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ABSTRACT

Data analysis of data sets containing repeated measures observations taken from
animals (as the experimental units) assigned to different treatments over a period of
time is a common design in animal feeding experiments. Conventionally, repeated
measures data were either analyzed as univariate or contrasts. In recent times, the GLM
procedure has become more appealing for analyzing repeated measures data.
Advanced GLM methods such Proc Mixed Models and the Generalized Estimating
Equations (GEEs) are used to analyze complex repeated measures data. These data sets
are complex due to missing cases or unequal spacing. When repeated measures data is
free of missing cases and is equally spaced, then the normal proc GLM procedure is
sufficient for analysis. This is typically the case of this study.

The objective of this study is to provide a background understanding of the proc GLM
model methodology and its use in repeated measures analysis on balanced repeated
measures data to compare two treatment regiment groups and to document their effects
on the performance of dairy calves from birth to weaning. The study capitalizes on the
ability of the GLM procedure to use the method of least squares to fit general linear
models and its application of vital statistical methods such as regression, ANOV A,
ANCOVA, MANOVA and partial correlation to establish the usefulness of the covariate
(chosen in this study) in the repeated measures ANOV A model and finally to help in
the testing of hypotheses in Multivariate Analysis of Variance.

The Pillai's Trace, Wilks' Lambda, Hotelling-Lawleys' Trace and the Roy's Maximum
Root are some of the multivariate procedures employed in this study to test for
significance in differences between the treatment regiments, multivariate tests for no
time effects, multivariate tests for no time*replication effects, multivariate for no
time*treatment effects, between and within subject effects.

Key results indicate no difference between the treatment regiment groups and therefore
the information is used to advise smallholder farmers on cheaper dairy calf feeding
alternatives.
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CHAPTERl

INTRODUCTION

1.1 BACKGROl ND r~J ORMATION

As the population of Kenya continues to increase and land sizes decrease

due to land subdivision the cost of milk production has significantly soared,

it is therefore imperative for farmers to opt for cheaper calf feeding

alternatives in order to save on production costs. In this case we wish to

compare the performance of dairy calves by feeding them with milk as

compared to feeding them on maize/cow pea's gruel and milk on a half-half

basis.

From birth to weaning it is recommended that a calf consumes 406 litres of

milk. In the coastal region where milk retails for up to 40/ -per litre, this

translates to about 16,600/ -. This is too expensive to a smallholder farmer

and as such many calves are neglected.

In Central Kenya it has been shown that farmers can save 2-3 litres per calf

per day by feeding maize/beans gruel without affecting calf performance.

The cost of beans is also quite high, therefore to try and minimize costs as

much as possible we propose to adapt the use of cowpeas instead of beans.

The aim of this case study is to compare the effectiveness of the use of the

Maize-cowpeas gruel with that of milk and to check whether the economic

returns observed with milk are retained when maize-cowpea gruel is used.

During the experimental period the average cost of maize flour was KES 25

kg-l and cowpea flour KES 71.50 kg-1. So the cost of one of litre gruel (150g of
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maize flour and 150g of cowpea flour) was KES 14.85. The cost of milk was

KES 40 Iitre'. A single calf weighing 20 kg at birth required 406 litres of milk

from week 3 to weaning (week 20). The same calf would need 203litres milk

and 203 litres gruel for the same period.

For the farmer to be able to produce 203 litres of gruel they require 58 KGs of

a combination of maize and cowpeas whose cost is about KES. 5597. Adding

this to the cost of 203 litres of milk, brings the total cost of this combination

to about KES. 13717. This figure is less by a significant amount when equated

to the cost of feeding dairy calves purely on milk.
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1.2 1TTERATURE REVIEW

The approach of analysis used to analyze this data is the repeated measures

analysis. A review of what repeated measures analysis is and the cases in

which it has been used, brings to light the justification for its use on this data

set.

Researchers are often interested in analyzing data that results from longitudinal

studies. Estimating equations for generalized linear modeling of longitudinal data

have attracted a great deal of attention over the last decade. Liang and Zeger (1986)

presented an approach to these problems involving generalized estimating

equations (GEEs) extended from generalized linear models (GLMs) into a

regression setting with correlated observations within subjects.

The class of generalized linear models is an extension of traditional linear models

that allow the mean of a population to depend on a linear predictor through a

nonlinear link function and allows the probability distribution of the response to be

any member of an exponential family of distributions. This family was first

introduced by Nelder and Wedderburn (1972) and consists of normal error linear

regression models and a nonlinear exponential, Poisson regression models, logistic

and probit models for binary data, as well as many other models, such as log-linear

models for the categorical data. Refer to McCullagh and NeIder (1989) for a

thorough account of statistical modeling using generalized linear models. However,

frequently researchers are interested in analyzing data that results from a

longitudinal period or a repeated measure design with a correlation existing

between the observations on a specific subject.

Correlated data can arise from longitudinal studies, in which multiple

measurements are taken on the same subject at different points in time.

Longitudinal data can be defined as data collected from the observations of subjects

on a number of variables over time. The main advantage of a longitudinal study is
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its effectiveness for studying change over time. In fact, we speak of longitudinal

data whenever we have observed some occurrence more than once. Longitudinal

data correlation must be considered for any appropriate analysis method. Liang

and Zeger (1986) formalized an approach to this problem using Generalized

Estimating Equations (GEEs) to extend Generalized Linear Models (GLMs) into a

regression setting with correlated observations within subjects. For details on the

GEEs method, refer to Liang and Zeger (1986), Zeger and Liang (1986), and Diggle,

Liang and Zeger (1994). In this study we will only review and use the GLM

procedure because it is sufficient for the results that the study has interests in.

Repeated measures analysis has widely been used in animal feeding experiments.

Feed costs represent approximately one-half of the total cost of production for most

classes of livestock (Kennedy et al., 1993), and it is the largest expense in most

commercial beef operations (Arthur et al., 2004). Improvement of feed efficiency

should be a major consideration in most livestock feeding experiments (Kennedy et

a1.,1993). These similar statements can be echoed in our study because it aims at

reducing costs of feeding calves while keeping the efficiency of the feed.

In 2006, (Z. Wang et al.,) used repeated measures analysis to test for growth, feed

intake, and feed efficiency in cattle using the Grow Safe System. Data were

collected using the Grow Safe System at the University of Alberta Kinsella Research

Station. The changes and relative changes among data from shortened test

durations were used to determine the optimum test duration for 4 traits. The traits

were fitted to a model with repeated measures using SAS.

Other publications that have employed repeated measures analysis in exploring

performance of animals in animal feeding experiments include;

P.F. Arthur et a1.,2008 who used repeated measures analysis to explore the

optimum duration of performance tests for evaluating growing pigs for growth and

feed efficiency traits,
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M.F. Rosario et al., 2007 modeled the covariance structure to estimate and to predict

feed conversion in broiler chickens from one experiment under repeated measures.

Eight treatments that consisted in a combination of four strains (Arbor, Ag Ross

308, Cobb and RX) and two sexes were evaluated at six ages (7, 14, 21, 28, 35, and 42

d) in two blocks with three replicates per block. Feed conversion was subjected to a

mixed model, MIXED procedure in SAS® software, where was modeled covariance

structure using ten types.

Wang Z. and Goonewardene L. A. 2004. published 'the use of mixed models in the

analysis of animal experiments with repeated measures data. The objective of the

paper was to provide a mixed model methodology in a repeated measures analysis

and use a balanced steer data from a growth study to illustrate the use of PROC

MIXED in the SAS system using five covariance structures. The justification by

these two for the use of the mixed model was that it is not affected by the presence

of unequally spaced and/ or missing data. In our case this threat is not anticipated

because there are no missing cases and data is equally spaced in terms of time,

therefore the GLM procedure can comfortably be used without affecting the output

or results of the model.

