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ABSTRACT

Traditionally, outstanding claims reserves were settled using deterministic methods which 

resulted in point estimates of the reserves. The primary advantage of stochastic reserving models 

is the availability of measures of precision of reserve estimates, and in this respect, attention is 

focused on the root mean squared error of prediction (prediction error). Of greater interest is a 

full predictive distribution of possible reserve outcomes, and different methods of obtaining that 

distributions are described. This study considers the Over- dispersed Poisson model for claims 

reserving in general insurance. In the over -dispersed Poisson model for loss reserving, it is 

assumed that the incremental claims are independent and Poisson distributed with the 

expectations being the product of two factors, depending on the occurrence year and the 

development year, respectively. The model is cast in the form of a generalized linear model, and 

a quasi-likelihood approach is used. The model presented here allows the actuary to provide 

point estimates and measures of dispersion, as well as the complete distribution for outstanding 

claims from which the reserves can be derived.

Keywords: Claims reserving, chain ladder method, Over-dispersed Poisson model, Generalized 

Linear Models
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CHAPTER ONE

INTRODUCTION

1.1 Background

Although the last twenty years have witnessed increasing interest in stochastic claims 

reserving methods, they are still only used by a limited number of practitioners. A 

number of reasons for this could be suggested, including: a general lack of understanding 

o f the methods; lack o f flexibility in the methods; lack of suitable software; and so on. 

However, the main reason is probably lack of need for the methods, when traditional 

methods suffice for the calculation of a best estimate of outstanding claims reserves.

Forecasting outstanding claims and setting up suitable reserves to meet these claims is an 

important part of the business o f a general insurance company. Indeed, the published 

profits of these companies depend not only on the actual claims paid, but on the forecasts 

of the claims which will have to be paid. It is essential, therefore, that a reliable estimate 

is available of the reserve to be set aside to cover claims, in order to ensure the financial 

stability of the company and its profit and loss account. There are a number of methods 

which have proved useful in practice, one o f which is extensively used and is known as 

the chain ladder technique. In recent years, a statistical framework for analyzing this data 

has been built up, which encompasses the actuarial method, extending and consolidating 

it.

Traditionally, outstanding claims reserves were settled using deterministic methods 

which resulted in point estimates of the reserves, i.e. the present values of the expected 

future costs of claims. Increasing demand for further insight about the variability of the 

reserves has lead to the development of stochastic models for the reserve calculations.

1



The setting and monitoring of claims reserves is a vital task required of the general 

insurance actuary. To aid in the setting of reserves, the actuary can make use of a variety 

o f techniques, the most familiar of which is the chain ladder model or variation. The 

principal aim of a reserving exercise is to provide an estimate of the amount of money a 

company should set aside now to meet claims arising in the future on the policies already 

written. The actuary cannot predict with certainty and knows that there is a distribution of 

possible outcomes, but uses the techniques at his or her disposal to arrive at the best 

estimate of the reserve (even if the best estimate is not that which is carried in the 

accounts). Knowledge of the precision of that estimate is also desirable. Traditional 

reserving techniques can help provide a best estimate (a measure of location in the 

distribution of possible outcomes), but cannot help with measures of precision. Of course, 

the actuary knows that the reserve estimate associated with a well-behaved class of 

business will be more precise than that of a poorly-behaved class and that the reserve 

estimate associated with a short-tailed class is likely to be more precise than that of a 

long-tailed class, but measuring that precision is difficult.

Notwithstanding certain well-known shortcomings, the chain ladder technique continues 

to occupy a prominent position with many practitioners as a claims reserving tool. There 

would appear to be some doubt as to the precise origin of the chain-ladder technique, but 

claims reserving techniques, in general, have generated a large body of research literature 

in the intervening years. One substantial strand of this literature is concerned with the 

development of stochastic claims reserving techniques which have clear advantages over 

deterministic techniques, such as provision for conducting diagnostic checks and the 

production of confidence intervals.

The aims of this study are threefold: to review the over-dispersed Poisson model which 

has been suggested, highlighting the connections between it and the chain ladder model; 

to show how the method can be implemented in practice; and to discuss the 

characteristics of the model and interpretation of the results.
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This study also brings together the results and illustrates how the chain ladder technique 

can be improved and extended, without altering the basic foundations upon which it has 

been built. These improvements are designed to overcome two problems with the chain 

ladder technique. Firstly, that not enough connection is made between the accident years, 

resulting in an over-parameterized model and unstable forecasts. Secondly, that the 

development pattern is assumed to be the same for all accident years. No allowance is 

made by the chain ladder technique for any change in the speed with which claims are 

settled, or for any other factors which may change the shape , and show how it can be 

used to give upper prediction bounds on total outstanding claims of the run-off pattern. 

Before describing the methods for overcoming these problems, we first define the chain 

ladder model.

Stochastic reserving has long been ignored by many practitioners due to lack of easily 

implementable models; the ones available often required expensive specialist software. 

This situation is about to change due to the regulatory constraints in several countries 

where the regulators expect knowledge about not only the point estimate of the reserve 

but also about its variability. Development of own models are encouraged and often 

incentivized by lower statutory capital requirement. The “embedded value” of having 

own models instead of using the so called standard model created according to the one 

size fits all principle is thus easily quantifiable. Furthermore, the theories have become 

more accessible thanks to some authors who apparently have laid a lot of emphasis on the 

pedagogical aspects when serving the often heavy theories in their papers which became 

thus fully digestible even for practitioners who have left school a long time ago. Also 

computers are significantly faster and even standard softwares are better qualified to cope 

with the complexity involved in the calculations. In fact, one of the constraints imposed 

on the stochastic model selection has been the possibility of performing the calculations 

without needing expensive software.

