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Operational Definition of Terms 

For a better understanding of this thesis, the key terms in the study are given the 

following operational definitions: 

Drought Severity: Denotes the vegetation deficit as based on a reference threshold and 

typically have values between 0 and 100 in this study with a reference sent at 35 to 

denote non-drought conditions in the classification of drought. Despite the implied 

similarity between drought severity and drought intensity which is the ratio of 

vegetation deficit and the duration of the drought given that we a monthly frequency 

of drought monitoring, we adopt drought severity to imply both in the context of this 

study. 

Predictive drought monitoring: Is used to imply an operational drought monitoring 

system that has both aspects of drought monitoring and forecasting of future drought 

conditions. For every given frequency of monitoring, actual drought conditions are 

provided as well as a forecast of future conditions. 
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Abstract 

Droughts, with their increasing frequency of occurrence, especially in the Greater Horn 

of Africa (GHA), continue to negatively affect lives and livelihoods. For example, the 

2011 drought in East Africa caused massive losses documented to have cost the 

Kenyan economy over US$ 12.1 billion. Consequently, the demand is ever-increasing 

for ex-ante drought early warning systems with not only the ability to offer drought 

forecasts with sufficient lead times but that are both stable and are of high bias. In this 

study, we build predictive models one month ahead for both drought severity and 

drought effects. Vegetation condition index aggregated over 3 months (VCI3M) and 

nutrition of children below 5 years as indicated by Mid-Upper arm circumference 

(MUAC) are used as the proxy variables for drought severity and drought effects 

respectively. We present the performance of both homogeneous and heterogeneous 

model ensembles in the prediction of drought severity and drought effects using the 

study case techniques of artificial neural networks (ANN) and support vector 

regression (SVR). For each of the homogeneous and heterogeneous model ensembles, 

we investigate the performance of three model ensembling approaches of simple 

averaging, ranked weighted averaging and model stacking. Applying the approach of 

over-produce then select, the study used 17 years of remote sensing data and 10 years 

of socio-economic data to build 244 individual ANN and SVR models from which 111 

models were selected for the building of the model ensembles. The results indicate the 

superiority of the heterogeneous model ensembles to both homogeneous model 

ensembles and individual champion models. Model stacking as applied in 

heterogeneous model ensembles is shown to be superior to both simple average and 

weighted average ensembles. The heterogeneous stacked model ensemble recorded an 

R2 of 0.94 in the prediction of drought severity as compared to an R2 of 0.83 and R2 of 

0.78 for both ANN and SVR champion models respectively. The superiority of the 

heterogeneous stacked ensemble is extended to classification in which accuracy of 

80% is recorded as compared to 69% and 71% for the ANN and SVR champion models 

respectively. Additionally, the poor performance of champion models in outlier classes 

is mitigated on by the use of stacked heterogeneous model ensembles. We conclude 
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that despite the computational resource intensiveness of the model ensembling 

approach to drought prediction, the returns in terms of model performance is worth the 

investment, especially given the recent exponential increase in computational power. 

We nevertheless advise evaluating the use of more techniques in the model ensembles 

and the building of many more ensembles using divergent ensemble sizes to settle the 

question of performance of model ensembles fully. To further increase the utility of 

drought prediction, we also recommend the study of more extended forecasting periods 

(up to 6 months) and to estimate how much this would degrade the prediction skill of 

the ensemble models. 

Keywords: general additive model; drought risk management; early warning 

system; ensemble; over-fitting; model space reduction; support vector regression. 
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Chapter 1: INTRODUCTION 

1.1 Background 

Droughts have been documented to have effects that can be viewed from different 

perspectives. The social, environmental and economic effects of drought are noted to 

shape the response of both research and policy. In this section, we introduce drought 

from the different perspectives including economic, social, environmental, policy and 

research views of the effects of droughts. 

1.1.1 The Economic View 

Drought is described by Below, Grover-Kopec & Dilley (2007) and Olang et al. (2013) 

as one of the greatest impediments to development in Africa due to reliability on rain-

fed agriculture and high vulnerabilities as a result of poverty. Much of the continent is 

dependent on rain-fed agriculture, which makes it particularly susceptible to climate 

variability (Di Falco & Veronesi, 2013). 

Drought economic losses range from those resulting from poor agricultural production 

of both crop and livestock, loss of revenue from agricultural taxes, poor power 

production from hydro-power dams, interference with transportation waterways, 

timber and lumbering losses and strain on institutions that offer both credit and credit 

risk insurance (Ding, Hayes & Widhalm, 2011; Wilhite & Glantz, 1985). 

Several economic impacts of drought are documented in literature. The World Bank 

(2011) documents that the prolonged Kenyan drought of 2008-2011 resulted in 

combined damages and losses of up to US$ 12.1 billion by 2011. The Kenya drought 

is documented to have left 3.7 million people faced with hunger. Howitt, Medellin-

Azuara & Lund (2014) documents that the overall effect of 2014 California Central 

Valley drought is estimated at nearly US$ 2.2 billion with about 17,100 full time and 

seasonal job losses. Adams et al. (2002) suggest that the 2002-2003 Australia drought 

and its flow-on effects would have had up to a 1.6% loss in gross domestic product 

(GDP). In the Kenya, Australia and California droughts, for example,  multiple sectors 
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were affected including but not limited to crop agriculture, livestock agriculture, water, 

nutrition, education and security. 

1.1.2 The Social View  

Socially, drought has several effects ranging from psychological impacts as a result of 

the loss of key assets, especially among pastoral communities. Other social effects 

include:  health and nutrition problems resulting from limited access to water and food, 

increased threats of fire and need for constant migrations that lead to interference with 

family setups. Wilhite, Svoboda & Hayes (2007), for example, documents the 

complexity of drought impacts and identifies conflicts especially in the access to water 

resources. At the very extreme, droughts have resulted in deaths of people and animals 

in addition to the increase in workloads on the society, food insecurity and the possible 

impacts of malnutrition (Keshavarz, Karami & Vanclay, 2013). 

In the East African context, and in recent times, populations and communities are 

increasingly faced with the probability of disasters arising from drought as a hazard. 

The droughts tend to be more frequent, longer and more severe in East Africa and the 

Greater Horn of Africa (GHA) as documented in Gebremeskel et al. (2019). These 

droughts have had the result that communities have their livelihoods disrupted to the 

extent that they are then unable to use own resources to cope with the loss 

consequences. 

Popularly, the social and economic impacts of drought are always lumped together 

with the use of the terminology “socio-economic” impacts as both hold the view of the 

effects of droughts on lives and livelihoods. The use of the socio-economic 

terminology is for example in Musolino, de Carli & Massarutto (2017) and Chand & 

Biradar (2017). 

1.1.3 The Environmental View 

The elements of the environment, including plants, animals, climate, soils, rocks and 

many others are vastly affected by drought conditions. Droughts, therefore, affect both 

different aspects of the ecosystem and the environment. In the most, and without 

guarantee, some these elements recover after droughts. Permanent destruction occurs 
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when desertification and loss of wildlife occurs. The loss of species is for example 

documented in Kala & Silori (2013) to most common amongst species that have low 

population sizes coupled with a narrow range of distribution. The destruction of both 

aquaculture and wildlife habitats is, therefore, a common consequence of drought. 

Wind erosion of bare soils, wildlife migration, loss of wetlands, stress to water sources 

and even depletion of water resources are some of the few impacts of drought on the 

environment as reviewed in Kala (2017). 

1.1.4 The Policy View 

There has been an increase in global concern over the ineffectiveness of current 

approaches to drought risk management (DRM) that have been largely characterized 

by the crisis management approach. Such approaches are reactive to the occurrence of 

droughts (Wilhite, Sivakumar, & Pulwarty, 2014). The concern is the need for a 

structured and proactive approach to DRM. The need for DRM has for example seen 

initiatives such as the multi-stakeholder High-level Meeting on National Drought 

Policy (HMNDP) in 2013. The HMNDP aimed to identify science-based actions 

capable of addressing issues in DRM and to outline possible strategies for enhanced 

coping capacities (Sivakumar et al., 2014). Strategic frameworks like the Drought 

Resilient and Prepared Africa (DRAPA) are a direct response to the HMNDP initiative 

to build an effective DRM and to build drought resilience at multiple levels: 

continental, regional, national, or local/community levels for Africa. 

Directly from the above realization of the need for structured and institutionalized 

DRM as a result of losses associated with droughts, most countries have adopted policy 

considerations meant to contain drought impacts. The need for counties to adopt 

national level drought policies is for example championed in Sivakumar et al. (2011).  

The key outcome of the policy response to DRM is the reduction of drought disaster 

risks through structured programmatic activities by countries, regional bodies and even 

international bodies.  

Locally, the Kenya case that was previously characterized by crisis response and 

uncoordinated management approaches to droughts and their impacts has since seen a 
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policy shift in the three main fronts including; the mainstreaming of drought and 

drought risk management into development planning, prioritization of drought 

monitoring and the formulation of relevant policies and institutions for drought risk 

management. Such initiatives include: 

• The 2010 Constitution of Kenya, CoK that outlines in article 43 the citizen’s 

right to be free from hunger and to have adequate food of acceptable quality 

(Constitution, 2010) 

• The establishment of the National Drought Management Authority (NDMA) 

in 2011 as a specialized institution for DRM with the mandate to coordinate all 

matters relating to DRM in Kenya (Klisch, Atzberger & Luminari, 2015). 

• The inclusion of the Ending Drought Emergencies (EDE) as part of the Second 

Medium Term Plan (MTP II) of the Kenya Vision 2030 that anchors DRM and 

the goal of EDE long-term development blueprint for Kenya.  

1.1.5 The Research and Technical View 

Research in drought has been an ongoing initiative that is gaining popularity with 

increasing focus and investments. The Drought Cycle Management model (DCM), the 

classic variant of which is given in Figure 1.1, is the popular drought management 

model of choice (Oxfam, 2009; Pantuliano & Wekesa, 2008). The DCM views drought 

as a natural disaster that is both slow in onset and that has effects in phases. Through 

the DCM (Figure 1.1), drought is characterized to have four phases: Normal, 

Alert/Alarm, Emergency and Recovery. The current practice in drought monitoring 

has however seen the extension from the initial four phases to the current five phases 

as a result of the separation of the drought alert from the alarm stages. 
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Figure 1.1: Drought Management Cycle (Oxfam, 2009). 

Different monitoring systems have different definitions of the drought monitoring 

phases. An example in case is the Kenyan cases where the National Drought 

Management Authority (NDMA) that subscribes to the five phases definition outlined 

above. Even though Figure 1.1 seems to suggest that the transition between the stages 

is linear, in practical application, the transitions are back and forth between the stages. 

The research areas that have emerged out of the DCM model and that are used in the 

management of drought currently are Drought Early Warning Systems (DEWS), 

drought preparedness and drought response. These research areas are as briefly 

discussed: 

1. Drought Early Warning Systems (DEWS) 

Drought Early Warning Systems (DEWS) are the backbone of drought 

monitoring and management. The increasing popularity of predictive DEWS is 

based on their ability to aid stakeholders to react before a crisis occurs 

especially in the light of increased damages from droughts (Adede et al., 

2019b). The implementation and deployment of DEWS is made possible by 

different information management approaches. Despite the difference in 
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approaches to their implementation, effective DEWS should be punctuated by 

the ability to assess, communicate and trigger action. Despite their reliance on 

technology, DEWS should remain accurate, simple, reliable, flexible and 

timely in the provision of actionable information as documented in Magno et 

al. (2018) and in Motha, Wilhite & Wood (2011). Information management for 

drought monitoring should be a continuous undertaking across all the phases 

of drought.  

2. Drought Preparedness 

Drought preparedness is a wider concept within drought risk management 

(DRM) that includes drought monitoring and forecasting, vulnerability 

mitigation, resilience building, impact assessments and response planning 

(Gutiérrez et al., 2014). Drought preparedness, therefore, involves long-term 

undertakings of development activities and emergency planning that are aimed 

at reducing vulnerabilities of communities to drought effects. Drought 

preparedness is, in effect, the sum-total of pre-disaster, as well as during and 

after disaster initiatives. Drought preparedness is thus the focal point of the 

disaster risk reduction framework in IGAD (2007) that is presented in Figure 

1.2. Closely related to the concept of drought preparedness is drought risk 

reduction (DRR) that generally advocates for sufficiency of interventions that 

enhance local capacities for disaster prevention and emergency preparedness 

to avoid disasters. The approach of disaster risk reduction is for example 

adopted in Government of Kenya (2014) for the Kenya Vision 2030’s Ending 

Drought Emergencies Common Programme Framework (EDE: CPF). 

3. Drought Response 

In drought risk management (DRM), drought response is also referred to as 

drought impact mitigation and is the collection of all efforts that aim to mitigate 

the impacts of on-going droughts on both lives and livelihoods. A key objective 

of drought response is the provision of relief to the affected population, 

especially water, food and health care (FAO, 2019). The limitation of drought 
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response is that the mitigation measures are deployed after drought effects are 

felt on lives and livelihoods. There is an increasing tendency to minimize 

investments in drought response with the current paradigm shift from crisis to 

risk management (Wilhite, 2014). 

 

Figure 1.2: Disaster risk reduction framework (IGAD, 2007) 

1.2 The Current State of the Art and Future Expectations of Drought Early 

Warning Systems  

The current state of the art is that there is an extensive focus in drought early warning 

systems for drought monitoring in most countries. Increasingly, permanent institutions 

for drought monitoring are being established within countries, regionally and even 

globally. Such institutions for drought risk management include the National Drought 

Management Authority (NDMA) at the local level in Kenya (Oduor, Swift & Birch, 

2014), the United Nations Office for Disaster Risk Reduction (UNISDR, 2012) at the 

global level and the Intergovernmental Authority on Development (IGAD) (ICPAC, 

2007) at the regional level. These local, regional and international institutions are both 

engaged in and are offering support in the area of drought monitoring. 

The current trends in early warning either involves the use of a single indicator/index, 

mostly sourced from one data source like the univariate cases in Klisch & Atzberger 

(2016), AghaKouchak & Nakhjiri (2012) and Brown et al. (2015). The use of multiple 
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indicators is only in a few studies and is not as common. Studies that incorporate 

multiple indices include those in Tadesse et al. (2010), Tadesse et al. (2014) and in 

Wardlow et al. (2012) that incorporated 11 variables derived from oceanic, 

environment, climate and satellite data.  Incorporation of remote sensing and ground-

based data collection approaches have been suggested for use in early warning systems 

including from the study in Enenkel et al. (2015). Practical implementations or even 

the possible deployment of such an integrated approach that uses both remote sensing 

data and ground-truthing data is widely missing from literature.  

The current state of the art is domiciled in increased losses from natural disasters in 

general (Da Silva, 2012). Increase in drought occurrences and damages are also 

documented (Howitt et al., 2015; UNISDR, 2012; World Bank, 2011). Howitt et al. 

(2015) disaggregate the losses to include a quantification of the economic impact and 

job losses of the 2015 California drought. World Bank (2011) documents and 

quantifies the losses from the 2008-2011 Kenyan droughts at US$ 12.1 billion. There 

have been, however, counter-arguments to the observed increases in loses from natural 

disasters. McMullan et al. (2016) assert that after accounting for inflation, population 

increase and increase in wealth, the increasingly popular notion of an increasing trend 

in losses from disasters disappears. As population increase leads to more lives being 

exposed to hazards, increased wealth also ensures more possession is exposed to 

drought risk. Inflation, on the other hand, ensures more recent losses are reported in 

huge figures as compared to the past. It is, however, the case that the increase in 

incidences and losses has seen the proliferation of efforts at drought risk management. 

The increase in efforts at drought monitoring has, in general, lead to a spike in the use 

of remote sensing technologies and the available vast datasets for drought monitoring. 

On the global scale, despite the investments in both drought monitoring and disaster 

reduction being on the ascendancy, there still exist prospects for improving on 

understanding, monitoring and prediction of droughts (Wood et al., 2015).  Equally, 

there is a need for drought monitoring systems that take into account practicalities of 

areas of interest through the investigation of the actual impact on lives and livelihoods 
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as a result of drought episodes. There is, therefore, need for ground-based validation 

of drought monitoring data initiatives (Bachmair et al., 2016). 

The current drought monitoring efforts are thus characterized by overreliance on a 

single indicator/ index, specialization in single crop monitoring, non-integration of 

socio-economic data to quantify impacts and non-comparison of alternative sources of 

drought monitoring data. Most monitoring systems are reliant on single indices like 

the vegetation indicator- the Normalized Difference Vegetation Index (NDVI) or have 

a reliance on a similar group of indicators like those derived from meteorological 

weather station data. A majority of these monitoring systems are also too specialized 

with over-concentration on models for monitoring specific phases of droughts like 

impact on selected crops without the incorporation of ground-truthing based on actual 

drought impacts on the society. The data used in the current monitoring systems are 

mostly sourced from single repositories without evaluation being done for 

appropriateness of purpose and fit for specific scenarios being undertaken. 

The future of Drought Early Warning Systems (DEWS) is, for example, documented 

by Enenkel et al. (2015). The ideal DEWS is documented to include the key approaches 

of integration of remote sensing and socio-economic data, the thresholding of the 

integrated indicators and calibration of the integrated data into a Decision Support 

Systems (DSS). The remote sensing data types that could be used within DEWS 

include precipitation data, temperature data, evapotranspiration data and vegetation 

data. Precipitation data could from both ground-based rain-gauges and satellite-

derived and modelled sources like Climate Hazards Group InfraRed Precipitation with 

Station data (CHIRPS) and Tropical Applications of Meteorology using SATellite 

(TAMSAT). Vegetation Indices (VIs) are mostly based on the Normalized Difference 

Vegetation Index (NDVI). Possible sources for vegetation indices are Moderate 

Resolution Imaging Spectroradiometer (MODIS), Land Satellite (LANDSAT), 

Advanced Very High-Resolution Radiometer (AVHRR) and SPOT Vegetation among 

others (Liu, 2015). 
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1.3 Problem Statement 

There is an increase in both the frequency of droughts and the resulting economic 

losses from droughts, especially in the context of the GHA and particularly in Kenya 

and the wider East Africa. This spike in drought-related losses has led to the focus on 

Drought Risk Management (DRM) systems whose key elements are drought risk 

identification, drought monitoring, drought preparedness, and drought mitigation. 

While drought risk identification involves the agreement on the definition of droughts 

based on some objective parameters, drought risk monitoring is based on the 

establishment of appropriate drought early warning systems (EWS) that signal the 

advent, progression and even possible cessation of drought events. As advocated by 

Mariotti et al. (2013), drought risk identification and drought early warning systems 

are the starting points to sound drought risk management that can greatly reduce the 

severity of social and economic damage by droughts. 

The current drought early warning systems (DEWS) are characterised by four key 

features: popularity in the use of a single index, exclusion of the effects of drought, 

delayed availability of monitoring products and the tendency to use single techniques 

in the prediction of future drought conditions. 

The tendency to use a single index for drought monitoring with precipitation the most 

used as recommended by WMO (2012). The tendency to use the single index is despite 

the proliferation of multiple indexes as reviewed in Su et al. (2017) and in 

AghaKouchak et al. (2015) and the segmentation of drought into four phases and hence 

types: meteorological, hydrological, vegetation and socio-economic droughts as 

documented in Hao, Singh & Xia (2018) and UNOOSA (2015). 

The second characterization of the current DEWS is the fact that the aspects of human 

livelihoods that define socio-economic droughts are rarely part of these DEWS with 

most systems purely reliant on remote sensing data without an element of ground-

truthing like the case in The African Drought Monitor (Sheffield et al., 2008), Klisch 

& Atzberger (2016) and the Famine Early Warning System, FEWS NET (Brown et al., 

2015) amongst many other DEWS. The incorporation of socio-economic data as a 
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possible ground-truthing in DEWS is advocated for in a few studies including in 

Bachmair et al. (2016), Hao, Singh & Xia (2018), Enenkel et al. (2015), Jenkins (2012) 

and Massarutto et al. (2013). The study in Hao, Singh & Xia (2018) for example 

documents the popularity of prediction of drought signals but with less effort invested 

in the prediction of the effects of such droughts on the society. The lack of systems 

that predict effects of droughts is the same gap identified in Bachmair et al. (2016) that 

surveyed 33 DEWS experts that advocate the inclusion of effects of droughts on the 

society as part of drought monitoring. 

The third characterization of the state of art DEWS is that the vast implementations of 

the DEWS are ex-post or at best near real time (NRT). Existing DEWS thus mostly 

provide information at or after the lapse of the periods of monitoring. Moreover, the 

realisation of NRT systems is limited by the processing latencies that are inherent in 

the satellite-based data on which most of these systems are premised.  

The final characterization of existing DEWS is that in addition to the above limitations, 

even instances of ex-ante systems mostly follow the common approach of searching 

for the single best performer/champion model, often using a single modelling 

technique. The use of the single index in a single technique is documented in a majority 

of studies with those in Ali et al. (2017) and Khadr (2016) as examples. Generally, 

predictive systems realised from the approach of selection of a champion model have 

a low predictive capacity that wanes in the prediction of future conditions as 

empirically proven in Meade & Islam (1998). Even in cases where multiple techniques 

are used, the objective is majorly the choice between competing model building 

techniques rather than the realization of synergies from the independent techniques.  

From the characterization of the drought monitoring problem and the state of the art, 

this research focuses on gaps in the two perspectives to the drought prediction problem: 

the data perspective and the modelling process perspective. 

1) The data perspective that is replete with data issues and the need for use of 

multiple indices covering the entire drought spectrum. With droughts having 

different definitions as documented in Lloyd-Hughes (2014), the use of 
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multiple indices in drought monitoring and drought prediction is a possible 

mitigation to the over-reliance on single-index models. The use of multiple 

indices makes sense much more in the face of the availability of many drought 

indices appropriate for drought monitoring across the different types of 

drought. Multivariate systems demand the identification and processing of the 

multiple datasets which is itself not a trivial undertaking (Bunting, 2017). The 

assessment of these datasets for appropriateness of purpose and their 

conversion to indices responsive to drought would thus be a logical step before 

their use for drought monitoring or drought prediction. 

2) Modelling process perspective that should not only see the use of multiple 

indices across the different types of drought but also aim for highly predictive 

models through the harnessing of the different strengths of multiple prediction 

techniques. Such predictive systems realized from the combination of multiple 

techniques have been advocated to have high predictive performance that 

remains stable into the future (Hagedorn, Doblas-Reyes & Palmer, 2005).  

The objective of the research is to build the ideal future drought prediction system with 

high predictive performance and future stability that also integrates multiple indexes 

from all the types of drought including data on effects of drought on society. The higher 

predictive performance and stability of the predictive system will be realized through 

model ensembling ideally built using multiple drought prediction techniques. 
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1.4 Research Objectives 

1.4.1 Overall Objective 

The overall objective of this research is to build and evaluate the performance of both 

homogeneous and heterogeneous models in the prediction of drought severity and 

drought effects using remote sensing and socio-economic data. 

1.4.2 Specific Objectives 

i. Determine the different biophysical and socio-economic variables that are used 

in the monitoring of drought and investigate their relationship with drought. 

ii. Build and evaluate the performance of multiple drought prediction models 

using Artificial Neural Networks (ANN) and Support Vector Regression 

(SVR) as the case study Machine Learning methods. 

iii. Build and evaluate the performance of homogeneous and heterogeneous 

ensemble models of both ANN and SVR in the prediction of drought severity 

and drought effects. 
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1.5 Research Questions 

The research questions are mapped to the research objectives as provided in Table 1. 

 Table 1: Mapping of research objectives to research questions 

Obj  

No. 
Objective 

RQ 

No. 
Research Question 

O1 

Determine the different biophysical 

and socio-economic variables that 

are used in the monitoring/ 

prediction of drought and 

investigate their relationship with 

drought. 

RQ1 

What are the different biophysical 

and socio-economic variables that are 

used in the monitoring/ prediction of 

drought? 

RQ2 

How do the variables identified for 

drought monitoring relate with 

drought? 

O2 

Build and evaluate the performance 

of multiple models for drought 

prediction using Artificial Neural 

Networks (ANN) and Support 

Vector Regression (SVR) as the 

case study Machine Learning 

methods 

RQ3 

What are the multiple models of both 

Artificial Neural Networks (ANN) 

and Support Vector Regression 

(SVR) that can be built for the 

prediction of both drought severity 

and drought effects? 

RQ4 

What is the performance of the ANN 

models as compared to SVR models 

in the prediction of drought severity? 

  RQ5 

What is the performance of the ANN 

models as compared to SVR models 

in the prediction of drought effects? 

O3 

Build and evaluate the performance 

of homogeneous and heterogeneous 

ensemble models of both ANN and 

SVR in the prediction of drought 

severity and drought effects 

RQ6 

What is the performance of the 

Artificial Neural Networks (ANN) 

and Support Vector Regression 

(SVR) homogeneous ensemble 

models in the prediction of both 

drought severity and drought effects? 

RQ7 

What is the performance of the ANN 

and SVR heterogeneous ensemble 

models in the prediction of drought 

severity and drought effects? 

From Table 1, the three research objectives are considered achieved when the research 

questions are answered for each. The first objective is a function of both literature 

review and data preliminary analysis at the pre-modelling stage. The second objective 

is achieved by building multiple ANN and SVR models and choosing which are 
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considered predictive of drought. Finally, the third objective considers the building of 

homogeneous and heterogeneous model ensembles using different methods and 

evaluating their performance with the traditional champion model approach as the 

baseline. 

1.6 Significance 

The study sets out to settle the comparative performance between heterogeneous and 

homogeneous model ensembles built using both biophysical and socio-economic data 

in the prediction of future drought conditions. The aim is to find out if model 

ensembling offers better returns in the prediction of future drought conditions as 

compared to the tradition single best model selection approach. The benefits of the 

study can thus be reviewed in terms of significance to the wider society and 

subsequently to both the research community and the practitioners in drought 

monitoring. 

The definition of drought in this study is done in terms of vegetation conditions that is 

in itself a proxy to agricultural drought. On the other hand, the definition of drought 

effects is done in terms of malnutrition conditions for children under five years. 

Vegetation conditions closely mirror pasture and browse conditions. The communities 

in the study area having their economies mainly driven by pastoralism will relate to 

the results of the predictive system developed from this study. Proactive drought 

monitoring is bound to ensure minimized losses of both lives and livelihoods as a result 

of well-targeted drought interventions that are a product of better-formulated drought 

response plans. The collection of household data on drought effects will make for a 

ground-level driven monitoring system and given the fact that both predicted quantities 

are measured will assure the society on the objectivity of the predictions. 

The government will have an opportunity to retune the current drought policies to have 

drought prediction as a minimal requirement of the drought early warning systems 

(DEWS). Such an opportunity will see the incorporation of policy elements that further 

enhance the “no regrets approach” to drought response and hence the possibility of 

incorporating intervention funding based on forecasts. 
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The practitioners and research community in drought monitoring will, however, be the 

greatest beneficiaries of this study. Since the study widely investigates the performance 

of ensemble models as compared to the current approach of single champion models 

and empirically grounds the superiority of stacked model ensembles, the research 

community has an opportunity to develop better predictive models that remain stable 

into the future. The study offers three approaches to model ensembling with a set of 

metrics to help choose which approach offers the most predictable models. The fact 

that the study also builds a model that down-scales spatially makes for an optimal 

approach for drought prediction for multiple spatial units. 

The automation of model building is perhaps the most useful benefit to practitioners. 

With the reduction of human intervention in arriving at the models, objectivity is 

amplified and this widens acceptance of the model outputs within the wider research 

community. An additional benefit to both researchers and practitioners will be the pre-

processed datasets that arise from this study. Even for cases out of the study area used 

for this study, the set of scripts can be shared for download and pre-processing of the 

data. 

The prediction of socio-economic conditions as a result of future drought conditions 

will make for a set of directly actionable outputs out of a drought monitoring system 

that is expected to guide both drought preparedness and drought response in a model 

that can support feedback to the communities on terms and concepts commonly 

understood between them and the practitioners. 

1.7 Assumptions 

The following are the assumptions that will be made during the study. 

i. The chosen data sources for the study were assumed to be available in the future 

for any efforts to replicate, extend and/or validate the results of the study.  

ii. Transformation of data and selection of variables was undertaken as a part of the 

study and is premised on such transformations yielding variables useful in drought 

monitoring and the development of predictive models. Some of the 
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transformations, to avoid data loss, are done from the data collection point at the 

pixel level. 

iii. Although we assume that the data sourced from the operational data warehouses 

are representative of reality, we carried out an independent test of reasonableness 

on the data using statistical analysis methods. 

iv. That the chosen area of study, being drought-prone, will continue to exhibit this 

tendency in the future and that the results being objectively obtained and 

documented lend themselves to generalizability beyond the area of study and into 

the future. 

1.8 Scope 

The main focus of this study was the need for predictive drought models with high 

predictive power and that integrate variables on the effects of droughts. The 

predictivity of the models is proposed to be achieved through model ensembles on data 

covering the selected study area for the period 2001-2017. 

The research, therefore, focused on the identification of variables for drought 

monitoring, the identification of open access sources of the data, the extraction and 

pre-processing of the data. Subsequently, the formulation of ensemble models and the 

evaluation of their performance in the prediction of both drought severity and drought 

effects were undertaken. We addressed issues of variable selection between competing 

datasets, the over-production of models and subsequent selection of model ensemble 

membership and the incorporation of both remote sensing and socio-economic data. 

The development of the experimental and investigative tools followed a review of 

literature and past studies and hence was grounded in theory. Two sets of scripts were 

developed. The first, Multisensor Remote Sensing Data Pre-processing (MSRSDP) 

tool, was developed as a series of scripts that automated the download and pre-

processing of different remote sensing data. The scrips automatically download, 

spatially sub-set, smooth the data and correct for noise in the data and finally 

(dis)aggregates the data to a monthly frequency for the experimental phase of the 
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study. The second set of scripts were for the development of the individual ANN and 

SVR models and their subsequent ensembling using multiple methods. 

The modelling tool is scoped to be able to handle multi-sensor data modelling using 

multiple approaches. Such proposed approaches include the comparison of 

distributions, comparison of correlations and the comparison of seasonally of the data 

using seasonally adjusted correlations. For the selection between competing but 

duplicative datasets like TAMSAT and CHIRPS, the multiple metrics used included 

the spearman’s correlation coefficient, Akaike information criterion (AIC), the relative 

importance of variables as partitioned by R2 and the use of modelling approaches like 

support vector regression (SVR) and general additive models (GAM). 

The modelling methodology used for this study integrated an ensemble of ANN and 

SVR techniques and investigated the performance of the different methods of the 

combination of multiple models in the model ensembles. 

The study method did not model on multiple vegetation sensor data since only one 

NDVI remote sensing data source was included, together with rainfall data that is a 

choice between TAMSAT and CHIRPS. Other datasets included those that influence 

hydrological droughts like land surface temperature and evapotranspiration. We 

recognize that this approach leaves out other competing sources of remote sensing 

data. 

1.9 Thesis Overview 

The rest of the thesis is organised into chapters as follows: - 

• Chapter 2 aims to domicile the twin problems of drought prediction and the use of 

model ensembles in the realization of better predictive models. In this chapter, we 

define drought as an objectively measurable concept based on the key concepts of 

deficiency in precipitation, deviation from historical conditions, occurrence in 

space and time, intensity and duration and the idea of progression in drought 

conditions. The section also reviews drought monitoring systems that are both ex-

post and ex-ante in nature to identify the remote sensing indicators that have been 

used to study the drought phenomenon. The basis for use of both remote sensing 
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and socio-economic data in drought monitoring is established and a survey of both 

statistical and machine learning approaches carried out. The documentation, in 

literature of common methods used to realise highly predictive drought models is 

reviewed together with the accompanying algorithms. The ultimate objective of 

the chapter is the identification of similar works, gaps and the attendant possible 

methods that can be used to make contributions towards the realization of highly 

predictive models. 

•  Chapter 3 documents the methodology used in the realization of the objectives of 

this research undertaking. This covers the identification and documentation of the 

data sources for the different kind of data required for this study and the subsequent 

methods of data collection for such data. The appropriate methods for the analysis 

as established with the tools and techniques outlined. The chapter presents the 

results from the pre-study that was run to establish the viability of both the 

methodology and the assumptions made for the study. 

• Chapter 4 presents the results from the different models developed and evaluated 

in the process of the study. The results are presented and discussed to make it clear 

on how the research questions are answered. The documentation follows on the 

order in which the objectives and research questions were formulated. 

• Chapter 5 outlines the summary of the major findings and contributions of the 

research into the integration of socio-economic data in drought prediction models 

and the performance of model ensembles in predictive drought monitoring. This 

section documents the limitations of the research, opportunities for practitioners 

and highlights the possible points for future research. 

• Appendices that further support the results of this study are also provided. Such 

includes the full list of models developed and the validation for correctness of some 

of the assumptions made by the study. 
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Chapter 2: LITERATURE REVIEW 

2.1 Prelude 

The chapter undertakes to identify relevant literature, evaluate the sources and identify 

the gaps especially as relates to the prediction of droughts. The section aims to identify 

what has been and what has not been investigated, outline the key datasets used, review 

how key concepts have been defined and how these concepts have been ultimately 

measured. Besides, the section provides evidence on which basis the findings of the 

study are supported. Ultimately, this section offers theoretical underpinning for this 

research. In it, we define the problem of drought and drought prediction as a specific 

type from the general set of prediction problems that are premised on using specific 

past examples to generate a broad generalization of the future. A targeted review of 

past studies and the trends in drought monitoring is presented in this section. 

2.2 Definition of drought 

Drought is one of the natural disasters that is the most widespread and strongest felt 

even though it is not widely understood due to its causes being as a result of the 

interaction of multiple complex factors.  

Drought is defined in diverse ways, the common of which is the deficiency in 

precipitation over an extended period, usually a season or more, resulting in the 

shortage of water causing adverse impacts on vegetation, animals and/ or people and 

thus hindering various economic sectors like agriculture, industry, hydropower 

generation and recreation sectors (Bordi et al, 2005; Morid, Smakhtin & Bagherzadeh, 

2007; Schipper, 2003; UNISDR, 2009). It is noted, however, that drought does not 

have a direct one sums it all definition and interpretation as earlier documented in 

Palmer (1965) and even recently in Lloyd-Hughes (2014). The view of deficiency of 

precipitation, based on the definition of drought above will, therefore, be sector and 

time-specific and based on some concept of anomaly/ deviation from some expected 

conditions. 
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The other aspects noted in the definition of drought include its characterization as the 

most complex natural disaster that is however less understood as documented in Morid, 

Smakhtin & Bagherzadeh (2007) and Ali et al. (2017). That drought is a complex 

natural disaster is attributed to both the difficulty in definition their beginning (onset) 

and/or end (off-set) and their tendency to also lead to and be accompanied by other 

disasters like extreme heats and wildfires. 

As opposed to other disasters, droughts are described as slow on-set hazards and hence 

viewed as a creeping phenomenon with which comes the benefit of time that could be 

used to undertake effective mitigation and preparedness measures (UNISDR, 2009; 

Wilhite, 2006). Droughts are documented to exhibit a rarity in occurrence as compared 

to other natural disasters as illustrated in Figure 2.1. For example, from Figure 2.1 it is 

clear that drought is indicated to trail other distinct disasters like earthquakes and 

floods in the frequency of occurrence by a factor of at least 5.6 (EMDAT, 2012) 

 

Figure 2.1: The frequency of different world disasters (1900-2017).  

As evidenced in Figure 2.2, over the decades from the 1900s and despite the rarity in 

the occurrence of drought as compared to other major disasters, the social impact of 

drought as indicated by the number of deaths supersede those of other disasters. This 

observation was made earlier in (Hewitt, 1997). This is perhaps a direct result of the 

tendency of drought to cover wider areas and thus guaranteeing greater impacts on 

both lives and livelihoods. 
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Figure 2.2: Global average deaths from selected natural disasters by decade for the decades  

1900s-2010s (EMDAT, 2012). 

Despite the documentation of the reduction in the average number of deaths 

attributable to drought over the decades (EMDAT, 2012), it is also the case that the 

numbers affected by drought as shown in Figure 2.3(a) is higher than that for 

earthquakes, floods and storms. Furthermore,  the economic losses due to droughts 

have been rising over the years as shown in Figure 2.3(b). 
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(a) 

 
(b) 

Figure 2.3: Number of people affected by different disasters (a) and the economic losses from 

drought over the years-1965-2019 (b) (EMDAT, 2012).  
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Zeroed in to Kenya and East Africa, there is an increase in both the frequency of 

drought and the cost of economic losses as a result of droughts particularly in Kenya 

and East Africa. For example, Government of Kenya (2012) documents the 2008-2011 

drought in Kenya as having made 3.7 million people food insecure with economic 

losses approximated at US$ 12.1 billion. These losses in Kenya mirror the global 

scenario where the 2014 California drought was projected to have cost a total of US$ 

2.2 billion in losses as documented in Cody, Folger & Brougher (2009) that also 

observe the increase in the ability of droughts to cause widespread misery. Further 

documentation of losses due to drought are reviewed in Ding, Hayes & Widhalm 

(2011) with a caution on the use of the estimates due to differences in methodologies 

and the non-documentation of some droughts with localized impacts given limited 

spatial and temporal extents of coverage. 

2.3 Key concepts in the definition of drought 

Despite the non -existence of a uniform definition of drought as a result of differences 

in its perception, there are a set of concepts common to most definitions. For the 

investigation of the drought phenomenon, given this very non-universality in its 

definition, there is a need for the identification and documentation of these key 

concepts and characteristics. In fact, as documented earlier in Wilhite (1993) and 

recently in Lloyd-Hughes (2014), the absence of a universal definition of drought is 

perhaps the source of differences in the methodologies for drought monitoring. 

The absence of a universal definition of drought is, however, not a problem in itself. 

This is because drought affects multiple sectors of an economy and livelihoods and 

thus perspectives are bound to differ in its definition. Despite the differences in the 

definition of drought that could be either conceptual or operational, the following key 

concepts keep recurring: - 

• Deficiency of precipitation 

The greatest basis of the definition of drought and its sub-sequent monitoring 

is the deficiency of precipitation over a period of time. This is a pointer to 

precipitation as the key variable for drought monitoring. This definition is 
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adopted by many studies including in Bordi et al. (2005) and Morid, Smakhtin 

& Bagherzadeh (2007) and those provided in the earlier section on drought 

definition. 

• Deviation from some historical conditions 

The deviations in precipitation, even when drought is defined in terms 

sufficiency of precipitation has to be considered abnormal. The deviation is a 

measure based on some normal conditions that are often defined based on an 

identified historical period. The abnormal deviations are referred to as an 

anomaly. The concept of anomalies is for example documented Hayes et al. 

(2011) in the review of precipitation deficits compared to the historical 

averages for a given region. Drought monitoring would, therefore, be equated 

to the process of monitoring the occurrence of these anomalies in the 

precipitation and indeed of any other drought indicator over a given spatial 

extent. A comprehensive review of some of the anomalies is provided in 

Eslamian et al. (2017) and Zargar et al. (2011). 

• The occurrence in space 

The definition and occurrence of drought are both based on space. The concept 

of space, in terms of drought monitoring, implies a location, area or polygon. 

This implies that what is drought in one location should not necessarily be a 

drought in another location. Augured with the concept of anomalies, this 

implies that droughts, their occurrence and severity are defined by occurrence 

in a spatial extent. The definition of drought with the concept of spatial extent 

is almost universal and is for example in Adede et al. (2019a), WMO (2012), 

Klisch & Atzberger (2016), Klisch, Atzberger & Luminari (2015) amongst 

many other studies. The concept of space in the definition of droughts goes 

together with that of time thereby implying droughts as having both a spatial 

extent and temporal extent. 

• The occurrence in time 

The definition of normal conditions for a spatial extent or location is based on 

some historical reference. Also, all spatial extents more or less are expected to 
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have periods of reduced precipitation. Not all these periods should be 

interoperated to be drought episodes. Drought periods must, therefore, ideally, 

also be defined for the same time in history. The definition of the popular 

indices like standardized precipitation index (SPI) in WMO (2012) and 

vegetation condition index (VCI) in Kogan (1990) are quite strong in applying 

the concept of time in the definition of drought. The concept of time, like of 

space defined above, are also used in Adede et al. (2019a) and in Adede et al. 

(2019a) together with Klisch & Atzberger (2016). 

• Severity and duration 

Once established, the severity of a drought is a measure or quantification of its 

deviation from a set threshold as defined by the run theory in Zhang et al. 

(2015). Duration, on the other hand, is mostly referred to as the period of 

occurrence of a specific drought and involves the capability to pinpoint the 

period between the onset and the off-set of the drought. 

• The idea of slow onset and progression in time and space 

Droughts are considered slow onset with the ability to progress both in space 

and time (UNISDR, 2009; Wilhite, 2006). This slow onset nature of droughts 

is the characteristic that lends droughts towards being a monitorable and 

predictable event that offers time for intervention planning. The slow onset 

view of droughts has however been challenged by Basara et al. (2019) and 

Otkin et al. (2016) that documents the 2012 Continental US flash drought that 

was modelled using variables like evapotranspiration, soil moisture and 

vegetation conditions in addition to precipitation. 

• Effects on sectors 

Droughts, as documented variously and specifically in Bordi et al. (2005), 

Morid et al. (2007), Schipper (2003) and UNISDR (2009) are documented to 

have effects or impacts on different sectors of the economy. While some effects 

are direct, others are indirect and affect the socio-economic aspects of societies. 



27 

 

2.4 Types of drought 

Apart from the identification of the key concepts in the definition of drought, the 

alternative view to a global definition is the classification/categorization of droughts 

into types. The alternative methods in the classification of droughts are documented in 

Demuth & Stahl (2001), Monacelli, Galluccio, & Abbafatim (2005) as based on either 

of the basis on which the drought is defined or on the discipline of practice. 

• Formulation of drought as the basis for classification 

Based on the formulation and definition of droughts, they can be classified into 

two distinct types as either conceptual or operational. Conceptual droughts 

have no basis for rolling assessments and are thus broad and general in their 

definition. On the other hand, operational droughts have the determination of 

onset, severity and offset of drought episodes as their objective. Operational 

drought monitoring is therefore based on some concept of an operational 

definition of drought. This approach makes the study of droughts a more 

structured concept since we can define it in terms of on-set, off-set, duration, 

severity and even extents of occurrence. 

• The disciplinary perspective of drought as the basis for classification 

Disciplinary perspectives to drought definition use the concepts of operational 

drought to define droughts as viewed by different sectors of practice. This 

approach gives the categories of drought as any of meteorological, 

hydrological, agricultural, and socio-economic droughts. The description of the 

droughts based on their types by discipline is provided in UNOOSA (2015) and 

is amplified in drought monitoring studies. These different types of drought are 

elaborated as follows:  

▪ Meteorological drought is defined in terms of the magnitude of a 

precipitation shortfall and the duration of this shortfall event and is 

noted to be a broader definition of drought as opposed to the other types 

of droughts. Studies that document meteorological droughts include 

Bordi et al. (2005), Huang et al. (2016), Khadr (2016). 
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▪ Hydrological drought is usually based on surface and sub-surface water 

supplies. It is always closely related to agricultural drought. The 

indexes used to monitor this type of drought are therefore based on 

water sources. An example study that document hydrological drought 

is, for example, Kubiak-Wójcicka & Bak (2018) that is based on river 

flow. 

▪ Agricultural drought is mostly defined in terms of the impacts of 

droughts on agriculture as indicated by precipitation deficits, soil 

moisture and evapotranspiration. The monitoring of agricultural 

drought is for example in Gu et al. (2008), Klisch & Atzberger (2016), 

Svoboda et al. (2002) and Tadesse et al. (2014). 

▪ Socio-Economic drought is the result of droughts affecting people, lives 

and livelihoods. It is therefore characterized by the destabilization of 

normal demand and supply systems of some economic goods with the 

progression of a drought event. Possible use of socio-economic data in 

drought monitoring is provided in Enenkel et al. (2015), Jenkins (2012) 

and Garrido (2014). 

Adopting the operational definition of droughts that covers the entire of the types of 

disciplinary drought definition as advocated for in Enenkel et al. (2015) would be a 

powerful formulation of an operational drought monitoring system. A sound DEWS 

would, therefore, be indicated by the objective definition of drought that incorporates 

the key characteristics of drought identified in section 2.3 that includes: spatial extent, 

temporal coverage, severity, duration and the definition of reference/normal conditions 

and periods. 

2.5 Drought Risk Management (DRM) 

The quantification of drought, just like its direct modelling, remains a difficult 

undertaking. This is as opposed to the effects of drought that are, however, identifiable 

and are perhaps measurable. The management of droughts can thus be viewed as the 
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minimization of drought risk. Drought risk can be viewed as the likelihood that drought 

leads to casualties, damage or loss. 

With the risk view in mind, drought can be viewed as a natural hazard whose 

occurrence leads to a disaster. It is, however, the case that the drought hazard has a 

chance or probability of occurrence when defined in the confines of space and time. 

This probability of drought occurring is defined as the risk to drought and is what the 

drought risk management initiatives centre around. 

There are two approaches to handling the problem of droughts. First, is the episodic 

approach that reacts to droughts at their time of occurrence. Second is a strategic 

approach that adopts the definition of drought as a risk and proactively manages the 

risk of droughts. Given that droughts are natural disasters, the choice between these 

approaches then begs the question on the methods for drought risk management. 

The traditional approach to drought management, in which droughts are monitored and 

responded to as and after they unravel, and the learning on the losses from past drought 

events, has led to a shift towards Drought Risk Management (DRM). DRM is 

considered a holistic approach that includes the following: - 

• Drought sensitive policy formulation 

This step involves the definition of drought-sensitive policies at global, regional, 

national and even sub-national levels that are geared towards ensuring droughts do 

not lead to losses. The formulation of global bodies with mandates on drought 

monitoring is one of the initiatives at this level of drought risk management 

(DRM). In Kenya for example, there has been the formulation of the Ending 

Drought Emergencies (EDE) under the Vision 2030 (Vision 2030, 2007). The 

effect of the formulation of drought-sensitive policy is to mainstream drought risk 

management in the normal programming of any given country. 

• Prioritization of drought monitoring 

Drought losses have led to the realization of need by governments, including GoK, 

on the need to have an effective Drought Early Warning System (DEWS). DEWS 
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provide information on occurring hazards that might evolve into disasters unless 

early response and possible mitigation measures are initiated. The objective of a 

DEWS is to monitor droughts in an objective way that also tracks the evolution of 

the hazard through stages that are part of an overall management cycle. The DEWS 

implemented for drought monitoring should be comprehensive and responsive to 

environmental and climatic events. ILRI (2009) notes that Drought is the prime 

recurrent natural disaster in Kenya that affects up to 10 million people, mostly 

pastoralists. ILRI notes that, despite a National Drought Management System 

being in force in Kenya for almost 20-year, one common limitation that is 

highlighted is that the systems remained static in the past with methodologies in 

place long after they were established. As documented by ILRI (2009), the 

Government of Kenya (GoK) and the European Union (EU) initiated a process to 

review both the DEWS and the drought response strategies in Kenya. This 

particular initiative aimed to make an evidence-based drought early warning 

system that together with assessment of vulnerabilities can form a basis for early 

response to drought. The evidence-based system is expected to ride on the fact that, 

in the context of Kenya, drought is a slow onset hazard (UNISDR, 2009) that by 

and large provides a window for response and mitigation. 

• Legislation on and Institutionalization of drought management initiatives 

At the national level for many governments, there has been witnessed the 

establishment of specialized institutions for drought and drought risk management. 

