

PUBLIC RECORD OFFICE

CO 533/499

ORDER NO. a475 CAMERA NO. A19 OPERATOR. sEM REDUCTION. $\Rightarrow 12$ EMULSION NO.』341081 DATE. \&28/8/72

CROWN COPYRIGHT

THESE COPIES ARE SUPPLIED FOR INFORMATION AND RESEARCH ONLY-NO REPRODUCTION MAY BE MADE FOR PUBLICATION WITHOUT THE ASSENT OF THE PUBLIC RECORD OFFICE

38299

Joctse Fly Contiol.

SuF F Stochtale 16
MS. W. Smant
hi goins
18

303	22
298	$4 / 7$
2.197	$2 / 12$

$R_{309} \frac{2 / 2}{2}$
21.7
s. Sman 111
S.f. Stomuna $\%$

MiPani- 4
Mis 1
2. of ay ju4
a yoctos
Mi Sh. Small.
HXN ave

$$
S_{4} \text { F. Stinde }
$$

tiree.

 Tactie by concle.

$$
\stackrel{d}{2} \text { finkele }
$$

$$
\pi / 2 .
$$

the epat covers perogrees of chs

- scheme anterpent bo the dua when she finder parnion from the bof were exhanctes. It -1 intercoting b rook chat chere is gove reason o beliere chat, as react of the maares which hav buen saben, dexpery didenes mies be entindy eleminates from the duitint in prestion.

On che whe 1 donct which it a i

$$
\begin{aligned}
& \text { Anlargent to } 1935 \text { after eapendiline of the }
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow y^{2}+\log -2= \\
& \text { - }-\sin \text { a - - } \\
& \rightarrow r+1 \& 5+4 \\
& \text { LAJmal } \\
& \text { The intur Kinher } \\
& \text { EHeluants S } \\
& \text { Fs Stribide. } \\
& \text { Ittux } \\
& \text { Hpawe }
\end{aligned}
$$

$$
\begin{aligned}
& \text { HU }
\end{aligned}
$$

3
Kenya 736
durdo copy of repent ley in CB Sy.n.. oneperuments in the maducation of glosema polpale on the shois of hake thetone boumance gionenaely an propres nelater
$?$ No actimi nequines beyous seniving botie EAC be to cosper X of lie Repat when then arnve Plovighuclé $29 / 12$
then infine He achin i- Hat wanes 1 Sm
F. Strindele.
 3

Jum on puoposi is $m=$ coscey weite

the refoot is ancer arosern x N

 ay' $6=1 /=0$
Pa flink dole

$$
\begin{aligned}
& 9.9 \text { Podemin } \\
& 4 / 1 \text { anmer }
\end{aligned}
$$

4 bh $\sec 3 p$ n $-1012 / 38$ JESTROYER UNDER SHTUTE Ref 3: tro lwenty eopies of Report for tramsmision to \& $A \cdot b$

Action as drected in minute of 41 sebove i^{i} seni lase 20 copins in 2 the $\angle F$ ref (2) Ccontrululé 14/1 atruc

$$
4
$$

$$
\int \sigma_{0}: Y_{\text {cec }} E A \text {-Camal }(\operatorname{L} / 20 \text { c.ence } 4) \beta_{18} \cdot 24139
$$

Government House NalRoBi

Kenya

DECKMBER, 1938.

Sir,
I have the honour to refer to Sir Armigel Wade's despatch No. 161 of the 12th March, 1937, and to transmit, for your information copy of a report by Mr.C.B.Symes, Medical Bntomologist and Mr.R. Southby, Reclamation Officer, on experiments in the eradication of Glossina palpalis on the shores of Lake Victoria. Twenty additional copies of this report are being forwarded under separate cover for transmission to the Tsetse Fly Committee of the Bconomic Advisory Council.
2. This report describes the results of the second part of the scheme for the eradication of Tsetse fly, the first part being the subject of a report which was transmitted under cover of the despatch under reference. This scheme has been partly financed from a grant of $£ 6,160$ from the Colonial Development Fund towards the cost of experiments in Tsetse fly control, to which approval *as given in despetch No. 927 of the 22nd December, 1932, from Sir Philip anliffe-Lister (now Lord Swinton).
3. You will observe from the report that methods which were successfol in eliminating G. palpalis from river areas have not achieved
the same measure of success in the Lake shore ares, though they did succeed in heavily reducing the infestation. Valuable experience has, however, been gained and there is reason to believe that hand-catching methods can be successfully and economically employed even in areas where the degree of infestation is high.

Funds are being provided for the continuation of the experiment, which it is hoped will succeed in completely eliminating G. palpalis from this area. A foll report on these further endeavours will be transmitted in due course. I have the honour to be, Sir, Your most obedient, humble servant,
 tor
AIR CHIEF MARSHAL GOVERNOR.

COLONY AND PROTECTORATE OF KENYA

THE REDUCTION OF G. PALPALIS IN a LaKE SHORE AREA BY THE "BLOCK" METHOD

(An experiment facilitated by a Grant from the Colonial Development Fund)

BY
C. B. SYMES

MEDICAL ENTOMOLOGIST
AND
R. SOUTHBY

RECLAMATION OFFICER

CONTENTS

PAGE
I. Introduction 1
II. Area Concerned
(a) Description 2
(b) Climate 2
(c) People 2
(d) Fauna 3
(e) History of Sleeping Sickness 3
III. Clearing-Descriftion and Costa 4
IV. Reduction or G. palpalio in Each Block and Costs 7
V. Points of Intehket-
(a) G. palpalis and Vegetation 19
(b) Breeding Grounds 19
(c) Trapping 2 1-
(d) Pupal Period 22
(e) Proportion of the Sexes 23
(f) Breeding Season of G. polpalis 23
(f) Seasonal Increased Adult Activity of G. Palpalis 24
(h) Movernent and Spreed of G. palpalie 24
(k) Recovery of G. palpalia Populations after Reduction in Numbers 25
(l) Other Species G. pallidipes and G. brevipalpis 26
(m) Human Trypanosominsis 27
VI. Oquupation and Development 27
ViI. Summary and Concluston 28
References 28
Apprendices 1a, Ib, II \& III 29
Lhart - Block A Fly ReductionB Fiy Reduotion.C South fly Reduction.C North Fly Reduction.
Map of Absa

I-INTRODUCTION

In a previous report ${ }^{(1)}$ a detailed account was given of the "Block" method of eliminating G palpalis from river areas. The present report deals with an attempt to apply the same method to an area on the shore of Lake Victoria.

The experiment, which extended over two and a half years, was made an essential part of a scheme drawn up by the District Commissioner, Central Kavirondo, for the economic development of a fertile part of the lake shore that had been unoccupied for many years.

An officer (R.S.) already in the employ of the Administration on reclamation work and with much experience of anti-tsetse (palpalis) clearing. was put in charge.

Funds were from two sources - $£ 1,640$ from the Colonial Development Fund and $£ 2,400$ (in cash or labour) from the Local Native Council.

The latter was used both for the more specific measures against palpalis and for general development. For instance, clearings were made initially to isolate blocks of infested bush, but they were made considerably larger than would be necessary for thisepurpose in order to provide safe land for the early production of crops. The additional clearing for such development was provided by local funds or effort. Two clearings (Nos. 5 and 6) were made entirely from local funds.

Considerable help was provided by the Local Native Council for the wages and food of fly boys and pupa collectors-work specifically connected with the eradication of G. palpalis rather than with general development. And for the last six months of the experiment only Local Native Council funds were available for all items.

Actually both funds were expended on all main items of the work except the Sio Road, Port Victoria Pier, änd clearings No. 5 and 6. These were paid for from local funds.

The decision to make clearings big enough to provide land for safe and early planting and to allow such planting to proceed before tsetses in neighbouring bush had been reduced, was made for three main reasons :-
(a) To maintain the interest of the local population.
(b) To ensure adequate occupation of the whole area; and
(c) to enlist the aid of the general poputation in cleaning up the cleared areas.

No cultivation was permitted however within 200 yards of infested bush and low crops only were sanetioned. There was of course a degree of risk but results have shown that it was negligible. Monthly medical inspection of staff and of immigrants to the area was of course cartied out to detect early infection.

There was never any lack of settiers. Such was the enthusiasm that the main difficulty was to prevent planting in the 200 yard safety margins.

We have to admit that such early settlement is not without its disadvantages. For with settlement goes fishing and other lacustrine activities and the many canoes travelling between treated and untreated bush undoubtedly help reinfestation of treated areas and so prolong the work of elimination.

It will be seen that G. palpalis has not been eliminated from any of the blocks. One reason for this is that palpalis of the lake shore is very different from palpalis of river areas. Its densities are extremely high and the short period catches employed for the preliminary measurement of such densities appear to provide little idea of its true population. Our rough estimates of possible numbers to be dealt with were very wrong.

It is now obvious, too, that one man, however efficient and energetic the same time carry out large sly elimination experiment of this kind and at We schemes of general development

Weather delayed the clearing work and a lack of trained boys in the early stages delayed fly reduction.

But these explanations are not perhaps an adequate reason for the some what disappointing reduction of fly. The main fautit lies in the inithal decision made by one of us (C.B.S.) to oeal with an area so large. Plans were based to some extent on work done in river areas but insufficient allowance was made for the unknown factors in lake shore areas.

