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Abstract

Despite the option pricing importance in risk management and selection of portfolios,

it is challenging to accurately price options due to unpredictable feature of asset prices.

There are numerous risks in the �nancial markets, mainly emanating from the inaccurate

computation of option prices. The inaccuracy is mostly attributed to volatility. Using

GARCH or other stochastic processes directly is unsuitable for option pricing. There is

the need to decompose original series with some properties to attain more �nancial time

series aspects. E-E-M-D generally performs well in capturing volatility and option pricing

of �nancial data with non-linearity and non-stationarity properties. We construct a hybrid

GARCH(1,1) model with the ensemble empirical mode decomposition in European option

pricing. Using E-E-M-D, we decompose the original daily returns into low frequency, high

frequency, and trend terms, and use these terms in the hybrid GARCH(1,1) European

option pricing model in options pricing. We obtain option prices for di�erent maturities

by applying Monte Carlo simulation. Our empirical results clearly illustrates that the

hybrid GARCH(1,1) European option pricing model e�ectively predicts volatility features

and performs better than BSM73 and GARCH-M(1,1). The performance of the hybrid

GARCH(1,1) European option pricing model incorporating just the low-frequency term

further depicts the signi�cance of decomposing the original returns using E-E-M-D by

reducing option pricing errors signi�cantly. Therefore, the hybrid GARCH(1,1) European

option pricing model is a highly innovative and e�ective method of option pricing.

Master Thesis in Mathematics at the University of Nairobi, Kenya.
ISSN 2410-1397: Research Report in Mathematics
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1 Introduction

1.1 Background of the Study

Options contracts have been existing for many centuries but remained obscure financial
instruments before 1973, where such contracts were seen as over-the-counter (OTC). Op-
tion trading had a broker who was an intermediary between the buyer and the seller of
the contract. These contracts were not accurately priced since they were not standard-
ized based on their conditions. According to[Arora et al., 2011] there was no standard
agreed-upon option pricing before the Black-Scholes model was discovered. Traders re-
lied on their intuition to price options. With the discovery of the Black-Scholes formula,
traders could use a simple equation with few inputs to price options. The formal exchange
of new financial options began in the market, replacing OTC. In 1973, Black and Scholes
and Merton had a breakthrough in the field of finance by formulating the first satisfactory
equilibrium pricing model(BSM73) of derivative securities in options markets. Option
pricing theory is crucial in investment decision making and risk management. World-
wide growth in financial markets in derivative has exploded following the prevailing the-
ory of BSM73. The significant contribution of the Black and Scholes (1973) and Merton
(1973) seminal work was the introduction of an option pricing model that does not in-
volve an investor’s risk preference and subjective views. [Cox and Ross, 1976] studies the
structure of option valuation problems and introduces a new technique of jump-di�usion
processes that had not been used in the previous models. The method finds an explicit
formula to evaluate options and solve past problems in the securities valuation with pay-
outs and possible bankruptcy. [Cox et al., 1979] propose a simple discrete-time binomial
option pricing model. This method assumes that stock prices move either upwards or
downwards only and that the magnitude of these movements is the same during the
study period. Volatility is considered to be a function of the stock price and directly de-
termined by the stock price.[Hull and White, 1987] assume a continuous-time stochastic
volatility model in European option pricing and examine the impacts of stochastic volatil-
ity on option prices. stronger than no arbitrage.
Traditionally, financial economics research has focused on expected market returns. Schol-
ars and professionals are enthusiastic about addressing the instability of the predicted
market returns. Market stability is fundamental in the market, and thus concentrating on
the stock volatility is of great importance. The impact of volatility on the expected returns
has forced researchers to give a�ention to the intensity and stationarity of volatility. Re-
searchers have shi�ed their interest in developing and improving econometric models ca-
pable of producing accurate projections of returns volatility. Researchers have established
numerous models to forecast stock volatility. The following univariate volatility models
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are among the most important. [Engle, 1982] autoregressive conditional heteroskedastic
(ARCH) model, and [Bollerslev, 1986] generalized ARCH (GARCH) model,
[Hua et al., 2018] Numerous studies present various perceptions for understanding pric-
ing of underlying assets. Non-linearity and non-stationarity are some of the special char-
acteristics possessed by the financial time series. Occurrence of undesirable events such
as financial crises or disaster shocks asset prices and may even cause a jump. In reality,
numerous factors are capable of altering asset price series. Financial time series is stud-
ied under categorization according to seasonal factors, regression terms and trend terms.
Accurate classification of factors a�ecting asset price series leads to be�er structures of
financial time series data. Application of stochastich volatility and GARCH-type models
directly is unsuitable for option pricing. This gives rise to need to decompose original
series with some properties to a�ain more financial time series aspects. Scholars world
wide are commi�ed to developing financial time series. Wavelet based modelling tech-
nique and neural network are among trendy approaches. But since [Kumar et al., 2016]
highlights that one of the most common statistical properties violated by time series
data is stationarity, the above models require stationarity hence have a complexity in
dealing with complicated financial data. [Huang et al., 1998] develops a new empirical
mode decomposition (E-M-D) for analysing data with non-linearity and non-stationarity
features. E-M-D is capable of decomposing complex data into finite intrinsic mode func-
tions admi�ing Hilbert transforms. E-M-D is highly e�icient because of its applicability
in processes with non-linearity and non-stationarity. Despite E-M-D being highly useful-
ness, mode mixing phenomenon remains to be its most annoying unresolved di�iculty. In
order to solve the mode mixing phenomenon, ensemble empirical mode decomposition
(E-E-M-D) is used. E-E-M-D is a noise-assisted analysis that involves si�ing an ensem-
ble of white noise-added data and treating the mean as the final true answer. E-E-M-D
utilizes statistical properties of noise to the fullest by disturbing the original data and can-
celling itself out a�er use. E-E-M-D skilfully improves E-M-D by eliminating the mode
mixing problem while preserving physical uniqueness of decomposition by adding white
noise.

1.2 Statement of the Problem

There are numerous risks in the financial markets. One of the major risks in option trad-
ing is inaccurate computation of option prices. The inaccuracy is mostly a�ributed to
volatility. Inappropriate determination of volatility makes investors vulnerable to su�er
a financial loss. This has necessitated researchers to focus on developing econometric
models that accurately forecasts swings in returns volatility. The most significant ob-
jective of trading is to minimize uncertainties and maximize the expected returns. It is
natural for investors to invest in a business with a possibility of maximum expected re-
turns and minimal risks. Investor’s success is deeply found on the ability to make good
investment decisions and mitigate existing risks. Option pricing is dependant on the ex-
isting closed-form models. However, accuracy of option prices raises a significant ques-
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tion. Occurrence of undesirable events such as financial crises or disaster shocks asset
prices and may even cause a jump. In reality, numerous factors are capable of altering
asset price series. Accurate classification of factors a�ecting asset price series leads to
be�er structures of financial time series. There is need to decompose original series with
some properties to a�ain more financial time series aspects. E-M-D and E-E-M-D gener-
ally performs well in capturing volatility and option pricing in financial time series with
non-linearity and non-stationarity features. However, there is limited application of E-
M-D and E-E-M-D in option pricing and in the existing studies. Option prices are highly
sensitive to volatility, it is therefore important to come up with an appropriate model that
captures comprehensive fluctuation features from financial data with non-linearity and
non-stationarity features. Filling this gap is our main research contribution.

1.3 Research Objectives

1.3.1 General Objective

To study the proposed hybrid GARCH(1,1) European option pricing model with ensemble
empirical mode decomposition.

1.3.2 Specific Objectives

1. To analyse the underlying features of asset returns by applying E-E-M-D.

2. To construct the hybrid GARCH(1,1) European option pricing model describing the
underlying asset returns.

3. To compare option prices from the proposed model with the already existing models.

4. To show the impact of decomposing returns using E-E-M-D
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2 Literature Review

