprises around 3 billion base pairs (Mirjana Domazet-LoSo 2010).

This project aims to first study and review various sequence matching algorithms and

methods used in sequence comparisons. Then from this review, proposed the use of a bio

sequence search engine based on Damerau Levenshtein distance algorithm for bio

sequence analysis. This algorithm best models biological mutations (insertion, deletion,

substitution and transposition). The dissertation will demonstrate through

experimentation and graphical representation, of results obtained, how this search engine

can be applied to perform biological sequence matching.

The general goal of this thesis is to review various sequence comparison algorithms and

propose a multithreaded algorithm based on edit distance metric (Damerau Tevenshstein

distance algorithm) and thus contribute to the area of sequence comparison algorithms

and similarity search by improvements of the contemporary methods and by proposal of

new methods to analyze bioinformatics data.

/

2

The schematic for every living organism is stored in long molecules known as

chromosomes made of a substance known as DNA (deoxyribonucleic acid). Each cell in

an organism has a complete copy of its DNA, also known as its genome which is

conveniently modeled as a sequence of symbols (alternately referred to as nucleotides or

bases) in the DNA alphabet {A, C, T, G}. In humans, and most mammals, this sequence

is about 3 billion bases long (Archie Russell & Jason Hogg 2001).

Common to all life is the flow of information within a cell from DNA to RNA to protein,

first established in the 1950's by Francis Crick. DNA serves as the storage repository of

genetic information. Genes are transcribed to mRNA, which carries the information to

ribosomes. A ribosome is a molecular factory that constructs proteins using mRNA as a

template in a process called translation. Nucleic acids, DNA and RNA, along with

proteins are the central molecules of biology. Nucleic acids consist of long chains of

chemical subunits called nucleotides or bases. Similarly, a protein is a long chain of

amino acids. In either case, the sequence of a molecule defines the exact order of the

subunits along the length of the chain. Biological sequences can be represented as strings

over an alphabet that contains one letter for each type of chemical subunit (J. Christopher

Bare 2005).

To understand the biological side of bioinformatics, one must understand basic molecular

biology. Three molecule types are very important: deoxyribonucleic acid (DNA),

ribonucleic acid (RNA) and proteins. DNA, RNA and proteins make up the genetic code

and the products of the genetic code that direct the processes of life (Laurie Pepper 2001).

Molecule Alphabet

DNA {A,T,G,C}

RNA {A,U,G,C}

Protein {A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y}

Table 1.1 Bio-sequences alphabet

A three letter chunk of nucleic acid, called a codon, translates into one amino acid. The

mapping is defined by the genetic code. A gene is said to code for a protein if the

sequence of the gene translates into the sequence of the protein. With few exceptions, the*
genetic code is universal (J. Christopher Bare 2005).

3

DNA (Deoxyribonucleic acid) sequences hold the code of life of living organisms.

Approximate string matching on DNA sequences is very important in research in the

fields of medicine and health. Although the approximate string matching problem has

been studied extensively in the field of computer science, many solutions cannot be

applied directly on DNA data. This is because DNA data is a very large data set

(GenBank had recorded more than 20Gbp of DNA sequences at June 2002) (Sudha

Surendirath 2005).

New DNA sequencers produce massive amounts of short reads of DNA text in a single

run. If a reference genome is known, a first step in processing these short reads is to map

them to the reference genome. As the number of these short sequences is very large, new

efficient multiple string matching algorithms are needed to complete this task.

Initially, efficient algorithms were designed to perform simple searches on strings, as

might be required in a word processor. However, in the age of large scale DNA

sequencing the desire for, and variety of, string manipulation algorithms has increased

dramatically (Xia Cao et al 2005).

The genetic material of organisms evolves by discrete mutations, most prominently

substitutions, insertions and deletions of nucleotides. Since the genetic material is stored

in DNA sequences and reflected in RNA and protein sequences, it makes sense to

compare two or more biological sequences to look for similarities and differences that

can be used to infer the relatedness of the sequences (Christian P. Kreibich 2007).

The process of extracting the sequence of a DNA molecule is called “DNA sequencing”.

Extracting the sequence of a single member of a species in order to gain a more complete

understanding of its biology is however not the only application of DNA sequencing.

Differences in individual members of a population are also of interest. Mutations in

individuals are of scientific interest where they can, for example, be used to track the

evolution of a population. Mutations can also cause or increase susceptibility to disease

or affect the drug resistance of an individual. Because of the utility of DNA sequencing in

biomedical applications it has become of huge economic importance.

A DNA sequence is created by the DNA sequencing process. A byproduct of this process

is a long string containing a succession of letters A, C, G, and T, representing the four

nucleotide subunits (a chemical compound) of a DNA strand - Adenine, Cytosine,

Guanine, and Thymine bases. A sample string produced this way resembles a pattern

4

similar to AAAGTCTGAC but often longer in length. A DNA sequence file contains one

complete sequence - a sample is shown in Figure 1.1 (Kuha Mahalingam and Omar

Bagasra 2008).

Figure 1.1 DMST graphical interface with highlighted matches

With the development of Molecular Biology during the last decades, we are witnessing

an exponential growth of both the volume and the complexity of biological data. The

Human Genome Project is providing the sequence of the 3 billion DNA bases that

constitute the human genome. And, consequently, we are provided too with the

sequences of about 100,000 proteins. Therefore, we are entering the post-genomic era.

After having focused so much efforts on the accumulation of data, we have now to focus

as much efforts, and even more, on the analysis of these data. This will enable us to learn

more about gene expression, protein interactions and other biological mechanisms.

Analyzing this huge volume of data is a challenging task because, not only, of its

complexity and its multiple numerous correlated factors, but also, because of the

continuous evolution of our understanding of the biological mechanisms. Classical

approaches of biological data analysis are no longer efficient and produce only a very

limited amount of information, compared to the numerous and,complex biological

5

mechanisms under study. Actually, these approaches use only a very limited number of

parameters, to represent the so-many correlated factors involved in the biological

mechanisms. From here comes the necessity to use computer tools and develop new in

silico high performance approaches, to support us in the analysis of biological data. And,

hence, to help us in our understanding of the correlations that exist between, on one

hand, structures and functional patterns of biological sequences, i.e., DNA, RNA and

proteins, and, on the other hand, genetic and biochemical mechanisms. Data mining is a

response to these new trends. It is one of the pre-processing steps in the knowledge

discovery process. It consists in extracting nuggets of information, i.e., pertinent

patterns, pattern correlations, estimations or rules, hidden in bodies of data. The

extracted information will be used in the verification of hypothesis or the prediction and

explanation of knowledge. Biological data mining aims at extracting motifs, functional

sites or clustering/classification rules from biological sequences (Ela Hunt et al 2001)

All the existing and the extinct genomes are the outcome of the copying process that

happens each generation from the emergence of the first living cell approximately 3.8

billion years ago. However, this process was accompanied by mutations and

recombination. The genetic variation thus generated permitted adaptation to different

habitats, which resulted in the diversity of present and extinct organisms. Thus, the

evolution of organisms or sequences can be envisaged as a branching process where

every pair of organisms or sequences has a common ancestor at a varying depth of an

emerging tree (Mirjana Domazet-Loso 2010)

The field of bioinformatics uses computers and algorithms to solve problems from

Biology. This is useful, because in biology scientists often need to analyze large amounts

of data. One example is the analysis of DNA using computers. We can use them to

compare DNA strings, and find how similar they are, which gives us a measure of how

closely related two species are. Evolution is based on mutations of DNA strings. Atomic

mutation is either an insertion, deletion or substitution of one of the base pairs that makes

up the DNA string, denoted by C, G, A and T. We can look at two strings and find out

what the least number of mutations are to go from one string to the other. This notion in

general is called the edit distance between two strings. It measures how many atomic

edits (insertions, deletions, substitutions) one needs to go from one string to the other.

6

1.3 Problem Statement

One of the most important tasks in bioinformatics is the search for similar genetic

sequences in the data banks. With the new sequencing technologies, the size of these

genetics data banks are growing exponentially (Dennis A. Benson et al 2007), and

consequently the search time is growing too.

One of the widely used approaches has been sequence alignment algorithms. Pair wise

alignment compares two pairs of sequences at a time, thus making practically impossible

for large genomic databases. Multiple sequence alignment is NP complete in general and

therefore not likely to be solvable in polynomial time (Michael R. Garey and David S.

Johnson 1979). So it’s very difficult to improve the speed of these methods greatly,

especially in this DNA information explosion period. Much of the research worked done

before have focused on sequence alignment algorithms which can be group into two

approaches:

1. Dynamic programming such as Needleman-Wunsch or Smith-Waterman

2. Heuristic methods such as BLAST and FASTA

Dynamic programming methods are guaranteed to find all optimal alignments, but are

relatively slow; heuristic methods are faster but less precise (M.A. Kentie 2005).

Heuristic methods like BLAST, FASTA etc rely on heuristics and they fail on queries

which do not have very similar sequences deposited in the database. Their speed is

achieved by compromising the sensitivity of these algorithms (Clare Sansom 2000).

Another problem of sequence alignment algorithms based methods is the drawback of the

increasing computational complexity with the increase in the number of the 'sequences as

well as the size of the sequences (Susana Vinga and Jonas Almeida 2003).

Therefore the research into alignment free sequence analysis is necessary to overcome

critical limitations of sequence analysis by alignment. In (Susana Vinga & Jonas Almeida

2003) it has been mentioned that although the pace of work in this area is increasing, the

total number of published reports proposing or using alignment-free metrics is still slow.

This project in an attempt to solve the above problem tries to review and study various

sequence comparison algorithms. Then from this review, propose a bio-sequence search

engine based on alignment free sequence analysis algorithm. In the course of this study,

we developed a new search engine based on Damerau Levehstein distance algorithm as

an alternative to sequence alignment algorithms.

7

1.4 Purpose of the project

The purpose of this study to implement a parallelized version of Damerau Levenhstein

distance algorithm to find effective ways of searching Biological sequence databases,

searching for occurrences of finite sequences in a given biological database. Several

sequence comparison algorithms were studied: string matching algorithms, sequence

alignment and edit distance metric algorithms.

This project aims to study sequence matching algorithms and develop a bio-sequence

search engine model using parallelized version of Damerau Levenshtein distance

algorithm that is efficient i.e. provides optimal execution time

1.5 Objectives

1. To improve the efficiency of sequence comparison algorithms by using multi

threading programming model.

2. To highlight the challenges of bio-sequence similarity search and why traditional

string searching algorithms are inadequate for string comparisons in

Bioinformatics.

3. To implement a search engine model based on parallelized Damerau Levenshtein

distance algorithm and demonstrate how it can be used in sequence comparisons.

4. To prove using experimentation and show how search engines can be used in

sequence similarity search and can achieve both high performance and scalability.

1.6 Research Questions

1. Why are pattern matching algorithms important in Bioinformatics?

2. What are the various algorithms used for sequence similarity search?'

3. What are the deficiencies of current sequence alignment algorithms used in

searching large bio-sequence datasets?

4. Is it possible to improve the performance of Damerau Levenshtein distance

algorithm by using software parallelism using multi-threading .programming?

5. What is the performance of Damerau Levenshtein distance algorithm under

different number of threads?

/

8

1.7 Significant of the study

The research outcomes of this project will help Biologists and researchers in analyzing

bio-sequences data such as DNA sequences. A search engine which is capable of

searching and highlighting sequences with high sequence similarity will help Biologists

infer the functional or structural similarity of biological sequences as well as providing

direct evidence for the evolutionary relationships of organisms.