However, the experiment has provided useful data on lake shore palpalis and the application of this method of eradication. We hope to be able to complete the reduction of fly in the near iuture

We wish to record our gratitude to Captain Davenport, District help and to succeeding Kavirondo, for continuous support and ungrudging regular medical inspections of staff and of immigrants

II-AREA CONCERNED
(a) Description

The portion of infeved lake shore selectat for treatment runs southwards merth $13^{\circ} \mathrm{N}$ latituide) to the most westerly point fourtcen the Namat River mouth. The total length of coast line is abou Wurtect miles wee $\quad \mathrm{mv}, \mathrm{H}$ it consists generally of fairly sharp and rocky codlands and wide hay. Ite former are well covered with belts of denky whith wien. or papyru.
about thres
(M) feet nuph 700 to further south wher hulls diner bare except around a! Nzaiagobe. A little (1) the 'in steop and rinky promontones about two miles noses, run westerly River mouth Near the suibernones about two miles north of the Nzoia Railway The stopes of tis old pien were to be the terminus of the Uganda have been uxed for the foundatioper of the new discovered in dense papyrus and A itrip of the Nroid River in the neighbuurhoed of aus Included in tik operdtions sthe or washorionga Hill infecton
(b) Climate
and 1_{t}.
Whe "uct seasun" appears to begin in December or January and reac are 1 sinuery ins Jettert months during the period of observation arted in Juty, 1936 and Jand February to May, 1937. The "dry" season

The wolest main occurred every month
and August-whilst the hottest periollowing the wet season-June, July unuary. just before the rains began. period was September to December or

> Before work commenw (c) People

1llages exp,ted in Sisenya and Emareng but few people in the area. Smal nd lahe, and the hills themselves were for the miensive slopes between hills useless. The flat lands a'ong the Nzoia River mowever pappoccupied and Mense population which extended into the wide neck beiween Oted a fairly Mwita (Sungwa) Hills

The people are mostly Samia, a tribe cut in two by the Kenya-Uganda border. They are separated from their neighbours, the Manyalla, by the Nzoia River.

Both tribes are active agriculturalists, relatively industrious, progressive and prosperous. They produce large quantities of matama (a tall millet). maize, sweet potatoes and muhogo (cassava) for food, and cotton, sim-sim (sesame) and groundnuts for export. Sugar cane and bananas are grown in large quantities for food or barter along the Nzoia River. Their enthusiasm for occupation of the lake shore is a measure of their desire for more and better crop lands.

Fishing has always been carried on by certain families. Before our work began a few canoes were centred on Port Victoria. Now there are many based upon each clearing

There are no cattle: G. pallidipes infests the hills and spreads into the shore lands

d) Fauna

Animals most frequently seen are hippopotamus, crocodiles and monitor lizards.

A herd of buffalo is said to inhabit the bush on the Nzalogobe hills and Block E. Leopards are numerous on and around the hills and monkeys in the heavier lake shore bush. Bushbuck, waterbuck, wild cat and mongoose are also present whilst rats, small lizards and snakes are numerous.

Birds, not as numerous as usual on the lake shore, include the magnificent fish-eagle, hawks, duck, geese and the usual varieties of cormorants and egrets. Inland there are guinea-fowl and spur-fowl.

Crocodiles were particularly numerous in Blocks 4. 5 and 6 , at the beginning of operations. They have since been frightened off by our activities. These with hippos, monitor lizards and perhaps snakes, were the most obviously accessible hosts of \boldsymbol{G}. palpalis. No precipitin tests were carried. out on stomach contents however.

(e) History of Sleeping Sickness

Little information is avaitable with regard to past infection in this area: Carpenter ${ }^{(2)}$ states that during his investigation in 1924, the Samia people. whom he questioned "stoutly affirmed" that the epidemic of 1903-4 had not affected them: But Sumba Island, lying some two miles west of the most southerly point, had apparently become infested from Sigulu, and its population had suffered severely. He states also that many of the people whom he net in this area had definitely come from Sigulu which had been heavily infested and completely evacuated.

There is no doubt that fishing has been carried on in this district for many years and as far as one can ascertain the most favoured fishing grounds are around -Sumba and Sigulu islands. Why contact with these infected islands did not lead to infection on the mainland is difficult to explain-for hishermen live for days at a time on their fishing grounds-except by assuming that at the tume of the epidemic population was too scanty

The present chief of the district and his older tribal counsellors maintain that the area was evacuated long ago because of slecping sickness. Against this is the evidence produced by Carpenter, and also the absence of derelict villages such as one finds in most old stricken areas of Kavirondo

That a serious degree of infection occurred in later years is shown by McLean ${ }^{(2)}$ who recorded 74 cases during his survey in $1930-1$. He states in litt. that "about 19 of the cases lived near Nachasionga Hill on the Nzoia and were presumably infected there since they included quite a number of children of the 'goat-herding' stage." The remainder used the lake shore around the present scene of activities (i.e. Port Victoria)

The significant point is that thts area was oceupied only at the southern occupation produced serious infection.

III-CLEARINGS

In the sitis - m-Clearincs

suitability of the hinterland for agriculture and factors were ease of clearing. blocks between such clearings. It has already seetlement. and the size of clearings were made essentially to cut the contineen pointed out that though blocks of a convenient size to be dealt with provide land for immediate developme they were made big enough to
Generally speaking therofore, clearings were sited in bays with their
gently shelving spores and lighter vegetation. The denclater heavily infested headlands, too rocky uetation. The densely wooded and though valuable as sources of timber and wally for any form of agriculture, left as fly "blocks" to be treated to measures of were therefore conveniently

Where papyrus, cane grase or
areas selected for clearings, they were pulled ourd part of the vegetation of This is slow and costly work and though a out as completely as possible absolutely necessary for purely anti-tsetse reasons, deal of it was perhaps not ment 7 he open lake with its clean water, bathing facilesirable for developair had to be substituted for stifling green walls, stagilies, fishing and fresh mosquitoes

Bush and trees were felled and burned. Their stumps were eradicied hy "stumping" and burnmg Ambatch, a strageing tumps were eradicated prol:ically actually in the water along the lakge thorny tree that grows water! !-vel to ;revent its re-growth
(مsts given below do nut include
tait This is included in the allowated costs in I Headquaters camp and
(1) Locution Between (a) Clearing No. 1 area ('ee map)

Between blocks A and B at the south western end of the
(2) Dtmensions Total clearing - 68 acres with a lake frontage of 756
ards.
(3) Costs for labour and toond.-Sh. 1.817/20, of which Sh $1.373 / 73$ Calue from the Culonial Development Fund.
(4) Origutal bush A wide iriage of
batch backed by a few trees, dense scrub and creeper grass. papyrus and am-- (5) Pregress of clearing. The scrub and creeper growth
©papyrus began on 25 th July, 1935, and was compheted removal of reeds and Burning was carried out in August, 1936, and final on 5th September, 1935. (16) I isent state A small amount of recd gropering up in Agril, 1937. watu's edge The stony siopes are grass covered and is appearing near the most of the land that is suitable for crops of any kind native gardens occupy

$$
\text { (b) Clearing No. } 2
$$

(1) Location. East of block B

$$
\begin{aligned}
& \text { (2) Dimensions. - The original cle } \\
& \text { ended. It is now ahou }
\end{aligned}
$$

extended It is now about $1 \frac{1}{2}$ miles longig with 800 yards frontage wa Much of the area required little or no clearing except on its ctually cleared with Colonial Development Funds on its lake edge. Land local funds 182 acres.
(3) Costs were Sh. 2,640/33 of which Sh. 2,216/60 the Colonial Development Fund.
(4) Ortginal bush.-Reeds and papyrus occurred along a great part of the shore with dense bush and clumps of trees behind. In most places however the bush was narrow. At Port Victoria the papyrus belt was particularly wide
(5) Progress of clearing.-The original small clearing was started in May, 1935. Felling was completed on June 25th and burning commenced on 13th December, 1935. Extensions have been added at various times and a great deal of clearing done in the region of the new port.
(6) Present state.-New growth has re-appeared in some parts. Generally id the area has been well maintained. Many gardens have been established, producing cotton, maize and millets. At Port Victoria a new pier constructed for dhow traffic is promoting local trade and serving as a much needed port of call and harbourage for trans-lake dhows.

