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Abstract

The purpose of this thesis is to model and forecast value-at-risk based on range-measuring

rather than the commonly acknowledged volatility models that are based on closing prices.

The use of close-to-close prices in modelling and forecasting value-at-risk might not cap-

ture important intra-day information about the price movement. As a result, crucial price

movement information is lost and consequently the model becomes less e�cient. This

thesis recommends the inclusion or range-measuring, described as the di�erence between

the highest and lowest prices of an underlying stock within a time interval, a day, to com-

pute Value-at-Risk. The project uses data of an NSE-listed and trading company, SASN,

between November 2009 and November 2019 on which the predictability of range-based

and close-to-close estimates was established. It was observed that the values obtained

by range-based models were more accurate than when only the daily closing prices are

used. The range-based models successfully capture dynamics of the volatility and achieves

improve performance relative to the GARCH-type models. These �ndings are fairly con-

sistent and can be extended to applications like portfolio optimization.

Master Thesis in Mathematics at the University of Nairobi, Kenya.
ISSN 2410-1397: Research Report in Mathematics
©FRANCIS MAKORI NYAMACHE, 2020
DISTRIBUTOR: School of Mathematics, University of Nairobi, Kenya





iv

Declaration and Approval

I the undersigned declare that this dissertation is my original work and to the best of my

knowledge, it has not been submitted in support of an award of a degree in any other

university or institution of learning.

Signature Date

Francis M. Nyamache

Reg No. I56/12745/2018

In my capacity as a supervisor of the candidate’s dissertation, I certify that this dissertation

has my approval for submission.

Signature Date

Prof. Philip Ngare

School of Mathematics,

University of Nairobi,

Box 30197, 00100 Nairobi, Kenya.

E-mail: pngare@uonbi.ac.ke



Acknowledgment
My deepest gratitude to God for giving me strength, courage, knowledge, and wisdom
to be able to get all that was needed for the completion of this program. He provided me
with all that I needed through supportive parents, mentors and friends. Completing the
Masters program has been my greatest achievement towards achieving my professional
career. I greatly appreciate my supervisor Prof. Philip Ngare, whose contribution
and constructive criticism helped me put more effort to make this work original. My
utmost regard goes to my parents who with great care, thoroughness and with sacrifice
laid a foundation for my education. I am and will forever be grateful to my beginning
teachers, mentors, and friends who encouraged and supported my journey this far, and
made this achievement possible.

USER
Typewritten text
v



Table of Contents

1 Introduction 1

1.1 Background of the Study . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Justification of the Study . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Statement of the Problem . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Hypothesis of the Study . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Objectives of the study . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.6 Significance of the Study . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Literature Review 7

3 Methodology 12

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 GARCH and TARCH Models) . . . . . . . . . . . . . . . . . . . . . 13

3.3 Range-Based Volatility . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4 Evaluating the Volatility Forecast . . . . . . . . . . . . . . . . . . . . 16

3.5 Estimating and Validating Value-at-Risk . . . . . . . . . . . . . . . . 17

Acknowledgement v

Table of Contents vi

List of Tables                                                                                                    viii

List of Figures ix

Declaration                                                                                                       iv

List of Abbreviations and Acronyms xi

Abstract                                                                                                          ii

USER
Typewritten text
vi



4 Data Analysis and Results 21

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Descriptive Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3 MSE and QLIKE Loss Functions . . . . . . . . . . . . . . . . . . . . 27

4.4 Diebold-Mariano Test . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.5 Interpretation of Results . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Conclusions and Recommendations 33

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.3 Room for Further Research . . . . . . . . . . . . . . . . . . . . . . . 34

References 35

Appendices 38

USER
Typewritten text
vii



List of Tables

1.1 NSE-listed Company Data . . . . . . . . . . . . . . . . . . . . . . . 3

4.1 Descriptive Statistics SASN returns & Volatility . . . . . . . . . . . . 21

4.2 The Table details return and range-based volatility model estimates for
SASINI, 2009-2019 . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 At 5 % significance level. MSE & QLIKE assessment for volatility
forecasting, ranked from best-performing to least . . . . . . . . . . . 27

4.4 At 5% significance level. Diebold-Mariano Test for volatility forecasting 28

4.5 The Table details the Violation rate, ASMF, unconditional and condi-
tional Likelihood ratio test . . . . . . . . . . . . . . . . . . . . . . . 28

USER
Typewritten text
viii



List of Figures

4.2.1 The time series plot above shows clustering characteristics of returns.
High in certain periods and low in certain periods, evolving over the
period under study exhibiting a continuous manner and hence volatil-
ity. Use of log returns will help achieve stationarity. . . . . . . . . . . 22

4.2.2 Ljung-Box Q Statistics ACF range series . . . . . . . . . . . . . . . . 23

4.2.3 SASN Range Series Returns . . . . . . . . . . . . . . . . . . . . . . 24

4.2.4 SASN Daily Series Returns . . . . . . . . . . . . . . . . . . . . . . . 24

4.2.5 SASN Close-to-Close Volatility Series Returns . . . . . . . . . . . . 25

4.2.6 SASN Garman Klass Volatility Series . . . . . . . . . . . . . . . . . 25

4.4.1 Actual & Forecasted Volatility Plot, RGARCH Model . . . . . . . . . 29

4.4.2 RGARCH Model fitting plots. Different gaphs we obtained for 4-years
ahead forecasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4.3 Comparison of 1-step-ahead volatility forecasts for the competing models 30

4.4.4 CARR Model, 1-step-ahead forecasts . . . . . . . . . . . . . . . . . 30

4.4.5 RGARCH Model, 1-step-ahead forecasts . . . . . . . . . . . . . . . . 31

USER
Typewritten text
ix



List of Abbreviations and Acronyms

AIC Akaike Information Criterion

ASMF Average Square Magnitude function

BIC Bayes Information Criterion

CARR Conditional Autoregressive Range

CDF Cumulative distribution function

DCF Conditional Density Function

KCB Kenya Commercial Bank

GARCH Generalized Autoregressive Conditional Heteroscedasticity

ME Mean Error

MSE Mean-Square Error

NSENairobi Stock Exchange

RGARCH Range Generalized Autoregressive Conditional Heteroscedasticity

RTARCH Range Threshold Generalized Autoregressive Conditional Heteroscedastic-
ity

TARCH Threshold Generalized Autoregressive Conditional Heteroscedasticity

QLIKE QLIKE Loss Function

SASN Sasini

VR Violation Ratio

USER
Typewritten text
xi



Chapter 1

Introduction

1.1 Background of the Study

Volatility of assets plays a vital role in finance. As a measure of riskiness, volatility
is key in asset pricing, derivatives pricing, risk management, and portfolio manage-
ment. A good understanding of return volatilities and accurate estimates are valuable
to practitioners in the financial field as well as players in the financial field including
independent investors and traders.

In the recent, a number of banks have collapsed in Kenya as well as retail companies
which have significantly impacted the portfolio stability of investment banks and pri-
vate investors. Poor risk management and lack of proper oversight, regulation, and
assessment of the financial sector have been cited as among the major factors that con-
tributed to the collapse of these banks. Gathaiya [2017] established that CBK had put
more focus on macro-prudential regulation that relates to factors affecting individual
banks while giving less focus on factors affecting stability of the entire financial sec-
tor. Accurate volatility estimates are essential in the stability of financial institutions
especially banks plagued with non-performing loans. For instance, Dubai Bank was
put under receivership because of its deteriorating cash reserve ratio Gathaiya [2017].

Due to such failures of investment banks and financial institutions, the need to model
and forecast volatility more accurately has risen gradually, with the aim that accurate
volatility estimates can help. The need for accurate volatility estimates has also grown
as the financial markets around the world move towards deregulation and globaliza-
tion. This includes entry into financial markets in developing countries and emerging
markets especially by foreign investors who are much interested in the stability of
the financial markets and the entire economy. The input into the global risk manage-
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ment models has therefore continued to grow and the threat of global spillover effects
enlarges due to the use of inaccurate volatility estimates. Volatility quantifies the dis-
persion of returns. However, volatility is time-varying and not easy to predict because
volatility is not observable, and the volatility forecasts are affected by changing esti-
mates of the levels of volatility at the time period.

Kenya as an emerging market has attracted significant attention from investors and
consequently practitioners and researchers in the financial field. Kenya’s stock in-
dices have yielded high returns becoming appealing and decoupling in demand from
investors. However, the returns are not consistent hence the need to establish a volatil-
ity model that is appropriate for the Kenyan stock market. Kenya offers more exciting
long-term investment opportunities which encourages the analysis of stock market data
with the range-based models to establish whether the range-based model provides more
accurate forecasts.

1.1.1 Risk Diversification

Geographic diversification of assets is an important requirement in minimizing risk
exposure in stock portfolios or pension funds chou. The low correlation between the
emerging markets and developed markets have attracted foreign investors to the emerg-
ing markets Sharma et al. [2016]. The classical time series models such as the Gen-
eralized Autoregressive Conditional Heteroscedasticity (GARCH) models, stochastics
volatility models, and the implied volatility measures like realized volatility are com-
monly used in forecasting volatility. GARCH-type models are used to model time-
varying conditional volatility due to their simplicity and easy approach to estimation
ad flexibility in terms of volatility dynamics.