1.2.1 REPEATED tvlEASURf~ ANALYSIS

When measurements are taken on the same experimental unit, the

measurements tend to be co-related with each other. When the

measurements represent qualitatively different things, such as weight,

length, and width, this co-relation is taken into account by use of

multivariate methods, such as multivariate analysis of variance. When the

measurements can be thought of as responses to levels of an experimental
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factor of interest, such as time, treatment, or dose, the correlation can be

taken into account by performing a repeated measures analysis of variance

which is a multivariate method.

Traditionally people used to analyze each variable by variable. Statistical

packages like SAS and Genstat provide both the univariate and multivariate

tests for repeated measures for one response.

• Conduct an experiment when few participants are available: The repeated

measures design reduces the variance of estimates of treatment- effects,

allowing statistical inference to be made with fewer subjects.

• Conduct experiment more efficiently: Repeated measures designs allow

many experiments to be completed more quickly, as only a few groups need

to be trained to complete an entire experiment.

• Study changes in participants' behavior over time: Repeated measures

designs allow researchers to monitor how the participants change over the

passage of time, both in the case of long-term situations like longitudinal

studies and in the much shorter-term case of practice effect.

The primary strengths of the repeated measures design is that it makes an

experiment more efficient and helps keep the variability low. This helps to

keep the validity of the results higher, while still allowing for smaller than

usual number of subject groups.

As the price of milk goes up and also its cost of production soars against other
alternatives it is important for farmers to explore other alternatives that can be used
as its substitute or complement in feeding dairy calves. This study focuses on
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establishing the effect of feeding dairy calves on a combination of milk and Maize-
cowpea gruel when equated to feeding entirely on milk. We wish to explore the
possibility of entirely substituting the calves' milk diet with a cheaper alternative or
partly substituting the milk ration with a cheaper alternative. In this case we are
considering Maize-cowpea gruel.

1.4 BROAD OBJECTIVE

The broad objective of this study is to establish economically viable alternatives of
feeding dairy calves without adversely affecting their performance. In this case
maize-cowpea gruel is used as an alternative to milk.

15 SPECIFIC OBJECTIVES

• To determine the performance of dairy calves fed on maize-cowpea gruel as

part of their ration in terms of growth rates

• To determine the economic viability of feeding dairy calves on maize-

cowpea gruel to substitute part of their milk ration.

1.6 HYPOTHESES

• Dairy calves fed on maize-cowpea-gruel as part of their ration gained weight

at a rate equal to that of those fed on milk

• It is cheaper to substitute part of dairy calves milk ration with maize-cowpea

gruel without necessarily affecting their performance

1.7 SIGNIFICANCE OF THE STUDY

This study aims to inform farmers on economical feeding alternatives of dairy

calves. It compares the effect on performance of dairy calves by feeding them on two

treatments namely;

1. Milk

2. Maize-cowpea gruel and Milk

16



The study involves feeding these calves on the two treatments and monitoring them

for weight changes over a period of 20 weeks.

The results obtained from this study will be used by smallholder dairy farmers to

inform them on substituting part of the calves' ration with Maize-cowpea gruel

which is a cheap alternative.

It is anticipated that the use of this combination will save the farmer 3-4 litres of

milk. The milk so saved can be sold to improve the farmers' income from milk sales.

1.8

1.8.1 Study Area

The study was carried out at the Kenya Agricultural Research Institute in

Mtwapa, Mombasa-Kenya which is located at the coastal region of Kenya.

The area is located 20 km North of Mombasa in Kilifi District along

Mombasa - Malindi road.

1.8.2 Experimental Material and Units

Carefully considering problems and pitfalls in animal dietary experiments

(DH Bake, 1986), sixteen dairy calves of approximately the same weight, age

and body composition were selected to constitute the experimental units.

The sixteen dairy calves were tagged as follows: with Z5, Z13, Z15, Z4, Z9,

Z7, Zl1, and Z3 being fed on milk and Z14, Z6, Z8, Z10, Z16, Z12, Z17 and

Z18 fed on maize-cowpea gruel. The first set of dairy calves was taken to be

under treatment group 1 while the second set was taken to be under

treatment group 2.

Body-weight measurements

Following a 14-day acclimatization period, each dairy calf was weighed at

the beginning of the experiment (initial body weight, IBW) and every
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successive seven-day thereafter. All calves were weighed during morning

hours after overnight fasting using suspended weighing scale having a

sensitivity of 100 grams. The experiment was initiated in April and ended in

September 2008.

1.8.3 Treatment Allocation

The dairy calves were enclosed in a field and made to go through a crush. As

the calves went through the crush, they were tagged with tags representing

either milk or maize-cowpea gruel in an alternating manner. Eight dairy

calves were allocated to be fed on maize-cowpea gruel and another set of

eight dairy calves were allocated to be fed on milk. Treatment group 1 was

taken to be the set of dairy calves that were fed on milk while treatment

group 2 was taken to be the set of dairy calves that were fed on maize-

cowpea gruel.

1.8.5 Data Collection

The data on weights of calves fed on the two treatments over a period of 10

weeks was recorded. This raw data was then digitized into MS Excel and

verified against the original data sheets. The weights data was expressed in

kilograms

Data

Data analysis was done using SAS, R, SPSS (17.0) statistical data analysis

software and Excel.

1.8.8 Assumptions of Multivariate Analysis of Variance

Some assumptions have to be met before carrying out multivariate analysis

of variance. These assumptions include:

1. The data from group i has common mean vector pi

2. The data from all groups have common variance-covariance matrix L.

3. Independence: The subjects are independently sampled.

18



4. Normalitv: The data are multivariate normally distributed.

NB: According to Chuong B. Do (2008) a vector-valued random variable

X = [Xl .... xnF has a multivariate normal distribution with mean /1 E R" and

a covariance matrix L E S~+, if its probability density function is given by

1.1

We write this asX -N (/1, I).

19



CHAPTER 2

EXPLORATORY DATA ANALYSIS (EDA)

INTH.{)DUCTION

It is a key thing to ensure that the data conforms to the underlying

assumptions e.g.; Multivariate normality assumptions before carrying out

any analyses or fitting any models to the data.

Exploratory data analysis, EDA (John Tukey, 1978) is an approach to

analyzing data for the purpose of formulating hypothesis worth testing,

complementing the tools of conventional statistics for testing hypothesis.

The objectives of carrying the EDA were to:

• Suggest hypothesis to be tested

• Assess the assumptions on which statistical inference would be based

• Support the selection of appropriate statistical tools and techniques

• Provide a basis for further data collection through surveys or experiments

EDA employs both graphical and quantitative techniques to give insight into

the data set allowing the data to reveal its structure, detect outliers and

anomalies and suggests a possible model to be fitted to the data. The

techniques used are run-sequential plots, histograms, normal probability

plots, scatter plots and the box whisker plots.

2.1.1 Histograms

Histograms were plotted for all the differences of the weights from week 1-

20. There the number of variables considered as such for this multivariate

EDA using histograms were n-I i.e. 20-1.
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Looking at this scatter plot, it is clear from the histograms that the variables

of this data indicate skewness to the right and therefore there is need to think

of transforming the data, but before that a few more tests can be done.

In some cases relationships between subsequent variables can be observed.

Through this it can be observed that some variables have positive
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relationships and others have negative relationships. In a few cases however,

there no clear definition of relationships between subsequent variables.

2.1.2 Normal QQ Plots

In statistics, a Q-Q plot C'Q" stands for quantile) is a probability plot, which

is a graphical method for comparing two probability distributions by

plotting their quantiles against each other.

A Q-Q plot is used to compare the shapes of distributions, providing a

graphical view of how properties such as location, scale, and skewness are

similar or different in the two distributions. Q-Q plots can be used to

compare collections of data, or theoretical distributions. The use of Q-Q plots

to compare two samples of data can be viewed as a non-parametric approach

to comparing their underlying distributions. A Q-Q plot is generally a more

powerful approach to doing this than the common technique of comparing

histograms of the two samples, but requires more skill to interpret

Figure .2:Normal QQ-l'iots
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Looking at these scatter plots and focusing on individual variables, the QQ-

plots confirm what was indicated by the histograms above. Majority of the

variables clearly indicate a departure from normality.