(c) Clearing No. 3

(1) Location.-In a small bay just south of Nzalagobe headland. It eparates the dense bush of the headland from a strip of infested shore. (Block C south) at Iludacho.
(2) Dimensions.-The initial clearing of 85 acres with a frontage of 800 yards has been extended southwards to include a small rocky headland and its hinterland of $16 \frac{1}{2}$ acres.
(3) Costs were Sh. 3,386/01 of which Sh. 3,089/54 came from the Colonial Development Fund.
(4) Original bush.- The lake shore was hidden under a dense and wide belt of tall cane grass, papyrus and ambatch. Behind this'was tangled thicket and creeper growth with large trees. On the headland and its vicinity and at the northern end of the area, thorn hush was very dense
(5) Progress of clearing. Felling began on 25 th May and was compléted on 10th August. 1935. Burning could not be carried out until January and February, 1936. Cleaning up was donc in March, 1936, and again in Septenber. 1937.
(6) Present state. - The whole area, with of course the exception of the safety margin and the rocky headland is now under crops; and more land is being obtained by the natives by extending the elearing inland.
\Rightarrow
(d) Clearing No. 4
(1) Location.-In a wide bay north of Nzalagobe headland. (Block C, north.)
(2) Dimensions.-This area appeared to be particularly suitable for settlement. The initial clearing of 112 acres on a front of 800 yards was therefore extended to include additional 20 abres on the north and 19 on the south. It is gtill beingextended eastwards by the local population. The chief himself has a lagge holding here.
(3) Costs were Sh. 3,269/09 of which Sh. 2,815/92 was provided by the Colonial Development Fund.
(4) Original bush.-A very dense and wide belt of cane grass, papyrus and ambatch sealed the lake front. Behind this, particularly at the northern and southern ends, were fairly dense thorn thicket and large trees, close parkland with open areas, merging into more open country with clumps of thicket.
(5) Progress of work.-Clearing was begun in September, 1935, and completed in October. Burning was attempted in November. 1935, and repeated in November, 1936. Final cleaning up was carried out in March, 1937.
(6) Present state--Reeds have grown up along some parts of the lake edge. The local chief has established a village; much land is under crops and a number of canoes is engaged in fishing.
(e) Clearings Nos. 5 and 6
(1) Location.-In shallow bays between headlands at Ebwanga (Block
and Ogeni (Block E). 1 (Block E).
${ }^{(2)}$ Dimensions.-It was originally intended to make two clearings of the usual size, one just above Ebwanga headland to confine fly to clearings of the wards. This was done But ogeni point to prevent movement of fly southand the This was done. But vegetation between these clearings was so ligh and the land behind so promising that the two clearings were made intight frontage of about 21 miles. rontage of about $2 \frac{1}{2}$ miles.
(3) Costs were Sh 4.125, all provided from local funds
(4) Original bush. - A thick fringe of cane grass and papyrus, dense in places, backed by a narrow belt of thicket gave place to scattered thicket and
open orchard types res
(5) Progress of work Clearing commenced on 17th October and was
impleted in November, 1935 Burnog wascarien and June, in Nuvember. 1935. Burning was carried out in November, 1935 (6)
(6) Present state. Small patches of cane grass, have sprung up but generally the area is ciean. Several villages have been established und but places and tishing has become a mano actuvity make use of certain landing

(f) General Summar

Ihe total area cleared is 713 acres with a lake frontage of about $61 / 5$ behind a heavier though relatively wath was of course fairly light bush ambatch, tangled thicket relatively narrow Iringe of cane grass, papyrus Delaygled thicket and big trees aloag or very near to the lake edge
Delay resulted not only in the commencement and completion of werk prolonged rains

Costs per acre are shown in Tabie I The
great extent due to varying amounts of The variations in costs are to a Some 42 acres of this was eradicated by uprous and cane grass dealt with tenance and the making of sore per acre.

TABLE

(rosts of Clearings (In Nmulunan
labota at 23.3 Centa Pen Day

IV-REDUCTION OF G. PALPALIS

Infested Blocks are shown in map

(a) Technique

Paths were cut near the lake edge through all blocks. Branches and deviations were made where necessary on each side of main paths to provide access to bush that appeared likely to act as resting or breeding haunts fo the flies.

Handcatching and pupa collecting were adopted in all biocks. The boys employed worked from about $8.30 \mathrm{a} . \mathrm{m}$. to $2.30 \mathrm{p} . \mathrm{m}$.-a six-hour day as nearly as possible

Operations started in Block F in March. 1935, Block B in April, Block C south in September, Blocks D and E in December, 1935, and in Block north in January. 1936. Delay in some blocks was due to difficulty in ob:ain ing and training boys

During the wetter months, pupe collecting was suspended in Blocks D and E, owing to the saturated state of the soil

The technique of pupa collecting was improved during May and June 1916 Intil then a certain number of boys trained in this work had been allocated to each block and allowed to do their best in the discovery of pupa. They soon became well acquainted with all the most frequented breeding grounds It was then discovered (by R.S.) that recently-searched spots in which the soil had been well turned to a depth of several inches appeared to attract larvipositing females. Pupæ collectors were therefore instructed in the levelling and generally making attractive with a fine tilth all the most "fruitful" places searched. This developed into the actual creation of attractive breeding places along and near the main paths. Such places are usually in medium or mosaic sfiade whth fine ulth which was kept fréshty furned and even surfaced; and they were eqtnipped with sticks or small logs tand flat.

These practices proved useful and were adoptet in all blocks
In order to provide morre effective supervision of pupe cotlectors, - in June. 1936, all boys so employed were organized in large squads each under a senior boy. All bloeks were subdivided into sections, each section being just large enough to be searched thoroughly by a large squad in one day. tach section of each block was then dealt with, in rotation. every 15 days. This period might possibly have been extended to 40 days, but we had not then ascertained the pupal period under natural conditions.

At this time too the fly catching was re-organized. Two fly boys were detafled for each section in each block. They moved to a different section dauly in thesr block so that in a block of say six sections, each of the six pairstof boys worked one day in each section every six days. This provided a reasonable method of checking.

Fly boys, like pupa collectors, quickly developed simple means of increasing their catches and reducing labour. Near or on the fly paths they prepared shelters to represent fly "rest" haunts. These were low "caverns" in the bush with shade varying from light to dark, supplied with canes laid roosely and roughly horizontally about 6 inches to 10 inches from the ground. The canes appeared to attract flies. When a fly settled on such a cane the fly boy carefully lifted the cane with its fly and brought it out of the tangle of bush into a position facilitating capture with the hand net.

Similar canes. sometimes two together, were carried by boys in front fies at arom the ground, whilst on patrol. When lies settled on them, as they did frequently, they were brought up slowly to
the net, carried usually in the
is that both in the artificial resting places for capture. The interesting point settled on canes are not as frequently distur in the open paths, flies which their canes to a stationary net as they are by bed the slow movement of their stationary perch.

The hand nets were initially of white cotton gauze about eight inche across the top. Later they were dyed dark blue or green and eight inches results.

Traps were tried only in Blocks C south, C north, D and E. The type us in the Ke Swynnerton Simple Screen 6-foot model, previously tested by Bais made frox.
were tried in Block C south. But genital organs of crocodiles and hippos crocodiles that trials were discontinued many baited traps were smashed by by the bait, crocodiles were
b) Descriptions of each block, with (1) Block A
sions and results
Descrintion A narron
long the rocky northern strip of bush about 1,400 yards long running point of the area treated ase of a steep hill which forms the most westerly horn thicket and creepers wie bush, consisting mostly of the usual tangle of yards wide at most. At the eastern end magnificent fig trees, is about 30 and cane grass which rapidly stragging fringe. The hillsidy decreases in width further west to become a and grass.

Fly reduction (Table 2).-During a rapid survey carried out in February. 1935, a month before these operations began, à density of 10 per boy hour only was recorded in this block. In September, 1935, density was 32 per

Hand catcbing and pupa coliecting were the measures adopted.
Reduction between the first four complete months and the last four about 56 per cent. Little if any reduction appears to have been made until fly boys were increased from 2 to 4 in June, 1936

Marking experiments (page 24) indicated that a few flies from Hanete sland reached the biock. But their numbers were probably too small to nterfere with fly reduction.

The predominance of-males in the capture is striking.
Collection of pupæ, though helpful was not economic catch of pupa per boy day over the whole period is abo. The average average catch of adults is 13 .

(2) Block B

Description.-A narrow belt of bush about 2,900 yards long running round the base of a steep headland to the north of Block A Bug running generally of tangled thorn scrub with many large and beautitul consist springing from and overhanging the rocky lake arge and beauurul fig tree shore vegetation extends over about two laine edge. In its widest part thi way to grass

TABLE 2
BLOCK A-MONTHLY CATCHES

момтия
\qquad October
November November
December 1936
January January
February
March March.. Mpril
May
June June
July
August August
Sept. Sept.
Ootober Ootober
November 1937 1937
January February February
March March
Apil
May May
June
July August sept.
$\mathrm{TOT}_{\mathrm{AL}}$.

Fty boy Days	Adults					PUPA			Total
	Caught by Hand Note			Total	$\begin{aligned} & \text { Average } \\ & \text { per Fly. } \\ & \text { boy Day } \end{aligned}$	$\begin{aligned} & \text { Boy. } \\ & \text { daya } \end{aligned}$	$\begin{aligned} & \text { Number } \\ & \text { Collectexi } \end{aligned}$		
	Males	Fernal	Pregnant Fernales						
10	306	260	24	590	59.0	10	79	7.9	669
50	1.171	397	25	1.593	31.9	51	326	6.4	1,919
54	909	367	8	1.284	23-7	54	362	6.7	1,646
52	1,177	329	${ }^{6}$	1.512	29.0	52	198	3.8	1,710
52	95	281	10	1.248	24.0	52	276	5.3	1,524
54	874	186	7	1.067	19.7	54	106	$2 \cdot 0$	
50	1,251	552	40	1.843	36.9	50	234	4.7	${ }_{2,077}^{1,173}$
59	971	369	19	1.359	23.0	46	85	1.8	1,444
59	1,180	432	31	1.643	27.8	46	32	0.7	${ }_{1,675}$
56	1,088	396	14	1.498	26.7	48	309	8.4	1,807
107	1,147	492	18	1.657	15.5	4	335	-7.6	1,992
110	1,070	469	10	1.549	14.1	127	1,149	30.0	
103	1,150	532	18	1.700	16.5	182	1,102	$6-0$	${ }_{2,80 \%}^{2,088}$
${ }^{89}$	809	456	27	1,292	14.5	139	1,001	7.2	2,293
91	1,020	639	14	1,673	18.4	141	${ }^{985}$	6.9	2,293 2,688
117	881	490	${ }^{29}$	1.380	11.8	127	788	6.2	2,168
128	780	416	25	1,221	9.5	118	678	5.7	1,899
116	676	438	${ }^{45}$	1,159	9.9	286	957	3.3	2,116
129	587 517	433 397	24	${ }^{1.044)^{-1}}$		135	96	97	
419	517	337	17	871	7.3	143	101	0.7	+972
136	339	286.	20	645	4.8	53	52	1.0	${ }_{697}$
138	401	$\begin{array}{r}234 \\ 259 \\ \hline\end{array}$	11	${ }_{697}^{645}$	4.7	35	10	0.3	656
110 115	$\begin{array}{r}419 \\ -\quad 485 \\ \hline\end{array}$	259 237		697 749	6.3 6.5	273 211	307 538 38	- 1.1	1,004
H15	$\begin{array}{r}485 \\ \hline \quad 286 \\ \hline\end{array}$	$\begin{array}{r}237 \\ +173 \\ \hline 191\end{array}$	22 21	749 462	6.5 $4-0$	- 211	637 392	${ }_{-2.5}^{2.5}$	$1,286$. 824
104	314	191	91	596	8.7	- 20	${ }_{96}$		824 692
2,322	20,725	2.851	- 802	30,978	-	2,855	10,563	$=$	41,547