GARCH-type models are developed using data on closing prices, that is, the daily
returns. This way, important information about intraday price movement might be
neglected. For instance, if the closing price of two consecutive days is equal, the
return is be zero. Howver, the changes in prices during the day might be explosive and
the typical GARCH model fails to capture this information. Also, the GARCH-type
models are based on the moving averages with weights that decay gradually hence slow
to adapt the changes in levels of volatility Sharma et al. [2016]. Some studies attempt
to overcome this drawback using intraday GARCH models. A simpler approach to
modeling the intraday variation is the use of price range. Range is defined as the
difference between the highest and lowest prices over a given sampling interval such
as daily or weekly. This paper uses the day-to-day variability Sharma et al. [2016].
The estimates obtained using range apporach are more effective compared to estimates
obtained using the close-to-close return approach.
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1.2 Justification of the Study

Financial institutions including investment banks, individual and corporate investors
rely on volatility estimates to make investment decisions. Knowing the accuracy or
a measure is crucial. For instance, they use Value-at-Risk to estimate the amount of
cash they require to reserve for covering potential losses. While the historical VaR is
extremely simple to calculate and explain even to non-risk professionals, it comes with
its shortcomings. Banks for instance combine portfolio sensitivity to market changes
and probability of a given change in the market to measure market risk. This makes
the need for accurate estimates crucial. Any inaccuracies will imply that the institu-
tion is not reserving sufficiently for potential losses. Currently, there is no study that
has covered range-based volatility and empirically tested using of an NSE-listed and
trading company data. This study attempts to fill up the research gap.

In the recent past, banks in Kenya has been put under receivership. [Gathaiya, 2017],
established that poor risk management and poor financial sector oversight as among
the major reasons contributing collapse of Banks such as Imperial Bank, Dubai Bank,
and Chase Bank. A research is required to establish better and more accurate volatility
measures enabling players in the financial market have a better oversight and improved
risk management strategies. This research, being the first of the kind in Kenya, will set
a foundation for further research and give it the required attention.

Hence, evaluation of volatility using NSE-trading company data could provide an out-
look of how the Indices and entire economy is performing. It will give an insight into
further research and application of the volatility approach recommended in this paper
to the entire market.

Table 1.1 shows details of the selected company, category as listed in the NSE, and the
stock ticker:

No. Company Names and Stock Ticker Category
1. Sasini Ltd (SASN) Agricultural

Table 1.1: NSE-listed Company Data

1.3 Statement of the Problem

Accurate volatility estimates are vital in financial applications such as portfolio opti-
mization, derivatives and options pricing. The historical volatility estimators that are
commonly used are less accurate. While other markets, developed economies, have
tested range-based models and forecasting on the stock prices, there is little research
on the same in emerging markets. The widely used and well-established return-based
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volatility measured used in time series analysis such as development of GARCH-type
models suffer inefficiency. The first challenge with historical models arises from the
fact that volatility is not directly observable hence need to address the problem of
volatility measurement.

Based on the price returns over several days, we obtain volatility of the stock returns
which is typically defined as the squared returns or standard deviation of the returns.
This approach only helps obtain the average volatility over the sampled time period
hence not sufficient since the volatility changes on daily basis. If close-to-close prices
are used to estimate volatility on daily basis, the estimate is referred to as the squared
daily return. Squared daily return is noisy. Since it is the only that we have, it is com-
monly used in models such as GARCH-type in which the squared returns are used and
processed by applying the moving average. If there is a high frequency of intraday data
for whole price process for the day, it is possible to estimate daily volatility. For most
financial data, the highest and lowest daily prices are available. Range-based volatil-
ity estimation seeks to address the shortcomings of the squared return and standard
deviation approaches to estimating volatility.

The growing need for accurate volatility estimators, need for application on empirical
data in emerging markets such as Kenya motivated the evaluation whether range pro-
vides additional information to the volatility process helpful in improving forecasting
compared to the GARCH-type approaches. One benefit of utilizing the range approach
is that the financial assets contain useful information about the movement of prices
within a given time period whereas the use of squared return only include the closing
prices. This is an important feature especially when the market experiences large price
swings Chou and Wang [2014]. The interest to study the application of range-based
approach to volatility forecasting has grown tremendously in finance literature in de-
veloped markets. However, the areas has not be widely explored in emerging markets.
The linkages in markets may change due to a financial crisis and volatility is viewed
as a vital channel for the changes. Because of market linkages, financial crises signif-
icantly spread and impact financial economies on a global scale. We use the range-
based volatility model introduced by Chou and Wang [2014] to evaluate changes in
volatility dependence structure.

1.4 Hypothesis of the Study

Return based volatility estimation uses the open, close and adjusted close prices to
calculate returns while range-based volatility approach uses the difference between
highest and lowest stock prices. The open close price can be very low and the open
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price in the next trading day be high due to market conditions. However, if in the
previous trading day there was a price slump during the day, then there might be market
players who are significantly impacted if they transacted when the price was at a the
lowest.

This study hypothesizes that range-based volatility approach can guard the market
players from such price slumps. Another null hypothesis is that range-based volatility
approach gives a better estimate of volatility compared to return-based VaR approach.
It is also hypothesized that range provides additional intraday information about the
movements of stock prices during the day.

1.5 Objectives of the study

Majority of past research studies have focused on return-based volatility estimators
evident from their wide application in the finance and investment field. For research
studies involving range-based volatility approach, the researchers have focused on de-
veloped markets such as Europe and America. Although emergent markets such as
Kenya present exciting long-term investment opportunities, there is no research that
has empirically tested the Kenyan stock market using the range-based volatility esti-
mators.

1.5.1 General Objective

The general objective of this study is to test the range-based volatility estimation using
data of a company listed and trading at the NSE.

1.5.2 Specific Objectives

The Specific objectives of this study are:

1. To test the accuracy of range-based volatility model in the Kenyan market by
establishing whether the approach provides additional information.

2. To assess which among the range-based models, RGARCH and CARR is better
than the other.

1.6 Significance of the Study

This study uses data from the Kenyan stock market to assess the accuracy of range-
based volatility models. An accurate measure of volatility will be significant to the
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different stakeholders in the financial sector including savings and investment banks
and institutions, traders in the stock market, and individual investors. The findings
of the study will not only be applicable to the stock exchange but also in the entire
financial sector benefiting corporations as well as individuals.

With this study, practitioners in the financial sector can blend its concepts and find-
ing with technology to further financial technology such as development of virtual
investment advisors. The findings of the study will benefit practitioners in the financial
sector. Banks and financial institutions will use the findings to develop improved risk
management strategies. With more accurate value at risk estimates, financial institu-
tions such as banks will be able to allocate sufficient capital for reserves to cover for
potential losses.
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Chapter 2

Literature Review

It is conventional that asset returns take a normal distribution. However, carrying out
a joint multivariate distribution test gives misleading conclusion about the dependence
of assets. Because of the variations in behavior of assets returns during different peri-
ods than normal periods, proper asset allocation and even hedging may not be enough
to protect asset returns against unexpected losses Li and Hong [2011]. Various re-
searchers have studies extreme risks using different return-based volatility models for
the stock market while little research exists for range-based models in emerging mar-
kets such as Kenya. Various research studies in range-based volatility models have
shown better performance than return-based models. Parkinson (1980) in his research
on measurement of errors in return-based volatility estimates established that the errors
were higher and hence yielded to inefficiency of the model. These findings supported
the desire to investigate whether range provides additional information on price move-
ments and how it can be applied in the Kenyan market. In another research conducted
by Brandt and Jones [2002] to investigate ranged-based volatility approach to measur-
ing volatility using stochastic models reported improved efficiency and robustness to
market microstructure noise.

Andersen et al. [2003] conducted a research on modeling and forecasting realized
volatility using high-frequency intraday data. The researchers developed links between
realized volatility and conditional variance with the aim of establishing whether the
models could predict volatility with higher accuracy and hence helpful in the currency
exchange market. By treating volatility as observed rather than latent, the approach fa-
cilitated the modeling and forecasting with the use of simple methods that are based on
directly observable variables Andersen et al. [2003]. Guided by the general theory for
continuous-time arbitrage-free price processes, the researchers developed a forecast-
ing framework for realized volatility and correlation. The study established that the
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range-based framework produced successful volatility estimates and generally domi-
nating the estimates from conventional GARCH and related approaches. Additionally,
the forecasts were well-calibrated and associated with VaR for multivariate foreign ex-
change applications. Volatility forecasts are not only useful in practical financial deci-
sions but they extend beyond risk modeling and management into sport and derivative
asset prices Andersen et al. [2003]. The researchers recommended that further studies
explore the gains achieved by simple volatility modeling and forecasting procedures
that rely on range.

Research by Brandt and Jones [2006] supports the literature by Andersen et al. [2003].
Brandt and Jones [2006] studying range-based exponential GARCH (EGARCH) estab-
lished that the range-based model performed better compared to return-based EGARCH
models for both in-sample and out-of-sample volatility estimates. In their research,
Brandt and Jones combined two-factor EGARCH models with data on the range and
used empirical analysis of SP 500 index to investigate model superiority based on
efficiency of the forecasts. The researchers established that range incorporated in-
formation into EGARCH models which significantly improved in-sample fit and the
accuracy of out-sample forecasts of the models. In a two-factor and fractionally in-
tegrated EGARCH models, range incorporated volatility asymmetry that dominated
both in-sample and out-of-sample forecasts. The research also established that log re-
turns are more likely to give rise to biased estimates than log range returns because
return-based log has idiosyncratic noise.