The estimation of adequate reserves for outstanding claims is one o f the main activities of 

actuaries in property/casualty insurance. The need to estimate future claims has led to the 

development of many loss-reserving techniques. Probably the oldest and most widely

3



used ol these techniques is the well known chain ladder. It is frequently used as a 

benchmark because o f its generalized use and ease of application (Hess and Schmidt 

2002). In its original form the chain ladder is a non stochastic algorithm for producing 

estimates of outstanding claims. There are many variations of the method; a description 

of one of them that will be useful in what follows will now be provided.

Negative incremental values can arise in the run-off triangle as a result of salvage 

recoveries, payments from third parties, total or partial cancellation of outstanding claims 

due to initial overestimation of the loss or to a possible favorable jury decision in favor of 

the insurer, rejection by the insurer, or just plain errors. England and Verrall (2002) argue 

that it is probably better to use paid claims rather than incurred claims (paid losses and 

aggregate case reserve estimates combined) since negative values are less likely to appear 

in the former. That is because case reserve estimates, the amount set aside by the claims 

handlers (see Chamberlin 1989; Brown and Gottlieb 2001), are set individually and often 

tend to be conservative, resulting in overestimation in the aggregate. Adjusting for this 

overestimation in the later stages of development may lead to negative incremental 

amounts. Whatever their cause, the presence of these negative incremental values in the 

data may cause problems when applying some claims-reserving methods. Thus, ideally, 

before applying claims-reserving methods, the actuary will revise and correct the data to 

eliminate negative incremental values. In this respect de Alba and Bonilla (2002) provide 

a list o f potential adjustments frequently used in practice. However, even after correcting 

the data it is not always possible to eliminate all the negative values. Hence it is 

convenient to have available claims-reserving methods that will allow the actuary to 

compute the necessary reserves even in the presence of the negative values that may 

remain in the data.

Stochastic claims reserving models aim to provide measures of location (best estimates) 

and measures of precision (measures of variability) by treating the reserving process as a 

data analysis exercise and building a reserving model within a statistical framework. 

Once within a statistical framework, diagnostic checks of the fitted models are possible, 

such as goodness-of-fit tests and analysis o f residuals (which highlight systematic and
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isolated departures from the fitted model). Various stochastic reserving models have been 

proposed over the last two decades, and work progresses as new techniques in the field of 

statistical modeling become available.

Considerable attention has been given to the relationship between various stochastic 

models and the chain ladder technique. Stochastic models have been constructed with the 

aim of producing exactly the same reserve estimates as the traditional deterministic chain 

ladder model. This might seem like a futile exercise, but has the advantages that measures 

of precision are readily available, and the assumptions underlying the chain ladder model 

are clarified. More importantly, it provides a bridge between traditional methods and 

stochastic methods, which is useful for the practitioner who is familiar with traditional 

methods and needs a starting point for exploring stochastic methods.

It is sometimes rather naively hoped that stochastic methods will provide solutions to 

problems when deterministic methods fail. Indeed, sometimes stochastic models are 

judged on whether they can help when simple deterministic models fail. This rather 

misses the point. The usefulness of stochastic models is that they can, in many 

circumstances, provide more information which may be useful in the reserving process 

and in the overall management of the company.

This paper identifies a statistical procedure which is exactly equivalent to the chain- 

ladder technique, in almost all circumstances. It should be noted that the method cannot 

be applied if the column sum of incremental claims for any development year is negative. 

We have always held the view that it is vital to subject any claims reserving procedure to 

a full statistical review, and we believe that the model presented in this paper provides an 

important framework to do this for the chain-ladder technique.

Broadly speaking, a stochastic claims reserving process involves three stages:

- stage one: the specification of a flexible parameterized model structure;

- stage two: a means of fitting the structure to the run-off data coupled with
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the means to conduct diagnostic checks on the fitted model; and 

- stage three: a means of projecting the fitted structure into the target triangle.

Note that we assign the specification of a modeling distribution to stage two, since this 

leads to the construction of a likelihood or quasi-likelihood function which is maximized 

to obtain parameter estimates.

For the specific purpose o f this paper, we find it both helpful and informative to relate the 

stochastic claims reserving process, whenever possible, to the generalized linear 

modeling technique, especially in relation to the first two stages described above

In the over dispersed Poisson model for loss reserving it is assumed that the incremental 

claims are independent and Poisson distributed with the expectations being the product of 

two factors, depending on the occurrence year and the development year, respectively. It 

is well known that maximum -likelihood estimation in the over dispersed Poisson model 

yields the chain ladder estimators of the expected ultimate aggregate claims.

The very nature of this paper means that a high technical content is unavoidable. Because 
o f its pre-eminent position in claims reserving, and because it is well-known, widely 
used, and easy to apply, we begin by concentrating on the basic chain-ladder technique, 
then follow it up with the Over- dispersed Poisson model.

1.2 Objectives of the study

The main objective o f this study is to provide measures of location (best estimates) and 

measures of precision (measures of variability) by treating the reserving process as a data 

analysis exercise and building a reserving model within a statistical framework. I he 

specific objectives are:

• To review the Over-dispersed Poisson model

• To show how it can be implemented in practice
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lo  discuss the characteristics of the model, interpret the results and its wider 

usefulness.

1.3 Significance of the study

The significance of the study is to show that the Over-dispersed Poisson model is 

analogous to the chain ladder model since the results of the predicted values (reserves 

estimates) are the same as those of the chain ladder technique. It also applies the Over­

dispersed model using the stochastic method and deterministic method and looks at the 

differences of both methods.