Fly reduction. (Table 3).-In the survey of February, 1935, density
varied from 10 to 32 per boy hour. ${ }^{\text {Al }}$ Al the beginning of operations it was varied from 10 to 32 per boy hour. "Al the beginning of operations it was -
68 per boy day. 68 per boy day.

Work started in April, 1935, with hand-catehing and pupa collecting.
Most of the training of boys was carried out in this block
An apparent reduction of 88 per cent has been achieved in two years and five months. The more rapid reduction after September, 1935, resulted from the completion in that month of clearing No. I. This cut off a considerable movement of flies from Block A.

Marking experiments (page 24) indicated that an appreciable number of flies entered this block from Hanete Island. The probable influx between May and September, 1937, was 1,200 flies sod that for the whole pŕriod of operations additions to the population would appear to have been sufficient to prolong quite appreciably the work of elimination. The sharp drop in numbers captured after July. 1937, when flies on Hanete had been seriously reduced, confirms this.

The high proportion of males captured is again worthy of note. Only during the last ten months did the sexes approach equality in numbers. This is probably an indication, not only that flies were well fed but that female rest haunts were not being dealt with and that therefore the fly paths were not well sited.

Pupa collections were considerable but much more costly than the capture of adults. It was in this block that large numbers of pupa were first dis covered in humus beneath large fig leaves, with no support for pregnant females except the leaves themselves.

i) Block C south

Description. A mall belt of bush about 1.700 yards long separated from Block B by some $1!$ miles of cleared area. Vegetation consisting of At At the eastern end there is a wide fringe of papyrus and cane grass.
aried from 6 io 34 per boy hour whilst durving of February, 1935, densitues September, 1935, valches were at the rate of abour first day of operations in October to about 40 per bey day
Hand-catching, pupa collecting and trapping were all employed. From the averages of the first four and the last four months there appears to have been a reduction of about 20 per cent. But from June, 1936, when staff were increased, a more rapid reduction seems to have been accomplished Females were again much fewer thers and 46 per cent in catches per boy day Females were again much fewer than males.

One fly marked on Hanete Island was captured in this block. This does
Trate serious re-infestation from that source.
Thappig was not very helpful in spite of a fairly high initial density. though the tigh proportion of females attracted to the traps is of interest. Eighteen traps were used. They were sited under various conditions in the hope that influence on efficacy might be noted. Results are discussed on page

Pupa were collected in good numbers but they were again
obtained as compared with the cost of hand-catching.

Fly reduction. (Table 5).-In February, 1935, density varied between 6 and 42 per boy hour. For the first two months of operations it was about 120 per boy day. There appears to have been a reasonably steady reduction from about April. 1936, to the end of the period. Female catches were as usual relatively low.

A certain number of flies reached the block from Block D. They may have crossed clearing No. 4 by taking advantage of the regrowth of reed and papyrus fringe or they may have been carried by canoe. Their numbers would appear to be too low to influence fly reduction

Traps were useful for some months but they failed about half way through the period. Details are given on pages 21 and 22 .

Pupa collecting contributed usefully to the general reduction but again

(5) Block D.

Description.-Dense bush/with large trees running round a low escarpment on the prominent but low headland at Ebwanga and continuous with ment on the prominent but low headland at Ebwanga and continuous wiun fringe and a wide papyrus belt at the northern end. The block is about 1,250 yards long.

Fly reduction. (Table 6).-Density varied from 16 to 42 per boy hour in February, 1935. During the first four months of operations catches were at the rate of 41 per boy day and tbis was reduced slowly to 21 for the last four months-not very satisfactory

Traps again contributed during the first few months but lost their efficacy within the year.

Pupa collecting was about four times as costly as hand-catching. Work ceased in May, 1937, owing to shortage of funds.
(6) Block-E.

Description.-A belt of dense bush and large trees some 3,200 yards long around the outer edge of a broad flat promontory. At the northern end there is a wide papyrus belt, continuous with the large swamp in front of Sio port.

Fly reduction (Table 7).-Density at the tip of the promontory was 18 per boy hour in February, 1935. At the beginning of operations it was 81 per boy day. This was reduced to 17 per boy day in 13 months

There is again a preponderance of males in the aduht captures though iot so marked as in other blocks.

Work was interrupted in March and again in May, June and July and part of August, 1936, owing to shortage of funds.

Traps were introduced after four months hand-catching had reduced the fly population very considerably. They were therefore not very effective.

Pupae collections made during the twelve months work were equivalent to about two months of handecatching.

TABLE 8
BLOCK F-MONTHLY CATCHES

7) Block F

Description.-This is a scattered area on the north side of the Nzoia River below Nachasionga Hill. There is a fairly dense patch of bush with big trees on the slopes at the eastern end of Nachasionga which extends in light thicket form up to the native bridge. The land between hill and river is mostly flat and subject to swamping when the river overffows its banks, as it frequently does. The-river banks and large areas adjoining are covered with tall reeds and cane grass. Fly reduction was attempted here because the area, with its (then) much used bridge, had been shown by Mcleanane to be a serious Seurce of infection:

Fly reduction. (Table 8). -Though most of the flies were found in the heavy bush at the base of Nachasionga, appreciable numbers were captured at scattered clumps of trees or bush on both sides of the river

Densities were never high. In February, 1935, they varied between 4 and 12 per boy hour in the Nachasionga bush

Reduction from 19 to about 3 per boy day was very slow principally tecause of the scattered nature of the infestation and the difficulty of ascer
taing its lumits.

> No traps were used: initial density was too low

Pupa collections were not very helpful in the actual reduction of fly but they disclosed many unusual breeding places and indicated how a smal and very scattered population of palpalis can persist under what appear to be very adverse conditions
(8) Sungwa (Camp) Hill

二 This is not strictly a recegnazed block.
Description.-The hill rises immediately behind the control camp a Port Victoria, reaching 4,200 feet ín altitude. The lower slopes are clothed in very dense and continuous thicket which thins out slowly with altitude to an aimost bare top

Fly reduction.-G palpalis was discovered on the lower northern and eastern slopes in the early days of operations and catches were organized to blocks. That the flies were not merely wander with reduction in neighbouring the hill was connected by continuous thicket before from Block B with which was made obvious by the discovery of seven before clearing No. 2 was made. was made obvious by the discovery of seven live pupe and 60 empty pupases in thicket on the lower lakeside slopes at 250 yards from the shore.
Between March. 1935, and September, 1937, nearly 11.000 flies were captuica
(9) Nzoia River

This area too is not strictly a block but is rather an extension of Block F It embraces an indefinite area of flat river lands with villages, gardens, barlana plantations and a few indigenous trees. Hand-catching was extended to this in February. 1936, as an aid to the reduction of fly in Block F. Some 2.190
flies were captured flies were captured.
(10) Hanete (Mitafubu) Island.

Elimination was done here to protect Block B from reinfestation (see page 24). Table 9 shows numbers of marked and unmarked flies captured on the island. The rapid reduction is interesting.

An estimate of the island's tsetse population in the third week of May, based upon 5 days marking and 5 days catching, would have given :-

$$
{ }_{1}^{1580} \times \frac{3446}{601}=\text { population }=9059 .
$$

The total catch at the end of five months was 12,927 and there were few flies left. The estimate is almost certainly much below the actual
population for the time. An obvious error in this method of estimation is that in high densities, fly boys, however well drilled, do not catch, mark and release flies as quickly as they merely catch them.

Movement of flies from island to mainland would probably be balanced by a movement in the opposite direction: though we did not ascertain that flies did leave the mainland.

Sexes were about equal in the unmarked flies

Datk, 1937	$\begin{aligned} & \text { Boy } \\ & \text { days } \end{aligned}$	T'mankikl			Marked			Total	$\begin{gathered} \text { Pupa } \\ \text { Collected } \end{gathered}$
		Males	Fermales	Pregnant Fimales	Malen	Famales	Pregnant Females		
7th-13th May		-1,111	-413	*56			-	${ }^{1,580}$	-
14th 31-6 May	90	2,837	1.911	136	592	103	4	5,583	1,279
1 xt 30 h June	142	2.401	3.032	168	2	34		5.638	80.
1st-31st. July	154	751	1995	59		3		1.508	321
lat-3ist Aug	90	111	87*	- 8	-	N,1		186	25
1et-sth Sopt.	5	. 7	3^{3}	-2		Nil	-	12	-
Tutal	491	6,107	-	=			-	12.927	2,426

"Theme wer all markud at the bx kunnink ofshe wark for otmervations on movement botwoen. poland and maipland:
111) Degree of reduction

To those of us who are acyuainted with the thitial densities of G palpalis. the rectuction in numbers cesulting-ffom our operations, though not as complete as we had hopect, Is strikingly of ious. An examgnation of figures in the jables, with their varying numbers of boy days, may not convey this however.