In another research, Petneházi and Gáll [2019] studied how predictable the range-based
estimates could be. The results were compared against those obtained using close-to-
close returns, commonly applicable in practice. Testing the models using Dow Jones
Industrial Average index, the researchers established that the direction of changes in
the estimates obtained using range-based models were more predictable than that of the
return-based values. Petneházi and Gáll [2019] outlines known properties of volatil-
ity which include persistence, mean reversion, asymmetric effect, and influence of
exogenous variables. According to these features of volatility, volatility should be
forecastable. However, since it cannot be measured, developing reasonable proxies is
the best approach. Such proxies include the standard deviation of returns calculated
using daily closing prices. However, following the daily closing prices, it is not possi-
ble to tell the price movements during the day which are not captured by close prices.
The Open, Close, High, and Low price data is readily available unlike high freqeuency
data such as minutely or hourly price quotes. Although finding accurate volatility es-
timates using these daily values only is challenging it is important to ensure accurate
estimates are obtained. In this research Petneházi and Gáll [2019] found it easier to
obtain volatility estimates using the range-based approach than using close-to-close
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approach.

Anderson et al. [2015] also studied range-based volatility approach to measure volatil-
ity contagion in securitized real estate markets. The researchers used a time-varying
ranged-based model to capture information about the dynamics of volatility in a secu-
ritized real estate. Anderson et al. [2015] from the empirical analysis established that
it is possible that economic crisis in one market, adverse volatility spread and affected
linked markets. Using copula functions and volatility model, the researchers were able
to explain the pattern of in the extreme tails of the distributions as related to establish-
ing Value-at-Risk. Anderson et al. [2015] found out that there exist linkages between
REIT markets worldwide. This implies that, REIT returns in one market such as Eu-
rope can affect the REIT returns in the United States of America. Also, there is high
correlation of the markets during downturn than up movement of prices and so returns.
This enriches our study by showing that based on prior research findings, there is a way
markets are related and hence just regional diversification is not enough to cushion as-
sets and investments from risk. Another literature focuses on value of volatility timing
in an economy using range-based approach. Chou [2005] used range-based volatility
model to investigate the economic value of volatility timing in a mean-variance frame-
work. The researchers also compared the performance of return-based volatility model
in both in-sample and out-of-sample volatility timing strategies with the range-based
volatility model. The CARR model was used with SP 500 data. The researchers con-
cluded that the range-based approach had more economic value than the return-based
model approach. This supports previous research studies.

Another literature by Jinghong Shu and Jin Zhang focused on testing range estimators
of historical volatility by incorporating daily trading range Shu and Zhang [2006]. The
researchers computed the mean error (ME) which is the average difference between
the estimated variance and the actual variance. Mean-square Error (MSE) was also
computed which is the average of the squared error and the relative error which is the
percentage difference between the mean estimated variance and the true variance Shu
and Zhang [2006]. Efficiency of the estimators was the concern of the researchers.
Efficiency was calculated using Parkinson estimator in which it states that the larger
the ratio, the more efficient the estimator. Testing range-based models using data of
SP 500 index, the researchers established that range estimators performed well when
assets followed a continuous geometric Brownian motion. It was noted that, opening
jump or a large drift led to differences in range estimators Shu and Zhang [2006].
The researchers also established that range estimators are fairly robust toward effects
of non-market factors such as bid-ask bounce and asymmetric information of traders.
This study extends the research by including empirical evidence from an emerging
market.
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Literature by Ripple and Moosa [2009] studying the effect of maturity, trading volume,
and open interest on crude oil futures price range-based volatility supports the findings
by Shu and Zhang [2006] that range-based approach provides more efficient estimates
compared to historical volatility approach. Ripple and Moosa examined the factors
that determined the futures prices volatility for crude oil using intraday range-based
approach. The study used 131 contract-by-contract analysts and tested the model spec-
ification stepwise using non-nested tests. The research established that sudden jumps
and drops in the price of assets and stock prices or currency pair price had significant
impact on the price movements Ripple and Moosa [2009]. For instance, a drop in price
shaped the trader’s opinion whether to keep their position open or closed. This affected
the trade volumes as well as the behavior of other market participants. Incorporating
the difference between highest and lowest price added crucial information helpful in
predicting volatility with a higher accuracy.

Akay et al. [2010] supports the findings of Shu and Zhang [2006] by developing a
range-based volatility measure for federal fund market. The results showed that range-
based models exhibited higher efficiency and were more robust to microstructure noise.
Akay et al. [2010], examined the robustness of range estimators used and established
that the models were more robust supporting the findings by Parkinson [1980]. The
researchers examined Parkinson’s range-based volatility estimate in the federal funds
market and compared it with return-based standard deviation. Range-based estimates
were more accurate in distinguishing liquidity crisis (simultaneous rise and drop in
liquidity demand due to factors like negative market shocks) from normal daily trading.

Maciel and Ballini [2017] conducted a study on the accuracy of Value-at-Risk model
and forecasting with range-based models relying on the empirical data of SP 500 and
IBOVESPA, U.S. and Brazilian economies. The researchers compared GARCH-type
approaches and the Conditional autoregressive range (CARR) model. The out-of-
sample results showed that range-based volatility models provided a more accurate
VaR forecasts than GARCH models Maciel and Ballini [2017]. The researchers estab-
lished that out-of-sample results indicated that range-based volatility models offered
additional informational to the historical GARH and TARCH-type models. Addition-
ally, the models achieved more accurate VaR forecasts when range was included as an
exogenous variable in variance equation for both developed economies and developing
economies.

The significance of this literature to our study is that it validates the research hypothesis
by demonstrating that range adds additional information to volatility modeling. The
use of Brazilian and American economies aims at demonstrating volatility contagion
as well as applicability of range-based models in different economies. The different
literatures have focused on studying range-based approach to estimating volatility in
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established economies including China, United States of America, and Europe as well
as developing economy using Brazilian Stock market data. This research extends the
study by modeling and forecasting volatility using the data of Sasini PLC. This helps
establish if the range-based approach is more accurate than return-based approach to
estimating volatility in developing economies. Most of the literature has focused on
developed markets while little attention given to emergent markets. Minimizing risk
through regional diversification of assets cannot be fully achieved because risk in one
economic market affects returns in another market. This makes the study of volatility in
developing economies important. This research contributes to the study of range-based
volatility modeling by providing empirical analysis and evidence for the application of
range in developing economies.

11



Chapter 3

Methodology

This section reviews the methods, data, and the performance measurements used in the
study. The fundamental concepts of VaR modeling and forecasting are also discussed.
It provides an overview of the historical approaches to volatility modeling, GARCH
and TARCH-type models as well as range-based volatility, and the Conditional Au-
toregressive (CARR) methodology.

3.1 Introduction

Volatility is widely applicable in the finance field. As a measure of riskiness, volatility
is a key factor in portfolio management, risk management, and option pricing. Volatil-
ity quantifies the dispersion of returns. The volatility of assets varies with time. How-
ever, volatility is not observable directly and needs to be estimated. Although pre-
dictable, forecasting the future volatility levels is challenging. Daily returns based on
close to close has been widely accepted as the approach to estimating volatility by
computing the dispersion of the returns. However, return-based has drawbacks includ-
ing inaccuracy of volatility estimates. Range-based volatility approach aims to address
the drawbacks of return-based models. Range is defined as the difference between the
highest and lowest market prices over a given sampling interval.

Rational investors do no prefer securities with higher volatility resulting in a positive
link between risk and the assetsś performance in the future. Empirical evidence how-
ever shows that there is a mix when establishing the relationship between volatility and
future returns. When the volatility is high, the investors discount the stocks and focus
on stocks with higher returns and promising higher returns in the future, at a given
volatility levels.

12



3.2 GARCH and TARCH Models)

The simplest method for modeling returns is given by;

rt = σtεt (3.2.1)

where rt = ln(Pt)− ln(Pt−1) is the log return of the asset at the time t. Pt is the price of
the asset at time t, while εt is independent and identically distributed. That is εt (0,1),
it is a zero-mean noise. The assumption is thatεt is normal and σt is the volatility of
the asset, and that it varies with time. That is, it does not assume constant volatility.
The differences in σt specifications define the differences in volatility models.

Bollershev (1986) introduced the GARCH model to extend the CARR model pioneered
by Engle (1982). CARR model allows the inclusion of conditional variance in the vari-
ance equation. GARCH is a widely applicable model in modeling volatility because
it is flexible and accurate in modeling known properties of financial assets such as
clustering and leptokurtosis.

A GARCH(p,q) model is defined as below;

rt = σtεt (3.2.2)

σ
2
t = ω +

p

∑
i=1

αir2
t−1 +

q

∑
j=1

β jσ
2
t− j, (3.2.3)

whereby: ω > 0 is a constant and α is a coefficient that measures the short term effect
of the εt on the conditional variance while β1 ≥ 0 is a coefficient that measures the
long-term effect on the conditional variance.

The Threshold ARCH (TARCH) model is an asymmetric approach developed assum-
ing sudden changes in returns of assets leading to varying effects on conditional vari-
ance. That is, the response of variance to positive and negative shocks in price is
different, thus the conclusion of the asymmetric impact. Glosten et al. [1993] define
TARCH(p,q) as

rt = σtεt (3.2.4)

σ
2
t = ω +

p

∑
i=1

αir2
t−1 +

q

∑
j=1

β jσ
2
t− j +

p

∑
i=1

γir2
t−1It− (3.2.5)

where It−1 = 1 if rt−1 < 0 refers to negative effect and It−1 = 0 if rt−1 ≥ 0 refers to
positive positive. Gamma parameter, γi measures the asymmetric effect or presence of
leverage. A positive gamma value indicates the presence of leverage effect and a value
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of zero for gamma implies asymmetric effect.