From the literature, most past research in sequence comparison have focused on sequence

alignment algorithms, thus the proposed search engine based on parallelized Damerau

Levenhstein distance algorithm will usher in interesting insights in research towards

sequence comparison algorithms.

1.9 Organization of the chapters

The rest of the paper is organized as follows. In chapter 2 we provide the background and

literature review of sequence comparison algorithms. Chapter 3 describes the research

design, methodology and tools be used to solve the problem by this study. Chapter 4

provides a design and implementation of Damerau Levenshtein distance algorithm.

Chapter 5 presents results analysis and discussion. Chapter 6 concludes the findings and

outlines possible directions for future research.

/

9

CHAPTER 2: LITERATURE REVIEW
We present in summary form the most significant works done in the past, in areas that are

related to our work. A large number of algorithms for performing bio-sequence comparison

mostly employ sequence alignment algorithms. To speed up the operation, many researchers
have also proposed parallel hardware approaches to the sequence matching algorithms. There

has been little research on using edit distance metric algorithms, which is what we have

employed in our design. On similar lines, we have proposed a novel Damerau Levenhstein

distance algorithm solution.

2.1 Background Theory

The schematic for every living organism is stored in long molecules known as

chromosomes made of a substance known as DNA (deoxyribonucleic acid). Each cell in

an organism has a complete copy of its DNA, also known as its genome which is

conveniently modeled as a sequence of symbols (alternately referred to as nucleotides or

bases) in the DNA alphabet {A, C, T, G}. In humans, and most mammals, this sequence

is about 3 billion bases long. Through a process known as protein synthesis, instructions

in our DNA, known as genes, are interpreted by machinery in our bodies and transformed

first into intermediate molecules called RNA, and then into structures called proteins,

which are the primary actors in living systems. These molecules can also be modeled as

sequences of symbols (Archie Russell & Jason Hogg 2001).

One of the most common computational operations on sequences is a sequence similarity

search. A typical search compares one query sequence to a larger database of sequences

and tries to find alignments between the query and database that reflect similarities

between the two. These -searches are valuable to researchers because of the nature of

evolution, and the nature of scientific research. Researchers may be able to determine a

gene in a mouse which is responsible for a condition such as obesity; a sequence

similarity search helps pinpoint the analogues of that gene in humans, Similarity searches

are also used within a single species; portions of a gene, called domains, are often

duplicated among several genes. Finally, similarity searches allow researchers to infer

which parts of our DNA are important. Relevant portions of our genome are less likely to

have changed over time than less-important regions. A similarity search that detects

regions in common between evolutionarily distant species has probably also detected

very important genomic regions.

10

In biological sequences (DNA, RNA, or protein sequences), high sequence similarity

usually implies significant functional or structural similarity. Understanding the

relationship of a query DNA or protein genomic sequence to the known sequences in

genomic databases allows molecular biologists to assign functions to poorly understood

sequences. Therefore, similarity search in genomic databases is an important function in

genome research as it is useful for discovering the location of functional sites, searching

novel repeats and conducting comparative analysis of different genomic sequences. To

cater for evolutionary mutations in genomic sequences and noise in the sequence data,

approximate sequence matching is preferred to exact matching from the biologists' point

of view when similarity search in genomic databases is conducted (Xia Cao 2006). We

first review the different classes of sequence comparison algorithms namely, string

matching algorithms, sequence alignment and then introduce the concept of edit distance

as applied to string matching.

2.2 Searching Sequence Databases

There are a number of bio-sequence databases in different countries and publicly

available services provide a major comprehensive collection of nucleotide data from

repositories worldwide:

1. The GenBank nucleotide database that is maintained by the National Center for

Biotechnology USA

2. National Center for Biotechnology Information (NCBI) in the USA (Benson et al

2005); and

3. The DNA Database of Japan (DDBJ) that is maintained by the National Institute

of Genetics in Japan (Miyazaki et al 2004)

4. The European Molecular Biology Laboratory (EMBL) that is based in the United

Kingdom

These bio-sequence database collections are regularly updated and mirror the contents of

one another daily, so that recently deposited sequences in one database will soon appear

in all three collections (Rapp & Wheeler 2005).

The GenBank nucleotide database currently contains more than 53 billion nucleotide base

pairs stored in almost 50 million sequences from over 150,000 different organisms. The

collection has roughly doubled in size every 1.4 years, which is faster than improvements

in the processing power of modern workstations (Attwood & Higg^ 2004). Further, this

11

trend is expected to continue with new technologies for high-throughput sequencing and

support from scientific journals, many of which now require new sequences to be

submitted to GenBank before the related work is published (Rapp & Wheeler 2005).

A common task in bioinformatics is the search of a database for the sequences with

significant similarity to a query sequence. These search methods must balance two

parameters: the sensitivity of the algorithm to the differences between sequences; and the

time needed to search the entire database. These methods also incorporate a number of

parameters so that a search can be tailored to the specific needs of the user.

Once a DNA sequence that codes for some protein with unknown function has been

sequenced, the databases of DNA sequences are searched for similar DNA sequences.

The function of the unknown piece of DNA may be inferred from DNA sequences with

similar structure that are found in the databases. In many situations, knowing that two

sequences are similar is enough, but in other situations such as constructing a

phylogenetic tree, a one to one alignment between the bases of the sequences is required.

The processes of evaluating the similarity of sequences and constructing an alignment

between two sequences both make heavy use of algorithms to do approximate string

matching. The size of these problems varies greatly, from aligning two short sequences to

doing a complete n-wise comparison of all sequences in the GenBank database.

Sequence database searches cover a wide area of applications biologists use for their

daily work where large databases need to be searched for sequences they have gained

from experiments. To illustrate the process, we can consider the sequences for now as

DNA sequences, i.e. strings over the alphabet £DNA = c, G, T}.

Finding similar sequences helps biologists in many ways. First, it helps to determine,

whether the sequences they are investigating have been identified and analyzed before.

But even if a gene has not been identified before, finding similar genes helps to determine

its function in the organism, because often similar genes code for proteins with similar

functions. If we find a sequence in a new species that is similar to the sequence of

hemoglobin in the human body for example, it is likely that this new sequence codes for

proteins that are responsible for oxygen-transport in the red cells of the blood as

well(Dominic Battr' 2005).

12

2.3 String matching algorithms

Most sequence matching algorithms focus on sequence pattern itself without using the

preprocessing phase. Other algorithms compare the pattern and the text from left to the

right. Some other algorithms perform comparison from right to left. The performance of

the algorithm depends upon the order in which the comparison is done. Several pattern

matching algorithms have been developed to minimize the number of comparisons.

Brute-force algorithm compares the pattern with the text from left to right. After each

attempt it shifts the pattern by exactly one position to right. The time complexity is

O(mn) in worst case and the number of text character comparison is 2n.Boyer-Moore

algorithm (Boyer-Moore 1977) improves the performance by preprocessing the pattern

by using two shift functions. The bad character shift and the good suffix shift. During the

searching phase the pattern is aligned with the text and it is scanned from right to left. If a

mismatch occurs the algorithm shifts the pattern with the maximum value taken between

the two shift functions. The worst case complexity is O(mn).

In (Raju-Somayajulu 2010) the elements in the given patterns are matched one by one in

the forward and backward until a mismatch occurs or a complete pattern matches. In the

(Ziad A.A et al 2007) technique the algorithm scans the input file to find all occurrences

of the pattern based upon the skip technique. Index is used as the starting point of

matching; it compares the file contents from the defined point with the pattern contents,

and finds the skip value depending upon the match numbers (ranges 1 to m-1) (Harspool

1980) does not use the good suffix function, instead it uses the bad character shift with

right most character .The time complexity of the algorithm is O(mn). (Berry-Ravindran

1999) calculates the shift value based on the bad character shift for two consecutive text

characters in the text immediately to the right of the window. This will reduce the number

of comparisons in the searching phase. The time complexity of the algorithm is O(nm).

(Sunday, 1990) designed an algorithm quick search which scans the character of the

window in any order and computes its shift with the occurrence shift of the character T

immediately after the right end of the window. In (Raju-Somayajulu 2010) algorithm we

first choose the value of k (a fixed value), and divide both the string and pattern into

number of substring of length k, each substring is called a partition. If k value is 3 we call

it as 3-partition else if it is 4 then it is 4-partition algorithm. We compare all the first

characters of all the partitions, if all the characters are matching while'.we are searching

13

then we go for the second character match and the process continues till the mismatch

occurs or total pattern is matched with the sequence. If all the characters match then the

pattern occurs in the sequence and prints the starting index of the pattern or if any

character mismatches then we will stop searching and then go to the next index stored in

the index table of the same row which corresponds to the first character of the pattern P.

The Knuth-Morris-Pratt algorithm (Knuth-Morris-Pratt 1977) is based on the finite state

machine automaton. The pattern P is pre-processed to create a finite state machine M that

accepts the transition. The finite state machine is usually represented as the transition

table. The complexity of the algorithm for the average and the worst case performance is

0(m+n). In approximate pattern matching method the oldest and most commonly used

approach is dynamic programming. By using dynamic programming approach especially

in DNA sequencing (Needleman-Wunsch 1970) algorithm and (Smith-waterman 1981)

algorithms are more complex in finding exact pattern matching algorithm. By this method

the worst case complexity is O(mn). The major advantage of this method is flexibility in

adapting to different edit distance functions. The first bit-parallel method is known as

“shift-or” which searches a pattern in a text by parallelizing operation of non

deterministic finite automaton. This automaton has m+1 states and can be simulated in its

non deterministic form in O(mn) time. (Ukkonen 1985) proposed automaton method for

finding approximate patterns in strings. He proposed the idea using a DFA for solving the

inexact matching problem. Though automata approach doesn’t offer time advantage over

(Boyer-Moore 1997) algorithm for exact pattern matching. The complexity of this

algorithm in worst and average case is 0(m+n).ln this algorithm, every row denotes

number of errors and column represents matching a pattern prefix. Deterministic

automata approach exhibits O(n) worst case time complexity. The main difficulty with

this approach is construction of the DFA from NFA which takes exponential time and

space. The (Knuth-Morris-Pratt 1977) algorithm is based on the finite state machine

automaton. The pattern P is pre-processed to create a finite state machine M that accepts

the transition. The finite state machine is usually represented as the transition table. The

complexity of the algorithm for the average and the worst case performance is 0(m+n).

2.3.1 Brute force
The brute force algorithm compares corresponding characters between patterns and text

*
at all positions in any order. After each attempt, it shifts the pattern to the right by exactly

14

one position. Then it starts the comparisons from the first character of pattern all over

again. The brute force method requires no preprocessing and easy to understand and

implement. But its worst-case running time of O (mn) is unsatisfactory. This can be

improved because it makes a lot of comparisons that aren’t actually necessary. In other

words, the brute force method makes any possible comparisons even when there is no

reason to believe a match will occur by shifting only one position to the right. As a result,

this naive method is very slow in practice especially for large texts and patterns (Feng

Cao 2004)

2.3.2 Knutt-Morris Pratt
Knuth-Morris-Pratt algorithm (Knuth M et al 2004) is the first linear running-time exact

string matching algorithm. Although it is rarely the method of choice, it has historical

importance and has been generalized to solve the problem of searching for a set of

patterns in a text in time linear in the size of the text. By remembering some portions of

the text that match the pattern, Morris and Pratt (Morris et al 1970) came up with an

algorithm which runs in 0(n + m). KMP does comparisons from left to right.