Mr- A. Walter, Director of Metegrological.Services, bas very kindly examined all the tables an provided the accompanying graphs illustrating reductions in Blocks A, B, C south and C north. Graphs for the other blocks show the same general picture. In explanation Mr. Walter writes:

In the first place it is quite evident that the curve of average per boy day follows an exponential curve. In other words. it is the well known compound interest curve. I have had some of these figures plotted on a diagram and you will see at once that the natural figures give a distinct and definite curve of the nature to which I have just referred. The-same figures have been plotted as a logarithmic curve and they lie on a straight line confirming what I have already stated.

I approached the problem on the basis of the theory of gases in which the molecules of a gas may be considered to take the place of your flies. If we consider that a gas is contained in a chamber and that there is a small interior chamber connected with an air pump, the strokes of the air pump can be considered analogous to the nets of your boys. so that the mathematics become similar to that of the gas problem and the air pump.

It follows from a consideration of the problem on these fines that the number of flies in the area after each successive catch is represented by the terms of the series $\mathrm{Y}-\mathrm{N}(1-\mathrm{K})^{\prime}$, in which N is the total number of tlies, K is the average per boy day, and t is a function of the time or may be considered to represent the number of boy days.

On these assumptions it seems clear that K. or the average per boy day. must decrease as the work progresses unless there are sources of large additional supplies which. from your figures, does not appear to
be the case. This is also showa by differentiating the expression which I have given above for the series representing the total number of flies aftey each catch.
the essential point is that the curve is of the exponential form and, as you will see from the equations, \mathbf{K} must decrease with time

I have plotted your results and find that the expressions given on the attached graphs reprerent values of K on the basis of the exponential formula.

The ordinates of these graphs have been determined by statistical computation from the actual values plotted and not by eye estimation."

$$
\text { TABLE } 10
$$

COSTS OF FLY REDUCTION
Fly Boyn-Avernge coost for wagros and food $\mathbf{3 9}$ cents a day (ineluding Sundaym). Pupe Boys-Average cost for wages and food-27 cents a day (including Sundays)
Food per boy- 7 centa a day

(12) Costs of H / N.
(a) Expenditure on measures spectically connected with palpalis reis Sh . 17.560 is 10 Iable 10 The sums actually paid for food and wages is $\mathrm{Sh} .17,560 / 10$ The difference of Sb. 3/30 between this and the figures given in Table 10 resulis from the use of an average figure in separating the various allocations.

The Local Native Council provided Sh. $4,146 / 21$ for wages of fly and pupe boys and Sh 30/85 towards the cost of fly paths

Traps were taken over from Kaniadoto where they had been used in our first field trial and their cost already debited to Colonial Development Fund

Hant nets for fly boys cost an additional \$b. 178/42. This is included in sundry vouchers
 approximately).
(b) Handcatc hing versus pupa collecting--541,514 flies were captured hand at a cont of Sh $9.404 / 35$ or approximately 1.7 cents a fly.
mately 6.4 cents each.
(c) Trapping. -The traps used are valued at $\mathrm{Sh} .1,495$ or Sh .15 each. They had cost Sh. 23 each to make in Kaniadoto ${ }^{1}$

During their service in Port Victoria they caught 54,984 flies for an expenditure at the rate of 2.7 cents per fly. To this must be added a propor further details are unnecessary: further details are unnecessary: traps in their present state of development and used as they are, are totally ineffective after a relatively short time.
(d) Fly paths.- The exact cost of these cannot be given since the item included the cutting of sites and corridors for traps, carriage repair and erection of traps.

V-POINTS OF INTEREST

(a) G. palpalis and vegetation

Around the headland blocks much of the vegetation is dense thicket of the "impenetrable" type-tangled masses of thorn and the semi-recumbent ush and creeper. Clumps of big trees provide a type of massive wooding.

In the bays chosen for clearings, with their generally lighter bush and long belts of papyrus and cane grass, densities were on the average lower than C south. C north and D. flies were heavy vegetation did occur as in Blocks C south. C north and D. flies were numerous.

Main fly paths were cut within a few yards of the lake shore and on the thore itself where topography permitted. Short branch paths were then made with the lake edge for food tie rest or breeding haurts or to make contac this. No specific-study of these haunts was made befere plathin failed to do and though as far as could be ascertained most befere planning the paths breeding haunts were tapped, and the staff most of the probable resting and coecting haunts were tapped, and-the staff supplemented these with artificial constructions with. considerable success, it is very probable that greater numbers of femaies would have been captured if more of the lake edge itself had been served by paths. There is little doubt that though almost any path through infested bush will attract-active palpalis to it, the siting of paths to reach all possible conditions of fly must be given greater attention in future work- of this-kinid.

The heavier bush, as usual; harboured the biggest fly
C north contains the densest and heaviest vegetatiost populations. Block thicket, undergrowth densest and heaviest vegetation in the area. Its tangled up the not too steep foot slopes of Nun from the lake edge for 40 or 50 yards fairly dense stunted foot slopes of Nzalagobe Hill and merges gradually into fairly dense stunted thicket on the hill itself. The palpalis poputation here Was very dense. Breeding grounds under light shade at the foot of rocks and of suitere numerous and offered excellent conditions ôver a fairly big area of suitable soi

In Biock B. too, vegetation and soil appeared to be excetlent but the area was limited to a very narrow strip by the steep gradient of the hillside. In this block, as in A. conditions at least approaching the optimum appeared to exist beneath the very large overhanging fig trees.

(b) Breeding ground

(1) The most attractive breeding grounds appear to have been in light well-drained humus at the base of large or medium trees or rocks and bengh shade cast by high to medium foliage.

But pupa were also scattered. Very large numbers were found in small lots in light humus beneath dead foliage and high shade; at the bases of small trees and thicket in medium fo fairly heavy shade; and under dead sticks and small logs lying criss-crossed in shade of the mosaic type provided by leafy canopies four to five feet above ground. It is this last type of breeding ground that the collectors imitated successfully (page 7) though their reconditioning of the more orthodox grounds beneath big trees and
rocks was equally successful.

Still more scattered but prolific breeding went on in unexpected places, During the cutting of clearing 2, pupa were found 250 yards from the lake edge in the thicket of the hillside-on one occasion four live pupa and 18 empty cases were collected and on another three pupa and 44 empties. Two pupa and 13 adults were also found on the hillside at 580 yards from the shore.

Block F, the river area. provides useful evidence of the rather disconcerting adaptability of palpalis. The only portion of this block that appeared to offer reasonable breeding facilities was the patch of bush on the southeastern slopes of Nachasionga Hill. Though considerable numbers of pupa were found in this bush, the majority were obtained under dense thicket on the middle slopes of the hillside up to about 200 feet and at some 350 yards from the river bank. The swamp conditions on the flat lands near the river from the river bank. The swamp conditions on the fat lands near the river
and the repellant nature of their dense cane grass and reed growth would and the repellant nature of their dense cane grass and reed growth would
appear to explain the attraction of the hill frot and its vegetation but it does appear to explain the attraction of the hill fco
not provide a reason for the choice of altutude

These flat and fertile river lands support a dense population of people Where possible, gardens have been established for the cultivation of bananas. eugar cance. cotton and other crops. And G. palpalis appears to have found hem weful In July. 1435, eight live pupa were found at the base of banana plants whilst a big tree nearby produced none. Four searches of several days each during August and October, 1935, yelded 10 pupx. 4 pupx and 96 cmpty cases, 5 pupa dad 13 emptic: 24 pupa and 181 cmpties respectively in banana plagations. No pupx were found at the bases of three big trees inciuded in the second search

Three seurches in sugar cane gave 10 pupx and 36 cases in an oid plantation. 6 Dupa and 23 cases. 22 pupa and 263 cases with 9 adults respectively in two young plantatuons. A smanl palm growing bencath a big tree harboured 1 pupe and 8 cases

Breeding :uth as this of course prinduces only a scanty palpalis population enough however, 10 mainlain a considerable degree of infection 'pagé 16). -There is no doubt that G. palfiaits can make पै? of a considcrable variety of coil and shade conditions for breeding. In this area alone we seem to have encountered nearly all stages befween an optimum as existing in. say. Blich (north and the barely tolerable on the Nzoia flats. The lattel are unlake any river condtions previousty investigated in Kenya and, as far as we know, eloewherc.