Option pricing is a highly celebrated theory that was in existence long before Bache-
lier made a publication in 1900. A�er [Black and Scholes, 1973] presented their path-
breaking model (BSM73), option pricing theory has underwent a major revolutionary
change . The BSM73 is mathematically tractable and compact making it popular in the
financial markets. However, some scholars prove that some of the BSM73 assumptions
fails to hold. The BSM73 assumption of normal distribution of returns and constant
volatility are unrealistic. Returns indeed fails to justify normality test and also exhibits
volatility clustering. Volatility is a major factor in pricing of options. Volatility is clearly
non constant when we practically determine volatility on the basis of observed market
prices. Worldwide research on option markets imply that the constant volatility of the
BSM73 assumption fails to hold since from empirical studies on log-returns of stock indi-
cates that volatility of time series returns is non constant. There is very much fluctuation
of financial asset prices and volatility vary over time during stress times on the mar-
ket. This limitation of constant volatility undermines the accuracy and applicability of
BSM73 since volatility is a major factor in pricing of options. However, the BSM73 Euro-
pean option pricing model is highly applied world wide despite violation of some of its
assumptions. Option pricing theory has improved greatly from BSM73 by relaxing some
assumptions and introducing other more complex option pricing models.
A research done by [Cox and Ross, 1976] present jump and di�usion processes model to
find explicit option pricing formulas. The new process had not been considered in the
previous studies in pricing of options. [Cox et al., 1979] presents a simplified discrete-
time option pricing model. This was the first approach to implement binomial model to
evaluate options presuming a log-normal process. This method possess the ability to as-
sess options using the no-arbitrage and risk-neutral principles. A simulation strategy is
proposed where the asset prices either goes up or down. This method is ine�icient since
it only takes into up or down price movements and the market is nor always perfect.
Econometric modelling gained plausible success following the seminal work of Engle(1982).
Autoregressive conditional heteroscedastic (ARCH) generalizes the unreliable assump-
tion of constant variance in traditional econometric models is introduced [Engle, 1982]
. ARCH allows non constant conditional volatility. Many researchers have extended the
idea of ARCH model subsequently.
[Bollerslev, 1986] proposes a generalized form of the ARCH model called Generalized
Autoregressive Conditional Heteroskedastic (GARCH) that allows past conditional vari-
ances to be a function of current conditional variance. Since approximating an entirely
free lag distribution leads to contravention of the non-negative constraint, GARCH model
is more appropriate as it allows for more flexible lag structure.
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[Sco�, 1987] examines the European call options pricing on stocks with variances that
changes randomly. Stock and two options need to be used in developing a hedge. How-
ever, the risk-less hedge flops in forming a unique option pricing function. The equilib-
rium asset pricing model application is a requirement in deriving an exceptional function
in pricing of option. The integral of the BSM73 formula is the resulting solution as well
as the distribution function for the standard deviation of the stock price. Applying the
model in actual prices se�ing and using Monte Carlo simulations can be accurately com-
pute accurate prices of the options.
[Melino and Turnbull, 1990] ] investigates the e�ects of stochastic volatility in foreign
currency option pricing. They propose and examine a di�usion model with stochastic
volatility. Allowing volatility to be stochastic improves the accuracy of option price pre-
diction. Bivariate di�usion models for option valuation main drawback is that face their
volatility rate is unobservable and thus call for provisions
[Nelson, 1991] proposes a new form of ARCH model (EGARCH) that meets GARCH ob-
jections. GARCH-type models employed in modelling the relationship between condi-
tional variance with the risk premium of assets have some major drawbacks in asset
pricing applications. EGARCH model may be appropriate in existence of a correlation of
variance stock price.
[Robert and Victor, 1993] measures the extent of new information incorporation in volatil-
ity estimation by defining news impact curve. Option pricing is mainly dictated by the
shape of the news impact curve. Innovative diagnostic tests are presented that empha-
size on how volatility asymmetry reacts to news. Finding out how fast the news im-
pact curve increases and whether it is symmetric or not is very important. However,
[Hull and White, 1987] simulations proves how mispricing of option prices is dependant
on volatility measures and correlation between option price and volatility.
[Duan, 1995] develops a model for valuing options valuation based on GARCH. The model
introduces the locally risk neutral valuation relationship(LRNVR) by generalizing the con-
cept of risk-neutral. Under assumptions of distribution and combination of preferences,
the LRNVR is shown to be valid. The GARCH option pricing model preserves the condi-
tional volatility of the underlying stock price. Statistical analysis implies that the GARCH
option pricing model a�empts to justify some well-documented limitations of the BSM73.
[Härdle and Hafner, 2000] extends the Duan’s model to a volatility estimation that is
more flexible. Options that are out-of-the-money are robustly dependant on volatility
specifications. Duan’s results of 1995 are advanced to the threshold generalized au-
toregressive conditional heteroskedastic (TGARCH) process notion and compared with
Monte Carlo simulated Garch and the BSM73 prices. There are numerous progressive
reviews to the GARCH models family to overcome drawbacks of each proposed GARCH
model. [Huang et al., 2003] develops a new method applied to financial data, the Hilbert-
Huang Transform (HHT). HHT analyses data with non-linearity and non-stationarity fea-
tures. It is comprised of the E-M-D and classical Hilbert spectral analysis. E-M-D is ob-
served to increase accuracy and e�iciency of reflecting changes in the market volatility.
[Zhang et al., 2009] proposes to use E-M-D analysis to estimate how major events im-
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pacts on the prices of crude oil. [Wu and Huang, 2009] improves the traditional E-M-D
by E-E-M-D. E-E-M-D main strength is introducing white noise to disturb the original
signal and cancel it away thus eliminating mode decomposition in the E-M-D.
[Byun et al., 2015] incorporates variance premium as well as the jump risk premium in
the GARCH option pricing model.
[Zhu et al., 2015] apply E-M-D in decomposing the carbon prices and then reconstructs
the IMFs into three components. [Tang and Diao, 2017] improves the accuracy of option
pricing. They use BSM73 integrated with the hidden Markov model (HMM)to price op-
tions. Using the historical data of the underlying stock process, they train HMM in two
states. They use HMM in prediction of the hidden state the hidden state of next time
by the HMM. Finally, they forecast volatility on the basis of a conforming GARCH-type
model. The empirical results obtained indicates be�er performance compared to histori-
cal volatility classical models and GARCH models.
[Li and Chu, 2017] incorporates the time-dependent correlation between underlying as-
sets, which is a common phenomenon in financial practice but considered in few previ-
ous researches. Dynamic copula with time-dependent correlation is used to depict the
dynamic nature of option price. In order to formulate the heavy-tailed characteristic
of financial derivatives, they also improve the GARCH process by applying Tukey’s H
-distribution family. In numerical experiment, reformulated GARCH process expresses
more precise curves than general GARCH process.
[Kannadhasan et al., 2018] investigates the presence and pa�ern of the volatility cluster-
ing by applying GARCH-type models. In addition, this study examines GARCH family
of models with reference to out-of-sample forecast accuracy. the obtained results the
appropriateness of GARCH (1,1) in accurate return series prediction.
[Liu and Huang, 2019] combines the GARCH model with the BSM73 to improve on the
constant volatility assumed by the BSM73. A�er option pricing, they realize that combin-
ing the GARCH model with the BSM73, improves the accuracy of carbon option pricing
results to a certain extent, and can provide reference for the research of carbon option
pricing.
[Jiang and Hua, 2019] proposes threshold GARCH with generalized error distribution con-
structed with improved E-E-M-D.
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3 Methodology

3.1 Introduction

This chapter briefly describes BSM73, GARCH-in-mean model and introduces GARCH-
H(1,1). We propose to use the E-E-M-D in the decomposition of returns process. Decom-
position process aims at extracting all variability information from the original financial
time series data. Additionally, we construct GARCH-H(1,1) and show existence of an
equivalent probability measure.

3.2 Black-Scholes Model(BSM73)

The development of [Black and Scholes, 1973] framework was significant in o�ering the-
oretical estimation of European call options prices. The BSM73 o�ers a closed-form solu-
tion for European option pricing making the model a�ractive. For non-dividend paying
stock, the BSM73 European calls and put option prices are given below.

Ct = StΦ(d1)−Ke−rτ
Φ(d2) (3.2.1)

where

d1 =
log
(

St
K

)
+
(

r+ σ2

2

)
τ

σ
√

τ
,τ = T − t

d2 = d1−σ
√

τ

3.2.1 Put call parity

Put-call parity is a major concept in pricing of options, it shows the relationship of puts,
calls prices, and the underlying asset. The put call parity states that:

Ct = St +Pt−Ke−rτ (3.2.2)

By put call parity , we substitute equation 3.2.1 in equation 3.2.2, the put option can be
obtained as follows:

Pt =Ct−St +Ke−rτ

= StΦ(d1)−Ke−rτ
Φ(d2)−St +Ke−rτ

= St(Φ(d1)−1)+Ke−rτ(1−Φ(d2))

=−St(1−Φ(d1))+Ke−rτ(1−Φ(d2))

= Ke−rτ
Φ(−d2)−StΦ(−d1)
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Thus,
Pt = Ke−rτ

Φ(−d2)−StΦ(−d1) (3.2.3)

The call and put option prices notation are given below.