The relationships between variables remain the same as indicated above

under histograms.

The following variables seem contain values that can be termed as outliers;

tl, t2, t3, t5, t6, t8, t9 and tl9, but to be sure that they are indeed outliers we

can plot some ellipses for these particular variables.
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From these ellipses our suspicions are confirmed. There are indeed outliers

and therefore we need to deal them appropriately.

2.1.3 Box Plots

The box plots of the un transformed data are as follow.
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This plot confirms our suspicion that there are several outliers in this data

set. The skewness in all the variables is also evident. Therefore, without any

further testing for multivariate normality and sphericity of data set we

conclude that the untransformed data negates sphericity assumptions and is

27
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not multivariate normal. There is therefore a need to transform the data for it

to be useful in statistical inference.

There are several methods for transforming data sets to meet multivariate
assumptions:

The logarithm and square root transformations are commonly used for

positive data, and the multiplicative inverse (reciprocal) transformation can

be used for non-zero data. The power transform is a family of

transformations parameterized by a non-negative value Athat includes the

logarithm, square root, and multiplicative inverse as special cases. To

approach data transformation systematically, it is possible to use statistical

estimation techniques to estimate the parameter Ain the power transform,

thereby identifying the transform that is approximately the most appropriate

in a given setting. Since the power transform family also includes the

identity transform, this approach can also indicate whether it would be best

to analyze the data without a transformation. In regression analysis, this

approach is known as the Box-Cox technique.

The reciprocal and some power transformations can be meaningfully applied

to data that include both positive and negative values (the power transform

is invertible over all real numbers if Ais an odd integer). However when

both negative and positive values are observed, it is more common to begin

by adding a constant to all values, producing a set of non-negative data to

which any power transform can be applied.
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A common situation where a data transformation is applied is when a value

of interest ranges over several orders of magnitude. Many physical and

social phenomena exhibit such behavior - incomes, species populations,

galaxy sizes, and rainfall volumes, to name a few. Power transforms, and in

particular the logarithm, can often be used to induce symmetry in such data.

The logarithm is often favored because it is easy to interpret its result in

terms of "fold changes. II

The logarithm also has a useful effect on ratios. If we are comparing positive

quantities X and Yusing the ratio X / Y, then if X < Y, the ratio is in the unit

interval (0,1), whereas if X > Y, the ratio is in the half-line (1,00), where the

ratio of 1corresponds to equality. In an analysis where X and Yare treated

symmetrically, the log-ratio 10g(X / Y) is zero in the case of equality, and it

has the property that if X is K times greater than Y, the log-ratio is the

equidistant from zero as in the situation where Y is K times greater than X

(the log-ratios are log (K) and -log (K) in these two situations).

lf values are naturally restricted to be in the range ° to 1, not including the

end-points, then a logic transformation may be appropriate: this yields

values in the range (-00, (0).

In our case we used the square root transformation. In addition, since we
had some values as zero and we cannot obtain square roots for zero, we
modified the square root function to take the form:

[Cx) = .jCx + 1) 2.1

Where, x is the change in weight between subsequent weeks.
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Upon transformation the data is now multivariate normal. This is the data
set that was used to carry out statistical analysis. Just to verify this, we carry
out a normality test.

2.2.1 Scatter plot Matrix with Density Plots for each Variable
Figure, [I

1.0 3.0 1.0 2.5 1.0 2.5 1.0 2.5 1.4 2.4

30



~

co
00 ~

00 0
o

1.5 2.5 1.0 2.5 1.0 1.8 1.0 1.8 1.4 2.2

Looking at the density plots along the main diagonal for the variables, we
can observe that these density plots follow the normal distribution. Since
majority of these variables follow this distribution, we conclude that the
transformed data is multivariate normal.
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The quantile - quantile plots plotted above also confirm the conclusions
made from density plots and therefore with certainty we can conclude that
our data set is multivariate normal. Hence we can carry out statistical
analysis and infer on this data set as it.
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CHAPTER 3

ANALYSIS OF COVARIANCE

Analysis of covariance is a combination of analysis of variance (ANOV A)

and linear regression that accounts for intergroup variance when performing

ANOV A. Including a continuous variable (the covariate) in an ANOVA

model will account for known variance not related to the treatment.

Covariates are variables not controlled for in the experiment that still affect

the dependent variable

Analysis of covariance requires measurement of the character of primary

interest plus the measurement of one or more variables known as the

covariate. In our experiment the covariate is the initial birth weight of the

calves. It is used with the dependent variable to define a regression model

for the weights data.

The covariance technique is effective for controlling experimental error

caused by use of different calves in the experiment. The covariance analysis

removes the effect of different birth of the calves that were used in the

experiment.

It is well known that in designed experiments the ability to detect existing

differences among treatment increases as the size of the experimental error

decreases, a good experiment attempts to incorporate all possible means of
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minimizing the experimental error. Besides proper experimentation, a

proper data analysis also helps in controlling experimental error. In

institutions where blocking alone may not be able to achieve adequate

control of experimental error, proper choice of data analysis may help a

great deal. By measuring one or more covariates, the characters whose

functional relationships to the character of primary interest are known - the

analysis of covariance can reduce the variability among experimental units

by adjusting their values to a common value of the covariate. For example, in

our case here - which a typical animal feeding experiment, the initial body

weights of the animal usually differs. Using this initial body weight as a

covariate, the final weights recorded after the animals have been subjected to

various physiological feeds (treatments) can be adjusted to the values that

would have been obtained had there been no variation in the initial body

weights of the animals at the start of the experiment.

3.].1 Uses of Covariance Analysis in Agricultural Research

According to Rajender Parsad and V.K. Gupta (2008), there are several uses

of covariance analysis in agricultural research. Some of the most important

ones are:

1. To control experimental error and to adjust treatment means.

2. To aid in the interpretation of the experimental results.

3. To estimate missing data.

3.1.1.1. Error control and Adjustment of Treatment Means

It is now well known that the size of the experimental error is closely related

to the variability between experimental units. It is also known that proper

blocking can reduce experimental error by maximizing the differences

within blocks. Blocking however, cannot cope with certain types of

variability.

3S



Use of covariance analysis should be considered in experiments in which

blocking couldn't adequately reduce the experimental error (for instance in

our case). By measuring an additional variable (e.g., initial birth weight) that

is known to be linearly related to the primary variable weight change, the

source of variation associated with the covariate can be deducted from

experimental error. This adjusts the primary variable weight change linearly

upward or downward, depending on the relative size of its respective

covariate. The adjustment accomplishes two important improvements:

1. The treatment mean is adjusted to a value that it would have had; had there

been no differences in values of the covariate.

2. The experimental error is reduced and the precision for comparing treatment

means is increased.

Although blocking and covariance techniques are both used to reduce

experimental error, the differences between the two techniques are such that

they are usually not interchangeable. Analysis of covariance can be used

only when the covariate representing the heterogeneity among the

experimental units can be measured quantitatively. However, that is not a

necessary condition for blocking. In addition, because blocking is done prior

to the start of the experiment, it can be used only to cope with sources of

variation that occur during the experiment. Thus, covariance analysis is

useful, as a supplementary procedure to take care of sources of variation that

cannot be accounted for by blocking.

3.1.1.2. Aid in Interpretation of Experimental Results

The covariance technique can assist in the interpretation and characterization

of the treatment effects on the primary character of interest weight change, in

much the same way that the regression and correlation analysis is used. By

examining the primary character of interest weight change together with
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other characters whose functional relationships to the weight change are

known, the biological processes governing the treatment effects on the

weight change can be characterized more clearly.

The major difference between the use of covariance analysis for error control

and for assisting in interpretation of results is in the type of covariate used.

For error control, the covariate should not be influenced by the treatments

being tested; but for the interpretation of results, the covariate should be

closely associated with the treatment effects.