Along mos infested rivers investigaied by one of ((B.S.) in Kenya and elsewhere, there is the usual bell of bush varying in width and density
from the mere broken fringe of thilket or swamp from the mere broken fringe of thicket or swamp growh. to heavy forest or in the heavier hush a mile or so wide. Pupa have been found scattered only in the heavier huth soil conditions not unlike those of the heavily infested lake shore hish win. with abundant vegetable debris in alt stages of decay and no culti ation withimat ancentrations. And generally there were no people cult , ation withina mile or two of such rivers
The Nzold area differs from all these in that except for a few scattered and widely separated small clumps of bush or trees, often far from the river, we know, offer consists mostly of dense cane grass or papyrus which, as we know, offer no attractions as breeding grounds. Moreover, collections of huts and extensive crop lands are established close to the river on all land that is not liabie to complete and prolonged inundation during flood periods. And on the fine alluvial tilth of these crop lands, as has been shown, scattered but fairly prolific breeding goes on beneath bananas and sugar cane,
(2) It might be of interest to include here a record made by one of us breeding traps describe a pregnant female, at one of the prepared "natural" breeding traps described on page 7

On the 7-12-36 I went to look at one of the nature traps made by a pupx collector in Block D No. 5. From this nature trap the collector had gathered 34 pupa I took this opportunity to watch for female flies
settling on the ground to deposit their larva. after having placed collectors at various other traps to warn me should they see a pregnant fly settle on the prepared ground. Shortly 1 was called by one of the pupa collectors stating that a pregnant female had settled near him. I found a pregnant tsetse (G. palpalis) settled on the prepared ground. This trap was on a slope and the fly faced up the hill with the thorax raised at an angle. The distended abdomen appeared to be resting along the ground, the wings folded. I watched it for a second and observed that the tumid black lips of the tarve were slightly in evidence. It then flew away black lips of the farvx were slightly in evidence It then flew away
settling near by on some ground that was covered with little twigs and forest refuse. I was smoking a cigarette at the time and it struck me forest refuse. I was smoking a cigarette at the time and it struck me
that the smoke from my cigarette which was carried over the fly had that the smoke from my cigarette which was carried over the fly had
disturbed it, so I throw my cigarette away. It moved nearêr to me and again settled on dirty ground. It then made another move, returning to the original clean tulth where it had originally been but closer to me, and resumed its onginal position facing up hill. It was so close to me that I took my observations with my reading spectacles on. It remained absolutely motronless for a lew seconds. I then saw a contraction of the abdomen, a tremor. which passed away at once, but I noticed that the tumid lips were now more in evidence. It then made a little dart forward as though to fly away. But it only moved a fraction and again was motionless. Shortly continuous tremors of the abdomen started and the larva was slowly extruded It looked preposterously large and was the shape of a pupa except for a sight elongation at the end finally evacuated

At this period the fly assumed the natural horizontal position. otherwise making no movement whatwever, the wings throughout as far as I saw remaining closed and motwnless. I watched the larva. It did not appear to move from the spor where it fell but just to fade into the ground The last I saw of H was the two turtid lips being drawn intothe ground and disappearing in an apparently perpendicular direction teaving a slight round depression

The nature trap had been carcfully prepaned. wittrsuitable branches. the size of my forearm, placed whe such a way that various portions wete aboufian inch fromt the ground. I do hot think that 5 mimuter had passed from the time I sfarted watching to the finish-
Träps of the Swymnertion 6 (c) Trapping $=$
Träps of the Swynnerion 6 foet simple sciecn type were installed in ${ }^{* n}$ Blocks C south. C borth, D and F. Catches of individual traps are given in appendix 11
(1) Block (seriuh - bites with a varictiv of condtatons were chosen - Some traps wert placed mel overhangung the lake edge Nos 1,0,11,12 and \Rightarrow 17, some a yard or two from the edge in curridors cut through the papyrus from the main fly path to the lake Nos 2, , , 4, 9, 10 and 14 . others at various distances from the lake along the corridors. and the remainder on or near the main fly path and in fairly open areas techind the papyrus and ambatch of the shore

The two best trap V... I and II were both wluated near the base of rising ground with heavy bush, atid both were overhanging the water of the lake, No. 1 on poles and No 11 on ambatch trees Nos 3 and 4 with fair catches were a few feet back from the water and both near heavily bushed rising ground. No. 14 was on the main fly path at the end of a corridor cut through about 70 yards of papyrus to the lake edge and No. 15, a nother giving fairly good results, was further along the main fly path where it joined the lake edge

Of the least effective, No. 7 was situated about 30 yards from the lake in a corridor through the papyrus and No. 12 was overhanging the lake under conditions very simitar to those of No. 11. It may be that the stream of flies patrolling the water's edge was essentially "one-way" so that they reached No. 11 trap first. Evidence suggesting similar behaviour was obtained dưring trap tests on the Kuja River

There is little to be got however from an analysis of results other than a suggestion that traps prominently overhanging the lake edge with wel bushed rising ground behind were more effective than those placed in long corridors of papyrus or on the main fly paths themselves.
(2) Block C north. - There were 42 traps in this block. Numbers 1 to 8 were placed in small cuttings in the light cane grass fringe along the lake edge. Nos. 9 to 23 were in a small bay at the foot of a steep rocky and well wooded escarpment. The bay was the resort of crocodiles and hippos. Nos with little undergrowth. and the remainder were behind by large trees with little undergrowth. and the remainder were behind a dense papyrus and cane grass shore belt with no opening to the lake.

The most effective group of traps was that situated along the hippo and crocodile basking ground. The presence of these anımals made the area into a favoured feeding ground and the well-worded escarpment behind probably provided the essential facilities for resting and breeding (Of the traps in the cane grass fringe No. 3 was most effective, but unfortut ately there is no obvious reason for it. Those behind papyrus and cane grass with no opening to the lake were least effective but the two behind ambatch and backed by forest trees were relatively good. The heavy shade proditced by big trees may have influenced numbers but in Block ("south at least one trap placed in ambatch caught well. This growth is usually the nesting place or rende c vous of numerous lake birds and it has been noticed previously. especially on Moboko lsland, tha: Alies are often more abundant in the vicinity of bird colonies
(3) Bloc: D) Most effective traps were Nu, 2, 3, 6, 17 and 18 The first three of these with all traps up 'o $N_{6} \mathbf{N}^{-15}$ were in small openmes in the shore fringe of rane grass. Nos 17 and 18 were in a thetured bav backed
by heevy forest trees by heavy forest trees.
(4) General It seem- inat most of the traps that gave farrly good rewults did so because they were situated in or near much used rest haunts or feeding grounds, particularly if these were closely backed by well wooded rising ground. It seem "piobable that a sharp and sfeep escafpment, if only a few yards high, rivitg close to the lake edge, concentrates not onty resting flies but also creates a narrow channel for paftolling flies so that catches by hand or trap at the base of uch-an escarpment are higher than in flatle: areda.

Traps slung behind dense and wide papyrus were useful onfy if they were in the vicinity of good shade providing facilities for restifg or breeding or both. Those placed in the middle of long corridors through papyrus were not generally effective.

A few traps situated prominently on the outside of the papyrus or cane grass fringe caught well. But many others similarly placed did not . We cannot suggest a reason for this. One very promising feature of the trap catches is the high percentage of females.

It must be emphasised again that not enough attention could be given to this part of the work to make it productive of more definite conclusions.

The type of trap used is not sufficiently attractive. The little attraction it begins with is lost after a few months: flies treat it as a familiar and ermanent part of the landscape. If it could be changed frequently both Results again indicate the need for exhaustive investigation of maintained. and baits.

(d) Pupal period

(1) During October and November, 1935, certain crude observations were made on emergences of adults from pupa collected in the field and kept in tion and emergence 890 emergences, the maximum period between collecpupal period is probably not dess. This indicates little except that the true pupal period is probably not less than 44 days.
(2) On April 28th, 1935, one of the fly boys had a larva deposited in his hand by a newly caught female. The larva was kept in a small box with soi and the adult emerged after 40 days.
(3) More reliable figures were obtained actually in the field. Whilst isiting their prepared breeding places described on page 7, fly boys occasionally watched females alight and deposit larve. Certain senior boys were supplied with cylinders made from cigarette tins from which top and bottom had been removed. When a female was seen to produce a larva a cylinder was carefully pressed into the soin one spor penetrated by the larva. A covering of gauze was then fixed on the cylinder and the date recorded. Cylinders were examined daily by senior boys during their patrols. Results were as follows :-

	Larva	Leposited	Adult	Einerged	Pupal Period
					Inays
1		3-11-36		17 17	S4, 51 4×49 4.8
2		1-1236	18	137 1 37	48.49
3		2-12-36			4.48
4		41236	19		48.48
5		1-1-37	17		47 -48
6_{6}			13	23 3 37	44.45
7		is 6.37		$\times 37$	5253
9		10737	22	$\times 37$	$43+4$
10		12737	29	837	4×49

Rainfall and average day temperatures during the months concerned were:-
Dinewmber, 1936
Jannary, 1937
February, 1937
March, 1937
Junn, 1937
July, 1937
4.25 m
395 m
3.20 m
2.99 m
1.49 m
1.09 mm
0.72 m
$76.6^{\circ} \mathrm{F}$
$78.0^{\circ} \mathrm{F}$
77.5 F
753 F
75.08 F
$78-\mathrm{F}$
$76.3^{\circ} \mathrm{F}$

The pupal period appears to be roughly the same in the w:t as in the dry season, varying between 43 and 53 days; but our observations are too few to be conclusive.
-Six other pupa deposited under observatton in Jure and July dig not produce adults. One wassalestroyed by a bush pig, two contained fully developed but dead adults and three were damaged by predators or parasites
(e) Proportion of the sexes

In our hand catches, excluding those on Hane:e Island. female percentage is approximately 30. The highest is in Block E with 36 per cent and the owest in F with 22 per cent. During the last few months of operations numbets of captured males and females were approaching equality.