• St - Current stock price

• K - Strike price of the option

• r - Risk free rate of interest

• τ - Expiration time of the option content

• σ - The underlying asset volatility

• Φ - A normal distribution

3.2.2 BSM73 Assumptions

1. Stock returns are log-normally distributed.

2. Frictionless market.

3. An option is exercised only on expiration time.

4. No dividend is payable by the stock during the option’s life.

5. Stocks move in a random walk manner that is not predictable hence the markets are
e�icient.

6. The interest rates and volatility are known constant.

7. There is no arbitrage to avoid an opportunity to make a risk-less profit.

Some of the BSM73 assumptions used are unrealistic. BSM73 assumes that returns are
Log-normally distributed, from observation returns are commonly leptokurtic exhibiting
fat tails. Constant volatility assumption is questionable since volatility keeps fluctuating
with changes in demand and supply. Furthermore, BSM73 assumes that the market has
neither taxes nor transaction costs; that the rate of interest rate is constant which is
hardly ever the case; that there are no dividends which is not the reality since options
buying and selling is focused on returns. Such assumptions may lead to the option prices
deviating from the real market prices where these assumptions are unrealistic.
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3.3 GARCH-M(1,1) model

[Bollerslev, 1986] proposed GARCH to address the limitation of the ARCH model. GARCH
gives an allowance of the past conditional variances into the function of the current vari-
ance. The model is more flexible and persistent than ARCH model since it allows more
flexible lag structure.
Stock returns are dependant on their volatility (risk). [Duan, 1995] developed GARCH-M
model. GARCH-M adds a heteroskedastic term into the mean equation. Supposing that
the original asset price sequence is Xt , t = 0,1,2, . . . ,n, and at time t the return under
probability measure P is conditionally log-normally distributed. That is,

ln
(

Xt

Xt−1

)
= r+λσt−

1
2

σ
2
t + εt , (3.3.1)

Where, under probability measure P

• εt - residue

• σt - conditional variance

• λ - constant risk premium

• r - risk free rate

Assuming that under probability measureP ,εt follows [Bollerslev, 1986] process of GARCH(p,q),

εt |Ft−1 ∼ N(0, σ
2
t ) under measureP

σ
2
t = ω +

q

∑
i=1

α jε
2
t− j +

p

∑
j=1

β jσ
2
t− j, (3.3.2)

where Ft is the information set up to and including time t ; ω ≥0; q ≥ 0, p ≥ 0; αi ≥
0, i = 1, . . . ,q; β j ≥ 0, j = 1, . . . , p. When p=1 and q=1, GARCH-M model becomes
GARCH(1,1)-M model given as:

σ
2
t = ω +αε

2
t−1 +βσ

2
t−1 (3.3.3)

3.4 Empirical Mode Decomposition

[Huang et al., 1998] proposes a new promising adaptive and e�icient method to analyse
non-linear and non-stationary data. This method can decompose time series data into
finite and intrinsic mode functions(IMFs) which are usually small in number. IMFs are
simple oscillatory modes with varying amplitude and instantaneous frequencies. The
conditions that an IMF should satisfy are:



10

1. the numbers of extrema and zero-crossings are the same, or di�er by not more than
one all through the entire IMF.

2. the mean value of the envelope defined by the local maxima and the envelope defined
by the local minima must be zero at any data location.

E-M-D analyses data by the si�ing process, which decomposes the original data into IMFs
level by level. Suppose that the original data is x(t) =, t = 0,1,2, . . . ,n; the following is
an overall description of the si�ing process for a time series x(t).

1. Find the local extrema of the original signal and compute the lower and upper en-
velopes. The local mean (mi(t), i = 1,2, . . . ,k) is obtained by finding the mean of both
the upper and lower envelopes. Define wi(t), i = 1,2, . . . ,k as the di�erence between
x(t) and mi(t), i = 1,2, . . . ,k. That is,

wi(t) = x(t)−mi(t), i = 1,2, . . .k t = 0,1,2, . . . ,n

The following is the first si�ing process;

w1(t) = x(t)−m1(t), t = 0,1,2, . . . ,n

As a result, the first si�ing process is accomplished. Ideally, w1(t) should be an IMF.
The si�ing process works by exterminating riding waves.

2. Assuming w1(t) to be the original signal in accordance with step one, we can obtain
the second component w2(t)

w2(t) = w1(t)−m2(t)

This step is repeated for k times, until wk(t) is an IMF.

wk(t) = w(k−1)(t)−mk(t)

3. If hk(t)meets the IMF conditions, designateCi(t)=wk(t), i= 1,2, . . .N, t = 0,1,2, . . . ,n
The stoppage criterion of decomposition is defined by index DS as follows:

DS =
T

∑
t=0

[
wk−1(t)−w(k)(t)

wk−1(t)

]2

< ς , (3.4.1)

where ς is a predetermined constant value.
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4. The residue Ri(t) can be obtained by subtracting Ci(t) from the original signal.

Ri(t) = x(t)−Ci(t), i = 1,2, . . . ,N t = 0,1,2, . . . ,n (3.4.2)

Assuming the residue Ri(t) to be the original data, repeat the first two steps. We
obtain the second IMF. If no more IMFs can be a�ained and Ri(t) becomes a mono-
tonic function, and Ri(t) with Ci(t) becomes smaller than the predetermined value,
the si�ing procedure stops. If that is not the case, the last step is repeated. The final
Ri(t) = RN(t) becomes the mean trend of x(t). x(t) represents a summation of IMFs
with the residue (RN(t)).

x(t) = RN(t)+
N

∑
i=1

Ci(t) (3.4.3)

The number of iterations is given by N. Index DS as shown above defines the stoppage
criterion of decomposition.

3.5 Ensemble Empirical Mode Decomposition(E-E-M-D)

Empirically, mode mixing the most significant drawback of E-M-D which appears when
the data has intermi�ency. IMF ceases to have physical meaning on its own when mode
mixing occurs. Financial time series usually contains a certain level of random noise.
Eliminating mode mixing problem is obligatory in order to analyse financial time series
data more accurately. E-E-M-D is capable of overcoming the phenomenon of mode mix-
ing.
The major principle in E-E-M-D is adding uniformly distributed white noise to the to
the original signal and then decomposes the data using E-M-D as described above. The
following is a description of E-E-M-D algorithm:

1. Adding uniformly distributed white noise to the to the original signal x(t), t =
0,1,2, . . . ,n with (σ = 0.1),we get x̂(t), t = 0,1,2, . . . ,n

2. Decomposing the new signal x̂(t), t = 0,1,2, . . . ,n into IMFs using E-M-D.

3. Repeating the first two steps over while but using various white noise series every
time.

4. Obtaining the consequent IMFs and the residue.

Applying fine-to-coarse technique by [Zhang et al., 2009] to reconstruct the IMFs, apply
t-test in identifying from which IMF Ci(t), i = 1,2, . . . ,N, the mean of the sum of C1(t)
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to CN(t) is significantly departing from zero. We thus find the high and low frequency
sequences Zh

k (t) and Zl
k(t) respectively.

Zh
k (t) =

k

∑
j=1

Ci(t), k < N

Zl
k(t) =

N

∑
i=k+1

Ci(t)

3.6 Hybrid GARCH(1,1) European Option Pricing Model with
Ensemble Empirical Mode Decomposition

In this section, we construct the proposed hybrid GARCH(1,1) European option pricing
model with E-E-M-D. The proposed model incorporates risk premium, Zl

t and RN(t).
Suppose that the original index sequence is xt , t = 0,1,2, . . . ,n, and at time t the return
is Xt , then,

Xt = ln
(

xt

xt−1

)
The following is an adopted hybrid GARCH(1,1) European option pricing model:

Xt = r+a1zl
t +a2ðt +λσt + εt ,εt |Ft−1 ∼ N(µ, σ

2)

=⇒ σ
2
t = ω +αε

2
t−1 +βσ

2
t−1 (3.6.1)

where,
ω > 0, α ≥ 0, β ≥ 0,

β +α < 1

• r - risk free rate of interest

• ðt - (RN(t)− r)

• λ - high frequency volatility unit price for risk premium

• a1 - risk premium from zl
t

• a2 - risk premium from ðt

• Ft−1 - information set up to time t−1

When a1,a2 = 0, the hybrid GARCH(1,1) European option pricing model model becomes
GARCH-M(1,1). In such a special case, the original data series seems to fluctuate only
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around the constant r(risk free rate of interest) with heteroskedasticity. Extreme events
and the trend terms does not have much e�ect on the original data series. Classical
BSM73 is equivalent to our hybrid model when α = β = λ = a1 = a2 = 0. Generally,
financial time series reacts to factors such as; geopolitics, major economies monetary
policies, economic cycles, and financial crises. Therefore, it is fundamental to consider
long-term e�ects of such important factors and trend term. Such consideration easily
leads to significant parameter estimation and accuracy in applications. Our hybrid model
facilitates to capture the fluctuating components of the historical options data by reveal-
ing various systematic risk sources.
Applying the LRNVR, proving availability of transformation measure is obligatory. By so
doing, it enables us in obtaining fair options price. According to [Duan, 1995] and also in
[Mwaniki et al., 2015]

De�nition 3.6.1. A pricingmeasureQ is said to satisfy the LRNVR if measureQ is mutually
and absolutely continuous with respect to measure P and satis�es the following conditions:

(I) Xt |Ft−1is normally distributed underQ;

(II) EQ
[

xt
xt−1
|Ft−1

]
= er;

(III) VarQ
[
ln
(

xt
xt−1
|Ft−1

)]
=VarP

[
ln
(

xt
xt−1
|Ft−1

)]
almost surely with respect to mea-

sure P.