1.4 Organization of Report

Chapter two examines related works that have been done with respect to the Over­

dispersed Poisson model and other stochastic models.

Chapter three looks at the chain ladder model. Over-dispersed Poisson model and the 

prediction errors.

Chapter four discusses the data analysis, estimates the parameters for Over-dispersed 

Poisson model.

Conclusions and recommendations for further research are then made; a list of references 

is also given.
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CHAPTER TWO

LITERATURE REVIEW

Stochastic models for claims reserving improve on the classical approach by allowing the 

actuary to obtain measures of uncertainty and sometimes the complete distribution of 

outstanding claims. For a comprehensive, although not exhaustive, review of existing 

stochastic methods for claims reserving see England and Verrall (2002) or Hess and 

Schmidt (2002).

Mack (1993) presents one of the earliest attempts at formalizing a stochastic model for 

claims reserving. He proposes a nonparametric model that reproduces the chain ladder 

and obtains distribution-free expressions for the standard of reserve estimates. The use of 

the model is not limited by the existence of negative incremental claims. What may be 

considered a limitation is that it is directed at reproducing the chain-ladder reserves. 

England and Verrall (2002) have proposed the use of bootstrapping to compute the 

prediction errors. A significant landmark in the development of stochastic versions of the 

chain ladder technique was made by Kremer (1982), in which, in our opinion, he 

establishes the nature of the parameterized model structure which is inherent in the chain- 

ladder technique.

England and Verrall (2002) emphasize the framework of generalized linear models 

(GLMs; Anderson et al. 2004). They provide predictions and prediction errors for the 

different methods discussed and show how the predictive distributions may be obtained 

by bootstrapping and Monte Carlo methods. Among the models considered by England 

and Verrall there are several that can handle negative values: an (over-dispersed) Poisson,
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a negative binomial, and a normal approximation to the negative binomial. They also 

mention the log-normal model that was introduced by Kremer (1982) and analyzed in 

detail in Verrall (1991) when there are some negative incremental claims. Referring to 

the Poisson model they argue that “ this does not imply that it is only suitable for data 

consisting exclusively o f positive integers. That constraint can be overcome using a 

‘quasi-likelihood* approach, which can be applied to non-integer data, positive and 

negative." A similar argument is used for the negative binomial. It is not the purpose of 

this paper, but one could question whether they are really using those distributions or 

some continuous approximation. Also, since long-tailed distributions are used for 

modeling claim data, the normal distribution is not appropriate.

The log-Normal model was introduced by Kremer (1982). Christofides (1990) showed 

how spreadsheets could be used to analyze the data using log-Normal models.

It is often the case that parametric curves are too rigid (in some ways the opposite 

problem to the chain-ladder technique, which assumes no prior shape on the run-off), and 

England and Verrall (2001) proposed using non-parametric smoothing methods as an 

alternative. England and Verrall showed that it is possible to use a wide range of models 

with a non-parametric approach, with the chain-ladder technique at one end of the range, 

and the Hoerl curve at the other. The non-parametric smoothing models move seamlessly 

between these two extremes, and allow the practitioner to choose a model somewhere 

between the two. It is straightforward to examine the effect on the run-off pattern. 

Another example of the use of non-parametric smoothing was given in Verrall (1996). In 

that paper, the stochastic chain-ladder model of Renshaw and Verrall (1998) was 

extended to incorporate smoothing of parameter estimates over origin years, while 

leaving the model describing the run-off pattern alone.

Reserving specialists are probably more familiar with the practice of first fitting a chain- 

ladder model (or variation thereof), then smoothing the resultant development factors 

using a model with a fixed parametric form. Using that approach, the development 

factors themselves become the focus, and a model is fitted to development factors with 

equal weight (usually) being given to each development factor
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Renshaw and Verrall (1998) were not the first to notice the link between the chain-ladder 

technique and the Poisson distribution, but were the first to implement the model using 

standard methodology in statistical modeling, and to provide a link with the analysis of 

contingency tables. Wright (1990) also describes a similar model, including a term to 

model claims inflation, but did not consider the model in detail. Mack (1991) also points 

out that the chain-ladder estimates can be obtained by maximizing Poisson likelihood by 

appealing to the so called 'method of marginal totals’.

A discussion of the stochastic basis of chain-ladder models can be found in Mack 

(1994a), Verrall (2000), Mack and Venter (2000) and Verrall and England (2000). At the 

heart of the discussion is the relationship between the various models, and whether they 

can justifiably be used to add value to the deterministic chain-ladder technique.

In the context of GLMs the first stochastic version of the chain-ladder method that can be 

applied in the presence of negative incremental claim values is defined as a generalized 

linear model with an over-dispersed Poisson distribution (Renshaw and Verrall 1998). In 

the over-dispersed Poisson model the mean and variance are not the same.

A significant landmark in the development of stochastic versions of the chain ladder

technique was made by Kremer (1982), in which, in our opinion, he establishes the nature 

of the parameterized model structure which is inherent in the chain-ladder technique. 