2.3.3 Boyer-Moore
In 1977, the biggest break-through in string matching was contributed by Boyer and

Moore (Boyer and Moore 1977). Generally, the Boyer Moore method is much faster than

the Knuth Morris Pratt method. As the size of the text string increases, the difference

becomes much more apparent. So far Boyer-Moore algorithm is considered as the most

efficient string-matching algorithm in usual applications. By introducing a pattern

preprocessing stage (D. Gusfield 1999) the Boyer-Moore algorithm is able to analyze

deeply the internal structure of a pattern and thus can shift the pattern more efficiently.

The Boyer-Moore algorithm compares the pattern with the target text character-by-

character from right to left. Once a mismatch occurs, it uses either the bad character rule

or the good suffix rule, whichever contributes to a larger shift,.to shift the pattern (Rytter,

W. A 1982).

2.3.4 Karp Rapin
The Karp-Rabin algorithm (R. M. Karp & M. O. Rabin 1987) computes the hash function

of each n-character substring in the text and checks if it equals the hash function of the

pattern, where n is the length of the pattern. Karp and Rabin found ^n efficient way to

15

compute a re-hash function for Text [i + 1 ... i + n] based on the hash value of Text [i ... i

+ n - 1], which makes the whole algorithm more efficient.

The advantage of the Karp-Rabin algorithm is that it can produce the same theoretical

time bounds as the previously mentioned algorithms and requires a smaller number of

registers. It is also conceptually very simple and therefore easy to program (R. M. Karp &

M. O. Rabin 1987).

2.3.5 Performance Comparisons

Algorithm Preprocessing time Matching time

Naive string search algorithm 0 (no preprocessing) 0(n m)

Rabin-Karp string search algorithm 0(m) Average 0(n+m),
Worst 0(n m)

Knuth-Morris-Pratt algorithm 0(m) 6(n)

Boyer-Moore string search algorithm O(m) Average 0(n/m),
Worst 0(n m)

Where m and n are the length of the two strings being compared.

Table 2.1 String searching algorithms

2.3.6 Applicability of string searching algorithms in Bio-sequence databases

From the above, there exist many algorithms that allow searching a string (pattern) inside

another string as mentioned above. However, in bio-sequence databases exact similarity

of sequences is rare. In addition to establishing a fact that one string is a substring of

another, we need a measure of similarity between sequences. A standard example of such

a situation is the case of searching similarities in biological sequences. In such a case

algorithms like (M. Karp & M. O. Rabin 1987) will not produce needed results.

Therefore, different algorithms solutions are required which do' approximate string

16

matching in addition to exact string matching i.e. (shows a degree of similarity between

strings/sequences). In bioinformatics sequence matching applications, exact matching is

not always relevant. It is often more important to find sequences that match a given

pattern in a reasonably approximate manner.

t

17

2.4 Sequence Alignment

Alignment based methods such as those based on Dynamic programming Needleman,

smith (C. Setubal & J. Meidanis 1997), FASTA (William R. Pearson and David J.

Lipman, 1988) and BLAST (Altschul et al 1990) have been developed for identifying

sequence similarity. BLAST has been widely used by biologists for sequence analysis

(Altschul et al 1990). These tools are largely dependent on heuristics, and they fail on

queries which do not have very similar sequences deposited in the database. BLAST

gives approximately accurate results and its speed is therefore achieved at the cost of

some degree of precision (Clare Sansom 2000). Also alignment based methods suffer

from the drawback of the increasing computational complexity with the increase in the

number of the sequences as well as the size of the sequences. Therefore the research into

alignment free sequence analysis is emerging at a greater speed than before. Also this is

necessary to overcome critical limitations of sequence analysis by alignment. In (Susana

Vinga & Jonas Almeida 2003) it has been mentioned that although the pace of work in

this area is increasing sharply, the total number of published reports proposing or using

alignment-free metrics is relatively small, still under the one hundred mark.

Effective algorithms for comparing protein and DNA sequences have been available for

more than thirty years, since the publication of a global sequence comparison algorithm

by (Needleman & Wunsch 1970). Global sequence comparison algorithms seek to align

every residue in one sequence with every residue in a second, in contrast to the more

commonly used local sequence alignment algorithms, which seek only the strongest

region of similarity between two sequences. Global alignment algorithms are used for

aligning families of sequences with similar lengths in preparation for phylogenetic

analysis; global alignment scores can be transformed to the distance measures used for

building evolutionary trees. Global similarity scores are rarely used to infer homology

however, because the distribution of global similarity scores is not well understood and

thus it is difficult to assign a statistical significance to a global similarity score.

Moreover, many proteins are made up of domains that are homologous only over a

portion of the protein sequence (William R. Pearson & Todd C. Wood 2000).

The notion of distance between sequences was first formalized by (Levenshtein 1965),

who introduced ‘edit distance’. This distance is defined for two strings as the smallest

possible total cost of insertions, deletions, and replacements of characters that transform

18

the first string to the second string. Some variants of the edit distance allow for reversals

of sub-strings.

The edit distance problem is closely related to the problem of sequence alignment. The

problems are essentially equivalent, and their results provide distinct views of the

difference between two sequences. An edit transcript describes a process, whereas a

sequence alignment provides a comparison. In particular, the alignment can be easily

produced from a set of insertions and deletions of characters, and vice versa. In the

context of biological sequences, similarity and alignment were first studied by

(Needleman & Wunsch 1970). The Needleman-Wunsch sequence similarity and

sequence alignment are global; i.e. this is an alignment of full length sequences. In

practice, only extremely similar sequences can be nicely aligned globally. However,

many proteins exhibit strong local similarity. The local alignment problem was studied by

(Smith & Waterman 1981). Algorithms for calculating either local or global similarity for

protein sequences do not assign equal cost to all possible steps. Rather, scoring matrices

are used to give different weight to replacement of various pairs of characters. The most

commonly used scoring matrices are BLOSUM (Henikoff 1992), and the older PAM

(Dayhoff et al 1978).

Currently, the most popular algorithm and software package used for global and local

similarity calculation is BLAST, along with a variant called PSI-BLAST. Other useful

algorithms are FASTA and the Smith-Waterman dynamic programming algorithm (Ori

Sasson 2005).

There are basically two types of sequence alignment algorithms, local and .global. Both

local and global alignment algorithms are based on the dynamic programming approach.

Smith-Waterman (SW) local alignment matches two sequences for a fixed length for

which they show a high degree of similarity. However, the Needleman-Wunsch (NW)

algorithm is a global alignment algorithm which compares two sequences over their

entire lengths. It seeks to match as many nucleotides or amino acids as possible between

the sequences to give the optimal alignment. It is considered suitable for finding the best

alignment for two sequences which are of similar length (Dzivi PS 2008).

The Smith-Waterman (SW) algorithm is a time demanding algorithm because it searches

for optimal local alignments; it also imposes some requirements on the computer's

memory resources as the comparison takes place on a character-to-character basis.

19

Today's research requires fast and effective data analysis. BLAST and FASTA are

heuristic approximations of the SW algorithms and are less time consuming; therefore

they are preferred over SW algorithm. However, these approximations are less sensitive

and less optimal. SW algorithm has been implemented on different hardware architecture

and with different algorithmic approaches (Dzivi PS 2008).

Alignment algorithms are used to find similarity between biological sequences, such as

DNA and proteins. By aligning a sequence with a database, similar sequences can be

found. These can be used to identify the source of a query sequence, to find

commonalities between organisms, or to infer an ancestral relation. Various methods of

performing biological sequence alignment exist, including dynamic programming and

heuristic methods. Dynamic programming methods are guaranteed to find all optimal

alignments, but are relatively slow; heuristic methods are faster but less precise (M.A.

Kentie 2005).

The algorithms we will discuss fall into two categories.

1. Dynamic programming algorithms that find exact optimal solutions for a given

scoring system.

2. Heuristic algorithms motivated by the specific problem of similarity search

against large sequence databases.

Dynamic Programming Algorithms
1970 Needleman Wunsch
1981 Smith Waterman
Heuristic Algorithms ✓
1990 BLAST
1988 FASTA

Table 2.2 Dynaming programming and Heuristic algorithms

20

2.4.1 Needleman-Wunsch Algorithm
The Needleman-Wunch (NW) algorithm (Needleman & Wunsch 1970) is a nonlinear

global optimization method that was developed for amino acid sequence alignment in

proteins. This was the first of many important alignment techniques which now find

application in the Human Genome Project.

Needleman-Wunsch uses dynamic programming in order to obtain global alignment

between two sequences. Global alignment, as the name suggests takes into account all the

elements of the two sequences while aligning the two sequences. We can also call it as an

“end to end” alignment. In Needleman-Wunsch algorithm, a scoring matrix of size m*n

(m being the length of longer sequence and n being that of the shorter sequence) is first

formed. The optimal score at each matrix position is calculated by adding the current

match score to previously scored positions and subtracting gap penalties. Each matrix

position may have a positive, negative or 0 value. For two sequences

Si- aia2................. am

S2=bib2................. bn

Where Tjj=T(aia2................. am, bib2................. b„) then the element at the i,jth position of

the matrix Ty is given by

Tij=Max{ Tj-ij-i+s,

Max(Tj.xj - px), x >=1

Max (Tij.y- p y),y>=l }

Where Ty is the score at position i in the sequence Si and j in the sequence S2, T(aj bj) is

the score for aligning the characters at positions i and j, px is the penalty'for a gap of

length x in the sequence Si and py is the penalty for a gap of length y in the sequence S2.

After the T matrix is filled up, to determine an optimal alignment of the sequences from

scoring matrix, a method called trace back is used. The trace back keeps track of the

position in the scoring matrix that contributed to the highest overall score found. The

positions may align or may be next to a gap, depending on the information in the trace

back matrix. There may exist multiple maximal alignments (V. Anitha & B.Poorna

2005).

2.4.2 Smith-Waterman algorithm

The Smith-Waterman algorithm is a dynamic programming method for determining

similarity between nucleotide or protein sequences. The algorithm was first proposed in

21

1981 by Smith and Waterman and is identifying homologous regions between sequences

by searching for optimal local alignments. To find the optimal local alignment, a scoring

system including a set of specified gap penalties is used (Smith & Waterman 1981).

pomology identified by sequence database searches often implies shared functionality

between sequences and further research and development might depend on the accuracy

of the search results. The Smith-Waterman algorithm is build on the idea of comparing

segments of all possible lengths between two sequences to identify the best local

alignment. This means that the Smith-Waterman search is very sensitive and ensures an

optimal alignment of the sequences. Unfortunately, this also has the effect that the

method is both time and CPU intensive.

The Smith-Waterman algorithm is a method of database similarity searching which

considers the best local alignment between a query sequence and sequences in the

database being searched. The Smith-Waterman algorithm allows consideration of indels

(insertions/deletions) and compares fragments of arbitrary lengths between two sequences

and this way the optimal local alignments are identified (Smith & Waterman 1981).

It has three main steps

1. Assign similarity values

2. For each cell, allowing insertions and deletions give the maximum possible scoring

value

3. Construct an alignment (pathway) back from the highest scoring cell

The Smith-Waterman Algorithm is a variation of the Needleman-Wunsch Algorithm that

applies more readily to the alignment of strings with different lengths. The two additions

that the Smith-Waterman Algorithm includes are (Polanski, Andrzej & Kimmel Marek

2007):

1. If an optimal cumulative score becomes negative then it is reset to zero.

2. The starting point of the alignment occurs at the largest score in the optimal cumulative

These additions do not change the time complexity if we consider matrices of equal

length but the Smith-Waterman algorithm is quite useful in finding unique local

alignments of strings (Polanskiet al 2007). The draw backs for the Smith-Waterman

Algorithm are however the same as that o f the Needleman-Wunsch Algorithm and are not

useful when implemented on large databases which leads us to the Heuristic approaches

(Jennifer Johnstone 2008). , ;

22

2.4.3 BLAST

BLAST is an acronym for basic local alignment search tool; the BLAST family of

database search programs takes as input a query DNA or protein sequence, and search

DNA or protein sequence databases for similarities that may indicate homology. BLASI

(Basic Local Alignment Search Tool) employs a heuristic algorithm to search a sequence

database for the closest matches to a test sequence (Altschul et al 1990).