The National Drought Management Authority (NDMA) in 2011 and subsequent 

legislation of the NMDA in Act No 4 of 2016 as a permanent drought management 

body is one of the successes of the influence on policy that is attributed to drought 

and the effects of droughts. The NDMA is in charge of drought monitoring and 

resilience building with the overall aim of ensuring droughts do not become 

disasters. Other initiatives include the establishment of a Drought Contingency 

Fund project (DCF-P) that provides funding for both drought preparedness and 

drought response activities and its institutionalization through the establishment of 

the National Drought Emergency Fund (NDEF). 

http://www.fao.org/ag/againfo/programmes/en/lead/alive_toolkit/pages/pageA_glossary.html#D
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• The adoption and implementation of a Drought Risk Management (DRM) 

Framework 

Drought risk management (DRM) is mostly driven by frameworks that have been 

formulated over the years. One such framework is the Hyogo Framework of 

Action, HFA (UNISDR, 2005) while another is the UNISDR principles to drought 

risks management. These are summarized as shown in Figure 2.4. 

 
Figure 2.4: Hyogo Framework for Action (HFA) Priorities for Action (PFA) and UNISDR 

guiding Principles from the Sendai Framework 

At the very basic, the risks of droughts can be modelled as shown in Equation 1& 

2. The approach of risk management is to view drought risk as a function of the 

elements of hazard (H), vulnerability (V), exposure (E) and capacity (C). 

𝑅 =
(𝐻 × 𝑉)

𝐶
 

 

…………………………………………………………….. (1) 

 

𝑅 = 𝐻 × 𝐸 × 𝑉 …………………………………………………….……….. (2) 

 

Equations 1 and 2 are basically the same since both assert that drought risk (R) directly 

depends on the hazard (drought, H) and vulnerability (V) for the exposed elements. In 

equation 1, drought risk (R) is mitigated by the capacity (C) of the exposed elements. On the 

other hand, equation 2 assumes vulnerability (V) as what remains after capacity (C) is 

accounted for. 
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The above Equations are a reduction of the Drought Risk Management (DRM) 

framework that is an extracted from the Hyogo Framework of Action, HFA and the 

Sendai Framework’s UNISDR principles (UNISDR, 2005).  

The key elements of drought risk management (DRM) therefore include: drought 

contingency planning, drought early warning, drought resilience building, drought 

preparedness, drought impact assessment, drought communication, drought response 

and drought recovery all carried out in the context of a drought early warning system 

(DEWS). Absence of these aspects of DRM, especially that of DEWS has resulted in 

reactive systems as opposed to the demand for proactive systems. One key tenet of the 

DRM approach is the need for reliable prediction-driven systems and models that are 

incorporated as part of the DEWS. In fact, it is our observation that a predictive drought 

early warning system that provides a preview of the expected future condition is the 

one key weakness that plagues most of the existing drought early warning initiatives. 

DEWS are by their nature domiciles in the second action point of the Hyogo 

framework (Know the risks and act) as well the UNISDR principle on Drought Risk 

Identification, Risk Monitoring and Early Warning systems. The early provision of 

drought information for early action would thus be viewed as a key undertaking of 

DEWS. 

2.6 Drought Monitoring Systems 

From the key concepts of drought in section 2.3, four concepts are particularly 

important when it comes to operational drought monitoring. As also defined in section 

2.4, operational drought monitoring is concerned with the definition of drought 

severity, onset and offset. The four concepts of drought deemed important are: 

droughts having both a spatial extent of coverage and temporal coverage (Tsakiris et 

al., 2013); droughts as slow-onset disasters (UNISDR, 2009; Wilhite, 2006) and 

droughts as being progressive along some objective measure of severity (UNOOSA, 

2015). The implication is such that, we can monitor drought for a given location and 

time with the benefit of time to quantify the changes in its severity. With the benefit of 

time as drought progresses, it is then possible to model drought impacts for a spatial 
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extent of interest. Such operational monitoring would be achieved through drought 

early warning systems (DEWS). 

A DEWS would thus have its key goal as the operational monitoring of droughts in the 

context of their severity and progression in time over a given spatial extent under 

consideration. The establishment of a DEWS would thus be justifiable based on the 

realization that better improved and timely drought-related decisions lead to reduced 

impacts on both people’s lives and livelihoods. Typically, a DEWS would have a 

selected extent of coverage with the possibility of having multiple statistics for 

multiple extents over a selected frequency of monitoring that could be any of daily, 

pentadal, weekly, decadal, bi-weekly, monthly, quarterly, semi-annually, annually etc.  

To achieve operational drought monitoring, drought has to be defined. According to 

Wilhite (2006), Morid, Smakhtin & Bagherzadeh (2007) and Bordi et al. (2005) 

drought can be viewed as a cumulative departure from normal or expected 

conditions/levels of precipitation. The normal is defined differently in various 

monitoring systems. The most common definition of normal is the long-term average. 

The acceleration of drought and effects of droughts once onset is documented to be at 

varying speeds for various spatial extents. This, therefore, makes it necessary to have 

in-place drought monitoring systems to areas prone to drought related disasters. 

Drought monitoring systems are thus deployed to identify changes in climate and 

hence aim to detect the likelihood of occurrence and the expected severity of drought. 

The key is to avail drought related information to decision makers in time to make 

drought risk management an active and continuous process rather than a reactive 

process. Drought monitoring systems have thus been used to provide historical records 

to assess changing conditions and thus provide early warnings of potential drought 

threats.  

Due to the complex nature of drought as a disaster, Drought Early Warning Systems 

(DEWS) have been noted to be more complex as compared to those of other natural 

disasters (UNISDR, 2006). This complexity has ensured that they are less developed 

as compared to their peers, like say for floods. Ground sourced precipitation 
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measurements and the related precipitation anomalies have been used as the common 

parameter for monitoring droughts. Recent developments include incorporation of 

Remote Sensing data in the form of rainfall estimates (RFE) and Vegetation Indexes 

(VIs) as proxies to drought monitoring (Niemeyer, 2008). 

DEWS that are well designed should meet the three-point criteria guided by 

objectivity, sensitivity to small changes and communicability.  

• Objectivity ensures that the definition of drought is well thought out and thus 

not subjective. In operational drought monitoring, once a definition is adopted,  

it is retained throughout the monitoring of the event. Even for cases where 

drought classes are used, they must be objectively determined. Objectivity 

builds confidence in a DEWS (Quiring, 2009) and is characterized by the 

ability to identify and use representative and reliable data. Any forecasts made 

should also be based on the integration of data from different sources including 

those on drought impacts possibly realized from field-based assessments. 

• Sensitivity to changes as advanced in Wilhite & Svoboda (2000) ensures a 

DEWS has the ability to detect on-set and secession of droughts that are key 

milestones that determine the kind of responses required. DEWS must be able 

to signal drought situations before they occur even for localized cases of 

drought. The ability to detect these changes, however small is what sets apart 

DEWS in terms of their ability to contribute to the management of drought 

events especially when famines are ab outcome. 

•  Ease of and regularity in the communication of the products/outputs of a 

DEWS is a key requirement as documented in Grasso & Singh (2011). The 

systems generally remain non-technical in their outputs so as to be useful to a 

wider audience. Dissemination and communication of results stakeholders 

should also be in a timely manner. Objectivity in the definition of drought and 

consistency in the application of DEWS improved communicability as results 

are then trusted. 
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DEWS, based on a review of literature, can be categorized based on their extent of 

coverage and on their timelines for delivery of their products and outputs. 

Geographical coverage is used to popularly characterized the systems into Local (sub-

national) systems that are majorly within small spatial extents, National systems 

whose coverage is a whole country, for example, the system in  Klisch & Atzberger 

(2016) and the United States Drought Monitor (Svoboda et al., 2002), Regional 

systems that cover more than a country like the case of the African Drought Monitor 

(Sheffield et al., 2008) and Global systems whose coverage is the whole globe like the 

systems in Hao et al. (2014). It is generally the expectation that the larger the coverage, 

the more generalized the results and thus the more information loss occurs. Such large-

scale DEWS are bound to miss the small extent and restricted time-scale occurrences 

of droughts. 

On the other hand, timeliness in the delivery of products separates the systems into ex-

post systems for example in Hayes et al. (1999) and in Brown et al. (2015); and ex-

ante systems (Tadesse et al., 2014; Wardlow et al., 2012). Ex-post and ex-ante systems 

are also referred to as monitoring and predictive systems respectively. 

Even though the terms Drought Monitoring System (DMS) and Drought Early 

Warning Systems (DEWS) are used interchangeably, it is our opinion that the 

difference should be that a DEWS offers a longer lead time as compared to a DMS in 

the provision of monitoring products and thus majorly driven by prediction of 

droughts. DEWS must be ex-ante systems while DMS should ideally be optionally ex-

ante. With the ever recurring and intensifying reequipment for provision of early and 

timely information, DMS face the increasing need for predictive components. 

2.7 Data and Indicators for Drought Monitoring 

The process of operationalizing drought early warning systems (DEWS) involves the 

collection of data (Wilhite, Sivakumar & Wood, 2000) for the extents of interest. The 

data collected is basically of four categories: Precipitation data, hydrological data, 

vegetation data and in some cases, socio-economic data. A review of the data for 

drought monitoring is provided here following in the earlier classification of droughts 
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based on operational monitoring systems into Meteorological, Hydrological, 

Agricultural and Socio-Economic drought. Remote sensing data are discussed in the 

light of Meteorological, Hydrological and Agricultural Drought while Socio-

Economic data is done in the context of Socio-Economic drought.  

Figure 2.5 provides a model for the discussion on the data requirements for drought 

monitoring. The model is based on UNOOSA (2015) that documents different types 

of drought and asserts their successive nature. The drought types of meteorological, 

hydrological and agricultural are noted to follow each other with the progression of the 

deficiency of precipitation. 

 

Figure 2.5: Drought types and their progression. 

The different types of drought are operationally defined differently. Meteorological 

drought is defined in terms of the deficiency of precipitation (degree of dryness) and 

the period of the deficiency, mostly over more than a season. Agricultural drought, on 

the other hand, is defined by the effect of the deficiency of water for plant growth and 

soil moisture. Hydrological drought is characterized by the drying up of surface and 

sub-surface water sources. 

At the extreme end of a drought are the effects on the socio-economic indicators of 

areas of coverage including supply and demand for economic goods like water, milk, 

forage, food prices and hydroelectric power. Socio-Economic droughts are 

characterized by demand surpassing supply of the climate-dependent economic goods. 

2.7.1 Remote Sensing data for drought monitoring 

Remote Sensing is a data collection technique at the core of which is a sensing device 

that collects information from an object without physical contact. The greatest 

application of remote sensing would be to get data from instances where accessibility 

is a limitation (Patruno, Fitrzyk & Delgado Blasco, 2020). The principles of remote 

sensing of efficiency and effectiveness have been variously documented (Berhan et al., 
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2011; Few, 2009; Huete et al., 2002; Ojala, 2003). There is an increasing availability 

of remote sensing data; even at high resolutions with some of these sources having 

some level of pre-processing for the data. 

The popularity of remote sensing data (RSD) for drought monitoring is attributed to 

the following reasons based on the desirable characteristics of the data as documented 

in Wardlow & Anderson (2012) and Gu et al. (2008): - 

• Greater spatial and temporal coverage is provided by Remote Sensing of 

drought conditions than from site measurements of precipitation, soil moisture 

(SM), Land Surface Temperatures (LST) and vegetation cover. The sensors, 

having an automated approach are thus able to cover larger regions and at ever-

increasingly high resolutions. 

• Timely provision of information from remote sensing through variously 

automated data acquisition processes ensures non-delay of operational 

processes. The data satellites deliver data at regular intervals and repositories 

have the data provided on time at frequencies of design and contract. Planning 

around this attribute is made easy as products end up having timely delivery. 

• Non-biased and accurate information out of remote sensing processes ensures 

reliability and trust in the data. Data accuracy issues are mostly due to factors 

like cloud cover and atmospheric interference that have methodologies for their 

corrections. As opposed to human-driven data collection, satellites are setup 

for objectivity, especially after design limitations are accounted for. 

• Spatially continuous measurements provided by remote sensing data ensure 

data is available over large geographical areas including areas where access is 

limited and ground observations sparse or virtually non-existent. This is as 

opposed to other methods that have discrete and possibly categorized data 

collected over some desired extent. 

• Consistent frequency of revisit of the satellites ensures that the data is regular 

and can thus be used to form trends for the same spatial coverage over the same 
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period in history. This is perhaps the property that makes remote sensing data 

appropriate for operational drought early warning systems. 

• Availability of historical data from remote sensing data repositories ensures 

the possibility of comparisons based on the historical cases for the detection of 

anomalies, which is the best way to define droughts. The historical data helps 

to support the building of historical trends capable of delivering value to studies 

that model changes over time. The availability of historical datasets ensures the 

building of models can befit both from being undertaken immediately and 

being validated prior to deployment for operational use.  

• Simplicity in the calculation of anomalies indices and makes for the 

popularity of the use of remote sensing data. The indices also lend themselves 

to data visualization using different techniques like maps, dashboards, tables, 

charts, and matrices. The interpretation of the indices at times, however, 

becomes a limitation requiring some level of skill. 

From the studies in Wardlow & Anderson (2012) and Gu et al. (2008), remote sensing 

applications for drought monitoring, therefore, require data sets that, first, hold the 

ideal characteristics of being able to be incorporated into operational data production 

that is routine (regular intervals- dekadal, monthly, 3-monthly etc.), The second 

desirable characteristic is the possession of a historical archive that can facilitate the 

calculation of anomalies based on any of but not limited to the per cent of average, 

relative ranges and standard deviations. The third is that the data be highly available 

and easily accessible, including availability in multiple formats that are relatively 

inexpensive to extract from and deploy into monitoring systems. The fourth desirable 

characteristic is that the data should be amenable to validation and reproducibility by 

subject matter experts, especially across multiple locations and time periods. 

Additionally, the data for drought monitoring should be location-aware and also be 

location sensitive for better identification of possible hotspots as advanced in Few 

(2009). 
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Key issues in the selection of remote sensing images for any purpose is, apart from the 

intended application, guided by the following considerations: 

• Repetition rate/ frequency of the sensor/ satellite 

• The spectral resolution that defines the number of spectral bands of the 

electromagnetic spectrum covered by the satellite 

• Spatial resolution that defines the unit area for which data is collected. This 

unit is referred to as the pixel size. 

• Cost as compared to the value offered by the information. In cases where open-

source data is fit for purpose, cost is a justification enough to choose them. 

Another element that is important but is often overlooked in the identification and use 

of remote sensing data is the aspect of data formats. In the most. Remote sensing is 

sourced in the form of raster images in any of the valid formats including, but not 

limited to, TIF, GeoTIFF, ECW, GRID, IMG, JP2, SID. The images either come with 

the metadata as part of the images like is in GeoTIFF or a separate file as is in the case 

of IMG files. The choice of processing tools at times constrains the data formats to be 

preferred thought conversion from one format to another is widely supported.  

2.7.2 Remote Sensing Indicators for drought monitoring 

In this section, we review how remote sensing data is processed to realize drought-

sensitive indicators. We then proceed to outline some of the important drought 

indicators and how they are realized from the raw datasets.  

For the remote sensing data to be used for drought monitoring, the data must be 

processed into indicators that both quantify drought and that are at the same time 

sensitive to changes in drought conditions. 

The definition of the indicators is both a data problem and an interpretation problem. 

A data problem in the sense that the indicators have to be based on some specific data 

that is guaranteed to be available in the future. The interpretation problem implies that 

the indicators will need to be easily interpreted, especially in operational drought 

monitoring. Since drought is widely defined as a deviation from some normal 
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conditions, most of the data transformations are “difference” transformations between 

images of interest and some reference periods. A summary of these calculations/ 

transformations of the remote sensing data are as provided in Table 2. 

Table 2: Common “Difference” indicators used in drought monitoring. 

Most common is the definition of absolute, relative and standardized differences 

Transformation  Transformation Formula 

Absolute Difference to the 

historical median 
𝐴𝐷ℎ𝑚(𝑦, 𝑝) = 𝑋(𝑦, 𝑝) − 𝑀𝑒𝑑𝑖𝑎𝑛(𝑝) ---(3) 

Absolute Difference to the 

historical average 
𝐴𝐷ℎ𝑎(𝑦, 𝑝) = 𝑋(𝑦, 𝑝) − 𝑀𝑒𝑎𝑛(𝑝) ---(4) 

Relative Difference to the 

historical median 
𝑅𝐷ℎ𝑚(𝑦, 𝑝) = [𝑋(𝑦, 𝑝) − 𝑀𝑒𝑑𝑖𝑎𝑛(𝑝)]/𝑀𝐸𝐷𝐼𝐴𝑁(𝑝) ---(5) 

Relative Difference to the 

historical mean 
𝑅𝐷ℎ𝑎(𝑦, 𝑝) = [𝑋(𝑦, 𝑝) − 𝑀𝑒𝑎𝑛(𝑝)]/𝑀𝑒𝑎𝑛(𝑝) ---(6) 

Standardized Difference 𝑆𝐷ℎ(𝑦, 𝑝) = [𝑋(𝑦, 𝑝) − 𝑀𝑒𝑎𝑛(𝑝)]/𝑆𝑡𝐷𝐸𝑉(𝑝) ---(7) 

Relative Range Difference 𝑅𝑅ℎ(𝑦, 𝑝) = [𝑋(𝑦, 𝑝) − 𝑀𝑖𝑛(𝑝)]/[𝑀𝑎𝑥(𝑝) − 𝑀𝐼𝑁(𝑝)]--(8) 

Historical Probability 𝐻𝑃ℎ(𝑦, 𝑝) = 𝑃𝑟𝑜𝑏 𝑜𝑓[𝑋(𝑦, 𝑝)] 𝑖𝑛 ℎ𝑖𝑠𝑡. 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛---(9) 

Historical Rank 𝐻𝑃ℎ(𝑦, 𝑝) = 𝑅𝑎𝑛𝑘 𝑜𝑓[𝑋(𝑦, 𝑝)] 𝑖𝑛 ℎ𝑖𝑠𝑡. 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛---(10) 

Table 2 shows the difference transformations frequently used to realize drought 

indicators. The difference indicators popularly used include: 

• The absolute difference indicators (Equation 3 & 4) which subtract one image 

from a reference image that is any of the mean or median images. 

• The relative differences (Equation 5 & 6) that further calculate the ratio of the 

“difference” transformations to the reference mean or median image used in 

the transformation. In essence, the relative differences make the actual 

differences less pronounced. 

• The standardised difference (Equation 7) and relative range difference 

(Equation 8) are perhaps the most popular. The standard difference approach 

gets the number of standardised deviations an image is away from the mean of 

a reference historical period. A variant of this is recommended by WMO (2012) 

in which the new image values were resampled such that the mean is zero (0) 

and the standard deviation is one (1). The relative range, as opposed to the 

standardised approach, transforms the difference between the current value and 

the minimum value from the reference period with the range of the values from 
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the reference period. In essence, it stretches the current value within the range 

if the minimum and maximum historical data mostly from a similar period in 

history. An evaluation of this stretching is for example used in Kogan (1990) 

and in Klisch & Atzberger (2016). 

• The historical probability (Equation 9) and historical rank (Equation 10) that 

both calculate the probability and rank of the current values in the historical 

distributions respectively 

The above transformations of remote sensing data depend on data and are in essence 

only useful if parameters to be monitored from space are identified and respective 

datasets made available in formats considered appropriate for the calculation of the 

indexes. 

The possible parameters to be monitored from space using Remote Sensing 

technologies for the different phase of the drought are documented in (Khamala, 2017; 

UNOOSA, 2015; Zargar et al., 2011). The parameters to be monitored include, but are 

not limited to Precipitation (PPT), Surface Water Storage (SWS), Ground Water (GW), 

Land Surface Temperatures (LST), Evapotranspiration (EVT), Snow, Soil Moisture 

(SM) and Vegetation (VGT). The parameters are mostly monitored at Global, 

Regional, National and sub-national levels. 

The remote sensing indicators, reviewed following on the types of droughts earlier 

defined are described as provided here next. 

• Meteorological drought indicators 

Meteorological drought monitoring is mostly based on precipitation. Precipitation, in 

the forms of rain, snow, hail and any other is characterized by the accompanying 

complexity in their modelling. This is despite the need for quality and well-validated 

precipitation products, especially in the support of agriculture. There is growing 

literature and use of satellite-based precipitation data for drought monitoring (Funk et 

al., 2014; Maidment et al., 2014; Toté et al., 2015). 
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Satellite driven precipitation products are useful for drought and flood early warning 

systems and are meant to overcome the problem of limited distribution of rain-gauge 

observations and the tendency to have missing data from physical stations. The 

incompleteness of precipitation data may be due to damaged measuring instruments, 

changes to instrumentation with time, changes in data collectors and or change of 

measuring sites as documented in Sattari, Rezazadeh-Joudi & Kusiak (2017). There is, 

therefore, need to validate and document the accuracies of the precipitation products 

especially if physical ran gauge station data is to be used. 

Toté et al. (2015) document the algorithmic approaches to the derivation of satellite-

based precipitation products. These algorithms that derive precipitation from satellites 

are either Thermal Infrared (TIR) or Passive Microwave (PM) based. The basic 

assumption in the modelling of precipitation from satellites is the linear relationship 

between rainfall and cloud cover duration (CCD). Passive Microwaves are capable of 

penetrating clouds and thus capture better instantaneous rains and are more accurate 

over short periods compared to TIR based products that offer better accuracy over 

longer monitoring periods. TIR based algorithms are, however, susceptible to False 

Positives (FP) as a result of cold clouds with no rains like cirrus clouds and False 

Negatives on warm clouds not normally associated with rains like stratiform clouds 

but that then yield rains. 

There is an increasing approach in combining both thermal infrared and passive 

microwave in precipitation monitoring. Examples of TIR microwaves includes 

Meteosat-8 and Geostationary Operational Environmental Satellite (GOES) while 

those of Passive Microwave (PM) includes (Special Sensor Microwave Imager, 

SSM/I; Tropical Rainfall Measuring Mission, TRMM and Advanced Microwave 

Sounding Unit, AMSU). 

The current state of the art in the modelling of precipitation data from satellites 

involves the use of ground-based information to validate the modelled data. The 

blending with rain gauge data is meant to improve on accuracy and is documented for 

example in Sheffield (2014). Sheffield (2014), for example, use of rainfall data as 
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achieving a 20% reduction of errors in P-values with 2 rain gauges per 1-degree box 

that is approximately a 111km box. A drastic reduction to 5% is recorded to be 

achieved with the use of 5 rain-gauges clearly indicating the benefit of use of more 

rain gauges in the calibration of satellite-derived precipitation datasets. 

Modelling based satellite-derived precipitation data that use the validation approach 

include those from TAMSAT-Tropical Applications of Meteorology using SATellite 

(TAMSAT) in (Maidment et al., 2014) and The Climate Hazards Group Infrared 

Precipitation with Stations, CHIRPS (Funk et al., 2014). There are current efforts, 

including the Global Precipitation Mission (GPM) Microwave Imager (MWI) to 

monitor both precipitation intensity and the 3D structure of rainfall particles through 

its Dual-frequency Precipitation Radar (DPR). 

The common indices used for drought monitoring that are derived from Precipitation 

data sets includes, but are not limited to Rainfall Estimates (RFE) that is the absolute 

approximations of precipitation (Tarnavsky et al., 2014), Standardized Precipitation 

Index (SPI) (WMO, 2012) that is as standardised difference calculate from the general 

formulation in Equation (7) and Rainfall Condition Index (RCI) (Du et al., 2013) that 

is a relative range difference calculated following on Equation (8). 

• Hydrological & Agricultural Indicators 

Hydrological and Agricultural drought indicators have a fine line in literature with 

quite a lot of overlaps. The various indicators in this category that are derivable from 

remotely sensed data include Land Surface Temperature (LST) (Wan, Hook & Hulley, 

2015), Evapotranspiration (EVT) and Potential Evapotranspiration (PET) as 

documented in Running, Mu & Zhao (2017), Standard Precipitation and 

Evapotranspiration Index (SPEI) (Beguería et al., 2014), Soil Moisture (SM), Stream 

Flow Index (SFI). It is instructive to note that some of these like SM are modelled 

variables just like satellite-derived precipitation data. While Normalized Difference 

Vegetation Index (NDVI) is a direct measurement of vegetation conditions, the other 

hydrological variables based on groundwater and streamflow are measurements that 

are at times not directly provided through remote sensing approaches. In fact, some 
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regions that experience perpetual aridity do not have the benefit of rivers/ permanent 

streams on which most hydrological drought indicators are based. 

Remotely sensed Vegetation Indices (VIs) have been widely used in the monitoring of 

greenness of vegetation and indirectly for drought monitoring and even crop 

monitoring (Mainardi, 2011; McVicar & Jupp, 1998; Peters et al., 2002; Rembold et 

al., 2013; Rojas, Vrieling & Rembold, 2011; Unganai & Kogan, 1998). The most 

common of these indices used are those that transform spectral bands signals of sensor 

instruments to corresponding vegetation conditions. NDVI is the most common of the 

vegetation indices used for the above and also in monitoring changes in phenology, 

changes in land cover and land use and effects of global warming. 

The NDVI measures/quantifies the relative abundance and activity of green vegetation 

and is correlated with chlorophyll. Most of the applications of NDVI above are based 

on the extraction of trends from NDVI time series data. The derivation of the NDVI is 

from the reflectances of two bands of a sensor and is calculated from Equation 11. 

         𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅−𝑅𝐸𝐷)

(𝑁𝐼𝑅+𝑅𝐸𝐷)
…………………………………...…….……. (11) 

NIR and RED are spectral reflectance measurements in the red and near infra-red 

bands respectively. Healthy vegetation has higher NIR reflectance and low 

reflectance on the RED band since the same is absorbed for photosynthetic activity. 

High NDVI, therefore, implies green vegetation. NDVI 0.6-0.8 implies highly dense 

vegetation comparable to temperate and tropical rainforests; 0.2-0.3 implies moderate 

density (shrubs and grassland) while 0.1 and below signifies barren areas, rock, sand 

and snow (Quiring & Ganesh, 2010). 

The NDVI has been utilized for many years to measure and monitor plant growth and 

vigour, vegetation cover and biomass production from multispectral satellite data. 

NDVI has been used in the monitoring of plants during the growing season since it 

indicates expected greenness for specified time periods in history. Healthy vegetation 

denotes favourable climatic and environmental conditions, while poor vegetation 

condition is indicative of droughts and diminished productivity. At the same time, the 

interaction between precipitation and vegetation is recognized and has been modelled. 

There however remains the need to model the lag effect of NDVI on meteorological 
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drought (Zambrano et al., 2016; Zhang et al., 2013).  There exist multiple sensors, 

satellites and data sources from which space monitored vegetation data can be sourced. 

Some of these sources for satellite driven vegetation indices are as discussed below 

with a summary of their characteristics as shown in Table 3. 

Table 3: Sources and attributes of NDVI Products (Phenology, 2011) 

Sensor Satellite 
Orbit 

Frequency 

Years of 

Data 

Spatial 

Resolution 

Processed 

Time Step 
Latency 

AVHRR 
NOAA 

series 
Daily 

1989-

present 
1 km 

1-week, 

2-week 
~24 hours 

AVHRR 
NOAA 

series 
Daily 

1982- 

2006 
8 km 

3x 

monthly 
N/A 

Thematic 

Mapper 

Landsat 

 4-5 
16 days 

1982- 

2011 
30 m By scene N/A 

Enhanced 

Thematic 

Mapper + 

Landsat 7 16 days 
1999-

present 
30 m By scene ~1-3 days 

VGT 
SPOT-

VGT 
1-2 days 

1999-

present 
1.15 km 10-day ~3 months 

MODIS Terra 1-2 days 
2000-

present 

250/500m 

/ 1km 

8-day, 16-

day 
~7-30 days 

MODIS Aqua 1-2 days 
2002-

present 

250/500m 

/ 1 km 

8-day, 16-

day 
~7-30 days 

 

Despite the popularity of the NDVI, there are documented limitations of the NDVI 

index and its usage. The three main limitations include: (1) saturation of NDVI values, 

(2) difficulty in interpretation and (3) susceptibility to atmospheric interferences, 

especially of cloud cover.  

The first limitation of NDVI is the saturation problem of the values as is articulated in 

Liu, Qin and Zhan (2012) and in Huete et al. (2002). The saturation problem arises 

because the NDVI is a ratio of the values of the red and infrared bands that are not 

linear in their relationship. The problem is a dynamic range expansion problem 

characterized by the decrease in the intensity of a spectral line especially in light of 

dense vegetation. In modelling, this is handled by transformation to ensure the 

indicator is linearized. There are popular alternatives to the NDVI that handle the 

problem of saturation. Such includes Fraction of absorbed photosynthetically active 

radiation, fAPAR (Meroni et. al., 2013). 
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Second, to the problem of saturation, is the inherent problem of difficulty in the 

interpretation of the NDVI values due to the range of the values from -1 to +1. An 

absolute NDVI value might not be a good indication of the exact occurrence of any 

deficiencies of vegetation cover.  There is always then need to mitigated on this 

through the calculation of relative range indicators or ratios from the absolute NDVI 

values. Therefore, there exists an increasing use of NDVI values in the calculation of 

indices for drought monitoring. Such indices that are strictly NDVI derived includes 

Vegetation Condition Index (VCI) and Standardized Vegetation Index (ZVI). These 

are modelled as shown in Equations 12 and 13 (Klisch & Atzberger, 2016). The VCI 

(Kogan, 1990) reflects both spatial and temporal vegetation variability and also 

identifies the impact of weather on vegetation. The VCI is therefore appropriate for the 

monitoring of agricultural drought since it shows the variability of vegetation intensity 

for similar times in history (Zambrano et al., 2016). 

𝑽𝑪𝑰 = 100 ∗
(𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛)

𝑁𝐷𝑉𝐼𝑚𝑎𝑥 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛
 

 

…………………………………….. (12) 

 

𝒁𝑽𝑰 =
(𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼𝑚𝑒𝑎𝑛)

𝑠𝑡𝑑(𝑁𝐷𝑉𝐼)
 

…………………………………….. (13) 

The VCI and ZVI (Equation 12 & 13) are calculated similar periods hence for the same 

time steps in history. The use of the time and space elements in the calculation of the 

VCI ensure that we compare only the comparables. Therefore, for monthly monitoring, 

every month’s values will be computed based on that given month’s min and max for 

VCI just as the standard deviation and mean are also time-step dependent for the 

calculation of ZVI. 

Finally, and in addition to the problems of saturation and difficulty in interpretation, is 

the third limitation of the effect of noise on the NDVI due to both cloud cover and 

atmospheric interferences on the sensors that leads to the wrong quantification of 

vegetation greenness. The problem of cloud cover is for example documented in Park 

(2013). Image processing must thus take cognizance to eliminate the effects of clouds 

and shadows attributable to topography and saturation values in the numbers generated 
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by the geometry of the satellite observation or as implied by interference by the 

presence of water on leaves.  

2.7.3 Issues in the Use of Remote Sensing Data for Drought Monitoring 

The issues in the use of Remote Sensing data can be broadly grouped into three 

categories: The problem of multiplicity of data sources, the availability of vast of 

volumes of data and the quality of data, especially as applied to drought monitoring. 

These issues are discussed in the context of predictive systems for drought monitoring. 

2.7.3.1 Problems and opportunities in the multiplicity of remote sensing data 

sources 

Efforts at drought monitoring exist in a context that is characterized by three main 

points of general convergence that includes: 

• the agreement on the existence of different types of drought- meteorological, 

agricultural, hydrological and socio-economic droughts (UNOOSA, 2015) that 

was illustrated in Figure 2.5 above. 

• the non-existence of an agreed single one fits all definition of drought with the 

monitoring systems, therefore, aiming to monitor droughts in a context where 

multiple definitions exist (Lloyd-Hughes, 2014). 

• the existence of multiple sensors, satellites and data providers of the same 

drought monitoring data and information. These different data and information 

come in different formats and with different spatial and temporal, repeat 

frequencies and data usage policies. 

The above realities led to the existence of a multiplicity of indicators and indexes 

meant to monitor different types and phases of drought. The differences in the 

definition of drought ensure that there can never exist a one size fits all specification 

of drought monitoring requirements. Use of multi-sensor data has been documented to 

offer improved accuracies and result in better inferences as compared to when a single 

sensor is used (Dalla Mura et al., 2015). 
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Even when the drought monitoring data sources are agreed on, there still exist subtle 

differences in the indicators and or indices that are then extracted from the sources for 

drought monitoring. The multiple sources can be used together in different approaches: 

data fusion (Dalla Mura et al., 2015; Khaleghi et al., 2013) and multi indicator 

applications both through indicators and indices. Generally, indicators and indices 

have no major differences except for the possibility that indices could have more than 

a single indicator in its definition.  

The problem of multiple sources of data and multiple indices is, therefore, itself an 

opportunity for decision making as pertains choice of the following: 

i. The choice of what source(s) of data are appropriate for the problem at 

hand. This appropriateness is based on time-scales, re-visit frequencies and 

spatial coverage of the data 

ii. The desirable characteristics of the drought to be subject of monitoring 

including severity, duration and spatial extent. 

iii. Availability of historical records and ease of access or computations of the 

same. 

iv. The ability of the data to support near real time computation and thus 

incorporation into early warning systems. 

Approaches to address the Multi-source data problem in drought monitoring 

The multi-source data problem raises the need to understand the commonalities 

between the multiple data sources, multiple indicators and indices. This is so, due to 

the existence of an array of indices and data sources that are in the vast competitive, 

complementary and or independent. Approaches to handling multiple datasets in the 

case of drought monitoring include the use of a single indicator/ index or the use of 

multiple indicators/indexes. 

• Use a single indicator /index is the premise of most drought monitoring systems. 

The basis of this approach is the use and reliance upon a single drought indicator or 

index. The use of a single indicator can be viewed as a naïve approach while that of 

a single index could be viewed as a data reduction and simplification approach for 
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ease of communication. An example is a recommendation by the World 

Meteorological Organization (WMO) on the use of the Standardized Precipitation 

Index (SPI) as the unifier index for drought monitoring (Hayes et al., 2011). Klisch 

& Atzberger (2016) also documented the use of the Vegetation Condition Index 

(VCI) in a single indicator drought monitoring model. This approach, therefore, 

remains easy to interpret and communicate but would not make for an effective 

decision support system as in the most, it covers only one type of drought. 

• The use of multiple indicator/indices for drought monitoring is becoming 

increasingly applicable in drought monitoring. In this approach, multiple indicators/ 

indices are used to monitor drought either of different types or of drought in its 

entirety. The approach involves either the calculation of a hybrid/super index that 

combines multiple indices or the use of multiple different indices in a multivariable 

setup. Such approaches are documented in different studies: 

o Enenkel et al. (2016) use the Enhanced Combined Drought Index (ECDI) 

that integrates four input datasets: rainfall, moisture, land surface 

temperature, and vegetation status. The datasets are weighted for each pixel 

with an automated redistribution of weights for cases when missing data is 

encountered in any of the component datasets. This study proposes the 

combination of this dataset with socio-economic data sourced using 

smartphones from the communities. 

o Hao & AghaKouchak (2013) used the Multivariate Standardized Drought 

Index (MSDI) that probabilistically integrates the Standardized 

Precipitation Index (SPI) and the Standardized Soil Moisture Index (SSI) for 

drought characterization. The key reason advanced by the study for use of 

multiple indexes is the insufficiency of a single index to reliably assess 

drought risk and serve for decision making. The approach can, therefore, be 

referred to as multivariate, multi-index drought-modelling. 

o Vicente-Serrano et al. (2012) that compares the Standardized Precipitation-

Evapotranspiration Index (SPEI) and the Standardized Precipitation Index 
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(SPI) over other Palmer's drought indicators. The study documents the 

superiority of the performance of SPEI & SPI over the Palmers indices. 

o Sun, Mitchel & Davidson (2012) proposed and used a Multi-Index Drought 

(MID) model that combines various indicators for agricultural drought in 

the assessment of wheat crop yields. The study reported the superiority of 

the MID models over single indices/ indicator models. 

o Zhu et al. (2016) documents the use of both the Standardized Precipitation-

Evapotranspiration Index (SPEI) and the Standardized Precipitation Index 

(SPI) calculated over a period of 1 to 12 months to detect hydrological 

droughts. Use of multiple time-scales realized better probability of detection 

of hydrological droughts making for a good alternative when streamflow 

data is not available. 

o Touma et al. (2015) use a multi-model and multi-index approach to the 

evaluation of drought characteristics. Data from 15 climate models from and 

multiple indices are used to assess the likelihood of changes in the spatial 

extent, duration and number of occurrences of future droughts. The four 

drought indices: the Standardized Precipitation Index (SPI), the 

Standardized Runoff Index (SRI), the Standardized Precipitation–

Evapotranspiration Index (SPEI) and the Supply–Demand Drought Index 

(SDDI) are used. 

The three main issues around the use of multiple indices include the assurance of 

continued availability of the multiple datasets from the multiple sources, the ease of 

interpretation of the resultant index and the handling of the computational complexity 

that in most cases are part of their derivations. 

In the context of drought monitoring, the simplest application of remote sensing data 

has either of or both of precipitation and vegetation-based indexes. Even in these 

simple applications of the remote sensing is afflicted with the diversity that comes with 

the precipitation and NDVI products.  Meroni et al. (2013) have discussed these factors 

as spatial and temporal resolution and the availability and quality of data together with 

the intended application and application areas into which the data will be deployed. 
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As an illustration, a consideration of vegetation datasets documents several satellites 

that have provided large scale monitoring for vegetation. Several NDVI datasets with 

global coverage are available borne out of diverse sensors and algorithms. Possible 

sensor sources of NDVI data include AVHRR NOAA, MODIS NASA, SPOT 

VEGETATION (VGT) and SeaWiFS (Meroni et al., 2013; Scheftic et al., 2014; 

Wenxia et al., 2014). There have been undertakings to construct NDVI time series that 

extend their coverage to the early 1980s.  

In the cases where multiple data sources exist, comparison for purpose and objectivity 

in choice of datasets becomes a key undertaking. The choice is therefore between 

products with competing characteristics. The use of multiple indices or selection of 

single indices from several possible multiple sources is mainly driven by the use of 

data comparison techniques that are then geared towards ensuring objectivity in the 

choice of datasets for drought monitoring. The available datasets should thus be 

evaluated for similarity and divergence like is the case in Albarakat & Lakshmi (2019) 

and Martínez‐Beltrán et al. (2009). Such identified similarities or divergences can 

inform the best course of the use of the multiple datasets which could be either the 

selection of a single one or use the multiple sets of data. 

The methods documented for the investigation of similarities and differences between 

similar remote sensing datasets includes a comparison of distributions, comparison of 

correlations and comparison of agreements. These are summarized as follows: - 

Comparison of distribution 

The use of distribution functions to describe similarities or differences between data 

sets is a widely employed method. The four characteristics of data that determine a 

choice of distribution are possible data values based on whether the data values are 

discrete or continuous; symmetry and direction of the symmetry that indicates the 

presence of both positive and negative outliers; the existence of upper and lower limits 

on the data for example if between 0 and 100 and the likelihood of observing extreme 

values based on the frequency of the extreme values. The comparison of NDVI datasets 
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from multiple sources is for example documented in Yin et al. (2012) for MODIS, 

AVHRR and SPOT-VGT. 

The approaches to the statistics of distribution can be classified based on whether 

distribution parameters are known beforehand on the data. This gives either parametric 

or non-parametric methods. Parametric Methods are those that make inference based 

on the assumption of parameters to a distribution function. Such is the basis of use of 

the standard distributions including Binomial, Poisson, Geometric and Discrete 

uniform distributions. Parametric methods, therefore, rely on the tremendous reduction 

of original problems to a few parameters. This reduction is achieved by making many 

and mostly over-restrictive assumptions. They are convenient when correct, efficient 

and easy to interpret. Non-parametric methods, as opposed to parametric methods, 

non-parametric methods make as few assumptions as possible. A distribution form is 

thus not defined over a function F(x) as long as it is cumulative distribution function. 

This approach, therefore, leads to the approximation of a function as opposed to a 

parameter. One non-parametric approach that is commonly used to visually compare 

data distributions is the Empirical Cumulative Distribution Function (ECDF). The 

ECDF is defined as shown in Equation 14: - 

 𝐹(𝑥) =
1

𝑛
∑ 𝐼(𝑥𝑖𝑥) 𝑤ℎ𝑒𝑟𝑒 𝐼 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑛

1 ……………. (14) 

F is the CDF function and is noted to put a mass of 1/n at each data point xi 

Comparison of correlation 

Correlations are used to describe the existence of a relationship between variables, with 

the concept extendable to cover datasets. The investigation of correlation is quite 

popular in the investigation of data archives for both agreement and differences. The 

correlational analysis is for example used in Yin et al. (2012) to analyze differences 

and agreements among MODIS, AVHRR and SPOT-VGT datasets. The use of NDVI 

trends in Yin et al. (2012) in our opinion is essentially the same approach to the 

investigation of correlations despite the study treating them as different. The 

correlational analysis approach is also used in Song, Ma & Veroustraete (2010) to 
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validate the linear relationship between the two types of NDVI products from SPOT-

VGT and AVHRR sensors. The most common methods of specifying correlation are 

Scatter Plot and Correlation Coefficient as discussed here next: 

Scatter plots that have two data sets plotted on a graph of paper along the same x and 

y axes. A visual inspection can be used to decide whether the correlation, r is perfectly 

positive and therefore r=+1 and all points lie on a straight line, correlation is perfectly 

negative when r=-1 and any dispersions based on their directions result in either 

high/low degree positive/negative correlations. The base case, r=0 implies either a 

broad spread over a broad area with a downward trend or absence of correlation. The 

method is widely documented to be non-mathematical, naïve and un-reliable without 

the ability to measure the degree of correlation. 

Coefficients of Correlation is defined by Equation 15. Denoted as r, the linear 

correlation coefficient measures the strength and direction of a derived linear 

relationship between two variables. The interpretation is much like the Scatter plot, but 

with a mathematical quantification and direction specification of correlation.  

With a value between -1 and 1, the interpretation is that a value approaching -1 implies 

a strong negative correlation, 0 no correlation and those approaching +1 have a strong 

positive correlation. Heuristically, a 0.7 cut off signals a strong correlation while below 

0.5 implies a weak correlation. For the formulation of magnitude, the determinant of 

correlation- r2 or R2, is always used. R2 implies the proportion of variations of y 

explained by the linear relationship between x and y. The limitation in correlations is 

that we only measure linear co-variation and not actual difference.  

𝑟 =
𝑛 ∑(𝑥𝑦) − (∑ 𝑥)(∑ 𝑦)

√[𝑛 ∑ 𝑥2 − (∑ 𝑥)
2

][𝑛 ∑ 𝑦
2

− (∑ 𝑦)
2

]

… … … … … … … … … … … … … … … … (15) 
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Comparison of agreement 

Agreement methods measure agreement between two variables and by extension 

datasets. The bounds of the agreement coefficient (AC) is defined between 0 and 1 for 

no agreement to perfect agreement for this measure thereby making it easy to interpret. 

The AC as documented in Ji & Gallo (2006) is noted to be non-dimensional, bounded, 

symmetric and distinguishable between symmetric and un-symmetric differences. The 

AC is defined in Equation 16. 

 𝐴𝐶 = 1 −
𝑆𝑆𝐷

𝑆𝑃𝑂𝐷
……………………………………………. (16) 

Where, SSD is the sum of square difference (SSD) and SPOD is the sum of potential 

difference (Meroni et al., 2013). SPOD is defined by Equation 17. 

𝑆𝑃𝑂𝐷 = ( |𝑋𝑖 − �̅�|+|�̅� − �̅�)( |𝑌𝑖 − �̅�|+|�̅� − �̅�)  ......... (17) 

2.7.3.2 Problem of availability of vast volumes of remote sensing data 

There is an explosion in the availability of remote sensing data at volumes and 

frequencies that qualify it for big data. Big data was previously characterized by three 

attributes: volume in the order of exabytes of data, velocity based on a very high 

frequency of incidence, variety in different formats- both structured and unstructured 

as initially documented in Russom (2011). Additional characteristics now documented 

in big data include veracity and value (Anuradha, 2015). While veracity raises quality 

issues on the data by positing questions on completeness, cleanliness and accuracy of 

the data, value is perhaps the most important as it poses the question of business value 

derivable from the data. The specific case of climate data, that is the basis of this study, 

has complexity in presentation and storage as an attendant characteristic. 

The availability of vast volumes of data covering long periods and at regular 

frequencies and with expected availability in the future makes an opportunity rather 

than a limitation. With the enhancement of big data analysis techniques, the discovery 

of nuggets of importance from these data makes for a perfect convergence of data and 

tools. The data repositories form time series data that can be subjected to time series 

analysis and even prediction using machine learning techniques. The two common 
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models for time series analysis are the Brockwell and Davis generic model and the 

Fourier series model. 

• Brockwell and Davis Generic model 

One generic model that remains popular for time series analysis is the model 

described in Brockwell & Davis (2006) that is summarized in Figure 2.6. 

Although the steps were presented as sequential, our understanding of the 

model is that it has an inherent back and forth mechanism between the 

subsequent stages of the process.  

 

Figure 2.6: The Brockwell and Davis Model for time series modelling 

(Brockwell & Davis, 2006) 

The Brockwell & Davis model aims to realize the stationary components of the 

time series that are referred to as residuals even in cases in which it is necessary 

to do transformations. The choice of model to fit residuals uses many sample 

statistics like the autocorrelation function.  

Data for drought monitoring, both Remote Sensing and Socio-Economic data, 

is generally collected in regular time intervals that could be any of daily, 

weekly, dekadal, monthly, quarterly, annually etc. The data, therefore, has a 

temporal dimension on top of the spatial dimension that is majorly inherent in 

the data. The regularity of the data collection makes this data to be interpretable 

as time series data. Brockwell & Davis (2006) define a time series to be a set 

of observations xt, each one being recorded at a specific time t. This definition 

is extended to define discrete time series to be that in which the time intervals, 



56 

 

t, are discrete. Drought monitoring data are thus, generally, discrete time series 

datasets. 

• Fourier series model 

An alternative model to the Brockwell and Davis model is the resolution and 

expression of the time series as a component of its Fourier components. The 

modelling expresses the time series as a set of waves with different frequencies. 

Temporal domain data can be transformed to an equivalent frequency domain 

using by the use of Fourier analysis (Moody & Johnson, 2001). For discrete 

data like that of the remote sensing time series data, a discrete Fourier transform 

(DFT) is used as long as there exists regularity of spacing of the data points in 

the temporal domain. 

The use of the above models in the analysis of multiple datasets is, in essence, 

a data comparison problem that aims to realize the differences and similarities 

between multiple time series data. The methods of data comparison have the 

objective of realizing insights on the distribution, correlation or agreement 

between the data items (time series) of comparison. Below we describe some 

of the specific approaches to the comparison of the different datasets and time 

series that fall within the generic model of Brockwell & Davis (2006). 

The processing and analysis of time series data are primarily geared towards generating 

models that are meant to achieve some specific objectives. These objectives include 

those of decomposition of the time series though the extraction and separation of the 

time series into trend, seasonal and random components as documented in Brandt et 

al. (2014).  The decomposition is based on a locally weighted regression smoother 

filter. The season term is generally dropped off from the long-term analysis. 