This is equivalent to stage one of the stochastic claims reserving process, but it should be 

noted that Kremer only identified one of two possible ways of building the structure into 

the process as a whole. The structure is comprised of the linear predictor: based on 

parameters corresponding to accident year i and delay j, which is connected to the logged 

incremental claim amounts.. Implicit in Kremer’s work is the suggestion that the log 

transformation should be applied to the incremental claim amounts. The other possibility 

is to apply the log transformation to the expected values. Thus, Kremer, in specifying 

stage two of the stochastic claims reserving process, elects to model the incremental data 

by imposing the log-normal distribution. Renshaw (1989), Verrall (1989, 1990, 1991),
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motivated by Kremer (1982), have investigated many different facets of a stochastic 

claims reserving process based on the log-normal assumption, taken in conjunction with 

the predictor

Mack (1994) has criticized certain aspects of this work. This criticism is justified in so far 

as the model referred to above, derived by Kremer (1982), is not exactly equivalent to the 

chain-ladder technique. In Chapter 2 of this paper we will derive a generalized linear 

model which is exactly equivalent to the model which underpins the chain-ladder 

technique (noting the exception mentioned above). We believe that this equivalence is 

well known to a number of actuaries, but has not before been expressed in terms ol 

generalized linear models. The contributions that this paper makes are to relate the chain- 

ladder technique directly to a generalized linear model, to show that it is not the most 

appropriate model for claims data, and to show how the model may be adapted in a 

straightforward way in order to be appropriate for claims data.
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TECHNIQUES OF CLAIM RESERVING

CHAPTER THREE

3.1 PREDICTIONS AND PREDICTION ERRORS 

ERROR TYPES

Before we are ready to take care of the chain ladder model approximation by the Over­

dispersed Poisson, we need to introduce the different error types which play an important 

role in our analysis.

Since mathematical models are an only idealizations of the real world, these are 

associated with uncertainties or errors. According to (Daykin, Pentikainen and Pesosnen, 

1994), these errors can be divided into the following three categories:

• Model errors arise due to the fact that models are not known with certainty and 

are only approximations to the real world phenomena which they intend to model.

• Parameter errors are due to that the observations are limited in quantity so 

parameters are not known with certainty, and finally

• Process error (stochastic error) which arises due to the random fluctuations of 

the target quantities even in an ideal situation where the model and the parameters 

are correct.

In spite of its importance, model error is omitted in this paper and focus is laid entirely on 

the two latter errors or variances; the parameter error, even called estimation variance and 

the process errors. The sum of the process variance and the estimation variance is called 

prediction variance and is a measure of the variability of the prediction calculated as the 

root means squared error of the prediction (RMSEP).
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Claims reserving is a predictive process: given the data, we try to predict future claims. In 

this context, we use the expected value as the prediction. When considering variability, 

attention is focused on the root mean squared error of prediction (RMSEP), also known 

as the prediction error.

Consider a random variable^ and a predicted valuey. The mean squared error of 

prediction (MSEP) is:

E[(y-y f}= El((y -  E \y \ ) - ( y -  £M))J] (3.1)

Plugging in y  instead of y in the final expectation and expanding gives:

E { ( y - y ? ) * E { ( y -  E [y]?)-2E{(y -E[y \ ){y -£[*])}+ E { { y - E [ y ) f )  (3.2)

Assuming future observations are independent of past observations gives:

E [ ( y - y f )  * E{(y -  Ely))1} + E{(y -  £[>])2} (3.3)

Which, in other words, is

Prediction Variance = Process Variance + Estimation Variance

When trying to estimate the prediction error of future payments and reserve estimates 

using classical statistical methods, the problem reduces to estimating the two 

components: the process variance and the estimation variance. Alternatively, it the full 

predictive distribution can be found, the RMSEP can be obtained directly by calculating 

its standard deviation
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It is important to understand the difference between the prediction error and the standard 

error. Strictly, the standard error is the square root of the estimation variance. I he 

prediction error is concerned with the variability of a forecast, taking account ol 

uncertainty in parameter estimation and also of the inherent variability in the data being 

forecast. Unfortunately, there is confusion in the literature over terminology, with the 

RMSEP also being called the standard error of prediction, or simply the standard error.
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3.2 CHAIN LADDER MODEL

The chain-ladder technique was conceived as a deterministic method for predicting claim 

amounts. It is applied to cumulative claim amounts, and is designed to predict future 

incremental claim amounts in the empty cells of the well-defined triangular region to the 

immediate south-east of the run-off triangle. This region is called the target triangle.

The straightforward chain-ladder technique uses cumulative data, and derives a set of 

development factors' or 'link ratios'. It will be shown that to a large extent, it is irrelevant 

whether incremental or cumulative data are used when considering claims reserving in a 

stochastic context, and it is easier for the explanations here to use incremental. In order to 

keep the exposition as straightforward as possible, and without loss of generality, we 

assume that the data consist of a triangle of incremental claims. This is the simplest shape 

of data that can be obtained, and it is often the case that data from early origin years are 

considered fully run-off or that other parts of the triangle are missing. Using a triangle 

simply avoids us having to introduce complicated notation to cope with all possible 

situations. Thus, we assume that we have the following set ol incremental claims data:

{ C ,: / = -  / +1} (3.4)

The suffix i refers to the row, and could indicate accident year or underwriting year, for 

example. The suffix j refers to the column, and indicates the delay, here assumed also to 

be measured in years. It is straightforward to consider data collected more frequently tor 

all models discussed in this paper.