BLAST (Basic Local Alignment Search Tool) also identifies homologous sequences by

database searching (Altschul et al 1990). BLAST identifies the local alignments between

sequences by finding short matches and from these initial matches (local) alignments are

created. The BLAST algorithm is a development of the Smith-Waterman algorithm

suggesting a time-optimized model contrary to the more accurate but time consuming

calculations of the Smith-Waterman algorithm (Altschul et al 1990).

2.4.4 FASTA
Pronounced "FAST-A," The FASTA algorithm, developed by (Pearson & Lipman 1988),

proceeds along almost exactly these lines. It breaks up the query and database into

smaller words, observes the pattern of word-to-word matches of a given length, and

marks potential matches before performing a more sensitive search using local sequence

alignment.

First, FASTA first breaks the query and database sequence into k-mer words, then

hashes the locations of the database words to speed up later searches. For each k-mer in

the query, FASTA finds an exact match in the hashed database and extends it in both

directions, allowing for some mismatches. It then scores these matches using BLOSUM

or PAM and uses dynamic programming to co-linearly stitch the high-scoring matches

together.

2.5 Challenges of sequence alignment algorithms
As the sizes of bio-sequence databases increase, searching a query sequence against a

database becomes increasingly time consuming. Significant gains in speed can be

achieved by employing heuristic search methods such as BLAST (Altschul et al 1990),

rather than slower optimal alignment methods such as the Smith-Waterman algorithm

(Smith & Waterman 1981). However, sensitivity is thereby lost (Pearson 1995; Shpaer et

al 1996), and although the fraction of hits missed by employing a heuristic method may
*

be small (Brenner et al 1998), the distant homologs thereby missed may be among the

23

hits of greatest interest. In addition, on hardware specialized for dynamic programming

searches, a gain in speed from adopting heuristic methods may not be possible. Although

such hardware may be quite fast, certain types of search are still time consuming and

further acceleration of the search may be desirable.

Extensive work and research has been in sequence similarity search and has mainly

focussed on sequence alignment based approach. Sequence alignment method, though

very powerful and popular, leave space for further research, to optimize the

computational complexity arising out of the alignment process (Maulika S Patel &

Himanshu S Mazumdar 2010).

Alignment based methods such as those based on Dynamic programming Needleman,

smith] (C. Setubal & J. Meidanis, 1997), FASTA (William R. Pearson & David J.

Lipman 1988) and BLAST (Altschul S. F. et al 1990) have been developed for

identifying sequence similarity. BLAST has been widely used by biologists for sequence

analysis (Altschul S. F. et al 1990). These tools are largely dependent on heuristics, and

they fail on queries which do not have very similar sequences deposited in the database.

BLAST gives approximately accurate results and its speed is therefore achieved at the

cost of some degree of precision (Clare Sansom 2000). Also alignment based methods

suffer from the drawback of the increasing computational complexity with the increase in

the number of the sequences as well as the size of the sequences. Therefore the research

into alignment free sequence analysis is emerging at a greater speed than before. Also this

is necessary to overcome critical limitations of sequence analysis by alignment. In

(Susana Vinga & Jonas Almeida 2003) it has been mentioned that although the pace of

work in this area is increasing sharply, the total number of published reports proposing or

using alignment-free metrics is relatively small, still under the one hundred mark.

/

24

2.5 Edit distance Algorithms

The edit distance between two strings over a fixed alphabet X is the minimum cost of

transforming one string into the other via a sequence of character deletion, insertion, and

replacement operations (R.Wagner and M.Fischer 1974). The cost of these elementary

editing operations is given by some scoring function which induces a metric on strings

over X- The simplest and most common scoring function is the Levenshtein distance (V.I.

Levenshtein 1966),which assigns a uniform score of 1 for every operation. Determining

the edit-distance between a pair of strings is a fundamental problem in computer science

in general, and in combinatorial pattern matching in particular, with applications ranging

from database indexing and word processing, to bioinformatics (D. Gusfield 1997)

The edit distance like algorithms are used to compute a distance between DNA sequences

(strings overA, C, G, T, or protein sequences (over an alphabet of 20 amino acids), for

various purposes, e.g.:

• To find genes or proteins that may have shared functions or properties

• To infer family relationships and evolutionary trees over different organisms

Searching sequences while allowing for a certain number of insertions, deletions, and

substitutions, is however known to be a computationally expensive task, and

consequently exact methods can usually not be applied in practice.

2.5.1 Edit Distance and Bio-sequence similarity

Edit distance derives its definition from the concept of mutations by assigning weight to

each mutation. Given two sequences the distance between them is the minimal sum of

weights for the set of mutations that transform one sequence to another. For similarity we

assign weights corresponding to base resemblance. Given two sequences the similarity

between them is the maximal sum of such weights.

2.5.2 Levenhstein distance Algorithm

Levenshtein distance is named after the Russian scientist Vladimir Levenshtein, who

devised the algorithm in 1965. The Levenshtein distance between two strings is given by

the minimum number of operations needed to transform one string into the other, where

an operation is an insertion, deletion, or substitution of a single character. Levenshtein

distance (LD) is a measure of the similarity between two inputs: the source 5 and the

target input t. The distance is the number of deletions, insertions, or substitutions required

25

to transform s into t. For example, If s is "math" and t is "math", then LD(s,t) = 0, because

no transformations are needed. If s is "math" and t is "mats", then LD(s,t) = 1, because

one substitution (change "h" to "s") is sufficient to transform s into t. The more different

the inputs are, the greater the Levenshtein distance is.Insertion, deletion and substitution

are the main criteria for determining Levenshtein Distance. The position of a character

plays an important role to determine the distance (Dr. Mashud Kabir 2009).

2.5.3 Damerau Levenhstein Distance Algorithm

The Damerau-Levenshtein distance between two strings is the minimum number of

operations of the form:

• Substituting a character,

• Deleting a character,

• Inserting a character, or

• Swapping two characters in the original strings,

which transforms one string into the other. The function, by definition, is symmetric and

distanced, t) < max(s.length(), t.length()) the longer string t can be transformed into the

shorter string s by making s.length() switches and t . l e n g th () - s . l e n g th ()

deletions.

The Damerau-Levenshtein distance is a generalization of the Levenshtein distance by

adding one additional operation: swapping two characters. In the Levenshtein distance,

swapping two characters requires two operations, usually a deletion and an insertion. The

code presented restricts swaps to two characters which are adjacent in the original strings.

This restricted edit distance allegedly does not satisfy the triangle inequality (Damerau

F.J 1964).

Damerau-Levenshtein distance comes from Levenshtein distance that counts

transposition as a single edit operation. The Damerau-Levenshtein distance is equal to the

minimal number of insertions, deletions, substitutions and transpositions needed to

transform one string into the other. (Karen Kukich 1992) described several edit distance

algorithms which use Damerau-Levenshtein distance. It has been proven that the use of

Damerau-Levenshtein metric to calculate the similarity between two words is a slow

process (Karen Kukich 1992).

In this study, we are proposing. Damerau-Levenshtein distance algorithm to be used to

perform sequence search. '

26

CHAPTER 3: METHODOLOGY
3.1 Methodology

The research methodology is divided into six phases as shown below:

1. Study selected sequence comparison algorithms(sequence matching and sequence

alignment algorithms)

2. Review these and analyze these algorithms

3. Propose one of the algorithms (Damerau Levenhstein algorithm) which use edit

distance metric to make string comparison be applied for searching biological

sequence databases.

4. Implement Damerau Levenhstein algorithm and enhanced it by implementing a

parallel version of Damerau Levenshtein.

5. Extend these both algorithms by designing bio-sequence search engines using the

concepts of World Wide Web search methods and techniques.

6. Apply the two bio-sequence search engines prototypes(i.e. one based on ordinary

Damerau Levenshtein algorithm and the parallelized Damerau Levenshtein

algorithm to demonstrate how it can be used to search biological sequence

databases

7. Perform comparison of the two versions of the algorithm and measure the success

of the bio-sequence search engine developed compared to currently existing tools

mainly tools based on sequence alignment algorithms.

The two algorithms are implemented using Visual Studio- C#. The execution times of the

serial and parallelized algorithms are taken from the outputs and then analyzed and

compared against each other. We will test the performance of the two versions of the

algorithm by simulating it over a wide range of bio-sequence sample size ie sequences with

different lengths.The data set used is kept uniform throughout the experiments with the

two algorithms. The search engine will take as inputs the sequence and the algorithm

sensitivity (a percentage of accuracy). In the simulation the. adjustable parameters will be

the length of sequences and the percentage of sensitivity. The outputs of the algorithm are

a list of sequences with some percentage of similarity and time it took to search the

sequence in the database. The output will be the execution time is the performance

measure.

27

3.2 Limitations of methodology
1. The data being used is hypothetical bio-sequence data

2. The study makes a comparison of the algorithm on one and two core machines

only. Its ideal performance should be done using a quad processor and above to be

able to ascertain performance improvement.

3. Complete search engine is not tested with huge practical bio-sequence databases.

4. Multi-threading programming overheads - Overhead costs associated with setting

up and managing parallel programming features. If you have only a small amount

of work to perform, the overhead can outweigh the performance benefit.

5. Coordinating Data - If your pieces of work share common data or need to work in

a concerted manner, you will need to provide coordination. As a general rule, the

more coordination leads, the poorer the performance of your parallel program.

3.3 Tools and Technologies

The tools and technologies used to build the web-interface are ASP.NET 4.0, VB.NET,

IIS 6.0 Server, XML Web Services, Microsoft SQL Server 2005 and Microsoft Visual

Studio 2010 IDE.

3.3.1 ASP.NET 4.0

ASP.NET 4.0 is the web-application framework developed by Microsoft that

programmers can use to build dynamic websites, web-applications and XML web

services. It is a part of Microsoft .NET. ASP.NET is built on Common Language

Runtime (CLR), meaning programmers can write ASP.NET code in any Microsoft .NET

language. The services provided by ASP.NET for building enterprise-class web-

applications are: page and controls framework, the ASP.NET compiler, security

infrastructure, state-management facilities, application configuration, debugging support,

XML web services framework, extensible hosting environment and application life cycle

management and extensible designer environment.

3.3.2 Internet Information Services

Internet Information Services is a web server included in Windows Operating System

which provides World Wide Web publishing services, File Transfer Protocol (FTP)

services, Simple Mail Transfer Protocol (SMTP) services and Network News Transfer

Protocol (NNTP) services. It provides highly reliable and manageable infrastructure for

28

web-applications. It is a high performance, secure and extensible web server provided by

Microsoft. IIS 5.0 is built on features and capabilities needed to deliver web-applications

required in an increasingly Internet centric business environment. It is easy to install,

maintain and has features that make it reliable and better performing.

3.3.3 Microsoft SQL Server 2005

Microsoft SQL Server 2005 is a relational database management system and analysis

system for e-commerce, line-of-business and data warehousing solutions. SQL Server

2005 is Microsoft’s next generation data management and analysis software that will

deliver increased scalability, availability, and security to enterprise data and analytical

applications while making them easier to create deploy and manage. Its primary query

language is Transact-SQL, an implementation of the ANSI/ISO standard SQL.