3.3 Range-Based Volatility

Different range estimators are considered for modeling volatility. Parkinson [1980]
proposed a range-based volatility estimator that includes open and close prices and not
just close to close prices. Parkinson [1980] proposed an improved estimator version
that used High and Low to calculate range-based returns. This study used Garman-
Klass range estimator because it describes the volatility dynamics and is a similar
measure to CARR model.

3.3.1 Garman-Klass

The problem with Parkinson volatility estimate is that it fails to take into account the
opening and closing price. Markets are most active during the open and close sessions
hence failing to include this important information is a non-negligible drawback of the
model. At the opening and closing, market factors can contribute to high or low returns
due to the number of market participants and number of trades being made. Garman
Klass volatility estimate incorporates intraday information. The Garmn Klass model
used for estimating range-based return seris is given by

σGK =

√
1

2T

T

∑
t=1

ln(
Ht

Lt
)2 − 2ln2−1

T
ln(

Ct

Ot
)2 (3.3.1)

Where: T is Number of days in the sample period Ot Opening price on day t

Ht High price on day t

Lt Low price on day t

Ct Close price on day t

This is calculated by starting with the scaling factor which equals to the number of
trading days in a year. This study used 252 trading days hence no needs for scaling
because the number of trading days is equals to the sample size n, of trading days in
the year, N = n.

3.3.2 Range-Based GARCH (p,q,s)

Range is the difference between the highest and lowest prices. In this study, range is
the difference between the highest and lowest log prices of the stock. It is expressed
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as Ht for the High price and Lt for the lowest price reached in a logarithm type for the
trading day t. Chou and Wang [2014] defines range of log returns as

rt = ln(Ht)− ln(Lt) (3.3.2)

Two types of range volatility models were used in which realized range was includes as
an exogenous variable. Range variable was considered in the traditional GARCH and
TARCH models to obtain RGARCH and RTARCH models respectively. The purpose
is to establish if range provides additional relevant information to the volatility process,
which can be helpful in obtaining better and accurate volatility forecast. The equations
can are rewritten below to denote the Range GARCH model (RGARCH)(p,q,s).

rt = σtεt , (3.3.3)

σ
2
t = ω +

p

∑
i=1

αir2
t−i +

q

∑
j=1

β jσ
2
t− j +

s

∑
k=1

ΘkR2
t−k, (3.3.4)

where Θk, for k = 1 to s is the parameter that measures the effect of the additional
information provided by range to the volatility process.

3.3.3 Ranged-Based TARCH (p,q,s) Model

The Threshold ARCH model with range is denoted as RTARCH(p,q,s)

rt = σtεt (3.3.5)

RTARCH(p,q,s is defines as;

σ
2
t = ω +

p

∑
i=1

αir2
t−i +

q

∑
j=1

β jσ
2
t− j +

p

∑
i=1

γir2
t−iIt−i +

s

∑
k=1

ΘkR2
t−k (3.3.6)

3.3.4 Conditional Autoregressive CARR(p,q)

The second class of range-based model used in this study is the CARR model sug-
gested by Chou [2005]) which entails a special case of multiplicative error model
(MEM), proposed by Engle [2002] and extended for GARCH approach. The mul-
tiplicative error model is used to model non-negative valued processes like duration
and realized volatility. Chou [2005] proposed focus on the price range process rather
than log range. Conditional Autoregressive (CAR) models have been widely utilized
in analyzing spatial data in the finance field as models for both observable and latent
variables. The focus us to unveil and quantify how the quantities of interest change
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with explanatory variables and detect clusters. This model is based on the concept that
the probability of the predicted values at any given time are conditional on the level of
adjacent values. Chou [2005] defined price range, Rt , and the CARR(p,q) model as;

Rt = htεt , (3.3.7)

ht = ω +
p

∑
i=1

αiRt−i +
q

∑
j=1

β jht− j, (3.3.8)

Whereby ht which is the value of conditional range up to time t, and the error term
εt takes a standard normal distribution. The density function f (∗) has a mean of 1.
Ranged-based CARR approach uses price range (Rt) model process while GARCH
models use asset returns (rt) to model conditional variance. The model has similar as-
sumptions to those of GARCH apprpach in modeling of asset returns and also include
time-varying realized variance as an exogenous variable for distinguishing the models.

3.4 Evaluating the Volatility Forecast

The performance of the forecast is evaluated using statistical loss functions. Since true
volatility cannot be observed directly, bias may arise among the competing models
when estimating and forecasting volatility. the estimation. Maciel and Ballini [2017]
compared different loss functions for volatility forecasting and established that mean
squared error (MSE) and quasi-likelihood (QLIKE) loss functions cannot be easily
affected by extreme values when estimating volatility hence the two loss functions can
be used to evaluate the models for volatility forecasts.

MSE symmetrically penalizes forecasting errors while QLIKE is asymmetric hence
penalizes under-estimation more than over-estimation. This makes the model more
suitable for use in areas such as risk management and forecasting Value-at-Risk where
under-estimation can be costlier than over-overestimation Sharma et al. [2016]. MSE
functions is defines as;

MSE = E(σ2
t − σ̂t) (3.4.1)

QLIKE Loss function is defined as

QLIKE = E(log(σ̂2
t +σ2

t σ̂
−2
t where σ̂2

t is the forecasted variance and σ2
t is the ac-

tual or observed variance. Based on the CARR model, σ̂2
t = ĥ2

t which is the realized
variance and computed as,
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σ2
t = ∑

1
∆
j=1 r2

t+ j∗∆,∆,

where;
rt,∆ = ln(Pt)− ln(Pt−∆) (3.4.2)

is defined as the sample of the delta-period return where delta can be equal to 1-minute
quotations. This study uses 1-day quotations.

For both MSE and QLIKE functions, smaller values indicate higher accuracy of the
model. The forecasting measures that are widely applicable in practice do not reveal
which model is statistically accurate than the other. Additional testes are required
to compared the competing volatility forecasting models to establish which model is
better than the other in terms of accuracy. This study utilized the Diebold-Mariano
(DM)Diebold and Mariano [1995] Statistic test to assess the null hypothesis of equal
accuracy in the forecasts between the competing models. It is assumed that the losses
arising in the models i and j are defined in Lit and L jt whereby;

Lt = σ2
t − σ̂2

t

Diebold-Mariano test is used to verify the null hypothesis by testing the equal accuracy
hypothesis for the models.

E(Li
t) = E(L j

t )

The null hypothesis for equal accuracy of the models equation is defines as;

H0 : E(dt) = 0

The DM test is given by;

DM =
d√

Var(d)
(3.4.3)

whereby; d = T−1
∑

T
j=1 dt+ j, T is refers to the total number of forecasts while d, and

Var(d is give by the HAC estimator. Diebold and Mariano (1995) established that the
test statistic assumes a standard normal distribution.

3.5 Estimating and Validating Value-at-Risk

Risk analysis is utilized in the assessment of the performance of the estimates. Differ-
ent forecasting methods are assessed for efficiency using an economic criteria. Value-
at-Risk (VaR) measure is used to determine the possible market risk value of a financial
asset that will be lost over a given time horizon h, at a given significance level αV aR. It
can also be used to determine the market value loss on an asset which is not expected
to be exceeded with probability 1−αV aR.
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VaR is defined as;

Pr(rt+h ≤ VaRαV aR
t+h ) = 1 − αVaR Here, α

−th
VaR quantile of the conditional distribution

of returns is the Value-at-Risk. It is described as VaRαVaR

t+h = CDF−1(αV aR). The
Conditional Density Function DCF(∗) refers to the cumulative distribution function
and CDF−1(∗) is the inverse. This study considers the time period h = 1 which is the
daily frequency because daily time-periods give the greatest practical interest for the
Kenyan Stock Market.

The parametric VaR at time t +1 is defined as;

VaRαV aR
t+1 = σ̂t+1CDF−1

z (αV aR)

where; σ̂t+1 refers to the predicted volatility at time t+1 which can easily be extracted
from the model by finding sigma in fitted values. CDF−1

z (αV aR) refers to the critical
value obtained from the normal distribution table at α-confidence level. VaRαV aR

t+1 =

σ̂t+1CDF−1
z (αV aR) was obtained using return-based volatility models TARCH and

GARCH. Volatility range as an exogenous variable for the models RGARCH and
RTARCH models was obtained.

Historical simulation was used to perform non-parametric VaR estimates. The histori-
cal VaR estimation focuses on developing a cumulative distribution function (CDF) for
asset returns over time. Historical simulation does not take a particular distribution for
the asset returns unlike in the parametric VaR models. Additionally, the assumption is
that the returns of assets is independent and identically-distributed, a claim which the
use of data and analysis refutes by showing that the returns are not independent and
also exhibit patterns like clustering. Historical simulation approach assigns all returns
equal weights throughout the period under consideration. As a result, it requires assess-
ing the VaR forecasts for accuracy. The Violation ratio (VR) and the average square
magnitude function are used to assess the performance of VaR forecasting models. Vi-
olation Ratio is defined as the percentage difference in exceedance. That is, how higher
the actual losses or actual VaR was compared to the maximum estimated loss or VaR.
This is defined as;

V R =
1
T

∑
T
t=1 δt

whereby: δt = 1 for tt < VaRt and δ = 0 for rt ≥ VaRt . When VaRt is the one-step-
ahead forecasted VaR for day t, and T is the total number of observations in the sample.
In this study, T is 20 and 100. Note that a lower VR does not always imply better per-
formance. A violation of αV aR% is expected if the confidence level used in estimating
VaR is (1−αV aR)% If the Volatility Ratio VR is lower or greater than the violation,
αV aR%, it implied that the VaR has been overestimated or underestimated which in-
fers low accuracy in the model which could result in practical implications. . For
instance, investors or practitioners can change their investment positions based on VaR
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alert-based strategies.