The cumulative claims are defined by:

oAX  (3-5)
i-1
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and the development factors of the chain-ladder technique are denoted by 

{^j ’ j  = . 1 he chain ladder technique estimates the development factors as:

n-J* 1

(3.6)

These are then applied to the latest cumulative claims in each row (Dln_t+l) to produce 

forecasts of future values of cumulative claims:

2 Q „_/+ tAn_/+ 2

Dlk = Dlk_]Ak,k  = n — i + 3,n — i + 4,...,n.
(3.7)

Thus, the chain-ladder technique, in its simplest form, consists of a way of obtaining 

forecasts of ultimate claims only. Here ultimate' is interpreted as the latest delay year so 

far observed, and does not include any tail factors. From a statistical viewpoint, given a 

point estimate, the natural next step is to develop estimates of the likely variability in the 

outcome so that assessments can be made, for example, of whether extra reserves should 

be held for prudence, over and above the predicted values. In this respect, the measure of 

variability commonly used is the prediction error, defined as the standard deviation of the 

distribution of possible reserve outcomes. It is also desirable to take account of other 

factors, such as the possibility of unforeseen events occurring which might increase the 

uncertainty, but which are difficult to model.

The first step to obtaining the prediction error is to formulate an underlying statistical 

model making assumptions about the data. If the aim is to provide a stochastic model 

which is analogous to the chain-ladder technique, then an obvious first requirement is that 

the predicted values should be the same as those of the chain-ladder technique. There are 

two ways in which this has been attempted: specifying distributions for the data; or just
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specifying the first two moments. As we wish to estimate the prediction error of the 

reserve estimate given by the chain ladder model, we have to find a suitable model which 

approximates the data in the triangle - both past and future data and hopefully result in 

the same or very similar estimate as that given by the chain ladder model. 1 his is where 

the Over-Dispersed Poisson model enters the scene
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3.3 OVER-DISPERSED POISSON MODEL

3.3.1 STRUCTURE ONE:

Non -linear model

The over-dispersed Poisson distribution differs from the Poisson distribution in that the 

variance is not equal to the mean, but, instead, is proportional to the mean. In claims 

reserving, the over-dispersed Poisson model assumes that the incremental claims Ct) are

distributed as independent over-dispersed Poisson random variables, with mean and 

variance:

i.e

£ tc ,j]= m„= x,y, 
Var[Cf] = fay.

where

*=i

Here, x, is the expected ultimate claims (where ultimate means up to the latest 

development year observed in the triangle), and y  j\s the proportion of ultimate claims to 

emerge in each development year. Over-dispersion is introduced through the parameter  ̂

, which is unknown and estimated from the data. Allowing for over-dispersion does not 

affect estimation of the parameters, but does have the effect ol increasing their standard 

errors is the proportion of ultimate claims to emerge in each development year.

It should be noted that, since y tappears in the variance, the restriction that must be 

positive is automatically imposed. This implies that the sum of incremental claims in
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column j must also be positive, which is a limitation of the model. Note that some 

negative incrementals are allowed, as long as any column sum is not negative.

In this formulation, the mean has a multiplicative structure, that is, it is the product of the 

row effect and the column effect. Both the row effect and the column effect have specific 

interpretations (being the expected ultimate claims in each origin year and proportion of 

ultimate to emerge in each development year, respectively), and it is sometimes useful to 

preserve the model in this form.

With the first structure the model is non-linear in the parameters and non- linear 

modeling techniques are required to obtain estimates of the parameters.

However, for estimation purposes, it is often better to re-parameterize the model so that 

the mean has a linear form. In the terminology of generalized linear models, we use a log 

link function so that:

log (mj ) = c + a i +0j

This predictor structure is still a chain-ladder type, in the sense that there is a parameter 

for each row i, and a parameter for each column j. I his structure is discussed in details 

below as a generalized linear model

3.3.2 STRUCTURE TWO:

Generalized Linear Model

The Over Dispersed Poisson (ODP) model assumes that the incremental claims have an 

over dispersed Poisson distribution. An ODP looks like a Poisson distribution but it s 

variance is not equal to the mean but proportional to it where the proportionality factor is 

called the over dispersion parameter. We have
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Ci r iid ODPo(nij) (3.8)

where iid denotes independent, identically distributed with £[C,y] = /i,y and

Var[Cij] = (pE[Cij]. Let

log Pi j = p + (*i + Pj (3.9)

which is recognized as a generalized linear model in which the responses are modeled 

with a logarithmic link function and linear predictor, rjij. This model is linear in the

parameters and is thus suitable for fitting the chain ladder model since we have one 

parameter for each row / and each column j. Due to this overparametrisation of the 

model, we have as many parameters as values to fit, we apply the comer constraints as 

follows:

i.e. the first two parameters are zeroised.

Pj, the  colum n param eter determ ines the run  off structure of the data. Since we 

have one param eter for each column, we assum e that there is no particular shape 

of the run  off pattern, which is in line with the general assum ptions imposed on 

the traditional chain ladder model. The ODP model is robust for a small num ber 

of negative incremental claims. Indeed, this is an im portant feature especially for 

the product lines w here case reserves are set by the claims handlers who quite

(3.10)
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often ten d  to be over conservative in their judgments. Adjusting for this 

overestim ation at a later stage may lead to negative incremental values.

ESTIMATION OF THE DISPERSION PARAMETER

The next step is to estimate the parameters of the ODP model. We begin with the 

estimation of the dispersion parameter <I>. Given that

(3.11)

which is a result of that standard residuals, i.e. the quotient which is squared in the 

expression above is N(0,1) distributed and the sum of squared N(0,1) variables are x 2 

distributed with the degree of freedom equal to the number of observations less the 

number o f parameters.