Further to the decomposition of the time series data is noise filtering that involves the 

removal of any un-intended but captured data that lead to effects and biases on the 

captured values. The objective of the prediction of future values based on the existing 

values is meant to offer support for early and real time or near real time monitoring. 
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Accompanying the decomposition of datasets are the twin concepts of hypotheses 

testing and simulation for the generation of new insights. Testing some given 

hypotheses such as increasing frequency of droughts over the years for some given 

spatial coverage is meant to provide evidence for areas that need closer attention while 

the simulation of the data in novel ways is meant to lead to the generation of new 

insights. 

Essentially, the problem of multiple time series data comparison for similarities and 

differences has been widely studied. In its simplicity, the comparison of multiple time 

series data can be defined as that of seeking a constant model with a goodness of fit 

that is capable of accounting to the difference and/or similarities between different 

time-series data (Jin, 2011). The wider goal is to account for the differences and 

similarities and extend these to multiple time series that could, in essence, be of 

different lengths. 

2.7.3.3 Problem of quality of data in remote sensing 

Data quality, as opposed to say quality as understood in manufacturing, is defined in 

terms of intangible characteristics as opposed to physical properties. The issue of data 

quality is increasingly becoming crucial in remote sensing for a trio of reasons: (1) is 

the fact that many non-government entities are getting into space and deploying 

satellites; (2) is the increasing use of remote sensing data for decision making even in 

critical applications and; (3) is the continued reliance on digital technologies and thus 

secondary sources for the data as advanced by Batini et al. (2017).  

The concept of data quality is best described in-line with the key attributes of resolution 

(Lefsky & Cohen, 2003). Types of resolution include: the spatial resolution that 

defines pixel sizes, the radiometric resolution that defines the different number of 

intensity values in an image, the spectral resolution that defines the number of 

channels recorded and temporal resolution that defines the frequency of the data 

capture and thus a major basis for monitoring systems. 
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Figure 2.7 illustrates the data quality definitions for remote sensing data based on the 

above resolutions- spatial, radiometric, spectral and temporal using a 3x4 image with 

a total of 12 pixels for each band. 

 
Figure 2.7: A sample illustration of a 3-band 3x4 remote sensing image. 

Remote sensing images are raster images provided as matrixes with a given number of 

rows and columns. While geometric or spatial precision is a definition of the 

homogeneity of the pixels for all the bands, radiometric precision concerns the 

representativeness of the digital values stored for each pixel as a measure of 

reflectivity. The accuracy in the separation of the bands defines the spectral precision 

while temporal precision would imply the metadata on date and time of capture remain 

accurate. Finally, as positional precision defines the image and its relation to a 

coordinate system, attribute accuracy is indicated by the goodness of measure of 

thematic interest. 

Assuming the correct set up of both satellites and sensors, the most common causes of 

data quality issues in remote sensing images is the loss of radiation as a result of 

interaction with the atmosphere. One such cause of loss of radiation is the effect of 

clouds in the obstruction of radiations from interacting with objects of interest. 

Handling effects of atmospheric interference is key in remote sensing data since it is 

the biggest cause of radiometric inaccuracy of remote sensing images. There have been 

documented cases of some areas of interest being covered by clouds up to 67% of the 

time within the year (Wang et al., 1999). 
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Data smoothing and filtering as well elaborated in Klisch & Atzberger (2016) are 

especially important in the processing of remotely sensed data particularly for 

vegetation that is in the most cases affected by cloud cover and other atmospheric 

interferences. In this aspect, the processing of Remote Sensing data could benefit from 

data mining models that have been advanced for their ability to fill in the gaps in data 

by extrapolating and estimating necessary parameters. 

2.7.4 Socio-Economic Data for drought monitoring 

Despite the documented socio-economic effects of drought, not much documentation 

exists in their modelling within the practice of drought monitoring. This is perhaps 

because of their tendency to be affected late in the drought cycle or because of their 

affinity to have their trends affected by interventions in the form of drought response 

and mitigation that serve to minimize impacts of droughts on communities. A good 

review of interventions in the pastoral livestock sector and their possible socio-

economic benefits is provided in Morton et al. (2005). 

The effects of drought are generally considered in the three categories: social, 

economic and environmental effects. Jenkins (2012) and Garrido (2014) document the 

Hochrainer model (Figure 2.8) that describes the categorization of the impacts of 

drought based on the three widely used categories of society, economy and 

environment.  An alternative to this common classification views drought in terms of 

the sectors affected, effects on supply and demand, whether impacts are tangible or 

intangible and the effects on the environment.  

Direct, indirect or secondary micro-impacts of products are realized based on the 

sectors that are affected by the drought. Direct effects are those that mainly impact the 

productive sectors of crop agriculture, livestock production, fish production etc. while 

indirect impacts are generally results of the direct impacts like effects on the 

agricultural food sector. While non-market impacts like welfare reductions are due to 

effects on demand and supply markets (Garrido, 2014) that then lead to effects on 

access and subsequently impact the welfare of communities under exposure; Tangible 

and intangible impacts is an alternative classification offered by Massarutto et al. 
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(2013) that in addition to direct and indirect impact, also considers the impacts on 

lifestyle, health and social tension. On the other hand, environmental impacts include 

those on water systems (both surface and groundwater) and effects of wetlands at the 

occurrence of extreme droughts. 

 

Figure 2.8: The Hochrainer illustration of the impact of drought showing the social, 

economic and environmental impacts of drought (Jenkins, 2012) 

Given that droughts have both a spatial and temporal coverage, impacts of their 

occurrence on these extents can be monitored by proxy indicators that quantify the 

impacts of the droughts on the socio-economic conditions of the areas of coverage.  

This approach, as documented in Massarutto et al. (2013), should involve the twin 

requirements of the quantification of the socio-economic and environmental effects of 

drought events and the modelling of the relationship between the socio-economic 

impacts and selected variables that monitor and are associated with drought. 

The limitations to the use of Socio-Economic data in drought monitoring are majorly 

due to three broad issues around the identification, documentation and quantification 

of droughts and the losses attributable to their impacts. While environmental and even 

socio-economic impacts of drought are generally difficult to identify and quantify in 
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monetary terms (Ding, Hayes & Widhalm, 2011), intangible impacts of drought are 

even more difficult to identify. The quantification of non-tangible impacts of drought 

is therefore guaranteed to be a non- trivial task.  

2.7.5 Socio-Economic Indicators for drought monitoring 

Just as the case for remote sensing data,  to be used in drought monitoring and drought 

prediction, socio-economic data has to be transformed into indicators that are capable 

of correlating to drought. Such transformations should aim to make the datasets 

sensitive to changes in drought severity. The classification of impacts of drought on 

socio-economic terms follows the model provided in Figure 2.9 that categorizes the 

impacts into those on production, access and welfare. 

The categories of socio-economic data that can be collected for drought impacts 

include the impacts on crop and livestock agriculture, access indicators like market 

prices and welfare indicators like nutrition-based indicators. 

 

Figure 2.9: Sequence of effects of drought on livelihoods as drought progresses. 

Changes in drought severity or enhanced exposure periods lead to an impact on both 

crop and livestock production. Access to produce is then affected as a result of high 

demand in the context of reduced supply for particular goods and services. The welfare 

of the communities is the last aspect to be affected, especially with malnutrition rates 

getting escalated to beyond normal levels. 

The common production indictors for the production effects of drought include crop 

yields and milk production. The market access indicators are for example documented 

in FEWSNET (2009) and in Hill & Fuje (2017) and include those that measure changes 

in staple prices e.g. of maize, prices of livestock and terms of exchange between staples 

and popular production holdings. The effect of droughts on food prices based on survey 

data is further documented for the case of a Kenyan county in Mohajan (2014) and for 

hay and feed prices in Schaub & Finger (2020). One study that stands out in 
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investigating the relationship between vegetation conditions and maize prices is found 

in Shuaibu et al. (2016). The regression model in Shuaibu et al. (2016) concludes that 

the normalized difference vegetation index (NDVI) is a good index for modelling the 

change of maize prices and is hence useful or emergency planning. 

The popular welfare indicator on malnutrition, the Middle-Upper Arm Circumference 

(MUAC) as documented in De Onis, Yip & Mei (1997) and in James et al. (1994) is 

best measured in the sub-set of the population below 5 years. 

2.7.6 Methodologies of Handling Socio-Economic Loses from Drought Impacts 

Drought occurrences, especially in extreme cases provide a lot of shocks to 

communities as modelled by the Hochrainer model in Figure 2.8. There exist varied 

ways of responding to these shocks including offering no protection to communities, 

building the resilience of communities, enhancing drought preparedness and drought 

response and drought insurance. 

• The no protection of communities: Is an approach that is characterized by the 

lack of planning coupled with the unwillingness to cushion societies from 

losses. The communities are therefore left to bear the consequences of 

droughts. This approach is laden with massive losses of both life and 

livelihoods. 

• Resilience building: Resilience building to extreme events remains quite 

complex (Tortajada et al., 2017). Basically, resilience-building involves 

improving the capacities of communities to handle drought shocks for 

increasingly longer times and at greater impacts. This is the current method of 

choice that is geared towards making communities self-reliant and therefore 

prone to suffering less drought effect on both lives and livelihoods. 

• Contingency planning, drought preparedness and drought response: Is an 

approach that is driven by planning, in advance, for droughts. The realized 

advance plans are referred to Contingency Plans and they have, in general, 

well-modelled scenarios. The contingency plans are coupled with drought 

preparedness that is similar to resilience building. In the event that droughts 
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occur, drought response involves taking actions that protect communities from 

the loss of lives and livelihoods. 

• Drought Insurance: is an approach that is increasingly becoming popular as 

an option for handling socio-economic losses from droughts. In this case, 

premiums are agreed and paid for before-hand against possible drought 

episodes, especially for agricultural droughts. Insurance risks against droughts 

are considered a systematic risk and thus valued expensive. This approach 

typically involves the use of an objective monitoring system, that is typically 

driven by remote sensing, for the quantification of even occurrence and socio-

economic data for determination of impacts and thus levels of pay-out. An 

operational drought insurance system that is based on the use of remote sensing 

data in the insurance of drought losses is, for example, documented in Mude et 

al. (2010) and in Chantarat et al. (2013). It is, therefore, a technical undertaking 

to develop such specialized insurance schemes against, not only drought but 

other natural disasters. 

2.8 Formulation of the drought prediction problem 

2.8.1 The generic prediction problem and drought 

The drought prediction problem is a sub-set from the domain of prediction problems. 

An investigation of the drought prediction problem, therefore, follows from the 

definition of the prediction problem. The general formulation of the Machine Learning 

approach to the definition of the prediction problem is provided in Figure 2.10. 
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Figure 2.10: The machine learning approach to prediction as adapted from Mitchell (1997).  

The model building process has at the core the use of historical datasets to formulate 

models and that are then used to make predictions. The generic prediction model has 

several steps that are geared towards realizing models capable of making predictions. 

The main tasks are feature selection, model training and model parameter 

approximations through model validation and the evaluation of the performance of the 

models. The model function realized is finally used in the approximation of the target 

i.e. drought in the case of this study. 

From the generic machine learning (ML) model provided and in the context of drought 

monitoring, two tasks are non-trivial. First is the definition of drought as the target 

variable. The question is best answered by any of the Equations 3-10 (Table 2) that 

outlined the common difference indicators used in drought monitoring. The second 

task is the choice of the ML algorithm to be used in learning the model that best 

approximates drought. The methods are discussed in sections 2.8.3-2.8.5 including the 

possible methods for both parameters tuning and model evaluation. 

Important to observe from the generic model is the attendant limitation that any 

drought monitoring process would have to overcome. This limitation is on the 

application of the model for scoring. In the ML problem, we predict future conditions 

using past recorded conditions. In a strict sense, it is not like the generic problem where 

the features of the instance are provided. In fact, the future remains strictly defined by 
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the past. The concepts used in the prediction of future conditions are discussed in 

section 2.8.2. The closely related concepts in prediction are Machine Learning (ML), 

Knowledge Discovery from Databases (KDD), Data Mining and Artificial Intelligence 

(AI). Section 2.8.3 zeroes in on the ML methods for approximating the model function. 

2.8.2 Machine Learning (ML), Data Mining, Artificial Intelligence (AI) and 

Knowledge Discovery from Databases (KDD). 

Closely related to Machine Learning (ML) are the concepts of Data Mining, 

Knowledge Discovery from Databases (KDD) and Artificial Intelligence (AI). They, 

however, are slightly different concepts. The confusion is majorly on the twin pairs of 

Data Mining and KDD; and AI versus ML. A highlight of their differences is presented 

between the pairs most closely related as discussed in sections 2.8.2.1 to 2.8.2.3. 

2.8.2.1 Data Mining & Knowledge Discovery from Databases (KDD) 

Data mining is defined as the extraction of useful models of data either in the form of 

summarization of the data or identification of extreme features of data (Han, Kamber 

& Mining, 2006; Hand, Mannila & Smyth, 2001). This definition of data mining is 

closely related to that of Knowledge Discovery from Databases (KDD) that is defined 

with the underlying concept as the exploration and analysis of large quantities of data 

in order to discover valid, novel, potentially useful and ultimately understandable 

patterns (Fayyad, Piatetsky-Shapiro & Smyth, 1996; Goebel & Grunewald, 1999; Han, 

Kamber & Mining, 2006). Although close in definition, it is the case that KDD is a 

wider area of which data mining is a sub-process. KDD includes knowledge extraction 

and representation at the tail end of its process. It is our understating that data mining 

is best described as part of a process that aims to find patterns from data while KDD 

is the super-process that also grapples with how to represent knowledge and reasoning 

on the knowledge. 

2.8.2.2 Machine Learning & Artificial Intelligence (ML versus AI) 

Artificial Intelligence (AI) aims to create machines that are capable of mimicking both 

the human mind and behaviour and that also has learning capabilities at its core. 

Therefore, AI encompasses more than the concept of learning and includes the 
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concepts of knowledge representation, reasoning and abstract thinking. AI is therefore 

different from machine learning that is more focused on the creation of software 

systems that can learn based on past experience. 

2.8.2.3 Data Mining and Machine Learning 

Data Mining is the process of identifying new patterns and insights from data. Data 

Mining thus involves the extraction of regularities from very large datasets/ databases 

as part of a business application process (Fürnkranz, Gamberger & Lavrač, 2012; 

Kohavi, 2001). The key undertaking in Data Mining is thus the extraction of interesting 

and thus non-trivial, implicit and previously unknown nuggets of potentially useful 

information from data resident in large databases. 

Data Mining is thus driven by four main factors that include: the data availability 

factor, the need for interpretation factor, the need for prediction of the future and the 

availability of storage and related technologies. 

The existence of vast volumes of data (Anuradha, 2015) that is either structured or 

unstructured is a drive to data mining. There is an increase in the variety of automated 

data collection in diverse areas including remote sensing (Liu, 2015) that then lends 

itself to data mining that generally is considered to be data-hungry. The need to make 

sense of the above vast volumes of data especially that from operational systems and 

data warehouses is an increasing undertaking of businesses. This is further supported 

by the advancements in data storage and methodologies and tools for data analysis, 

summarization and visualization that have made it easier to use data for decision 

making. The need to attain the twin goals in data mining of gaining insights from data 

and using the same to predict the future based on the existing past data especially for 

comparative advantages is a key driver to data mining. The data collected from such is 

variously documented as the next opportunity for not only productivity but also 

competition and innovation (Manyika et al., 2011; Zikopoulos & Eaton, 2011). 

Machine Learning (ML) is a close concept to Data Mining that is operationally defined 

by Mitchell (1997) in terms of the ability of a machine to learn from experience. A 

computer program is said to learn from experience E with respect to some class of 
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tasks T and performance measure P if its performance at Tasks in T as measured by P 

improves with experience E. The experience E is provided in terms of a training dataset 

over the task T. As variously defined (Bishop, 2006; Mitchell, 1997; Nilsson, 1996), 

the overriding concept in ML is the ability of the learning techniques used to not only 

predict an outcome given some input but also to improve at the task given more 

experience. 

There exist subtle differences between Data Mining and Machine Learning. The 

differences are based on focus, data requirements, and goal orientation of both Data 

Mining and Machine Learning. First, whereas Data Mining focuses on the discovery 

of previously unknown properties of the data, Machine Learning (ML) focuses on 

known properties learnt from the previously existing data. Second, while Data Mining 

is mostly driven by the existence and use of large datasets, ML though a potential 

beneficiary from large datasets possesses algorithms that also lend themselves to 

handling small data sets. The final difference is premised on the fact the Data Mining 

has an overall goal of finding nuggets of information from the huge sets of data. This 

search is not particularly based on pre-set and guided rules and goals. Data Mining 

can, therefore, be terminated at the exploratory stages given it is non-specific in goal 

orientation on the data while ML can be viewed as goal-oriented in the search for 

specific outcomes. 

Recent developments have seen the adoption of Data Mining across many industries 

for diverse applications. This widespread adoption of ML approaches has then raised 

the need for standardization of process of Data Mining, the result of which is the Data 

Mining Process. 

2.8.2.4 The Data Mining Process 

The data mining process is variously described (Azevedo, 2008; Chapman et al., 2000; 

Fayyad, Piatetsky-Shapiro & Smyth, 1996). Despite the differences in the description 

of the Data Mining process, the common steps are summarized in the Cross-Industry 

Standard Process for Data Mining (CRISP-DM) methodology (Azevedo, 2008; 

Chapman et al., 2000). 
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The CRISP-DM process is widely accepted and aims to simplify the Data Mining 

process to a step of processes as modelled in Figure 2.11. 

 

Figure 2.11: CRISP-DM Data Mining Process Model. 

Data is at the core of the modelling process of the methodology that also provides for model 

deployment. 

The data mining process (Figure 2.11) follows the steps outlined below: - 

1. Business Understanding that encompasses working with business to define 

objectives from requirements and ends with a well-formulated data mining 

problem to address the objectives of the solutions sought. 

2. Data Understanding to formulate a hypothesis after getting a preliminary 

understanding of the data and its associated problems. 

3. Data Preparation in which the data is converted, through transformations and 

attribute selection, to a final form from which a model will be developed. 

4. Modelling stage that applies selected modelling techniques and is mostly 

interactive with the data preparation phase. 

5. Evaluation sub-set at which the model is assessed for performance and if its 

results meet earlier set objectives and apply to the business objective. It is the 

case that a choice has to be made from the use of multiple models. 
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6. Deployment is a non-trial task involving the actual use of the models to offer 

solutions to the earlier defined problem. Deployment takes various forms from 

simple communication of results to deployment of management tools to 

accompany the models. 

An alternative to the CRISP-DM methodology is the SEMMA methodology. SEMMA 

is an acronym for steps in this model for data mining that follows on: Sample, Explore, 

Modify, Model, and Assess phases for a typical data mining process. Although 

variously defined as a methodology (Azevedo, 2008; Mariscal, Marbán & Fernández, 

2010; Nadali, Kakhky & Nosratabadi, 2011), SEMMA could be considered as a logical 

organization of the data mining process. The Key steps of the methodology are in most 

cases iterative and thus should not be linearity assumed in the progression of the data 

mining process steps. The SEMMA methodology phases are as follows: -  

1. Sample& Explore: - Whereas the Sample process is an optional process that 

involves retaining only the data that is considered useful, the explore process 

supports the discovery process on the data and can involve the use of both 

visual and statistical techniques. 

2. Modify and Model: - The Modify phase involves creation, selection and 

transformation of variables and is succeeded by the Model phase. The 

modelling phase involves the use of modelling techniques to combine variables 

to predict useful outcomes. 

3. Asses: - Typically, this involves the evaluation of the usefulness of findings 

from a model intending to estimate how well the model performs. The most 

common approach is the application of the model on both test and validation 

datasets that are different from the data on which the model is trained. 

It is the case that the SEMMA methodology does not explicitly provide for the key 

step of data pre-processing. However, an alternative view could be that data pre-

processing is implicitly provided for within the Sample phase of the methodology. The 

application of the SEMMA based methodologies will thus have to be modified to 

include an extensive phase for pre-processing of the scientific data. On the other hand, 
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the CRISP-DM methodology is elaborate enough to provide for all the steps required 

to build models on climate data since data pre-processing is extensively provided for. 

Viewed closely, it is noted that, despite the differences in number and sequences of 

stages, the CRISP-DM and SEMMA methodologies, in essence, remain a description 

of the same process. 

The discovery of hidden nuggets is a key undertaking of data mining. Mena (1999) 

documents data mining as involving the discovery of actionable and meaningful 

patterns, profiles and trends by sifting through data using pattern recognition 

technologies such as Neural Networks and other machine learning algorithms 

including genetic algorithms. Openshaw (1999) also asserts the appropriateness of data 

mining in the handling of vast volumes of data as is the case with sensor data in drought 

monitoring. The possibility of the use of data mining and machine learning techniques 

in data reduction and data visualization cannot be over-emphasized. This is made 

possible by the suitability of machine learning algorithms in the modelling step of data 

mining. The automation of the data reduction process is one benefit that drought 

monitoring can realize from the combination of Data Mining and machine learning. 

2.8.3 The Machine Learning methods of drought prediction 

Having formulated the drought prediction problem as a machine learning problem that 

uses past/ historical data to approximate a function that can be applied to predict 

drought, the question then shifts to the possible methods that can be used for the 

prediction. 

Machine learning takes the form of any of the following popular and commonly used 

three learning paradigms of supervised learning, unsupervised learning and 

Reinforcement Learning. 

• Supervised Learning has methods similar to those outlined in Bishop (2006) 

and Mitchell (1997) in which models are presented with training data in the 

form of labelled training examples. The machine in this instance is presented 

with observed data that have a specified outcome referred to as output labels to 

derive a function that it then uses to approximate the outcome of previously 
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unseen and thus unlabeled instances. Supervised learning tasks are either 

classification or regression tasks based on the outcome to be approximated. If 

the outcome of the training to be approximated is discrete the task is a 

classification task, while regression tasks approximate continuous value 

outcomes. Supervised learning, being more structured, remains the most 

common approach to ML since it is possible to subject it to evaluation for 

performance. 

• Un-supervised Leaning is when the training instances have no labels and the 

machine is to look for relationships from the dataset provided. We assert that 

Unsupervised Machine Learning is in the most similar to descriptive data 

mining through which useful insight is gained. Unsupervised learning methods 

rarely lend themselves to performance evaluation. The unsupervised learning 

approach is more of a white-box process as compared to other machine learning 

approaches like Artificial Neural Networks (ANN) that are black-box 

processes (Shwartz-Ziv & Tishby, 2017). 

• Reinforcement Learning is characterized by three main concepts. The concept 

of a cumulative reward for a software agent, an objective or score function that 

evaluates the reward at any point and the use of feedback to signal whether the 

choices are towards the optimization of the cumulative rewards. An excellent 

review of reinforcement learning is found in Sutton & Barto (2018). 

An alternative to the popular classification of the approaches to machine learning away 

from supervised, unsupervised and reinforcement learning paradigm is that proposed 

in Fürnkranz, Gamberger & Lavrač (2012). The Fürnkranz approach categorizes 

machine learning into symbolic and statistical approaches. Symbolic approaches are 

characterized as those that involve the inductive learning of symbolic descriptions and 

are thus examples based and generalization driven. Symbolic approaches include trees, 

rules and logical representation. On the other hand, Statistical Approaches includes 

statistical or pattern recognition methods like k-Nearest Neighbour (kNN), Instance-

Based Learning (IBL), Bayesian Classifiers (BC), Artificial Neural Networks (ANN), 

Support Vector Machines (SVM) etc. 
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For data mining to be undertaken, some techniques need to be applied. These 

techniques can either be viewed as algorithmic or computing techniques. The 

difference between the algorithmic and computing techniques, as approaches to data 

mining, is that whereas algorithmic techniques are guaranteed to be finite, computing 

techniques are not guaranteed to terminate. 

Although machine learning is variously defined (Bishop, 2006; Mitchell, 1997; 

Nilsson, 1996), the overriding concept is the ability of the learning techniques used to 

not only predict an outcome given some input but also to improve at the task given 

more experience. Machine learning techniques that could be used in data mining can 

be classified into either symbolic or statistical-based techniques. Whereas Statistical 

methods include Logistic Regression, Linear Discriminant Analysis, Bayesian 

classifiers (Langley & Sage, 1994; Witten & Frank, 2005), Regression (Gunst, 2018; 

Hardle, 1990), Artificial Neural Networks (Bishop, 2006; Mitchell, 1997) and Support 

Vector Machines, Symbolic methods include decision trees, rules and logical 

representations (Mitchell, 1997; Witten & Frank, 2005). 

Whereas pure machine learning models like artificial neural networks (ANN) rely on 

automatic adjustment of parameters in an iterative process and are mainly not 

transparent, purely statistical methods like Bayesian classifiers rely on noise-free data 

that follow normal distributions. 

The choice of a machine earning methods is guided by suitability for use on some 

specific data, volumes of available data, required outputs and their levels of 

transparency and idiosyncrasies of the modelling environment (Anderson, 2007). The 

machine learning problem, for ease of manipulation, is always essentially reduced to 

the three concepts of representation, evaluation and optimization. 

Representation reduces the machine learning problem to a formal computer language 

thereby defining the possible classifiers that could be trained on the data. This is in 

essence, the determination of the hypothesis space, H. Closely following on 

representation, is the key concept of Evaluation that involves the formulation of some 

performance evaluation function against which the candidate models are evaluated. 
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Evaluation is, therefore, the basis on which alternative models are weighted against 

each other. The results of the model evaluation are followed by the related concept of 

optimization that uses the results of the evaluation process to inform the choice of 

models. Optimization involves the search for the “best” classifier from amongst the 

candidate classifiers. The best classifier will be that which has the best performance 

based on the objectively formulated and evaluated score function that could combine 

multiple measures of performance. 

In general, the simplification of the machine learning problem to a model is the very 

basis of potential misuse and misinterpretation of the process. The process of machine 

learning, to avoid the pitfall of over-simplification, should follow on the key guiding 

principles that cover issues around the goal, representation, postulation of assumptions, 

generalization and handling of the curse of dimensionality, realization of multiple 

models and simplicity for the practicality of use. These key guiding principles, as 

documented variously from Bishop (2006), Chao (2011) and Mitchell (1997) are 

summarized as: - 

1. The Goal: - the ultimate goal of machine learning is to realize models that can 

be generalized past the observed training examples. Reasonable performance 

at the model training is thus desired, but must not be the ultimate goal of any 

machine learning problem.  

2. Representation versus “Learnability”: - The ability to represent a problem as 

a machine learning problem does not directly imply it is learnable. In this 

context, representability can be viewed as being trivial to the learning task. It 

is therefore advised that multiple representations for the same problem be 

investigated. 

3. No Free lunch: - The concept of “No free lunch” implies assumptions about a 

learning model have to be made to make it generalizable. This is in direct 

conflict with the reality of the insufficiency of the theoretical underpinnings of 

machine learning. 

4. The curse of dimensionality in which a learner is presented with data that has 

too many features when most of such features are not direct evidence of the 
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concept to be learnt. The curse of dimensionality calls for a well-considered 

feature engineering process. The presentation of data with many features not 

only poses the risk of model overfitting but also a contradiction to the choice 

of machine learning techniques that are known to be optimal in cases of fewer 

features and low volumes of data. 

5. Multiple models learning involve the learning of many models. The multiple 

models learning approach is encouraged since performances differ with 

different scenarios and therefore it offers the opportunity of the selection of 

best performers or the use of results. 

6. Simplicity does not guarantee accuracy is as opposed to the advocacy by 

Occam’s razor for simple yet predictive models. It is the case that model 

ensembles outperform single and simple models despite their complexity. 

The study furthers the review of two approaches of in machine learning: Artificial 

Neural Networks (ANN) and Support Vector Machines (SVM) in section 2.8.4 and 

section 2.8.5 respectively. 

2.8.4 A review of Artificial Neural Networks (ANN) 

Artificial Neural Networks (ANNs) are a machine learning approach that mimics the 

interconnectedness of the brain in the modelling process. ANNs have numerous 

neurons connected to each other to be able to emulate the human brain. The 

interconnectedness of the neurons is achieved by typically grouping them into layers 

called input and output layers with one or more hidden layers in between. A typical set 

with two hidden layers is as shown in Figure 2.12. 
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Figure 2.12: An ANN model with an input, output and two hidden layers with the 

configuration 3-5-3-1.  

For regression, the ANN is modelled with the sigmoid unit shown in Figure 2.13 at the 

centre of the design. In a multilayer network, it is these sigmoid units that are connected 

in a feed-forward set up as shown in Figure 2.12. The feed-forward network can 

propagate inputs forward and errors backwards to adjust weights till some 

predetermined thresholds are met. The algorithm used to feed the inputs forward and 

the errors backwards till a threshold is met is referred to as the backpropagation 

algorithm. 

 

Figure 2.13: The sigmoid unit- the basis for regression modelling using ANN 
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The sigmoid unit 𝜎(𝑥) is acts as the sigmoid function and is expressed as 
1

1+𝑒−𝑛𝑒𝑡 . The 

sigmoid function has the nice property that the output can be expressed as a function of the 

inputs such that 
ⅆ

ⅆ𝑥
𝜎(𝑥) = 𝜎(𝑥)(1 − 𝜎(𝑥)). The differential for the expression can thus be 

obtained without necessarily expanding the expression. 

The popularity of the ANN is hinged on its ability to learn discrete, real and vector-

valued functions and to vastly remain robust to errors in training data. As documented 

in Mitchell (1997), ANNs have several characteristics making them suitable for 

predictive modelling: (1) instances can be represented by many attribute-value pairs, 

(2) the target function is either discrete, real or vector-valued, (3) training examples 

may contain errors, and (4) long training times are acceptable while faster evaluation 

is required. The ANNs are, however, susceptible to overfitting (Bilbao & Bilbao, 2017) 

in which case localised expert models are realised in model training that are not 

practical for real-life scenarios and hence the models end up with poor performance in 

test data. 

A good description of ANNs is provided in Ramos & Martínez (2013), Bishop (2006), 

Nilsson (1996) and in Mas & Flores (2008). The study in Mas & Flores (2008) provides 

a review to the use of the ANN’s backpropagation algorithm in remote sensing. On the 

other hand, the study in Ramos & Martínez (2013) reviews the literature on ANNs and 

makes a comparative analysis of the performance of different groups of ANN in time 

series forecasting. The results in Ramos & Martínez (2013) show the multi-layer 

perceptron (MLP) as the best network in forecasting time series data. 

2.8.5 Support Vector Machines (SVM) 

At the core of SVMs is the question of separability of data points into unique classes, 

typically two but in an approach that is extensible to multiple-classes and to linearly 

inseparable cases. Given that the remote sensing data used for drought monitoring have 

a sinusoidal trend with the effects of seasonality, it is expected that the examples are 

not linearly separable. Drought monitoring data is also expected not to follow on any 

of the standard distributions. We, therefore, review SVMs and their regression 

implementation as support vector regression (SVRs) as capable of modelling cases of 
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linear inseparability while tolerating noise in the data as documented in Mountrakis, 

Im & Ogole (2011). 

In the simplest approach of the SVM, the key is to create a decision boundary or 

hyperplane between two classes in a setting that supports the prediction of classes 

using one or more feature vectors. The aim is to have the hyperplane orientated as to 

be furthest from the support vectors that are designated to be the closest data points 

from each of the classes to be separated. The performance of SVM against other 

approaches has been documented in Wagacha (2003) using empirical evidence while 

Cristianini & Shawe-Taylor (2000) and Scholkopf, Smola & Bach (2002) provide a 

comprehensive review of SVMs. 

The issues in the use of SVM are documented to include the handling of noise in the 

data and handling training data that are linearly inseparable. These issues are, however, 

solved as follows: - 

• Noise in the training data for SVMs is handled by having soft as opposed to 

hard margins. Soft margins allow for misprediction of some of the support 

vectors. Whereas Figure 2.14 shows the simple case of an SVM without noise, 

Figure 2.15 shows the effect of noise and thus the need for a soft margin. The 

case with noise, however, has a cost (C) hyperparameter introduced to take care 

of the complexity of models. The aim, in this case, is to find the C that neither 

overfits nor underfits the model. 
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Figure 2.14: Decision boundary of SVM and a hard margin for linearly separable training 

data 

 

Figure 2.15: Decision boundary and a soft SVM margin with noise accounted for by the cost 

hyperparameter (C). 

• For cases of linearly inseparable training examples, the data is mapped to a 

higher dimensional feature space that could even be infinite. In some cases, 

even one step of transformation realizes linear separability on the training data. 
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This is as illustrated by Figure 2.16 when a transformation from (x1, x2) to the 

expanded (x1
2, x2

2) feature space is done. 

 
Figure 2.16: Feature transformation to higher dimensionality in an SVM. 

Figure 2.16 illustrates the mapping from a feature space to a higher dimensional space 

to solve the problem of non-linearly separable training data. For the cases where 

transformation does not yield a linearly separable feature space, a solution can still be 

formed using Kernel functions. Assuming a 2-dimensional feature space 𝑥(𝑎), 𝑥(𝑏) 

the aim is to find the dot product of 𝑥(𝑎. 𝑏) as is in the linear case of the SVM. 

However, to achieve this, we make a transformation of the features to a higher 

dimension 𝜙(𝑥𝑎), 𝜙(𝑥𝑏) as illustrated in Equation18. 

𝛷(𝑥𝑎), 𝛷(𝑥𝑏) → 𝜙(𝑥𝑎), 𝜙(𝑥𝑏) … … … … . (18) 

As documented in literature and illustrated in simplicity in Berwick (2003), there exist 

some 𝜙 for which Equation 19 holds implying that the dot product is a function of the 

inputs. This representation in Equation 19 makes it easy to compute 𝑘 without 

expanding 𝜙. 𝑘  is referred to as a Kernel function as it corresponds to the dot product 

of two feature vectors in some expanded feature space. The kernel function can be any 

of linear, polynomial, radial basis or sigmoid and it is what is used to model SVMs on 

non-linearly separable training data. 

𝑘(𝑥𝑎, 𝑥𝑏) = 𝜙(𝑥𝑎) ⋅ 𝜙(𝑥𝑏) … … … … . … . . (19) 

A special case exists for the application of SVM on regression problems when the 

output is not a classification but a real value. Like the SVM, the approach is both still 
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non-parametric and permits the modelling on non-linearly separable training data, 

unlike other approaches that rely on assumptions like Gauss-Markov as is the case for 

Simple Linear Regression (SLR). Also, like the SVM case, with the error set to some 

threshold based on the principle of maximum margin, the SVR does not care about the 

prediction for cases where the error (𝜀)respects the limit. Finally, the SVR also 

supports the cost parameter and offers high flexibility as it is a distribution-free 

approach. 

2.9 Review of similar projects 

2.9.1 Targeted review of past studies 

Trnka et al., (2018) did a survey on the priority areas of drought research amongst 

experts from different backgrounds. 65 experts from 20 different professions across 21 

nationalities document the priority areas to include drought forecasting and prediction 

amongst others like drought monitoring, impacts mitigation through both drought 

resilience and adaptation to drought. The best drought predictions are then proposed 

to be best those done at different time scales and also that incorporate multiple 

ensembles of numeric weather models. 

Apart from the survey of experts in Trnka et al., (2018), there is the presentation of a 

comprehensive review of methods in Mishra & Desai (2006) that are used in predictive 

drought monitoring. The limitation of stochastic approaches like autoregressive 

moving average (ARMA) model and their generalizations of the autoregressive 

integrated moving average (ARIMA) and their seasonal applications SARIMA are 

documented. ARIMA models are also reviewed in Belayneh & Adamowski (2012) and 

Mishra & Singh (2011) with their limitations described in two-fold. First is their 

inability to overcome the random nature of droughts and second is their poor 

performance in modelling non-linear and complex events like drought as also 

elaborated in Agana & Homaifar (2017). 

The approaches in drought prediction are classified into five broad categories in Mishra 

& Singh (2011). These classes are Regression analysis, Time series analysis (ARIMA 

based), probability models, neural networks and hybrid models. It is the take of Mishra 
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& Singh that there are better prospects to the use of hybrid models that incorporate 

climatic indices in the prediction of complex events like drought. 

We discuss the past studies in light of the above key concepts presented in the reviewed 

papers. The studies expected to overlap the categories used in the review due to 

inherent complexities in drought studies. The categories include: 

• Types of variables used and if entire drought types are covered and hence the 

integration of socio-economic data 

• Nature of study based on whether they are downscaling approaches or 

investigation of new approaches. 

• The type of models used and whether they are regression, probabilistic, neural 

networks, time series or hybrid models. 

Review by types of variables and types of drought 

Most of the studies reviewed are either single variable/indicator index models or cover 

a single type of drought from the four types of meteorological, hydrological, 

agricultural and socio-economic. Most studies document the use of remote sensing 

data as compared to socio-economic data that is indeed rarely used across the studies. 

The non-use of socio-economic data implies that the quantification of the impacts of 

drought is therefore largely missing from literature. The remote sensing data used can 

be classified into meteorological, hydrological and hence water balance or agricultural. 

Belayneh & Adamowski (2012) uses precipitation data transformed into standardized 

precipitation index (SPI) with the data aggregated over 1, 3 and 12 months to predict 

exclusively meteorological drought. A similar approach of using only one 

precipitation-based variable or index in the prediction of one type of drought also 

includes that documented in Wetterhall et al. (2015). The aim of the study in Wetterhall 

et al. (2015) was to predict the probability of dry spells and below normal precipitation 

over a season with lead times of between 0 and 4 months. Other studies that use SPI 

as a single variable to predict meteorological drought include  Khadr (2016) as well as 

Wichitarapongsakun et al. (2016). The use of a single variable/indicator index is also 

found in Ali et al. (2017) and Le et al. (2016) that uses Standardized Precipitation 



82 

 

Evapotranspiration Index (SPEI), an extension of SPI and potential evapotranspiration 

(PET) in the prediction of meteorological drought. 

Despite the tendency to use a single variable to basically predict one type of drought, 

there are a few approaches that deploy more than one variable to either predict on type 

of drought or to predict two of the drought types. Such studies include Morid, Smakhtin 

& Bagherzadeh (2007) that together with Huang et al. (2016) use both SPI and 

Effective Drought Index (EDI) to investigate the severity, duration and extents of 

drought events. The comparison between EDI and SPI documents the EDI to 

outperform the SPI in both Morid, Smakhtin & Bagherzadeh (2007) and Huang et al. 

(2016). The use of SPI in conjunction with another variable is additionally documented 

in Yuan et al. (2017) that uses SPI as the predictor variable together with standardized 

streamflow index (SSI) to predict hydrological drought conditions.  

Apart from the studies above that document use of remote sensing data, there is a set 

of studies that either advocate for the use of socio-economic data in drought monitoring 

or those that proceed to incorporate socio-economic data in drought monitoring. These 

socio-economic data studies are summarized as follows: 

• Hao, Singh & Xia (2018) in reviewing the advances, challenges and future 

prospects in the prediction of seasonal droughts point out the limited existence 

of studies that document the prediction of drought effects. The study observes 

the availability of documentation on the prediction of drought signals using 

different remote sensing indicators. The study points out that the identification 

of drought signals does not come with the identification of the effects of the 

droughts on society. The authors advocate for the exploration of indicators 

appropriate for the quantification and prediction of the effects of drought in 

addition to the systems that monitor the drought signals. 

• Bachmair et al. (2016) document the lack of “ground-truthing” of drought 

monitoring variables as viewed in terms of ensuring such indicators represent 

local drought conditions and/or their impacts. The review and survey study 

observes the overspecialization in agricultural drought monitoring at the 
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expense of other drought types and also the analysis of drought impacts in term 

of impacts on vegetation. The survey study had responses from 33 DEWS 

experts and it advocates for the inclusion of the environment and society in 

drought monitoring. The study refers to the inclusion of socio-economic impact 

data as the “missing piece” in drought monitoring. The possible challenges to 

use of socio-economic data as outlined in the study are: (1) cost of collection 

of impact data (2) the many possible impact indicators; (3) differences on 

drought understanding and perception of drought impacts; (4) the interaction 

between impacts and vulnerability of people; (5) the delayed response between 

droughts and their impacts and; (6) the complexity of multi-causality of 

impacts. 

• Jenkins (2012) presents the analysis of economic and social impacts of 

droughts within future projections of climate change. The analysis includes 

both direct economic drought costs and social drought effects. The most 

notable things about the study are that it is both ex-ante and is predictive. It 

analyses past droughts and makes predictions of impacts of future droughts. 

Direct impacts are identified based on the model used in Hochrainer et al. 

(2007). 

• Massarutto et al. (2013) present an ex-post analysis of the socio-economic and 

environmental impacts of historical drought events. The analysis is however 

restricted to the agriculture and power sectors using the consumer surplus 

theory. 

• Musolino, Massarutto & De Carli (2015) focused on a purely agricultural 

market focusing on whether socio-economic impacts of droughts produce 

winners as opposed to earlier approaches that focused only on losers. The study 

focused on the drought impacts on market prices. 

• Enenkel et al. (2015) explore how to integrate non-environmental information 

sourced via smartphones to augment agricultural drought monitoring in the 

context where future uncertainties in drought prediction are understood. The 

main drive in the study was to find, out of collaboration, better ways to turn 
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data streams into useful information for decision support. A framework is 

proposed for an operational decision support system that includes a mobile-

driven collection of socio-economic information. The study does not, however, 

provide a framework for the operationalization of the integration of socio-

economic data or how such a system would look like in the monitoring or 

prediction of future droughts. Possible data suggested by the study include 

access to potable water, the level of malnutrition and the current prevalence of 

diseases. 

• Enenkel et al. (2016) make two key observations. First is the use of geospatial 

information as almost indispensable in decision making as pertains natural 

disasters. Second is the need for technology transfer especially between 

research and application-driven by the need for user-friendly tools that couple 

drought risk to socio-economic vulnerability. The study proposed a super-

index- the enhanced combined drought index (ECDI) that integrates rainfall, 

soil moisture, land surface temperature and vegetation vigour. The 

operationalization of ECDI has integration with data on socio-economic 

impacts of drought collected using mobile phones. The predicted future ECDI 

values do not, however, integrate the socio-economic data and neither are the 

socio-economic impacts predicted. 

Review by Type of study 

A review of the past studies can see the studies categorized as either scaled-down 

versions of global drought monitoring approaches or as the application of known 

computing methods in novel ways. Studies that scale down global models for drought 

prediction are documented in Wetterhall et al. (2015), Trambauer et al. (2015), Huang 

et al. (2016), Yuan et al. (2017), Turco et al. (2017) and Štěpánek (2018). This 

approach involves taking an existing model and using it in the context of a new set up.  

In Huang et al. (2016), the SPI and Effective Drought Index (EDI) are used to assess 

severity, duration and spatial extent of drought events using the Statistical 

DownScaling Model (SDSM) approach. A similar downscaling approach is used in 
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Wetterhall et al. (2015) following on the European Centre for Medium-Range Weather 

Forecasts (ECMWF) seasonal forecasts system 4 (SYS4) to make seasonal forecasts 

of dry spells over the Limpopo basin during the rainy season with lead times from 0 to 

4 months. The Limpopo basin also saw the use of three downscaled global models in 

Trambauer et al. (2015) in the forecast of drought. 

The ensemble streamflow prediction system (ESP) is compared to the operational 

dynamical forecast system ECMWF seasonal forecast- System 4 (SYS4) in predicting 

summer drought in Europe (Turco et al., 2017). Most interesting is the ensemble of 

downscaled models found in Štěpánek (2018) that uses 5 global numerical weather 

prediction (NWP) models including ECMWF and two soil models in an ensemble to 

forecast soil moisture and drought intensity. Across these studies, the most interesting 

is the interplay between model downscaling and the opportunity for ensembling. A 

further review of the application of down-scaling is, for example, provided in Wilby 

& Dawson (2013). 

The greatest limitation of the downscaling approach is in the definition of drought 

event and the follow-up variables that are then used for the monitoring. Droughts as 

earlier reviewed in section 2.3 on the “Key concepts in the definition of drought” was 

noted to have both spatio-temporal attributes. The non-universality in the definition of 

droughts would make for non-applicability of some of the data in some spatial extents. 

Additionally, given that the scaled-down models have to use variables similar to those 

used in the global versions creates a shortcoming especially in the case where a specific 

kind of variable turns out non-responsive to droughts in a given spatial extent or even 

when the drought type of interest changes from the focus in the global models. The 

studies that defined any of the computing methodologies afresh by learning new 

models are described in the next section on the review by methods of drought 

prediction. 

Review by methods of drought prediction 

The methods of drought prediction, apart from those that use scaled-down versions of 

existing global models and that involve the use of novel computing methods are 
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documented in quite a sizeable number of studies. The studies are reviewed based on 

whether the deployment is made of a single method or is of multiple methods. The 

single and hence pure methods include any of artificial neural networks (ANN), 

multiple linear regression (MLR), Hidden Markov Models (HMM), random forests 

(RF), time series prediction (TSP), Bayesian frameworks/ networks (BN), 

autoregressive integrated moving average (ARIMA). Multiple models, on the other 

hand, entail an assembly of two or more of these specific methods. A review of the 

studies by the methods is provided here next. 

Pure artificial neural networks are used in amongst others: Morid, Smakhtin & 

Bagherzadeh (2007), Maca & Pech (2016), Le et al. (2016) and Ali et al. (2017). The 

following is an in-depth review of each the drought prediction studies with respect to 

their contributions and limitations. 

• Morid, Smakhtin & Bagherzadeh (2007) used an artificial neural network to 

formulate a continuous function of rainfall that predicts drought. It uses 

Effective drought Index (EDI) and the SPI in addition to climatic indexes 

Southern Oscillation Index (SOI) and North Atlantic Oscillation (NAO) index. 

An R2 of 0.66-0.79 is reported. EDI models are also reported to outperform SPI 

models in this study. The documentation indicates the superiority of the EDI 

forecasts over those of the SPI.  The predictions are documented to only 

indicate a possibility of future dry or wet conditions as opposed to quantifying 

drought severity. One limitation of this study is the avoidance of synergies from 

the two datasets used in the prediction of droughts. 

• Masinde (2013) uses the artificial neural networks (ANN) and the Effective 

Drought Index (EDI) to solve the twin problems of provision of short- and 

long-term drought forecasts and the specification of the severity of the drought. 

The approach, however, covers meteorological drought and perhaps early 

phases of hydrological drought.  

• Maca & Pech (2016) documents the importance of time series indices in 

drought monitoring. The study has quite a set of interesting facets. The study 

uses ANNs in an integrated formation and compares their performance with 



87 

 

the known Multilayer Perceptron (MLPs). The approach used five different 

objective optimization functions to realized four ANN models that were then 

used in a hybrid formation to predict the values for SPEI and SPI. This study, 

even though it does not explicitly call the approach ensembling is in our 

opinion a homogeneous ensemble approach that uses purely ANN models with 

a supermodel for the ensemble. The limitation in this study, however, lies in 

the fact that the combination of the members into the ensemble not 

investigated. In our opinion, apart from the hybrid approach that is definable 

as an ensemble in our opinion, this approach still predicted only meteorological 

and partly agricultural drought without the integration of agricultural and 

socioeconomic drought indicators. Strictly speaking, the model in this study 

does not define drought events and so remains a system for the forecasting of 

future SPI and SPEI values rather than drought. 

• Le et al. (2016) do index forecasting using lagged values of the same index. 

The study also documents the use of climate signals as predictors of continued 

interest. The study uses multiple SPEI time steps of 1, 2 and 3 months and also 

uses lagged climate variables to predict future SPEI conditions using multilayer 

perceptron feedforward neural networks due to their popularity. Five years of 

data covering the period 2001-2006 was used in the study. The study period 

was documented to have had one drought event and the aim was to select the 

best performer ANN model for a single extent that best predicted this drought. 