3.3.4 Microsoft Visual Studio 2010

Microsoft Visual Studio 2010 is a Microsoft’s flagship software development product for

computer programmers. It centers on an Integrated Development Environment which lets

programmers create standalone applications, web sites, web-applications, and web

services that run on any platforms supported by Microsoft’s .NET framework. Visual

Studio includes Visual Basic .NET, Visual C++, Visual C#, Visual J# and ASP.NET.

/

29

CHAPTER 4: DESIGN AND IMPLEMENTATION
4.1 Background Design

The design of Bio-sequence search engine discussed in this chapter is essentially based

on the fact that the current sequence comparison algorithms architectures do not scale

cost-effectively because they rely on sequence alignment algorithms to perform sequence

comparisons between a query sequence and a database of sequences. The current methods

utilizes dynamic programming and heuristic methods (Discussed in chapter 3).

The Damerau-Levenshtein distance is defined as the minimum number of primitive edit

operations needed to transform one string into the other. The edit operations are:

• Substitution

• Deletion

• Insertion

• Transposition of two adjacent characters.

Edit distance primitive operations Equivalent Biological mutations

Insertion Insertion of a nucleotide

Deletion Deletion of a nucleotide

Substitution Substitution of a nucleotide

Transposition of two adjacent characters. Transposition of two adjacent nucleotides

Table 4.1 Edit distance operations

These operations are equivalent to bio-sequence mutations which are common in DNA

and proteins. DNA frequently undergoes mutations (insertions, deletions, substitutions,

and transpositions); therefore Damerau-Levenshtein distance is an appropriate metric of

comparison between bio-sequences. Damerau Levenhstein distance algorithm best

models all types of biological mutations which are common biological phenomenon. This

project aims to model this algorithm by creating a search tool for bio-sequences.

To better enhance its performance, we have implemented a parallelized - version of

Damerau Levenhstein distance algorithm using multi-threading programming model. A

comparison of ordinary Damerau Levenhstein distance algorithm and parallelized version

is then performed to ascertain performance improvement.

30

This is a different new approach as much of the research worked done before have

focused on sequence alignment algorithms which can be group into two approaches:

3. Dynamic programming such as Needleman-Wunsch or Smith-Waterman

4. Heuristic methods such as BLAST and FASTA

Dynamic programming methods are guaranteed to find all optimal alignments, but are

relatively slow; heuristic methods are faster but less precise (M.A. Kentie 2005).

4.2 Parallelism through multithreading

Multithreaded programs are similar to the single-threaded programs that are associated

with single path of execution. They differ only in the fact that they support more than one

concurrent thread of execution-that is, they are able to simultaneously execute multiple

sequences of instructions. Each instruction sequence has its own unique flow of control

that is independent of all others. These independently executed instruction sequences are

known as threads (Kevin Haghighat 2008).

4.3 Benefits of multithreading

Traditionally, programs are single-path execution, hence a single thread. This practice

would have made the production of today's software production impossible as the need of

speed required programs to perform multiple tasks and events at the same time. With

traditional turn-by-turn game, such as tic-tac-toe or chess, the traditional approach works

fine, however with new age multitasking programs where multiple events need to run in

parallel, the traditional approach proves useless (Kevin Haghighat 2008).

The benefits of multithreading can be summarized as follows:

Responsiveness: Multithreading allows a process to keep running even if some threads

within the process are stalled, working on a lengthy task, or awaiting user interaction.

Using a digital alarm clock as an example of a process, the thread of keeping track of

time, continues while an alarm is sounding while another awaits it's time to activate.

Cost Effective: Memory and resource allocation to process creation remains costly where

as threads share the resources allocated to the process they reside in making it less costly

to make threads or move them from one process to another.

31

Resource Distribution: The inherit property of sharing memory and resources of the

parent process fosters the ability of having multiple treads occupying the same address

space.

Cross-Processor Distribution: The benefits of multithreading are multiplied as the

number of available processors increase opposite to single threading where only one

processor is used. In a multiprocessor architecture, running of threads can distribute

across multiple processors in parallel thereby increasing efficiency (Kevin Haghighat

2008).

4.4 System Architecture

Client

Tier 1

Tier 2

Tier 3 □
Database

Figure 4.1Three Tier Model

i

32

Task Tier Description

User interface and

navigation

Tier 1 This layer provide a graphical user interface (GUI) so that users

can interact with the application, input data, and view the results

of requests, it also manages the manipulation and formatting of

data once the client receives it back from the server. A web

browser performs the tasks of this layer.

Business logic Tier 2 Business logic, which involves the rules that govern application

processing, connects the user in tier 1 with the data in tier 3.

The functions that the rules govern closely mimic everyday

business tasks, and can be a single task or a series of tasks

Data services Tier 3

Data services are provided by a structured (SQL database, XML

database) which manages and provides access to the data

contained within.

Table 4.2 Three Tier Model Description

4.5 Proposed Multithreaded Model for Damerau Levenhstein distance algorithm

Figure 4.2 Proposed Multithreaded Model for Damerau Levenshtein algorithm

The master process is responsible for the following tasks:

1. Sends source sequence S to the slave processes;

2. Partitions the target sequence T;

3. Sends a part of sequence T to each slave process;

4. Receives comparison results from the slave processes;

5. Sends termination message when M sequence is fully processed.

33

Each slave processes performs the following operations:

1. Receives part of target sequence T from the master process;

2. Processes sequence T part comparing it with the source sequence S;

3. Sends the comparison result to the master process;

4. Terminates when a termination message is received.

The processing stage of the computational model requires each slave process

independently to compare the source sequence and part of the target sequence following

Damerau Levenshtein distance algorithm. The communication stage requires the master

process to distribute data to the slave processes, gather the results and send new parts of

the target sequence to the slave processes. Communication between the master and the

slave processes is performed using synchronous communication.

34

Figure 4.3 Detailed parallel model
4.6 Back End (Database)

Bio-sequence details are stored in the SQL Server database. These details are stored as

tables in the database where tables are related with other tables using the primary key-

foreign key relationship. The table details are shown in Table 7.1.

Sequence Tabic

FIELD DESCRIPTION DATA TYPE

Name ID is a unique identifier VARCHAR
Definition A brief one line textual sequence

description

VARCHAR

Accession Number A Constant data identifier. VARCHAR

Complete literature

references

Literature references VARCHAR

Comments & keywords Comments and keywords VARCHAR

Important Feature All important features VARCHAR

Checksum Checksum line VARCHAR/

Sequence Sequence line VARCHAR

Table 4.3 Sequence table structure

/

35

4.7 Pseudo code for Danterau Leveinshtein edit distance algorithm
int DamerauLevenshteinDistance(char strl[1 ..lenStrl], char str2[l..lenStr2])

// d is a table with lenStrl + 1 rows and lenStr2+l columns
declare int d[0..1enStrl, 0..1enStr2]
// i and j are used to iterate over strl and str2
declare int i, j, cost

for i from 0 to lenStrl
d[i, 0] := i

for j from 1 to lenStr2
d[0,j] := j

for i from 1 to lenStrl
for j from 1 to lenStr2

if strl [i] = str2[j] then cost := 0
else cost := 1

d[i, j] := minimum(
d[i-l , j] + 1, // deletion
d[i ,j- l] + l, // insertion
d[i-1, j -1] + cost // substitution

)
if(i > 1 and j > 1 and strl [i] = str2[j-1] and strl [i-1] = str2[j]) then

d[i, j] := minimum(
d[i,j],
d[i-2, j-2] + cost // transposition

)

return d[lenStrl, lenStr2]

Parallize version pseudo code

send an appropriate part of string s to slave i

receive part of (s) and process it

Slave j — ► sen d s an o u tco m e o f p ro cessin g the part o f (s) to m aste r

M aster — ► rece iv e an o u tco m e from slave j

M aster __ ► sends a part o f s trin g s to slave j

Slave j — ► rece iv es part o f (s) and p ro cesses it

End w hile

For each slave i

Master— ►

Slaves—►

While not end of(s)

/

36

4.8 Damerau Leveinshtcin edit distance algorithm analysis

This algorithm calculates the cost of the so-called optimal string alignment, which does

not always equal the edit distance. It is also easy to see that the cost of the optimal string

alignment is the number of edit operations needed to make the strings equal under the

condition that no substring is edited more than once. We will also call this value a

restricted edit distance. As noted by (G. Navarro 2001) in the general case, i.e. when a set

of elementary edition operations includes substitutions of arbitrary length strings,

unrestricted edit distance is hardly computable. However, the goal is achievable in the

simpler case of Damerau-Levenshtein distance. It is also possible to compute unrestricted

distance treating reversals of arbitrary, not obligatory adjacent characters as a single edit

operation. To devise a proper algorithm to calculate unrestricted Damerau-Levenshtein

distance algorithm, there always exists an optimal sequence of edit operations, where

once-transposed letters are never modified afterwards. Thus, we need to consider only

two symmetric ways of modifying a substring more than once: (1) transpose letters and

insert an arbitrary number of characters between them, or (2) delete a sequence of

characters and transpose letters that become adjacent after deletion. The straightforward

implementation of this idea gives an algorithm of cubic complexity: O (M.N.max (M, N)

where M and N are string lengths. Using the ideas of (Lowrance & Wagner 1975) this

naive algorithm can be improved to be O (M.N) in the worst case

[http://cosmopedia.net/Damerau-Levenshtein_distance].

4.9 Performance Calculation

int LevenshteinDistance(char s[l..m], char t[l..n])
{// mat is a matrix with m+1 rows and n+1 columns

declare int mat[0..m, 0..n]
for i from 0 to m -..................................... -................0(m)

mat[i, 0] := i // deletion
for j from 0 to n ...0(n)

mat[0, j] := j // insertion
for j from 1 to n { ...——--------0(n)

for i from 1 to m { .. 0(m)
if s[i] = t[j] then
mat[i, j] := mat[i-l, j-1]
else

mat[i, j] := minimum (mat[i-1, j] + 1, // deletion
mat[i, j -1] + 1, // insertion
mat[i-l, j-1] + 1 //substitution)} }

return mat[m, n] }
Performance Calculation

37

http://cosmopedia.net/Damerau-Levenshtein_distance

Therefore,
T(n) = n + m + (n * m)

= n + m + nm
Since,

nm is the highest value.
Therefore,

T(n) = 0(nm)
Where n and m are the lengths of the strings.

5.0 Implementation

The objective of this project is to develop an online bio-sequence search engine using a

parallelized version of Damerau Levenshtein distance algorithm. When the user types a

biological sequence in the user interface, a Web Server is contacted to get the requested

information. In the .NET Framework, IIS (Internet Information Service) acts as the Web

Server. The sole task of a Web Server is to accept incoming HTTP requests and to return

the requested resource in an HTTP response. The first thing IIS does when a request

comes in is to decide how to handle the request. Its decision is based upon the requested

file's extension. For example, if the requested file has the .asp extension, IIS will route

the request to be handled by asp.dll. If it has the extension of .aspx, .ascx, etc, it will route

the request to be handled by ASP.NET Engine. The ASP.NET Engine then gets the

requested file, and if necessary contacts the database through ADO.NET for the required

file and then the information is sent back to the Client’s browser. Figure 21 shows how a

client browser interacts with the Web server and how the Web server handles the request

from client (Swapna Kodali 2007).