The method of moments gives:

since (I> is constant it is readily available from (3.12):

(3.12)

(  V
(3.13)

One may interpret <J> as the average claim size while Cy is the number of claims.
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PARAMETER ESTIMATION

The estim ation of the other parameters of the model is done by calculating the log- 

likelihood function, 1, and maximizing it:

n n-i* \ j
' = ( C V ° g + ..........  (3.14)

/-I ;-l Y

=  z t l  [ ( c « 0 *  +  a, +  P > )- e “ +a‘+l,i] +  -  (3.15)
<P (=i j~\

ESTIMATION OF THE PREDICTION VARIANCE

The estimation variance for each estimated value is

V arQ i i j )  =  V a r f e ^ )  = V a r f a , )  (3.16)

Taylor estimation of (3.16) gives:

Var(fiu ) = ( e ^ ) V a r ( ^ y )  = 0-17)

According to (3.3) the prediction variance for each value in a cell is:

PE = 0pij + Pij2Var(r)tj)  (3-18)

In the overall prediction variance even the covariance should be taken into account:

PE =  E  $ h j  + Z P i j 2 V ar( f j i j )  + 2hj P ik (3.19)
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The indexes under the summations above have been omitted. It is not hard to realize, that 

calculation o f  the prediction error is quite cumbersome.

An alternative which is relatively easy to implement in a spreadsheet was presented by 

professor R.J.Verrall at a seminar held in Stockholm in September 2007. The method is 

best understood when setting up the model in matrix form. The design matrix is denoted 

by X, the parameter vector by ft and the fitted values by'fj. :

p  = e W )  (3.20)

the covariance matrix of ft is

£  = $ ( X T W  x y 1 (3.21)

where

W = d ia g (3.22)

If the design matrix of future values is denoted with F then the covariance matrix of the 

linear predictors can be written in analogy with 14 as P L h T and the covariance matrix ol 

fitted values as diag (p) F £  FT diag (p).The data for the forecast vector is being placed 

in the same column (only one column). The goal is to calculate the prediction ot the

reserve.

The procedure can be summarized by the following scheme:

1. Set up the chain ladder triangle of cumulative data

2. Calculate the linear predictors

3. Calculate the mean for each cell

4. Calculate the log-likelihood for each cell

5. Sum up the log-likelihood
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6. Estimate the parameters by minimizing the log-likelihood above

7. Calculate the Pearson residuals

8. Calculate the over dispersion parameter

9. Calculate the prediction error using the matrix set up.

However, instead of following the above procedure one may opt to write a code using 

standard software packages that would give the parameter estimates, calculate the total 

reserves and prediction error.

Thus the generalized linear model for the over-dispersed Poisson model can be solved 

using standard software packages, eg R, SPPS

R is one of the statistical packages that can be used to fit GLMs.

The over-dispersion manifests itself in the fact that the variance of the claims is 

proportional to the mean, rather than equal to it (as in the Poisson distribution). I he log 

of the mean claim (in GLM-speak this means we are using a log link function) is equal to 

a linear function of both the origin period and the development period. I hese are usually 

referred to as factors.

For this project I will use the Generalized Linear Model, use R program and also Excel to 

calculate total reserves and the prediction error of the reserve
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CHAPTER FOUR

DATA ANALYSIS

To illustrate the methodology, consider the claims amounts in Table 1, shown in 

incremental form. The data is taken from a paper by Renshaw (1989) and consists of 

claims from a portfolio of general insurance. The data is analyzed using R and Excel

Table 1: Run -  off Claims Data

35784 766940 610542 482940 527326 574398 146342 139950 227229

352118 884221 933894 1183289 445745 320996 527804 266172 280405

290507 1001799 926219 1016654 750816 146923 495992 2480405

310608 1108250 776189 1562400 272482 352053 206286

443160 693190 991983 769488 504841 470639

396132 937085 847498 805037 705960

440832 847631 1131398 1063269

359480 1061648 1443370

376686 986608

344014

4.1 Estimation of parameters
From the equation (3.9) ie logms = g + at + /?,w e solve the param eter estimates

fVi i =  g + oti + Pi

setting the corner constraints as <

i

a 1 = 0
A  =  o

logmj = Vij

67948
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w

Where p is a constant

Table 2 shows the parameter estimates and their standard errors obtained by fitting the 

over-dispersed Poisson model. For many of the parameters, the standard errors are small 

relative to the estimates themselves. This does not provide evidence that those estimates 

can be set to zero, since doing so may ignore a trend, which itselt may be statistically 

significant. Ideally, the strength of that trend should be tested, and modeled directly, but, 

in this example, I ignore that feature, since the purpose is to fit a model which reproduces 

chain-ladder estimates.

Table 2: Over-dispersed Poisson model; parameter estimates

Parameter Standard
Estimate Error

Constant(u) 12.17558 0.27788

Alpha 2 0.39160 0.24079

Alpha 3 0.76545 0.22923
i -------------------

Alpha 4 0.53650 0.25255
fc----------------- —

Alpha 5 0.45149 0.26324

Alpha 6 0.50397 0.26739

Alpha 7 0.60873 0.27290

Alpha 8 0.79669 0.29092

Alpha 9 0.62606 0.36968

Alpha 10 0.57285 0.65600

Beta 2 1.01435 0.23469

Beta 3 1.06443 0.24032

Beta 4 1.13509 0.24676

Beta 5 0.54718 0.28670

Beta 6 0.19507 0.33264

Beta 7 0.11264 0.36785

Beta 8 1.16757 0.30295

Beta 9 0.05394 0.54395

Beta 10 -1.0490 1.3656
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4.2 Practical Application to a general insurance company

Estimates o f future payments can be obtained from the parameters and inserting them 

into equation 2 and exponetiating.

ie

B[Ctj] ~ Vij

But

log Hij  =  g +  a i + P j

Thus

E(Cij) = ec+a<+/?>

Table 3 shows the observed claim amounts and estimated future claims (Excel used to 
solve estimated future payments)

Table 3: Estimated claims amounts and future claims.