Under both measures,the conditional variances must be equivalent in accordance with
the LRNVR definition. This is desirable since it makes it possible to make an estimation of
conditional variance under measure P. Equivalent martingale measure existence implies
non-existence of arbitrage opportunities. The LRNVR under measure Q implies that;

Xt = log
(

xt

xt−1

)
= υt +ξt

Where υt = r− 1
2σ2 is the conditional mean, Xt is the returns, and ξt is a normal random

variable under measure Q and by:

EQ
[
eυt+ξt |Ft−1

]
= EQ

[
xt

xt−1
|Ft−1

]
Under martingale measure Q a discounted price process X̂t is martingale with respect to
Ft ,i.e

EQ [X̂t |Ft−1
]
= X̂t−1
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⇒ EQ [e−rtxt |Ft−1
]
= e−r(t−1)xt−1

⇒ EQ
[

xt

xt−1
|Ft−1

]
= er

⇒ EQ [eXt |Ft−1
]
= er

Given,

Xt = r+a1Zl
t +a2ðt +λσt−

1
2

σ
2
t +ξt , ξt |Ft−1 ∼ N(0, σ

2
t ) (3.6.2)

ξt is a normal random variable , under measure Q, then the proposed hybrid GARCH(1,1)
European option pricing model becomes;

σ
2
t = ω +α(ξt−1−a1Zl

t−1−a2ðt−λσt−1)
2 +βσ

2
t−1 (3.6.3)

3.6.1 Unconditional variance of the hybrid GARCH(1,1) option pricing model

Theorem3.6.2. Unconditional variance of the hybrid GARCH(1,1) option pricingmodel Un-
der probability measure Q, when Zl

t and ðt are stationary with mean zero and are mutually
independent, can be attained .

Under measure Q;

Xt = r+a1Zl
t +a2ðt +λσt−

1
2

σ
2
t +ξt , ξt |Ft−1 ∼ N(0, σ

2
t )

σ
2
t−1 = ω +α(ξt−1−a1Zl

t−1−a2ðt−λσt−1)
2 +βσ

2
t−1

Then;

EQ[σ2
t ] = ω +αEQ(ξt−1−a1Zl

t−1−a2ðt−λσt−1)
2 +βEQ[σ2

t−1]

= ω +αEQ[ξ 2
t ]+αEQ[(a1Zl

t−1 +a2ðt)
2]

−2αEQ[ξt−1|EQ(a1Zl
t−1 +a2ðt +λσt−1]

+2αλEQ[a1Zl
t−1 +a2ðt ]EQ[σt−1]+βEQ[σ2

t−1]

Let

yt =
ξt

σt
, yt |Ft−1 ∼ N(0, 1)

⇒ EQ[ξ |Ft−1] = EQ
[(

ξt

σt

)
|Ft−1

]
EQ[σ2

t ]

=

[
1

2π

∫
∞

−∞

y2e
−y2

2 dy
]

EQ[σ2
t ]

= EQ[σ2
t ]

⇒ EQ[ξ |Ft−1] = 0
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Since Zl
t and ðt are mutually independent and stationary with mean zero, then the un-

conditional variance is independent of time t

EQ[σ2
t ] = ω +[α(1+λ

2)+β ]EQ[σ2
t ]+αEQ[a2

1Zl
t−1

2
+a2

2ðt
2]

The unconditional variance of GARCH-H(1,1) is given by

VarQ(ξt) =
ω +αEQ[a2

1Zl
t−1

2
+a2

2ðt
2]

1−α(1+λ 2)−β

Let EQ[a2
1Zl

t−1
2
+a2

2ðt
2] be K, K ≥ 0

⇒VarQ(ξt) =
ω +αK

1−α(1+λ 2)−β

3.6.2 covariance of the GARCH-type hybrid model

CovQt−1

(
ξ

σt
, σ

2
t+1

)
= EQ

t−1

(
ξt

σt
σ

2
t+1

)
= EQ

t−1

[
ξt

σt
(ω +α(ξt− (a1Zl

t +a2ðt +λσt)))
2 +βσt

]
= ωEQ

t−1

[
ξt

σt

]
+αEQ

t−1

[
ξt

σt
(ξ 2

t −2ξt(a1Zl
t +a2ðt +λσt)+(a1Zl

t +a2ðt +λσt)
2)

]
+βσtE

Q[ξt ]
t−1

= ωEQ
t−1

[
ξt

σt
(a1Zl

t +a2ðt +λσt)
2)

]
+αEQ

t−1

[
ξt

σt
(a1Zl

t +a2ðt +λσt)
2
]

+βσtE
Q[ξt ]
t−1

When ξt |Ft−1 ∼ N(0, σ2
t ) , and yt =

ξt
σt
, yt |Ft−1 ∼ N(0, 1)

⇒CovQt−1

(
ξ

σt
, σ

2
t+1

)
= EQCovQt−1

(
ξ

σt
, σ

2
t+1

)
= EQ

[
αEQ

t−1

[
ξt

σ3
t

]
−2λαEQ

t−1[ξ
2
t ]

]
=−2αλEQ[σ2

t ]



16

3.6.3 The Hybrid GARCH(1,1) European Option Pricing Model with Zl
t and ðt

In order to prove the significance of decomposing original historical financial data, we
consider GARCH-H(1,1) with Zl

t alone and GARCH-H(1,1) with ðt alone.
The GARCH-LH(1,1) model is obtained by considering Zl

t alone:

Xt = r+a1Zl
t +λσ

2
t −

1
2

σ
2
t + εt , (3.6.4)

εt |Ft−1 ∼ N(0, σ
2
t )

Thus,
σ

2
t = ω +α1ε

2
t−1 +βt−1σ

2
t−1 (3.6.5)

TheGARCH-TH(1,1) model is obtained by considering ðt alone.

Xt = r+a2ðt +λσ
2
t −

1
2

σ
2
t + εt , (3.6.6)

εt |Ft−1 ∼ N(0, σ
2
t )

Thus, under measure P
σ

2
t = ω +α1ε

2
t−1 +βt−1σ

2
t−1 (3.6.7)

3.7 Model Selection

Model specification determines evaluation and inferences on real life data. Optimal
model selection is fundamental in data analysis and,ultimately returns accurate fore-
casting results. In this section, the optimal model for forecasting GARCH-H(1,1) model
is selected on the basis of the conditional error distribution with information selection
criteria.

3.7.1 Conditional Error Distributions

3.7.1.1 Normal Distribution

The density function of the normal distribution is given by:

f (x) =
1

σ
√

2π
e−(x−µ)2

/
2σ2
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3.7.1.2 Student-t Distribution

The density function of the student-t distribution is given by:

f (x) =
Γ
(

ν+1
2

)
√

νπΓ
(

ν

2

) (1+
x2

ν

)− ν+1
2

3.7.1.3 Skewed Student-t Distribution

The density function of the skewed student-t distribution is given by:

f (x) =
Γ
(

ν+1
2

)
Γ
(

ν

2

)√
π(n−2)ht

[
1+

x2

(ν−2)ht

]−
ν +1

2

3.7.1.4 Generalized Error Distribution(GED)

The density function of the generalized error distribution that is also known as General-
ized Gaussian Distribution (GGD) is :

f (x) =
λ s

2Γ
(1

s

) exp(−λ
s|x−µ|s)
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4 Data Analysis and Results

4.1 Introduction

In this chapter I present the obtained empirical results on Facebook options data obtained
on 14th February 2020 and historical data between June 2012 and February 2020. I also
give an interpretation of results from fi�ing the GARCH-H(1,1), GARCH-M(1,1) and the
BSM73.

4.2 Conventional Facts of Daily Returns

Figure 1. Time Series plot of Facebook Adjusted Closing Prices
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From Figure 1, di�erent trends are observed from di�erent time intervals. Changing vari-
ability is obvious from the above time series plot. There is need for pricing the options
with a model that allows for non constant volatility.

Figure 2. Volatility clustering

Figure 2 shows that the values the daily returns series change rapidly over time in un-
predictable way indicating volatility. Volatility clustering is present where the tendency
of either low volatility or high volatility usually persists. This behaviour is known as au-
toregressive conditional heteroskedasticity (ARCH). The Facebook daily returns seems to
fluctuate around zero randomly, implying li�le or no autocorrelation.
Formally, we conduct ADF test for stationarity at significance level of 5% in order to fit a
time series model.
The hypotheses are;
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H0 : The daily returns are non stationary

H1 : The daily returns are stationary

If the p-value < 0.05, we reject the null hypothesis. The ADF test indicates that the p-value
= 0.01 which is < 0.05 implying that the returns are stationary.

Figure 3. Volatility Analysis
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From Figure 3 the returns are serially uncorrelated. However, the squared returns indi-
cates significant autocorrelations. This implies that the returns are neither correlated nor
independent.