3.5.1 Average Square Magnitude Function (ASMF)

The ASMF function takes into account the amount of possible default to measure the
cost of exception in the model. It measures the impact of the exceptions on the accuracy
of the model. ASMF is computed as;

ASMF =
1
ϑ

ϑ

∑
t=1

ξt . (3.5.1)

ϑ is the number of exceptions model in the model. ξt = (rt −VaRt)
2 when rt < VaRt

and ξt = 0 for rt ≥VaRt

ASMF makes it possible to distinguish between models that exhibit similar or identical
rates. Lower values of ASMF and VR imply higher accuracy of the forecasting model
because VaR estimates the potential loss. The accuracy of VaR is significant in making
financial and investment decisions. Statistical tests are required to verify the validity
of VaR estimates because VaR estimation makes restrictive assumptions.

The measures used are Unconditional and conditional average tests. Kupiec [1995]
suggested the used of unconditional coverage test LRuc to evaluate the statistical con-
sistency of unconditional coverage rate at level of confidence that the VaR model pre-
scribes. This study prescribes α = 1%.

The failure probability is hypothesized for each trial (p̂i) that is equal to the probability
specified by the model, (αV aR).

A failure occurs when the forecasted VaR is less that the realized loss hence it cannot
cover it. The test statistics for the unconditional coverage LR Test is given by;

LRuc =−2ln[
α

f orecat
VaR

(1−αVaR)T− f (π̂) f (1− (π̂))T− f ] χ
2
1 (3.5.2)

whereby; π̂ = f/T , which is the failure rate. αV aR is the maximum likelihood esti-
mate and f = ∑

T
t=1 δt defines a Bernoulli r.v representing the number of violations for

the observations, T. The number of violations is tested against the hypothesis that the
failure rate is not equal to αV aR enabling the verification whether the observed viola-
tion rate is statistically consistent with the level of significance defined earlier for the
model.

The unconditional coverage likelihood ratio (LRuc)can only reject a model if it overes-
timates or understimates the actual VaR but it cannot determine if the exceptions in the
model are distributed randomly. It is important for the exceptions in the model when
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estimating VaR not to be correlated over time. The conditional coverage test (LRcc)

evaluates the serial independence of donditional average in the models. Coverage test
considers a quantile-of-loss VaR measure and defines the exceedance process It , where
It is 0 if the actual loss is less than or equal to the VaR estimate, and It is 1 if the actual
loss exceeds VaR estimate.
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Chapter 4

Data Analysis and Results

4.1 Introduction

We consider the highest, lowest, opening and closing daily prices of an NSE-listed
and trading company for the period 2009 to 2019. Realized volatility is used as an
unbiased estimator that is also more efficient compared to squared return when the log
prices follow Brownian Motion. Realized volatility is defined as the sum of squared
high-frequency returns with a day. It provides mode information while avoiding data
analysis complication.

4.2 Descriptive Statistics

The Table 4.1 details the descriptive statistics for SASN for the 10-year period. This
includes close-to-close returns, range-based returns, Parkinson volatility, and Garman
Klass volatility.

Statistics Close-Close Range-Based Parkinson Garman-Klass
Min. -0.2029408 0.00000 0.00000 0.000000

1st Qu. -0.0155954 0.01242 0.00746 0.006323
Median 0.0000000 0.03050 0.01832 0.016932
Mean 0.0003366 0.03634 0.02182 0.020967

3rd Qu. 0.0176773 0.05260 0.03159 0.030110
Max. 0.2271197 0.18648 0.11199 0.124373

Standard deviation 0.03528 0.03072 0.01845 0.01921
Skewness 0.0637107 1.015109 1.015109 1.252754
Kurtosis 2.771516 1.037721 1.037721 1.73966

Table 4.1: Descriptive Statistics SASN returns & Volatility

The mean for close-to-close approach is around zero while the range-based return is

21



Figure 4.2.1: The time series plot above shows clustering characteristics of returns.
High in certain periods and low in certain periods, evolving over the period under
study exhibiting a continuous manner and hence volatility. Use of log returns will help
achieve stationarity.

0.03. The mean for both Parkinson and Garman Klass volatilities is almost equal,
0.02182 and 0.020967 respectively. The standard deviation for close-to-close returns
and range-based returns is around 0.03 with range-based approach having a slightly
lower standard deviation. The kurtosis and skewness are positive indicating a leptokur-
tic distribution. Leptokurtic distribution is crucial in VaR forecasting and modeling be-
cause it gives up to three Kurtosis Degiannakis and Livada [2013]. The positive skew
and positive mean value imply positive expected returns with positive surprises on the
upside. The reason for the positive skew can be due to high trading activities at the
open and close of trading days. There is a higher probability of extreme outlier values,
stock prices. This can be attributed to the jumps at the open and close. For instance,
during the open, more traders participate and when it is near close, depending on the
performance of the market. If the traders in the market experienced low prices, they
would want to close their positions so that they do not suffer further losses. Similarly,
if in the previous day the market was performing poorly, the traders will cautiously
enter positions at the open of the succeeding day.

For the volatility range series, they have mean value of about 3 percent, 2 percent and
2 percent respectively. However, the volatility ranges exhibited higher kurtosis and
skewness compared to the return series. This is expected when measuring variance.

From the ACF tests, it is observed that the plot decays to zero meaning that the shock
affects the process permanently.

Observing the autocorrelation functions (ACFs) and the Ljung-Box Q statistics for
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returns and range series as shown in the different Ljung-Box plots below reveals higher
levels of persistence for range-based returns compared to close-to-close return series.
This confirms the use of CARR in range volatility estimation. Figures below show the
Ljung-Box plots and ACFs for the different range series.

Figure 4.2.2: Ljung-Box Q Statistics ACF range series

Observing the autocorrelation functions (ACFs) and the Ljung-Box Q statistics for
returns and range series as shown in the different Ljung-Box plots below reveals higher
levels of persistence for range-based returns compared to close-to-close return series.
This confirms the use of CARR in range volatility estimation. Figures below show the
Ljung-Box plots and ACFs for the different range and return series.

The Figure below shows the Ljung-Box plot for the return series.

It is hypothesized that there is no autocorrelation in the stock returns. The LJung Box
tests for log returns show that the returns are not correlated as the p-values are greater
than 0.005 hence we fail to reject the null hypothesis of no autocorrelation. It also
shows an ARCH effect on the LJung Box tests for both squared and absolute values.

4.2.1 Close-to-close and Range volatility Series Plots

The figures below show the daily returns and range volatility series for SASN for the
period 2009 to 2019. It is observable that there is volatility cluster in the series. The
figure below shows the range series returns for SASN.
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Figure 4.2.3: SASN Range Series Returns

Figure 4.2.4: SASN Daily Series Returns

The figure below shows the close-to-close volatility series for SASN.
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Figure 4.2.5: SASN Close-to-Close Volatility Series Returns

The figure below shows the Garman Klass Volatility series for SASN

Figure 4.2.6: SASN Garman Klass Volatility Series

All the series return plots show clustering.

4.2.2 GARCH-type Modeling

In GARCH and TARCH modeling, the number of lags are p and q, while CARR has
three lags, p, q, and s. The Range GARCH and Range TARCH models also have p,
q, and s. The model estimates were carried out with the consideration of p = q =

s = 1 thus obtaining improved accuracy and fewer number of parameters. We can test
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Parameter RGARCH GARCH CARR (1,1) TARCH(1,1) RTARCH(1,1)
ω -0.00018 0.00023 0.00039 -0.000221 0.00083
α 0.163041 0.239382 0.57226 -0.53658 0.17597
β 0.62931 0.584423 0.48479 0.52402 0.73334
γ 0.02905 0.12321
θ 0.002 - - - 0.0016

LogLikelihood 5760.99 5396.59 5497.209 5545.72 5814.203
AIC -4.2964 -4.0243 -4.0980 -4.1342 -4.3346
BIC -4.2832 -4.0111 -4.0804 -4.1166 -4.3282

Table 4.2: The Table details return and range-based volatility model estimates for
SASINI, 2009-2019

the different models for validity based on the parameter estimates. For TARCH and
RTARCH models, they had an α +γ greater than zero and p−value = 0.05 for testing
statistical significance. γ is greater than 0 hence show of leverage effect. α + β is
greater than 0 hence volatility persistence which can be confirmed from the return and
range-series plots.

The Table 4.2 shows the estimates for return and range-based volatility models for
SASN. The ω value in each model is significant hence appropriate to conclude that the
models are affected by news.