3.1.1.3. Miss!n 1)

The only difference between use of covariance analysis for error control and

that for analysis of missing data is the manner in which the values of the

covariate are assigned. When covariance analysis is used to control error and

to adjust treatment means, the covariate is measured along with the weight

change for each experimental unit. But when covariance analysis is used to

analyze the missing data, the covariate is not measured but is assigned, one

each, to the missing observation. We will leave this discussion at that

because we do not have missing data in our case.

3.].2 Assump+ rrr«, of ANCOVA

ANCOV A has the same assumptions as ANOV A except there are two

important additional considerations (Andy Field, 2008): (1) independence of

the covariate and treatment effects, and (2) homogeneity of regression

slopes. The first one basically means that the covariate should not be

different across the groups in the analysis (in other words, if you did an

ANOVA or t-test using the groups as the independent variable and the

covariate as the outcome, this analysis should be non-significant). For details

on this assumption we refer you to Miller and Chapman (2001).
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When ANCOV A is conducted we look at the overall relationship between

the outcome (dependent variable) and the covariate: we fit a regression line

to the entire data set, ignoring to which group a unit belongs. In fitting this

overall model we, therefore, assume that this overall relationship is true for

all groups of participants. For example, if there is a positive relationship

between the covariate and the outcome of one group, we assume that there is

a positive relationship in all the other groups too. If however, the

relationship between the outcome (dependent variable) and covariate differs

across the groups then the overall regression model is inaccurate (it does not

represent all the groups). This assumption is very important and is called the

assumption of homogeneity of regression slopes.

1.1.3. Rules for Determining Expected Mean Squares for Balanced Data

An expected mean square is a weighted sum of variances, with each variance

multiplied by a coefficient. For random effects, the variances are given

implicitly (Neter J. and Wasserman W. (1974». For example, for a set of 'I'

fixed treatment effects, al, aZI ••••• I ai' the variance is

3.1

It is always the sum of squared effects divided by the number of degrees of

freedom in the effects.

The following rules come in two parts. Part A is used to determine which

variance components should be included. Part B is then used to determine

the coefficients of these included variance components.

Part A

1. Always include al, the variance of chance error terms

2. List of set of variance components in the model whose subscripts contain all

the factors included in the desired mean square. For a main effect, this
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includes all interactions containing this main effect. For an interaction effect,

this includes all higher order interactions between this interaction and other

effects or interactions, but not any lower interactions.

3. From the list in step 2, delete any interaction variance component for which

the additional factors beyond those in the desired expected mean square are

not all random.

PartB

1. The coefficient of (J; is always 1.

2. The coefficient of any other variance component is the number of replicates

of each of the treatments times the product of the numbers of factor levels

that do not appear in the subscript of the variance component. (Remember

the number of replicates of each treatment is assumed to be constant).

The test used for the presence of treatment main effects depends on whether

the main effects are random or fixed.

7,J.4 Defining Variance Components

It has been demonstrated by Janssen (2006) how different variance

components describe at different levels the variability in observations with

mixed model structure. The variance - covariance matrix of Y is;

Yij = constant + ai + {3Xij + Eij

yij = J1 + ai + {3(xij - x) + Eij

where;

3.21

ai is the effect of factor A (groups or treatments)

{3is pooled (across groups) regression slope bjw Y and X

Xij is value of covariate for jth observation in ith group
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Eij is variation in Y not explained by either factor A or Covariate X

The first part of the model,X,B, does not contribute to the variance of y as it

only contains fixed effects. Furthermore, the assumptions are made such that

each element ul in the vector u is a random effect which comes from a

normal distribution with mean 0 and variance (Jul, and that the elements are

independent from each other and that the covariances among the elements of

u are thus zero. The variance - covariance matrix of u is thus given by a

diagonal matrixD(~). All the elements in the vector u are assumed to be

independent form the elements of e. We further have that the elements in e

are also normally distributed with mean u and standard variance (J2 and are

independent from each other. Given the assumptions, the variance -

covariance matrix of Y is given by;

D(Y) = D(Zu) + D(e) = ZD(U)ZT + (J2/N 3.3

Fitting the Model;

The GLM procedure was used in fitting the model. The dependent variable

was the weight change and the initial weight was used as the covariate.

Overall, the model was found to fit very well (p<O.OO1).

The ANaYA table is as follows.

Source DF Type III 55 Mean Square F value Pr
>F

Initial weight 1 3.374 3.374 0.26 0.6212
Treatments 1 350.38 350.38 26.61 0.0002
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The covariate is not significant in this model (p==0.2612)but it still explains

some variation in the dependent variable. Therefore we can as well decide to

keep it in the repeated measures analysis.

The treatment effects are highly significant (p<O.OOl).It is therefore

imperative to check whether there is a significant difference between the two

treatment means.
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CHAPTER 4

REPEATED MEASURES ANALYSIS OF VARIANCE

4.1 IN] I{ODL( TION

Repeated measurements, as the name suggests, are observations of the same

characteristic, which are made several times. What distinguishes such

observations from those in more traditional statistical data modeling is that

the same variable is measured on the same observational unit more than

once. The responses are not independent as in the usual regression analysis

and more than one observational unit is involved. The responses do not form

a simple time series. To many animal scientists, a mention of the term

repeated measurements evokes the idea of either the fisheries study of

growth curves or split plot designs. However, once one begins to delve into

the subject, one realizes that these two subjects, in no way, completely cover

the field of repeated observations. In fact, repeated measurements are very

frequent not only in animal science experiments but also in almost all

scientific fields where statistical models are used

Few animals may be available (or few used, because of complex technique)

in experiments with non-random repeated measurement (e.g. p animals in

each of r treatment groups, each measured in p periods). In such cases, the

use of summary statistics for each aruma I to eliminate the time factor, or

ordinary univariate split-plot tests of the treatment means or multivariate

analysis is inadvisable, because comparison of the treatments are not

sufficiently sensitive for any of those procedures. The problem is that main
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effects of treatments must be tested by the mean square for the animals

within treatments, which is inflated by positive correlations among repeated

observations. Even conditional tests (e.g. comparisons of treatments within

periods), as well as tests of means of summary statistics, cannot be very

sensitive; because, with low replication, the standard errors of mean

differences are not much smaller than the ordinary (error) standard

deviation among animals treated alike, without the influence of correlations

induced by repeated measurement. In severe restriction of numbers of

animals leaves few degrees of freedom for error, either reducing statistical

power drastically or preventing multivariate analysis entirely. In such cases,

the primary benefit of a Repeated Measures Design (RMD) is statistical

power relative to sample size, which is important in many real researches.

RMD use the same subjects throughout different treatments and thus,

require fewer subjects overall. Because the subjects are constant, the variance

due to subjects can be partitioned into the error variance term, thereby

making any statistical test more powerful.

According to Ozkan GORGULU and Suati SAHINLER (2008), RMDs are

quite versatile, and researchers use many different designs and call the

designs by many different names. For example, a one way repeated

measures ANOV A may be considered as a one-factor within subjects

ANOV A. Two way repeated measures ANOV A may be referred to as a two-

way within subjects ANOVA. These designs are called related samples

models, matched samples models, longitudinal studies and within-subject

designs. In RMDs, total variation consists of two parts as Between-Subject

Factor(s) (BSF) or non-repeated factor(s) and Within-Subject Factor(s) (WSF)

or repeated factor(s), and an error terms are computed for each source of

variation. Having effect of animal within treatment removed from

experimental error reduces experimental error; this provides having the

researchers make a more reliable decision. A BSF is a non-repeated or
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grouping factor, such as race or experimental group, for which subjects will

appear in only one level. A WSF is repeated factors for which subjects will

participate in each level e.g. subjects participate in both experimental

conditions, albeit at different times. In repeated measures experimental

design the following assumptions should be validated; the measurement

errors are independent, and identically normally distributed with mean 0

and the same variance. The subjects are considered to be a random sample

from the subject population of interest, so that the subject effect is random.