Figure 4. The daily returns histogram

Looking at Figure 4 and comparing it with the normal distribution with same mean and
variance shows presence of excess kurtosis and fat tails.
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Figure 5. Normal Q-Q plot of Facebook returns

QQ-plot in Figure 5 illustrates that there are fat tails since the empirical quantiles against
those from of a normal distribution should have formed a roughly straight line. Noncon-
formity with the straight line implies non normality of the daily returns. We can further
confirm the normality using the Shapiro test for normality. In Shapiro-Wilk’s test of nor-
mality, the p-value= 0.00000000000000022 which is < 0.05 confirming non normality of
the returns. Non normality is a major characteristic of daily returns.
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4.3 Daily Returns Descriptive Statistics

Table 1. Descriptive statistics of daily returns

Minimum value -0.21

Maximum value 0.26

Mean value 0

Median 0

Lower quartile 0.01

Upper quartile -0.01

Variance 0

Standard deviation 0.02

Skewness 0.35

Kurtosis 16.12978

From Table 1 kurtosis is 16.12978 exhibits that returns are leptokurtic .Since the value is
larger than 3, daily returns exhibit heavy tails. The value of skewness is 0.35 which is
greater than zero inferring that the daily returns are skewed to the right.

4.4 ARCH E�ects Test

We use the ARCH test to check for ARCH e�ects. We use α = 0,05 significance level for
the null hypothesis test. The hypotheses for ARCH test are ;

H0 : No ARCH e�ect in the returns

H1 : ARCH e�ect in the returns

The p-value=0.002307 which is < 0.05, we therefore reject the null hypothesis. Presence
of ARCH e�ects from the daily returns is evident.
ARCH test enables us to detect time varying conditional volatility phenomenon and thus
we are able to suggest on the appropriateness of using ARCH/GARCH models. Since the
ARCH e�ects are present in the daily returns, we can exploit the ARCH/GARCH models
to capture those dynamics.

4.5 Conditional Error Distributions Selection Criteria

We use QQ plots and information criteria to realize from which distribution the daily
returns conforms to.
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4.5.0.1 QQ Plots of Conditional Error Distributions in the GARCH(1,1) Model

We use QQ plots to us if the daily returns plausibly come from a certain theoretical
conditional error distribution. QQ plot results are as follows:

Figure 6. Normal Distribution QQ Plot

Figure 6 clearly indicates poor fit of the normal distribution since the daily returns data
fails to be linear especially at the tails.
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Figure 7. Student-t Distribution QQ Plot

Figure 7 shows that the std-QQ plot fairly fits with std.



26

Figure 8. Skewed Student-t Distribution QQ Plot

Figure 8 shows that the sstd-QQ plot fairly fits with sstd.
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Figure 9. Generalized Error Distribution QQ Plot

Figure 9 shows that the ged-QQ plot fairly fits with generalized error distribution. Evi-
dently std, sstd and ged seems to fit the data into linear model. Although std distribution
seems to fit the best among the three distributions that fits the data relatively fair, it is
not very clear which distribution fits the data hence need to use information criteria.
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4.6 Conditional Error Distribution Selection Using Information
Criteria

We will show information criteria a�er fi�ing the GARCH-H(1,1) with the norm, std, sstd
and ged and select the distribution that describes the returns optimally.

4.6.1 Information Criteria

We will select the optimal model on the basis of AIC,BIC,SIC and HQIC and then select
the best distribution to use in the model. Information criteria results shown from the four
error distribution is summarised in the following table:

Distribution AIC BIC SIC HQIC

NORM -4.8322 -4.8184 -4.8322 -4.8271

STD -5.1250 -5.1085 -5.1251 -5.1190

SSTD -5.1244 -5.1051 -5.1245 -5.1173

GED -5.0926 -5.0760 -5.0927 -5.0866

Table 2. Information Criteria

The model that has the least information criteria value is the most optimal. From Table
2 Student-t distribution has the least value of the four information criteria. We therefore
choose Student-t distribution to be used in the GARCH(1,1) model.

4.7 Ensemble Empirical Mode Decomposition(E-E-M-D)

The following are results obtained a�er decomposing the daily returns using the E-E-M-
D.

Figure 10. C1(t)
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Figure 11. C2(t)

Figure 12. C3(t)

Figure 13. C4(t)
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Figure 14. C5(t)

Figure 15. C6(t)

Figure 16. C7(t)
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Figure 17. C8(t)

Figure 18. C9(t)

Figure 19. R10(t)
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By the [Zhang et al., 2009] fine-to-coarse reconstruction, we Exploit t-tests in obtaining
the low frequency term Zl

k = ∑
7
j=1C j(t), and the high frequency term Zh

k = ∑
9
j=8C j(t) as

follows.

Figure 20. Low frequency term of Xt

Figure 21. High frequency term of Xt

Figure 21 shows that the Zh
t posses volatility clustering. Zh

t = ∑
7
j=1C j(t) represents the

noise term. Figure 20 shows the low frequency term Zl
t = ∑

9
j=8C j(t), describing large

returns’ fluctuation. Apart from low and high frequencies term, trend term is present.
Figure 19 shows the trend term illustrating equilibrium return of the period from May
2012 to Jan 2020.

4.8 European Option pricing

4.8.1 Monte Carlo Simulation
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Monte Carlo simulation is an e�ective way of pricing complex options with no analytical
solution. On the basis of GARCH-M(1,1) and GARCH-H(1,1), call option price under
measure Q at maturity is given by:

Ct = e−τrEQ(max{ST −K,0}|Ft) (4.8.1)

Where,

• T - maturity time

• K - strike price

• r - risk free rate

• τ - time to maturity

By 3.2.2 put options can be obtained. We simulate the payo� distribution function max{ST−
K,0} at maturity by generating n stock price processes as given by:

ST, j = St exp(
T

∑
i=t+1

xi, j), j = 1,2,3, . . . ,n. (4.8.2)

xi, j indicates return at time i in jth replication. The call option is thus given as:

Ct = exp−τr 1
n

n

∑
i=1

(max{ST −K,0}) (4.8.3)

The following table shows the parameter estimations of model 3.3.3 and 3.6.3.

Table 3. GARCH-M(1,1) and GARCH-H(1,1) Parameters

ω α β a1 a2 λ

GARCH-M 0.0000037153 0.055352019810 0.940549740254 0.002721

GARCH-H 0.0000036658 0.05456816 0.941255 -1.37353 -2.690293 0.0027667

Parameters in table 3 are all significantly not zero at the 5% level. The coe�icients condi-
tion of α+β<1 is obeyed as shown by the alpha and beta values, 0.05535202+0.9405497=
0.9959018 < 1 and 0.05456816+0.941255 = 0.9958231<1
Having estimated the model parameters, we simulate option prices using the GARCH-M
and GARCH(1,1) hybrid type model. We simulate option prices for 14 days, 63 days and
126 days. We now show the option prices using BSM73, GARCH-M(1,1), and GARCH-
H(1,1) and then give their comparisons.
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Figure 22. BSM73 and Market Option Prices when τ=14 days

Figure 23. GARCH-M and Market Option Prices when τ=14 days
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Figure 24. GARCH-H and Market Option Prices when τ=14 days

Figure 24 shows the best fit compared to Figure 23 and Figure 22 for the market option
prices. GARCH-H(1,1) predicted option prices seems to be mapping on the actual market
prices.
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Figure 25. BSM73 and Market Option Prices when τ=63 days

Figure 26. GARCH-M and Market Option Prices when τ=63 days
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Figure 27. GARCH-H and Market Option Prices when τ=63 days

Figure 27 shows the best fit compared to Figure 26 and Figure 25 for the market option
prices. GARCH-H(1,1) predicted option prices seems to be mapping on the actual market
prices. The precision of the fits for the three models seems to be reducing with increasing
time to maturity τ .
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Figure 28. BSM73 and Market Option Prices when τ=126 days

Figure 29. GARCH-M and Market Option Prices when τ=126 days
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Figure 30. GARCH-H and Market Option Prices when τ=126 days

Figure 30 shows the best fit compared to Figure 29 and Figure 28 for the market option
prices. GARCH-H(1,1) predicted option prices seems to be mapping on the actual market
prices.. The precision of the fits for the three models seems to be reducing with increasing
time to maturity τ .
From the above figures it is clear that GARCH-H(1,1) performs significantly be�er than
the others. It is important to use statistically show how the models perform. We use error
criterion to numerically find the performance of the three models. The error criterion we
use to obtain goodness-of-fit criterion is given by the following relative residuals:

µt =
Ct−Cmarket,t

Cmarket,t

Where Ct is call option price of either BSM73, GARCH-M(1,1) or HG-GARCH(1,1). Con-
sidering a error criterion squared, i.e

E =
k

∑
t=1

µ
2
t

Results obtained from the three models is as follows.
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Table 4. Call option prices and error criterion of the three models when τ=14 days