From the parameter estimates in Table 4.2, it is only the asymmetric models TARCH
and RTARCH which do not exhibit effect of past squared returns from the α . It is neg-
atively related to volatility while in the symmetric models GARCH, RGARCH, and
CARR α is positive indicative positive relation to volatility. The value of β for the
Range CARR model is the lowest compared to the other models. This indicates short
term memory in its volatility process compared to the other models. RTARCH has
the longest memory in its volatility process. In the models, γ measures the leverage
effect. A value of γ that is greater than 0 indicates that leverage effect exists while a
γ value not equal to zero indicates asymmetry Maciel and Ballini [2017]. Leverage
effects means that the volatility of the assets respond to negative and positive returns.
The Θ parameter in the RTARCH and RGARCH models show that the models provide
more information to volatility modeling for SASN stock than the other models. This
answers the research hypothesis whether range provides more information to volatil-
ity modeling than using historical approach. Akaike Information Criterion (AIC) and
Bayesian Information Criterion are used to assess simplicity of the models Degian-
nakis and Livada [2013]. Lower AIC and BIC values indicate that the model is the
best-performing volatility compared to the others based on the two criteria. In the
analysis from the table results, RTARCH model had the lowest AIC and BIC, and then
RGARCH model.
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Models MSE QLIKE
CARR(1,1) 0.000103 -7.5378

RTARCH (1,1,1) 0.0009398 -7.00708
RGARCH(1,1,1) 0.0009496 -7.0218

TARCH (1,1) 0.0009704 -
GARCH (1,1) 0.000917398 -6.69765

Table 4.3: At 5 % significance level. MSE & QLIKE assessment for volatility fore-
casting, ranked from best-performing to least

4.3 MSE and QLIKE Loss Functions

The performance of the volatility models is assessed using MSE and QLIKE loss func-
tion. Realized volatility calculated using 1-day quotations of SASN data was used in
which the period 2009 to 2014 was take as the out-of-sample volatility forecasting. The
last observation was removed to ensure all observations are of the same size. MSE and
QLIKE loss functions for the 4 models was computers. Lower MSE and QLIKE val-
ues indicate higher performance of the model. From the analysis, range-based models,
RGARCH, CARR, and RTARCH provided lower QLIKE and MSE values compared
to their counterparts in which close-to-close returns approach was followed, GARCH
and TARCCH models. This observation was expected because standard GARCH-type
models have limited information which includes only the daily returns. TARCH model
had the highest loss function values while CARR outperformed RGARCH based on
MSE and QLIKE criteria. TARCH and RTACH models was best-performing volatil-
ity forecast compared to GARCH and RGARCH. However, RGARCH and RTARCH
models provided crucial information to the process of volatility because they per-
formed better in forecasts than GARCH and TARCH. Based on QLIKE and MSE
values, CARR model gave the best results, that is low loss function values.

From the analysis, CARR model was the best-performing in overall because it had the
lowest MSE and QLIKE Loss functions. RGARCH, RTARCH and CARR performed
better than TARCH and GARCH as seen by the MSE and QLIKE valuess.

4.4 Diebold-Mariano Test

Diebold-Mariano test was conducted to assess the equivalence of accuracy of the dif-
ferent model pairs. The DM tests are statistically significant at 5% for CARR Model
when compared with the critical value of 1.96. α = 0.05 is divided by two because the
test is two sided hence the upper is 0.975. Based on DM test, CARR model outper-
forms GARCH model. The improved performance of CARR model may be attributed
to the fact that it uses range instead of return-based volatility like GARCH models.
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Models TARCH RGARCH RTARCH CARR
GARCH 0.42802 -6.8313 -6.5644 -6.9087
TARCH - - -6.7111 -6.9879

RGARCH - - -3.9096 -8.3576
RTARCH - - - -8.0802

Table 4.4: At 5% significance level. Diebold-Mariano Test for volatility forecasting

Measure RGARCH GARCH CARR TARCH RTARCH
VR (%) 4.6890 5.962 4.652 5.795 5.0690
ASMF 0.00134 0.0028 0.00119 0.0564 0.0023
LRuc 0.1254 0.3347 4.56532* 5.5670* 1.2859*
LRcc 0.12605 0.60332* 6.60891* 5.6742* 1.2918*

Table 4.5: The Table details the Violation rate, ASMF, unconditional and conditional
Likelihood ratio test

4.4.1 Violation Rate, ASMF, Conditional and Unconditional LR

The performance of the volatility models was also compared based on how best they
performed in VaR forecasting. This is because VaR forecasting is important for making
economic or financial assessments Degiannakis and Livada [2013].

Investors and other practitioners in the financial sectors rely on VaR forecasts. Degian-
nakis and Livada [2013] established that a VaR estimate should meet the unconditional
coverage, and the independence and conditional coverage conditions for it to be valid.
One-step-ahead VaR forecasts were conducted at 95 percent confidence level and the
forecasts evaluated in terms of Average Magnitude Square Function and Volatility ra-
tio. ASMF measures the extent to which VaR exceeds. Historical simulation, based
on close-to-close returns was used as benchmark to compare return- and ranged-based
volatility estimates by the ARCH-type models and CARR.

The out-of-sample VaR backtesting shows that all the models generated a valid VaR
forecast based on Unconditional Coverage LR and conditional coverage LR. Historical
simulation is the only model that did not show valid VaR because its Violation Rate
and ASMF exceeded VaR by far. This implies lower accuracy of the model by either
overestimation or underestimation.
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Figure 4.4.1: Actual & Forecasted Volatility Plot, RGARCH Model

The 1-step-ahead volatility forecast using RGARCH shows that the volatility forecasts
were slightly lower than the actual.

Figure 4.4.2: RGARCH Model fitting plots. Different gaphs we obtained for 4-years
ahead forecasts

The plots for testing for normalitty, autocorrelation ACF, news impact curve,and skew-
ness.

The graph below shows the volatility forecasts fore the competing models.

Range-based volatility models such as had lower violation rates and ASMF loss func-
tion values. According to the coverage tests, CARR has significantly lower failure
rate. This implies that the model overestimated VaR values. The practical implication
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Figure 4.4.3: Comparison of 1-step-ahead volatility forecasts for the competing models

Figure 4.4.4: CARR Model, 1-step-ahead forecasts

of this results is that the risk-averse investors may end up taking unnecessary position.
RTARCH and RGARCH more accurately estimated VaR at the 5% expected failure
rate. These models also exhibit improved VaR forecasts hence higher accuracy com-
pared to GARCH and TARCH models. We can conclude that range provided additional
information which improved the models.

The plot below shows the VaR forecasts for CARR Model

The plot below shows the VaR forecasts with RGARCH Model

4.5 Interpretation of Results

The Range-based CARR model proved to be the most efficient volatility in general.
Also, RGARCH model performed better than the other GARCH-type and TARCH
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Figure 4.4.5: RGARCH Model, 1-step-ahead forecasts

models. However, CARR model was inefficient in an upward trend scenario, that is,
when the volatility is low and market is rising making RGARCH model suitable for
such market scenario. The objectives of this study was to test range-based approach to
modeling and forecasting VaR by establishing whether range provides additional infor-
mation, testing range-based models using NSE-trading company data, and assessing
efficiency of the competing Range-Based models RGARCH, RTARCH, and CARR.
This study has met all the objectives.

Range was computed using open, close, high and low, which is a Garman-Klass range-
based approach to computing modeling and forecasting stability. It was established
that range-based models RGARCH and RTARCH had an additional parameter Θ. This
demonstrated that range provided additional and crucial information to the volatility
process.

Various methods were used to assess model efficiency for the competing models in-
cluding Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC),
Mean Square Error (MSE) and QLIKE loss functions, Diebold-Mariano (DM) Test,
Average Square Magnitude Function (ASMF), Violation Rates (VR) Unconditional
and Conditional Likelihood ratio test.

All models had a positive ω indicating that they are affected by news with the CARR
model having the highest ω value. The low α value in TARCH and RTARCH models
indicated that the models are not heavily affected by past squared returns. Positive
α is an indication of positive relation to volatility. The low β value of the CARR
model indicates short term memory in the volatility process. That is, the effect of past
volatility on the current market volatility decreases as we move further into the past.
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Volatility a hundred days ago has lesser influence on today’s volatility than volatility
from 50 or lesser time period.

Minimum AIC and BIC values are used as selection criteria. Models with high log-
likelihood have low AIC values hence superior goodness-of-fit. AIC assesses the
model that adequately describes an unknown while BIC is used to find the true model
among the competing volatility models.

QLIKE and MSE are selected because they are robust loss functions, hence less af-
fected by the most extreme observations in the sample. MSE loss function relies on
the usual forecast error (̂σ)2−h. Lower MSE and QLIKE values imply a better model.
From Table 4.3, the MSE and QLIKE loss values were obtained at 5 percent confidence
level. It was observed that CARR model had the lowest MSE and QLIKE values fol-
lowed by RTARCH and RGARCH models with GARCH model performing least.

The DM test assess equivalence of accuracy among competing models. At 5 percent
level of significance, CARR model was observed to have the lowest DM statistic values
compared with corresponding model pairs. Violation rates, ASMF and Conditional and
unconditional likelihood ratio tests were carried out on the competing models based on
the one-step-ahead VaR forecasts. Range-based volatility models had lower violation
and ASMF values indicating lower failure r ates hence better performance. ASMF
measures VaR exceedance, that is how far the forecasts exceeded realized VaR. At
95 percent confidence level, range-based models perform better than close-to-close
return-based models. CARR model outperforms the other RGARCH models based on
most of the measures for selecting suitable model.
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Chapter 5

Conclusions and Recommendations

5.1 Conclusions

Based on the various model valuation criteria, the criteria indicate that forecasting error
of CARR (1,1) is low than that of GARCH (1,1). The conclusion is that CARR model
outperforms the GARCH model. The range-based models, RGARCH, RTARCH, and
CARR support Chou [2005] proposition that the range provides more information than
return. CARR (1,1) provides a sharper volatility forecasts than range-based GARCH
and TARCH models.