Web Server

4

ASP.NET
Engine

^ ASP.DLL

Figure 4.3 Client browser Web server interactions

38

5.1 Platform

In this research, local machine (HP Intel(R) Core™ 2 Duo Processors, CPU (1.80 GHz),

2 GB RAM and Windows XP Operating System) were used with Microsoft Visual

Studio.Net software 2010 version.The web-interface is developed using Microsoft

ASP.NET and XML Web Services with Internet Information Services (IIS) as the web

server. The report is written in detail with description of implementation, tools used and

details of testing, results obtained and conclusions drawn. A brief description of the

future work to be conducted in this area is also illustrated.
1 3 Home P a g * M icrosoft Internet Fxplorer B B S |

He Ed* view Pavwftw look Hoi>

Beck * * 2] ' i j h ' ; 'V F«vofte* ^ 1- • £ l 0

M * * - <£) http l / k x t h o * 1111/dneseweb/DetaA « t> * Q Go

IDNA SEARCH ENGINE

' .Start K e n a P ra x cM ... 3 HomePage-Mir... R w o rtfW IC q.. H w l A-.-tnuU [. 3 P'w frt Cocuire... A M yQwum w u H ' *■ o * f o

Figure 4.4 Search Engine Graphical User Interface

/

39

CHAPTER 5: EXPERIMENTAL RESULTS AND DISCUSSION

5.1 Presentation of results

We now present the results of running the parallel multithreaded and the serial Damerau

Levenhstein distance algorithm implementations. Tests are carried out on single

processor machine (one core system) and two processor machine (two core system). In

both cases the parallelized version performances is faster than the serial counterpart.

5.1.1 Results - Single Processor Machine

No Sample Size
Serial Damerau Levenshtein

distance algorithm

Parallel Damerau
Levenshtein distance

algorithm
1 100 101 66
2 200 197 112
3 300 292 167
4 400 390 216
5 500 486 262
6 600 584 310
7 700 679 367
8 800 775 407
9 900 870 525

10 1,000 957 556
11 1,500 1,444 839
12 2,000 1,926 1,129
13 2,500 2,407 1,281
14 3,000 2,889 1,637
15 3,500 3,363 1,992
16 4,000 3,848 2,076
17 4,500 4,321 2,588
18 5,000 4,809 2,898
19 5,500 5,305 2,906
20 6,000 5,699 3,465
21 6,500 6,185 3,583
22 7,000 6,663 4,171
23 7,500 7,475 4,315
24 8,000 7,944 4,753
25 8,500 8,216 4,899
26 9,000 8,785 5,830
27 9,500 9,204 5,500
28 10,000 9,616 6,080

'

t
Table 5.1.1 Results performance on uni-processor machine

40

12,000

10,000

8,000

6,000

4.000

2.000

o o o o o O o O O o o o o o
o o o o o o o o O o o o o o
t-H CO m <T> in ln m in m in Ln lO in

tH r s? c o in VO 00 oC

■ Serial Damerau
Levenshtein distance
algorithm

■ Parallel Damerau
Levenshtein distance
algorithm

Figure 5.1.1 Performance Comparison

5.1.2 Results - Two core processor Machine

No Sample
Size

Serial Damerau
Levenshtein distance

algorithm

Parallel Damerau
Levenshtein distance

algorithm
1 100 14 9
2 200 16 12
3 300 21 19
4 400 27 18
5 500 31 21
6 600 34 24
7 700 39 26
8 800 42 31
9 900 46 36

10 1,000 67 42
11 1,500 89 69
12 2,000 107 71
13 2,500 125 132
14 3,000 145 152
15 3,500 164 161
16 4,000 184 172
17 4,500 203 176
18 5,000 . 222 187 -
19 5,500 243 199
20 6,000 266 212

41

21 6,500 285 234
22 7,000 305 269
23 7,500 324 289
24 8,000 345 293
25 8,500 360 302
26 9,000 383 321
27 9,500 399 339
28 10,000 401 364

Table 5.1.2 Results performance on two core processor machine.

■ Serial Damerau
Levenshtein distance
algorithm

■ Parallel Damerau
Levenshtein distance
algorithm

Figure 5.1.2 Performance comparison

i

42

5.4 P erfo rm a n ce u n d er d ifferen t n u m b er o f th read s

5.4.1 One processor machine

No. of threads tlOO(s) t200(s) t500(s)
1 0.12 0.995 40.14
2 0.062 0.5 20.27
4 0.062 0.501 20.34
8 0.064 0.504 20.47

Table 5.4.1 One core processor performance of threads

Figure 5.4.1 One core processor performance of threads

/

43

5.4.2 T w o core p ro cesso r m ach in e

No. of threads tlOO(s) t200(s) t500(s)
1 0.053 0.387 6.504
2 0.058 0.333 4.181
4 0.082 0.354 4.321
8 0.162 0.402 4.642

Table 5.4.2 Two processor machine performance of threads

Figure 5.4.2 Two processor machine performance of threads

44

5.2 Discussion of results

5.2.1 Experimental results of serial and Multi-threaded algorithm

The multithreaded implementation of Damerau Levenhstein distance algorithm (both

single threaded and multithreaded algorithm have tested 28 DNA sequences using one

and two processors machines. The comparison results show that the multithreaded

version performs better than single threaded version. For a multithreaded version on a

single processor, a performance improvement of 36 % is realized compared to a single

threaded version. On a two processor machine, the multithreaded version performance

improvement was found to be 40% compared to single threaded version. The parallel

(multithreaded) Damerau Levenhstein distance algorithm achieved the reduction of the

execution time because of workload distribution among different threads. Each thread

worked on its sequences to perform comparison and calculate the similarity scoring

value. The word multithreading can be translated as many threads of control. While a

traditional process always contains a single thread of control, multithreading separates a

process into many execution threads, each of which runs independently.The improved

speedup is attributed to the benefits that arise from multithreading which are:

• Improved application responsiveness and better program structure - any program

in which many activities do not depend upon each other can be redesigned so that

each activity is executed as a thread.

• Efficient use of multiple processors - The algorithm can run much faster when

implemented with threads on a multiprocessor.

• Use fewer system resources - The cost of creating and maintaining threads is

much smaller than'the cost for processes, both in system resources and time.

Scalability is a concern with bio-sequence analysis. As volumes of data increase, it often

becomes necessary to distribute the workload over several threads (software parallelism)

or processors (Hardware parallelism).

5.2.2 Experimental results using different number of threads

Experimental results are shown for a number of threads and compared with single-

threaded results (speedup). Measurements were made on a low loaded system with no

other users logged on.

The algorithm speedup is reached only for sample sizes greater than 200. The reason for

this is the synchronization time between threads, especially at the ei)d of each step, when

45

all threads must be waited, and then started again.The results also show that speedup

decreases as the number of threads increases over the number of available processors.

The optimum is reached when the number of threads is equal to the number of

processors.

Based on the results presented above, we conclude that under certain conditions the

multithreading can improve the performance of the algorithm which are running on

multiprocessor system. If threads run independently or with very low communication,

speedup is only limited by the number of processors. If the communication between

threads is heavier, speedup can be reached only if the time of computation between

synchronization is at least several times greater than the synchronization time.

5.3 Recomendations

This project in an attempt to provide a solution to the above problems, we implemented a

multi-threaded version of Damerau Levenhstein algorithm. This algorithm was chosen

due to its appropriate nature to model biological mutations which are inherently common

in biological sequences. By parallelizing this algorithm using multithreaded

programming model, its speed is improved significantly.

Summarizing the developments in the parallelized Damerau Levenhstein distance

algorithm, we can state the major speed increase is the result of multithreading. Currently

the main development direction of processor manufacturers is the increase in the number

of cores (processors), so a parallelized version of this algorithm would be able to take

even better advantage of this trend in the future. We recommend a further research on this

by testing on more processors to ascertain its performance.

/

46

CHAPTER 6: CONCLUSION AND FUTURE WORK
6.1 Conclusion

From the results presented above, we can make a general conclusion that under certain

conditions; multi-threading programming can improves the performance of Damerau

Levenshstein distance algorithm. When threads run independently or with very low

communication overhead, speedup is only limited by the number of processors. If the

communication overheads between threads are huge, speedup can be reached only if the

computation time between synchronization is greater than the synchronization time.

When we observed the speedup using different number of threads, we observed that the

speedup slowly decreases as load increases, which is the result of a slower

communication overhead through the operating system.

Algorithms play an important role in bioinformatics and computational biology. This

helps in analysis of bio-sequences and thus facilitates the understanding of biological

processes through the application of statistical and heuristic techniques. Much of the

previous attempts have focused on sequence alignment algorithms, by implementing

Damerau Levenshtein distance algorithm and parallelizing it using multithreading

technology will usher in fresh insights in designing sequence comparison algorithms

using software parallelism (multithreading).

This prototype implementation of the Damerau Levenshtein distance algorithm

demonstrates that the algorithm can be parallelized for fast operation in searching

sequence databases and validates the usage of multithreading to increase the speed of the

algorithm (Damerau Levenshtein distance).This algorithm efficiently distributes the

patterns to be searched on multiple threads to achieve rapid sequence matching operation.

The algorithm is designed to fully exploit thread level parallelism to enhance searching

speed. By distributing a large number of patterns over multiple threads, the algorithm

shows better performance. From detailed experiments and performance analysis, our

algorithm shows remarkable performance gain compared to the original Damerau

Levenhstein algorithm. Our method provides a high performance multithreaded approach

which exploits both instruction level and data level parallelisms. On conclusion our

approach achieves performance enhancement through not only multi-threading but also

data decomposition. Summarizing the findings, we can conclude that the major speed
*

increase is the result of multithreading. Nowadays the main development direction of

47

processor manufacturer is the increase in the number of core processors, so

multithreading would be able to take even better advantage of this trend in the future. As

a future work, we will extend the algorithm further targeting today’s multi-core

processors

6.2 Future Work

I propose a further study on the Damerau Levenshtein distance algorithm on today’s

multi-core architecture machines.

The prototype developed has the capability of using one and two cores CPUs but 1 could

propose a further study on multiple cores (more than two cores) to measure the effect on

performance. Although this may turn out to be a challenging study but it might give a

new perspective on the study of parallelizing sequence comparison algorithms using

multi-threading programming model on multiple cores.

The following are high level further improvements on the above algorithm

implementation.

• Damerau Levenhstein algorithm can be enhanced by using more

processors to speed sequence comparison (We have used up to two

processors).

• Visualization of the output can be done by streaming the outputs to

available visualization tools.

• Statistical analysis and comparison of the results generated between

Damerau Levenhstein algorithm and sequence alignment algorithms on

the same dataset can be done to ascertain the optimal one between the two.

REFERENCES

1. Hunt, E Atkinson, MP &Irving RW 2001, ‘A Database Index to Large Biological

Sequences', Department of Computing Science, University of Glasgow,

Proceedings of the 27th VLDB Conference, Italy.

2. Park, JH & George, KM 1999, ‘‘Efficient parallel hardware algorithms for string
matching’, Microprocessors and Microsystems, vol. 23, pp. 155-168, USA

3. Gusfield, D 1997, Algorithms on Strings, Trees, and Sequences: Computer
Science and Computational Biology.: Cambridge University Press, New
York, NY

4. Needleman, S.B. & Wunsch, C.D 1970. ‘A general method applicable to the
search for similarities in the amino acid sequence o f two proteins ’. Journal of
Molecular Biology, 48(3), 443-53.

5. Damerau, F.J 1964, lA technique for computer detection and correction o f

spelling error's, Communications of the ACM

6. Baxevanis, DA & Ouellette, Francis, BF 2005, 'Bioinformatics: A practical guide

to the analysis o f genes and proteins’, New Jersey: John Wiley & Sons Inc

7. Gribskov, M McLachlan, AD & Eisenberg, D 1987, ‘Profile analysis: Detection

o f distantly related proteins’, Proceedings of the National Academy of

Sciences of the United States of America.