In our opinion, there are two distinct limitations to this approach. First, the 

period of study amounts to a short period of time with only one drought 

episode. Drawing references from such a short period for generalization into 

the future could be a little shaky for lack of enough instances to achieve full 

model calibration. Though ANNs handle scarcity of data, we opine that this is 

quite a short period for weather-based events to be well understood by a model 

and subsequently predicted. Second is the use of one extent with the same 

dynamics recorded. Generalization beyond the extent of learning would be a 

tall order in our opinion. 
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• Ali et al. (2017) document the popularity of the use of drought indices as the 

tools for drought management. This study uses the Standardized Precipitation 

Evapotranspiration Index (SPEI) that is an extension of both precipitation and 

potential evapotranspiration (PET). The use of ANN with a feed-forward 

topology with backpropagation learning was deployed. Three (3) layers with 

the configuration 30-8-1 were shown by experimentation to be the best 

performer with 30 past values of each index used. MAE, R2 and RMSE were 

used as performance measures. Correlation coefficients of between 0.887 to 

0.987 for a 1-time step prediction were reported. This implies a determinant of 

correlation, R2 of 0.79 that represents very good performance. It is, however, 

to be noted that the study had multiple models for the different spatial extents 

for the good return in performance. The development of a model for each of 

the different regions of interest is bound to make this approach difficult to scale 

for multiple extents.  

Other pure methods include Multiple Linear Regression like in Huang et al. (2016) 

that is used in the context of a scaled-down model, Hidden Markov Model HMM) in 

Khadr (2016) that used SPI to predict meteorological drought. Remarkably the study 

in Khadr (2016) posts an R2 of 0.96 and RMSE of 0.20 is reported for the study for 

meteorological drought and for 1 time-step lead time. This, in our opinion, is quite 

some admirable prediction for a 1-unit time step. The dip in performance using this 

approach for the next time step to R2 below 0.56 however make it quite declining in 

performance with increased lag. The use of random forest (RF) is advanced in Shah et. 

al (2017) that used multiple indicators including temperature, precipitation, 

evapotranspiration to predict what amounts to both meteorological and hydrological 

drought leaving out both agricultural and socio-economic aspects of drought. Time 

series prediction and Bayesian approaches are also documented to have been used in 

drought prediction including but not limited to the studies in Wichitarapongsakun et 

al. (2016) and Madadgar & Moradkhani (2013) respectively. 
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2.9.2 Multi-model method studies 

Increasingly, prediction of droughts using remote sensing and socio-economic data are 

adopting the use of multiple models as has been the case in climate-based predictions 

at a global scale. The models are either in comparative studies or those that proceed to 

use the opportunities offered by the multiplicity of the models in the actual predictions. 

These approaches have been documented in Moustris et al. (2012), Belayneh & 

Adamowski (2012), Mishra & Desai (2006), Agana & Homaifar (2017) and Rhee & 

Yang (2018). These studies are summarized as follows: - 

• Moustris et al. (2012) though not on drought monitoring is one that uses 

climate-based data to do a surface ozone forecast using a Multiple Linear 

Regression (MLR) model against ANN. The results indicate the 

competitiveness of the results with an R2 0.65 to 0.67 in favour of the ANN. 

This study is one basis for the indication of the superiority of the ANN to most 

of the statistical methods. The use of similar variables across the two models 

for comparability of results in this study is in our opinion well informed. 

• Belayneh & Adamowski (2012) used the SPI aggregated over 1, 3 and 12 

months to investigate the appropriates in the prediction meteorological 

drought. Predictions were done using wavelet neural networks (WN) ANN and 

Support Vector Regression with results compared to ARIMA. The WN is 

shown to produce the most effective model for the forecast of conditions with 

3-month and 12-month lead times. As expected, the study documented the 

techniques as all degrading in performance with increased lead times in the 

predictions. 

• Madadgar & Moradkhani (2013) does a seasonal forecast of drought as 

defined by Standardized Streamflow Index (SSI). The SSI is defined akin to 

the SPI. The focus of this study is the prediction of hydrological drought and 

the method used is the Bayesian framework method in the context of a 

multivariate probabilistic framework. First-order and second-order conditional 

probabilities were calculated for the subsequent seasons.  
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• Lu et al. (2014) used a combination of fuzzy logic and neural networks in an 

improved neural network fuzzy inference model to predict weather conditions 

such as precipitation. The study documents the superiority of the results of the 

fuzzy networks as compared to purely ANN models. The model, however, only 

made predictions of meteorological droughts and does not use drought effects 

data or even vegetation data to model the other types of drought. All data used 

is from a single source and thus there is no evaluation of multiple sources of 

data. 

• Agana & Homaifar (2017) document the need for more complex models to 

overcome the random and non-linear nature of droughts that are made worse 

by climate change. The suitability of ANNs with two hidden layers is 

documented to overcome the problem of non-convex optimization. Using a 

Deep Belief Network (DBN) with 2 restricted Boltzmann Machines, drought 

predictions are made using lagged values of Standardized Streamflow Index 

(SSI). The study uses the 2-dataset split approach in the development of the 

models whilst using RMSE and MAE as measures of performance. 

• Rhee & Yang (2018) uses Extra-Trees (EXT) and Adaboost for classification 

with the 80:20 % data split approach. The Machine Learning Approaches of 

EXT and Adaboost are documented have outperformed bias-adjusted forecasts. 

Despite the development of multiple models by the study, an opportunity was 

lost in this approach to investigate the effect of bettering prediction through 

model ensembling and possibly the integration of socio-economic data. 

2.10 Emerging trends in drought monitoring 

We discuss the emerging trends based on the review of past studies as angled from the 

noted trends in research in addressing the documented limitations of the current 

approaches. We cover trends in both data and methodology. 

First, the studies reviewed above show the limitations of stochastic approaches to the 

prediction of droughts. The limitations of the popularly used ARIMA/SARIMA 

models are discussed based on their inability to model both non-linearity and non-
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stationarity that droughts suffer as a result of external impacts like those arising from 

climate change. The alternative approaches to ARMA based models, however, 

together with the availability of drought indices over long term periods offer an 

opportunity for robust and reliable predictions of future drought events. 

The second observation is that it is increasingly the case that multiple indices are being 

used in drought prediction. Most of the studies either use one variable or aim to predict 

one or two stages of drought with meteorological and hydrological drought being the 

most commonly studied. 

The third is the emergence of the need for the use of socio-economic data in drought 

monitoring as advocated for in the studies earlier reviewed and particularly in Enenkel 

et al. (2015). Currently, consideration of impacts of drought is generally neglected by 

most drought monitoring initiatives as observed in Bachmair, Kohn & Stahl (2015) 

and in Wilhite, Svoboda & Hayes (2007). The use of socio-economic data would lead 

not only to the prediction of drought severity based on satellite-derived data but also 

the possibility of quantifying and predicting the possible impacts of such drought 

should they occur. This would make for operational systems that measure both drought 

severity and drought impacts based on data sources from field-based observations as 

is the case in Enenkel et al. (2016). The use of Socio-Economic Data (SED) in drought 

monitoring is increasing getting focus because of the need to need to assess the effect 

of droughts on communities. The ultimate goal of any drought monitoring initiative 

should be towards keeping the communities protected from the resulting economic 

shocks through drought mitigation. Drought mitigation should stem from a well-

structured drought preparedness process that is informed by identifying pre-planned 

activities in the non-drought phase through a formal process referred to as drought 

contingency planning. According to Enenkel et al. (2015) and the Enenkel model in 

Figure 2.17, there is, therefore, need for drought monitoring systems that incorporate 

remote-sensed weather-based data, socio-economic data and elements of forecasting 

into drought early warning systems (DEWS). In this approach, remote sensing data 

would provide the objectivity of defining exposure to drought and its severity. The 

socio-economic data would then attempt to quantify the effects of drought while 
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forecasting would be used to provide a lead time view of the progression in both the 

drought and the drought effects. The operational decision support system (ODSS) 

would, therefore, be a computer-based application that collects and analyses drought-

related data to facilitate both accelerated and quality decision making for drought 

management and drought planning. 

 

Figure 2.17: The Enenkel proposed framework for an operational decision-support system 

(ODSS). 

Fourth is the demand for approaches that utilize more than one modelling methodology 

in the prediction of drought. These approaches have different setups ranging from 

comparative studies that then inform the choice of methods to those that aim at 

improving the performance of predictive models. The most desirable of the usage of 

these multiple models would be in a setup where they are used to offer predictions 

which would then be used for integration to obtain a single possibly stable model 

offering better performance in prediction. Such would be an ensembling modelling 

approach.  

2.11 Model ensembling as a trend in predictive studies 

2.11.1 Definition of ensemble learning 

While Zhou (2012) defines ensemble learning as a machine learning paradigm that 

trains multiple leaners with a view to solving the same problem; Re & Valentini (2012) 
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characterize it as an approach that efforts to mirror the human approach to decision 

making through the combination of expert opinions. The common thread in the 

definition of ensemble learning is centred around the combination of different 

predictors to produce a single prediction or classification as it were.  

Model ensembling, in summary, is therefore defined as the approach to prediction-

based studies in which multiple models are built whose individual decisions are then 

combined in some way to make estimations of target variables. 

2.11.2 The aim and reasons for model ensembling 

The aim in ensemble modelling is documented to be the building of not very predictive 

models and subsequently transforming them into super classifiers without necessarily 

generating any new powerful algorithms. An alternative reference to this learning 

paradigm is meta-modelling or meta-learning and is most appropriate for weak 

learners. 

The basis for model ensembling is both theoretical and practical with the most common 

ensembling approaches designated as bagging and boosting. The use of bagging and 

boosting has been documented earlier in Quinlan (1996) and in Drucker & Cortes 

(1996) due to their effective use in decision trees. Opitz and Maclin (1999) have 

documented the tendency for experts to use model ensembling in decision tree learning 

as a result of the faster speeds of learning that characterize them. This explains the 

rarity in the use of the model ensembling approach for the slow training approaches 

like artificial neural networks. 

The justification for model ensembling is documented to include more accurate 

predictions compared to individual members and better performance in generalization 

as a consequence of possibly model specializations in the minimization of different 

errors on training data. Illustratively, multiple classifiers only get a wrong ensemble 

classification when more than half the base classifiers are wrong which will be at a 

reduced probability as compared to a single classifier. 
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2.11.3 Key Issues in model ensembling 

Apart from the question of determination of the members of an ensemble, the other 

key concepts in model ensembling include the trio concepts of bias, variance and the 

variance-bias decomposition. While the variance of a predictor is an indication of its 

sensitivity to small differences in the training set, bias is a function of error in the 

assumptions in the model. The two concepts are visualized in Figure 2.18. 

 

Figure 2.18: Visualization of bias-variance trade-off (Fortmann-Roe, 2012). 

Bias in models is related to the concept of underfitting, in which case high bias models 

are those built so simple that they perform poorly in predictions compared to reality 

despite exposure to different datasets. On the other hand, variance measures the change 

in model performance with a change in training data used. Low variance is desirable 

since it implies model performance does not change with changes in datasets. In 

modelling, the two concepts have an inverse relationship. The desired point is the low 

bias- low variance disposition. Since the formulation of the underlying target function 

is not known, the bias-variance trade-off is key to realizing a good prediction 

performance. Generally, variance denotes sensitivity to small fluctuations in the 

training dataset while bias is a result of erroneous assumptions in the model that makes 

them perform poorly while trade-off between the two is also referred to as the 

Variance- Bias decomposition. It is the expectation that model ensembling does reduce 
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both bias and variance to lead to the achievements of the low bias-low variance point 

for best model performance. 

One error that affects model performance as described in Zhou (2012) is the concept 

of intrinsic noise that demarcates the lower bound on the expected error of any learning 

approach on the target. This is based on the underlying function being approximated 

not being well understood in most cases.  

2.11.4 Methods of model ensembling 

The three methods of model ensembling are variously described as bagging, boosting 

and stacking. The three approaches are as depicted in Figures 2.19 (a)-(c). 

 

 

(c) Stacking 

Figure 2.19: Methods of model ensembling: (a)bagging, (b) boosting and (c) stacking. 

  

(a) Bagging  (b) Boosting 
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Figure 2.19 shows the model ensembling methods:  

• Bagging (a) in which - 𝑤𝑖…𝑤𝑀 represent the M bootstrap samples in which 

the different M learners from the same base algorithm are built and their 

outputs combined using the aggregation function 𝐹𝑀(𝑥). 

• Boosting (b) that has the learners trained sequentially on the poor 

performing cases. 

• Stacking (c) that has multiple initial learners (M1…Mn) developed from 

potentially different bootstrap samples (D1…Dn) and potentially different 

algorithms. The outputs of the initial multiple learners are used as inputs to 

a meta-learner from which outputs are derived. 

In Bagging, multiple bootstrap samples are derived from the training data randomly 

and with replacement. Different learners of the same base algorithm are then trained 

on the different samples. The outputs of the learners on the different samples are then 

combined to realize a single prediction by for example averaging the individual 

predictions. As opposed to bagging, boosting manipulates the training set but the 

leaners are trained sequentially on poorly predicted cases. The trained models are then 

used as a committee whose outputs are weighted. The key difference is that bagging 

derives the models in parallel while boosting derives the models sequentially with 

iteratively re-weighted training examples. Boosting is thus susceptible to model 

overfitting. 

Stacking, as shown in Figure 12.9(c) and also documented in Džeroski & Ženko 

(2004), is an approach that builds multiple first-level learners, potentially by using the 

same algorithm or different learning algorithms. The initial level learners are 

subsequently combined by a second level learner that is referred to as a meta-learner. 

The ensembles are thus either homogeneous when the same technique is used to build 

all the base models or heterogeneous when the base models are borne out of different 

algorithms. We infer the heterogeneous ensemble as the model ensemble in its truest 

form. 
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2.12 Conceptual Framework 

A conceptual framework is variously defined but with generally no agreement in its 

standard definition. Jabareen (2009) defines the Conceptual Framework as a network 

of interlinked concepts that together provide a comprehensive understanding of a 

phenomenon or phenomena. The conceptual framework, therefore, provides a general 

representation of the relationships between things in a given phenomenon. More 

importantly, conceptual frameworks help in the communication of the ideas out of 

research (Ivey, 2015). 

The conceptual framework can be viewed in terms of the two ways in which it shapes 

the research process. First, the conceptual framework is used to define the research and 

to outline courses of action based on a preferred approach to the investigation of an 

expressed problem. Second is the use of the conceptual framework as an organized 

way of thinking about how and why a project takes place and consequently on the ways 

to ensure it is easy to communicate the output of the research to others. 

2.12.1 The Elements and Concepts 

The overall objective of this study is to investigate the use of model ensembles in the 

prediction of both drought and drought effects using remote sensing and socio-

economic data. The tasks involve the identification of drought monitoring variables 

based on a broad definition of drought based on all the four types and the investigation 

on how the variables are related. Subsequently, we use the variables to build ensembles 

of both homogeneous and heterogeneous methods to predict both drought severity and 

drought effects. The key concept is drought as measured by different indicators based 

on the types of drought.  

The investigation of the concept of drought and its prediction is based on a predictive 

research model that has a series of experimental models that are developed and run 

against the observational data, both remote sensed and socio-economic in nature. 
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2.12.2 The Conceptual Framework for the study 

The conceptual framework for this study is developed based on the key concepts 

derived from literature review. These concepts are then woven together to define a 

framework that facilitates their review as guided by the formulated objectives and 

research questions. These concepts are as briefly outlined below: 

• The definition of drought severity as a continuous measure that is to be 

predicted based on variables derived from the review of literature. This is the 

first variable to be predicted. Drought severity is indicated by the VCI3M 

values and its prediction based entirely on remote sensing data. 

• The definition of drought impact on nutrition as a measure of the effects of the 

drought that also depends on drought severity. This is the second variable to be 

predicted. 

• The concept of progression of drought based on types of drought as measured 

by different indicators. This gives rise to the opportunity to group the indicators 

by types of drought. 

• The intention to use multiple modelling methodologies in an ensemble 

approach to predict the two variables on drought severity and drought impacts 

on nutrition for children under five years. 

The conceptual framework as shown in Figure 2.20 outlines the relationships between 

the predicted and predictor variables.  Variables are categorized based on the type of 

drought they are typically used to monitor.  
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Figure 2.20: The conceptual framework for the study 

The conceptual framework identifies the grouping of the predictor variables and the 

process of their deployment to predict the dependent variables that define both the 

drought severity and drought effects on nutrition. The predictor variables are values at 

time t-1 to time t-3 months while the socio-economic variable values are at time t-1. 

For each instance, the predicted values are those at time t. 

From the conceptual framework, given that we use time series data at a monthly 

frequency, the operationalization of the model will see two district parts of the whole 

system. These district parts are: 

• The monitoring portion of the framework which is characterized by the 

calculation of the monthly drought indexes from both remote sensing and 
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socio-economic data. This forms the monitoring part of the system. Given we 

lag the variables in the model, this is equivalent to the t-1 values of the 

variables. 

• The prediction of the future drought severity and drought effects as indicated 

by nutrition conditions at time t is the predictive/ forecasting component of the 

framework. 

The framework, therefore, gives a predictive approach to drought monitoring. In 

operationalization, not only do we monitor drought conditions but we also make 

predictions of future conditions for drought severity and drought effects. This approach 

can be referred to as predictive drought monitoring in the context of this study. 

The first prediction task for the prediction of drought severity is accomplished by 

identifying multiple models judged to be predictive of drought severity. The identified 

drought severity models are themselves used to predict drought effects. In addition, the 

recombination of the drought severity models with the lagged values of socio-

economic variables are also used in the prediction of drought effects. 

Though the terminologies of dependent and independent variables are interchangeably 

used with predicted/target and predictor variables respectively, in this study we adopt 

the latter that is most appropriate for correlational studies due to the absence of 

treatments and control groups as is the case in experimental studies. 

2.13 Literature Review Summary 

The gaps identified in the literature review can be summarized into the following major 

issues: 

2.13.1 Prediction of drought signals without recourse to drought effects 

Prediction of drought signals and future drought conditions is majorly done using 

biophysical indicators but with limited investments in the prediction of drought effects 

(Hao, Singh & Xia, 2018). The studies that advocate for drought early warning systems 

(DEWS) that incorporate socio-economic data on drought effects include but are not 

limited to Jenkins (2012), Massarutto et al. (2013), Musolino, Massarutto & De Carli 
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(2015), Enenkel (2015) and Enenkel et al. (2016). Garrido (2014) for example 

advocate for monitoring effects on demand and supply markets while Jenkins (2012) 

expounds on the Hochrainer model (Hochrainer et al., 2007). Massarutto et al. (2013) 

advise on the quantification of the socio-economic effects of drought events and the 

modelling of the relationship between variables that monitor drought severity and the 

subsequent socio-economic impacts associated with drought.  

These studies that propose the incorporation of socio-economic data in drought 

monitoring do not offer how these would be integrated into operational drought 

monitoring systems and by extension in the prediction of droughts. We, therefore, 

recognize an opportunity in the furtherance of the modelling of drought effects using 

socio-economic data. 

2.13.2 Univariate over Multivariate systems 

Most drought monitoring and drought prediction systems are built around the use of a 

single variable in either the prediction of droughts or even a single variable in the 

monitoring of droughts. The use of the single variable is despite the existence of many 

variables and many data sources even for the same variable.  The univariate systems 

are popular despite the existence of multiple indexes, perhaps due to the simplicity 

inherent in them.  The tendency to build univariate systems is for example documented 

in Su et al. (2017) and in AghaKouchak et al. (2015). Studies that document 

multivariate systems include Tadesse et al. (2010), Tadesse et al. (2014) and Wardlow 

et al. (2012). These are, basically, the outputs from the same operational approach as 

applied in different contexts and they stand out in their design that incorporates 11 

variables derived from oceanic, environment, climate and satellite data. 

Closely related to the popularity of univariate systems is the tendency to model 

droughts using only variables that monitor one type of drought despite the existence of 

multiple types of drought: meteorological, hydrological, agricultural and socio-

economic (UNOOSA, 2015).  
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Therefore, we observe that with the proliferation of data across the multiple types of 

drought, future drought monitoring systems should be multivariate and cover multiple 

if not all the types of droughts. 

2.13.3 Single technique- single model in the prediction of droughts 

The state of the art in drought prediction is replete with the use of a single prediction 

technique in the search for the champion model. The champion model is the model 

judged to be most predictive of a phenomenon under predictive investigation. 

Majority of drought prediction studies take the approach to modelling that realizes a 

single champion model. The champion model approach has been shown to: 

• have low predictive power and to be unstable in future performance and thus 

requires frequent updates. 

• happen in a context where there exist multiple drought prediction techniques 

that have been shown capable of offering good performance in the prediction 

of future droughts. Drawing synergies from these techniques becomes a natural 

step in the architecture of future drought prediction systems. 

• exist even among studies that make an attempt to deploy multiple techniques 

but that still ended in the selection of the best technique or the comparison of 

techniques. 

The use of single techniques and the selection of single models even in multivariate 

systems is a loss of opportunity in model ensembling that synergizes the strengths of 

diverse modelling techniques to realize both highly predictive and stable models. 

2.13.4 Opportunity for model ensembling 

Model ensembles have in the past been done using bagging and boosting with the aim 

to realize good predictive performance from multiple individually poor learners 

(Belayneh et al., 2016; Opitz & Maclin,1999). While bagging reduces variance by 

averaging predictions, boosting increases model performance by sequentially learning 

models. Stacking, which is increasingly becoming the attention of research as an 

approach to model ensembling aims to combine weak learners to reduce generalization 
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error. Džeroski & Ženko (2004) document stacking as having at worst a performance 

comparable to champion models. 

In theory, model ensembles should outperform single models. Furthermore, 

heterogeneous ensembles are expected to outperform homogeneous ensembles as 

documented in Petrakova, Affenzeller & Merkurjeva (2015). This, however, is noted 

to not hold in the case of some empirical studies like Elish (2013) in which in 2 out 5 

instances, single models outperformed model ensembles. In fact, some studies like 

Kocaguneli, Kultur & Bener (2009) had ensembles lose performance to champion 

models.  

We realize that empirical studies that document the use of model ensembling to realize 

more predictive models, have themselves not settled on the question of the 

performance of model ensembles as compared to best performing models. The 

investigation of the performance of different ensemble approaches, especially between 

homogeneous and heterogeneous ensembles is a gap in drought monitoring and indeed 

in many other applications. 

We see that despite the predictive performance of model ensembles being at variance 

across studies, their application would benefit the prediction of droughts with more 

predictive and stable models. The extent of this benefit would be further enhanced with 

the analysis and comparison of the performance of the different ensembles relative to 

one another and with the champion model as the base for comparison. The evaluation 

of the performance of the ensembles would offer a solid guide to practitioners on what 

kind of ensembles to go for to be guaranteed of higher predictive power and stability. 
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Chapter 3: RESEARCH DESIGN AND METHODOLOGY 

In this chapter, we outline the study area, the research design, the research process and 

offer justifications for choices of both the research design and research process. We 

provide justifications on the question of why we did not choose alternative and closely 

related research designs. The section, besides, discusses the type of data used for the 

study, how the data is collected and how nuggets are realized from the analysis of the 

data. 

3.1 Study Area 

The study area is shown in Figure 3.1. The study area comprises four counties of 

Kenya: Turkana, Marsabit, Mandera and Wajir. The selected region lies in the northern 

part of Kenya that is characterized as part of the arid and semi-arid lands (ASALs) of 

Kenya. The extent is bounded by: Upper Left X (Lon) 33.918, Upper Left Y (Lat) 

5.513, Lower Right X (Lon) 41.967 and Lower Right Y (Lat) 0.147. All four selected 

counties are classified as arid. The study area is, therefore, part of the ASALs 

monitored by the National Drought Management Authority (NDMA) of Kenya. 

 

Figure 3.1: Map of the study area 

The map shows the location of Kenya in Africa and the counties of Turkana, Marsabit, 

Mandera and Wajir in Kenya with the map of Kenya and whilst showing the grouping 

of Kenya counties into arid, semi-arid and non-ASALs. 
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The counties in this study area cover a combined area of 215,242 km2 with a total 

population of around 3.04M (KNBS, 2019). The annual average rainfall for the 

counties is 250mm for the three counties with Wajir having an average of around 

370mm. The rainfall pattern is bimodal with the long rains in March, April and May 

(MAM) and the short rainy season between October, November and December (OND) 

with 6 months considered wet months. The monthly average vegetation cover (2003-

2015) as quantified by the Normalized Difference Vegetation Index (NDVI) from the 

BOKU system for operational drought monitoring (Klisch & Atzberger, 2016) is as 

shown in Figure 3.2. 

 

Figure 3.2: Average NDVI across months for the counties in the study area based on 

MODIS data for the period 2001-2017. 

 

The NDVI data for the period 2001-2017 (Figure 3.2) indicates very low absolute 

vegetation cover of 0.43 in a scale of -1 to +1 implying very sparse vegetation cover 

and hence low biomass even during the wettest months e.g. May and December across 

the counties in the study area. 

In addition to the continued occurrence of droughts in the study area, further 

justification for the choice of the study area are based on the: - 

i. Index-Based Livestock insurance product development for the four counties 

of Turkana, Mandera, Wajir and Marsabit. The index is based on NDVI and 

will benefit from the study that will offer an alternative source of drought 
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monitoring products that could complement the exclusive use of vegetation 

data, the NDVI (Chantarat et al., 2013). 

ii. The scalability of the Hunger Safety Net Programme (HSNP) that is run in 

the four counties in the study area is based on drought status as indicated by 

the VCI3M which is an NDVI based product (Beesley, 2011). HSNP will be 

a potential beneficiary from this study since the research already developed 

the scalability model for the programme and a predictive early warning 

system will be a bonus to the process for scalability in social protection 

especially if the objective is early preparation in the delivery of the drought 

shock responsive payments. 

3.2 Research Design 

As documented in Thompson et al. (2005), all analyses are correlational and all 

quantitative studies yield correlational evidence. The differences between evidence 

should, therefore, as advocated in Thompson et al. (2005), be rooted not on how the 

evidence is analyzed but on the design of the study yielding the evidence. The function 

of the research design is, therefore, to ensure that the evidence obtained from any given 

research unambiguously answers the intended questions.  The intended research design 

is therefore meant to identify the key pieces of evidence required to achieve the 

research objectives. Research design, by the above principles, is therefore superior to 

the question of data collection methods and requisite data processing strategies. 

In this study, the intention was to investigate the relationship between meteorological, 

hydrological, agricultural and socio-economic drought variables to both drought 

severity and malnutrition status of children under 5 years as impacted by drought. The 

predictor variables were used to build two sets of models. First, is the set of pure 

method models that have one predictive modelling technique while the second is an 

ensemble of different modelling techniques in the prediction of the two target 

variables. The predictor variables are an integration of both remote sensing and socio-

economic variables. An investigation of existing theories informed the design of tools 

used for the investigation of relationships between the variables. 
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Once the tools were developed in the form of scripts, the study deployed them to 

conduct experiments to quantitatively measure the relationships between different 

variables and to build and determine the performance of ensemble models in drought 

monitoring. 

With consideration to the above, the study, therefore, fits the logical order of the 

enquiry in correlational research design for the investigation of the relationship 

amongst the various quantifiable variables and the building of the ensemble drought 

monitoring models. 

3.2.1 Correlational Research Design 

Correlational research design is operationally defined as the analysis of co-variant data 

to determine pre-existing relationships with no attempt to manipulate the independent 

variable. This research technique is noted in Creswell (2013) and further in Curtis, 

Comiskey & Dempsey (2016) to be used to relate two or more variables to allow for 

prediction of an outcome based on the correlational relationships between the 

variables. In essence, the focus of a correlational study is to find already existing 

relationships between variables without manipulating the extraneous variables. It is 

observed variously and particularly in Creswell & Creswell (2017) that quantitative 

research has two major distinctions. The first distinction in quantitative research is 

based on the existence of an independent and a dependent variable while the second is 

the methods used for the research that are either experimental or correlational. 

Correlational research, given that it a form of quantitative research stands at par, in 

value, to experimental research. 

This study, at the core, was interested in determining variables that correlate with 

drought severity and with nutritional impacts of drought without necessarily 

accounting for any external variables that might affect the relationships between the 

variables. Causation was not intended to hold in the relationship between the study 

variables given that the predictor variables were in no way manipulated. 

Despite correlations between the variables being established while causality is not 

implied, correlational research design still falls in the domain of quantitative methods 
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of research in which two (2) or more quantitative variables from the same group of 

subjects are investigated to determine if there is a relationship or covariation between 

them. Correlational research designs are either explanatory design or predictive design 

in nature. 

• Explanatory Research Design (ERD) looks for simple associations between 

variables and investigates the extent to which the variables are related. ERD 

involves the determination of the correlation between two or more variables 

and uses data collected from observations of a single group to draw conclusions 

from statistics alone. 

• Prediction Research Design (PRD) is driven by the goal of realizing the 

prediction of some variable based on other variables. Variables in this design 

play different roles: as either predictor variables hence used to make a 

prediction or as the predicted variable that are the target variables for the 

prediction. 

For this study, the research design of choice is thus characterized as a correlational 

design. This since we investigate the relationships between variables using explanatory 

research design and also produce models that are used to predict other variables i.e. 

drought severity and drought effects on malnutrition in a process that falls within the 

ambit of prediction research design. 

3.2.2 Why is the research design correlational? 

Broadly, science has any of the three goals of describing, explaining or predicting. 

These general goals of research are what are to be achieved by different research 

designs. The correlational design is one such design that achieves two of these three 

research goals of describing the relationship between variables especially for 

explanatory research design, and at the same time supporting the prediction of a 

phenomenon using other variables. The choice of correlational design for this study is 

justified by the following: - 

• First, a view of this study into two stages realizes the investigation of the 

relationship between the variables used in the study. The relationships are both 
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between predictor variables (X-X) and between the predictor variables and the 

predicted variables (X-Y).  The study determines the correlation between the 

remote sensing products of both precipitation and vegetation on one hand and 

between these remote sensing products and socio-economic data on the other 

hand. These variables were then used to build predictive models for drought 

monitoring 

• Second, a correlational research design is the measurement of two or more 

factors to determine or estimate the extent to which the values for the factors 

are related or change in an identifiable pattern. The measurement of the 

magnitude of the correlations between the variables was a key undertaking of 

the study. 

• Third, the correlational design provides models for both explanatory research 

and predictive research design models that fell in the desired analysis path for 

this study. 

The above three observations directly led to our decision for the use of the correlational 

research design. Both the explanatory research and prediction research models of 

correlational research design were used in this study. 

3.2.3 Limitations of Correlational Research Design & Mitigation 

The limitations of correlational design are well documented in McLeod (2018), 

Mitchell (1985) and Thompson et al. (2005). These limitations include the inability to 

infer causality to the existence of spurious correlations and difficulty in interpretation 

due to non-existence of standards. These limitations are summarized as follows: - 

• The inability to infer causality is the greatest limitation of correlational design. 

It is the most experienced limitation since it comes with the formulation of the 

correlation design problem. Correlational design cannot infer causality since 

all they indicate is co-occurrence. The method does not control for differences 

and therefore has no treatments in addition to not having control groups. This 

limitation, however, does not affect our study since we are not interested in 
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causality but in the relationships between the different target variables and the 

predictor variables as realized from a modelling approach. 

• The existence of outliers can influence the direction and strength of observed 

correlations and sample restrictions of the range that is not reflected in the 

general population. This then would lead to incorrect imputations out of data-

driven studies. The study uses statistical techniques to handle outliers. Though 

the simplest solution is to eliminate outliers, the possible influence of outliers 

on correlations is mitigated on through transformations that rescale the values 

as the method of choice. The normalized values then have the influence of 

outliers mitigated on. 

• Sampling limitations can result in samples that are not representative of 

characteristics as those present in the general population. This limitation, 

however, cuts across may research designs. There is the need to ensure that 

sampling at any point of the study is driven by and tested for representatives of 

the chosen samples. The study does random sampling while the modelling 

approaches, in addition to random sampling used bagging techniques to 

overcome this limitation. 

• Assumption of linearity is common in most correlational design approaches. 

The basis of this assumption is that there exist linear relationships between the 

variables under investigation. Since there exist methods that do not assume 

linearity and or normality, there is always advisable to test data for linearity 

before undertaking any modelling on the data. We did the test for normality on 

our variables and adopted appropriate methods based on the distribution of the 

data. All our chosen modelling approaches do not assume linearity but are free 

of dependence on pre-determined distributions. 

• The non-existence of a standard interpretation characterizes the use of the 

correlation approach to research. There are no set rules for interpreting 

correlation coefficients but the use of statistical significance. There is never a 

standard to quantify the difference in the values of the measures of statistical 

significance. The background knowledge of research on the data, therefore, is 



111 

 

heavily relied on in the interpretation of the results of correlation studies. In the 

study’s modelling approach, we used the determinant of correlation(R2) and 

the associated rules of thumb to determine the strength of noted relationships. 

• Spurious correlations and the directionality problem are also significant 

limitations of the correlational design. Spurious correlations do exist in most 

datasets. These are correlations of variables that in reality have no relationships 

between themselves. The spurious correlations are thus correlations by chance. 

They lead to the inferences of relationships that exist in the modelled world but 

not in the real world. In some cases, even the fact that one variable affects 

another does not exactly come with the guarantee on the direction of the 

relationship. This study is susceptible to spurious correlations given that it is 

entirely based on time series data. To limit susceptibility to the problem of 

spurious correlations, the study uses two approaches. First, we have surveyed 

literature and all our variables have a past basis of use in the prediction of 

drought. Second is the de-trending of the time series data before comparison to 

reduce the chances of working with spurious correlations. 

3.2.4 Positives of the Correlational Research Design 

The positives of the correlational research design can be viewed in the context of the 

advantages of observational research, as compared to other research designs. The 

positives of correlational research design include prediction, navigation on ethical 

issues, support for multivariate analysis and ability to work for non-experimental 

designs. 

• Predicting one variable from another is a positive offered by the correlational 

research design. This is the case since the correlational research design 

provides a framework for the prediction of one variable from another with some 

considerable accuracy. 

• Overcoming ethical considerations in the study of sensitive phenomena can be 

done via correlational design as opposed to, say,  actual experimental research 

design. This is since identities can be reduced or reduced to data in non-
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intrusive ways without the creation of groups and even the use of human 

subjects. Since the results are grouped, there is no direct reference on individual 

elements and thus privacy violations rarely exist. This study benefits from this 

in two aspects. First, the predictor variables cannot be manipulated. Second, if 

they were, it would have been unethical to create drought so as to be able to 

register changes on it as a result of changes in the predictor variables. 

• Multivariate variables support ensures that multiple variables can be used in 

the prediction of one predicted variable. Multivariate systems then guarantee 

the realization of complex relationships between datasets and data items. 

• The support for non-experimental studies, especially for some phenomena that 

cannot be studied by experimentation makes the correlational design a 

powerful research design. It is, however, this simplicity of approach that leads 

to the limitation to infer causality.  

3.2.5 Why not the closely related Experimental Research Design 

In this section, we justify why the alternative and closely related experimental research 

design was not made a method of choice. True experimental research design as 

documented in Creswell & Creswell (2017) is the only research design that can 

establish a cause-effect relationship within a group or groups. It is hallmarked by three 

factors that need to be satisfied: 

• The presence of a control group that is within the research but do not have the 

research experimental rules applied to them. 

• The existence of a variable that can be manipulated by the researcher 

• The element of randomness in the distribution of participants between the 

experimental and the control groups. 

The justification for use of the correlational design over the experimental design is thus 

discussed under the key differences between experimental and correlational research 

designs based on the:  manipulation of variables, types of inferences and the presence 

or absence of groups or levels of analysis. 
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• Manipulation of the independent variable(s) is the hallmark of experimental 

research. The independent variable is manipulated to produce one or more 

results called dependent variables. This is as opposed to observation-based 

research designs like correlational research designs that do not manipulate any 

variables and thus refer to the variables as either predicted or predictor 

variables. In this study, since we use historical data that was strictly 

observational and without any manipulations of the predictor variables, the 

correlational research design was the logical option. 

• Holding variables constant in experimental research ensures that a variable is 

controlled-for so that by looking at the effect of one, all others are assumed 

constant in the experimentation process. This is in direct contrast to the 

correlational research design that does not hold any variables constant in the 

investigation process. 

• Causal Inference is possible in experimental research design as opposed to 

correlational research design. Experimental research has both dependent 

variables (DVs) and independent variables (IVs) and accounts for external 

variables (EVs). Cause-effect inference can, therefore, be made from the 

investigated relationships. 

• Groups/ levels are used in experimental research design since it has both treated 

and untreated groups in the research process. The design also deals with the 

question of random assignment and the counter-balancing of groups. This is 

unlike the correlational design that just concerns two or more variables. 

The above differences, given the fact that we use archival data that were a result of 

observation processes, account for the study being justified in choosing correlational 

research design over experimental research design. The study does not manipulate the 

independent variables, does not hold any variables constant, does not infer causality 

and has no grouping for the variable under investigation for relationships. 
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3.2.6 Assurance of validity in correlational research design 

The validity of research is either internal or external and deals with the question of the 

soundness of research as influenced by both the research design and research methods. 

The question of validity and reliability is for example dealt with in Mohajan (2017) 

and earlier in Mitchell (1985). 

Correlational research design is documented to be poor at internal validity due to the 

absence of variable manipulation. This limitation is amplified in the case of this study 

since, specifically in our case, the design of data collection is not controlled since 

observation data from existing data repositories are used. This absence of design of 

data collection instruments and procedures then is a threat to internal validity. Despite 

this limitation, the soundness of data collected is one that was done as part of this study 

to ensure good quality data is used and that data manipulation processes were sound.  

Given that the internal versus external validity question is a trade-off and that external 

validity concerns the question of generalizability beyond the study group, it is the case 

that correlational studies have higher external validity as compared to experimental 

research design. This is attributed to the fact that correlational studies do not control 

for variables and so typify reality as compared to other approaches. Despite this 

assurance, we ensure populations are chosen randomly to avoid sampling bias and we 

also use a test data-set that is from the future to test for continued validity in the face 

of generalization. 

3.3 Description of the Research Method  

While Research design defines the blue-print for a study based on the steps to be taken, 

Research methods refer to the techniques deployed in research to gather information. 

In the assertion of Macdonald & Headlam (2008), research methods are either 

quantitative or qualitative and are defined to involve the quantification of things and 

ask the questions of how much, how long and to what extent. Qualitative research, on 

the other hand, concerns the quality of information. The data in quantitative research 

can thus be counted, sorted, measured, classified etc. The research method is discussed 

in terms of the data collection and data pre-processing and the chosen methods of data 
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analysis. The quantitative research process and the correlational research design were 

together operationalized in this study following on the research process discussed here-

next. 

3.4 Research Process 

The Research Process documents the process as defined by the set of finite steps we 

followed in undertaking the research study. With the research design already set as 

correlational research design, the basic steps of this research followed on this design. 

We present the steps and how they fit in this study under the design of investigation 

(DoI), logical flow of the process and finally provide a model for the study process. 

3.4.1 Design of Investigation 

The study uses both explanatory (descriptive) and predictive aspects of correlational 

research design. The investigation of relationships culminates into the effort to build 

predictive models that try to approximate the target (criterion) variables using the 

predictor variables. The steps to be followed based on the research design are as shown 

in Figure 3.3. 

 

Figure 3.3: The correlation research process. 

The different components of the correlational research process (Figure 3.3) are 

addressed at different phases of the study from problem formulation to results 

documentation and interpretation. Each step has the key questions formulated. The 

steps in the research process are as described below: 
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• Selection and definition of the problem: The selection of the problem and its 

definition is the first undertaking of the correlational research design. We have 

defined the problem as the identification of the remote sensing and socio-

economic variables that are used in the monitoring/ prediction of drought and 

to investigate their relationship with both drought severity and drought effects. 

The identified variables are then used to build ensemble models of both ANN 

and SVR whose performances are then compared to the traditional champion 

models.  This was as defined in section 1.4 and section 1.5 and is formalized in 

terms of methodology in section 3.5.1 on Methodical definition of the problem.  

• Sample: The question on the sample size and sampling methodology is dealt 

with under the section 3.6.3 on modelling methodology while the question of 

the study area was dealt with in section 3.1 as a purposive selection that was 

based on the expected utility of the outputs of the research. The key issues in 

the definition of samples and sizes are discussed as part of the modelling 

methodology. 

• Instruments: The study uses data extracted from data repositories and 

operational drought monitoring systems to achieve its objectives.  The 

instrumentation, therefore, can be equated to the development of scripts and 

program tools that are used in the extraction of required data elements that are 

then pre-processed to realise the variable/ indicators necessary for the study. 

Instruments are discussed together with data collection in section 3.5 on data 

collection. 

• Design and procedure: The design of the correlational design, in this study, is 

considered a straight forward task. In the exploratory phase, scores or 

observations between two variables are paired and their correlation coefficients 

calculated to indicate the degree and direction of the relationships. In the 

predictive phase, the aim was to build models and their combinations that best 

predict the target variables given the prediction variables. The experimentation 

was set-up to follow the machine learning process as reviewed earlier in Figure 

2.10 in section 2.8.1. The section on modelling methodology covers the 
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elements of the design of experimentation as well as the section on data 

collection and exploratory analysis. 

• Data collection: The issues encompassing the process of data collection 

including the data requirements, the data sources, data types, native/source 

formats and format conversion to the requisite final formats are handled in the 

section on data collection. The process for handling missing data and ensuring 

validity is also presented 

• Data analysis, presentation and interpretation: The statistical inferences of the 

derived relationships and predictive models and their associated interpretations 

are presented under the chapter on results and discussion to draw key answers 

to the objectives of the study. 

3.4.2 Logical flow of the study 

To achieve the objectives of the study, the logical flow of the study is expected to 

follow on the steps as presented in Figure 3.4. Through presented as a linear process, 

in implementation the process is expected to be massively iterative until the questions 

are answered and objectives all met. The different components are handled in different 

phases of this research. 

 

Figure 3.4: Logical flow of the study. 

3.5 Data Collection and Data Pre-processing 

3.5.1 Overview of Data Acquisition 

Data mining approaches essentially are best suited to vast volumes of data from which 

non-trivial information is sought. The common approaches to the acquisition of data 

for data mining are either direct observation over a period or the use of archival data. 
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Archival data is extracted off from some past observations, typically from operational 

systems or data-warehouses. The study extracted data from multiple data archives. The 

decisions on data acquisition were majorly driven by the deployed type of research for 

the study. Based on Miles & Huberman (1994), this research is considered to be 

quantitative research. This is justified by the fact that we aim to count & classify 

features and construct statistical models in an environment in which the study design 

informed data collection and data is in the form of numbers and statistics. 

In this study, data collection is widely referred to as data acquisition. The process of 

data acquisition and data pre-processing is non-trivial. The non-triviality of data 

acquisition is attributed to differences in data quality issues, data format issues and 

accessibility issues around the different sources. The socio-economic and remote 

sensing data are both treated as time series data collected at a monthly frequency over 

the period March 2001-2017 for the remote sensing data and at a similar frequency for 

the socio-economic data over the period 2008-2017 as illustrated in Figure 3.5. While 

the remote sensing data is from multiple sources, the Socio-Economic data is sourced 

from both the legacy system and the active operational drought monitoring system of 

the National Drought Management Authority (NDMA). The socio-economic data is 

shown to have a shorter historical archive as compared to the remote sensing data. 

 
Figure 3.5: Timelines for the major categories of the study datasets. 

The extraction of the socio-economic data and the remote sensing data from existing 

operational data archives, databases and data warehouses all make the research method 
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to also fall within observational research. All the datasets were integrated into one 

consolidated dataset. 

The socio-economic data was transformed so as to create more variables deemed 

sensitive to drought. Such transformations were aimed at exploring the possibility of 

ending up with more predictive variables from the initial set of variables. 

3.5.2 Key data collection/ acquisition concepts  

The data collection process is in cognisance of the following issues: - 

• Unit of Analysis: The unit of analysis is defined as the county level for the study. 

The choice of the county as the unit of analysis is justified by two key 

considerations. The study accommodates both socio-economic and remote sensing 

data. The socio-economic data is collected, analysed and reported on at different 

units of community, livelihood, sub-county and county level. This coupled with 

the fact that droughts affect relatively large areas justifies the choice of counties as 

the unit of analysis to avoid excessively rapid changes that would not be convenient 

for drought monitoring. 

Though remote sensing data could be processed at smaller spatial units than 

counties, the choice of the county level was, therefore, to ensure that there exists 

uniformity in spatial coverage between the remote sensing data and the socio-

economic data. 

• Ethical Considerations: According to Slonecker, Shaw & Lillesand (1998) and 

factoring in the recent innovations, it is clear that ethical issues abound in the 

acquisition and use of remote sensing data. Equally, the use of socio-economic data 

collected at household levels is subject to possible ethical violations. In this study, 

we use remote sensing data that is captured at 250m resolution. The data is supplied 

as images with digital values that do not have any possible violations to privacy or 

any other such infringements. 

For the socio-economic data, we sourced the data from the existing archives. The 

field-based data collection process goes through the listing of households and the 

seeking of consent from household heads for monthly data collection. Household 
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opt-out of data collection process unhindered and thus participation remains 

voluntary and with consent. Moreover, for this study, we use and combine both the 

approaches of depersonalization of the data to ensure it is without any identifiers 

and also use summarized statistics at the county level. This makes the data non-

traceable and non- constructible back to the original interviewees. 

• Guiding Principles used of data collection: The process for data acquisition in this 

study was guided by the need to acquire relevant data that adds to the intended 

body of knowledge, reliability of the said data and data that remains valid and thus 

able to measure what is intended to be assessed. The data acquisition systems and 

processes were made systematic and well documented for reliability and 

reproducibility. The major questions that were tabulated for each data source and 

evaluated before actual data acquisition were as outlined in Table 4. 

Table 4: Data sources evaluation criteria 

Consideration Evaluation 

Accessibility of 

identified data 

All data sources identified as potentially accessible were subject of 

data collection 

How to finance data 

collection 

Some data collection processes required investment in the actual 

data acquisition. These were evaluated in the context of cost 

versus alternative sources 

Number of potential 

variables 

We evaluated all possible variables and their transformations to 

determine their suitability for the modelling process 

Kind of data  
We ranked Primary data sources higher over Secondary data 

sources wherever both existed. 

Since the data collected is categorized into either remote sensing or socio-economic 

data, we present a description of the data following on these types. For remote sensing 

data, we adopt their discussion based on the types of drought as provided earlier in 

Figure 2.5 and adopted study conceptual framework in Figure 2.20. Similarly, we 

discuss the socio-economic data following on their expected lag to drought. 
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3.5.3 Remote Sensing Data Collection 

Two things are important to note about the remote sensing images that are used in this 

study: - 

• First is that the remote sensing data used in the study came in two distinct formats 

(HDFS) for all the datasets except for SPEI that comes in NetCDF format. 

• Second is that the images have multiple bands. The processing of remote sensing 

indicators from the images demands the use of specific bands of the data. 

Table 5 provides a list of the bands, if available, in the different images/ remote sensing 

datasets and their corresponding bands of interest. The process for data collection for 

remote sensing data in this study was equated to the download of the data from 

identified data repositories. The remote sensing data acquisition process was achieved 

by identifying the data, the data sources, initial data formats, the bands in the data and 

the bands of interest thereof. In the implementation, the download process is automated 

for the identified images using   R scripts.