Measurements from the same subject will be positively correlated. It is

assumed that the variance of the difference between the estimated means for

any two different factor levels will be the same. This property is called

sphericity. A slightly more restrictive assumption is that the covariance

between observations within any be the same for any two different factor

levels. This property is called compound symmetry. Compound symmetry is

a special case of more general property, sphericity. If compound symmetry

exists, then sphericity also exists, but it is possible for sphericity to exist

when compound symmetry does not. Alternative analytic techniques are

available when assumptions validity is dubious. These include an e

adjustment procedure based on Geisser and Greenhouse (1958) and a

multivariate analysis using Hotelling's T 2 statistic.

4.2 ONE \VA Y REPEATED MEASURES DESIGN
It is the simplest design among the RMDs. There is one factor in this design

and all of the experimental units are taken into experiment within the factor

levels. A repeated factor might be different time points (periods), different

treatments or the different levels of the same treatment.

The model of the design is,

Yij= P +ai+ {3j+ Eij i=1,2,3, ... ,n; j =1,2,3, ... , p, 4.1
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Where p is overall mean, ai is the effect of ith animal, Pi' is the effect of jth

period or treatmentEij is error term. Table 1 presents a general illustration of

one-way repeated measures designs with n subject and p treatments or

periods (repeated measures). In one-way RMD, the sources of total variation

are the between subject and within subject variations, and the aim is to test

the differences among the periods or treatments. The sources of within

subject variation are also variation among the treatments and error. Thus,

SSTOTAL = SSBETWEEN-SUBjECT + SSWITHIN-SUBjECT 4.2

= SSBETWEEN-SUBjECT + SSTREATMENT + SSE

All sources of variations are computes as follows;

4.3

4.4

_ n - - 2 _ n yf
SSTREATMENT - P Li=l(Yl - y) - Li=l - - CT,p

4.5

,,"p 2
_ L...j=lYj

SSBETWEEN-SUBjECT - n - CT, 4.6

SSWITHIN-SUBjECT = SSTOTAL - SSTOTAL-SUBjECT, 4.7

SSE = SSTOTAL - SSBETWEEN-SUBjECT - SSTREATMENT = SSWITHIN-SUBjECT -

SSTREATMENT 4.8

Table 2 presents analysis of variance (ANOV A) summary table contains the

results of all computations in general.

The general ANOV A table with one way repeated measures differs from one

way independent samples ANOVA table such that, the row for subjects acts

as another factor and the residual or error term is the interaction between
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subjects and treatments, not real error (The real error is the differences

among the experimental units, which subject to same treatment). This

difference arises because subjects are constant through the treatments and;

thus, subject effects may be partitioned out of the error variance. There is still

only one effect of interest, treatments, with only one test statistic.

4.3 TvV() \-VAl' HrPf "TI D MLA"lJRES DESIGN
There are two factors, one of them BSF (A) and the other is WSF (B) in this

designs. Because the experimental units were classified as one inside the

other with factor levels of A but as factorial with factor levels of B,

interaction between experimental units and factor A could not be

considered.

In a two-way RMD, the sources of total variation are separated in two parts

as the between subject (SSBETWEEN-SUBJECT) and within subject

variations (SSWITHIN-SUBJECT).

Therefore,

SSBETWEEN-SUBJECT = SSA + SSEl and SSWITHIN-SUBJECT = SSB + SSAXB + SSE2

4.9

Thus, the model of the design is,

4.10

i = 1,2, ... ,n;j = l,2, .... ,p;k = 1,2, .... ,q

Where u is overall mean, ai is the effect of the ith level of factor A, {3j is the

effect of jth period or treatment, (a{3)ij is the interaction effect of A and B,

YCOk is the effect of kth experimental unit in ith level of the A factor (Error 1)

and ECi)jk is error term (Error 2).

Table 3 presents a general illustration for two-way repeated measures

designs with n levels of BSF, q subjects and p treatments or periods
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(repeated measures). As seen in Table 3, while the measurements are taken

from different experimental units in each levels of BSF (A), they are taken

from the same experimental unit in all levels of WSF (B).

All sources of variations are calculated as follows;

4.11

SSTOTAL = L%olL~=l L~=l YlJk - CT,

"n "q 2SS L..i=l L..k=l YLk
BETWEEN-SUBJECTS - p-CT '

In 2SS = i=lYL
A pq-CT'

4.12

4.13

4.14

SSEl = SSBETWEEN-SUBjECT - SSA'

SSWITHIN-SUBjECTS = SSTOTAL - SSBETWEEN-SUBjECT'

IP y2SS = }=1 }

B na-ct:'

4.15

4.16

4.17

4.18

SSE2 = SSWITHIN-SUBjECT - SSB - SSAxB· 4.19

Table 4 presents analysis of variance (ANOV A) summary table contains the

results of all computations for general.

Error 1 is used to test factor A, and Error 2 is used to test Band AxB [14].

Testing AxB interaction effect is more as than comparing the main effects (A

and B). p in Table 4 is coefficient of correlation which denotes the total

correlation between two levels of factor that come to one after another and

contain repeated measurement [2,14], and computed as;

p = [MSEl - MSEZ]/pa
z 4.20
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Where p is the number of periods or treatments, (J2 is the variation among

the experimental units which are in the same treatment and (J2 =

[MSEl + (p - l)MSEZ]/p. If the measurements are taken from different

experimental units, p = O.

4.4 HYPOTl IESIS TESTINC IN \lANOV A
All current MANOVA tests are made on A = E-1H. There are four different

multivariate tests that are made on E-1H. Each of the four test statistics has

its own associated F ratio. In some cases the four tests give an exact F ratio

for testing the null hypothesis and in other cases the F ratio is approximated.

The reason for four different statistics and for approximations is that the

mathematics of MANOVA get so complicated in some cases that no one has

ever been able to solve them.

To understand MANOVA, it is not necessary to understand the derivation of

the statistics. Here, all that is mentioned is their names and some properties.

In terms of notation, assume that there are q dependent variables in the

MANOVA, and let Ai denote the ith Eigen-value of matrix A which, of

course, equalsHE-1.

The first statistic is Pillai's trace. Some statisticians consider it to be the most

powerful and most robust of the four statistics. The formula is

Pillaistrace = trace[H(H + E)-l] = If=ll~~i 4.21

The second test statistic is Hotelling-Lawley' 5 trace.

Hotelling - Lawieystr ace = trace(A) = trace(HE-1) = If=l Ai 4.23
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The third is Wilk's lambda (1\). (Here, the upper case, Greek 1\ is used for

Wilk's lambda to avoid confusion with the lower case, Greek A often used to

denote an Eigen-value. However, many texts use the lower case lambda as

the notation for Wilk's lambda.) Wilk's 1\ was the first MANOY A test

statistic developed and is very important for several multivariate procedures

in addition to MANOY A.

. ' _ _ lEI _ nq 1
WLlk s lambda - J1 - IH+EI - i=l1+Ai 4.24

The quantity (1 - 1\) is often interpreted as the proportion of variance in the

dependent variables explained by the model effect. However, this quantity is

not unbiased and can be quite misleading in small samples.

The fourth and last statistic is Roy's largest root. This gives an upper bound

for the F statistic.

Roy's largest root = max (Aa 4.25

or the maximum Eigen-value of A H £-1. (Recall that a "root" is another

name for an Eigen-value.) Hence, this statistic could also be called Roy's

largest Eigen-value.

Note how all the formula in equations are based on the Eigen-values of

A = H £-1. This is the major reason why statistical programs such as SAS

print out the Eigen-values and eigenvectors of A = H £-1.

Once these statistics are obtained, they are translated into F-statistics in order

to test the null hypothesis. The reason for this translation is identical to the

reason for converting Hotelling's T2--the easy availability of published tables

of the F distribution. The important issue to recognize is that in some cases,

the F statistic is exact and in other cases it is approximate. Good statistical

packages will inform you whether the F is exact or approximate.
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In some cases, the four will generate identical F statistics and identical

probabilities. In other's they will differ. When they differ, Pillai's trace is

often used because it is the most powerful and robust. Because Roy's largest

root is an upper bound on F, it will give a lower bound estimate of the

probability of F. Thus, Roy's largest root is generally disregarded when it is

significant but the others are not significant

In our case, the weights data is such that we can only observe significant
weight change after five weeks. Therefore, our analyses consider a five week
interval for the repeated measures analysis.