S/K Price MG Price BSM73 Price HG µt MG µt BSM73 µt HG

τ=14

1.301818 49.932010 49.926452 49.926452 0.013334 0.013221 0.013221

1.263529 44.948428 44.930283 44.930283 0.014065 0.013656 0.013656

1.227429 39.986062 39.934115 39.934115 0.015519 0.014200 0.014200

1.193333 35.069960 34.937947 34.937947 0.021703 0.017857 0.017857

1.161081 30.242930 29.941779 29.941779 0.031302 0.021033 0.021033

1.145600 27.881925 27.443695 27.443695 0.036503 0.020212 0.020212

1.130526 25.568711 24.945611 24.945611 0.050050 0.024460 0.024460

1.115844 23.314217 22.447527 22.447527 0.065793 0.026173 0.026173

1.101538 21.130074 19.949443 19.949443 0.080822 0.020432 0.020432

1.087595 19.028200 17.451359 17.487074 0.116023 0.023540 0.025635

1.074000 17.020306 14.953275 15.155055 0.159816 0.018962 0.032712

1.060741 15.117381 12.455191 12.976803 0.229055 0.012617 0.055025

1.047805 13.329179 9.957106 10.964868 0.322995 -0.011702 0.088324

1.035181 11.663765 7.459022 9.091519 0.457971 -0.067622 0.136440

1.022857 10.127140 4.960938 7.433926 0.667019 -0.183385 0.223692

1.010824 8.722995 2.462854 5.987917 0.982499 -0.440260 0.360890

0.999070 7.452583 0.000000 4.684785 1.443470 -1.000000 0.535995

0.987586 6.314746 0.000000 3.536940 2.133869 -1.000000 0.755305

E=∑
k
t=1 µ2

t 8.469518 2.236675 1.072662
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Table 5. Call option prices and error criterion of the three models when τ=63 days

S/K Price MG Price BSM73 Price HG µt MG µt BSM73 µt HG

τ=63

1.790000 95.219483 95.213287 95.213287 0.006815 0.006749 0.006749

1.718400 90.244449 90.230507 90.230507 0.007193 0.007037 0.007037

1.652308 85.276915 85.247727 85.247727 0.007406 0.007061 0.007061

1.591111 80.322227 80.264948 80.264948 0.008440 0.007721 0.007721

1.534286 75.388215 75.282168 75.282168 0.009551 0.008131 0.008131

1.481379 70.485678 70.299388 70.299388 0.010910 0.008238 0.008238

1.432000 65.628676 65.316608 65.316608 0.012788 0.007972 0.007972

1.385806 60.834579 60.333829 60.333829 0.016026 0.007663 0.007663

1.342500 56.123789 55.351049 55.351049 0.022291 0.008216 0.008216

1.301818 51.519160 50.368269 50.368269 0.030383 0.007365 0.007365

1.263529 47.045117 45.385489 45.385489 0.040821 0.004104 0.004104

1.227429 42.726581 40.402710 40.402710 0.061530 0.003794 0.003794

1.193333 38.587790 35.419930 35.421595 0.084688 -0.004359 -0.004312

1.161081 34.651130 30.437150 30.533763 0.124124 -0.012582 -0.009448

1.130526 30.936087 25.454371 25.907062 0.175160 -0.033072 -0.015876

1.101538 27.458394 20.471591 21.655929 0.248109 -0.069473 -0.015640

1.074000 24.229451 15.488811 17.796766 0.349830 -0.137114 -0.008537

1.047805 21.256018 10.506031 14.366766 0.494272 -0.261439 0.009966

1.022857 18.540184 5.523252 11.303723 0.700934 -0.493280 0.037039

0.999070 16.079595 0.540472 8.618925 0.997465 -0.932861 0.070674

0.976364 13.867871 0.000000 6.372287 1.411804 -1.000000 0.108224

0.954667 11.895173 0.000000 4.475540 1.992496 -1.000000 0.125922

E=∑
k
t=1 µ2

t 7.938708 3.207416 0.035326



42

Table 6. Call option prices and error criterion of the three models when τ=126 days

S/K Price MG Price BSM73 Price HG µt MG µt BSM73 µt HG

τ=126

2.261053 120.461623 120.453244 120.453244 0.005313 0.005243 0.005243

2.148000 115.504953 115.487625 115.487625 0.005484 0.005333 0.005333

2.045714 110.555524 110.522006 110.522006 0.005965 0.005660 0.005660

1.952727 105.617519 105.556387 105.556387 0.006360 0.005778 0.005778

1.867826 100.696603 100.590769 100.590769 0.006714 0.005656 0.005656

1.790000 95.800081 95.625150 95.625150 0.007626 0.005786 0.005786

1.718400 90.936956 90.659531 90.659531 0.009009 0.005931 0.005931

1.652308 86.117874 85.693912 85.693912 0.010477 0.005502 0.005502

1.591111 81.354961 80.728294 80.728294 0.012192 0.004396 0.004396

1.534286 76.661549 75.762675 75.762675 0.014713 0.002815 0.002815

1.481379 72.051820 70.797056 70.797056 0.014814 -0.002858 -0.002858

1.432000 67.540391 65.831437 65.831437 0.028403 0.002382 0.002382

1.385806 63.141870 60.865819 60.865819 0.027115 -0.009909 -0.009909

1.342500 58.870408 55.900200 55.900200 0.051257 -0.001782 -0.001782

1.301818 54.739291 50.934581 50.934581 0.063415 -0.010499 -0.010499

1.263529 50.760569 45.968962 45.968962 0.088115 -0.014599 -0.014599

1.227429 46.944759 41.003344 41.003344 0.123080 -0.019059 -0.019059

1.193333 43.300619 36.037725 36.061595 0.143251 -0.048509 -0.047879

1.161081 39.835005 31.072106 31.205995 0.191773 -0.070393 -0.066388

1.130526 36.552798 26.106487 26.637385 0.229699 -0.121733 -0.103873

1.101538 33.456908 21.140869 22.266040 0.300560 -0.178198 -0.134459

1.074000 30.548336 16.175250 18.212720 0.372959 -0.273022 -0.181451

1.047805 27.826286 11.209631 14.586599 0.464541 -0.410019 -0.232284

1.022857 25.288316 6.244012 11.409820 0.590460 -0.607295 -0.282401

0.999070 22.930523 1.278394 8.664141 0.733877 -0.903335 -0.344866

0.976364 20.747736 0.000000 6.362924 0.912234 -1.000000 -0.413555

0.954667 18.733724 0.000000 4.495019 1.122802 -1.000000 -0.490649

0.933913 16.881398 0.000000 3.028948 1.428978 -1.000000 -0.564180

E=∑
k
t=1 µ2

t 5.609460 4.482441 1.052278
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Using the error criterion from the above tables, it is easy to observe that GARCH-H(1,1)
model outperforms GARCH-M(1,1) and BSM73 at di�erent S

K and di�erent maturities.
BSM73 is commonly known to under-price out of the money options. The above results
shows that the GARCH-H(1,1) model significantly outperforms the BSM73 in-the-money
and out-of-the money. Further to confirm on the models’ performance, we use root mean
square error and mean absolute error as shown in the following tables.

Table 7. Root Mean Squared Error (RMSE) of the call options

τ GARCH-M BSM73 GARCH-H

14 0.8277008 2.259593 0.8216258

63 2.055431 4.045267 1.901062

126 3.717032 5.437031 2.966974

Table 8. Root Mean Squared Error (RMSE) of the put options

τ GARCH-M BSM73 GARCH-H

14 1.221131 1.783126 1.188731

63 2.599729 3.481463 2.298423

126 4.36859 4.6987 4.361075

Table 9. Mean Absolute Error (MAE) of the call options

τ GARCH-M BSM73 GARCH-H

14 0.5232432 1.757394 0.5215843

63 1.122546 3.068789 1.07557

126 2.161218 4.244515 1.871367

Table 10. Mean Absolute Error (MAE) of the put options

τ GARCH-M BSM73 GARCH-H

14 0.9215652 1.30572 0.9105411

63 1.854336 2.453804 1.739143

126 2.940007 3.387053 2.937426

The two measures clearly shows that GARCH-H(1,1) model performs significantly well
in pricing call options and put options in comparison with BSM73 and GARCH-M(1,1)
model.
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4.8.2 Impacts of Decomposing Returns Using E-E-M-D on Option Prices

In addition to the analysis shown above, we will further show the significance of decom-
posing returns. A�er decomposition, the original signal is divided into low frequency
term, high frequency term and the trend term. The three parts represents important in-
formation of the original signal.
We consider GARCH-LH(1,1) by considering 3.6.4 in 3.6.5, and GARCH-TH(1,1) by con-
sidering 3.6.6 in 3.6.7. We now use the two models to price options and compare them
with the GARCH-H(1,1) to show how they perform.