122 

 

Table 5: Remote sensing dataset sources, bands and description 

Dataset 

Name 
Dataset Source  Description 

Science Dataset 

(SDS) Layers/ 

No of Bands 

Spatial 

Resolution 

(M) 

Temporal 

resolution 

(days) 

Bands 

of 

Interest 

Description of 

Bands  

MOD13Q1 

& 

MYD13Q1 

Didan (2015a) & 

Didan (2015b) 

respectively  

MODIS-Terra and Aqua 

vegetation indices 

respectively 

12/36 250 16 3 

16-day NDVI 

average 

VI quality 

indicators 

Day of year VI 

pixel 

MOD11A2 
Wan, Hook & Hulley 

(2015) 

MODIS- Terra Land 

Surface 

Temperature/Emissivity 

12/36 1,000 8 4 

Daytime LST & 

Quality 

Nighttime LST 

& Quality 

MOD16A2 
Running, Mu & Zhao 

(2017) 

Terra MODIS 

Evapotranspiration 
5/36 500 8 2 

ET &  

PET 

SPEI Beguería et al (2014) 

Standardised 

Precipitation- 

Evapotranspiration Index  

- ~55,500 30/1 1 SPEI 

TAMSAT 

Tarnavsky et al. 

(2014) Maidment et 

al. (2014) and 

Maidment et al. 

(2017) 

TAMSAT Monthly 

rainfall estimate 
- 4,000 30/1 1 TAMSAT RFE 

CHIRPS Funk et al. (2015) 
CHIRPS monthly rainfall 

estimates 
- 5,500 30/1 1 CHIRPS RFE 
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3.5.3.1 Remote sensing data pre-processing 

The study aims to realize a time series data for each of the four counties in the study 

area: Mandera, Marsabit, Turkana and Wajir. The boundaries of the counties as 

administration units are defined by the Kenya counties shapefile source from the 

Independent Electoral and Boundaries Commission of Kenya. The intent was to have 

the statistics at a monthly frequency. The generic steps in the pre-processing of the 

remote sensing data are as shown in Figure 3.6. 

 
Figure 3.6: Steps in the pre-processing of remote sensing images. 

The study methodology for the processing of remote sensing data follows from 

literature, and though with differences, closely monitors that documented in Klisch & 

Atzberger (2016). The pre-processing steps as implemented are described below. The 

pre-processing steps were all done using scripts written in R. 

• Automated data download and spectral sub-setting 

The data downloaded for all the remote sensing data straddled the period March 

2001 to December 2017 but at different frequencies for each dataset. The 

download script involves iterating for all the appropriate images for each 

dataset within the study period. Due to storage and download speed concerns 

in Step 1 and given than most of the download was mostly for multi-band 

images, the study downloaded only a sub-set of the bands. The downloads 

process, therefore, incorporated an element of spectral sub-setting similar to 

that in Step 4 even though the resultant image were still multi-band. The 

images were in either of HDF format (MOD13Q1, MYD13Q1, MOD11A2 and 

MOD16A2) or netCDF (SPEI, CHIRPS and TAMSAT). The MODIS images 
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were sourced from the data archives: Land Processes Distributed Active 

Archive Center (LP DAAC, 2014) and  Level-1 and Atmosphere Archive & 

Distribution System Distributed Active Archive Center (LAADS DAAC, 

2016). The download script is based on the R MODIS Package while the re-

projection is done using the MODIS reprojection tool (MRT) documented in 

LP DAAC (2004). A sample of the settings for the automated download of 

scrips has the parameters presented in Table 6. 

Table 6: MODIS Terra Download Parameters 

Characteristic Description 

Product Code MOD13Q1 

Collection/ Version 006 

Extent h=c (21,22), v=c (8,9) 

Spatial resolution 250M (x and y) 

Science Data Set 

String 
100000000011 

Temporal resolution Begin=”200103”, End=”201712” 

The sample indicates the parameters to download version 6 of the MODIS 

Terra data for the period of study for the four tiles covering the Kenyan extent. 

This process produces one tri-band image for Kenya with the three layers of 

choice: 16 days NDVI average, composite day and pixel reliability. Potentially, 

the spectral subset image is reduced in size to almost 9% of the original size. 

This leads to benefits in download time, subsequent pre-processing time and 

storage requirements. Spectral sub-setting at this stage is thus an initial data 

reduction strategy. The tiles downloaded to cover the entire Kenyan extent are 

as shown in Figure 3.7. 
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Figure 3.7: Download MODIS data tiles covering the entire Kenyan spatial extent indicating 

the relevant tiles - H21V08, H21V09, H22V08 and H22V09 

• Mosaicking, Re-projection and Re-sampling 

For some of the data, like the vegetation datasets, multiple tiles are downloaded 

for each spatial extent of data download. The case of MODIS data including 

vegetation data (VGT), evapotranspiration (EVT) and Land surface 

temperature (LST) comes in 4 tiles for the Kenyan extent for each time step of 

download. These tiles are then stitched to form a single image for each time-

step in a process referred to as mosaicking. The study downloaded the data for 

the entire Kenyan extent since the remote sensing process preceded the socio-

economic data process and therefore there was the need to forestall the effects 

of possible changes based on the availability of appropriate socio-economic 

data. The single value decomposition (SVD) approach was followed for the 

decomposition of the images in the study. Given the possible effects of clouds 

as reducing the digital values of an image, maximum value decomposition 

(MVD) was chosen as the method of composition of the images to form the 

mosaicked tiles as illustrated in Figure 3.8. 

The study re-projected the images from their projection (coordinate reference 

system (CRS)) to the geographical coordinate system that is the chosen 

coordinate system for the output images. The MODIS based datasets, for 

example, come in the sinusoidal projection that is then converted to geographic 
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coordinates based on location on a plane (longitude, latitude). We use the 

nearest neighbour (ngb) resampling method as implemented in R in the 

interpolation of cell values to the projected raster images. 

 
Figure 3.8: An illustration of mosaicking using maximum value decomposition 

(MVD) 

Nearest neighbour resampling was used on only the pixel level data on the 

regions of overlap to determine the values to the output cells based on the 

nearest cell centre to the input grid as illustrated in Figure 3.9. 

 
(a) 

 
(b) 

Figure 3.9: Nearest neighbour method of interpolation. 
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The Figure 3.9 illustrates (a) the use of nearest neighbour in the resampling of remote 

sensing images with the output cells centred for each set of 3 cells square and (b) 

resampling where re-projection has occurred and therefore cell values change. In either 

case, the final cell values are all from the initial image domain. 

• Spatial sub-setting 

The images underwent spatial sub-setting that entailed the reduction of the 

spatial extent to the area of interest that is less than the rectangular coordinates 

of the downloaded images. The reduction was to the spatial extent of the study 

area using the extent derived from the rasterized shapefiles of the study area 

similar to that provide earlier in Figure 3.7. Spatial sub-setting served as a 

further data reduction strategy that makes for a reduced dataset to smoothen 

and query as undertaken in the next set of remote sensing data pre-processing 

steps. 

• Spectral decomposition and smoothing 

The NDVI images having been spatially sub-set to the required spatial extent 

of the study area were then spectrally sub-set into the three layers: 16-day 

average NDVI, VI usefulness and composite day of the year. The approach of 

the study involved using the MODIS package in R to decompose the data to 

daily images that we then smoothed using the naïve implementation of 

Whittaker smoothing as implemented in R. Each of the pixels was weighted 

based on a process similar to that in Klisch & Atzberger (2016). The weights 

used were based on the VI usefulness values as shown in Table 7. The naïve 

attempt is in our opinion not capable of performing as compared to the 

entrepreneurial option used by BOKU (Klisch & Atzberger, 2016) in their 

operational monitoring. The effect of smoothing was to penalise NDVI values 

for pixels with higher cloud cover as compared to those captured with better 

clarity. This is an important process especially to ensure better and 

reasonableness of aggregated data and avoid the tendency to record low NDVI 

values solely attributable to cloud cover. The pixels decomposed with cloudy 
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conditions had their NDVI values penalized as opposed to those of less cloudy 

conditions.  

Table 7: Translation of MODIS VI usefulness quality flags to weights for 

smoothing 

MODIS QF Weight in Filtering 

0,1,2,3 1 

4 0.8 

5 0.6 

6 0.4 

7 0.2 

8-15 0 

The implementation in R uses the algorithm provided in Appendix A that is 

used to convert the VI usefulness image to a weight image used to weight the 

NDVI image based on the quality of observations as influenced by cloud cover. 

The implementation was dynamic with the range of linear scaling provided as 

arguments to the function. 

• Extraction and aggregation of statistics 

The final step in the pre-processing of remote sensing data is the process of 

extraction of statistics for the regions of interest and the subsequent aggregation 

of the same statistics to generate the desired indicators at a monthly level. 

All the images after smoothing give an image as their output for every time 

step of processing. A month could have multiple images depending on the 

dataset. The process of creation of the single image corresponding to each 

month is undertaken in two distinct approaches. 

Non-transformed data: The first approach to aggregation is for the collation 

of non-transformed indicators. The non-transformed indicators include RFE, 

NDVIDekad, LST, EVT, PET. For this category, all the images within each 

month are aggerated based on the most logical aggregation function on all the 

pixels to generate a single image. The functions include summation for rainfall 

estimates, averaging for vegetation like NDVIDekad, averaging of both day 

and night temperature to daily temperature and subsequent averaging to 
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monthly mean temperature. Averaging to mean monthly values is also done for 

EVT and PET. 

Transformed data: The second approach is for the transformed datasets. The 

periods of transformations done are either for one-month in temporal coverage 

or for three months. The transformations are standardised values using either 

the standardised difference approach or the relative difference approach. We 

use the approach similar to the approach in Equations 7 and 8 in Table 2. The 

transformations are however re-defined based on the data as follows: 

▪ Mean and standard deviation i.e. MEAN(P) and StDEV(P) in the 

standardised difference approach represent the mean and standard 

deviation month-on-month for the historical period set as 2001-2013 

for the datasets. 

▪ Minimum and maximum i.e. MIN(P) and MAX(P) in the relative 

difference approach imply the minimum and maximum month-on-

month for the historical period set for 2001-2013 in the datasets. 

▪ The differencing is at the pixel level and precedes aggregation. 

Finally, the process for aggregation is done using the rasterized image for the 

area of study that is used to demarcate the spatial extents of aggregation. The 

administrative units’ image is resampled to have the same spatial resolution 

and extent as that of the images by having all the non-covered matching cells 

set to NA values before summarization by admin unit is done as illustrated in 

the Figure 3.10. 
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Figure 3.10: Aggregation of pixel data by administrative unit using the average function 

The end process of remote sensing data pre-processing entailed logging the statistics 

in a CSV file format. For each admin unit, there is an entry for each month in the study 

period for each statistic calculated to form the time series for the remote sensing data. 

3.5.3.2 Presentation of Remote sensing variables 

The final output of the remote sensing data is in the form of a time series data with the 

structure shown in Table 8. The information on the types of lagged variables is 

provided for each of the remote sensing variables. 
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Table 8: Description of the remote sensing variables 

Variable Variable Description 

VCI3M VCI aggregated over the last 3 months 

NDVIDekad NDVI for the last dekad of the month 

VCI1M VCI aggregated over the month 

VCIdekad VCI for the last dekad of the month 

TAMSAT_RFE1M TAMSAT Rainfall Estimate aggregated over the month 

TAMSAT_RFE3M TAMSAT Rainfall Estimate aggregated over the last 3 months 

TAMSAT_RCI1M TAMSAT Rainfall Condition Index aggregated over the last 3 months 

TAMSAT_RCI3M TAMSAT Rainfall Condition Index aggregated over the last 3 months 

TAMSAT_SPI1M 
TAMSAT Standardized Precipitation Index aggregated over the last 1 

month 

TAMSAT_SPI3M 
TAMSAT Standardized Precipitation Index aggregated over the last 3 

months 

LST1M Land Surface Temperature aggregated over the month 

EVT1M Evapotranspiration aggregated over the month 

PET1M Potential Evapotranspiration aggregated over the month 

TCI1M Temperature Condition Index aggregated over the month 

SPEI1M 
Standardized Precipitation Evapotranspiration aggregated over the 

month 

SPEI3M 
Standardized Precipitation Evapotranspiration aggregated over the 

last 3 months 

CHIRPS_RFE1M CHIRPS Rainfall Estimate aggregated over the month 

CHIRPS_RFE3M CHIRPS Rainfall Estimate aggregated over the last 3 months 

CHIRPS_RCI1M CHIRPS Rainfall Condition Index aggregated over the last 3 months 

CHIRPS_RCI3M CHIRPS Rainfall Condition Index aggregated over the last 3 months 

CHIRPS_SPI1M 
CHIRPS Standardized Precipitation Index aggregated over the last 1 

month 

CHIRPS_SPI3M 
CHIRPS Standardized Precipitation Index aggregated over the last 3 

months 
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3.5.4 Socio-Economic Data Collection  

The socio-economic data as collected by the National Drought Management Authority 

(NDMA) already has county level as the spatial extent of coverage. The smallest unit 

of data collection remains the household that resides in a community that lies within a 

livelihood zone. The raw data collection that we use in this study covers the period 

June 2005 to December 2017 at a monthly temporal resolution. The hierarchy for the 

collection of socio-economic data collection is provided in Figure 3.11. 

 
Figure 3.11: The socio-economic data collection hierarchy used by the NDMA. 

Lz-1 to Lz-n demote the livelihood zones while HHs are the households within the counties 

in the study area. 

The socio-economic data is collected at two points: at the households and at the 

community level. The community level is, however, a logical structure which identifies 

the key informants. There is a similarity of some indicators at both the household and 

the community levels with the community level data acting as controls and validations 

for such indicators. Table 9 describes the instruments of data collection. 

Table 9: Instruments of socio-economic data (SED) collection 

Form Description 

Household 

Administrator 

(HHA)  

The HHA form is administered at the household level and majorly 

collects data on production, market access and welfare indicators 

(food consumption and utilization). The form is administered to 

sampled households consistently every month to the household 

administrator. 

Key Informant 

Administrator 

(KIA) 

 

The KIA form collects information on key community-level 

indicators and is responded to by selected community key informants. 

The selection of the informants is assumed to ensure people 

knowledgeable on the community affairs are the key informants. 

More than one respondent is usually chosen per community and an 

aggregation done for the responses. 

County

Lz-1

Sentinel site 1 HHs

Sentinel site 2... HHs

Sentinel site n HHs
...

Lz-n

Sentinel site 1 HHs

Sentinel site 2... HHs

Sentinel site n HHs
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The socio-economic data is collected using two forms: the household administrator 

(HHA) form and Key Informant Administrator (KIA) form. The KIA is a uniform form 

in its presentation. The KIA form, therefore, has one record in a de-normalized table 

for every interviewed Key informant. The HHA form, however, is presented as two 

different forms: HHA for household-level data and Mid-Upper Arm Circumference 

(MUAC) form. The relationship between the forms and the respondents is as shown in 

Figures 3.12a, 3.12b and 3.12c. 

From Figure 3.12a, the relationship between the respondents and KIA is one-to-one 

(1:1) implying one record for every household respondent. The KIA form in Figure 

3.12b just like the HHA is also presented as a one to one (1:1) relationship between 

respondents, key informants, and the filled-in records. The MUAC form, however, has 

a one-to-many (1:M) relationship between the respondents and household MUAC 

records (Figure 3.12c). The interview instruction provides for a maximum collection 

of five MUAC measurements from children under 5 years of age. 

 

Figure 3.12(a): KIA 

respondent - KIA records 

relationship 

Figure 3.12(b): HHA 

respondent - HHA records 

relationships 

Figure 3.12(c): HHA 

respondent - MUAC 

records relationships 

3.5.4.1 Socio-Economic data pre-processing 

The data pre-processing steps for the socio-economic data is designed to ensure the 

variables identified are both complete in data and are sensitive to changes in drought 

conditions. The socio-economic data pre-processing steps are as shown in Figure 3.13. 
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Figure 3.13: The socio-economic data pre-processing steps. 

The socio-economic data pre-processing has the steps indicated in Figure 3.13 

including: (1) data extraction, transformation and loading (ETL), (2) elimination of 

identifiers and non-drought sensitive variables, (3) analysis for completeness and gap-

filling. Though indicated as a linear process, the last two processes on analysis for 

completeness and gap filling are particularly iterative till some pre-set goal of 

completeness is achieved. The methods employed in each of the steps in the process 

are described as follows: 

• Extraction, Transformation and Loading from data sources to flat file 

The extraction of the data involved getting data from the legacy systems of the 

NDMA, the current operational drought early warning system and a review of 

drought bulletins and food security assessment reports for the counties on the 

reports on the major indicators. 

The legacy system of the NDMA, the Revised Early Warning System 

(REWAS) is a text-based graphical user interface-driven system. The data 

comes in a comma delimited text file that accumulates the data from across the 

years of its operations. The data was stored in multiple files in this database for 

the months covering June 2005 to June 2016. Thee period July 2016 to 

December 2017 has its data collected from an internally developed web and 

mobile-based system that was pioneered by the authorship as a result of the 
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analysis of the limitations of the previous REWAS. The new system is a 

relational database-driven system. 

The data from the past and present operational systems were finally integrated 

into a comma-separated value flat text file as the desired data input to the R 

scripts that were used for data processing and model building. 

• Elimination of identifier and non-drought sensitive variables 

The initial stages of data pre-processing were designed to eliminate variables 

that had no relationships to drought monitoring as viewed from a drought 

monitoring perspective. It was thus guided by considerations for possible 

information value of columns were they to be used as variables. This initial 

data reduction was done in two stages: removal of identifiers and subsequently 

dropping those with no expectation of contribution to drought prediction. 

o The initial reduction included the removal of record identifier fields and 

administration unit identifiers below district level including district, 

division, location. This was followed by the depersonalization of the 

data to ensure names and interviewer identifiers are dropped off the 

data. The process for the three different SED sources saw, for example, 

the reduction of MUAC variables from initial 22 to 7 columns; HHA 

variables from 208 to 195 and 195 and KIA from 213 to 196 columns. 

o The second phase of the initial reduction of data volumes was based on 

the expert knowledge on the data being pre-processed for modelling. 

The key decisions made in the process included the dropping of 

variables that seemed not to offer any information based on the target 

variable which for this study is the change in drought conditions. 

Variables that were more tuned to the monitoring of food security, 

rather than drought monitoring, like food stocks and incomes were also 

dropped since they are not responsive to changes in drought situations. 

The process of elimination of non-drought responsive variables 

realized, for example, the reduction of MUAC variables from an initial 
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7 to 1 with two identifier columns. The HHA variables were reduced 

from 195 to 24 and KIA from 196 to 15 variables. 

• Analysis of completeness for socio-economic data 

The analysis for completeness involved setting the criteria that define the 

completeness of data. The criteria were set as follows:- 

o An interview must have been conducted in at least 50% of the 

households from all the sentinel sites covering the county. The number 

of households was based on the reduced numbers based on the 2017 

revision that had 30 households per sentinel site and the number of 

sentinel sites for the counties was: Mandera (11), Marsabit and 

Mandera (9) each and Wajir (8) with each sentinel site having 30 

households. 

o The sentinels must cover all the livelihood zones of the county. Due to 

the homogeneity of the livelihood zones in the study area, the condition 

was that interviews must have been done in at least all the livelihood 

zones. 

o For all the column values to be filled in, at least 50% of the expected 

records had to be provided without cases of missing data for 

representative aggregation. 

o A month was thus considered complete in its data if and only if all the 

three conditions above we met. 

With the conditions above, the years June 2005 to June 2008 were vastly 

considered to have lots of broken data collection processes and thus the data 

for the period were not used in the study. The major cause of data issues in this 

period is down to data loss as a result of the loss of database files of the legacy 

system REWAS together with the difference on go-live times and the existence 

of test data within the period without actual demarcation of what was testing 

data. 



137 

 

For the remaining period July 2008 to Dec 2017, the data had intermittent gaps 

but was judged relatively complete for the indicators on Cattle Prices, Goat 

Prices, Maize Prices and Mid-Upper Arm Circumference (MUAC). It is for 

these variables that gap filling was carried out. 

• Handling missing data 

Even for the socio-economic variables with reasonable observations for most of 

the years, there are cases of missing observations for some of the years. The options 

for handling missing data in the study included: ignoring the missing data 

completely, approximating the missing data or working with the missing data and 

modelling on probabilities. The study employed the general principles in Higgins, 

Deeks & Altman (2009) to handle missing data. These principles also have variants 

in Jeff (2015) and Humphries (2013). The handling of missing data can be 

summarized into the two main considerations of follow-up with the original data 

sources for the possible retrieval of any missing data and the decision on the best 

method of analysis to yield good approximations of the data confirmed to be 

missing. 

Follow up with the original data sources on missing data was made in the cases for 

which this approach was possible. An example was the case of Turkana county 

where this follow up lead to extraction of past data from old text-based repositories. 

The general execution of this process was initiated by the engagement of the data 

collection units to obtain any data formerly indicated as missing but were in 

essence in their possession. The change in data completeness over the review 

period was kept for reference. 

The decision on the best analysis method to yield the best estimates of missing data 

was based on the evaluation of the possible options for handling missing data 

include the methods like pairwise deletion, single imputation and model-based 

estimation methods as discussed here next: 
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• Pairwise deletion discards all records with any missing values. Deletions are 

done even when data is partially missing. The data, therefore, remains with 

only complete records for the entire period. This was used for some selected 

broken rows. 

• Single imputation methods deploy any of the measures of central tendency to 

estimate the missing values. This approach reduces variability and finally leads 

to weak correlations. The study avoided this method since it would lead to weak 

relationships between the data items especially for cases when missing data are 

outliers like the years with extreme drought effects. 

• Model-based imputation was the method of choice of the study wherever 

applicable. The approach replaces missing values with scores predicted from 

model equations that include regression equations. The study used smoothing 

splines. 

Smoothing splines is a method of fitting a smooth curve to a set of noisy 

observations using a spline function to approximate the missing data points. A 

good review of the use of smoothing splines in gap-filling is provided in Musial, 

Verstraete & Gobron (2011). The underlying assumption is made that the missing 

data from the monthly data equates noise in the data and that the data if all well 

collected would fit a smooth curve that is linear after the knots at the endpoints. 

Smoothing spline, therefore, can be interpreted as some kind of regression line that 

interpolates the missing values. The gap-filled data, in interpretation, will require 

an analysis of the impact of the same data. Study findings should keep the impact 

of the missing data in the analysis, especially in the discussion of the results. A 

sample application of spline smoothing is shown for MUAC for Turkana county in 

which we introduced gaps in 6 time periods (months) is shown in Figure 3.14. 
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Figure 3.14: Illustration of the use of smoothing splines to gap-fill MUAC. 

The case for MUAC in Figure 3.14 illustrates the performance of the Spline 

smoothing using the three instances of MUAC data. With Gaps (blue line) having 

the missing data points set to 0(zero), with gaps filled by spline smoothing (orange 

line) and finally the real MUAC (grey line). It is clear that the use of spline 

smoothing on the missing data realises a good approximation of missing data and 

thus good quality gap filling is achieved. 

A final step in the handling of the data gaps involved a review of past reports done 

out of the datasets for specific months with missing data and using these as a 

verification of the datasets in terms of accuracy. This approach serves to validate 

the reconstruction done on the data used for the study. 

• Variable transformations 

With the data gaps filled, the last step that is key in the data pre-processing 

steps that we undertook was the transformation of variables. Variable 

transformation as a tool was used towards two expected benefits. First is the 

ability of transformations to produce new variables that are better estimators of 

the variables under study. Secondly, variable transformations also act as a data 

volumes reduction strategy. One key variable transformation that we did was 
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on the two variables of Goat Price and Maize Price to realize a variable Terms 

of Trade (ToT).  The use of ToT is documented in FEWSNET (2009) to take 

any of four approaches: (1) food crop to food crop; (2) livestock to cereal; (3) 

wage to cereal and (4) cash-crop to cereal. We adopt the definition in (2) that 

calculates ToT out of the relationships between livestock and cereals each case 

taking the most popular small stock and most popular cereal for the pastoral 

setting. 

The ToT is therefore used to judge the units (Kg) of maize that the local 

communities get in return for the sale of a goat. The choice of the goat is due 

to its use by the pastoral communities to meet the cost of immediate and 

pressing needs of the family. It is expected that as drought impacts the 

communities, maize becomes expensive as compared to goats and ToT 

worsens. Lower ToT values thus imply poorer trade conditions for the 

pastoralists. The ToT is calculated as the ratio of Goat Price to Maize Price. It 

is therefore unitless and higher ToTs are preferred as it generally indicates 

better livestock body conditions and hence a proxy for reduced effects of 

drought on market access for the pastoralists. A key limitation of the ToT is for 

cases when either of or both the livestock and cereal preference of a unit area 

is not uniform. This is solved, in our opinion by mapping the different 

preferences and still calculating the respective ToTs. 

3.5.4.2 Presentation of Socio-economic data 

The study reviewed the Socio-economic data of the NDMA for production, access and 

welfare. In general, as presented on the sub-section of completeness in section 3.5.4.1, 

data collected at the household level, except for MUAC, had many cases of missing 

data and hence broken time series. MUAC, as a measured quantity was generally 

robust in the number of records since a minimum number of children were required 

and even sourced from neighbouring households. The study, therefore, used market 

access data of both Goats and Maize as represented by Goat prices & Maize prices 
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respectively. MUAC was used to represent utilization. The choice of Goat Price, Maize 

Price and MUAC were for the following reasons: - 

• Completeness of the records for the period July 2008 to Dec 2017 for the three 

indicators. Goat and Maize prices were generally well collected at the market 

level from Key Informants. The prices are generally expected to reflect 

prevailing market conditions as opposed to household levels where panic sales 

and sales as a result of isolated economic pressures that could be unrelated to 

drought effects do happen. 

• Consistency in the collection of the data especially for MUAC that is a 

measured quantity. This has ensured the availability of objective records on 

malnutrition. 

The socio-economic data for this study are therefore presented as a set of two variables: 

Terms of Trade (ToT) and MUAC. The modelling uses lagged values of these variables 

to predict future nutrition conditions. The variables are used in combination with those 

identified to be predictive of drought severity. 

3.5.5 Summary of the study variables 

This is an observational research study using archival data from existing data archives. 

The approach involves the analysis of co-variant data to determine pre-existing 

relationships without any attempt to manipulate the predictor variables. The chosen 

research method is therefore driven by statistical analysis in the investigation of 

relationships between different datasets. The study, therefore, infers correlations rather 

than causality. The definition of correlational research is based on the data analysis 

methods employed on the data rather than the data gathering method. The typical 

outputs of correlational analysis are Scatter Plots, Regression line, Correlation 

Coefficient (r) and Coefficient of determination (R2). The variables in this study are 

therefore grouped into either predictor variables or predicted variables. 

The dataset integrated from all the sources is highly multivariate. The case of multiple 

datasets quantifying the same concept necessitated variable selection among such, 

especially for competing datasets. The predicted variables were carefully defined to 
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correlate with drought severity and subsequently with drought effects on nutrition.   For 

this study, we refer to the variables used to predict the drought severity and drought 

effects as the predictor variables rather than as the dependent variable that implies 

causality and thus fits only within experimental studies. Since we use correlational 

design for the study, we use the term predicted or target variable to refer to the variable 

that defines the drought status. 

The definition of the predictor variables is influenced by the fact that the use of the 

correlational research design implies that there is a measuring of variables and 

assessing the relationships between them without manipulating the independent 

variables.  This is as opposed to the case in experimental research where the 

measurements indicate the effectiveness of treatments done on manipulated aspects of 

a study. For each level of investigation, causality is not inferred in correlational studies 

as would be the case in experimental research. 

The variables used in the study are either remote sensing variables or socio-economic 

variables. The variables, as discussed in chapter 3 are summarized in Table 10.  
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Table 10: Summary of the study variables 

Type of 

drought 

Variable & 

Transformations 
Description 

Meteorological 

Rainfall Estimates 

(RFE1M & RFE 3M) 

The absolute value of Precipitation (mm) as recorded 

from Satellites 

Standardised 

Precipitation Index 

(SPI1M & SPI3M) 

Standardized values of Precipitation aggregated over 

the 1M & 3M time periods respectively. 

Rainfall Condition 

Index-  

RCI1M & RCI3M 

Normalized values of Precipitation aggregated over the 

1M & 3M time periods respectively 

Hydrological 

Land Surface 

Temperature 

LST1M & TCI1M 

Land Surface Temperature & Emissivity data Aggreged 

at 1M for both temperature and temperature condition 

index (TCI) calculate as RCI above.  

Evapotranspiration 

(VET) 

EVT1M 

EVT, the sum of EV & T is, used to calculate regional 

water and energy balance, soil water status and applied 

especially in water resource management.  

Potential 

Evapotranspiration 

(PET) 

PET1M 

PET is the demand side of water from the atmosphere. 

Aggregated over 1M  

Standardized 

Precipitation & 

Evapotranspiration 

Index (SPEI) 

SPE1M & SPEI3M 

Based on climatic data. It is a standardization of the 

equation 𝐷𝑖 = 𝑃𝑖 − 𝑃𝐸𝑇𝑖 

aggregated over 1 & 3 months respectively 

Agricultural 

Normalized Difference 

Vegetation Index 

(NDVI) 

NDVIDekad 

NDVI value for the last ten days of the period of 

prediction. Rage is -1 to +1 indicating the 

photosynthetic vibrancy of vegetation. 

Vegetation Condition 

Index 

(VCI1M &  

VCI3M) 

Normalized values of NDVI over the 1M & 3M time 

periods respectively. Aggregated over 1M and 3M 

periods. 

Socio-Economic 

Goat Price Access variable- the monthly average of goat prices 

Maize Price Access variable- the monthly average of maize price 

Terms of Trade Kilograms of maize exchanging for a goat 

MUAC Percentage of Children under 5 years with MUAC<135 
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3.6 Modelling Approach 

This section corresponds to the section on data analysis and data modelling as outlined 

in Figure 3.4 on the logical flow of the study but with an initial description of how the 

problem that overarches data analysis and modelling is defined. 

The modelling approach for this study is informed by the elements of the review of 

literature that was carried out based on the problem statement. The approach is thus 

based on appropriateness for the purpose that is informed by the following key areas: 

• The correlational research process elaborated in Figure 3.3 has the Analysis 

phase as the last phase of correlational design. This we expanded to include 

both presentation and interpretation of the results of the analysis. 

• The CRISP-DM Methodology for data mining in Figure 2.11 has in its 

approach the steps for modelling and evaluation with the techniques for the 

stage chosen based on appropriateness for data. This approach advocates the 

use of a separate dataset for model evaluation and views evaluation as a distinct 

process to modelling. 

• The SEMMA methodology reviewed in section 2.8.2.4 provided for the steps 

to Model and to Assess. These are similar to the modelling and evaluation steps 

in CRISP-DM and the analysis phase in the design of investigation presented 

earlier in section 3.4.1. 

The methodology of this study followed on the above to define the steps for the study 

post data collection as based on the steps outlined in the process adopted for the study 

that is defined in the Figure 3.15. 
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Figure 3.15: The model building process post data acquisition. 

The model building process is based on the building of multiple models, their 

validation, ensembling and subsequent performance evaluation. 

We, here next, discuss the approach employed by the study following the above steps 

of the modelling methodology.  

3.6.1 Methodical definition of the problem 

To be able to develop predictive drought monitoring models, the phenomenon of 

drought needs to be well defined. From the literature review and with the key concepts 

in the definition of drought, we formulate the drought prediction problem using 

Equation 20. 

𝐷(𝑖,𝑗) = 𝑓(𝑥1, 𝑥2, 𝑥3 ⋯ 𝑥𝑛)……………………. (20) 

Where 𝐷(𝑖,𝑗) is a quantification of drought severity for a spatial extent i at time j, 𝑓 is 

a function that accepts a set of n (n ≥1) variables and transforms them to approximate 

the real  𝐷(𝑖,𝑗). The n variables 𝑥1, 𝑥2, 𝑥3 ⋯ 𝑥𝑛 are predictor variables that are used to 

monitor drought from meteorological, hydrological to agricultural drought. 

The relationship between the estimator variables and drought severity in Equation 20 

is not necessarily linear just as the n variables are not guaranteed to be normally 

distributed. The function 𝑓 is assumed to have a process for selecting the best subset 

from the n variables that best approximate the drought severity. 
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The socio-economic variables are essentially effects of drought and are therefore 

measures of the effect of 𝐷(𝑖,𝑗)on the social and economic aspects to the exposed 

elements at spatial extent i at time j. This implies that the definition of the problem 

should be expanded to include the modelling to approximate the effects E of drought. 

This takes the same definition as that of drought severity above and is formulated in 

Equation 21.  

𝐸(𝑖,𝑗) = 𝑔(𝑥1, 𝑥2, 𝑥3 ⋯ 𝑥𝑛)………………….…. (21) 

Where 𝐸(𝑖,𝑗) is a quantification of drought effects for a spatial extent i at time j, 𝑔 is a 

function that accepts a set of n (n ≥1) variables and transforms them to approximate 

the real  𝐸(𝑖,𝑗). The n variables 𝑥1, 𝑥2, 𝑥3 ⋯ 𝑥𝑛 are predictor variables that are used to 

monitor drought severity from meteorological, hydrological, agricultural combined 

with the variables for socio-economic drought. 

The variables 𝑥1, 𝑥2, 𝑥3 ⋯ 𝑥𝑛 are therefore interpreted to be the set of variables used 

for the monitoring of meteorological, hydrological and agricultural drought severity 

for 𝐷(𝑖,𝑗). On the other hand, for 𝐸(𝑖,𝑗) we use the combination of variables used in the 

approximation of 𝐷(𝑖,𝑗)and those variables identified for measuring the socio-

economic effects of drought. The modelling task is therefore meant to approximate 

both 𝐷(𝑖,𝑗)and 𝐸(𝑖,𝑗) based on the choice of suitable techniques informed on by both the 

variables and the data identified for the study. 

In the study datasets, the definition of the two target variables 𝐷(𝑖,𝑗) and 𝐸(𝑖,𝑗) was done 

based on: VCI aggregated over 3 months period (VCI3M) and the proportion of 

children at risk of malnutrition as defined by the variable MUAC. The use of the VCI 

to define drought severity- 𝐷(𝑖,𝑗) was based on four key reasons as documented in 

Adede et al. (2019b): 

• with a range of 0 to 100, VCI is easy to interpret. 

• as an index, VCI is indicative of agricultural drought, which is a later stage 

drought as compared to meteorological drought indicated by SPI. 

• VCI is more directly related to food and fodder availability in the study area 

compared to SPI. 
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• VCI is a measured quantity as opposed to the SPI that is, for the case of this 

study, a modelled quantity 

The second target variable on drought effects- 𝐸(𝑖,𝑗) was defined based on MUAC 

conditions. Similar to the definition of drought severity, MUAC was chosen to define 

drought effects for three key reasons: 

• MUAC is a measure of late-stage socio-economic drought as compared to the 

other indicators derived at the market level (Figure 2.9). This is so because 

MUAC is indicative of drought effects on malnutrition and in the case of the 

datasets used is defined as malnutrition of children aged below 59 months. 

• MUAC is physically measured at community level from children from multiple 

households but recorded in the household questionnaire. This is as opposed to 

the prices that are based on Key Informants and are thus based on recall. We 

deem MUAC more of a reliable indicator than prices in this respect. 

With the prediction problem well defined for both drought severity and drought effects, 

the study then proceeded in two parts. First is the investigation of how the different 

combinations of the variables (𝑥1, 𝑥2, 𝑥3 ⋯ 𝑥𝑛)  estimate 𝐷(𝑖,𝑗). The second is to 

investigate how the best estimators of 𝐷(𝑖,𝑗) combined with socio-economic variables 

approximate 𝐸(𝑖,𝑗). A further discussion on the methods to accomplish these tasks is 

presented in section 3.6.3. 

Prior to the discussion on the model methodology, the presentation of the data for 

prediction also becomes a big question in the context of this study. Given we have 

observational data, we present the data for drought monitoring as a lag of the variables 

that define drought severity based on the lag of its predictors.  To predict drought 

severity, we lag the variables and then use them to predict future values. In essence, 

all the predictor variables 𝑥1, 𝑥2, 𝑥3 ⋯ 𝑥𝑛 are presented as lagged by one month for 

each 𝐷(𝑖,𝑗)and 𝐸(𝑖,𝑗) in the training dataset. The lagging of the variables, therefore, 

gives an opportunity for the use past lags of the target variables in the prediction of 

future values. 
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3.6.2 Exploratory data analysis 

In the exploratory data analysis process, we investigate the relationships both amongst 

the predictor variables  (𝑥1, 𝑥2, 𝑥3 ⋯ 𝑥𝑛) and between the predictors and the target 

variables of both drought severity 𝐷(𝑖,𝑗) and 𝐸(𝑖,𝑗). This analysis culminates with the 

selection of the subset of the variables (𝑥1, 𝑥2, 𝑥3 ⋯ 𝑥𝑛) from the set of all variables 

considered predictive of the target variables. 

Since the study is based on correlational research design using observational data, we 

do the exploratory data analysis using statistical analysis methods which are 

particularly appropriate for cases where a dataset has multiple variables. The variables 

in this study are all ratio data and therefore support a raft of methods of analysis. The 

study, therefore, uses both descriptive and inferential statistics. We use descriptive 

statistics for numerical summarization of data and inferential statistics to infer 

relationships between variables. The suitability of statistical analysis is for studies that 

aim to summarize descriptive data or that aim to understand relationships between 

different variables to offer possibilities of generalizations. The study chose to first 

investigate the methods that were appropriate for the datasets that were pre-processed. 

The appropriate methods were then chosen from the set of both parametric and non-

parametric methods. The non-parametric methods investigated and chosen from 

included Spearman Rank Correlation (SRC), Wilcoxon Test, Man-Whitney, Kruskal- 

Wallis and Friedman tests. 

The ultimate aim of the exploratory data analysis phase is the selection of variables to 

be used in the modelling process. In this study, we aim to build multiple models. 

Variable selection is therefore reduced to the decision of decreasing the number of data 

sources, especially for similar data. Exploratory data analysis was thus applied in 

choosing which between TAMSAT and CHIRPS rainfall data was to be used in the 

modelling process. The selection between TAMSAT and CHIRPS was done using 

several methods and a final inference drawn based on the multiplicity of the methods. 

For variable selection, normality or otherwise was proven for the indicators, 

information criterion established using Akaike information criterion (AIC), the relative 
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importance of variables was undertaken as well as stepwise regression and a modelling 

approach to variable selection. Agreement and inference between these multiple 

methods were used to settle on the set between TAMSAT and CHIRPS to maintain in 

the modelling process. 

Spearman Rank Correlation (SRC) analysis was also done. SRC tests the direction and 

strength of the relationship between the two datasets under investigation for 

relationships. SRC, therefore, tests if there is a relationship in the way two sets of 

observations vary.  While the Wilcoxon Test compares two paired sets of data, 

calculates the differences between each set of pairs and analyzes the list of differences; 

the Man-Whitney tests whether two sets of observations come from the same 

distribution, with the Null hypothesis set as the probability from one population being 

higher than that of another. The Kruskal- Wallis test, however, tests the equality of 

population medians among groups using one-way ANOVA by ranks and differs from 

the Friedman test that compares three or more paired sets of data. 

3.6.3 Modelling methodology 

With the problem defined in section 3.6.1, the modelling methodology is reduced to 

the search for all the f’s that approximate both the drought severity (𝐷(𝑖,𝑗)) and all the 

g’s that approximate drought effects (𝐸(𝑖,𝑗)).  The definition of the problem mirrors 

that of a machine learning and is adopted as the search for all the functions (f’s & g’s) 

from the space of all possible functions (𝐹𝑈) that approximate (𝐷(𝑖,𝑗)) and drought 

effects (𝐸(𝑖,𝑗)) with some degree of accuracy as measured by some pre-selected 

measures of performance (𝑃). 

From Figure 3.15 on the study modelling methodology, model building methodology 

covers the steps 3-7 discussed here next. 

• Model building 

To precisely formulate the methodology for the building of models, the following key 

concepts of variable space, model space (𝐹𝑈), model and modelling technique need a 

formal definition. 
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o The variable space is the set of all variables (𝑥1, 𝑥2, 𝑥3 ⋯ 𝑥𝑛) that are 

deemed capable of measuring both (𝐷(𝑖,𝑗)) and (𝐸(𝑖,𝑗)). It corresponds to all 

the variables identified in the conceptual framework for this study. 

o The model space (𝑭𝑼) is the set of all possible models that can be derived 

from all the possible combination of the variables deemed to measure both 

(𝐷(𝑖,𝑗)) and (𝐸(𝑖,𝑗)). The model space is interpreted to imply the set of 

models that can be built using a machine learning technique (𝑀)  with each 

model defined as a combination of the variables deemed to measure 

drought severity or drought effects. 

o The machine learning technique (𝑴)  is defined based on literature to be 

any of the methods for approximating prediction functions f based on 

historical data used in the training of models. The formulation of the 

drought forecasting problem as indicated above reduces it to a machine 

learning problem. In the study, we define f as a supervised machine learning 

regression function and aim for output in the [0,1] range with the ability to 

be stretched to the [0,100] range for ease of interpretation. In this study 

(𝑀)  includes the study case techniques of Artificial Neural Networks 

(ANN) and Support Vector Regression (SVR) for model building. The 

statistical approach of General Additive Models (GAM) are also used but 

more as a basis for variable selection rather than the approximation of all 

the f’s that are ultimately ensembled. The model building techniques of 

choice are elaborately discussed in section 3.6.4. 

o The model f is, therefore, a single function that outlines the combination of 

a subset of the variables from the variable space used to approximate 

drought severity and effects. In other words, 𝑓 ∈ 𝐹𝑢. 

With the modelling methods chosen as ANN and SVR, the task is to get the set 

of all f that can be learnt using both techniques. The process for building the 

models given that they will be ranked against each other and a selection done 

will follow on the use of the same dataset for both the training and evaluation 

of the models. The study follows the 70:30 split of data during the model 
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training phase and subsequently keeps aside data for model testing. This 

approach is referred to as the 3-way data split and is as illustrated in Figure 

3.16. For a better approximation of model performance, this random split is 

done 10 times on the training dataset and bootstrap samples passed to the 

models whose performance in both training and validation across the sets is 

then averaged. 

 

Figure 3.16: The in-sample (70:30) approach to model building and validation with 

a separate dataset for model testing. 

Given the number of variables and their possible combinations to form models, 

the model space (𝐹𝑈) is expected to be quite a big model space. A visualization 

of the number of models given the number of variables per model is as shown 

in Figure 3.17 for an illustrative case of 20 variables. 

 

Figure 3.17: Model space a function as a function of the number of variables. 



152 

 

Given a modest set of 20 predictors, a total of around 1.05 million models 

would need to be built. The complexity of the model spaces given the number 

of variables in this study would make building all the models an exercise in 

futility. Building all the models, for their sheer number, would be akin to a 

learning task without a priori assumptions that would be contrary to the no free 

lunch theorem (Wolpert, 2012) as applied to supervised learning. A set of 

assumptions are therefore enforced to reduce the model space. These 

assumptions are as defined below: 

o There is no value in the use of more than one variable defining the same 

phase of drought in the same model. 

o That variables are better separated into those on drought severity and 

those on drought effects with those on drought severity also separated 

into the drought types. 

o That different lags of the same variable increase complexity in 

prediction at no extra gain in prediction and ease of explanation of the 

models. 

The effects of making these assumptions are later discussed as part of the 

results of this study and are shown to massively reduce the modelling space 

making it possible to reason on. 

• Model evaluation/ assessment 

Each model (f) realised using each of the modelling techniques (𝑚 ∈ 𝑀 =

{𝐴𝑁𝑁, 𝑆𝑉𝑀}) needed to be evaluated for their performance in prediction. 

Performance assessment was done using a standard set of criteria including 

determinant of correlation (R2), mean absolute error (MAE), mean standard error 

(MSE), root mean squared error (RMSE), mean absolute percentage error (MAPE). 

For objectivity in the evaluation of model performance, the three data split 

approach is used. Models are built and validated on the 70:30 split of the training 

datasets. Due to the effect of factors like climate change, there is a tendency of the 

future not to be exactly characterised as the past. We ensure this possible challenge 
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to internal validity is handled by keeping aside two years of data for model testing. 

The two years of data kept aside for model testing is referred to as the out of sample 

dataset or testing dataset. 

The chosen method of model performance evaluation was the determinant of 

correlation- R2. In the case of ties, the other measures were considered as tie-

breakers. It is, however, to be noted that we considered the limitations of R2 in our 

evaluation methodology and opted for Adjusted R2 as the basis of the evaluation 

of model performance. As indicated in Equation 22 and Equation 23, R2 is basically 

a function of RMSE and is by extension closely related to the other measure of 

performance.  

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸    ………………… (22) 

        𝑅2 = 1 −
𝑆𝑆𝐸

𝑇𝑆𝑆
   ………………. (23) 

The numerator of Equation 3 is the sum of squared error (SSE) which is, in essence, 

the expression 𝑛 × 𝑀𝑆𝐸 if sum errors for n estimations. R2 can thus be expressed 

in terms of MSE as in Equation 24  

𝑅2 = 1 −
𝑛∗𝑀𝑆𝐸

𝑇𝑆𝑆
   …………………………………. (24) 

The implication of Equation 20 is that holding the TSS constant implies an inverse 

relationship between R2 and RMSE. It is for this reason we use adjusted R2 in 

combination with other measures of error. 

Further justification for the use of Adjusted R2 apart from its proportionality to the 

measures of error (MSE, RMSE etc) are as follows: - 

▪ Just like R2, Adjusted R2 has the property that it scales nicely between 0 

and 1 (can be interpreted as between 0 & 100%)   

▪ R2 is noted to rise with the increase in the number of predictors even when 

the increase is artificial and does not improve model’s fit, Adjusted R2 is 

noted to incorporate the model’s degrees of freedom. Adjusted R2 is, 

therefore, most appropriate for multiple predictor models. 
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▪ Measures the proportion of total variance that is explained by the model 

▪ Best for evaluating prediction between variables as opposed to the 

relationship between variables. 

• Model selection 

The methodology of this study is much biased towards model selection more than 

variable selection. The intent is to reduce the space of models that are used in the 

model ensembling process. Due to the possible number of models in the model 

space, careful crafting had to be undertaken to select models objectively. The 

selection of models has to happen in an automated way using the pre-selected 

performance metrics. We do model selection at different stages. First, using the 

GAM modelling process to reduce the model space. Thereafter, we build models 

of both ANN and SVR that we subsequently select for model ensembling. All 

stages of model selection are based on models with R2≥0.7 with ties broken using 

any of RMSE, MSE and MAE in that order. 

• Model Ensembling 

We investigated two approaches to model ensembling using three methods of 

model ensembling. First, we ensemble the models using three distinct methods. 

These include linear averaging, rank weighted averaging and ANN randomly learnt 

weight averaging. The model weighting methods are used to realised either 

homogeneous or heterogeneous model ensembles. We define homogeneous model 

ensembles as model ensembles of models learnt using the same modelling 

technique like ANN or SVR in the case of this study. On the other hand, 

heterogeneous model ensembles are the ensembles where the bases models are 

built using different techniques. In this study, the combination of both the ANN 

and SVR base models in the model ensembles, therefore, defines heterogeneous 

model ensembling.  