The goal of this study was to provide a simple and highly effective approach for fore-
casting the volatility of returns by using range rather than the daily returns. It was
the study’s objective to determine the research hypothesis whether range and the price
movements during the day affect the returns and hence use of range-based volatility
approach to model and forecast volatility. Also, the aim was to establish applicability
of the method by conducting empirical analysis of an NSE-listed and trading company,
SASN.

On empirical analysis, it was established that using information contained in range sig-
nificantly improves the accuracy of the volatility estimates. GARCH model performs
better than CARR model when the volatilities are lower and the market is rising based
on symmetric and asymmetric error statistics. Therefore, in downward trend, volatility
is higher and the CARR model is more appropriate hence preferable.

However, in upward trend, it is crucial to use all daily information. That is, open, high,
low, and close to determine and efficient volatility measure because using only opening
and closing prices may wrongly conclude the volatility estimate. We can conclude that
range-based volatility estimates provide additional information to forecasting volatility
hence more accurate than return-based volatility estimates.
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5.2 Recommendations

5.3 Room for Further Research

The results are not highly optimized and stand for purposes of comparison. Achiev-
ing higher accuracy could require large input data. Future research should explore the
degree of accuracy to which the volatility estimates can be forecasted with large data
input. We only used the daily price range data to make forecasts of a day ahead and this
has its shortcomings which include the small data set used for making relatively long
period forecasts. It would be worth to explore the predictability of realized volatili-
ties obtained from intraday data. This study recommends further research to include
long-term forecasting models, address volatility patterns such as crisis scenarios and
application to trading strategies.
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R Notebook

library(quantmod)

## Loading required package: xts

## Loading required package: zoo

##
## Attaching package: 'zoo'

## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric

## Loading required package: TTR

## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo

## Version 0.4-0 included new data defaults. See ?getSymbols.
library(xts)
library(rvest)

## Loading required package: xml2
library(tidyverse)

## v ggplot2 3.3.2 v purrr 0.3.4
## v tibble 3.0.3 v dplyr 1.0.0
## v tidyr 1.1.0 v stringr 1.4.0
## v readr 1.3.1 v forcats 0.5.0

library(stringr)
library(forcats)
library(lubridate)

##
## Attaching package: 'lubridate'

## The following objects are masked from 'package:base':
##
## date, intersect, setdiff, union

1

## -- Conflicts ---------------------------------------------------
## x dplyr::filter() masks stats::filter()
## x dplyr::first() masks xts::first()
## x readr::guess_encoding() masks rvest::guess_encoding()
## x dplyr::lag() masks stats::lag()
## x dplyr::last() masks xts::last()
## x purrr::pluck() masks rvest::pluck()



library(plotly)

##
## Attaching package: 'plotly'

## The following object is masked from 'package:ggplot2':
##
## last_plot

## The following object is masked from 'package:stats':
##
## filter

## The following object is masked from 'package:graphics':
##
## layout
library(dplyr)
library(PerformanceAnalytics)

##
## Attaching package: 'PerformanceAnalytics'

## The following object is masked from 'package:graphics':
##
## legend
library(quantmod)
library(rugarch)

## Loading required package: parallel

##
## Attaching package: 'rugarch'

## The following object is masked from 'package:purrr':
##
## reduce

## The following object is masked from 'package:stats':
##
## sigma
library(rmgarch)

##
## Attaching package: 'rmgarch'

## The following objects are masked from 'package:dplyr':
##
## first, last

## The following objects are masked from 'package:xts':
##
## first, last
library(ggfortify)
library(changepoint)
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##
## Attaching package: 'changepoint'

## The following object is masked from 'package:rugarch':
##
## likelihood
library(strucchange)

## Loading required package: sandwich

##
## Attaching package: 'strucchange'

## The following object is masked from 'package:stringr':
##
## boundary
library(ggpmisc)
library(ModelMetrics)

##
## Attaching package: 'ModelMetrics'

## The following object is masked from 'package:base':
##
## kappa
library(pastecs)

##
## Attaching package: 'pastecs'

## The following objects are masked from 'package:rmgarch':
##
## first, last

## The following objects are masked from 'package:dplyr':
##
## first, last

## The following object is masked from 'package:tidyr':
##
## extract

## The following objects are masked from 'package:xts':
##
## first, last
library(MCS)
library(MatrixCorrelation)

##
## Attaching package: 'MatrixCorrelation'

## The following object is masked from 'package:TTR':
##
## SMI
library(multDM)
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#Upload Data
setwd("C:/Users/USER/Desktop/Resources Project")
mydata <-read.csv("mydata1.csv")
attach(mydata)
#plot Range Returns
plot.ts(mydata$SASN.RANGE.Returns,ylab="Range-Based Returns")
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# plot close-close returns
plot.ts(SASN.Return.based,col="Blue", ylab="Daily Returns")
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# plot Parkinson Volatility
plot.ts(mydata$Parkinson,col="Blue",ylab="Volatility")
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# plot Garman-Klass Volatility
#plot.ts(mydata$Garman.Klass, col="Blue",ylab="Garman-Klass")

# create data frame
rSASN <- data.frame(Date,SASN.Return.based,SASN.RANGE.Returns,mydata$Parkinson,Garman.Klass)
# Rename the COlumns
names(rSASN)[1] <- "Date"
names(rSASN)[2] <- "Close-Close Returns"
names(rSASN)[3] <- "Range-Based Returns"
names(rSASN)[4] <- "Parkinson Volatility"
names(rSASN)[5] <- "Garman-Klass Volatility"
#head(rSASN)

cols <-c("Close-Close Returns","Range-Based Returns","Parkinson Volatility","Garman-Klass Volatility")
#summary(rSASN[cols])

# Detailed Summary Statistics
skewness(rSASN[cols])

## Close-Close Returns Range-Based Returns Parkinson Volatility
## Skewness 0.0637107 1.015109 1.015109
## Garman-Klass Volatility
## Skewness 1.252754
kurtosis(rSASN[cols])

## Close-Close Returns Range-Based Returns Parkinson Volatility
## Excess Kurtosis 2.771516 1.037721 1.037721
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## Garman-Klass Volatility
## Excess Kurtosis 1.73966
# Descriptive Statistics
#stat.desc(rSASN[cols], norm = "TRUE")

#Plot Time Series Returns and Volatility with date a-axis
plot.ts(rSASN$`Close-Close Returns`,col="Blue",ylab="")

Time

0 500 1000 1500 2000 2500

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

Box.test(rSASN$`Close-Close Returns`, type="Ljung-Box")

##
## Box-Ljung test
##
## data: rSASN$`Close-Close Returns`
## X-squared = 123.21, df = 1, p-value < 2.2e-16
acf(rSASN$`Close-Close Returns`)
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Box.test(rSASN$`Range-Based Returns`, type="Ljung-Box")

##
## Box-Ljung test
##
## data: rSASN$`Range-Based Returns`
## X-squared = 286.43, df = 1, p-value < 2.2e-16
acf(rSASN$`Range-Based Returns`)
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Box.test(rSASN$`Parkinson Volatility`, type="Ljung-Box")

##
## Box-Ljung test
##
## data: rSASN$`Parkinson Volatility`
## X-squared = 286.43, df = 1, p-value < 2.2e-16
acf(rSASN$`Parkinson Volatility`)
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Box.test(rSASN$`Garman-Klass Volatility`, type="Ljung-Box")

##
## Box-Ljung test
##
## data: rSASN$`Garman-Klass Volatility`
## X-squared = 274.04, df = 1, p-value < 2.2e-16
acf(rSASN$`Garman-Klass Volatility`)
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# Assign model to standard specification, Range GARCH(1,1)
ug_spec = ugarchspec()
# GARCH Estimation using SASN data
sasn_ugfit = ugarchfit(spec = ug_spec, data = SASN.RANGE.Returns)
#sasn_ugfit

plot(sasn_ugfit, which = "all")

##
## please wait...calculating quantiles...
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# Check Elements
paste("Elements in the @model slot")

## [1] "Elements in the @model slot"
#names(sasn_ugfit@model)
#names(sasn_ugfit@fit)

# Extract estimated coefficients
#sasn_ugfit@fit$coef

sasn_var <- sasn_ugfit@fit$var # Assign estimated conditional variances
sasn_res2 <- (sasn_ugfit@fit$residuals)^2 # assign the estimated squared residuals
#plot squared residuals and conditional variance
plot(sasn_res2, type = "l",col="Red",xlab="Index", ylab ="Residuals & Variance")
lines(sasn_var, col = "blue")

12



0 500 1000 1500 2000 2500

0.
00

0
0.