3 5 7 8 4

3 5 2 1 1 8

2 9 0 5 0 7

3 1 0 6 0 8

7 6 6 9 4 0

8 8 4 2 2 1

1 0 0 1 7 9 9

1 1 0 8 2 5 0

6 1 0 5 4 2

9 3 3 8 9 4

9 2 6 2 1 9

4 8 2 9 4 0

1 1 8 3 2 8 9

5 2 7 3 2 6

4 4 5 7 4 5

5 7 4 3 9 8

3 2 0 9 9 6

146342

5 27804

1 3 9 9 5 0

2 6 6 1 7 2

2 2 7 2 2 9  

2 8 0 4 0 5  1

6 7 9 4 8

1 0 0 5 1 8

1 0 1 6 6 5 4 7 5 0 8 1 6 1 4 6 9 2 3 4 9 5 9 9 2 2 4 8 0 4 0 5 4 4 0 1 9 4 1 4 6 0 8 4

7 7 6 1 8 9 1 5 6 2 4 0 0 27 2 4 8 2 3 5 2 0 5 3 2 0 6 2 8 6 1 0 6 6 2 4 1 3 5 0 1 1 6 1 1 6 1 9 1

4 4 3 1 6 0 6 9 3 1 9 0 9 9 1 9 8 3 7 6 9 4 8 8 5 0 4 8 4 1 4 7 0 6 3 9 3 4 1 0 2 5 9 7 9 3 4 6 3 2 1 5 8 3 1 0 6 7 2 2

3 9 6 1 3 2 9 3 7 0 8 5 8 4 7 4 9 8 8 0 5 0 3 7 7 0 5 9 6 0 3 9 0 2 8 0 3 5 9 4 0 0 1 0 3 2 1 1 4 3 3 8 9 1 0 1 1 2 4 7 2

4 4 0 8 3 2 8 4 7 6 3 1 1 1 3 1 3 9 8 1 0 6 3 2 6 9 6 1 6 3 0 1 4 3 3 3 8 4 3 9 9 0 9 3 1 1 4 6 1 0 5 3 7 6 3 4 1 1 2 4 8 9 4

3 5 9 4 8 0 1 0 6 1 6 4 8 1 4 4 3 3 7 0 1 3 3 8 9 0 1 7 4 3 7 4 2 5 2 3 0 0 2 4 8 1 6 2 0 1 3 8 3 1 0 3 4 5 4 1 6 2 1 5 0 7 2 0

1 2 7 0 7 7
3 7 6 6 8 6 9 8 6 6 0 8 1 0 5 1 8 5 9 1 1 2 8 8 7 3 6 2 7 0 7 4 4 4 0 9 6 0 4 0 6 0 7 0 1 1 6 6 1 4 0 3 8 2 9 2 0

3 4 4 0 1 4 9 4 8 6 3 5 6 9 9 7 3 5 3 1 0 7 0 3 7 5 5 9 4 5 8 0 4 1 8 1 1 0 3 8 5 0 2 8 1 1 0 5 7 1 2 3 6 3 0 7 7 1 2 0 4 9 2

Total reserve Estimates is given by

£++ _  ^  ?ij
ij<eb

27



The total reserve can be calculated using either the deterministic method (using Excel) or 

the stochastic m eth od isin g  R)

Table 4 shows the cumulative claims amount and projections o f cumulative claims used 

to calculate total reserve.

1. Using Excel

To calculate total reserve we will use the cumulative claims data and estimated 

cumulative future claims.

Table 4: Cumulative claims and estimated future cumulative claims.

35784 802724 1413266 1896206 2423532 2997930 3144272 3284222 3511451 3579399
352118 1236339 2170233 3353522 3799267 4120263 4648067 4914239 5194644 5295162
290507 1292306 2218525 3235179 3985995 4132918 4628910 7109315 7549509 7695593
310608 1418858 2195047 3757447 4029929 4381982 4588268 5654509 6004625 6120816

443160 1136350 2128333 2897821 3402662 3873301 4214326 5193671 5515254 5621976

396132 1333217 2180715 2985752 3691712 4081992 4441392 5473506 5812416 5924888

440832 1288463 2419861 3483130 4099431 4532815 4931908 6078013 6454354 6579248

359480 1421128 2864498 4203399 4947142 5470144 5951763 7334866 7789028 7939749

376686 1363294 2415153 3544026 4171100 4612060 5018130 6184270 6567190 6694267

344014 1292650 2290003 3360378 3954958 4373068 4758095 5863807 6226884 6347376

Thus

Total reserve =  (5295162-5194644)+(7695593-7109315)+(6120816-4588268)+ 
(5621976-3873301)+(5924888-3691712)+(6579248-3483130)+ 
(7939749-2864498)+(6694267-1363294)+( 6347376-344014)

=25706898

Table 5 show s the reserves for each year .Note that no projection can be done tor the first 

accident year because it is not possible to project beyond the highest development year.
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Table 5 : Reserves for each year of origin

Year 1
0

Year 2
100518

Year 3
586278

Year 4 1532548

Year 5 1748675

Year 6 2233176

Year 7 3096118

Year 8 5075251

Year 9 5330973

Year 10 6003362

Total reserve 2 5 7 0 6 8 9 8

From Excel the total reserve is estimated to be 25706898 

2. Using R

Total reserve can be calculated using R. ie 

Total reserve= 25706974
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Total R M SEP is given by

P E  =  V # j  j +  ^ f i i j 2 V a r { n i j ) +  2 ^ C o v ( r j i / . i f i k )  f i i j f i i k

Using R

Total R M SEP =  5854802 

And

Total Prediction Error = 23 %
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CHAPTER FIVE

CONCLUSIONS AND RECOMMENDATIONS

In conclusion, the assessment of the financial strength of a general insurance enterprise 

includes a thorough analysis of the outstanding claims reserves, including an assessment 

of the possible variability in the reserves.