Table 11. Call option prices and error criterion of the three hybrid GARCH(1,1) models when
τ=14 days

S/K Price HG Price LHG Price THG µtHG µt LHG µt THG

τ=14

1.301818 49.926452 49.926452 49.926452 0.013221 0.013221 0.013221

1.263529 44.930283 44.930283 44.930283 0.013656 0.013656 0.013656

1.227429 39.934115 39.934115 39.934115 0.014200 0.014200 0.014200

1.193333 34.937947 34.937947 34.937947 0.017857 0.017857 0.017857

1.161081 29.941779 29.941779 29.941779 0.021033 0.021033 0.021033

1.145600 27.443695 27.443695 27.443695 0.020212 0.020212 0.020212

1.130526 24.945611 24.945611 24.945611 0.024460 0.024460 0.024460

1.115844 22.447527 22.447527 22.447527 0.026173 0.026173 0.026173

1.101538 19.949443 19.949443 19.949443 0.020432 0.020432 0.020432

1.087595 17.487074 17.451359 17.451359 0.025635 0.023540 0.023540

1.074000 15.155055 14.953275 14.953275 0.032712 0.018962 0.018962

1.060741 12.976803 12.504386 12.455191 0.055025 0.016617 0.012617

1.047805 10.964868 10.253738 9.957106 0.088324 0.017741 -0.011702

1.035181 9.091519 8.201819 7.459022 0.136440 0.025227 -0.067622

1.022857 7.433926 6.362231 4.960938 0.223692 0.047281 -0.183385

1.010824 5.987917 4.815913 2.711443 0.360890 0.094526 -0.383763

0.999070 4.684785 3.491927 1.146608 0.535995 0.144894 -0.624063

0.987586 3.536940 2.347942 0.256966 0.755305 0.165232 -0.872473

E=∑
k
t=1 µ2

t 1.072662 0.065041 1.340785
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Table 12. Call option prices and error criterion of the three hybrid GARCH(1,1) models when
τ=63 days

S/K Price HG Price LHG Price THG µtHG µt LHG µt THG

τ=63

1.790000 95.213287 95.213287 95.213287 0.006749 0.006749 0.006749

1.718400 90.230507 90.230507 90.230507 0.007037 0.007037 0.007037

1.652308 85.247727 85.247727 85.247727 0.007061 0.007061 0.007061

1.591111 80.264948 80.264948 80.264948 0.007721 0.007721 0.007721

1.534286 75.282168 75.282168 75.282168 0.008131 0.008131 0.008131

1.481379 70.299388 70.299388 70.299388 0.008238 0.008238 0.008238

1.432000 65.316608 65.316608 65.316608 0.007972 0.007972 0.007972

1.385806 60.333829 60.333829 60.333829 0.007663 0.007663 0.007663

1.342500 55.351049 55.351049 55.351049 0.008216 0.008216 0.008216

1.301818 50.368269 50.368269 50.368269 0.007365 0.007365 0.007365

1.263529 45.385489 45.385489 45.385489 0.004104 0.004104 0.004104

1.227429 40.402710 40.402710 40.402710 0.003794 0.003794 0.003794

1.193333 35.421595 35.419930 35.419930 -0.004312 -0.004359 -0.004359

1.161081 30.533763 30.437150 30.437150 -0.009448 -0.012582 -0.012582

1.130526 25.907062 25.454371 25.454371 -0.015876 -0.033072 -0.033072

1.101538 21.655929 20.636238 20.471591 -0.015640 -0.061989 -0.069473

1.074000 17.796766 16.304500 15.488811 -0.008537 -0.091671 -0.137114

1.047805 14.366766 12.534704 10.506031 0.009966 -0.118826 -0.261439

1.022857 11.303723 9.278803 5.758802 0.037039 -0.148734 -0.471670

0.999070 8.618925 6.518243 2.354974 0.070674 -0.190280 -0.707457

0.976364 6.372287 4.282097 0.447780 0.108224 -0.255288 -0.922125

0.954667 4.475540 2.506094 0.000000 0.125922 -0.369536 -1.000000

E=∑
k
t=1 µ2

t 0.035326 0.288308 2.667144



46

Table 13. Call option prices and error criterion of the three hybrid GARCH(1,1) models when
τ=63 days

S/K Price HG Price LHG Price THG µtHG µt LHG µt THG

τ=126

2.261053 120.453244 120.453244 120.453244 0.005243 0.005243 0.005243

2.148000 115.487625 115.487625 115.487625 0.005333 0.005333 0.005333

2.045714 110.522006 110.522006 110.522006 0.005660 0.005660 0.005660

1.952727 105.556387 105.556387 105.556387 0.005778 0.005778 0.005778

1.867826 100.590769 100.590769 100.590769 0.005656 0.005656 0.005656

1.790000 95.625150 95.625150 95.625150 0.005786 0.005786 0.005786

1.718400 90.659531 90.659531 90.659531 0.005931 0.005931 0.005931

1.652308 85.693912 85.693912 85.693912 0.005502 0.005502 0.005502

1.591111 80.728294 80.728294 80.728294 0.004396 0.004396 0.004396

1.534286 75.762675 75.762675 75.762675 0.002815 0.002815 0.002815

1.481379 70.797056 70.797056 70.797056 -0.002858 -0.002858 -0.002858

1.432000 65.831437 65.831437 65.831437 0.002382 0.002382 0.002382

1.385806 60.865819 60.865819 60.865819 -0.009909 -0.009909 -0.009909

1.342500 55.900200 55.900200 55.900200 -0.001782 -0.001782 -0.001782

1.301818 50.934581 50.934581 50.934581 -0.010499 -0.010499 -0.010499

1.263529 45.968962 45.968962 45.968962 -0.014599 -0.014599 -0.014599

1.227429 41.003344 41.003344 41.003344 -0.019059 -0.019059 -0.019059

1.193333 36.061595 36.037725 36.037725 -0.047879 -0.048509 -0.048509

1.161081 31.205995 31.072106 31.072106 -0.066388 -0.070393 -0.070393

1.130526 26.637385 26.106487 26.106487 -0.103873 -0.121733 -0.121733

1.101538 22.266040 21.140869 21.140869 -0.134459 -0.178198 -0.178198

1.074000 18.212720 16.425408 16.175250 -0.181451 -0.261779 -0.273022

1.047805 14.586599 12.336075 11.209631 -0.232284 -0.350733 -0.410019

1.022857 11.409820 8.856494 6.260879 -0.282401 -0.442988 -0.606234

0.999070 8.664141 5.971378 2.456167 -0.344866 -0.548478 -0.814279

0.976364 6.362924 3.668657 0.419761 -0.413555 -0.661875 -0.961312

0.954667 4.495019 1.934352 0.000000 -0.490649 -0.780810 -1.000000

0.933913 3.028948 0.755969 0.000000 -0.564180 -0.891227 -1.000000

E=∑
k
t=1 µ2

t 1.052278 2.585600 4.252311
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Figures 11, 12 and 13 shows that GARCH-H(1,1) outperforms both GARCH-LH(1,1)GARCH-
TH(1,1). It is an indication of the importance of the long run factors on option pricing.
However GARCH-LH(1,1) performs be�er than GARCH-TH(1,1) since it characterizes the
actual trend of the returns.

Figure 31. TH-GARCH and Market Option Prices when τ=14 days
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Figure 32. TH-GARCH and Market Option Prices when τ=63 days

Figure 33. TH-GARCH and Market Option Prices when τ=126 days
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Figure 34. GARCH-LH and Market Option Prices when τ=14 days

Figure 35. GARCH-LH and Market Option Prices when τ=63 days
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Figure 36. GARCH-LH and Market Option Prices when τ=126 days

The high frequency term characterizes impacts from short term factors such as supply
and demand, inflation, policy changes, risk changes, and some emergencies. The e�ects
of such short term factors does not last for long. Low frequency term characterizes long
run factors such as economic cycles and government policies. Impacts of long run factors
have extensive e�ects on the option price volatility. From the above figures, we can easily
spot great improvement in option pricing by the GARCH-H(1,1) model. GARCH-H(1,1)
significantly performs be�er than the other models. To further confirm the significance of
decomposing returns in option pricing, we compare the MAE and RMSE of all the models
to show which model performs best.

τ BSM73 GARCH-M H-GARCH TH-GARCH GARCH-LH

14 2.259593 0.8277008 0.8216258 0.6894592 0.3397197

63 4.045267 2.055431 1.901062 1.859914 0.8136603

126 5.437031 3.717032 2.966974 3.620803 2.949902

Table 14. Root Mean Squared Error (RMSE) of the call options
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τ BSM73 GARCH-M H-GARCH TH-GARCH GARCH-LH

14 1.783126 1.221131 1.188731 1.17703 0.6455975

63 3.481463 2.599729 2.298423 2.543351 1.560794

126 4.6987 4.36859 4.361075 4.349598 3.66952

Table 15. Root Mean Squared Error (RMSE) of the put options

τ BSM73 GARCH-M H-GARCH TH-GARCH GARCH-LH

14 1.757394 0.5232432 0.5215843 0.4773498 0.2678409

63 3.068789 1.122546 1.07557 1.061623 0.6055375

126 4.244515 2.161218 1.871367 2.129563 1.863873

Table 16. Mean Absolute Error (MAE) of the call options

τ BSM73 GARCH-M H-GARCH TH-GARCH GARCH-LH

14 1.30572 0.9215652 0.9105411 0.9063041 0.5515168

63 2.453804 1.854336 1.739143 1.835921 1.337328

126 3.387053 2.940007 2.937426 2.93344 2.642662

Table 17. Mean Absolute Error (MAE) of the put options

From the above tables, GARCH-H(1,1) performs best, this manifest the significance of
the low frequency and trend terms. GARCH-H(1,1) model with low frequency and trend
terms gives the best approximations of the real option prices. From all the above analy-
ses, decomposition using ensemble empirical mode decomposition is, indeed e�ective in
obtaining accurate option prices. Time to maturity impacts on precision of option pricing.
The error when τ=14 days is relatively lower that when τ=63 days and τ=126 days.
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5 Conclusion

Previous studies have focused on the stochastic processes such as Levy processes,geometric
Brownian motion and jump-di�usion processes. However, the features of underlying as-
sets tend to vary due to various factors such as, time to maturity, economic cycles, some
emergencies, monetary policies and other factors. Therefore the characteristics of the
underlying assets series cannot entirely be described by the above processes from pre-
vious studies. Consequently, we decompose daily returns using E-E-M-D to obtain high
frequency term, low frequency term and the trend term. Based on these terms, we con-
struct our hybrid GARCH(1,1) option pricing model with the low frequency term and the
trend term excess returns as the major components. In correspondence with our anal-
yses, we realize that the proposed GARCH-H(1,1) model significantly performs be�er
than BSM73 and GARCH-M(1,1). In addition, we find the impact of decomposition using
E-E-M-D since GARCH-H(1,1) model with low frequency term outperforms the GARCH-
H(1,1) with the excess returns of the trend term. Moreover, time to maturity of options
greatly a�ects the accuracy of estimated option prices. From our empirical analysis, it’s
evident that the proposed GARCH-H(1,1) gives more accurate approximation of option
prices.