The model ensembling method is generally defined based on the three-step process 

outlined as: - 



155 

 

▪ Generate the experts/models that will be used  

▪ Score using each expert separately 

▪ Combine the experts and “average” their values 

In this study, the ensembling process is implemented using the three approaches as 

presented in Figure 3.18 and described thereafter in the order of their complexity 

in implementation. 

 
Figure 3.18: Schema of the model ensemble approaches. 

The approaches in Figure 3.18 are simple averaging (left), weighted averaging (centre) 

and model stacking (right). 

The implementation of the ensembling approaches is as follows: 

o The simple average model is based on running all the models on the test 

data and making predictions from every one of them. The outputs of all the 

models are averaged according to Equation 25. This method is by and large 

a democracy of equal voting rights without the ability to discriminate 

models based on their performance as based on the performance metric 

already used in the evaluation of the model performances. 

1

𝑛
∑ 𝑝𝑖

𝑛
𝑖=1  ………………..….. (25) 

With 𝑝𝑖 as the prediction from the ith model. 
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o The weighted average model just like the simple averaging ensemble 

method is based on running all the models on the test data and making 

predictions from every one of them. The outputs of all the models are 

averaged according to Equation 26. This method biases the weights in the 

ensembling with good performer models given higher weights in the 

ensembles. In this study, the weights were based on normalized values of 

model performance as assessed by R2. 

1

n
∑ pi∗wi

n
i=1 …. …………………... (26) 

Where wi is the normalized value for each model in the ensemble 

such that all the weights sum to 1(one). The weights are therefore 

stretched between 0 and 1 centred around the minimum with the 

maximum value as the scale. 

o The stacked model approach is a more complex implementation that 

assumes that the future performance of the models is not known before-

hand. In this approach, a random set of weights is leant for each modelling 

technique individually on the validation dataset. The outputs of each model 

become the features for which weights are learnt using a new modelling 

technique. In this study, a perceptron neural network is randomly built to 

optimize the estimation of the target variable using the outputs of the base 

models. The set of weights that best approximates the output are chosen as 

the random model weights that are then used for the ensembles. This 

method has a single limitation of raising the possibility of the curse of 

dimensionality as it scales very fast in features with the increase in the 

number of ensemble members.  

The estimation of model performance, especially in the case of model ensembles is 

particularly not a naïve process. The performance of the ensemble models on the test 

dataset is directly measured using the same performance metrics as that of the member 

models. R2 remained the basis of analysing the performance of the ensembles as was 
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the case for the base models. The resulting ensembles are then compared in 

performance to the best performer models that are referred to as Champion models. 

3.6.4 Model building techniques 

The methodology of this study is to use a statistical method as an initial modelling 

method that is used, essentially for the selection of variables, and the subsequent 

development of the predictive models using a machine learning method. We use 

General Additive Models (GAM) for variable selection and Artificial Neural Networks 

(ANN) for the development of the predictive models in the pre-study. The main study 

used the Support Vector Regression (SVR) technique in the model building process in 

addition to the ANN technique. These model building techniques are described here-

under. 

▪ Generalized Additive Models (GAM) 

GAM models were selected because they do not assume linearity between the predictor 

and the response variables (Hastie, 2017). In addition, GAMs are free-form since they 

do not require the ascertainment of the functional form of relationship to be modelled 

beforehand. In the case that the relationships are best approximated by linear, quadratic 

or cubic functions, GAM results simplify to these as is appropriate. These coupled with 

the fact that we still have the desirable features of GLiMs and GLMM make GAM 

models a viable tool for weather-based data modelling. GAM models are expressed as 

shown in Equation 27.  

𝑌 = 𝑎 + 𝑓1(𝑥1) + 𝑓2(𝑥2) + ⋯ + 𝑓𝑛(𝑥𝑛) + 𝜀……. (27) 

where a is an intercept and f are smooth functions; Y is the response function and x1 
to xn are the n predictor variables.  Smoothing functions are either local linear 

regression or splines. In practical application, caution is advised since smoothing in 

GAM generally leads to model overfitting. 

The space of models for the study, as given by Equation 28, is around 2.15 billion. 

This space would be impractical to navigate in the search for the best predictor model.  

∑
𝑛!

(𝑛 − 𝑟)! 𝑟!

31

𝑟=1

 ≈ 2.15 billion … … … … … . (28) 
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To minimise the space complexity, we make some a priori assumptions to avoid the 

futility of bias-free learning and also follows Occam's razor (Mitchell, 1997). First, we 

assume that a maximum of two variables in the GAM models will give us reasonably 

simple models that remain predictive. Second, we assume that including multiple 

variables of the same drought type is both an unnecessary increase in the complexity 

of the model space at a marginal possible increase in performance. Together with these 

two assumptions, we further use a rule of thumb to not use different lag times of the 

same variable in a single model. To capture seasonality, we further included an 

additional variable for the month of the year of the instances as a sine wave in the 

GAMs. Seasonality is expected to exist in vegetation cover data apart from the 

standardised and relative range variables. The most seasonality prone datasets are the 

vegetation variables that use absolute values. 

With the model space reduced to 102 from the possible initial space of over a billion 

models, we brute-forced the process of training and evaluating the models in an 

automated process. Multiple model evaluation metrics were used and the results logged 

for both model training and model evaluation. 

▪ Artificial Neural Networks 

The choice of ANN for the study was most informed by their ability to do regression 

and much more the ability to handle cases of non-linearly separable training data. 

They, however, have the disbenefit of complexity in interpretation and are thus sort of 

a black-box approach to learning. 

To overcome overfitting which is the most common limitation of ANNs, we chose 

models that are judged to perform better in the evaluation datasets as compared to the 

training datasets using R2 as the measure of model performance. We formulated a 

working definition of model overfitting. The ANNs were built on normalized 

variables. Variable normalization was done before model training was therefore done 

for both the training and validation datasets. The variables were all normalized to the 

[0,1] range. The values were centred at the minimum value for each variable then 

linearly scaled between the minimum and maximum values. 
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The ANNs were built using a variant of the back-propagation algorithm- the resilient 

backpropagation (RPROP) as proposed in  Riedmiller (1994). RPROP is considered to 

side-step the hyper-parameter tuning problem. For the question on the complexity of 

configuration, the modelling process was set to have a formation of 2-5-3-1 and thus 

had two hidden layers. The configuration was realized following on a rule of thumb 

process sequenced as follows: - 

o Since the data is expected to exhibit non-linearity, two layers would achieve 

to learn any arbitrary function. (a-b-c-d). 

o Settle on the input models based on the number of input variables. This was 

set at a maximum of 3 (3-b-c-d) 

o Fix the output parameters for drought severity or drought effects. This is 

1for each case (3-b-c-1) 

o The input layers must have at least 2 nodes so as not to be a linear transfer 

of weights. So, the minimum has to be 3-2-2-1.  

o Experiment adding one node to the hidden layers left to right till the ANN 

converges or any other special condition is met. In this case, we set the 

special condition to be that at least 50% of the models were deemed 

predictive. 

The formation was realised to ensure convergence of all models within the model 

space. The actual run of the process, therefore, had the configuration of 5,3 for the two 

hidden layers making a total of 8 hidden neurons. The maximum step was set to 1e+06 

and this represented the maximum steps for the training of the neural network at whose 

attainment the neural network's training process is stopped.  The maximum step size 

was a failsafe condition for the ANNs, should the pre-selected set of hidden layers not 

lead to convergence majorly due to partitions in the training and validation datasets. 

▪ Support Vector Regression 

Support Vector Machines (SVR), just like the Support Vector Machine (SVM) is a 

Kernel-based machine learning approach that is non-parameterized and thus does not 

demand assumptions on the distribution of the training data. For this study, we used 
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the support vector regression approach that though related to SVM, defines the case 

for prediction of real-valued outputs. A comprehensive review of the SVM approach 

is documented together with evidence of its superior performance in classification in 

Wagacha (2003) and Mountrakis, Im & Ogole (2011). 

In our approach, we take a formulation of the SVR in which: - 

• The training data is linearly inseparable. This implies we use non-linear kernels 

• The data has noise and so perfect fit is not ultimately achievable. This means 

we will opt for a soft margin. 

• We retain control of how much error (ϵ) we tolerate for the model. However, 

we penalised any error above(ϵ) by a cost parameter C. 

• We do not control the number of support vectors 

We, therefore, define the problem of SVR learning based on the model defined in 

Equation 29. The kernel is defined as a sigmoid kernel akin to the definition adopted 

in artificial neural networks. The definition of gamma as the inverse of the dimension 

of the data is adopted. 

𝑀𝑜𝑑𝑒𝑙𝑠𝑣𝑚 = 𝑠𝑣𝑚(𝑓, 𝑑, 𝑘, 𝜖, 𝐶, 𝑔) … … . … (29) 

Where f is the model formula defining the target variable in-terms of the 

features, d is the corresponding training dataset, C the cost of incorrect 

prediction as defined by the insensitive-loss function 𝜖. 

In summary, we present the modelling methodology as shown in Figure 3.19 outlining 

the key decision points in the modelling methodology. The use of different facets of 

the modelling methods including the bugging of datasets and ensembling of models 

are deployed to realize improved model performance. 



161 

 

 
Figure 3.19: Outline of the modelling process. 

The modelling process sequentially inputs the models realized after assumptions 

through the GAM modelling process. Models with R2≥0.7 were then subjected to a 

bagged modelling process using both ANN and SVR on similar datasets for both 

training and evaluation. The data was randomly partitioned in the ratio 70:30 for 

training and validation respectively. The 70:30 split was for each and every iteration 

of the k times data was used to build and assess the models. The same training data 

was passed across all the models to unsure outputs are comparable. 

3.7 Pre-study Methods & Results 

To ensure success in the study and the achievement of the study objectives, we did a 

pre-study. The pre-study involved the use of both precipitation data and vegetation 
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indices to realise multiple drought prediction models and to subsequently use a set of 

model selection criteria to reduce the complexity of the model space.  

The objectives of the pre-study are summarized as follows: - 

• Establish the appropriateness of methods, especially of the proposed general 

additive model (GAM) process for model selection. 

• Investigate and answer the question on the most appropriate lag-times on the 

data to use that would also form the basis for the period ahead to be predicted 

using the identified variables. The basis is to realise the maximum lag time in 

the future which the prediction needs to consider. 

• Validate the assumption of non-significance of the gain in performance of 

models realized from the use of multiple lags of the same predictor variables 

• Validate the assumption that pairing of vegetation and precipitation datasets 

avoids the problem of multi-collinearity. 

• Document the performance limitation of the traditional approach of identifying 

a single champion model particularly in terms of performance and also in the 

prediction of outliers. 

In this section, we provide the results of the pre-study as documented towards and from 

the contents of the first publication out of the research work as documented in Adede 

et al (2019a). 

3.7.1 The problem of drought in the study area 

The study analyzed past droughts to form the basis of highlighting the problem of 

droughts in the study area. This offers the evidence necessary to judge the usefulness 

of the study. 

Klisch & Atzberger (2016) documents the Vegetation Condition Index (VCI) as a 

temporal and spatially aggregated anomaly of the Normalized Difference Vegetation 

Index (NDVI). While the NDVI gives absolute vegetation status for a given spatial 

extent at any given time, the VCI scales the actual NDVI value in the range between a 

historical minimum (VCI = 0%) and maximum (VCI = 100%) for the given time unit. 
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The classification of drought based on the 3-monthly aggregated Vegetation Condition 

Index (VCI) following on the thresholds used variously in Klisch & Atzberger (2016), 

Meroni et al. (2019), Klisch, Atzberger & Luminari (2015) and in Adede et al. (2019a) 

over the 178 months covering March 2001 to December 2015 shows in Table 11 why 

the problem of droughts is quite immense for the study area. 

Table 11: Summary of monthly drought phases for the counties in the study region 

(03-2001 to 12-2015) 

Over the 178 months (Table 11), 377 out of a possible 712 (52%) drought episodes 

were reported at the county level, 29 (4%) of which being classified as extreme 

(VCI<10) and therefore signalling the possible collapse of community coping 

capabilities. A drought early warning system with predictive capabilities is thus a 

possible value addition to the drought monitoring process for the counties in this study 

area. 

This problem of drought particularly gets exacerbated when the poverty headcount for 

the counties in the study area is factored in. The poverty rates across these counties are 

above 60% with Turkana (79.4), Mandera (77.6), Marsabit (63.7) and Wajir (62.6) as 

documented in KNBS (2018). These high poverty rates make the effects of droughts 

even more impactful on the communities due to the already existing high 

vulnerabilities. 

  

County Extreme Severe Moderate Combined 

Mandera 8 31 43 82 

Marsabit 8 26 70 104 

Turkana 4 28 64 96 

Wajir 9 25 61 95 

Total 29 110 238 377 
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3.7.2 Pre-study Data 

The variables used in this predictive study comprised both precipitation and vegetation 

indices with either 1 or 3-month aggregation periods. The precipitation datasets were 

derived from TAMSAT (Tarnavsky et al., 2014) and include Rainfall Estimates (RFE), 

Rainfall Condition Index (RCI) and the Standardized Precipitation Index (SPI). 

Vegetation conditions were characterized through the Normalized Difference 

Vegetation Index (NDVI) and Vegetation Condition Index (VCI) directly provided by 

BOKU (Klisch & Atzberger, 2016). The above precipitation and vegetation indices 

were calculated at pixel level then aggregated over the appropriate time-scales and 

administrative boundaries. The details and formulae for the computation of these 

indices are as provided in Table 12. 

Table 12: A description of the index calculation formulas 

Variable 

/Index 
Index Calculation Index Description 

NDVI 
NDVI = (NIR – Red) / (NIR 

+Red) 

Predictor variable; measures 

the average monthly 

vegetation greenness  

VCI 

VCIc,i=100* (NDVIc,i-

NDVImin c,i)/  

(NDVImax c,i- NDVImin c,i) 

(Klisch & Atzberger, 2016) 

Predicted variable aggerated 

over 3 months period. 

RFE 

Rainfall estimate from 

TAMSAT product  

(in mm) 

(Tarnavsky et al., 2014) 

Predictor variable; an 

estimate of the monthly 

rainfall 

RCI 

RCIc,i=100* (RFEc,i-

RFEmin c,i)/  

(RFEmax c,i- RFEmin c,i) 

(Du et al., 2013) 

Predictor variable: [0,1] 

normalized RFE for each 

extent and for each time 

period 

SPI 

For each location, c and 

period i, the long-term record 

of TAMSAT RFE was fitted 

to a probability distribution 

then transformed to a normal 

distribution so that SPImean 

c,i=0 

(WMO, 2012) 

Predictor variable; 

standardised RFE for each 

extent and for each time 

period 

In Table 12, NDVIi indicates the NDVI observed at time i; NDVImin and NDVImax 

are minimum and maximum NDVI observed in the period 2003-2013. NIR and Red 
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are the spectral reflectances in near-infrared and red spectral channels of MODIS 

satellite, respectively. Before use, the NDVI time series is smoothed and filtered to 

remove the negative impacts of poor atmospheric conditions and undetected clouds 

(Klisch & Atzberger, 2016). 

Klisch & Atzberger (2016) and Meroni et al. (2019) document the use of Vegetation 

Condition Index (VCI) as a temporal and spatially aggregated anomaly of the 

Normalized Difference Vegetation Index (NDVI). While the NDVI gives absolute 

vegetation status for a given spatial extent at a given time, the VCI scales the actual 

NDVI value in the range between a historical minimum (VCI = 0%) and maximum 

(VCI = 100%) for a given time unit. The widely used time units in the calculation of 

the indices are dekads which are 10-day periods, months and seasons which is mostly 

3 months. The choice to use the BOKU dataset for VCI is based on the fact that the 

same is deployed in Kenya’s operational drought monitoring system at the NDMA. 

The data is sourced from the NDMA monitoring systems as deployed by BOKU. 

Several studies have evaluated the BOKU dataset including comparisons against 

similar products (Atzberger et al., 2016; Jensen et al., 2019; Klisch, Atzberger & 

Luminari, 2015 and  Meroni et al., 2019). 

The indices in Table 12 were further subjected to a variable transformation step that 

resulted in the variables used for drought modelling. All the variables as provided in 

Table 13 are lagged predictors with the predicted variable that is provided in bold 

(VCI3M) as the only non-lagged variable. The month of the year was added to model 

seasonality. 
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Table 13: Variables used for modelling 

Index Variable description 
1-Month 

Lag 

2-Month 

Lag 

3-Month 

Lag 

NDVIDekad NDVI for the last dekad of month ☒ ☒ ☒ 

VCIDekad VCI for the last dekad of month ☒ ☒ ☒ 

VCI1M VCI aggregated over 1 month ☒ ☒ ☒ 

VCI3M 
VCI aggregated over the last 3 months. The 

non-lagged value is the dependent variable  
☒ ☒ ☒ 

RFE1M Rainfall Estimate aggregated over 1 month ☒ ☒ ☒ 

RFE3M 
Rainfall Estimate aggregated over the last 3 

months 
☒ ☐ ☒ 

SPI1M 
Standardised Precipitation Index aggregated 

over 1 month 
☒ ☒ ☐ 

SPI3M 
Standardised Precipitation Index aggregated 

over the last 3 months 
☒ ☒ ☒ 

RCI1M 
Rainfall Condition Index aggregated over 1 

month 
☒ ☒ ☒ 

RCI3M 
Rainfall Condition Index aggregated over the 

last 3 months 
☒ ☒ ☒ 

Month1 Denotes the month of the year  ☐ ☐ ☐ 

1 Variable only used in GAM models but excluded from the corresponding ANN models. The lag for 

the predictor variables ranges from 1 to 3 months and thus for instance, for VCI3M we consider 

VCI3Mt-1, VCI3Mt-2, VCI3Mt-3. 

In the variable transformation step whose output is the variables in Table 13, we 

generated the 1-3-month lags of each of the variables for each county. The non-lagged 

variables were then dropped from the study except for the VCI3M that is the dependent 

variable. Normalization was done on all the variables to have them in the [0,1] range. 

Normalization is particularly useful since it transposes the input variables into the data 

range similar to that of the sigmoid function. Also, normalization makes all the input 

variables to be in a comparable range. Random sampling was used to partition the data 

into training and validation datasets. This follows, on the 70:30 rule for training and 

validation data sets, respectively. 

3.7.3 Pre-study Methods 

The study uses multiple indices and combines multiple methods in the prediction of 

drought. The prediction of drought is, for operational purposes, formulated as the 

prediction of future VCI3M values using the predictor variables presented in Table 13. 
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We focus here on predictions 1 month ahead, while 3-month ahead predictions were 

also tested. Two approaches are combined as shown in Figure 3.20:  

• a statistical approach - Generalized Linear Models (GAM), and  

• Artificial Neural Networks (ANN).  

 

Figure 3.20: Schema of the pre-study modelling process.  

As reviewed earlier and as shown in Figure 3.20 in the sub-processes (a) and (b), GAM 

models were used in the pre-study to arrive at the set of variables that offer the best 

predictions. These set of variables were then used to subsequently build ANN models.  

The pre-study used the working definition of overfitting presented in Equation 30 that 

implies that a loss of more than 3% in performance between training and validation is 

deemed as overfitting. 

𝑂𝑣𝑒𝑟𝑓𝑖𝑡 𝑚𝑜𝑑𝑒𝑙 = {
𝑌𝑒𝑠, 𝑑𝑖𝑓𝑓(𝑅2𝑠𝑞𝑢𝑎𝑟𝑒𝑑𝑇, 𝑅𝑠𝑞𝑢𝑎𝑟𝑒𝑑𝑉) > 0.03
𝑁𝑜, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

    (30) 

Where RsquaredT indicates the R2 in the training set and RsquaredV is the R2 in the 

validation dataset 

The pre-study ANNs had the configuration of 2-5-3-1 with 8 hidden nodes realized 

from both experimentation and the rule of thumb in Equation 31 from  Huang (2003).  

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 = {
𝑆𝑞𝑟𝑡(𝑁 ∗ (𝑚 + 2)) + 2 ∗ 𝑆𝑞𝑟𝑡(𝑁/(𝑚 + 2),  1𝑠𝑡 ℎ𝑖𝑑𝑑𝑒𝑛 𝑙𝑎𝑦𝑒𝑟

𝑚 ∗ 𝑆𝑞𝑟𝑡 (𝑁/(𝑚 + 2), 2𝑛𝑑 ℎ𝑖𝑑𝑑𝑒𝑛 𝑙𝑎𝑦𝑒𝑟
… (31) 

where m is the number of output neurons and N is the number of samples to be learnt 

with negligibly small error. 
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In the pre-study, the process for the execution of the artificial neural networks 

modelling is as presented in Figure 3.21. for the 102 models realized after the 

assumptions outlined earlier were enforced. 

 
Figure 3.21. Outline of the ANN modelling process.  

The ANN modelling process in Figure 3.19 sequentially inputs selected GAM models 

and the panel dataset followed by the iteration of the performance of the models against 

the data. The data is randomly partitioned in the ratio 70:30 for training and validation, 

respectively, for each iteration of the k times a model is run against the data. The k-

fold iteration was chosen to minimize impacts of the random initialisation of the 

network weights. 

3.7.4 Pre-study model evaluation 

For all the models run, both GAM and ANN, the validation metrics used are mean 

absolute error (MAE), mean squared error (MSE), root mean squared error (RMSE), 

mean percentage error (MAPE), R2. The results are presented using R2. The evaluation 

of the performance of the models is done as part of the model training process using 

the validation dataset and also using the out of sample dataset. 
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3.7.5 GAM Model results 

A plot of the performance of the 102 models in the GAM process, grouped by R2 is 

presented in Figure 3.22. The models are noted to post R2 between 0.09 and 0.86 in 

model training and model validation. The performances of the models in training and 

validation datasets (blue and orange bars respectively) indicate relative stability in 

model numbers across the models. 

 
Figure 3.22: Model performance by range of R2 in the GAM process.  

The performance of the models by the lag-time of the variables, of between 1-month 

and 3-month lags, is provided in Figure 3.23. As expected, the analysis of the GAM 

process by lag time indicates that the 1-month lag of the predictors performed better in 

predicting VCI3M as used to define drought (in green). While a lag time of 2 months 

(in blue) still has some predictive power (R2 >0.5), longer lags fail to produce good 

predictions (in yellow). 



170 

 

 
Figure 3.23: Lag-time based performance of the GAM model selection space reduction 

process 

It is deducible that the models from the GAM process with R2≥0.7 as shown in Table 

14 all have 1-month lag variables. In fact, the first 2-month lag variable first appears 

at a model ranked at position 22 with an R2 of 0.61 while the first 3-month lag variable 

is in a model ranked at position 52 with an R2 of 0.33. The poor performance of higher 

lags of these variables is expected since longer lags are less contributing to current 

vegetation status and the chances of unexpected climate variations occurring between 

the time of forecasting and the forecasted event increase. 
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Table 14: GAM models with R2 ≥ 0.7 in decreasing order 

No Model 
R2 

Training 

R2 

Validation 

Overfit 

Index 
Overfit Lag Time 

1 VCIDekad_lag1+SPI1M_lag1 0.86 0.85 0.01 No 1 

2 VCIDekad_lag1+SPI3M_lag1 0.86 0.85 0.01 No 1 

3 VCIDekad_lag1+RFE1M_lag1 0.85 0.85 0.01 No 1 

4 VCI1M_lag1+SPI3M_lag1 0.85 0.84 0.01 No 1 

5 VCI1M_lag1+SPI1M_lag1 0.85 0.84 0.01 No 1 

6 VCI1M_lag1+RFE1M_lag1 0.85 0.84 0.01 No 1 

7 VCIDekad_lag1+RCI1M_lag1 0.85 0.84 0.01 No 1 

8 VCI1M_lag1+RCI1M_lag1 0.84 0.83 0.01 No 1 

9 VCIDekad_lag1+RCI3M_lag1 0.84 0.83 0.01 No 1 

10 VCIDekad_lag1+RFE3M_lag1 0.84 0.83 0.01 No 1 

11 VCI1M_lag1+RCI3M_lag1 0.84 0.83 0.01 No 1 

12 VCI1M_lag1+RFE3M_lag1 0.83 0.83 0.01 No 1 

13 VCI3M_lag1+SPI3M_lag1 0.82 0.82 0.01 No 1 

14 VCIDekad_lag1 0.81 0.80 0.01 No 1 

15 VCI3M_lag1+RCI3M_lag1 0.81 0.80 0.01 No 1 

16 VCI1M_lag1 0.81 0.80 0.01 No 1 

17 VCI3M_lag1+SPI1M_lag1 0.81 0.79 0.01 No 1 

18 VCI3M_lag1+RCI1M_lag1 0.78 0.77 0.01 No 1 

19 VCI3M_lag1+RFE3M_lag1 0.78 0.77 0.01 No 1 

20 VCI3M_lag1+RFE1M_lag1 0.78 0.76 0.01 No 1 

21 VCI3M_lag1 0.72 0.69 0.02 No 1 

The full list of all 102 models is provided in Appendix C with the full list for GAM in Table 

C3 and the full list of ANN models in Table C4 respectively. With the definition of 

overfitting in Equation 32 presented earlier, it is shown that none of the 21 GAM 

models with R2≥0.7 was judged to have suffered over-fitting. All the 21 models are 

thus noted to have acceptable deterioration in performance in model validation.  

Though not shown, the alternative measures of performance: MAE, MSE, RMSE, 

MAPE etc. are noted to be consistent with R2 since they all have a non- monotonic and 

non-linear relationships. An increase in R2 translates to a change but in the reverse 

direction of the other error-based measures of model performance. Since the aim of the 

study was to use GAM modelling process as a basis for model space reduction, the 

above 21 models were selected for the ANN process. 

3.7.6 ANN Model results 

The pre-study intended to use ANNs as the case study technique of choice. Following 

on the model space search approach, we produced all the 21 models using the ANN 
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process through a bagging and brute force approach in the search for the champion 

model. For uniformity, overfitting is defined for Artificial Neural Networks (ANN) as 

in GAM models. 

3.7.6.1 ANN Performance in Training and Validation 

Using the model overfit index in Equation 32, a few facts emerge. The ANN models 

were generally not overfitted as indicated in Table 15 except for only one model (No. 

19) that suffered overfitting. This implies a non-overfit rate of 95%. 

Table 15: ANN model performances in training and validation datasets 

No 

Model Training (R2) Validation (R2) 
Overfit 

Index 

Over

fit  Min Max Mean Min Max 
Mea

n 

1 VCIDekad_lag1+RFE1M_lag1 0.83 0.86 0.84 0.78 0.86 0.83 0.01 No 

2 VCI1M_lag1+RFE1M_lag1 0.82 0.85 0.84 0.78 0.85 0.83 0.01 No 

3 VCIDekad_lag1+SPI1M_lag1 0.82 0.85 0.84 0.79 0.87 0.82 0.02 No 

4 VCIDekad_lag1+SPI3M_lag1 0.82 0.86 0.84 0.78 0.88 0.82 0.02 No 

5 VCIDekad_lag1+RCI3M_lag1 0.82 0.86 0.84 0.79 0.87 0.82 0.02 No 

6 VCI1M_lag1+SPI3M_lag1 0.81 0.85 0.84 0.78 0.87 0.82 0.02 No 

7 VCI1M_lag1+RCI3M_lag1 0.82 0.85 0.84 0.79 0.86 0.82 0.02 No 

8 VCI1M_lag1+SPI1M_lag1 0.82 0.85 0.84 0.77 0.86 0.82 0.02 No 

9 VCIDekad_lag1+RCI1M_lag1 0.81 0.84 0.82 0.76 0.85 0.81 0.02 No 

10 VCI1M_lag1+RCI1M_lag1 0.80 0.84 0.82 0.75 0.84 0.80 0.02 No 

11 VCIDekad_lag1+RFE3M_lag1 0.79 0.84 0.82 0.75 0.83 0.80 0.02 No 

12 VCI1M_lag1+RFE3M_lag1 0.79 0.84 0.81 0.74 0.83 0.79 0.02 No 

13 VCIDekad_lag1 0.77 0.82 0.79 0.72 0.82 0.78 0.01 No 

14 VCI1M_lag1 0.76 0.81 0.78 0.72 0.81 0.77 0.02 No 

15 VCI3M_lag1+SPI3M_lag1 0.76 0.81 0.79 0.73 0.84 0.77 0.03 No 

16 VCI3M_lag1+RFE1M_lag1 0.76 0.79 0.77 0.72 0.80 0.77 0.01 No 

17 VCI3M_lag1+RCI3M_lag1 0.76 0.81 0.79 0.72 0.83 0.76 0.03 Yes 

18 VCI3M_lag1+RCI1M_lag1 0.74 0.79 0.77 0.71 0.80 0.75 0.02 No 

19* VCI3M_lag1+SPI1M_lag1 0.73 0.80 0.78 0.70 0.82 0.74 0.04 Yes 

20 VCI3M_lag1+RFE3M_lag1 0.71 0.77 0.74 0.65 0.76 0.72 0.02 No 

21 VCI3M_lag1 0.64 0.71 0.68 0.60 0.73 0.66 0.02 No 

 

The champion model from the ANN process is different from that of the GAM process. 

In fact, the ANN champion with an R2 of 0.83 and No 1 in Table 15 was ranked the 

third-best model in the GAM modelling process shown earlier in Table 14 with an R2 
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of 0.85. Figure 3.24 illustrates the performance of the ANN models as compared to the 

GAM models. 

 
Figure 3.24: Performance of the ANN models in model validation as compared to similar 

GAM models 

In general, as indicated in Figure 3.24, the GAM models outperform ANN models 

except for model 16 for which the ANN slightly out-performs GAM by an R2 of 0.01. 

This is an important property since the GAM process is proved to be more optimistic 

in performance as compared to ANN and so fewer deserving models would be 

excluded from the ANN process. In training and validation, the champion model that 

is shown in Figure 3.25 has its best subset performance at a maximum R2 of 0.86 has 

a good positive correlation between the predicted and the actual VCI3M values. 

A detailed analysis of the lag-time performance of the ANN models in model training 

is provided in Appendix B which has the results for the 102 possible ANN models 

similar to those from the GAM process. 
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Figure 3.25: The champion NN model with the 1-month lag of the variables VCIDekad and 

RFE1M. 

The plot of the ANN in Figure 4.25 is from the 4th partition of the training data that 

recorded the best performance. While blue lines indicate bias values for the ANN, the 

black lines represent model internal weights. 

3.7.6.2 Performance of the ANN Champion in the test dataset 

The out-of-sample test dataset has 96 data points across 2 years (2016-2017). The out-

of-sample data was neither used in the training nor the validation processes of the ANN 

and even of the GAM process. It represents the model’s performance in the real world 

and is the basis of judging the generalizability of the model. 

Performance of ANN Champion in Regression: The ANN prediction was first 

formulated as a regression problem. The performance of the ANN champion in 

regression is indicated in the plot of the actuals versus the predicted real values for all 

the counties ordered by county and period as shown in Figure 3.26. 
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Figure 3.26: Plot of the actual versus champion model’s predicted values in test data  

for (a) Mandera (R2=0.71); (b) Marsabit (R2=0.77); (c) Turkana (R2=0.83) and (d) 

Wajir (R2=0.71). Predictions were done 1 month ahead. 

The plot of the actual versus the predicted values represents quite a good agreement. 

In the test data, the champion model posted an R2 of 0.78 and unscaled RMSE of 7.03 

on the actual data values. The above performance over the 96 data points for testing is 

acceptable in the prediction of future drought events. 

Performance of ANN in classification: Operational drought monitoring involves the 

definition of thresholds on indices used for drought monitoring to realise a class 

approach to drought monitoring. We use the approach documented in Klisch & 

Atzberger (2016), Meroni et al. (2019) and Klisch, Atzberger & Luminari (2015) as 

presented in Table 16 to monitor drought in five drought classes:  

Table 16: Classification of drought based on vegetation deficit classes 

VCI3M 

Limit Lower 

VCI3M 

Limit Upper 

Description of Class 

 

Drought class 

 

≤0 <10 Extreme vegetation deficit 1 

10 <20 Severe vegetation deficit 2 

20 <35 Moderate vegetation deficit 3 

35 <50 Normal vegetation conditions 4 

50 ≥100 Above normal vegetation conditions 5 
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The champion model had an overall accuracy of 67% rising to 71% for Wajir and 

Marsabit counties as indicated in the matrix provided in Figure 3.27. 

 

Figure 3.27: Performance of the ANN classifier for each of the counties 

The months of difference (Figure 3.27) are shown in grey and those of agreement in 

blue. Predictions are done 1 month ahead. The classification accuracies are: (a) 63% 

for Mandera county; (b) 71% for Marsabit county; (c) 63% for Turkana county and; 

(d) 71% for Wajir county. 

When formulated as a multi-class classification problem and the multiple receiver 

operating (ROC) curves plotted for each of the pairwise comparisons following the 

approach in Hand & Till (2001), we obtained the ROC curve plotted in Figure 3.28. 

The multi-class area under the curve (AUROC) is the average of the 10 areas under all 

the ROCs. The ROC for the 5 classes provides a reasonable trade-off between 

sensitivity and specificity at an overall AUROC of 89.99%. The area under the ROC 

(AUROC) indicates quite a good trade-off between sensitivity and specificity and is 

ranked within the good performance category as it is way above the 50% that 

represents a worthless test (in grey). 
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Figure 3.28: Multi-class ROC plot of the champion model as a drought phase classifier. 

The curves in the multi-class ROC plot (Figure 3.28) represent the pairwise 

comparison of the five (5) classes. The overall area under the multi-class ROC is the 

average of the areas under each of the ROCs for the pairwise class comparisons. 

3.7.7 Validation of the key assumption of the pre-study 

3.7.7.1 Appropriateness of GAM technique in variable selection 

To validate the key assumption on the appropriateness of the GAM modelling 

technique in the reduction of the model space, we run the extra 81 models through the 

ANN process. The best performer from the set of non-selected models had an R2 of 

0.50. A summary of the performance of the non-GAM selected models in the test 

dataset is provided in Figure 3.29. 
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Figure 3.29: Distribution of non-selected models ANN performance on training, validation 

and testing.  

The results in Figure 3.29 indicate no model posted an R2 of at least 0.5 in model 

testing. The results validate the assumption of the utility of GAM in modelling non-

linearity as well as in their use in this study for model space reduction prior to the use 

of computationally intensive algorithms like artificial neural networks. The models 

that were not selected by the GAM process are not expected to perform any better in 

the ANN process than the GAM selected models. The GAM process is, in essence, 

more optimistic in performance ranking than the ANN process. This property is useful 

as it generally guarantees that good models are not filtered out of the ANN process. 

3.7.7.2 Investigation of multi-collinearity 

The collinearity-matrix in Figure 3.30 gives the correlation coefficients between the 

predictor (X) variable pairs together with a proposed interpretation scheme. The 

absolute correlation coefficient between the pairs in X is provided together with a 

proposed interpretation of the correlations. 
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Figure 3.30: Collinearity-matrix for the input (X) variables.  

From the collinearity matrix in Figure 3.30, the correlation between vegetation input 

variables is between moderate to very high correlations (min=0.53, max=0.87). This 

is as opposed to say the relationship between the pairings between vegetation and 

precipitation datasets that is between no linear relationship to moderate (min=0.0, 

max=0.54). The assumption to avoid the use of datasets of the same type whether 

precipitation or vegetation datasets and in essence use the pairings between 

precipitation and vegetation datasets generally results in pairings of weak to barely 

moderate correlations. This is the first step to avoiding the problem of multi-

collinearity. 

In addition to the collinearity matrix, we investigated the problem of multi-collinearity 

between the independent variables in a two-step process – first for a model of all 

variables and second for the pairing of precipitation and vegetation variables. For each 

approach, we obtained the variance inflation factor (VIF) with the rule of thumb that a 

VIF>5 indicates high multi-collinearity while a VIF>10 indicates multi-collinearity 

that has to be handled in the modelling process. The thresholds for the VIF are 

generally a rule of thumb and are, for example, discussed in Mathieson, Peacock & 

Chin (2001) and in Kock & Lynn (2012).  The results of the investigation of VIF for 

all the model variables are presented in Table 17. 
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Table 17: Variance inflation factor (VIF) for a single model with all 1-month lag 

variables 

Variable Variance inflation factor (VIF) 

VCI3M_lag1            6.14  

 NDVIDekad_lag1            1.41  

 VCI1M_lag1          976.21  

 VCIDekad_lag1        1,057.46  

 RCI1M_lag1            4.41  

 RCI3M_lag1            5.90  

 RFE1M_lag1            2.63  

 RFE3M_lag1            2.88  

 SPI1M_lag1            3.34  

 SPI3M_lag1            5.24  

 

The full model with all variables indicates the presence of multi-collinearity with 

VIF>10 for 2 of the predictor variables. Further analysis for the models fed into the 

GAM process obtains the results provided in Figure 3.31. 

 
Figure 3.31: Variance inflation factor (VIF) for GAM models 

 

The results in Figure 3.31 confirm that using the vegetation-precipitation variable pairs 

that correspond to the low correlation portions of the correlation matrix in Figure 14 

ensures models that are not affected by multi-collinearity. 

Concurvity, that has similar effects to those posed by multi-collinearity, was not a 

major limitation in the approach to GAM modelling employed by this study since only 

one smooth term was used in the development of the GAMs across all the models. 

Additional investigation with smoothing on all the terms, though not presented, 
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resulted in massive model overfitting that then limited the smoothing of the predictor 

variables. 

3.7.7.3 Most appropriate lag time 

The investigation of the most appropriate lag time in the prediction of future droughts 

is presented in Appendix B. The lag-time performance of both the GAM (Figure B1 

and Table B1) and the ANN (Figure B2 and Table B2) indicate a few interesting facts: 

• The models considered predictive (R2≥0.7) were only posted when predictions 

were made 1 month ahead. In fact, very good performance at a maximum of 

R2=0.83 for GAM and R2=0.83 for ANN is posted in predictions of conditions 

1 month ahead. 

• The predictions 3-month ahead post very weak models whose performance are 

at best R2=0.33 for GAM and R2=0.25 for ANN. These models are considered 

to perform at below chance. 

• It is evident that the only viable predictions are from models that make 

predictions 1 month ahead. 

3.7.7.4 Performance of models with multiple lags of the same variable 

Non-significance of gain in performance from multiple lags of the same variable was 

one of the assumptions of the study that was tested in the pre-modelling. This was a 

two-step process. First, we tested for the possibility of multi-collinearity when multiple 

lags of the same variable are used in the same model. Only three models of the 40 

returned a variance inflation factor, VIF >5. Having multiple lags of the same variable 

do not, therefore, suffer multicollinearity. Despite these results indicating that multiple 

lags of the same variable can be used in the same model for the balance of the 37 

models, an investigation of their performance indicates the contrary as documented in 

Adede et al. (2019a). Only 17 models post a performance gain of 1 percentage point 

or more. Furthermore, all the models that post an R2 of at least 0.5 either have a loss 

of 6% in performance to a gain of 1% in performance implying poor returns in having 

multiple lags of the same variable in a model. 
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3.7.8 Summary of the pre-study  

In this pre-study, multiple variables were used to predict future vegetation condition 

index aggregated 3-monthly as a proxy to drought conditions. The predictor variables 

were 1-3-month lags of precipitation and vegetation indices. The methodology used 

two techniques in a hybrid setup where the General Additive Model (GAM) statistical 

approach was first run against several possible model configurations. The GAM 

method was then used to reduce the model space and by extension the set of viable 

variables. After variable selection and with the model space reduced, a brute force 

approach was then employed using the Artificial Neural Networks (ANN) approach.  

One month ahead forecasts of the VCI using the best ANN model showed good 

performances with R2 ranging between 0.71 and 0.83. After grouping into five drought 

classes, 63% to 71% of the months were correctly classified across the counties with 

the remaining months showed a maximum difference of one class. Prediction skills 

deteriorated with lag times longer than 1 month. The poor performance of variables 

with longer times lags, in the prediction of drought events was established. Since the 

approach builds multiple models before evaluation in the search for the best model, it 

is possible to support model ensembling that supports the use of multiple models in 

the prediction of future events. 

The study demonstrates that model space reduction is beneficial to the building of 

neural networks that are known to generally have slower training times as compared 

to other approaches. The automation of the model training and model validation 

processes, and the measure of performance with a view to quantifying and avoiding 

overfitting, make for a scalable approach. 
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3.7.9 Criticisms of the Pre-study  

The pre-study realised relatively predictive models that had a relatively good 

performance. The model space search approach was helped by the use of GAMs that 

were faster to compute. The performance of the champion ANN model however 

suffered poor performance in the prediction of moderate to extreme drought that are, 

in fact, the classes for which best performance is desired. The problem of performance 

in the moderate to extreme drought classes is illustrated in Figure 3.32. 

 
Figure 3.32: Performance of the ANN champion in moderate to extreme drought. 

Figure 3.32 shows the performance of the champion ANN in the prediction of 

moderate to extreme droughts for each of the counties.  The months of difference are 

shown in grey while those of agreement are shown in blue. Predictions were done 1 

month ahead. The classification accuracies recorded were: (a) 54% for Mandera 

county; (b) 71% for Marsabit county; (c) 58% for Turkana county and; (d) 74% for 

Wajir county. 

Further analysis for severe to extreme drought, however, returned very poor 

performance perhaps due to low occurrence of the events in the training data at 4.92% 

and 10.81% for severe and extreme droughts respectively. 

One possible mitigation to this poor performance in class distribution would be model 

ensembling. Given that the ANN process realized 21 models that were relatively good 

performers, we can have all the models participate in the prediction process. A naive 

approach to model ensembling would be to average the scores from all the models 
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prior to the classification. This approach realizes an overall R2 of 0.81 and an overall 

accuracy of 74%. At the county level, the performance was: Mandera (R2=0.70), 

Marsabit (R2=0.82), Turkana (R2=0.87) and Wajir (R2=0.76). The performance of the 

classification by county for moderate to extreme drought is provided in Figure 3.33. 

 
Figure 3.33: Performance of the average ensemble classifier for all the vegetation deficit 

classes. 

For each of the counties in Figure 3.33: Mandera, Marsabit, Turkana and Wajir 

respectively, the months of difference are shown in grey while those of agreement are 

in blue. Predictions are done 1 month ahead. The classification accuracies in the severe 

to extreme vegetation classes are: (a) 71% for Mandera county; (b) 63% for Marsabit 

county; (c) 80% for Turkana county and; (d) 67% for Wajir county. 

There is a gain in classification accuracy that is realized when the model ensembling 

approach is used as compared to the use of the single best model. The model 

ensembling approach, however, has a computational resource and time aspect to it that 

adds to the limitations of the ANNs that already suffer the limitation of interpretability 

of both process and output. 

The main study investigated the question of the use of model ensembling to realise 

more predictive models in detail using different model ensembling techniques. The 

results of this study are documented in Chapter 4- Results and Discussion. 
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Chapter 4: RESULTS AND DISCUSSION 

In this section, we present the results from the study based on the correlation research 

design that was deployed as described in the previous section. The research followed 

the aspects of exploratory data analysis (EDA) sequenced with predictive modelling 

on the variables selected from the EDA process. We document the results following 

on the research objectives and for each objective, we logically formulate the questions 

that guide the study to provide the assurance that the objectives are met. 

4.1 Variables used for drought monitoring 

To meet the study objective of “Determine the different biophysical and socio-

economic variables that are used in the monitoring/ prediction of drought and 

investigate their relationship with drought.”, we formulated two research questions 

that we use to organise the results. These questions, used to determine the order the 

results are presented, are as follows: - 

• RQ1: What are the different biophysical and socio-economic variables that are 

used in the monitoring/ prediction of drought? This is handled in sections 4.1.1 

that tabulates these variables as identified from literature and 4.1.2 that 

identifies the key relationships between these variables. 

• RQ2: How do the variables identified for drought monitoring relate with 

drought and drought effects? This is handled in section 4.1.3 

4.1.1 Identification of the variables used in the monitoring/ prediction of drought 

To answer the first research question (RQ1), we surveyed literature intending to 

document variables used in both drought monitoring and the prediction of drought. We 

also sought to have the entire spectrum of variables used for this purpose. Answering 

this question involved two key undertakings: (1) a search through literature on past 

studies to identify the variables documented for use in both drought monitoring 

including their respective data archives; (2) the download and pre-processing of the 

datasets identified to realize the variables for the area of study covering the period of 

study. 
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The four drought types from literature review and theology formed the basis of the 

identification of the variables used for drought monitoring. The base datasets that were: 

NDVI, LST, EVT, PET, SPEI, MUAC, Maize Price & Goat Price were then 

transformed to realize the indicators whose summary statistics are provided in Table 

18. 

Table 18: Summary statistics of the indicators processed for drought monitoring  

No 
Drought 

Type 
Variable Min Max Range Mean Median Stdev 

1 

Met 

TAMSAT_RFE1M** 0 191.10 191.10 29.29 14.20 35.07 

2 CHIRPS_RFE1M** 1.04 236.68 235.64 26.91 13.20 36.16 

3 TAMSAT_RFE3M*** 0 114.23 114.23 29.29 26.47 22.01 

4 CHIRPS_RFE3M*** 2.46 131.22 128.76 27.23 21.95 21.89 

5 TAMSAT_SPI1M** -1.87 2.37 4.24 0.25 0.26 0.67 

6 CHIRPS_SPI1M** -2.36 4.27 6.63 0.05 0.25 0.80 

7 TAMSAT_SPI3M*** -2.24 2.55 4.79 0.11 0.12 0.75 

8 CHIRPS_SPI3M*** -2.69 3.22 5.91 0.02 -0.07 0.86 

9 TAMSAT_RCI1M** 0 98.85 98.85 24.48 19.10 22.41 

10 CHIRPS_RCI1M** 0 99.16 99.16 21.87 15.28 19.37 

11 TAMSAT_RCI3M*** 0.01 99.78 99.77 31.69 28.39 20.09 

12 CHIRPS_RCI3M*** 0 99.14 99.14 29.73 24.24 21.81 

13 

Agric 

NDVIDekad* 0.15 2.69 2.54 0.43 0.25 0.54 

14 VCIDekad* 3.81 99.17 95.36 36.17 32.68 19.51 

15 VCI1M** 4.20 99.09 94.89 36.53 32.81 19.25 

16 VCI3M*** 5.43 87.06 81.63 35.69 33.67 16.92 

17 

Hydro 

LST1M** 298.51 311.45 12.94 305.78 305.98 2.42 

18 TCI1M** 0.75 137.02 136.27 57.22 58.18 21.59 

19 EVT1M** 1.65 56.75 55.10 10.04 7.85 7.57 

20 PET1M** 48.36 303.08 254.72 150.38 152.02 50.35 

21 SPEI1M** -4.32 2.21 6.53 -0.45 -0.40 1.10 

22 SPECI3M*** -4.14 1.88 6.02 -0.51 -0.42 1.11 

23 
SED 

TOT** 13.87 113.44 99.57 45.74 42.21 19.02 

24 MUAC** 10.80 36.00 25.20 22.05 21.40 5.06 

Note: Met, Agric, Hydro and SED refer to Meteorological, Agricultural, Hydrological and Socio-

economic drought respectively. 

From the initial set of variables, two of the socio-economic data of Maize Price and 

Goat Price were converted to Terms of Trade (ToT) and the initial variables dropped 

from the model as earlier indicated in methodology. Together with the results 

presented later on the selection between the TAMSAT and CHIRPS datasets, the final 

variables were: Meteorological (6), Hydrological (6), Agricultural (4) and Socio-

Economic (2).  
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The range of values in Table 19 for the raw data shows very diverse ranges making the 

values quite difficult to model on. The need to have the values in comparable ranges 

supports the need for normalization whose results are presented later. 