The GLM procedure was used for the analyses with results from the SAS
output indicating significance of the model (p<0.05).

The type III SS ANOV A table is as follows.

Source DF Type III SS Mean Square F-value Pr>F

Initial Weight 1 27.8829 27.8292 2.2 0.18

Replication 7 96.1446 13.7349 1.1 0.4623

Treatments 1 358.0743 358.0743 28.6 0.0017

Manova Test Criteria and Exact F Statistics for the Hypothesis is of no Time
Effect

H=Type III SSCP Matrix for Time

E=Error SSCP Matrix

S=l M=l N=l
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Statistic Value F Value Num DenDF Pr > F
DF

Wilk's Lambda 0.607 0.65 4 4 0.6581

Pillai's Trace 0.3929 0.65 4 4 0.6581
Hotelling- 0.6473 0.65 4 4 0.6581
Lawley Trace
Roy's Greatest 0.6473 0.65 4 4 0.6581
Root

Manova Test Criteria and F approximations for the Hypothesis of no

Tirnerrep Effect

H=Type IIISSCP Matrix for Time*rep

E=Error SSCP Matrix

S=4 M=l N=l

Statistic Value F Value Num DenDF Pr > F
DF

Wilk's Lambda 0.0404 0.81 28 15.8 0.6947

PilIai's Trace 1.9616 0.96 28 28 0.5401
Hotelling- 6.3938 0.57 28 10 0.8821
Lawley Trace
Roy's Greatest 4.1192 0.12 7 7 0.0408
Root

NB: the F-statistic for Roy's Greatest Root is an upper bound.

Manova Test Criteria and Exact F statistics for the Hypothesis of no

Time*treat Effect

H =Type IIISSCP Matrix for Time*treat

E=Error SSCP Matrix
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Statistic Value F Value Num DenDF Pr> F
DF

Wilk's Lambda 0.5046 0.98 4 4 0.507

Pillai's Trace 0.4953 0.98 4 4 0.507
Hotelling- 0.9815 0.98 4 4 0.507
Lawley Trace
Roy's Greatest 0.9815 0.98 4 4 0.507
Root

The GLM Procedure

Repeated Measures Analysis of Variance

Tests of Hypotheses for Between Subjects Effects

Source DF Type III SS Mean Square F-value Pr>F

Replication 7 1.5213 0.2173 2.66 0.1105
Treatments 1 0.2253 0.2253 2.75 0.141
Error 1 0.5729 0.0818

The GLM procedure

Repeated Measures Analysis of Variance

Univariate Tests of Hypotheses for Within Subjects Effects

!able 7. vvithin Subject l.Iterts

Adj. Pr > F
Source DF Type III Mean F- Pr>F G-G H-F

SS Square value
Time 4 0.852 0.213 0.75 0.566 0.5328 0.566
Time*rep 28 9.3031 0.3322 1.17 0.3397 0.3614 0.3397
Time*Treatments 4 0.7345 0.2837 0.65 0.6336 0.5917 0.6336

Error(Time) 28 7.9456 0.2837
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Greenhouse-Geisser Epsilon

Huyh-Feldt Epsilon

0.7405

2.8100

The Greenhouse and Geisser epsilon measures by how much the sphericity
assumption is violated. The epsilon is then used to adjust for the potential bias in
the F-statistic. The epsilon can be 1, which means that the sphericity assumption is
met perfectly. An epsilon smaller that 1 means that the sphericity assumption is
violated. The further it deviates from 1, the worse the violation; it can be as low as
epsilon=l(l-k), which produces the lower bound of the epsilon (the worst case
scenario). The worst case scenario depends on k, the number of levels in the
repeated measures factor. In real life is rarely exactly T-which is indeed the case we
have in this data. If it is not much smaller than 1, then we feel comfortable with the
results of the ANOYA. The Greenhouse and Geisser epsilon is derived from the
variance-covariance matrix of the data. For its evaluation we need to first calculate
the variance covariance matrix 0 the variables (5). The diagonal entries are the
variances and the off diagonal entries are the covariances. From this variance-
covariance matrix, the epsilon can be estimated. Also we need the mean of the main
diagonal entries of 5, the mean of all entries, the mean of all entries in row I of 5,
and the individual entries in the variance-covariance matrix. The epsilon procedure
was proposed by Greenhouse and Geisser (1959).

Therefore based on this procedure we conclude that our epsilon suggest that the
ANOYA results can be interpreted comfortably.

A paired t-test was carried out to test for differences in means between the
two treatments. A two tailed test of hypothesis was used in this case with the
following statement of the null hypothesis.
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The paired t-test results (p=O.06) indicate that we fail to reject Ho. This means
that there is no significance difference between the two means. We can
therefore that conclude that the two treatment effects are the same. That is,
the two treatments (milk and maize-cowpea gruel) when administered to
dairy calves under similar environmental conditions have the same effect on
their performance.
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CHAPTERS

TEST OF PARALLELISM BY USE OF REGRESSION

5.1 INTRODLCTIO

By using dummy variables, we can broaden the application of regression

analysis. In particular dummy variables allow us to employ regression

analysis to produce the same information obtained by such seemingly

distinct analytical procedures as analysis of covariance and analysis of

variance (David G. Kleinbaum, Lawrence L. Kupper, Keith E. Muller (2007)).

There are three basic questions to consider when comparing two straight-

line regression equations:

1. Are the two slopes the same or different (regardless of whether the

intercepts are different)?

2. Are the two intercepts the same or different (regardless of whether the

slopes are different)?

3. Are the two lines coincident (that is, the same), or do they differ in slope and

/ or intercept?

There are two general approaches to answering the earlier three questions

related to comparing two straight lines.

Method I

Treat treatment 1 and treatment 2 data separately by fitting the two separate

regression equations

5.1

And
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Yt2 = POt2 + P1t2 + Et2 5.2

And then conduct appropriate two-sample t tests

Method II

Define dummy variable Z to be 0 if treatment 1 and 1 if treatment 2. Thus,

for the ntl means on tl, Z=O; and for the nt2 means on t2, Z=l. Our data will

then be of the form:

Tl: (X1ti, Y1ti, 0), (X2tV Y2tV 0), , (Xnti, Ynti, 0) 5.3

T2: (X1t2, Y1t2, 0), (X2t2, Y2t2, 0), , (Xnt2, Ynt2, 0) 5.4

Then, for the combined data above, the single multiple regression model

5.5

Yields the following two models for the two values of Z;

{
Z = 0: Ytl = Po + PiX + E

Z = 1: Yt2 = (Po + P2) + (Pi + P3)X + E

5.6

This allows us to write the regression coefficients for the separate models for

the method I in terms of the coefficients of model (*) above as follows:

5.7

Thus, model (*) incorporates the two separate regression equations with

within a single model and allows for different slopes (Pi for tl and Pi + P3

for t2) and different intercepts (Po for tl and Po + P2 for t2).

In our case here we adopt method II.
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5.2 Comparing Two Straight lines using a Single Regression Equation

Comparing regression equations by this approach uses a single multiple

regression model that contains one or more dummy variables to distinguish

the groups being compared. When comparing two straight lines, the model

is given by

Y = /30 + /3IX + /32l + /33Xl + E

5.8

Where Y=weight change, and X=initial birth weight, and Z is a dummy

variable indicating treatments allocated (1 if treatment 2,0 if treatment 1).