01
0

0.
02

0

Index

R
es

id
ua

ls
 &

 V
ar

ia
nc

e

# Forecast conditional volatility or square root of conditional variance, for 2678
sasn_predict <- ugarchforecast(sasn_ugfit, n.ahead = 100)
#sasn_predict

Sasn_spredict <- sasn_predict@forecast$sigmaFor
#plot(Sasn_spredict, type = "l",main = "1-step-ahead Volatility Forecast",ylab="Volatility Forecast")

# plot sigma squared
sasn_pred1<-ts(sasn_ugfit@fit$sigma^2)
#plot.ts(sasn_pred1,col="Blue",ylab="Variance")

ug_spec = ugarchspec()
# GARCH Estimation using SASN data, Historical
sasn_ugfit_h <- ugarchfit(spec = ug_spec, data = SASN.Return.based)
# plot fitted values
sasn_predf<-sasn_ugfit@fit$fitted.values
#plot.ts(sasn_predf, col="Blue",ylab="")

# Plot the fprrecasts with the last 100 observations in the estimation.
# Last 100 observations in variance
sasn_var1 <- c(tail(sasn_var,100),rep(NA,10))
# Get last 100 observations of residual values
sasn_res2t <- c(tail(sasn_res2,100),rep(NA,10))
# Assign predicted values
Sasn_spredict <- c(rep(NA,100),(Sasn_spredict)^2)
# Display the observations
plot(sasn_res2t, type = "l",ylab="Volatility")
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lines(Sasn_spredict, col = "Red")
# 100 days, 1-step-ahead volatility
lines(sasn_var1, col = "green")
legend("topleft", legend=c("Observed","Forecast"), col=c("Green","Black"),lty=1:2,cex = 0.8)
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Determining MSE and QLIKE for GARCH Model Above
sasn_range.retuns <-SASN.RANGE.Returns
#str(sasn_range.retuns)
sasn_range.predict<-ugarchboot(sasn_ugfit, n.ahead = 2679,method=c("Partial","Full")[1])
#str(sasn_range.predict)
#str(sasn_range.retuns)
r.mse<-mse(rSASN$`Range-Based Returns`,sasn_ugfit@fit$sigma)
#mse(rSASN$`Range-Based Returns`,ugfit@fit$sigma)
# install.packages("MCS")
r.qlike<- LossVol(rSASN$`Range-Based Returns`,sasn_ugfit@fit$sigma,which="QLIKE")
r_qlike<-r.qlike[1]
# length(Garman.Klass)
# length(ugfit@fit$sigma)
Loss.Functions<-data.frame(r.mse,r_qlike)
names(Loss.Functions)[1] <- "MSE"
names(Loss.Functions)[2] <- "QLIKE"
#Loss.Functions

# computing Ratio Volatility
rgarch.RV<-RV( sasn_ugfit@fit$fitted.values,sasn_ugfit@fit$sigma)
#rgarch.RV
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ESTIMATING USING GARCH with Historical Return
# Assign model to standard specification, GARCH(1,1)
ug_spec = ugarchspec()
# GARCH Estimation using SASN data, Historical
sasn_ugfit_h <- ugarchfit(spec = ug_spec, data = SASN.Return.based)
#sasn_ugfit_h

#for the sasn_ugfit_h Model that uses historical returns
sasn_var.h <- sasn_ugfit_h@fit$var # Assign estimated conditional variances
sasn_res2.h <- (sasn_ugfit_h@fit$residuals)^2 # assign the estimated squared residuals
#plot squared residuals and conditional variance
plot(sasn_res2.h, type = "l",col="Red",xlab="Index", ylab ="Residuals & Variance")
lines(sasn_var.h, col = "blue")
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USING GARCH(1,1,1) CARR Model
garchMod_t <- ugarchspec(

variance.model=list(model="fGARCH",
garchOrder=c(1,1),
submodel="APARCH"),

mean.model=list(armaOrder=c(0,0),
include.mean=TRUE,
archm=TRUE,
archpow=2
),

distribution.model="std"
)
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garchFit1 <- ugarchfit(spec=garchMod_t, data=SASN.Return.based)
#garchFit1

plot(garchFit1, which="all")

##
## please wait...calculating quantiles...
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Modeling with TARCH SASN Data
library(rugarch)
spec_tgarch<-ugarchspec(variance.model = list(model="gjrGARCH", garchOrder=c(1,1)), mean.model=list(armaOrder=c(2,0)),distribution.model="std")
sasn_tgarchfit<-ugarchfit(spec = spec_tgarch,data = SASN.Return.based)
#sasn_tgarchfit

# plot & display model sasn_tgarchfit
plot(sasn_tgarchfit, which = "all")

##
## please wait...calculating quantiles...
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Modeling RTARCH
# Using Range-based
sasn_tgarchfit.range<-ugarchfit(spec = spec_tgarch,data = SASN.RANGE.Returns)
#sasn_tgarchfit.range

# plot RTARCH Range-based model
plot(sasn_tgarchfit.range,which="all")

##
## please wait...calculating quantiles...
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tgarch.forecast<-sasn_tgarchfit.range@fit$residuals
tarch.forecast<-sasn_tgarchfit@fit$residuals
rgarch.forecast<-sasn_ugfit@fit$residuals
garch.forecast<-sasn_ugfit_h@fit$residuals
carr.forecast<-garchFit1@fit$residuals

# Computing Average Square Magnitude Function (ASMF)
rgarch.ASMF<-sum(sasn_ugfit@fit$residuals)
rgarch.ASMF

## [1] 2.048433
#computing RV and ASMF for GARCH Model
garch.RV<-RV(rSASN$`Range-Based Returns`,sasn_ugfit_h@fit$sigma)
garch.ASMF<-sum(sasn_ugfit_h@fit$se.coef)
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rgarch.mse<-mse(rSASN$`Range-Based Returns`,sasn_ugfit@fit$sigma)
rgarch.qlike<- LossVol(rSASN$`Range-Based Returns`,sasn_ugfit@fit$sigma,which="QLIKE")
garch.mse<-mse(rSASN$`Range-Based Returns`,sasn_ugfit_h@fit$sigma)
garch.qlike<-LossVol(rSASN$`Range-Based Returns`,sasn_ugfit_h@fit$sigma,which="QLIKE")
tarch.mse<-mse(rSASN$`Range-Based Returns`,sasn_tgarchfit@fit$sigma)
tarch.qlike<-LossVol(rSASN$`Range-Based Returns`,sasn_tgarchfit@fit$sigma,which="QLIKE")
rtarch.mse<-mse(rSASN$`Range-Based Returns`,sasn_tgarchfit.range@fit$sigma)
rtarch.qlike<-LossVol(rSASN$`Range-Based Returns`,sasn_tgarchfit.range@fit$sigma,which="QLIKE")
carr.mse<-mse(rSASN$`Range-Based Returns`,garchFit1@fit$sigma)
carr.qlike<-LossVol(rSASN$`Range-Based Returns`,garchFit1@fit$sigma,which="QLIKE")
#All.LossFunctions<-data.frame(rgarch.mse,rgarch.qlike,garch.mse,garch.qlike,tarch.mse,tarch.qlike,rtarch.mse,rtarch.qlike,carr.mse,carr.qlike)
#All.LossFunctions



#garch.RV
#garch.ASMF
#computing RV and ASMF For CARR model
carr.RV<-RV(rSASN$`Range-Based Returns`,garchFit1@fit$sigma)
carr.ASMF<-sum(garchFit1@fit$se.coef)
#carr.RV
#carr.ASMF
# computing RV and ASMF for TARCH
tarch.Rv<-RV(rSASN$`Range-Based Returns`,sasn_tgarchfit@fit$sigma)
tarch.ASMF<-sum(sasn_tgarchfit@fit$se.coef)
#tarch.Rv
#tarch.ASMF
#computing RV and ASMF for RTARCH
rtarch.RV <-RV(rSASN$`Range-Based Returns`,sasn_tgarchfit.range@fit$sigma)
rtarch.ASMF <- sum(sasn_tgarchfit.range@fit$se.coef)
#rtarch.RV
#rtarch.ASMF

Determining Diebold-Mariano
#install.packages("multDM")
#GARCH vs TARCH
#garch.tarch<-dm.test(garch.forecast,tarch.forecast,h=1)
#garch.tarch
DM.test(garch.forecast,tarch.forecast,rSASN$`Range-Based Returns`,loss.type = "SE",h=1)

##
## Diebold-Mariano test
##
## data: garch.forecast and tarch.forecast and rSASN$`Range-Based Returns`
## statistic = -6.6657, forecast horizon = 1, p-value = 2.634e-11
## alternative hypothesis: Forecast f1 and f2 have different accuracy.
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#GARCH vs RGARCH
garch.rgarch<-DM.test(garch.forecast,rgarch.forecast,rSASN$`Range-Based Returns`,loss.type = "SE",h=1)
#garch.rgarch
#GARCH vs RTARCh
garch.rtarch<-DM.test(garch.forecast,tgarch.forecast,rSASN$`Range-Based Returns`,loss.type = "SE",h=1)
#garch.rtarch
#GARCH vs CARR
garch.carr <- DM.test(garch.forecast,carr.forecast,rSASN$`Range-Based Returns`,loss.type = "SE",h=1)
#garch.carr
#TARCH vs RGARCH
tarch.rgarch <-DM.test(tarch.forecast,rgarch.forecast,rSASN$`Range-Based Returns`,loss.type = "SE",h=1)
#tarch.rgarch
#TARCH vs RTARCH
tarch.rtarch<-DM.test(tarch.forecast,tgarch.forecast,rSASN$`Range-Based Returns`,loss.type = "SE",h=1)
#tarch.rtarch
#RGARCH vs RTARCH
rgarch.rtarch<-DM.test(rgarch.forecast,tgarch.forecast,rSASN$`Range-Based Returns`,loss.type = "SE",h=1)
#rgarch.rtarch
#RGARCH vs CARR
rgarch.carr<-DM.test(rgarch.forecast,carr.forecast,rSASN$`Range-Based Returns`,loss.type = "SE",h=1)
#rgarch.carr
#RTARCH vs CARR
rtarch.carr<-DM.test(tgarch.forecast,carr.forecast,rSASN$`Range-Based Returns`,loss.type = "SE",h=1)
#rtarch.carr
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Appendices

R Codes

library(stringr)
library(forcats)
library(lubridate)

##
## Attaching package: 'lubridate'

## The following objects are masked from 'package:base':
##
## date, intersect, setdiff, union

1
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