8. Bentley, DR 2006, ‘ Whole-genome re-sequencing. Current Opinion in Genetics &

Development’ Solexa Ltd, Chesterford Research Park, Little Chesterford,

Near Saffron Walden, Essex, CB10 1XL, UK

9. Lipson, A & Hazelhurst, S 2001, 'DNA Pattern matching using FPGAs', Annual

Pattern Recognition Association of South Africa Conference, 2001.

10. Houle, JL Cadigan, Henry, S Pinnamaneni, A Lundahl, S 2000, ‘Database

Mining in the Human Genome Initiative’, Whitepaper, Biodatabases.com,

Amita Corporation. Available: http://www.biodatabases.co.rn/whitepaper.html

11. Mahalingam, K & Bagasra, O 2003, 'Bioinformatics Tools: Searching for

Markers in DNA/RNA Sequences ’.Claflin University, Orangeburg,SC, USA

12. Hunt, E, Malcolm, Atkinson, P & Robert, W.I 2004, ‘A Database Index to

Large Biological Sequence’s, Department of Computing Science, University

of Glasgow, Glasgow, G12 8QQ, UK

49

http://www.biodatabases.co.rn/whitepaper.html

13. Cao, X Li, SC Ooi, BC Tung AKH 2006, 'An Efficient Model for Similarity

Search in DNA Sequence Databases’ Department of Computer Science,

National University of Singapore, Singapore, 117543

14. Smith, TF & Waterman, MS 1981, 'Identification o f common molecular

subsequences’ J. Mol. Biol., 147 195-197.

15. Pepper, L 2001, "SearchingSequence Databases', MPS Thesis

16. Wagner, R & Fischer, M 1974, 'The string-to-string correction problem',

Journal of the ACM

17. Durbin, R, Eddy, S Krogh & Mitchison, G 1998, ‘Bilogical Sequence

Analysis, Probabilistic Models of Proteins and Nucleic Acids. Cambridge

University Press, Cambridge UK

18. Albrecht, FF 2001, 'An indexed and parallelized search engine for similar

DNA sequences ’, Genoogle

19. Garey, MR & Johnson, 1990, ‘Computers and Intractability: A Guide to the

Theory o f NP-Completeness ’, W. H. Freeman & Co. New York, NY, USA

20. Bare, JC 2005, ‘ Applied Algorithms ’, University of Washington, USA

21. Pepper, L 2001, ‘Searching Sequence Databases, MPS Thesis’, Wells

College, Aurora New York

22. Hughey, R 1993, ‘Massively Parallel Biosequence Analysis', Technical

Report UCSC-CRL-93-14, University of California, Santa Cruz.

23. Loso, MD 2010,‘ Algorithms for efficient alignment-free sequence
/

comparison'

24. Bell, M 2009, ‘Animating String Searching Algorithms', New Castle

University

25. Knuth D., J. Morris, J. Pratt 1977, 'Fast Pattern Matching in Strings’, SIAM

Journal on Computing, Vol.6, No.2, pp.323-350.

26. Xao, C 2006, ‘Approximate Matching in Genomic Sequence Data ’, National

University Of Singapore

27. Pappas, NP 2003, 'Searching Biological Sequence Databases Using

Distributed Adaptive Computing’, Bradley Blacksburg, Virginia, 2003

50

28. Surendirath, S 2005, ‘Accelerating DNA sequential analysis through

exploiting parallel hardware and reconfigurable computing’, The University

of Cincinnati, India

29. Holloway, JL 1992, "Algorithms for String Matching with Applications in

Molecular Biology’, Oregon State University,USA

30. Sheik, SS Aggarwal, SK Poddar, A. & Sekar, A 2005, ‘Analysis o f string

searching algorithms on biological sequence databases’, Bioinformatics

Centre and Supercomputer Education and Research Centre, Indian Institute of

Science, Bangalore, India, 2005

31. Johnstone, J 2008, ‘A survey o f sequence matching and alignment

algorithms ’,2008

32. Mount, DW 2004, 'Bioinformatics Sequence and Genome Analysis’,Cold

spring Harbor Labaroty press, New Yor USA

33. Kattamuri, K.R 2003, ‘Algorithms for searching a Beowulf cluster’,

Melbourne Florida,USA

34. Koonin, G 1999, ‘ The emerging paradigm and open problems in comparative

genomics’. Bioinformatics,National Center for Biotechnology, USA

35. Pabbaraju, S 2007, ‘A DNA sequence assembly program that processes

genetic sequences to produce high quality counting sequences'

36. Russell, A & Hogg J 2001, ‘Biological Sequence Analysis', University Of

Washington, USA

37. Karp, SS & Rabin MO 1987, ‘Efficient randomized pattern matching

algorithms ’ IBM Journal of Research and Development, 32:249 260, USA

38. Berg, M & Sarha, T 2004, ‘Performance Comparison o f String Search

Algorithms ’.Finland

39. Anitha, V & Pooma, B 2005, ‘Improved Algorithm for Global Alignment

in DNA sequencing’

40. Kabir, M 2009, ‘Similarity Matching techniques for fault diagnosis in

electronics’, University of Tuebingen , Germany

41. Kukich, K 1992, ‘Techniques for automatically correcting words in text’

ACM Computing Surveys,USA

51

42. Cormen, TH 2000 ‘Introduction to Algorithms’, The MIT Press, Cambridge,

Massachusetts London, England

43. Levenshtein, VI 1965, ‘Binary codes capable o f correcting spurious

insertions and deletions o f ones ’, volume 1. 1965.18.

44. Smith F &. Waterman, MS 1981, ‘Comparison o f bio-sequences’, Adv. Appl.

482-489

45. Gotoh, O 1982, ‘An improved algorithm for matching biological sequences’

Journal o f Molecular Biology, vol. 162, pp. 705-708

46. Cormen, TH et al 1989, ‘ Introduction to Algorithms’, The MIT

Press,Cambridge, Massachusetts London, England

47. Primrose, SB 1998, 'Principles o f Genome Analysis: a guide to mapping and

sequencing DNA from different organisms.’ 2nd Ed. 1998. Blackwell

Science: Oxford. ISBN 0-632-04983-9.

48. Katam, S 2002, ‘ A Scalable Architecture for High Speed DNA Pattern

Matching'Master’s thesis, University of Cincinnati, Finland

49. Krawetz AS & Womble Dd 2003, ‘ Introduction to Bioinformatics', New

Jersey: Humana Press Inc,USA

50. Altschul, S.F. The Statistics o f Sequence Similarity

Scores, http://www.ncbi. nlm.nih.gov/BLAST/tutorial/Altschul-l.html

51. Myers, E 1991 'An overview o f sequence comparison algorithms in

molecular biology’, Tech. Rep. TR-91-29, Dept, of Computer Science,

University of Arizona.

52. Krane, D.E & Ramyer, M.L 2003 'Fundamental Concepts o f Bioinformatics’,

Pearson Education

53. Gusfield D 1999, 'Algorithms on strings , Trees and sequences', Computer

Science and Computational Biology, Cambridge University Press, UK

54. String searching
Algorithm,en.wikipedia.org/wiki/String_searching_algori thm[Online;accesse

d 6th March 2011]

55. Editdistance, http://www.cs.mcgill.ca/~adubra/teaching/comp202/edit_distanc

e .pdf[Online;accessed 7-April-2011].

52

http://www.ncbi
http://www.cs.mcgill.ca/~adubra/teaching/comp202/edit_distanc

56. Needleman-wunsch algorithm,

http://en.wikipedia.0 rg/w/index. php?title=Needleman-

Wunsch_algorithm&oldid= 116968647, 2007. [Online; accessed 6-May-

2011].
57. Smith-waterman algorithm, //en.wikipedia.org/w/index.php?title=Smith-

Waterman_algorithm&oldid=l26482240,2011. [Online; accessed 16th-June-

2011],

58. Needleman-wunsch algorithm,

http://www.maths.tcd.ie/~lily/pres2/sld009.htm. [Online; accessed 4th-April-

2011],

59. Stuart M. Brown. Needleman-wunsch algorithm,

http://www.med.nyu.edu/rcr/rcr/course/sim-sw.html. [Online; accessed 4th -

April-2011],

60. Paul E.Black. Smith-waterman algorithm,

http://www.nist.gov/dads/HTML/smithWaterman.html, 2006. [Online;

accessed 12th-March-2011],

61. M.A. Kentie, Biological Sequence Alignment Using Graphics Processing

Units http://kentie.net/article/thesis/thesis.pdf [Online; accessed April-2011]

62. Anderson, R., Francis, B., Homer, A., Howard, R., Sussman, D. and Watson.

(2001) Professional ASP.NET. Wrox Press Ltd.

1

53

http://en.wikipedia.0rg/w/index
http://www.maths.tcd.ie/~lily/pres2/sld009.htm
http://www.med.nyu.edu/rcr/rcr/course/sim-sw.html
http://www.nist.gov/dads/HTML/smithWaterman.html
http://kentie.net/article/thesis/thesis.pdf

APPENDIXES

1.1 Damerau Levenshtein algorithm
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.10;

namespace DNAProject
{

public class DamerauLevenshtein
{

private char[] compOne;
private char[] compTwo;
private int[,] matrix;
private Boolean calculated = false;

public DamerauLevenshtein(Strim> a, Striim b)
{

if ((a.Length > 0) || (b.Length > 0))
{

compOne = a.ToCharArray();
compTwo = b.ToCharArray();

}
}

public int[J getMatrix()
{

setupMatrix();
return matrix;

}

public int getSimilarity()
{

if (Icalculated) setupMatrix();

return matrixfcompOne.Length, compTwo.Length];
}

private void setupMatrix()
{

int cost = -1;
int del, sub, ins;

matrix = new int[compOne.Length + 1, compTwo.Length + 1];

for (int i = 0; i <= compOne.Length; i++)
{

matrix[i, 0] = i;
}

for (int i = 0; i <= compTwo.Length; i++)
{

matrix[0, i] = i;
}
for (int i = 1; i <= compOne.Length; i++)
{

for (int j = 1; j <= compTwo.Length; j++)

54

{
if (compOne[i - 1] == compTwo[j - 1])
{

cost = 0;
}
else
{

cost = 1;
}

del = matrix[i - 1, j] + 1;
ins = matrix[i, j - 1] + 1;
sub = matrix[i - 1, j - 1] + cost;
matrix[i, j] = minimum(del, ins, sub);

if ((i > 1) && (j > 1) && (compOne[i - I] = compTwo[j - 2]) && (compOne[i - 2] == compTwo[j
)

{
matrix[i, j] = minimum(matrix[i, j], matrix[i - 2, j - 2] + cost);

}
}

}

calculated = true;
//PrintMatrix(matrix, "###0", @"c:\dumpt.txt");
//displayMatrix();

}

private void displayMatrix()
{

Console.WriteLine(" " + compOne);
for (int y = 0; y <= compTwo.Length; y++)
{

if (y - 1 < 0) Console.Write(" "); else Console.Write(compTwo[y - 1]);
for (int x = 0; x <= compOne.Length; x++)
{

Console.Write(matrix[x, y]);
}
Console. WriteLine();

}
}

private int minimum(int d, int i; int s)
{

int m = int.MaxValue;
if (d < m) m = d;
if (i < m) m = i;
if (s < m) m = s;

return m;
}

private int minimum(int d, int t)
{

int m = int.MaxValue;

if (d < m) m = d;
if (t < m) m = t;

return m;
}

55

private void PrintMatrix(int[,] M, string format, string path)
{

string row =

row =" " + compOne + "\n";
DumpToFile(path, new string[] { row });
row =
for (int y = 0; y <= compTwo.Length; y++)
{

row +=
if (y - 1 < 0)

row +="
else

row += String.Format("{0. 8:c}", compTwo[y - l].ToString());
for (int x = 0; x <= compOne.Length; x++)
{

row += String.Format("{0, 8:c}", matrixfx, y].ToString());
}
row +=
DumpToFile(path, new stringfl { row });
row ="";