For our data (ntl = nt2 = 19), the fitted model is

Y = 1.93 - 0.0094X - O.lll - 0.00015Xl 5.9

This yields the following separate straight-lines equations:

l = 0: Ytl = 1.93 + 0.0094X

l = 1: Yt2 = 1.24 + 0.95X

5.10

These two straight-line equations are exactly the same as obtained by fitting

separate regressions

5.3 Test of Parallelism: Single Model Approach

Referring again to the above dummy variable model, the null hypothesis

that the two regression lines are parallel is equivalent to Ho: /33 = O.If the

slope for t2, /3lt2 = /31 + /33' simplifies to /31' which is the slope for t2 (i.e., the

two lines are parallel). The test statistic for testing Ho: /33 = 0 is the partial F

statistic (or equivalent t test) for the significance of the addition of the

variable XZ to a model already containing X and Z.
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In our case, this test statistic is computed as follows;

F(XZIX Z) = regression SS(X,XZ)-regression SS(X,Z)
, MS residual (X,Z,XZ)

5.11

= 0.007 (p = 0.987)

The F statistic obtained as such is so small (p is large); so we do not reject the

null hypothesis and therefore have no statistical basis for believing that the

two lines are not parallel. This was the same decision made on the basis of

separate regression fits. In fact, the F computed here is (theoretically) the

square of the corresponding T computed using the separate straight-line fits,

although the numerical answers may not agree due to round off errors.

5.4 Test of Equal Intercepts: Single Model Approach

The hypothesis that the two intercepts are equal, allowing for unequal

slopes, is the equivalent to Ho: f32 = a for the overall model. The test

compares the overall model

5.12

to the reduced model

5.13

This is a variables-added-last test considering Z, the treatment group

dummy variable. Another approach involves a variables-added-in-order test

companng

5.14
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to the reduced model

Y = Po + PI X + E 5.15

Note that this latter test presumes equal slopes, so it is essentially a test for

coincidence, assuming parallelism

5.5 Test of Coincidence: Single Mode I \pproach

The hypothesis that the two regression lines are coincident is Ho: pz = P3 = o.
When both pz and P3 are 0, the model for t2, YtZ = (Po + pz) + (PI + P3)X + E,

reduces to Ytl = Po + PIX + E for t1 (i.e., the two lines are coincident). The

test of Ho: pz = P3 = 0 is thus a multiple partial F test, since it concerns a

subset of regression coefficients. The two models being compared are

therefore

5.16

and

Y = Po + PI X + E 5.17

The computation from our data:

[regression SS(X.Z.XZ)-regession SS(X)]

F(XZ,Z\X) = -"-2 _
MS residual (X,Z,XZ)

5.18

= 19.1

Comparing this F with F1,18,O.999 = 7.72, we reject Ho with p<O.OO1and

conclude that there is very strong evidence that the two lines are not

coincident. This conclusion contradicts our earlier conclusion using the

results from separate tests for equal slopes and equal intercepts.
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5.6 Testing strategies and Interpretation: Comparing Two Straight Lines

Several strategies can be used to a best model for comparing two straight

lines. Strategies for more general situations can be found in chapter 16 of

(David G. KJeinbaum, Lawrence L Kupper, Keith E. Muller (2007)).

Here we prefer a backward strategy that is, starting with the largest model of

interest and then trying to reduce the model through a sequence of

hypothesis tests. A flow diagram of this strategy for comparing two straight

lines is given below.
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-significa nt

Start Begin with a full Model

Y = f30 + f3]X + f3zZ + f33XZ + E

Significant
Conclude coincidence

Non-significant

Coincidence Test

Parallelism Test Significant

Conclude nonparallel

lines with unequal

interceots

Do you want to

test for equal

intercepts?

NO

Using variables-

added-last test

Non-significant Conclude nonparallel

lines with common

interceotConclud nonparallel

lines wi h unequal

intercepts

Significant

Sign
Conclude parallel

but not coincident STOP
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In our case the model to be considered is the model (*) above, which contains

X, Z, and XZ as independent variables. To reduce the model, we performed

tests for coincidence, then for parallelism and then for equal intercepts;

1. If the test for coincidence is non-significant, we stop further testing and

conclude that the best model is

Y={30+{3iX+E 5.19

2. If test for coincidence is significant and the test for parallelism is non-

significant, then the data argue for parallel but non-coincident lines

3. If the test for coincidence is significant and test for parallelism is significant,

then we might not even be interested in the test for equal intercepts; if we

are, however, the appropriate test procedure would involve the variables-

added-last statistic F(Z I X,XZ), which does not assume parallel lines.

Applying this strategy to the weights data, we would conclude, based on the

tests reported above, that the test for coincidence is significant and the test

for parallelism is non-significant, so that our overall conclusion is that the

best model has the form

Y = {3o + {3iX + {3zZ + E 5.20

In other words, we assume parallel lines (and non-coincidental) lines.
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5.7 CONCLUSIONS AND RECOMMENDATIONS
For us to draw our conclusions it is imperative to glance back at the profile
curves in chapter 4 that indicate the calves' performance as a result of the
treatment intervention.

These curves show that the weight change caused by the two treatments
over time fluctuates around the same regions with weight gain ranging
between 1.54 - 2.13 kg for the calves fed exclusively on milk whereas the
weight gain of those that were fed on the maize - cowpea gruel ranged
between 1.52 kg and 1.9 kg.

The figures stated above almost average around the same neighbourhood.
Moreover, the test of hypothesis results indicate that the two treatment
means are not significantly different and therefore we can conclude that
feeding dairy calves on milk plus maize cow-peas gruel lowers the cost of
production without affecting the their growth or performance.

Recommendation

Based on the above conclusion and also looking at the cost benefit analysis
carried out in the background information we would therefore recommend
the use of maize-cowpea gruel as an alternative feed for dairy calves.
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APPENDICES

Appendix 1

Dataset1:Weekly weights

Calf Zl Zl Z Z Zl Zl Z Zl Zl Z Zl Zl
Id Z5 3 5 Z4 9 7 1 Z3 4 Z6 8 0 6 12 7 8
Rep 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Trt_gr
p 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2
Birth- 1 16 23. 12. 16. 1 24. 20 22. 20.
wt 18 18 18 21.3 9 .7 8 21 9 5 6 21 2 .9 5 5

3 19 2
WK1 20 22 21 26.2 1 .5 26 22 13 19 1 31 26 23 23 23

3 2
WK2 22 26 25 28 1 28 30 25 15 21 7 35 29 25 25 26

3 22. 3
WK3 23 27 28 32 3 35 33 28 19 8 5 35 30 28 28 28

24. 3 3
WK4 1 27 28 32.2 8 38 35 30 23 25 8 38 32 30 30 29

4 3
WK5 27 32 30 34.2 1 38 37 31 25 35 8 42 33 30 31 31

4 3
WK6 39 33 34 34.2 5 40 40 35 25 35 8 42 34 32 33 33

4 4
WK7 43 35 34 38 6 40 42 38 26 37 0 45 34 38 37 35

4 4
WK8 45 46 37 46 7 44 43 41 28 37 3 46 37 40 39 37

4 4
WK9 48 43 38 47 9 51 45 42 30 38 5 48 39 42 41 39

5 4
WK10 56 46 40 52 0 52 46 44 32 41 9 49 41 45 44 42

5 5
WK11 56 48 41 54 2 53 52 46 34 45 0 50 43 47 47 43

5 5
WK12 56 49 45 56 4 56 54 49 37 48 1 51 45 48 53 49

5 5
WK13 57 52 48 60 9 58 57 52 39 49 2 52 48 50 56 50
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5 5
WK14 59 53 50 60 9 61 59 56 41 51 3 53 50 52 57 50

6 5
WK15 60 55 53 62 0 63 65 66 43 52 5 54 52 54 58 52

6 5
WK16 61 57 56 63 2 66 68 66 45 53 6 56 56 54 60 53

6 5
WK17 62 59 60 65 5 69 71 70 48 54 8 58 58 58 62 54

6 5
WK18 65 61 62 67 6 70 74 75 50 56 9 60 60 60 64 55

6 6
WK19 65 65 64 68 8 72 77 77 55 58 0 62 62 63 66 58

7 6
WK20 67 67 68 70 0 75 78 80 57 59 3 63 64 65 68 60

65



Appendix 2

Dataset 2: Weight differences

Zl Zl Zl Zl Zl Zl Zl Zl Zl
Calfld Z5 3 5 Z4 Z9 Z7 1 Z3 4 Z6 Z8 0 6 2 7 8
REP 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
TREAT 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0