Table 5 shows the total estimated future claims (reserves).Practitioners have keen interest 

in the values of table 5 since these values are estimates of the outstanding claims 

provision at the present time (i.e at the end of accident year 10) with respect to year of 

origin and the total overall outstanding claims provision for the entire year .The estimates 

are of significant use in forecasting the IBNR claims provision and in general 

organization of business.

It can be seen from our model above that the value for total reserve varies slightly when 

calculated using the deterministic method (25706898) and the stochastic method 

(25706974). However, the difference is small and can be considered negligible. The 

difference is due to round up differences in the calculation.

Therefore our model suggests that the reserve is 25706974 with a standard error ot 

prediction of 23% (5854802)

This model provides a simple method whose application in claims reserving is nearlv as 

simple to execute as the chain ladder method but has the advantage ot providing 

goodness-of-fit test statistic and the estimation error. (This is so because the goodness-of- 

fit statistic of the model can be performed using the R package since both the deviance 

and degree of freedom are given in the output). It should also be noted that despite not
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mentioning the dispersion parameter in the data analysis above, the software R calculates 

it and uses it to calculate the prediction error.

In addition to the above conclusions, I would like to recommend further study to be done 

to check how the model behaves when we incorporate exposure measures and extend to 

include an inflationary trend (i.e. modeling of claims inflation )
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APPENDIX

R SCRIPT
# Load up data
data <- read.csv("research.csv", header=F)
data <- as.matrix(data)
data
# Prepare data in correct form 
claims <- as.vector(data) 
n.origin <- nrow(data) 
n.dev <- ncol(data)
origin <- factor(row <- rep(l :n.origin, n.dev)) 
dev <- factor(col <- rep(l :n.dev, each=n.origin))
# Put into a data frame (no need, but easier to visualise) 
research <- data.frame(claims=claims, origin=origin, dev=dev) 
research[l :5, ] # Print first five rows

# New quasi-poisson family 
quasipoisson <- function (link = "log")
## Amended by David Firth, 2003.01.16, at points labelled ### 
## to cope with negative y values
m
## Computes Pearson XA2 rather than Poisson deviance
##
## Starting values are all equal to the global mean

{
linktemp <- substitute(link) 
if (!is.character(linktemp)) { 
linktemp <- deparse(linktemp) 
if (linktemp == "link") 
linktemp <- eval(link)
}
if (any(linktemp =  c("log", "identity", "sqrt")))
stats <- make.link(linktemp)
else stop(paste(linktemp, "link not available for
poisson",
"family; available links are", "\"identity\", V'logV 
and V'sqrtV'"))
variance <- function(mu) mu
validmu <- function(mu) all(mu > 0)
dev.resids <- function(y, mu, wt) wt*(y-mu)A2/mu ###
aic <- function(y, n, mu, wt, dev) NA
initialize <- expression^
n <- rep( 1, nobs)
mustart <- rep(mean(y), length(y)) ###
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})
structure(list(family = "quasipoisson", link = linktemp, 
linkfun = stats$linkfun, linkinv = statsSlinkinv, 
variance = variance,
dev.resids = dev.resids, aic = aic, mu.eta = 
stats$mu.eta,
initialize = initialize, validmu = validmu. valideta =
statsSvalideta),
class = "family”)
}

# Fit model
model <- glm(claims ~ origin + dev, family = quasipoisson(),
subset=!is.na(claims), data=research)
summary(model)

# Extract useful info from the model
coef <- model$coefficients # Get coefficients
disp <- summary(model)$dispersion # Get dispersion parameter
cov.param <- disp * summary(model)$cov.unsealed
# Get covariance matrix of parameters
# To determine future uncertainty, need to create a
# design matrix for future payments. Build up in stages.
# Assume start from bottom left of future triangle, 
n.fut.points <- length(claims[is.na(claims)])
fut.design <- matrix(0, nrow = n.fut.points, ncoHength(coef))
fut.points <- claims
fut.points[!is.na(claims)] <- 0
fut.points[is.na(claims)] <- 1 :n.fut.points
for(p in l:n.fut.points){
# All points and a constant in the predictor 
fut.designfp, 1] <- 1
# Row factor 
fut.design[p, 1 +
as.numeric(origin[match(p, fut.points)]) - 1 ] <- 1
# Col factor
fut.design[p, 1 + (n.origin-1) + 
as.numeric(dev[match(p, fut.points)]) - 1] <- 1
}

# Determine fitted future values (as a diagonal matrix) 
fitted.values <- diag(as.vector(exp(fut.design %*% coeO)) 
total.reserve <- sum(fitted.values)
total.reserve

[ 1] 25706974
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# Determine covariance matrix oflinear predictors 
cov.pred <- fut.design %*% cov.param %*% t(fut.design)
# Determine covariance matrix of fitted values
cov.fitted <- fitted.values %*% cov.pred %*% fitted.values
# Determine uncertainty statistics
total.rmse <- sqrt(disp*total.reserve+sum(cov.fitted)) 
total.predictionerror <- round(100*total.rmse/total.reserve) 
total.rmse 
[1]5854802

total.predictionerror

[1] 23
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