5.1 Future Research

We will a�empt to consider other volatility aspects and apply additional GARCH-type
models in European option pricing. i
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Appendices

Black Scholes
BSM<-function(Sigma,r,St,K,T){
R=r*0.01/252
d1<-(1/(Sigma*sqrt(T)))*(log(St/K)+(R+0.5*Sigma^2)*T)
d2<-d1-Sigma*sqrt(T)
ct<-St*pnorm(d1)-exp(-R*T)*K*pnorm(d2)
pt=(-St*pnorm(-d1)+exp(-R*T)*K*pnorm(-d2))
price<-cbind(ct,pt)
return(price)

}
####################### 14 DAYS ################
BSM14<-BSM(SIGMA,1.38,214.8,K14,14)
BSM14
ct14<-BSM14[,1]
pt14<-BSM14[,2]

##################### 63 DAYS ##################
BSM63<-BSM(SIGMA,1.38,214.8,K63,63)
BSM63
ct63<-BSM63[,1]
pt63<-BSM63[,2]

##################### 126 DAYS ##################
BSM126<-BSM(SIGMA,1.38,214.8,K126,126)
BSM126
ct126<-BSM126[,1]
pt126<-BSM126[,2]
##################################################

GARCH-M(1,1)
duan95<-function(FB,r,S_0,strikes,days){
R<-0.01*r/252
retns<-diff(log(FB[,2]))
retns
garchm = ugarchspec(mean.model=list(armaOrder=c(0,0),
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archm=T,archpow=1),
variance.model=list(garchOrder=c(1,1)),distribution.model = "std")

model1 = ugarchfit(garchm, data=retns)
model1
garchFit
coef(model1)
model1@fit$coef
resd1=model1@fit$residuals
resd1
sigma.1=model1@fit$sigma
sigma.1
gretns<-resd1/sigma.1
gretns
ArchTest(resd1)
om=model1@fit$coef[3]
om
elph=model1@fit$coef[4]
elph
bita=model1@fit$coef[5]
bita
lambda<-.01*sqrt((1-elph-bita)/elph)
lambda
elph+bita
NN<-50000
KK<-(1+days)
rz<-rnorm(KK)
RZ<-matrix(rz,nrow=(1+days),ncol=NN)
SGM<-matrix(0,nrow=(1+days),ncol=NN)
ST<-seq(0,0,length=NN)
CT<-seq(0,0,length=NN)
CT_t1<-matrix(0,nrow=(length(strikes)),ncol=NN)
MC_cec<-seq(0,0,length(strikes))
###################################################################
varQ<-om/(1-elph-bita)
###################################################################
SGM[1,]<-varQ
for(j in 2:(days+1)){
SGM[j,]<-om+elph*(SGM[(j-1),]*RZ[j-1,])^2+bita*SGM[(j-1),]}
r_D<-(r*0.01)/252
YT<-r_D+(sqrt(SGM)*RZ)-0.5*SGM+lambda*sqrt(SGM)
for(k in 1:NN){ST[k]<-S_0*exp(sum(YT[,k]))}
ST_tilta<-exp(days*r_D)*S_0*ST/(mean(ST))
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for(jj in 1:length(strikes)){
for(f in 1:NN){CT_t1[jj,f]<-exp(-days*r_D)*(max(0,(ST_tilta[f]-strikes[jj])))}

}
##########################################################################

for(jk in 1:length(strikes)){ MC_cec[jk]<-mean(CT_t1[jk,]) }
#list(MC_ec=MC_ec,MC_cec=MC_cec)
return(MC_cec)

}
Gcall14<-duan95(FB,r=1.38,S_0=214.8,strikes=K14,days=14)
Gcall14
Gcall63<-duan95(FB,r=1.38,S_0=214.8,strikes=K63,days=63)
Gcall63
Gcall126<-duan95(FB,r=1.38,S_0=214.8,strikes=K126,days=126)
Gcall126

Ensemble Empirical Mode decomposition
IMF <- eemd(returns, num_siftings = 10, ensemble_size = 50, threads = 1)
plot(IMF,main="Decomposition of Returns\nUsing EEMD",cex.main=1)
plot(IMF[,1],ylab="IMF1")
plot(IMF[,2],ylab="IMF2")
plot(IMF[,3],ylab="IMF3")
plot(IMF[,4],ylab="IMF4")
plot(IMF[,5],ylab="IMF5")
plot(IMF[,6],ylab="IMF6")
plot(IMF[,7],ylab="IMF7")
plot(IMF[,8],ylab="IMF8")
plot(IMF[,9],ylab="IMF9")
plot(IMF[,10],ylab="Residual")
high=rowSums(IMF[, 1:7])
low=rowSums(IMF[, 8:9])
ct=IMF[,10]-0.0138
ct
# High frequencies
ts.plot(rowSums(IMF[, 1:7]),ylab="")
# Low frequencies
ts.plot(rowSums(IMF[, 8:ncol(IMF)]),ylab="")

GARCH-H(1,1)
du95<-function(FB,r,S_0,strikes,days){
library(Rlibeemd)
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R<-0.01*r/252
retns<-diff(log(FB[,2]))
gspec.ru <- ugarchspec(mean.model=list(
armaOrder=c(0,0)), distribution="std")

gfit <- ugarchfit(gspec.ru, retns)
gfit
gfit@fit$coef
om=gfit@fit$coef[2]
om
elph=gfit@fit$coef[3]
elph
bita=gfit@fit$coef[4]
bita
lambda<-.01*sqrt((1-elph-bita)/elph)
lambda
##########################################################################################
IMF <- eemd(retns, num_siftings = 10, ensemble_size = 50, threads = 1)
high=rowSums(IMF[, 1:7])
low=rowSums(IMF[, 8:9])
low
ct=IMF[,10]-0.0138
ct
lw=low[100:length(1+days)]
ctl=ct[100:length(1+days)]
mean(retns)
a1=mean(low-0.0138)*100
a2=mean(ct-0.0138)*100
#############################################################
NN<-50000
KK<-(1+days)
rz<-rnorm(KK)
RZ<-matrix(rz,nrow=(1+days),ncol=NN)
SGM<-matrix(0,nrow=(1+days),ncol=NN)
ST<-seq(0,0,length=NN)
CT<-seq(0,0,length=NN)
CT_t1<-matrix(0,nrow=(length(strikes)),ncol=NN)
MC_cec<-seq(0,0,length(strikes))
varQ<-om/(1-elph-bita)
###############################################################
SGM[1,]<-varQ
for(j in 2:(days+1)){
SGM[j,]<-om+elph*(SGM[(j-1),]*RZ[j-1,])^2+bita*SGM[(j-1),]}
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r_D<-(r*0.01)/252
YT<-r_D+(sqrt(SGM)*RZ)-0.5*SGM+lambda*sqrt(SGM)+a1*lw+a2*ctl
for(k in 1:NN){ST[k]<-S_0*exp(sum(YT[,k]))}
ST_tilta<-exp(days*r_D)*S_0*ST/(mean(ST))
for(jj in 1:length(strikes)){
for(f in 1:NN){CT_t1[jj,f]<-exp(-days*r_D)*(max(0,(ST_tilta[f]-strikes[jj])))}

}

for(jk in 1:length(strikes)){ MC_cec[jk]<-mean(CT_t1[jk,]) }
#list(MC_ec=MC_ec,MC_cec=MC_cec)
return(MC_cec)

}
GGcall14<-du95(FB,r=1.38,S_0=214.8,strikes=K14,days=14)
GGcall14
GGcall63<-du95(FB,r=1.38,S_0=214.8,strikes=K63,days=63)
GGcall63
GGcall126<-du95(FB,r=1.38,S_0=214.8,strikes=K126,days=126)
GGcall126
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