18. 18. 18. 21. 19. 16. 23. 21. 12. 16. 16. 21. 24. 20. 22. 20.
INTWT 0 0 0 3 0 7 8 0 9 5 0 0 2 9 5 5
WTCH 49. 49. 50. 48. 51. 58. 54. 59. 44. 42. 47. 42. 39. 44. 45. 39.
NGE 0 0 0 7 0 3 2 0 1 5 0 0 8 1 5 5
dw1 1.7 2.2 2.0 2.4 3.6 1.9 1.8 1.5 1.0 1.9 2.4 3.3 1.7 1.8 1.2 1.9
dw2 1.7 2.2 2.2 1.7 1.0 3.1 2.2 2.0 1.7 1.7 2.6 2.2 2.0 1.7 1.7 2.0
dwk3 1.4 1.4 2.0 2.2 1.7 2.8 2.0 1.9 2.2 1.7 3.0 1.0 1.4 2.0 2.0 1.7
dwk4 1.4 1.0 1.0 1.1 2.4 2.0 1.7 1.6 2.2 1.8 2.0 2.0 1.7 1.7 1.7 1.4
dwk5 2.0 2.4 1.7 1.7 2.0 1.0 1.7 1.5 1.7 3.3 1.0 2.2 1.4 1.0 1.4 1.7
dwk6 3.6 1.4 2.2 1.0 2.2 1.7 2.0 2.2 1.0 1.0 1.0 1.0 1.4 1.7 1.7 1.7
dwk7 2.2 1.7 1.0 2.2 1.4 1.0 1.7 2.0 1.4 1.7 1.7 2.0 1.0 2.6 2.2 1.7
dwk8 1.7 1.4 2.0 3.0 1.4 2.2 1.4 1.9 1.7 1.0 2.0 1.4 2.0 1.7 1.7 1.7
dwk9 2.0 2.8 1.4 1.4 1.7 2.8 1.7 1.4 1.7 1.4 1.7 1.7 1.7 1.7 1.7 1.7
dwk10 3.0 2.0 1.7 2.4 1.4 1.4 1.4 1.7 1.7 2.0 2.2 1.4 1.7 2.0 2.0 2.0
dwkll 1.0 1.7 1.4 1.7 1.7 1.4 2.6 1.7 1.7 2.2 1.4 1.4 1.7 1.7 2.0 1.4
dwk12 1.0 1.4 2.2 1.7 1.7 2.0 1.7 2.1 2.0 2.0 1.4 1.4 1.7 1.4 2.6 2.6
dwk13 1.4 2.0 2.0 2.2 2.4 1.7 2.0 1.8 1.7 1.4 1.4 1.4 2.0 1.7 2.0 1.4
dwk14 1.7 1.4 1.7 1.0 1.0 2.0 1.7 2.2 1.7 1.7 1.4 1.4 1.7 1.7 1.4 1.0
dwk15 1.4 1.7 2.0 1.7 1.4 1.7 2.6 3.3 1.7 1.4 1.7 1.4 1.7 1.7 1.4 1.7
dwk16 1.4 1.7 2.0 1.4 1.7 2.0 2.0 1.0 1.7 1.4 1.4 1.7 2.2 1.0 1.7 1.4
dwk17 1.4 1.7 2.2 1.7 2.0 2.0 2.0 2.2 2.0 1.4 1.7 1.7 1.7 2.2 1.7 1.4
dwk18 2.0 1.7 1.7 1.7 1.4 1.4 2.0 2.4 1.7 1.7 1.4 1.7 1.7 1.7 1.7 1.4
dwk19 1.0 2.2 1.7 1.4 1.7 1.7 2.0 1.7 2.4 1.7 1.4 1.7 1.7 2.0 1.7 2.0
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Appendix 3

Dataset 3: Transformed weight differences

int wtcha t1 t1 t1 t1 t1 t1 t1 t1 t1 t1
wt nge t1 t2 t3 t4 t5 t6 t7 t8 t9 a 1 2 3 4 5 6 7 8 9

1. 1. 1. 1. 2. 3. 2. 1. 2. 3. 1. 1. 1. 1. 1. 1. 1. 2. 1.
18 49 7 7 4 4 a 6 2 7 a a a a 4 7 4 4 4 a a

2. 2. 1. 1. 2. 1. 1. 1. 2. 2. 1. 1. 2. 1. 1. 1. 1. 1. 2.
18 49 2 2 4 a 4 4 7 4 8 a 7 4 a 4 7 7 7 7 2

2. 2. 2. 1. 1. 2. 1. 2. 1. 1. 1. 2. 2. 1. 2. 2. 2. 1. 1.
18 50 a 2 a a 7 2 a a 4 7 4 2 a 7 a a 2 7 7

21. 2. 1. 2. 1. 1. 1. 2. 3. 1. 2. 1. 1. 2. 1. 1. 1. 1. 1. 1.
3 48.7 4 7 2 1 7 a 2 a 4 4 7 7 2 a 7 4 7 7 4

3. 1. 1. 2. 2. 2. 1. 1. 1. 1. 1. 1. 2. 1. 1. 1. 2. 1. 1.
19 51 6 a 7 4 a 2 4 4 7 4 7 7 4 a 4 7 a 4 7

16. 1. 3. 2. 2. 1. 1. 1. 2. 2. 1. 1. 2. 1. 2. 1. 2. 2. 1. 1.
7 58.3 9 1 8 a a 7 a 2 8 4 4 a 7 a 7 a a 4 7

23. 1. 2. 2. 1. 1. 2. 1. 1. 1. 1. 2. 1. 2. 1. 2. 2. 2. 2. 2.
8 54.2 8 2 a 7 7 a 7 4 7 4 6 7 a 7 6 a a a a

1. 2. 1. 1. 1. 2. 2. 1. 1. 1. 1. 2. 1. 2. 3. 1. 2. 2. 1.
21 59 5 a 9 6 5 2 a 9 4 7 7 1 8 2 3 a 2 4 7

12. 1. 1. 2. 2. 1. 1. 1. 1. 1. 1. 1. 2. 1. 1. 1. 1. 2. 1. 2.
9 44.1 a 7 2 2 7 a 4 7 7 7 7 a 7 7 7 7 a 7 4

16. 1. 1. 1. 1. 3. 1. 1. 1. 1. 2. 2. 2. 1. 1. 1. 1. 1. 1. 1.
5 42.5 9 7 7 8 3 a 7 a 4 a 2 a 4 7 4 4 4 7 7

2. 2. 3. 2. 1. 1. 1. 2. 1. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1.
16 47 4 6 a a a a 7 a 7 2 4 4 4 4 7 4 7 4 4

3. 2. 1. 2. 2. 1. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
21 42 3 2 a a 2 a a 4 7 4 4 4 4 4 4 7 7 7 7

24. 1. 2. 1. 1. 1. 1. 1. 2. 1. 1. 1. 1. 2. 1. 1. 2. 1. 1. 1.
2 39.8 7 a 4 7 4 4 a a 7 7 7 7 a 7 7 2 7 7 7

20. 1. 1. 2. 1. 1. 1. 2. 1. 1. 2. 1. 1. 1. 1. 1. 1. 2. 1. 2.
9 44.1 8 7 a 7 a 7 6 7 7 a 7 4 7 7 7 a 2 7 a

22. 45.5 1. 1. 2. 1. 1. 1. 2. 1. 1. 2. 2. 2. 2. 1. 1. 1. 1. 1. 1.
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5 2 7 0 7 4 7 2 7 7 0 0 6 0 4 4 7 7 7 7
20. 1. 2. 1. 1. 1. 1. 1. 1. 1. 2. 1. 2. 1. 1. 1. 1. 1. 1. 2.

5 39.5 9 0 7 4 7 7 7 7 7 0 4 6 4 0 7 4 4 4 0
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