Trap catches on the other hand, as in previous work, show about 70 per cent females. But the numbers caught were too small to balance the excess of males in the handcatching

The Hanete Island work indicates an equality of sexes in nature as did our records for the Kuja River area ${ }^{(1)}$

There remains a big population of females to be dealt with in all bloeks. With more attention to fly paths in relation to resting. breeding and feeding haunts this should be accomplished in a relatively short time.

(f) Breeding season of G. palpalis

Catches of pregnant females, shown in the Tables, provide a certain amount of evidence that the rate of reproduction was highest in the period April to September-that is from the middle of the rains to about three months after the rains-in both years, and lowest from October to January. This agrees approximately with our findings for the river areas in S. Kavirondo"
(g) Seasonal increased adult activity of G. palpalis

Trap captures in Blocks C south. C north, and D indicate fairly definitely an increased adult and particularly female activity during the period April to June or July of both 1936 and 1937. This agrees roughly with the suggested period of increased reproduction above and with records made in the Kuja
River area of South Kavirondo.
(h) Movement and spread of G. palpalis

In order to observe any possible influence on mainland fly freed areas of infested islands lying at various distances off shore, flies were marked on the three neighbouring islands of Hanete (Mitafubu), Waduma and Sumba
(1) Hanete is a small rocky island about 500 yards long and 80 yards wide, covered with dense scrub, situated some 400 yards due north of Block B.

From 7-5-37 to 13-5-37, 1,580 flies (1,111 males and 469 females), were marked. From then until $4.9-37$ fly boys caught flies every day (Table 9), Of the marked flies 746 were recaptured on Hanete, 144 (78 males) were caught on the mainland in Block B, one in Block A one in Block C south, one on Sumba Island on 9-7.37. and a last one in Block Cnnorth on 18-12-37. 221 days after the last marking.
(2) Waduma Island is about 2,000 yards due north of Hanete. It is about 500 yards long and 250 wide, and well covered with stunted bush and creeper. Of 2.007 flies marked here (1.483 males) two were captured on Hanete No attempt was made to eradicate palpalis.
(3) Sumba Island is a conical hill about a mile long and half a mile wide with heavy bush around the base. It is situated some $2 \frac{1}{2}$ miles from Block 8 and about it mules from Waduma. 413 flies were marked here on 10.6-37 and 2,753 on 6 9-7.37. Of these one thale was caught in Block B on 20-7-37, four females on Hanete Island on 21-7-37 and 31-8-37 and one in Block D on 23-6-37.
(4) In June - 1937, 1.168 flies were marked in Block D. Seven of these were captured in Block C north within a month of the date of marking.
(5) Of 137 flies marked on the north side of Sungwa (Camp) Hill several were captured un the south side about a mile away, and in Block B, and one in Biock C south.

The large number of Hanete flies found in Bleck B suggests that there is a deliberate crossing of the 400 yards of intervening water. It is probable thaf the mainland is_easily seen by flies at this distance. Whether of-not the mainland flies can see and visit Hanete, which is small and low, has not been ascertained.

Canoes engaged in 5 shing or travelling to and from the Sumba and Sigula fishing grounds often go very near to: Hanete Island and probably help in the transference of flies from place to place. But it is extremely unlikely that they could aceount for the large numbers of migrants caught in Block B

The wher calches of marked flies suggest hitte if anything more than a pread of flies in suall, numbers by canoe or foot traffic. There is a possibitity that a few flies may wander a mile or two through thin bush or scrub from say the shore at Block C to the Nachasionga bush in F. But they are unlikely to do so without sone attraction in the form of animals or man for at least part of the journey.

One of the most obvious results of our operations is the development of fishing and general canoe traffic. There is frequent movement up and down shore and between neighbouring islands. This probably explains the capture of the Sumba and Waduma flies so far from their base. One fly had con trived to travel etther about six miles across the lake in a straight line or twice that distance round by the mainland shore.

The two flies from Block D, captured in Block C north, were either carried there or they travelled along shore across the big clearing No. 4 between blocks. The latter mught well have happened since at the time of the marking experiment a regrowth of cane grass provided a useful fringing shelter for patrolling flies.

The important points indicated by these tests appear to be-
(a) an infested island up to about 400 yards distance is a source of reinfestation to fly-free areas on the mainland; and
(b) uncontrolled canoe traffic helpe appreciably in the - spread_of - G palpalis. It may therefore not only prolong the effort to eliminate residual" flies but would promote a slow re-infestation of area made fly-free. Any plans for elimination of palpalis must therefore include measures for the control of canoe traffic.
(k) Recovery of G. palpalis populations after reduction by adult and pupe collections
At the termination of work in Septenber. 1937, a skeleton staff of 15 fly boys was retained to patrol blocks A to C north and F in an attempt to phevent a recovery in number of palpalis before fulf scale operations could be resumed Their monthly captures indicated a skow increase of flies in all blocks.

In March, 1938, sample catčhes were made in five blocks and Hanete Island to ascertain roughly the degree of recovery reached Figures are given in Table 11

In Blocks B, C south and \boldsymbol{C} noith denvities had apparently doubled themselves in six months. Tbrèe was apparently a smaller micrease ift A and

Of particular interest is the cecovery on Hacte during four days in September. 1937. had produced onty 12 flies "II seems probable that recovery here had been aided by the arrival of flies from elseprobable.
-It may be that the figures for March, 1938; are not-strictly comparable - since more boys were employed in all blocksithan were used for the catches
${ }^{*}$ in Seplember, 1937. The increases are probably greater than indicated therefore:

Reinfestation, as distinct from re-growtr of pepulation, many have come from Sumba, Sigulu or Waduma islands and Blocks D and E. Marking experiments indicated an appreciable, though, except in the case of Hanete and Block B, not a gross movement of flies between islands and błocks. It would seem then that increases in fly populations were natural and not influenced to any appreciable extent by additions from outside. This would apply to the populations of Hancte and Block B together, since they appear to have been concerned essentially with an interchange of flies and not with foreign additions

The slight decrease, or at least the failure to increase in Block F is interesting

A very definite decrease appears to have occurred on Namenya Hill. (Not shown in Table 11.) In February. 1937, the eatches per boy day over 20 days on the north and south side respectively were 20 and 8. From April. 1937, work ceased until March. 1938, when catches over 20 days by the same number of boys (2) were on the north side 2 and the south side 3. Is it possible that in these areas of low densities and very scattered breeding a relatively slight reduction of numbers may have serious consequences for isetse communitics? Observations in the future will decide this.

26
RECOVERY OF G. PALPAIIS POPULATIONS
(a) Six days' catch at the end of operations.
b) Catehes by skeleton staff-Oetober, 1937 to January. 193s
(c) Six days' sample catches to ascertain extent of recovery in populations.

Date	Block F		Block A		Block B		Block C South		Block CNorth		Hanete Island	
	Total	$\begin{aligned} & \text { Per } \\ & \text { Boy } \\ & \text { day } \end{aligned}$	Total	$\begin{aligned} & \text { Por } \\ & \text { Boy } \\ & \text { day } \end{aligned}$	Tutal	$\begin{aligned} & \text { 1ow } \\ & \text { Boy } \\ & \text { day } \end{aligned}$	Tital	$\begin{aligned} & \text { Bor } \\ & \text { Buy } \\ & \text { diny } \end{aligned}$	Tutal	$\begin{aligned} & \text { Por } \\ & \text { Boy } \\ & \text { Say } \end{aligned}$	Tital	
(a) Sopt., 1937	25	4	138	6	**	3.7	151	6	1,505	13	-186	2
(b) Ort. 1937	71	27	394	76	236	45	Star	11.3	3.430	23.3		
Nov. 1937	82	31	311	6.1	206	40	688	132	6, 194	297		
144. 1937	79	29	$2: 1$	54	242	4.5	902	18.0	6.009	40-0		
Jan. 193x	100	37	415	80	374	75	1.084	21.7	-7. 110	$50-0$		
(r) March. 143*	11.4	20	324	9.0	330	6.0	656	11.0	286	26.0	318	

$$
\text { - Auguant. } 1937
$$

(6) Other species

(1) (; pallidipes This spectes infests practically the whole of the scrubcovered hinterland It is particularly numerous on and around Nzalagobe Hill Number of adults and pupæ collected during the search for palpalis are shown in Appendix III. The majonty were obtained in Blocks C south and north in the neighbourhored of Nalagobe. Pupa were relatively fei

This species apparently maker good use of the lake shore bush for feeding but breeds further ithland in the higher and dryer areas. Since our operations against palpalin are unlikely to have disorganized pallidipes to a serious degree, such data as we have of the fatter species (Appendix III) may well indicate true seasonal changes,in adult activity. In Block F the ancrease of adults caught duning the periods March to June. 1936, and April to June 1937, are not due to augmented catching staff. The same applies to the ancrease in Block C north during June to August. 1936, and March to June 1937. In other blocks however apparent increases during the periods March to June are at ledेst partly the result of additions to fly boys
Seven specimens of (i pallidipes were found ill a "swarm" of 218 G. palpalis on a crocodile shot by RS
(2) G brevipalpis. As usual this species was found with G palpalis in all blocks No attempt was made to study it in any way

Collections of adults and pupe made during operations are shown in Appendix III.