4.1.2 Descriptive analysis of the identified data for drought monitoring 

The exploratory investigation into understanding the variables to be used in the study 

and the relationships between them was done as part of the pre-study. In this section, 

we present the characteristics of the data collected using both descriptive analysis 

processes and also the relationships between them. Section 4.1.3 handles the 

relationships between the variables and both drought severity and drought effects. 

4.1.2.1 Characteristics of the datasets 

The summary statistics for each of the datasets is presented following on their groups 

in the study of drought. 

Characteristics of the Precipitation data 

Table 19 presents the descriptive statistics for the precipitation datasets (TAMSAT and 

CHIRPS) used majorly in the monitoring of meteorological droughts. The non-

transformed data (RFE1M) is the basis of the analysis of the differences for the entire 

region. 

Table 19: Descriptive statistics for monthly rainfall estimates (RFE) for each 

county in the study area 

County Dataset  Skewness  

Excess  

Kurtosis  Mean Median StDev 

Mandera       

 TAMSAT_RFE1M             1.83           2.72    23.28       5.45        35.16  

 CHIRPS_RFE1M             2.24           4.98    27.31       5.77        41.51  

Marsabit       

 TAMSAT_RFE1M             1.63           2.52    27.54     13.49        31.96  

 CHIRPS_RFE1M             2.39           6.49    25.41     11.91        33.99  

Turkana       

 TAMSAT_RFE1M             1.02           0.50    40.06     31.47        33.36  

 CHIRPS_RFE1M             1.63           2.56    27.35     20.20        22.44  

Wajir       

 TAMSAT_RFE1M             1.80           2.87    26.29       8.46        37.14  

 CHIRPS_RFE1M             2.40           6.11    27.58       5.82        42.88  
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The precipitation datasets, analysed at county level indicated competitive average 

monthly rainfall for the period across the counties and both TAMSAT and CHIRPS 

except for Turkana. Turkana gives the widest difference in the monthly average rainfall 

at 12.71mm for the period between TAMSAT and CHIRPS. The annual average 

rainfall from the modelled approach realised higher approximations for Mandera, 

Marsabit and Turkana while Wajir had the annual rainfall under approximated. An 

example of a competitive approximation is the rainfall for Mandera county for the 

period that translates to an average rainfall of between 279mm and 328mm. This 

compares favourably with the annual averages for  Mandera of around 250mm. The 

deviation could be attributed to the tendency for the cold cloud duration models to 

over-estimate rainfall due to cases when cold clouds do not lead to actual rainfall. 

Clearly, for all the counties, monthly average rainfall from both TAMSAT and 

CHIRPS have general concurrence except for Turkana where there is a major 

divergence. The same divergence is recorded for Turkana based on the median values.  

From Table 19, the TAMSAT and CHIRPS rainfall estimates are positively skewed 

and are hence skewed to the right. Using the rule of thumb (Bulmer, 1979) to interpret 

the skewness numbers, the datasets are considered highly skewed. This is because all 

the datasets reported skewness greater +1 that implies highly skewed to the right. 

The reported kurtosis values in Table 19 are referred to as excess kurtosis and equals 

kurtosis over or below 3 that denotes the kurtosis for a normal distribution. The two 

datasets have an excess kurtosis greater than zero across all the counties. The 

distribution of the datasets is thus referred to as leptokurtic. This implies that the 

precipitation datasets do not conform to normality. A comprehensive comparison with 

a view to dataset selection, and hence variable selection, for the precipitation datasets 

is presented in section 4.1.3. 

Characteristics of the Vegetation data 

The vegetation datasets are derived from NDVI as the base dataset. The NDVI dataset 

was then processed to vegetation condition index (VCI) at 1-monthly and 3-monthly 

aggregation timelines. To realize the NDVI data for the study in an objective process, 
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we evaluated three NDVI datasets.  The summary results for the descriptive analysis 

of the three datasets for the period 2001-2015 is provided in Table 20. The three 

datasets were disaggregated at the county level. 

Table 20: Descriptive statistics for three NDVI datasets (Boku, Own, FewsNet) 

Dataset Mean Median Variance Kurtosis Skewness Range 

Turkana 

NDVI_Boku  0.25   0.23   0.00   0.04   0.83   0.25  

NDVI_Own  0.25   0.24   0.00   (0.21)  0.73   0.22  

NDVI_FewsNet  0.24   0.23   0.00   0.18   0.80   0.25  

Mandera 

NDVI_Boku  0.31   0.27   0.01   0.88   1.26   0.45  

NDVI_Own  0.31   0.27   0.01   1.15   1.19   0.41  

NDVI_FewsNet  0.29   0.27   0.01   2.12   1.35   0.44  

Marsabit 

NDVI_Boku  0.23   0.21   0.00   2.11   1.47   0.35  

NDVI_Own  0.23   0.21   0.00   2.06   1.43   0.29  

NDVI_FewsNet  0.22   0.20   0.00   3.80   1.64   0.37  

Wajir 

NDVI_Boku  0.28   0.24   0.01   4.95   1.92   0.52  

NDVI_Own  0.28   0.25   0.01   4.64   1.87   0.44  

NDVI_FewsNet  0.19   0.16   0.01   5.23   1.97   0.44  

The three datasets have different pre-processing methods but the same underlying data 

source. It is evident from the results in Table 20 that pre-processing does not alter the 

data characteristics in any major ways since the descriptive statistics realize very close 

results across the counties. This implies that for drought monitoring, consistency in the 

processing steps could be more important than complexity in the processing chains 

adopted as long as key processing steps are fully carried out on the base data. This is 

particularly so given that the BOKU dataset, in this case, represents state of the art pre-

processing using Whittaker weighted smoothing and uses both Aqua and Terra 

satellites (Klisch & Atzberger, 2016). This BOKU processing is as compared to the 

FEWSNET dataset (FEWSNET Data Portal, 2016) that uses solely the Terra MODIS 

satellite and is smoothed using the Swets algorithm (Swets et al., 1999).  Further, even 

the OWN dataset that uses a Naïve implementation of the Whittaker smoothing 

algorithm and used only the Terra sensor data seems competitive to the other datasets. 
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The test for normality for the vegetation datasets for randomly selected pixels across 

the images returned the histogram plot provided in Figure 4.1 that confirms the non-

normality in the distribution of the base datasets even at the image level. 

 
Figure 4.1: Histogram plots for cell level values of Boku, FewNet and Own datasets 

respectively 

A correlational analysis of the data following on spearman’s correlation coefficient 

returned a correlation coefficient of 0.9 between Boku and FewsNet datasets; 0.92 

between Boku and Own datasets and 0.98 between Own and Fewsnet datasets. This is 

because of the similarity between the Fewsnet and the Own datasets whose differences 

is majorly attributed to the approach used in smoothing. 

A time series analysis on the three datasets was done using the additive time series 

model in Equation 32. The aim was to break down each time series into its principal 

components including a seasonal component -𝑆𝑡, a trend component-𝑇𝑡 and a 

remainder component-𝐸𝑡.  

𝑦𝑡 = 𝑆𝑡 + 𝑇𝑡 + 𝐸𝑡 ..........(32) 

A plot of the trend components for the decomposed vegetation datasets is presented in 

Figure 4.2. 
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Figure 4.2: Plot of the trend component from the decomposition of the vegetation datasets 

The similarity in trend for the three datasets is confirmed by the high correlation 

coefficients provided in Table 21. 

Table 21: Correlation coefficient matrix for trend component between the pairs of 

vegetation datasets 

Dataset 
Spearman’s  

Correlation Coefficient 

 Boku - FewsNet            0.97 

 Boku - Own             0.97 

 Fewsnet - Own            1.00 

Adjusting for seasonality and leaving the trends and error components in the datasets 

intact gives the plot in Figure 4.3. and the correlations presented in Table 22. 

  
Figure 4.3: An integrated comparison of the three seasonally adjusted vegetation datasets 

with Boku NDVI in blue, FewsNet NDVI in red and Own NDVI in green. 
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Table 22: Correlation coefficient matrix for seasonally adjusted NDVI datasets 

Dataset Pair 
Spearman’s  

Correlation Coefficient 

 Boku - FewsNet 0.891 

 Boku - Own  0.805  

 Fewsnet - Own  0.962  

The visual inspection amongst the three seasonally adjusted vegetation datasets in 

Figure 4.3 shows some good agreement which is confirmed by the correlations matrix 

in Table 22. The seasonally adjusted datasets have a minimum correlation of 0.805 

between the Boku and Own datasets and a maximum of 0.962 between the Fewsnet 

and Own pairs. 

A visualization of the month on month plot of the seasonal variation components of 

the three datasets provided in Figure 4.4 illustrates the occurrence of two distinct peak 

seasons of greenness between the months of May – June and November-December 

across the entire years of the three vegetation datasets. 

 

Figure 4.4: Plot of the seasonal component from the decomposition of the vegetation 

datasets 

The rise in vegetation cover as shown in Figure 4.4 for the three datasets occurs in two 

distinct phases of from March through April to May period (MAM) and October 

through November to December (OND). These periods corresponded to the long and 

short rainy seasons in Kenya. 
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Relationship between precipitation and vegetation datasets  

The final investigation of the relationship between the variables for the prediction of 

drought severity was the investigation of the relationship between the vegetation and 

precipitation datasets. An investigation of the maximum lag between the precipitation 

and vegetation datasets for each county produced the results provided in Table 23.  

Table 23: Lag correlation between precipitation and vegetation 

County 
CHIRPS 

Correlation 

TAMSAT 

Correlation 

CHIRPS 

Lag 

TAMSAT 

Lag 

Turkana           0.71             0.70  -1 -1 

Mandera           0.71             0.67  0 0 

Marsabit           0.76             0.73  -1 -1 

Wajir           0.71             0.73  -1 -1 

The results of the determination of maximum cross-correlation between the dataset 

pairs by county suggest that the response of vegetation to rainfall is more pronounced 

in Mandera County that has a shorter lag of below 1 month. The shorter time lag for 

Mandera implies that vegetation responds faster to changes in precipitation in Mandera 

as compared to the other counties. Vegetation as having a 1 month lag in response to 

changes in rainfall remains an expected scenario since the study uses both vegetation 

and precipitation datasets that are aggregated monthly. A finer time step would be 

needed for a finer analysis to quantify the vegetation and precipitation lag in the order 

of weeks. 

A summary into the investigation of the vegetation datasets is that both the 

precipitation data and vegetation datasets the underlying datasets for vegetation are not 

normally distributed. This is even observed in the transformed data from each of the 

base sources. Any modelling on the data needed to take care of this fact and non-

parametric approaches were settled on as the basis for further data analysis. It is equally 

the case that there exist close agreements between the datasets and therefore the study’s 

process to pre-processing remote sensing data was adopted for the study. 

Mapping results to RQ1 to answer the research question " What are the different 

biophysical and socio-economic variables that are used in the monitoring/ prediction 
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of drought?” was thus achieved by tabulating the variables earlier surveyed in literature 

and presenting the data used in the generation of historical data for these variables. The 

variables are presented based on what aspects of drought they are expected to quantify. 

The basic descriptive statistic of the non-normalized and non-lagged data was 

undertaken. For the multiple vegetation datasets, the extra analysis carried out showed 

that processing chains that undertake data smoothing produce comparable results 

despite the difference in the complexities of the algorithms used. An investigation into 

the key relationships between multiple datasets of both precipitation and vegetation 

was undertaken. This was an exploratory process that established the existence of a 

relationship between meteorological drought and agricultural drought in two aspects: 

High correlations coefficients (r) of between 0.67 and 0.76 and the existence of a lag 

of one month between vegetation and precipitation except for Mandera county that had 

less than a month of vegetation response to precipitation changes. 

4.1.3 What is the relationship between the variables and drought severity? 

The second research question seeks to find the relationship between each of the 

variables and drought severity. The end of this should be an objectively selected set of 

variables for the study. To answer this question, we proceed to document the results as 

follows: - 

• Use of the study dataset to define the target variable based on the study 

methodology. 

• The selection of one dataset and hence one set of variables from multiple 

competing datasets of the same variable.  

• Investigate the relationship between the different target variables and different 

predictor variables 

Definition of the target variable in the data follows the methodology section where 

two target variables are defined: drought severity based on VCI3M and drought 

impacts based on the percentage of children at risk of malnutrition as indicated by 

MUAC. Since the target was to predict the variables 1 month ahead, with the option to 
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explore predictions 3-months ahead, the lag of the variables results in the number of 

records shown in Table 24 for the indicated periods. 

Table 24: The record counts for each target variables (drought severity- VCI3M & 

drought effects- MUAC) 

Target variable 
Variable of 

Measure 

Initial data 

period 

Final data 

period 
Total Records 

Drought Severity VCI3M 
March 2001-

Dec 2017 

June 2001-Dec 

2017 
796 

Drought Effects MUAC 
June 2008 – 

Dec 2017 

July 2008 – Dec 

2017 
456 

The two target variables were defined in terms of the VCI aggregated over 3 months 

period (VCI3M) and MUAC respectively as earlier indicated in section 3.6.1 on the 

methodical definition of the problem and as documented in Adede et al. (2019b). 

The definition of the target variables indicates the availability of 796 and 456 training 

examples for the entire study. This number of records remains constant irrespective of 

the model definition as characterized by the number of model parameters. Since the 

most complex model has five (5) variables we used this case to establish the sufficiency 

of training data. We review data sufficiency in two contexts as follows: - 

• One approach to determining the sufficient number of training examples was 

to use the rule of 10 for simple linear and the same 10 as the lower bound for 

non-linear prediction. Given the study had a maximum number of 5 variables, 

a minimum of 50 training records would be required. The 50 cases for training 

would indeed be unsuitable for the case of neural especially for the complexity 

of this study. We, however, used the 50 records as the base number of training 

records. 

• The second approach was to define the neural network in terms of the weights 

that exist. In our case, we define this based on the most complex 5 variables 

case. We ensured that each connection and thus each weight to be learnt was 

defined as a model parameter. The number of parameters for the fully 

connected ANNs with the configuration 3-5-3-1and 5-3-3-1 deployed in this 
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study, therefore, gives a total of 52 and 34 edges respectively and with the bias 

node included in the count of the nodes as worked out from Equation 33. 

𝐸(𝑛1 − 𝑛2 − 𝑛3 ⋯ 𝑛�̇�) = (𝑛1∗𝑛2) + (𝑛2∗𝑛3) + ⋯ (𝑛𝑖 ∗ 𝑛𝑖−1)……. (33) 

Extending the 10-rule to this problem still indicates the required size of training 

to be 520 for the prediction of drought severity and 340 for the prediction of 

drought effects.  

The training dataset in this study, at 796 and 456 for the two target variables was thus 

deemed sufficient for the two approaches of analysing data sufficiency above. The 

number of training examples coupled with the tendency of ANNs to be robust even 

when training examples are few together with the other aspects of the methodology 

that includes cross-validation gives confidence in the sufficiency of the training 

examples. 

4.1.3.1 Selection between TAMSAT and CHIRPS datasets 

Variable Selection between multiple measures of the same concept follows from the 

methodology section where two target variables are defined as drought severity 

(VCI3M) and drought impacts (MUAC). For this study, the selection of variable was 

thus a choice between the TAMSAT and CHIRPS pairs of variables for the prediction 

of drought severity. For data reduction purposes, the most appropriate for the 

prediction of drought severity (VIC3M) between TAMSAT and CHIRPS was retained. 

The results for this investigation are documented as follows. 

• Results of normality testing are presented for the non-SPI datasets. The SPI 

datasets are sampled off a normal distribution following on the approach in WMO 

(2012) and therefore conform to normality. As presented in Figure 4.5, all the other 

transformations of the CHIRPS and TAMSAT variables are shown not to conform 

to normality with all of them showing skewness. The test for normality was first 

done on non-normalized data as an initial test for conformity. 
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Figure 4.5: Density plots for the TAMSAT and CHIRPS non-normalized datasets 

The visual plots in Figure 4.5 indicate the non-normality of all the non- standardized 

precipitation datasets. The non-conformance to normality was confirmed using the 

Shapiro Wilk test for significance as provided in Table 25. 

Table 25: Shapiro-Wilk test on non-normalized CHIRPS and TAMSAT datasets 

No Variable W p-value 

1 TAMSAT_RFE1M            0.8038    0.0000  

2 CHIRPS_RFE1M            0.6956    0.0000  

3 TAMSAT_RFE3M            0.9408    0.0000  

4 CHIRPS_RFE3M            0.8987    0.0000  

5 TAMSAT_RCI1M            0.9008    0.0000  

6 CHIRPS_RCI1M            0.8191    0.0000  

7 TAMSAT_RCI3M            0.9567    0.0000  

8 CHIRPS_RCI3M            0.9065    0.0000  

The hypotheses for the Shapiro-Wilk test for normality are as shown in Equation 34: 

𝑯0 = the population is normally distributed 
……… (34) 

𝑯1 ≠ the population is not normally distributed 

From the above Shapiro-Wilk test, all the variables have p<0.05. The Null hypothesis 

was thus rejected and the alternative hypothesis that the population is not normally 

distributed was not rejected. Therefore, there was no evidence of normality for the 

variables. 
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Given that the predictive models were built using normalized variables, we 

additionally proceeded to do the test for normality on the normalized variables. The 

variables were normalized using the relative difference approach which scales the 

values in the [0,1] for [min, max] respectively. The density plots for the normalized 

variables is provided in Figure 4.6.   

 
Figure 4.6: Density plots for the normalized TAMSAT and CHIRPS datasets. 

The density plots indicate that the non-standardized precipitation datasets are non-

normality distributed as supported by the corresponding Shapiro Wilk test in Table 26. 

Table 26: Shapiro-Wilk test on normalized CHIRPS and TAMSAT datasets 

No Variable W p-value 

1 TAMSAT_RFE1M   0.8038     0.0000  

2 CHIRPS_RFE1M   0.6956     0.0000  

3 TAMSAT_RFE3M   0.9408     0.0000  

4 CHIRPS_RFE3M   0.8987     0.0000  

5 TAMSAT_RCI1M   0.9008     0.0000  

6 CHIRPS_RCI1M   0.8191     0.0000  

7 TAMSAT_RCI3M   0.9567     0.0000  

8 CHIRPS_RCI3M   0.9065     0.0000  



199 

 

The results of the analysis for normality clearly show that the normalized non-

standardized precipitation datasets of both TAMSAT and CHIRPS are not 

normally distributed just as was the case for the non-normalized values.  

The existence of the normally distributed SPI variables and the non-normally 

distributed variables of RFE & RCI implied the choice of methods for analysis had 

to follow on the non-parametric methods rather than the parametric methods. This 

is because the non-parametric approach to analysis does not rely on normality in 

the distribution of a variable’s values. It is for this reason that, correlation analysis 

was done using Spearman’s correlation rather than Pearson’s correlation. 

• Correlation analysis of the two datasets against the predicted variable of drought 

severity as defined by VCI3M was done using Spearman’s rank correlation. The 

Spearman’s rank correlation coefficients of the variables from both TAMSAT and 

CHIRPS are provided in Table 27. Generally, TAMSAT outperforms CHIRPS in 

four out of the six indicators. Overall, a mean of absolute correlation coefficients 

of 0.22 was posted by TAMSAT as compared to 0.18 for CHIRPS when analysed 

against the target variable for drought severity-VCI3M. 

Table 27: Spearman’s rank correlation for drought severity against TAMSAT and  

CHIRPS datasets 

 RFE1M 
RFE3

M 
RCI1M RCI3M SPI1M SPI3M Mean 

TAMSAT (0.02) 0.25 0.05 0.42 0.12 0.45 0.22 

CHIPRS (0.10) 0.13 0.07 0.32 0.09 0.36 0.18 

Drought severity as indicated by VCI3M was shown to have a 1 month lagged 

relationship with the predictor variables. Table 28 shows the correlations of the 

predicted drought severity variable with the predictors from CHIRPS and 

TAMSAT lagged by 1 month. 
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Table 28: Spearman’s rank correlation of VCI3M against 1-month lags of 

TAMSAT and CHIRPS 

Variable Type Coeff 

TAMSAT_RCI3M_lag1 TAMSAT 0.64 

TAMSAT_SPI3M_lag1 TAMSAT 0.64 

CHIRPS_RCI3M_lag1 CHIRPS 0.53 

CHIRPS_SPI3M_lag1 CHIRPS 0.52 

TAMSAT_RFE3M_lag1 TAMSAT 0.39 

TAMSAT_SPI1M_lag1 TAMSAT 0.38 

CHIRPS_RCI1M_lag1 CHIRPS 0.34 

CHIRPS_SPI1M_lag1 CHIRPS 0.34 

TAMSAT_RCI1M_lag1 TAMSAT 0.33 

CHIRPS_RFE3M_lag1 CHIRPS 0.26 

TAMSAT_RFE1M_lag1 TAMSAT 0.23 

CHIRPS_RFE1M_lag1 CHIRPS 0.10 

The superiority of 3-month indicators and that of TAMSAT variable are quite 

prominent with TAMSAT variables having an average correlation coefficient of 

0.43 compared to 0.35 for TAMSAT variables. 

• Step-wise forward regression uses a criterion on the F statistic to determine 

whether a variable can enter the model or not. The F statistic is influenced by the 

variables that are already in the model. This is akin to a greedy algorithm with the 

termination condition occurring when the next F to enter is not statistically 

significant at a specified threshold. This implies, like all greedy algorithms the 

possibility of use of a partial set of the variables. The result of step-wise regression 

indicates that two TAMSAT variables would not be selected despite the first two 

variables also being TAMSAT variables. The results of step-wise forward 

regression are as presented in Table 29. 

Table 29: Step-wise forward regression of precipitation variables 

Variable Rank 

TAMSAT_SPI3M 1 

TAMSAT_SPI1M 2 

CHIRPS_RFE1M 3 

CHIRPS_RFE3M 4 

CHIRPS_RCI3M 5 

CHIRPS_RCI1M 6 

TAMSAT_RFE1M 7 

CHIRPS_SPI3M 8 

TAMSAT_RCI3M 9 

CHIRPS_SPI1M 10 
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• Bidirectional stepwise regression selected four variables: 

TAMSAT_SPI3M_lag1, CHIRPS_RCI3M_lag1, CHIRPS_SPI3M_lag1 and 

TAMSAT_RCI1M_lag1. Though TAMSAT_SPI3M ranked high, CHIRPS 

variables were also as competitive. TAMSAT ranked, consistently higher on the 

SPI that is widely documented in literature to be most appropriate for drought 

monitoring and is recommended by WMO(2012). 

• The Akaike information criterion (AIC) was used in the study to estimates the 

quality of a model relative to others. The scope of models was defined to be ranging 

between the null model and the full model that is defined as the model of all the 

variables from precipitation. To ensure similarity in outputs, we exclude rows with 

missing values before the selection to ensure the use of a standard dataset. The 

results of the use of the AIC are as presented in Table 30. 

Table 30: Akaike information criterion for variables selection 

Variable Df Deviance AIC 

TAMSAT_SPI3M_lag1 1 19.596 -683.66 

TAMSAT_RCI3M_lag1 1 20.532 -646.53 

CHIRPS_RCI3M_lag1 1 24.155 -517.16 

CHIRPS_SPI3M_lag1 1 26.279 -450.07 

TAMSAT_RFE3M_lag1 1 27.075 -426.32 

CHIRPS_RFE3M_lag1 1 29.731 -351.83 

TAMSAT_SPI1M_lag1 1 30.078 -342.59 

CHIRPS_RCI1M_lag1 1 30.763 -324.68 

TAMSAT_RCI1M_lag1 1 30.944 -319.99 

CHIRPS_SPI1M_lag1 1 31.456 -306.93 

TAMSAT_RFE1M_lag1 1 32.341 -284.85 

CHIRPS_RFE1M_lag1 1 33.161 -264.93 

As shown in Table 30, TAMSAT again produced the first two variables ranked the 

highest although CHIRPS was competitive. It is key to note the performance of 

TASMAT in SPI as ahead on the selection of SPI from CHIRPS.  

• Relative Importance of variables was used to determine the relative importance of 

variables fed into a linear model as a relative percentage as is used in Silber, 

Rosenbaum & Ross (1995). In the relative importance of variables approach, the 

R2 is partitioned by averaging over the ordered list of performance which realized 

the results provided in Table 31. 
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Table 31: Relative importance of variables by Partitioned R2  

Variable Relative Importance 

TAMSAT_SPI3M_lag1 0.283 

TAMSAT_RCI3M_lag1 0.197 

CHIRPS_RCI3M_lag1 0.147 

CHIRPS_SPI3M_lag1 0.096 

TAMSAT_RFE3M_lag1 0.077 

TAMSAT_SPI1M_lag1 0.050 

CHIRPS_RFE3M_lag1 0.045 

TAMSAT_RCI1M_lag1 0.029 

CHIRPS_RCI1M_lag1 0.028 

CHIRPS_SPI1M_lag1 0.024 

TAMSAT_RFE1M_lag1 0.015 

CHIRPS_RFE1M_lag1 0.009 

The average relative importance also ranked SPI3M and RCI3M from TAMSAT 

higher than those from CHIRPS as evidenced in Table 31. 

• The modelling approach to variable selection was used to also review the 

performance of the variables with a view to choosing the set considered to be more 

predictive. Support Vector Regression (SVR) and General Additive Model (GAM) 

models had the performances presented in Figure 4.7.  

 

Figure 4.7: Performance (R2) for both SVR and GAM models in variable selection. 

The presented R2 in Figure 4.7 is between drought severity (VCI3M) and the 

precipitation variables from either TAMSAT or CHIRPS. The single variable models 

were developed with the same model configurations using the in-sample dataset for 

the period 2001-2015. 
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From Figure 4.7, the SVR model was shown to generally outperform the GAM model 

for each of the variables except for TAMSAT_RCI3M and TAMSAT_SPI1M where 

similar performance is realised for the two models. The top performers for each of the 

GAM and SVR techniques are the two TAMSAT variables of SPI3M and RCI3M. 

From the results of the analysis using the multiple methods, the study chose the 

TAMSAT dataset over the CHIRPS dataset. For the building of the models, only 

TAMSAT related precipitation datasets were used. 

4.1.3.2 Relationship between non-precipitation variables and drought severity 

Having presented the results of the investigation of the relationship between the 

precipitation variables and drought severity, we present, in this section, the relationship 

between the other variables with drought severity. This is presented using two 

approaches. First, using Spearman’s rank correlation between the variables and 

drought severity as defined by VCI3M while the second is the use of modelling 

approaches. 

A matrix of the coefficients of correlation between the pairs of all the non-precipitation 

datasets is provided in Figure 4.8. 

 
Figure 4.8: The correlation heat map for non-precipitation data for prediction of drought 

severity. 
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The correlational heat map shows a few highly correlated predictor variables as is 

expected especially amongst the vegetation variables. The 1 month lagged variables 

with the highest correlation to drought severity hence VCI3M includes the lags of the 

vegetation datasets like VCI3M_lag1, VCI1M_lag1 and VCIdekad_lag1. A summary 

of the correlation coefficients is as presented in Table 32. 

Table 32: Correlation between non-precipitation data and drought severity 

(VCI3M) 

Variable 
Correlation with drought 

severity (VCI3M) 

TCI1M_lag1 -0.58 

LST1M_lag1 -0.45 

PET1M_lag1 -0.34 

NDVIDekad_lag1 0.16 

SPEI1M_lag1 0.19 

SPEI3M_lag1 0.28 

EVT1M_lag1 0.59 

VCI3M_lag1 0.82 

VCI1M_lag1 0.88 

VCIdekad_lag1 0.89 

The temperature variables temperature condition index (TCI) and land surface 

temperature (LST) together with potential evapotranspiration (PET) are noted in Table 

32 to have negative correlations with drought severity as was defined by VCI3M. On 

the other hand, the variables evapotranspiration (EVT) together with Standardized 

Precipitation Evapotranspiration Index (SPEI) and the vegetation variables have a 

positive correlation with drought severity. Given that drought severity is defined as 

less severe for higher VCI3M values, this inverse relationship between drought 

severity and the temperature and evapotranspiration variables is expected. There is the 

need to always interpret higher VCI3M vales as implying less drought. 

It is the expectation that the best variables in the prediction of drought severity will see 

more vegetation and precipitation variables not leaving behind EVT and both TCI and 

LST. 
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4.1.4 Summary of investigation of relationships between variables and drought 

severity  

The investigation of the relationship between the variables was a two-step process. 

First was the selection between TAMSAT and CHIRPS variables. The selection of 

variables was done for the two datasets rather than for all variables. This was because 

the approach of the study is a model space search rather than the selection of the best 

performer/ champion model. 

The selection of variables as a modelling procedure was used for only the cases where 

multiple variables of the same kind of data existed. TAMSAT and CHIRPS are 

alternative data sources of the same indicators. Having both sources in a practical 

operational monitoring processing chain would be expensive in infrastructure and 

duplicative. We opine that choosing one of the datasets achieves a critical reduction in 

data volumes and also reduces efforts at data acquisition. We used multiple methods 

that posted mixed results in evidence for the choice between the TAMSAT and 

CHIRPS datasets. The results were generally geared towards the convergence on the 

superiority of TAMSAT in the prediction of drought severity as compared to CHIRPS. 

The modelling approaches of GAM and SVR and the correlational analysis of the 

variables in the prediction of drought severity are two approaches that lean towards the 

approaches used in model building. We, therefore, consider the evidence offered from 

GAM, SVR and correlational analysis as strong enough to lend credence to the 

selection of TAMSAT over CHIRPS from the pair of precipitation data sources.  

We used this convergence of evidence to select TAMSAT as opposed to CHIRPS for 

inclusion in the model building process. Form the constellation of methods here-in, we 

conclude that even though both CHIRPS and TAMSAT are relatively shown to 

correlate with VCI3M at different levels, mostly with minor differences, most 

variables from TAMSAT tend to be ranked ahead of CHIRPS variables. We conclude 

that TAMSAT will be retained in the modelling process while CHIRPS excluded. 

The investigation of the other variables and their correlation to drought severity values 

indicated quite strong correlations with drought severity. Table 33 provides a summary 



206 

 

of the variables carried to the model building stage with their correlations with drought 

severity provided. All the precipitation variables provide are from the TAMSAT 

dataset. 

Table 33: Summary of the correlation between the lagged predictor variables and 

future vegetation conditions (VCI3M).  

Lagged Variable 
Correlation with Drought Severity  

(VCI3M) 

Type of 

relationship 

TCI1M_lag1 −0.58 Moderate (-) 

LST1M_lag1 −0.45 Low (-) 

PET1M_lag1 −0.34 Low (-) 

NDVIDekad_lag1 0.16 Weak (+) 

SPEI1M_lag1 0.19 Weak (+) 

RFE1M_lag1 0.23 Weak (+) 

SPEI3M_lag1 0.28 Weak (+) 

RCI1M_lag1 0.33 Low (+) 

SPI1M_lag1 0.38 Low (+) 

RFE3M_lag1 0.39 Low (+) 

EVT1M_lag1 0.59 Moderate (+) 

RCI3M_lag1 0.64 Moderate (+) 

SPI3M_lag1 0.64 Moderate (+) 

VCI3M_lag1 0.82 High (+) 

VCI1M_lag1 0.88 High (+) 

VCIdekad_lag1 0.89 High (+) 

Note: The interpretation of the correlation follows the bands such that the magnitude 

shows the strength of the relationship while the sign shows the direction of the 

relationship. The absolute correlations are interpreted as follows: 

• =0.0:  No linear relationship 

• 0.0 - <0.3: Weak 

• 0.3 - <0.5: Low 

• 0.5 - <0.7: Moderate 

• ≥0.7: High to Very High 

 

After the elimination of the 6 CHIRPS variables, we do not eliminate any of the other 

variables for three reasons: 

• Combination of weak and strongly predictors has been documented to offer 

prediction models especially when their information value is such as to explain 

variations not explained by the strong predictors. The elimination of variables 

with weak correlations would then possibly eliminate variables independent 

from the variables highly correlated with the target variable. 
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• The combination of only high predictors in models leads to the problem of 

multi-collinearity since there is a chance the good predictors are linearly related 

to each other. We investigated the possibility of the occurrence of multi-

collinearity in this study in section 3.7.7.2. The results of investigation of multi-

collinearity were also documented in Adede et al. (2019a). 

• The study was interested in investigating the performance of model ensembles 

in the prediction of both drought severity and drought effects. The first step to 

realizing model ensembles is the over-production of models to be followed by 

the selection of models. This investigation of ensembles provides for the 

opportunity to have different combinations of the variables evaluated in actual 

performance in models thereby justifying the non-elimination of variables 

exhibiting low correlation with the target variable. 
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4.2 Building and evaluating the performance of multiple models  

To achieve the objective “Build and evaluate the performance of multiple models for 

drought prediction using Artificial Neural Networks (ANN) and Support Vector 

Regression (SVR) as the case study Machine Learning methods” we famulated the 

following research questions 

• RQ3: What are the multiple models of both Artificial Neural Networks (ANN) and 

Support Vector Regression (SVR) that can be built for the prediction of both 

drought severity and drought effects? This question is handled in section 4.2.1 

• RQ4: What is the performance of the ANN models as compared to SVR models 

in the prediction of drought severity? We handle this question in also handled in 

section 4.2.2 

• RQ5: What is the performance of the ANN models as compared to SVR models 

in the prediction of drought effects? We handle this question in also handled in 

section 4.2.3 

4.2.1 Building multiple Artificial Neural Network (ANN) and Support Vector 

Regression (SVR) models 

To answer the question on “What are the multiple models of both Artificial Neural 

Networks (ANN) and Support Vector Regression (SVR) that can be built for the 

prediction of both drought severity and drought effects?” we did a model space search 

and identified all the models of ANN and SVR that could be built for the prediction of 

both drought severity and drought effects. 

Prior to building the multiple models of both ANN and SVR and as outlined in the 

methodology, three key considerations were made: definition of the target variable in 

the data, normalization, sampling, model configuration and model space reduction. 

These key results from the pre-modelling steps are as presented here below: 

(1) Definition of the target variable 

The definition of the target variable saw the study structured into two predictive 

studies. First, for the prediction of drought severity and second for the prediction of 
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drought effects. The target variables for drought severity and drought effects were 

chosen as VCI3M and MUAC respectively. In the methodology section, we defined 

MUAC as the percentage of children at risk of malnutrition. The Schema for the 

presentation of the results is provided in Figure 4.9.  

  
Figure 4.9: The model for the presentation of the results from the building of multiple ANN 

and SVR models. 

Figure 4.9 indicates the flow of the modelling process as beginning with the prediction 

of drought severity and ending with the prediction of drought effects. The number of 

variables from each drought type is indicated. Before the lag of variables by up to 3 

months in the study on drought severity, a total of 202 training examples per county 

had their target variable defined. With the lag, a total of 199 per county making for a 

total of 796 target variables were defined for drought severity. Similarly, the target 

variable for drought effects (MUAC) was set for 119 variables per county for a total 

of 476 records. 

(2) Normalization 

Normalization was done to ensure all variables are within a comparable range. The 

outputs of normalization were tested for correctness using correlation with the original 

dataset. The test for correctness established a correlation coefficient of one (r=1) 

between the normalized and non-normalized datasets. The confirmation of perfect 

correlation was done for all the variables and their normalized versions implying the 

transformation were correctly undertaken without loss of meaning to data. An example 

of the plot for the predicted variable and its normalized version is provided in Figure 

4.10. 
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Figure 4.10: Results of test for correctness of normalization for the predicated variable. 

The correlation of the normalized variable against itself gives a correlation coefficient as 

well as an R2 of 1. 

(3) Sampling 

The data split of the ANN process based on the methodology led to a three-way dataset 

split. The results of the data split are summarized in Figure 4.11 indicating an initial 

split of 90:10 on the in-sample and out-sample datasets and the subsequent split of the 

in-sample data into 70:30 for model training and model validation respectively. 

  
Figure 4.11: Results of the three-way division of sample data into in-sample and out-sample 
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(4) Model configuration 

The investigation of the appropriate configuration for the ANN followed on the 

experimental approach provided for in the methodology. The results of some of the 

pivotal points of test done to achieve the configuration are presented in Table 34 

Convergence was achieved with 10 rounds of experiments. 

Table 34: Choice of model configuration 

Configuration Converged 

Proportion 

Models 

with 

R2≥0.7 

3-2-2-1 Yes 20% 

3-3-2-1 Yes 23% 

3-4-2-1 No 18% 

3-4-3-1 No 46% 

3-5-2-1 No 41% 

3-5-3-1 Yes 53% 

The results of experimentation using the rule of thumb mirror those of Huang (2003) 

that realises an optimal architecture with 5 nodes for the first hidden layer and 1 for 

the second. The prediction of drought effects retained the same configuration with the 

input layer upped to 5 for simplicity. This implied use of a less complicated 

architecture. 

(5) Model Space Reduction 

With the meteorological, hydrological and agricultural drought variables lagged 1 

month to measure drought severity and subsequently to measure drought effects, it is 

noted the that the model space has an initial cardinality of 65,535 for drought severity 

models and 262,143 for drought effects models respectively as shown in Figures 4.12 

and 4.13. 
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Figure 4.12: Model space of the drought severity prediction problem. 

The figure indicates the number of models of each length for a total of 65,535 models. 

 

Figure 4.13: Model space of the drought effects prediction problem. 

The figure indicates the number of models of each length from 1 to18 variables per model to 

realize a model space with a total of 262,143 models. 

The cardinality of the model spaces for both drought severity prediction and drought 

effects prediction is quite enormous. Building multiple models from this space 

requires both experimentation and making of assumptions following the principle of 
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no free lunch.  The study made assumptions and established a cut off within which 

models were eliminated on the basis of their performance. Overall, the results of 

model space reduction are as shown in Figure 4.14. 

 
Figure 4.14: The model space reduction process 

The assumption that adding multiple variables from the same grouping of variables 

only results into a marginal increase in model predictive power that was validated for 

soundness in Adede et al. (2019a) reduces the initial model space by over 99.6% to 

244 models. It is these 244 models that were built using both the ANN and SVR 

techniques. Subsequently, for the prediction of drought effects the following 

combination of variables together with a recalibration of the models was done to 

achieve the building of multiple models for the prediction of future nutrition conditions 

as defined by MUAC: 

• All the 244 drought severity models 

• The 244 drought severity models’ variables together with previous terms of 

trade (ToT) 

• The 244 drought severity models’ variables together previous MUAC values 

• The 244 drought severity models’ variables together with both terms of trade 

(ToT) and previous MUAC values 

A total of 976 MUAC models were thus realized from the sub-step on building multiple 

models of the study methodology. 
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4.2.2 Performance of multiple ANN and SVR models in the prediction of drought 

severity 

To answer the fourth research question (RQ4) on “What is the performance of the ANN 

models as compared to SVR models in the prediction of drought severity?” we 

analysed the performance of the 244 models built suing the ANN and SVR techniques. 

This section presents the performance of both the ANN and SVR techniques in the 

perdition of drought severity 1 month ahead. The performance is presented as the 

performance in the training and validation datasets ordered by performance in the 

validation dataset. Performance is presented both for ANN and SVR techniques. 

4.2.2.1 Performance of ANN in the prediction of drought severity in the training 

dataset (2001-2015) 

From the total of 244 models that were subjected to the ANN modelling process for 

prediction of drought severity as indicated by the prediction of VCI3M 1 month ahead, 

15 models representing 6.15% of the models were judged as overfitted and hence 

performed much less in model validation as compared to training by more than a 3% 

loss in performance. The distribution of the models based on their performance (R2) is 

as indicated in Figure 4.15. 

 

Figure 4.15: Performance (R2) of the ANN models in the prediction of drought severity 

(VCI3M) 1 month ahead. 
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From Figure 4.15, it is remarkable that 145 models representing 59.43% of the models 

actually register an R2 greater than 0.7 in the validation dataset and are thus considered 

to have acceptable predictive power in the prediction of drought severity. We provide 

an output of the performance of the first 30 ANN models in Table 35. 

Table 35: Performance of the top 30 ANN models in training and validation 

ordered by descending performance in the validation dataset. 

No Model 
R2 

(T) 

R2 

(V) 

Overfit 

Index 
Overfit 

1 VCI3M_lag1 + TAMSAT_RCI3M_lag1 + SPEI1M_lag1 0.81 0.86 0.05 0 

2 VCIdekad_lag1 + TAMSAT_RFE1M_lag1 + TCI1M_lag1 0.87 0.86 -0.01 0 

3 VCIdekad_lag1 + TAMSAT_RCI3M_lag1 + TCI1M_lag1 0.87 0.86 -0.01 0 

4 VCIdekad_lag1 + TAMSAT_SPI3M_lag1 + TCI1M_lag1 0.87 0.86 -0.01 0 

5 VCI1M_lag1 + TAMSAT_RCI3M_lag1 + TCI1M_lag1 0.87 0.86 -0.01 0 

6 VCI3M_lag1 + TAMSAT_SPI3M_lag1 + SPEI1M_lag1 0.82 0.85 0.03 0 

7 VCI1M_lag1 + TAMSAT_SPI3M_lag1 + TCI1M_lag1 0.87 0.85 -0.02 0 

8 VCIdekad_lag1 + TAMSAT_SPI1M_lag1 + PET1M_lag1 0.87 0.85 -0.02 0 

9 VCIdekad_lag1 + TAMSAT_SPI1M_lag1 + TCI1M_lag1 0.86 0.85 -0.01 0 

10 VCI1M_lag1 + TAMSAT_SPI3M_lag1 + PET1M_lag1 0.87 0.85 -0.02 0 

11 VCIdekad_lag1 + TAMSAT_SPI3M_lag1 + LST1M_lag1 0.86 0.85 -0.01 0 

12 VCIdekad_lag1 + TAMSAT_SPI3M_lag1 + PET1M_lag1 0.87 0.85 -0.02 0 

13 VCIdekad_lag1 + TAMSAT_RFE3M_lag1 + TCI1M_lag1 0.87 0.85 -0.02 0 

14 VCI1M_lag1 + TAMSAT_RFE1M_lag1 + TCI1M_lag1 0.87 0.85 -0.02 0 

15 VCI1M_lag1 + TAMSAT_SPI3M_lag1 + LST1M_lag1 0.86 0.85 -0.01 0 

16 VCIdekad_lag1 + TAMSAT_RCI3M_lag1 + PET1M_lag1 0.86 0.85 -0.01 0 

17 VCI1M_lag1 + TAMSAT_RFE3M_lag1 + TCI1M_lag1 0.86 0.85 -0.01 0 

18 VCIdekad_lag1 + TAMSAT_RCI3M_lag1 + SPEI1M_lag1 0.86 0.85 -0.01 0 

19 VCI3M_lag1 + TAMSAT_RCI3M_lag1 + SPEI3M_lag1 0.8 0.84 0.04 0 

20 VCIdekad_lag1 + TAMSAT_SPI1M_lag1 + LST1M_lag1 0.86 0.84 -0.02 0 

21 VCI1M_lag1 + TAMSAT_SPI1M_lag1 + PET1M_lag1 0.86 0.84 -0.02 0 

22 VCI1M_lag1 + TAMSAT_SPI1M_lag1 + TCI1M_lag1 0.86 0.84 -0.02 0 

23 VCIdekad_lag1 + TAMSAT_RCI3M_lag1 + LST1M_lag1 0.86 0.84 -0.02 0 

24 VCI1M_lag1 + TAMSAT_RCI3M_lag1 + PET1M_lag1 0.86 0.84 -0.02 0 

25 VCIdekad_lag1 + TAMSAT_RCI1M_lag1 + TCI1M_lag1 0.86 0.84 -0.02 0 

26 VCIdekad_lag1 + TAMSAT_SPI3M_lag1 + SPEI1M_lag1 0.85 0.84 -0.01 0 

27 VCIdekad_lag1 + TAMSAT_RFE1M_lag1 + LST1M_lag1 0.86 0.84 -0.02 0 

28 VCI1M_lag1 + TAMSAT_RCI3M_lag1 + LST1M_lag1 0.86 0.84 -0.02 0 

29 VCI1M_lag1 + TAMSAT_RFE1M_lag1 + LST1M_lag1 0.85 0.84 -0.01 0 

30 VCIdekad_lag1 + TAMSAT_RFE1M_lag1 + SPEI1M_lag1 0.86 0.84 -0.02 0 

R2 (T)= Training R2 

R2 (V)= Validation R2 
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From the first 30 models (Table 35), a few observations emerge: - 

• First, is the fact that there is no case of model over-fitting amongst the models 

given that no loss of more than 3% in performance between model training and 

model validation was recorded. 

• Second, there exist 3 models amongst these top 30 models that we underfit and 

hence have a gain in performance. An extension of this analysis shows up to 4% 

of models as underfit amongst the top 100 models.  

• Third, it is quite evident that the models have a little variance in their performance 

in the validation dataset. This is supported by Figure 4.16 that has a ranked plot of 

the models and shows surges in the performance in the training data as opposed to 

the validation dataset. This presentation is however expected since the ordering is 

by performance in training. 

 
Figure 4.16: Ranked plot of performance of the first 30 models. 

A plot of the measure of performance of each model based on Adjusted R2 and RMSE 

for the 143 models chosen for model ensembling validates the expectation of the 

inverse relationship between the two measures of model performance. Despite the 

adjustment of R2 to the Adjusted R2, there still exists an inverse relationship between 

the two measures of performance on the data. This justifies the use of Adjusted R2 as 

the measure of performance of choice. This correspondence is as shown in Figure 4.17. 
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Figure 4.17: The relationship between Adjusted R2 and RMSE on for the 143 ANN models. 

There is shown a correlation coefficient of -0.998 between the Adjusted R2 and RMSE 

in Figure 4.17 as expected. It, therefore, would make no difference if RMSE was used 

as the primary measure of model performance. The use of R2 based on ease of 

interpretation is therefore expected to lead to the choice or rejection of similar models 

as would be the RMSE. 

4.2.2.2 Performance of SVR in the prediction of drought severity in the training 

dataset (2001-2015) 

The parameters used for SVR included an epsilon of 0.2, strategically chosen to avoid 

the problem of over-fitting. The cost parameter (C) was set to 32 as a result of an 

experimentation process that was based on the best averaged R2 for the 244 models. 

From the set of 244 SVR models, 145 of the 244 models representing 59.43% of the 

models had R2≥0.7 in the validation dataset. This performance is comparable to that of 

ANN models presented earlier. The analysis of model overfitting saw 21 models 

representing 8.61% of the 244 models judged to have been overfitted as shown in 

Figure 4.18.  
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Figure 4.18: Performance of SVR drought severity models by R2 

The study presents, in Table 36, the performance in both training and validation of the 

top 30 SVR models ordered by performance (R2) in the validation dataset. 

Similar to the case ANN, the following facts emerge from Table 36: 

• There is no occurrence of overfitting in the top 30 and top 100 models ordered by 

descending R2 in the validation dataset. 

• The fact that the occurrence of overfitting for the SVR technique is confined to the 

models with R2 ≤0.5. 