}
return;

}
private void DumpToFile(string path, string[] linesToWrite)
{

using (StreamWriter sw = I ile.AppendText(path))
{

//File.WriteAllLines(path, linesToWrite);
foreach (string text in linesToWrite)

sw.WriteLine(text);
}

}
}

r

56

1.2 Bio-sequence search engine

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using dnase;
using System.Diagnostics;
using System.Threading;
using System.Threading.Tasks;
using System.Collections.Concurrent;

namespace DNAProject
{

public class PEI
{

int tP;

public int TP
{

get { return tP ;}
set { tP = value;}

}
string nM;

public string NM
{

get { return nM; }
set { nM = value;}

}
int x;

public int X
{

get { return x; }
set { x = value;}

}
long y;

public long Y
{

get { return y ; }
set { y = value; }

}
int tC;

public int TC
{

get { return tC ;}
set { tC = value; }

}

}
public class KVP
{

string key;

public string Key
{

57

get { return k ey;}
set { key = value;}

}
int value;

public int Value
{

get { return this.value; }
set { this.value = value;}

}
}
public class dnase
{

public List<K.VP> GetPerc()
{

List<K.VP> 1st = new List<KVP>();
for (int i = 10; i < 100; i++)
{

lst.Add(new KVP
{

Value = i
});

}
return 1st;

}
public List<PEI> Perf(string segment, int percentage)
{

List<PEI> 1st = new List<PEl>();
using (DNADataClassesDataContext db = new DNADataC'lassesDataContext())
{

int count = db.DNATables.Count();
long ElapsedMilliseconds;
int px = 0;
while(true)//px < count)//for (int i = 1; i <= 10; i++)
{

px = (count >= 100 ? (px < 1000 ? px + 100 : px + 500): count);
if (px > count) break;
SearchSequential(segment, percentage, px, db, out ElapsedMilliseconds);
lst.Add(new PEI
{

NM = "SERIAL",
X = px,
Y = ElapsedMilliseconds

});
int threads = SearchParallel(segment, percentage, px, db, out

ElapsedMilliseconds).Select(x=>x.ThreadID).Distinct)). Count();
lst.Add(new PEI
{

NM = "PARALLEL",
X = px,
Y = ElapsedMilliseconds,
TC = threads

});
}

}
return 1st;

} >
public List<DNAI> Search(string segment, int percentage, int algorithm, out long ElapsedMilliseconds)
{ ■ '

58

using (DNADataClassesDataContext db = new DNADataClassesDataContext())
{

int count = db.DNATables.Count();
if (algorithm == 0)

return SearchSequential(segment, percentage, count, db, out ElapsedMilliseconds);
else if (algorithm == 1)

return SearchParallel(segment, percentage, count, db, out ElapsedMilliseconds);
else

return SearchSequential(segment, percentage, count, db, out ElapsedMilliseconds);
}

}
private List<DNAI> SearchSequential(string segment, int percentage, int count,

DNADataClassesDataContext db, out long ElapsedMilliseconds)
{

segment = segment.Trim().ToUpper();
if (segment.Length == 0)

throw (new Exception("Search string parameter is required."));

Stopwatch sp = new Stopwatch();
sp.Start();
List<DNAl> 1st = new List<DNAl>();

int sim = int.MinValue;
int lng = 0;
int mtc = 0;
var dQ = from d in db.DNATables.Take(count)

select d;
foreach (var dna in dQ)
{

DamerauLevenshtein dl = new DamerauLevenshtein(segment, dna.sequence);
sim = dl.getSimilarityO;
lng = dna.sequence.Length;
mtc = lng - sim;

if ((mtc * 100) / lng >= percentage)
{

lst.Add(new DNA I
{

Id = sim,
Name = dna.Name,
Definition = dna.Definition,
Sequence = dna.sequence

});
}

}

sp.Stop();
ElapsedMilliseconds = sp.ElapsedMilliseconds;
if (Ist.AnyO)

1st = (from 1 in 1st
orderby l.ld
select l).ToList();

return 1st;
}
private List<DNAl> SearchParallel(string segment, int percentage, int count, DNADataClassesDataContext

db, out long ElapsedMilliseconds)

{ 1 ' segment = segment.Trim().ToUpper(); x
if (segment.Length == 0)

5 9

Stopwatch sp = new Stopwatch();
sp.Start();
List<DNAI> 1st = new List<DNAI>();

var dQ = from d in db.DNATables.Take(count)
select d;

object monitor = new object();

Parallel.ForEach<DNATable, List<DNAI»(dQ , () => new List<DNAI>(), (dna, loop, list) =>
{

int sim = int.MinValue;
int lng = 0;
int mtc = 0;
DamerauLevenshtein dl = new DamerauLevenshtein(segment, dna.sequence);
sim = dl.getSimilarityO;
lng = dna.sequence.Length;
mtc = lng - sim;
if ((mtc * 100) / lng >= percentage)
{

list.Add(new DNAI
{

Id = sim,
Name = dna.Name,
Definition = dna.Defmition,
Sequence = dna.sequence,
ThreadlD = System.Threading.Ihread.CurrentThread.ManagedThreadld

});

}
return list;

},
(finalResult) => { lock (monitor)lst.AddRange(finalResult);});

sp.StopO;
ElapsedMilliseconds = sp.ElapsedMilliseconds;
if (Ist.AnyO)

1st = (from 1 in 1st
orderby l.ld
select l).ToList();

return 1st;
}

throw (new Exception("Search string parameter is required."));

}

}

1.3 Database connection
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using dnase;

namespace KeneiProject
{

public class Database
{

public static bool DNAValid(string dna)

60

{
dna = dna.Trim().ToUpper();
if (dna.Length == 0) return false;

var vQ = from v in dna.ToCharArrayO
where v != T && v != 'G' && v != 'A' && v != 'C'
select v;

if (vQ.AnyO)
return false;

else
return true;

}

public static DNATable GetDNA(string name)
{

name = name.Trim();
if(name.Length == 0)

throw) new Exception("DNA Name parameter is required."));

DNATable rv = new DNATable));
using (DNADataClassesDataContext db = new DNADataClassesDataContext)))
{

var dQ = from d in db.DNATables
where d.Name = name
select d;

if (IdQ.Any)))
throw (new Exception("Given DNA id e n t if ie r + name + does not exists."));

rv = dQ.First));
}
return rv;

}

public void DNAInsert(DNATable dna)
{

dna.Name = dna.Name.Trim));
if (DNAValid(dna.sequence))

throw) new Exception("DNA sequence contains invalid characters."));
using (DNADataClassesDataContext db = new DNADataClassesDataContext)))
{

var dQ = from d in db.DNATables
where d.Name ==* dna.Name
select d;

if(dQ.Any())
throw) new Exception("Given DNA id e n t if ie r + dna.Name + already exists."));

db.DNATables.InsertOnSubmit(dna);
db.SubmitChanges));

}
}

}
public class DNAI
{

private int threadID;

public int ThreadID
{ , . . .

get { return threadID; } i

set { threadID = value;} \ '

} ’

61

public int Id
{

get { return id ;}
set { id = value;}

}

private string _Name;

public string Name
{

get { return Name; }
set { Name = value;}

}

private string Definition;

public string Definition
{

get { return Definition;}
set { Definition = value; }

}

private string _AccessionNumber;

public string AccessionNumber
{

get { return AccessionNumber; }
set { AccessionNumber = value;}

}

private string _Sourceandtaxonomy;

public string Sourceandtaxonomy
{

get { return Sourceandtaxonomy;}
set { Sourceandtaxonomy = value; }

}
private string _CompleteliteratureReferences;

public string CompleteliteratureReferences
{

get { return CompleteliteratureReferences;}
set { _CompleteliteratureReferences = value;}

}

private string Commentsandkeywords;

public string Commentsandkeywords
{

get { return Commentsandkeywords;}
set { Commentsandkeywords = value; }

}
private string _FEATURE;

public string FEATURE
{

get { return _FEATURE; }

private int Jd;

62

}

private string _summary;

public string Summary
{

get { return summary;}
set { summary = value; }

}

private string sequence;

public string Sequence
{

get { return sequence;}
set { sequence = value;}

}

set { _FEATURE = value; }

1.4 Sample screens for Bio-sequence search engine

3 Home Pane M lcraiott Internet Explorer

He E<* Vie** Fevorte* look Hefci

O '" • O Is) IbI <S / ‘>VF*"»“ © :> • <• ■ £L 0 3

i Start <«r«*rtr»rt-M ... 3 H in t- r» jr r * . Q Re-e.il-'eif [Cij... Q PoelA tien)'! [... Q Cxxi.nr . I ft My Cuxir.*** B 1 * () r l b O - * ‘ U : am |

1.5 Sequential Search

1 3 H om e P ag e M ic ro io ft In te rn e t f xp loror 1 - * | X | |

H e Cdt View Fevortw Took Help

O0** * O 13 S) fi > “«* 1 ■ *• tx 0 si
* ■

(■<*'- < 4) hUp://loc«lKMl:ll14^e$e<*efc/DefeJ« etp» v £ J Go . r 1 i *

I d n a s e a r c h e n g i n e

DNA SEARCH ENGINE
[BO * j AACAC AATTACTATTCAAAICAFTATTCCACATCATAAAACAAACI

f!\ior.tn-n; (S iq ir tr till -

f j S ta r t Kenetfrcloct M.. 3 hu*. .Mr... Q Tno Afe>K*>:l !• PotsctDo:!**. . lA Pv Coo.merU Q Mfc wot D::d H f

1.6 Sequential search results

64

11 Search R em it* M icrosoft Internet f sp in ie r

Rlt [< t V lw Favorites Toch He*

1.7 Parallel search
HHomePagp Microsoft Internet fip lo re r

FSe Cdk View Favorites Tooli iH t

I- "■* rx|i
Jr

1.8 Parallel search results /

65

1 Ik Search Results Microsoft Internet Explorer 0 (» ® |
Fto Edt View Favortes Tool* Hefc

© n * * • i j j J i j i i ;J) > r * ,or" ’ 4 2) i (t_ t- *■ t? • A i 0 - i

*

Id http:/floca**o*t:llM/dnasow«b/Ro»ulU.a»rw v Go tt> ■ n

DNA SEARCH ENGINE
H O M E

DNA SFTIIP
P « for w art s

Taiarch Results r 5 ,4 * i ms

Vol Name Sequence

Start KondPraje: .. 3 *Ui«cF r*«»i j j) *f«»l Attwnp. { f l ftofwtOec.. • My Documents Q Mkrateft Exed

/
/

6 6

1.9 P e r fo r m a n c e c o m p a r iso n s

3 Performance Microsoft Internet I xplorer

Ne W Vlw Favor iter Took Help

Q Back * £ [*] Lk] Search v̂Favortea (p * • ̂ l! ’ u . , H 0 ^
‘'• to m ^K tp ://tara*xR t HH/i^^a>veti/Pe»farTMrce.a

SEARCH ENGINE

•t •

— z.a«. .ris 1w~

. KO H » ™ r 1nC | Ne*rt

Performance Chart

500 1000 3600 6000 8600
Semples

^ Local intranet

start KsnePio ec: V .. J p« r « » « r •M $: '°ject Ooxmo.. A My Dxume-fe Q r-kroicft uca Tn 3CI Erie .. W f * /.* O f c o- 12:17 PK

67