Block (north with its dense bush yielded a relative abundance of buth adults and pupa. There is evidence from this block that adults were mos active during the periods June to August, 1936, and March to June, 1937 and that the rate of reproduction was highest during July to August, 1937

Both species therefore appear to behave much in the same way as , palpalis. Activity is greatest during the latter half of the rainy season nd for a month or two follpwing, and breeding is at its maximum rate dryer months following the rains, that is during or after maximum adult activity

27
(m) Human trypanosomiasi

Cases of sleeping sickness diagnosed at the Port Victoria dispensary during the past few years are as follows:

It is considered that the majority of cases during the period 1935-1937 contracted infection on Sumba Island, which is much used by fishing parties from the mainland of Uganda as well as Kenya.

From the beginning of operations in March,-1935, a monthly medical inspection has been made of all staff employed and of the general population admitted to the various clearings. No infection has been found among them.

VI-OCCUPATION AND DEVELOPMENT

(a) One hundred and twenty-five families (625 persons) have built huts and definitely settled in clearings. - In addition a new population of same 2,000 people make use of the clearings for water supplies, bathing, cultivation and fishing. Canoes are numerous and eyery morning on the return of fishermen. fish markets are held in each clearing

Maize, millets and cotton are the main eropsproduced on the new lands:
(b) At Port Victoria a new pier has been constructed of tocat materials at a cost of $\mathrm{Sh} .1,632$ (local funds). It is used almost daily by dhows.
(c) A road from Port Victoria to Sio its northern portion running on the west sude of the Ligulu Hills, was made to facilitate access cleafings 4, 5, and 6, and Blocks D and E_{r} at a cost of Sh. 6,256 (Local funds)

$$
\text { Table } 12
$$

sUmmary of EXPENDITURE (In Smilisos)

Fiy and Pupe Collectors (Wag.r and Food
Fly Pathe (Labour, Wages and Fooxt)
Inaringa (Labour. Wagos and Fivod)
Hendquart re Camp and Stafi
Salury (Eurumen un Charge
Travelluge (European in Chaigo
Sundry Vouchers
Bioycle

VII-SUMMARY AND CONCLUSION

(1) A field trial of the "block" method of palpalis elimination has been carried out in a lake shore area with high demses ing. The work was made to form an essential part of a scheme for the reclamation. settlement and conomic development of a derelict are
12) Five large clearings were made at a cost of approximately $£ 990$ of hich $£ 656$ was provided from the Colonial Development Fund grant.
The total area cleared is 713 acres. This is about twice as much as The total area cecessary purely for isolating the palpalis blocks. The would have been necessary pure to faecilitate early settlement and agricultural production.
13) Reduction of fles in seven blocks and Hanete Island was accom lished by hand catching and pupe collecting. trapping was tried in four of plise blocks and hand catching alone was adopted in two other areas

Decrease in numbers of G palpalis in the mainland blocks varies between about 50 per cent and 90 per cent. The small population on Hanete Islan sas practically elimmated in 31 months

Total cost of fiv reductoon meast es was approximately $\mathrm{f8}$ (excluding the nominal value of traps) of which 2678 was provided from the Colonial Development Fund
(4) Handatathng was the most coonomatal method. Pupx collectung w. © much thore costly and trapping was ineflective
(5) Ihata are presented to mdicate that
tul C palpals can maintans a low density hy breeding in sugar and banana plantations
(b) Is pupal perient in the area in between 43 and 53 days.
(1) Maxmum activity incurs durng the period Aprit to June and maximum reproduction from April to September
(d) Considerable movement of Hl wecurs along shore and between mann land and istands. Therugh much of this isajeded by foot and canoe - Hic brew numbere of flee can and do cross as much as 400 yards of open water between Hanete Island and the mainland
(e) Maximum adult actusity and reproduction of G paltidipes and G brewapalpes owurs at the same time as that of G palpalis
(6) Settlement and development have progressed satusfactorily

- $_{1}$, comclusion The experiment was conducted to ascertain the posst bility of climnating (i pulpuiss from a lake shore area by a method already dopted successfully un iffested rivers thrmation was not achueved for reaxas Ewen, but the reduction seomplished and the experience gained If didate that even with wh high denstics as occur handeatching can be employed suciorsfully atide conomicalty

A lake thore ares of about 16 square miles, previously unoccupied, has been partially settled and developed. Crops of maize, millets, and cotton are being produced in and around cleared areas and more land is being reclaimed by the local population. Fishigg has developed and lacustrine activity is considerable

It is hoped to complete the elimination of G. palpalis in the near future and so to make full and unrestricted settlement possible.

REFERENCES

sime, (B.) and Vane (R T) -"The Eradication of G. palpalis from River Areas by the 'Bleck' Method " Government Printer, Nairobi, 1937 Garpenter (G. D Hale-) - "Report on an Investigation into the Ep demiology of Sleepung Sickness in Central Kavirondo and Kenya Colony Bull. Ent. Res. Vol. 15, p. 18%
McLean (\mathbf{N})--"Sleeping Sickness Investigation in Kavirondo, 1930 । East African Med. J. Vol. VII, p. 180

APFENDIX
RAINFALI.

APPENDIX II TRAP CATCHF:S

CATCHEN OF "PALLIDIPES AND (2. BREVIPALIS (Bleck A (imitted)

(Block A Omitted)

chlymase

(a) an or

$$
\begin{aligned}
& \text { (T: AC D PR B I. I (AC) }
\end{aligned}
$$

Port Viotoria Sis Thebe firea
Veyctulion rapereent., hy shadiny
$4 \cos ^{+\pi)^{n}}-$
.

$3100 \mathrm{k} B$.

$$
=i
$$

> 1. Fly o ym o y n asnes to st act an patpals
7. N tiv. sun ial
usey:y yo.

TSETSE CONTROL - KANIADOTO.

The field experiment in this area undertaken with the a1d of a grant provided by the Colonial Developnent Pund was completed in 1955 and a report subentted. The scheme has been contimued with funds provided by the Local Native Council and the following notes on recept progrese made have been prepared for the information or the colonial Development Advisory Committee.
2. The infested area being dealt wh is that portion of the Kuja River between its junction with the Rlana River, squthwards, to zadharia clearing. (See map l. in report of 1337), including the dielo and Tanjowe bush and the Sari, Ald jo and Kibugu streans - in all, more than 18 miles of river buah. The streans north of adhasae clearing rere the site of the first rleld trial.

Clearinge had been made during the $1955-35$ experiment. Of these one - Tadhatego - was enlarged. The area was then \rightarrow organtaed in 3 Bloaks $=$ the old Block VI between-ludharla and Tadhagulu, Block V from Vadhagulu to Tadhatego and Block IV, ineluding ali bush up river from ladhatego.

Bifanation of giossinm-palpalis by In June and Juiy, 1856. An idea of the handeatching began talned hay bo reduction so far obtained may be seen from the following figures :-
Plies oaught.
(a) BLOCK VI.
8. patrolled oeriodically to wexpent has beon or 'regeneration' a possible reinfestation oaptured in the wo flies have been first 9 months iner Blocks I and II but during the and Lower Pala and ifes were caught, in Block III It is thought the in the Upper ala and Mirogi Block. between the Lambwe Velley and the of a large herd of elephants withdrawal of the $11 y$-bors been responsible or ming the wet months, might have 4. Settlement is presence of these illes. Pala area hif is gradually developing. In the Nthiwa there are 65 was opened for occupation the the of 1985, 99 new plots under cultivationa Sisain is being procuced in large quantities.

For settlement in the area now betng deal-t inthy 98 families have applied for holdings in the Randadoto Iocation and the Chiers of Kanlammand Kabwooh state that approxia ately siaflar mubers are waiting for permission to ocoupy thair portions of land now befng regdered safe. 5. A statement prepared by the Medical Officer, Kisid, showing the extent of the reduction of infection, is reproduced in paragraph 6 below:-
6. The first accurate investigation into the incidence of human Trypanosomiasis in the Kaniadoto area was carried out in 1987, when an incidence of 10% was discovered. These oases occurred anongst a sub-divison of the location mamering about 1000 people, who for the most part frequented the tributaries of the Kuja River for obtaining water, building poles, firewoods etc.

The removal of several villages which were in dangerous proxinity to tsetse was recomrsended. Beyond this and treatment of infected people nothing further was done.

In January 1929, a Buropean Porest Officer and his wife contracted sleeping sickness during a safari in the

Kaniadoto area.
In 1929, 176 cases of Sleeping Sickness were found among the native population in the Kuja River area.

In January 1950 it was decided to carry out an investigation into the incidence of Sleeping Sickness in the Kavirondo endenic zones with a view to reconsending measures for the control of the infection. Altogether about nine months were spent in the Kuja River area, during which time the sources of the infection were accurately determined by closely questioning all infected people in regard to their movenents and mode of IIfe.

Between Pebruary and cotober 1980, 156 new cases of Sleeping Sickness ere foun in Kaniadoto - the sub-division, Kaniakela, producing the majority of cases. Five monthe afterwaris, in March $1 \overline{9} 91$, a re-exalation of the population produced 78 fresh cases. From these flgures it would appear that about 16 fresh infections were occurring monthiy.

In-1952 a trained Aिfican-aboratory Assistant wäs posted to Kaniadote in order to deal with fresh eetses of Steeping sickness. The subsequent findings are as follows-:-

In July 1987, the total population of Kanlakela was examined and only two new cases were found. These tro cases are included in the total for 1937. The reduction in the incidence of sleeping ickness in the !aniadoto area is undoubtedly due to anti-tsetse neasures which have been conducted since 1955. There is ood reason to believe that at the present rate of progress 8 leeping ickness will be entirely eliminated from the district in question in the very near future."