• In a setting where the selection of models is based on the R2≥0.7 cut off, the 

problem of model over-overfitting would be confined to the ANN technique as 

compared to the SVR technique. This is so because there are two cases of model 

overfitting in the ANN process and none in the SVR process amongst all models 

with R2≥0.7. The tendency for models to suffer over-fitting in ANN with an 

increase in performance is for example documented in Mitchell (1997). 
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Table 36: Performance of the top 30 SVR models in training and validation 

ordered by descending R2 in the validation dataset 

 

No Model 
R2 

(T)  

R2 

(V)  

Overfit 

Index 
Overfit 

1 VCIdekad_lag1 + TAMSAT_SPI3M_lag1 + TCI1M_lag1 0.85 0.86 0.01 0 

2 VCIdekad_lag1 + TAMSAT_RCI3M_lag1 + TCI1M_lag1 0.85 0.86 0.01 0 

3 VCI3M_lag1 + TAMSAT_RCI3M_lag1 + SPEI1M_lag1 0.81 0.86 0.05 0 

4 VCI3M_lag1 + TAMSAT_SPI3M_lag1 + SPEI1M_lag1 0.82 0.85 0.03 0 

5 VCI1M_lag1 + TAMSAT_SPI3M_lag1 + TCI1M_lag1 0.85 0.85 0.00 0 

6 VCIdekad_lag1 + TAMSAT_SPI3M_lag1 + PET1M_lag1 0.84 0.85 0.01 0 

7 VCI1M_lag1 + TAMSAT_RCI3M_lag1 + TCI1M_lag1 0.85 0.85 0.00 0 

8 VCIdekad_lag1 + TAMSAT_SPI1M_lag1 + TCI1M_lag1 0.85 0.85 0.00 0 

9 VCIdekad_lag1 + TAMSAT_SPI3M_lag1 + LST1M_lag1 0.84 0.85 0.01 0 

10 VCIdekad_lag1 + TAMSAT_RFE1M_lag1 + TCI1M_lag1 0.85 0.85 0.00 0 

11 VCI1M_lag1 + TAMSAT_SPI3M_lag1 + PET1M_lag1 0.84 0.85 0.01 0 

12 VCI1M_lag1 + TAMSAT_SPI3M_lag1 + LST1M_lag1 0.84 0.84 0.00 0 

13 VCIdekad_lag1 + TAMSAT_SPI1M_lag1 + PET1M_lag1 0.84 0.84 0.00 0 

14 VCI1M_lag1 + TAMSAT_RFE1M_lag1 + TCI1M_lag1 0.85 0.84 -0.01 0 

15 VCI1M_lag1 + TAMSAT_SPI1M_lag1 + TCI1M_lag1 0.85 0.84 -0.01 0 

16 VCIdekad_lag1 + TAMSAT_RCI1M_lag1 + TCI1M_lag1 0.84 0.84 0.00 0 

17 VCIdekad_lag1 + TAMSAT_RCI3M_lag1 + LST1M_lag1 0.84 0.84 0.01 0 

18 VCIdekad_lag1 + TAMSAT_RFE3M_lag1 + TCI1M_lag1 0.84 0.84 0.00 0 

19 VCIdekad_lag1 + TAMSAT_RFE1M_lag1 + LST1M_lag1 0.84 0.84 0.00 0 

20 VCIdekad_lag1 + TAMSAT_SPI1M_lag1 + LST1M_lag1 0.84 0.84 0.00 0 

21 VCI3M_lag1 + TAMSAT_RCI3M_lag1 + TCI1M_lag1 0.83 0.84 0.01 0 

22 VCIdekad_lag1 + TAMSAT_RCI3M_lag1 + SPEI1M_lag1 0.83 0.84 0.01 0 

23 VCIdekad_lag1 + TAMSAT_SPI3M_lag1 + SPEI1M_lag1 0.84 0.84 0.00 0 

24 VCIdekad_lag1 + TAMSAT_RCI3M_lag1 + PET1M_lag1 0.83 0.84 0.01 0 

25 VCI1M_lag1 + TAMSAT_RCI3M_lag1 + LST1M_lag1 0.83 0.84 0.01 0 

26 VCI1M_lag1 + TAMSAT_SPI1M_lag1 + PET1M_lag1 0.84 0.84 0.00 0 

27 VCI3M_lag1 + TAMSAT_RCI3M_lag1 + SPEI3M_lag1 0.79 0.83 0.04 0 

28 VCI1M_lag1 + TAMSAT_RFE3M_lag1 + TCI1M_lag1 0.84 0.83 -0.01 0 

29 VCIdekad_lag1 + TAMSAT_SPI3M_lag1 + EVT1M_lag1 0.83 0.83 0.00 0 

30 VCI1M_lag1 + TAMSAT_RCI1M_lag1 + TCI1M_lag1 0.84 0.83 0.00 0 

R2 (T)= Training R2 

R2 (V)= Validation R2 
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4.2.2.3 Comparative performance of ANN and SVR in the prediction of drought 

severity in the training and validation dataset (2001-2015) 

Given that the study produced the same 244 models using both ANN and SVR 

techniques, it was imperative to compare the performance of the techniques. This is a 

valid comparison given that for the same model, the presentation of data in all the 10-

folds used in both training and validation was the same across the techniques. The 

analysis of the performance of the pairings of the 244 ANN and SVR models is as 

presented in Figure 4.19.  

 
Figure 4.19: Comparative performance analysis between ANN and SVR model pairings. 

The ANN and SVR techniques turned out competitive in model validation. 127 models 

representing 52% of the models posted similar performance. The ANN technique 

outperformed the SVR in 105 pairings representing 43% of the models while the SVR 

technique outperformed the ANN technique in 12 pairings making for 5% of the cases. 

The analysis of the competitiveness of the ANN and SVR techniques was done using 

the summary statistics of minimum, maximum, average on the 143 models that had 

R2≥0.7 and were not overfit from the ANN process. As indicated in Table 37, the 

techniques were quite competitive in this set of 143 with similar scores across all the 

summary statistics. 

Table 37: Summary of performance (R2) for each technique in model validation.  

Technique Min Max Average Range StDev 

SVR 0.71 0.86 0.81 0.15 0.03 

ANN 0.71 0.86 0.81 0.15 0.03 
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The performance of the 143 models with R2≥0.7 is further elaborated in Figure 4.20. 

The techniques are further shown to be competitive in performance even on a 

percentage by percentage comparison. 

 

Figure 4.20: Comparative performance of ANN and SVR technique amongst models with 

R2≥0.7 

Given no models with R2≥0.7 were overfitted from the SVR process, the choice of 

models for model ensembling was, therefore, a function of models from the ANN 

process.  The selection of the appropriate models for ensembling was thus from the 

143 ANN models paired with the corresponding SVR models of the same formula. 

4.2.2.4 Comparative Performance of ANN & SVR models in the prediction of 

drought severity in the testing dataset (2016-2017) 

The evaluation of the performance of the SVR and ANN models were also done using 

the test dataset that was designated as an out-sample dataset covering the period (2016-

2017).  We present the results of the performance of in the test dataset for all the 143 

models that earlier had R2≥0.7 in model validation followed by a focused analysis on 

the performance of the champion models from both the ANN and SVR techniques. 

In the overall performance of the models in the prediction of drought severity in the 

test dataset, the competitiveness of both techniques is clearly indicated by the 

minimum, maximum, average and range for both performance measures of R2 and 

RMSE as shown in Table 38. 
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Table 38: Inter-technique performance analysis 

Performance 

Measure 
Statistic ANN SVR 

R2 

Min 0.63 0.64 

Max 0.83 0.83 

Average 0.75 0.75 

Range 0.20 0.19 

 StDev 0.03 0.03 

RMSE 

Min 0.08 0.08 

Max 0.11 0.11 

Average 0.09 0.09 

Range 0.04 0.03 

 StDev 0.01 0.01 

The SVR technique is judged competitive to the ANN technique and given the fact 

that it has fewer cases of over-fitting amongst the best performing models, it would be 

a technique of choice if the objective was to select the technique less prone to 

overfitting. From Table 38, an average ANN model will, therefore, perform 

comparably to a similar SVR model but with the tendency of the SVR model not to be 

overfitted. The distribution of the models in performance grouped by R2 in Figure 4.21 

indicates the performance of the ANN models as compared with SVR models in the 

testing dataset of the 143 models that had R2≥0.7 in the validation dataset. The ANN 

technique had 125 models with R2≥0.7 in the training dataset as compared to 132 

models of SVR. It is therefore apparent that SVR suffers fewer cases of loss of 

performance and hence less overfitting as compared to ANN.  

  
Figure 4.21: Drought severity performance of SVR versus ANN by grouped R2  
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Given that most modelling approaches concentrate on the choice of a champion model 

for model scoring, we evaluated the performance of the best model from each of SVR 

and ANN techniques. The best model is chosen based on the performance in the 

prediction of VCI3M in the validation dataset. These two top models are summarised 

as presented in Table 39. 

Table 39: Performance of the champion models for both ANN and SVR 

techniques 

Technique Champion Model 
Validation 

R2 

Testing 

R2 

ANN VCI3M + TAMSAT_RCI3M + SPEI1M 0.86 0.82 

SVR VCIdekad + TAMSAT_SPI3M + TCI1M 0.86 0.78 

In the prediction of drought severity, the SVR champion and the ANN champion 

happen to be the different models. Though the models had the same performance in 

model training as indicated by R2 in the validation dataset, their performance in the test 

dataset was at variance. While the ANN champion posted an R2 of 0.82, the SVR 

champion posted an R2 of 0.78 in the same test dataset. This is contrary to the earlier 

expectation as it shows more of the models from the SVR technique overfitting in the 

test dataset as compared to those from the ANN technique. In fact, it is interesting that 

for both the techniques there exist other models that out-perform the champion models 

with the best in each case posting an R2 of 0.83 in the test data. 

This loss of performance of champion models amounts to instability in performance 

and is the biggest limitation of the approaches that select champion models (Adede et 

al., 2019a). The performance of the ANN champion and the SVR champion in the test 

dataset in the prediction of future vegetation conditions (VCI3M) and hence drought 

severity is provided in Figure 4.22. 
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Figure 4.22: Comparative performance of the ANN and SVR champion models in the 

prediction of drought severity. 

The plot in Figure 4.22 indicates the trend of the actual VCI3M values (green) and the 

predictions by the ANN champion (blue) and SVR champion (yellow) for the counties: 

(a) Mandera; (b) Marsabit; (c) Turkana and (d) Wajir. The best performance was 

posted for Turkana county by both the ANN champion and the SVR champion. 

Mandera and Wajir counties have a considerable wide gap in the performance between 

the ANN and the SVR champions of 9 and 8 percentage points respectively. The 

analysis at the county level, therefore, establishes that the utility of the ANN technique 

as better than that of the SVR technique. 

The variance in the performance at the county level is possibly attributable to the 

champion models having been evaluated for performance on the overall dataset with 

the performance of R2=0.82 judged satisfactory on the overall dataset. The 

performance at the county level is, however, acceptable considering that only one 

model would be learnt for the study area in this approach as compared to the alternative 

of having a model for each unit in the study area. 
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4.2.3 Performance of multiple ANN and SVR models in the prediction of drought 

effects. 

To answer the fifth research question (RQ5) on “What is the performance of the ANN 

models as compared to SVR models in the prediction of drought effects?” we analysed 

the performance of the 976 models built suing the ANN and SVR techniques. In this 

section, we provide a comparative performance of the multiple ANN and SVR models 

in the prediction of drought effects as indicate by the proxy variable MUAC. The 

performance of the techniques in the prediction of drought effects is presented in two 

parts: Performance in model training and validation dataset (2008-2015) in section 

4.2.3.1 and the performance in the test dataset (2016-2017) in section 4.2.3.2.  

4.2.3.1 Comparative performance of ANN and SVR in the prediction of drought 

effects on the training dataset (2008-2015) 

Using the same approach as that of drought severity, a total of 976 models were 

developed. The total number of models was as a result of the inclusion of ToT and 

MUA together in the models. In essence, there were: 244 models similar in variables 

formula to those of drought severity, 244 of drought severity and ToT, 244 of drought 

severity and MUAC and 244 of drought severity together with TOT and MUAC. 

Compared to the prediction of drought severity, the prediction of drought effects 

records models that are judged to be poor performers even in the testing dataset both 

for ANN and SVR as shown in Figure 4.23. 

 
Figure 4.23: Performance of ANN versus SRV models in the prediction of drought effects 
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Despite both ANN and SVR approaches posting poor performance with 429 and 481 

models having an R2 less than 0.1, SVR out-performs ANN in the grouping of highly 

predictive models with R2 between 0.7 and 0.8 by 488 models to 307 models. 

From the set of models with R2≥0.7, the ANN technique reported 35 models as 

overfitting representing 27% of the models while none of the SVR models from this 

category was overfitting. This confirms the problem of overfitting as being pronounced 

for the ANN technique as compared to the SVR technique. 

Furtherance of the comparative analysis of the performance of the ANN and SVR 

models in the prediction of drought effects at model training showed the SVR models 

as being competitive with the ANN technique with 488 to 464 models that performed 

better than chance and hence posted an R2>0.5. This confirms the superiority of the 

SVR approach to the ANN approach in the prediction of drought effects as indicated 

by MUAC. 

4.2.3.2 Comparative performance of the ANN and SVR techniques in the 

prediction of drought effects on the test dataset (2016-2017) 

In the prediction of future nutrition conditions, the ANN and SVR models were run on 

the 24-month test dataset covering the period 2016-2017. The use of the data for the 

2016-2017 period was the same as was done for the prediction of drought severity. A 

total of 96 data points was thus used to validate the performance of the ANN and SVR 

champions. 

As is the case in the prediction of drought severity (VCI3M) 1 month ahead, the 

prediction drought effects (MUAC) 1 month ahead, also had two different champion 

models for both the ANN and SVR techniques. The SVR champion model had a total 

of 5 variables as opposed to the ANN champion model that had 3 variables. The ANN 

champion though outperformed by the SVR champion is a simple model since it had 

fewer variables and might thus be considered more appropriate in cases where model 

simplicity is a key factor. The overall performance across the entire dataset saw an R2 

of 7.4 for the ANN champion model as compared to 0.71 for the SVR champion model. 

This outcome is rather a contradiction, though not a surprise, in the sense that a method 
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that was less competitive in producing more predictive models as indicated in Figure 

4.19 actually produced the best overall model using the champion model approach. 

The utility of the SVR technique in generating multiple models over the ANN 

technique cannot be gainsaid. 

The results of the performance analysis of the ANN champion and SVR champion at 

the county level in the prediction of drought effects (MUAC) 1 month ahead is as 

shown in Figure 4.24. 

 

Figure 4.24: Performance of the ANN and SVR champion models in the prediction of 

drought effects. 

Figure 4.24 confirms the closeness in the performance of the champion models across 

all the 24 months of test data for each of the counties: (a) Mandera, (b) Marsabit, 

(c)Turkana and (d) Wajir respectively. The SVR and ANN models do not show 

obvious specializations on any facets of prediction as they more or less retain the same 

trends across the peaks and troughs. The best performance is registered for Mandera 

county across both techniques with variances across the other counties. Notably, 

Turkana county sees the SVR champion model as outperforming the ANN champion 

in the prediction of drought effects. 
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In summary, the overall performance of the ANN and SVR models are quite close both 

in the prediction of drought severity and of drought effects for the entire test dataset. 

Variances are, however, noted when the analysis was carried at the county level. The 

choice between the champion models in both cases would result in the selection of the 

ANN technique in both instances since it produces the best overall model. Such a 

choice, however, loses out on the competitive performance of the SVR technique and 

especially its ability to produce many good performing models as compared to the 

ANN technique. 
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4.3 Building homogeneous and heterogeneous model ensembles  

To achieve the objective “Build and evaluate the performance of homogeneous and 

heterogeneous ensemble models of both ANN and SVR in the prediction of drought 

severity and drought effects”, we famulated the following research questions 

• RQ6: What is the performance of the Artificial Neural Networks (ANN) and 

Support Vector Regression (SVR) homogeneous ensemble models in the 

prediction of both drought severity and drought effects? This question is handled 

in section 4.3.2. 

• RQ7: What is the performance of the ANN and SVR heterogeneous ensemble 

models in the prediction of drought severity and drought effects? This is handled 

in section 4.3.3. 

The tendency of ANN to overfit as indicated in the results from RQ3 & RQ4 means it 

produced fewer models that are fit for purpose as compared to SVR technique, 

especially amongst the models that had R2≥0.7 in the validation dataset. The choice of 

the models for ensembling was therefore reduced to the selection of the appropriate 

ANNs for model ensembling and the subsequent pairing of the chosen ANN models 

with their SVR equivalents. Prior to the presentation of the results of the RQ6 & RQ7, 

we first handled the issues of model ensemble selection in section 4.3.1. The question 

of ensemble member selection remains critical in the effort to realize improved 

performance from model ensembling. We follow ensemble member selection with the 

review of the performance of the homogeneous ensembles in section 4.3.2 and the 

performance of the heterogeneous model ensembles in section 4.3.3. 

4.3.1 Ensemble membership selection 

To answer the research questions RQ6 and RQ7 above, for model ensembling we used 

only the models from the ANN technique that are indicated to have had R2≥0.7 and 

were not overfitted. The selection of models for ensembling, having been reduced to 

the question of selection of ANN models for ensembling was handled in two parts. 

First were the results presented in section 4.2.1(5) that saw the reduction of the model 

space from an initial 65,535 possible models to 244 models that were built using both 



230 

 

the ANN and SVR techniques. This space was further reduced to 143 models that were 

judged to have an R2≥0.7 and were at the same time not overfitted for model 

ensembling. 

Ensemble membership, also model pruning, has the results presented as the “selection” 

phase of the “over-produce” then select approach in model ensembling. The different 

reasons for model selection as documented in Mendes-Moreira et al. (2012) are to 

reduce computational costs, to increase prediction accuracy if possible and to avoid 

the problem of multi-collinearity. 

From the 143 models that had an R2≥0.7 and were not overfitting, the construction of 

the ensemble membership faced two questions. First, was if all the 143 models were 

sufficient for the size of an ensemble and two was if there existed a smaller ensemble 

size that would perform the same, if not better than the 143. This question was 

answered following on the experimental process described in the methodology section 

and whose results are visualized in Figure 4.25. 

 
Figure 4.25: Ensemble membership selection showing the reduction from 143 models to 111 

models. 

 

Figure 4.25 shows the selection as eliminating the models in batches of 5 (blue line) 

while tracking any changes in ensemble performance. For example, the elimination of 

the first 3 batches, corresponding to the first 3 “dots” on the blue line from the left, 

sees no reduction in model performance. In fact, a further elimination, and hence 
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reduction in ensemble size, realised an improvement in ensemble performance to an 

R2 of 0.84 from 0.83 and stability of the ensemble performance thereafter till an overall 

ensemble size of 113 models. There was recorded a drop-in ensemble performance 

with the elimination of the batch of 5 from the ensemble size of 113 to 108. This marks 

the point at which forward substitution (orange lines) needed to be undertaken. This 

experimentation resulted in the best performing ensemble size of 111 models 

(highlighted as green dot) with an R2 of 0.84. For convenience, the study proceeded 

with the iteration until all the batches were greedily eliminated and re-substitution was 

undertaken as shown in Figure 4.25. 

The ensemble size of 111 was the best trade-off between ensemble size and ensemble 

performance. This is guaranteed to have a reduced computational complexity 

associated with the ensemble size choice whilst not losing ensemble performance. 

With the 111 models selected, we provide a plot of the weights in Figure 4.26 based 

on their performance in the validation datasets. 

 
Figure 4.26: Distribution of performance of the selected ANN models for heterogeneous 

ensembling. 

The 111 ANN models in Figure 4.26 chosen for model ensembling were paired with 

the same model definition of the SVR models for model ensembling. A total of 222 

models were therefore used in building the model ensembles. 
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4.3.2 Homogeneous model ensembles 

Homogeneous ensembles in the context of this study are ensembles in which all the 

models used in the ensemble are built using one technique. The ANN homogeneous 

ensemble was therefore exclusively made of models built using the ANN technique in 

the same way that homogeneous SVR ensemble was made entirely of models built 

using the SVR technique. 

In this section, we present the results from ANN homogeneous ensembles and also 

from SVR homogeneous ensembles in the prediction of drought severity in sections 

4.3.2.1 and 4.3.2.2 respectively. We also present the use of the ANN and SVR 

homogeneous ensembles in the prediction of drought effects in sections 4.3.2.3 and 

4.3.2.4 respectively. We use the performance of the best champion model (R2=0.83) 

as the basis of our comparison of performance. This section is a response to the sixth 

research question (RQ6) that poses the question on the performance of the 

homogeneous model ensembles in the prediction of both drought severity and drought 

effects. 

4.3.2.1 Homogeneous ANN ensembles in the prediction of drought severity 

The plot of the 111 ANN models selected for model ensembling for the prediction of 

drought severity had a ranked performance based on R2 on the tests dataset as indicated 

in Figure 4.27. Any ensembling approach aims to realize an ensemble that outperforms 

the best base model with the highest R2 of 0.82 as visualized in Figure 4.27. The best 

base model in this study is referred to as the champion model and specifically the ANN 

champion for the case of the ANN technique. 
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Figure 4.27: Performance of the ANN models in the test dataset  

The non-ensembled models are shown to have lost performance in the testing dataset 

with the best performer and hence the champion model posting an R2 of 0.82 from the 

earlier performance of 0.86 in the validation dataset. The performance of the base 

model for which ensemble performance was evaluated was, therefore, the champion 

model with an R2 of 0.82 which is the ANN technique’s best base model. Only about 

6% of the models in Figure 4.28 are noted to either maintain their performance or to 

gain in performance in the test dataset. 

 
Figure 4.28: ANN models’ loss of performance in the prediction of drought severity 
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We analysed the performance of the ANN homogeneous ensembles using two 

approaches: 

• their performance in the prediction of future VCI3M values. We referred to this 

as their regression-based performance. 

• their performance in the prediction of future VCI3M classes based on the 

classification in Table 42 earlier adopted from Klisch, Atzberger & Luminari 

(2015), Klisch & Atzberger (2016), Meroni et al. (2019) and used in Adede et 

al. (2019a) and Adede et al. (2019b). We referred to this as the performance of 

the ensembles in classification. 

Regression based performance of homogeneous ANN ensembles in the prediction 

of drought severity 

Table 40 provides a performance summary of the ANN ensemble models. The models 

are ensembles using the approaches outlined in the methodology: simple linear 

averaging, weighted average ensembling and ANN perceptron weighted ensembling. 

Table 40: Summary performance of the ANN ensemble models in the prediction of 

drought severity (VCI3M) 1 month ahead 

Model MAE MAPE RMSE R2 

ANN Champion 4.74 0.18 6.31 0.82 

ANN Homogeneous Simple Average 4.43 0.17 5.96 0.84 

ANN Homogeneous Weighted Average 4.35 0.17 5.85 0.85 

ANN Homogeneous Stacked 3.40 0.13 4.40 0.91 

From Table 40 it is evident that any form of ensembling is better that the use of the 

champion model that performs a little poorer as compared to the simple averaged, rank 

weighted and stacked model ensembles. 

The performance gains offered by the simple weighting process and the rank weighting 

process on the champion model are 2 to 3 percentage point improvements respectively. 

Given the computational requirements to realise the 111 ensemble members, this might 

be a trade-off subject to the importance attached to the need for highly predictive 

models. For drought monitoring systems that inform resource allocation, the marginal 

improvement in performance is deemed as worth the investment in the accompanying 

computational complexity. 
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The approach in stacking used in this ANN approach learnt weights using an ANN 

perceptron. Given that all the ensemble members are ANN models, we characterise 

this as a homogeneous ensemble. The performance of the homogeneous ANN 

ensemble at an R2 of 0.91 as shown in Table 40 is deemed to offer a significant 

improvement of 9 percentage points from the ANN champion that posted an R2 of 

0.82. The other metrics offer evidence of the superiority in the performance of the 

stacked model ensemble. The stacked ANN offers a clear-cut improvement in 

performance. 

For strictly regression prediction, it is evidence enough that ANN perceptron learning 

of model weights in ensembles leads to the realization of more predictive models as 

compared to the use of the champion model or the averaging of the performance of the 

individual models. The superiority of the stacked ensembles over the averaging 

approaches is regardless of whether simple averaging or weighted averaging of the 

individual models in the validation dataset is undertaken. 

An interesting aspect to the evaluation of the performance of the models is the 

performance of the homogeneous ensemble disaggregated at the county level as 

provided in Table 41. 

Table 41: Performance (R2) of the ANN homogeneous model ensembles 

disaggregated by county. 

Approach Mandera Marsabit Turkana Wajir Overall 

ANN Champion   0.79   0.79   0.86   0.79   0.82  

ANN Homogeneous Simple Average  0.78   0.86   0.88   0.80   0.84  

ANN Homogeneous Weighted Average  0.79   0.86   0.88   0.81   0.85  

ANN Homogeneous Stacked  0.93   0.87   0.89   0.93   0.91  

The performance in Table 41 is presented for each of the model ensembling approaches 

of simple averaging, weighted averaging and model stacking. It is again apparent that 

the stacking approach guarantees the best improvement in performance as compared 

to other approaches. In-fact, there is a loss in performance in some instances like the 

case of simple averaging for Mandera county that recorded a one percentage point loss 

in performance as compared to the champion model approach. 
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The plot of the performance of the models in the prediction of drought severity in the 

test dataset is presented in Figure 4.29. A visual inspection of the plot of the actual 

values along the performance of the different ensembles indicates the closeness of the 

ANN stacked model to the actual values as compared to the other approaches to 

ensembling. The improvement in the performance of the ensemble approaches cannot 

be gainsaid save for the computation and process complexity that lead to their 

realization. 

 

Figure 4.29: Plot of the actual values of VCI3M compared to the predictions from the 

champion model and the ensemble options. 

The performance of the stacked ensemble in the test dataset (2016-2017) as shown in 

Figure 4.29 is not only close in trend to the actual values of VCI3M but is superior to 

the performance of the other homogeneous ensemble approaches. The performance at 

county level is: (a) Mandera (R2=0.93); (b) Marsabit (R2=0.87); (c) Turkana (R2=0.89) 

and (d) Wajir (R2=0.93).  
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Classification based performance of homogeneous ANN ensembles in the 

prediction of drought severity 

For application in drought monitoring, most drought early warning systems (DEWS) 

convert the real value outputs to drought classes. The classes are easy to use in decision 

systems as they provide few decision points as compared to real value outputs from 

regression. 

Towards this end of mirroring a decision system, the study compared the performance 

of the different homogeneous ANN model ensemble approaches but with the 

prediction formulated as class conversion problem from the outputs of regression. To 

define the classes on the VCI3M values used as the proxy for drought severity, we 

adopted the definition of vegetation deficit classes as shown in Table 42. The 

evaluation of performance in classification was based on five (5) classes defined on 

the VIC3M in the approach documented in Klisch, Atzberger & Luminari (2015), 

Klisch & Atzberger (2016), Meroni et al. (2019) and applied in Adede et al. (2019a). 

The vegetation deficit classes in this classification are: Above Normal, Normal, 

Moderate, Severe and Extreme vegetation deficit classes.  

Table 42: Classification of drought based on vegetation deficit classes  

VCI3M 

Limit Lower 

VCI3M 

Limit Upper 

Description of Class 

 

Drought class 

 

≤0 <10 Extreme vegetation deficit 1 

10 <20 Severe vegetation deficit 2 

20 <35 Moderate vegetation deficit 3 

35 <50 Normal vegetation conditions 4 

50 ≥100 
Above normal vegetation 

conditions 
5 

Note: The classification table was earlier presented in Table 16. It is repeated here for 

convenience in interpretation. 

Using the thresholds in Table 42 and subjecting the monthly data to the classification 

of vegetation conditions, we obtained the drought classes that were denoted to range 

from 1-5 for the Extreme, Severe, Moderate, Normal and Above normal conditions 

respectively. 



238 

 

The confusion matrix that results from the conversion of the outputs of regression to 

drought classes is as shown in Table 43 for the ANN champion and each of the ANN 

homogeneous ensemble approaches. 

Table 43: Confusion Matrix for the champion model and each of the homogeneous 

model ensemble approaches 

 

Table 43 presents the contingency tables for the champion model approach (a) and the 

homogeneous model ensemble approaches of (b), (c) and (d) for the simple average, 

weighted average and stacked model ensembles respectively. 

From the individual contingency tables, the measures of Accuracy and Kappa, 

Sensitivity and Specificity were calculated using the approach in Kuhn (2008) for the 

multi-class classification problem. The results of the above measures of classification 

performance are as provided in Table 44– 46 for the measures in the listed order.  

Table 44: Performance by overall accuracy and Kappa for each model ensemble 

approach  

Model Accuracy (%) Kappa 

ANN Champion  71   0.60  

ANN Homogeneous Simple Average  70   0.58  

ANN Homogeneous Weighted Average  69   0.57  

ANN Homogeneous Stacked  78   0.70  

 

Table 45: Performance by Sensitivity for each model ensemble approach  

Model Class 

1 2 3 4 5 

ANN Champion 0  0.82   0.63   0.73   0.78  

ANN Homogeneous Simple Average  NA   0.89   0.61   0.71   0.70  

ANN Homogeneous  Weighted Average  NA   0.89   0.60   0.70   0.70  

ANN Stacked  NA   0.79   0.75   0.83   0.75  
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Table 46: Performance by Specificity for each model ensemble approach  

Model Class 

1 2 3 4 5 

ANN Champion  0.99   0.86   0.88   0.91   0.95  

ANN Homogeneous Simple Average  0.99   0.85   0.92   0.89   0.95  

ANN Homogeneous  Weighted Average  0.99   0.85   0.92   0.88   0.95  

ANN Stacked  0.99   0.91   0.89   0.93   0.98  

From the presentation of performance in Tables 44-46, it is clear that posed as a 

classification problem, the stacked model ensemble out-performs the other approaches 

in model accuracy. Given that Kappa takes into account the possibility of the 

agreement occurring by chance, the weighted approach to model ensembling has the 

lower probability of agreement by chance as compared to the stacked model ensemble 

that is higher in classification accuracy. The Kappa measure, in this case, poses the 

“paradox of high agreement and lower Kappa”. This paradox informs the use of the 

True Positive Rate (TPR) that is also referred to as the Sensitivity/Recall/ Probability 

of detection and Specificity (True negative rate)  with the view to optimization as 

presented in the multi-class receiver operating characteristics curve (ROC). 

It is apparent from the results in Table 44 that the model stacking approach to 

ensembling offers the best accuracy in the prediction of drought severity at 78% as 

compared to the base performance of 71% of the ANN champion model. Notedly, the 

simple average and weighted average approaches to homogeneous ANN ensembles 

record marginal losses in performance. A county by county disaggregated analysis of 

the performance of the approaches is presented in Table 47 showing the highest range 

in performance by the stacked ensemble approach as compared to the champion and 

the averaging approaches. The stacked ANN ensemble clearly outperforms the other 

model ensembles in the prediction of drought severity. 

Table 47: Classification accuracy of the ANN homogeneous ensembles for each 

county 

Approach Mandera Marsabit Turkana Wajir Overall 

ANN Champion 0.71 0.75 0.71 0.67 0.71 

ANN Homogeneous Simple Average 0.67 0.83 0.67 0.63 0.70 

ANN Homogeneous Weighted Average 0.67 0.79 0.67 0.63 0.69 

ANN Homogeneous Stacked 0.79 0.88 0.75 0.71 0.78 
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Given that both sensitivity and specificity as presented in Table 45 and Table 46 

respectively are class-dependent, better visualization of the results would be through 

the use of the ROC curve as presented in Figure 4.30 following the approach in Hand 

& Till (2001). 

 
Figure 4.30: The multi-class ROC plot for the ANN champion and the homogeneous model 

ensembles. 

The performance was based on the area under the ROC curve (AUROC) and was 

calculated using the one-versus-all approach. The ROC plot indicates the ranking of 

the models as classifiers with a trade-off between sensitivity and specificity. The 

performance posted, clockwise from upper left recorded: an AUROC of 89.37 for the 
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ANN champion, 90.83 for the simple average ensemble, 90.63 for the weighted 

average ensemble and the best performance of 91.26 for the stacked homogeneous 

ensemble for the ANN technique. The definitive advantage offered by the 

homogeneous ANN stacked ensemble is evident with an area under the curve (AUC) 

of 91.26% as compared to that of the champion model at 89.37%. 

4.3.2.2 Homogeneous SVR ensembles in the prediction of drought severity  

The performance of the homogeneous ensembles built from the SVR technique is 

discussed following on the same order as that used for the homogeneous ANN 

ensembles in both regression and classification. 

Regression based performance of homogeneous SVR ensembles in the prediction 

of drought severity 

The SVR models, just like the ANN models, lost performance in the test dataset except 

for 4 models that marginally registered gains in performance. The loss of performance 

amongst the SVR models in the prediction of drought severity is as depicted in Figure 

4.31. This loss of performance is based on the difference between R2 in the validation 

dataset and that of the test data set. 

 

Figure 4.31: SVR models’ loss of performance in the prediction of drought severity. 
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The 111 SVR models posted an average loss in model performance of 6.47. The 

champion SVR model selected at validation, for example, was recorded to have fallen 

in performance from an R2 of 0.83 to 0.78. There, however, was realised a different 

model from the set of 111 that performed better with an R2 of 0.83 in the test data set 

as compared to the SVR champion. This loss of performance between model training 

and model testing clearly outlines the limitation of the approach of selecting a single 

best performer model. They vastly lose performance and are therefore unstable for 

long-term use. 

The results of the performance analysis of the SVR ensembles in the prediction of 

drought severity are as shown in Table 48. 

Table 48:  Summary performance of the SVR model ensembles in the prediction 

of drought severity (VCI3M) 1 month ahead 

Model MAE MAPE RMSE R2 

SVR Champion 5.09 0.19 6.95 0.78 

SVR Homogeneous Simple Average 4.82 0.18 6.64 0.80 

SVR Homogeneous Weighted Average 4.82 0.18 6.65 0.80 

SVR Homogeneous Stacked 3.84 0.14 5.09 0.88 

The key measure of performance (R2) for the homogeneous SVR model ensembles 

realised marginal performance gain of two percentage points between the champion 

model and the linear and weighted average ensembles. This is as opposed to the use of 

the ANN techniques in the learning of weights for the stacked ensembling approach 

that recorded a 10-percentage point improvement in R2 from an initial R2 of 0.78 to an 

R2 of 0.88. The performance of the SVR homogeneous ensembles as compared to the 

SVR champion at the county level is provided in Table 49. Each of the counties has 

the performance provided for the SVR champion and the simple average, weighted 

average and stacked model ensembles. 

Table 49: Performance (R2) of the SVR homogeneous model ensembles for each 

county.  

Approach Mandera Marsabit Turkana Wajir Overall 

SVR Champion   0.70   0.77   0.88   0.71   0.78  

SVR Homogeneous Simple Average  0.71   0.80   0.87   0.73   0.80  

SVR Homogeneous Weighted Average  0.71   0.80   0.87   0.73   0.80  

SVR Homogeneous Stacked  0.88   0.85   0.88   0.88   0.88  
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Except for Turkana county, the homogeneous ensembles outperform the SVR 

champion model. Turkana, however, records a reduction in performance for the simple 

average and weighted average approaches. Like the case for homogeneous ANN 

ensembles, the stacked SVR ensemble guarantees an improvement in the prediction of 

drought severity at the county level, except for Turkana for which the already good 

performance is maintained. This performance at the county level is visualized in Figure 

4.32. 

 

 Figure 4.32: Plot of the actual values of VCI3M compared to the predictions from the ANN 

champion model and the ANN ensemble approaches. 

The best performance was registered by the stacked model approach on the SVR 

models that also offers the closest forecast of the VCI3M values 1 month ahead (Figure 

4.32). The trend lines, however, do not provide the final means for judgement due to 

scale limitations in their interpretation. To augment the analysis of the performance in 

the prediction of drought severity, analysis of performance in the classification of 

drought severity was undertaken as presented next. 
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Classification based performance of the homogeneous SVR ensembles in the 

prediction of drought severity 

The evaluation of the performance of the homogeneous SVR ensembles followed the 

approach for the homogeneous ANN ensembles. The performance of the homogeneous 

ensemble classifiers used the key performance measures of- overall model accuracy 

and Kappa and the class-based performance for model sensitivity and model specificity 

that are provided in Tables 50-52. 

Table 50: Performance by overall accuracy and Kappa for each SVR model 

ensemble approach 

Model Accuracy Kappa 

SVR Champion  0.69   0.57  

SVR Homogeneous Simple Average  0.69   0.57  

SVR Homogeneous Weighted Average  0.70   0.58  

SVR Homogeneous Stacked  0.77   0.69  

 

Table 51: Performance by Sensitivity for each SVR model ensemble approach 

Model Class 

1 2 3 4 5 

SVR Champion - 0.77 0.64 0.69 0.70 

SVR Homogeneous Simple Average NA 0.86 0.62 0.65 0.70 
SVR Homogeneous Weighted Average NA 0.86 0.62 0.65 0.70 

SVR Homogeneous Stacked NA 0.86 0.63 0.68 0.70 

 

Table 52: Performance by Specificity for each SVR model ensemble approach 

Model Class 

1 2 3 4 5 

SVR Champion 0.99 0.89 0.84 0.90 0.95 
SVR Homogeneous Simple Average 0.99 0.87 0.88 0.89 0.95 

SVR Homogeneous Weighted Average 0.99 0.87 0.89 0.89 0.95 
SVR Homogeneous Stacked 0.99 0.91 0.90 0.91 0.98 

 

The Kappa value for the SVR champion, the linear average and the weighted average 

all recorded good agreement with that of the stacked model. 

The averaging approaches to the creation of SVR model ensembles, both simple 

average and weighted average approaches, produced models that offered marginal 

improvement in classification accuracy as compared to the SVR champion model. Like 
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the case for homogeneous ANN ensembles, the SVR stacked model ensemble realised 

the best return in overall model performance. The analysis of the performance of the 

homogeneous SVR ensembles at county level returned the results in Table 53. 

Table 53: Classification accuracy for the SVR homogeneous ensembles. 

Approach Mandera Marsabit Turkana Wajir Overall 

SVR Champion  0.58   0.75   0.83   0.58   0.69  

SVR Homogeneous Simple Average  0.63   0.83   0.67   0.63   0.69  

SVR Homogeneous Weighted Average  0.63   0.83   0.71   0.63   0.70  

SVR Homogeneous   Stacked  0.79   0.88   0.75   0.71   0.78  

 

The simple average homogeneous SVR ensemble is shown in Table 53 to have offered 

no overall improvement in performance. In fact, for the case of Turkana, it massively 

loses performance in the classification of drought severity. The best overall 

performance is realised from the SVR stacked ensemble that also posted the lowest 

range in performance of 0.17 as compared to the champion model that has the highest 

range of 0.25, therefore, making for a more unbalanced performance in the prediction 

of drought severity 1 month ahead. 

The results of the calculation of the area under the ROC (AUROC) for the SVR 

ensemble approaches in Table 54 clearly shows the SVR stacked model ensemble as 

posting an AUROC of 91.2%.  

Table 54: Classification accuracy for the SVR homogeneous ensembles. 

Approach AUROC 

SVR Champion  88.54  

SVR Homogeneous Simple Average  90.29  

SVR Homogeneous Weighted Average  90.44  

SVR Homogeneous Stacked  91.20  

As compared to the other approaches, the model stacking approach to SVR 

homogeneous model ensembles offer the best return in investment from the 

computational requirements as compared to say model weighted averaging that just 

marginally improves on the performance of the simple averaging approach. 
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4.3.2.3 Homogeneous ANN model ensembles in the prediction drought effects 

The study built 976 models for the prediction of drought effects. A total of 272 models 

of both ANN and SVR were selected for model ensembling based on a cut off of 

R2≥0.7 and further ensemble size reduction following the backward elimination with 

forward substitution approach. The investigation of the performance of the model 

ensembles followed on the three ensemble approaches as is the case in the prediction 

of drought severity. We investigated the performance of the homogeneous ANN 

ensembles in both regression and in the prediction of drought classes. 

Regression based performance of the homogeneous ANN ensembles in the 

prediction of drought effects 

The performance of the ANN ensembles on the prediction of drought effects is 

summarized in Table 55 using the R2 and 3 other error-based measurements of 

performance on the test dataset. 

Table 55: Summary performance of the homogeneous ANN ensembles in the 

prediction of drought effects (MUAC) 1 month ahead. 

Model MAE MAPE RMSE R2 

ANN Champion 1.49 0.08 2.13 0.74 

ANN Homogeneous Simple Average 1.53 0.08 2.07 0.75 

ANN Homogeneous Weighted Average 1.42 0.08 1.95 0.77 

ANN Homogeneous Stacked 1.28 0.07 1.74 0.82 

The best ANN model for the prediction of drought effects which is treated as the base 

performance had an R2 of 0.74 on the overall test data set covering the period 2016-

2017. The performance of the ANN models in the prediction of drought effects 

indicates the superiority of the stacking approach in the creation of model ensembles 

as compared to the simple and weighted averaging approaches. In fact, simple 

averaging is shown not to have offered considerable improvement in performance 

given it posted only a 1 percentage point increase over the champion model. The gain 

in performance of the model stacking approach of 8 percentage points is in our opinion 

worth the investment in the complexity of the process. This judgement is also 

supported by the RMSE that also indicates the stacked model ensembling as posting 

the lowest and hence best variance in the prediction of drought effects. 
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The performance of the ANN homogeneous ensembles in the prediction of drought 

effects disaggregated and compared to that of the ANN champion at the county level 

for each of the model ensembling approaches is provided in Figure 4.33. 

 
Figure 4.33: Plot of the actual values of children under the risk of malnutrition compared to 

the predictions from the ANN champion model and the ANN ensemble approaches. 

Figure 4.33 shows the performance plotted for each of the ensemble approaches of 

linear averaging, rank-weighted averaging and stacking as compared to the champion 

model. The best performance was posted by the stacked ensemble with an overall R2 

of 0.82. The homogeneous ANN stacked ensemble thus offers the best improvement 

over the ANN champion in the prediction of drought effects.  

Classification based performance of the homogeneous ANN ensembles in the 

prediction of drought effects 

The aggregation of proportions of children at risk of malnutrition to form the nutrition 

status of an administrative unit and its subsequent thresholding into classes is not 

documented. Before the actual thresholding, this study investigated normality for the 

proportion of children with MUAC<135 in order to inform the method of analysis to 

be deployed. The histogram for MUAC is as shown in Figure 4.34. 
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Figure 4.34: Histogram plots for the proportion of children with MUAC<135 

On visual inspection of the histogram plot, the proportion of MUAC<135 amongst the 

children below 5 years is realised to be non-normally distributed. This is contrary to 

the reliance of many studies on the normality of the distribution of proportional of 

children under the risk of malnutrition (MUAC<135) in nutrition surveys. Statistical 

testing for normality using both Shapiro-Wilk and Anderson-Darling test for normality 

were done with the results provided in Table 56.  

Table 56: Normality testing for the proportion of children under 5 years with 

MUAC<135 

Test 
Statistic 

name 

Statistic 

value 
P-value 

Decision on 

Ho 

Shapiro-Wilk Shapiro-Wilk 0.95 0.001 Reject 

Anderson-

Darling 

Anderson-

Darling 
2.94 1.88e-07 Reject 

The Null hypothesis (Ho) for either test is that “the data is normal”. In both cases, the 

p-values, p are less than 0.05 at the 95% confidence level. The null hypotheses in both 

cases were rejected and thus the data are concluded to be non-normally distributed. 

This confirms the earlier conclusion from the visual inspection of the plot. 

With the proportion of children under threat of malnutrition established as non-

normally distributed, the definition and analysis of the classes on the drought effects, 

therefore, followed a non-parametric approach as opposed to being based on the 

standardization of the MUAC values. This is akin to the calculation of MUAC 

condition index (MCI). The classes were then defined as shown in Equation 35 with 

the distribution of the classes subsequently shown in Figure 4.35. The higher the 
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proportion of MUAC<135, the worse the measure for nutrition is. 1 implies drought 

affects MUAC while 0 implies MUAC not affected. Scaling was done for each county 

separately.  

𝑀𝑈𝐴𝐶𝑠𝑡𝑎𝑡𝑢𝑠 = {
1, 𝑖𝑓 100 − 100 ∗ 𝑀𝐶𝐼 < 50

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                       
  … (35) 

 
Figure 4.35: The distribution of actual MUAC classes and their prediction from the ANN 

champion and the ensemble approaches. 

Despite the minor differences in the proportion of the instances classified as either 

drought-affected by MUAC (class 1, orange line), there exist differences in the 

performance of the classifier as shown by the Accuracy, Kappa, and AUROC provided 

in Table 57. 

Table 57: Performance of the ANN-based classification of drought effects 

Model Accuracy Kappa Sensitivity Specificity AUROC 

ANN Champion 0.95 0.83 0.96 0.88 90.38 

ANN Homogeneous Simple Average 0.95 0.83 0.96 0.88 90.38 

ANN Homogeneous Weighted Average 0.96 0.86 0.97 0.89 93.16 

ANN Homogeneous Stacked 0.96 0.86 0.97 0.89 93.16 

Evidently, as a binary classifier, the ANN ensembles remain competitive compared to 

the champion model. It is, however, the case that the gain in performance is marginal 

using the measures of accuracy, kappa, sensitivity and specificity. An investigation of 

the sensitivity- specificity trade-off (AUROC) however reveals the superiority of the 

ranked weighted and stacked model ensembles as compared to the other approaches. 
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All the ANN approaches produced very good agreements with Kappa ≥0.8 together 

with very high accuracies. 

4.3.2.4 Homogeneous SVR model ensembles in the prediction drought effects 

Regression based performance of the homogeneous SVR ensembles in the 

prediction of drought effects 

Similar to the homogeneous ANN model ensembles, the SVR ensembles had a total of 

272 SVR models chosen from the earlier set of 976. It is for these 272 models that the 

results of model ensembling were based. Table 58 presents the summary of the 

performance of the SVR champion and the SVR ensemble models based on the 

different ensembling approaches. 

Table 58: Performance of the SVR ensemble models in the prediction of drought 

effects 

Model MAE MAPE RMSE R2 

SVR Champion 1.62 0.09 2.25 0.71 

SVR Homogeneous Simple Average 1.60 0.09 2.21 0.72 

SVR Homogeneous Weighted Average 1.58 0.09 2.19 0.72 

SVR Homogeneous Stacked 1.44 0.08 1.99 0.77 

The best model performance as indicated by R2 is registered by the stacked modelling 

approach that offers at least a 5 percentage points gain in performance as compared to 

the other approaches. Compared to the champion model approach, the gain in 

performance is a considerable 6 percentage points. The measures of error are inverse 

in relationship to the R2 values with the stacking approach producing the lowest 

measures of error. 

Overall, as presented in Table 58, both the simple and weighted averaging approaches 

offered only a 1 percentage point improvement in performance and would be 

considered not of practical advantage compared to the computational and handcrafting 

complexities that accompany them. 

A visualization of the performance of the homogenous ensembling approaches on the 

test dataset is provided in Figure 4.36. 
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Figure 4.36: Plot of the actual values of children under the risk of malnutrition compared to 

the predictions from the SVR champion model and the SVR ensemble approaches. 

Like in the earlier approaches, visual inspection of Figure 4.36 together with the 

models’ R2 indicates the closest relationship as that between the predictions from the 

stacked model ensemble and the actual MUAC proportions in comparison to the other 

model ensemble approaches.  

Classification based performance of the homogeneous SRV ensembles in the 

prediction of drought effects 

Following on the binary definition of the MUAC classification problem from the ANN 

homogeneous ensemble models, the distribution of the classes in the SVR approach is 

as depicted in Figure 4.37. 
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Figure 4.37: The distribution of actual MUAC classes and their prediction from the SVR 

champion and the ensemble approaches. 

The distribution of the classes within each model ensembling approach is fairly equal 

in proportion at between 17 and 19. However, this position changes when the actual 

month on month performance of the classifiers is investigated as shown in Table 59.  

Table 59: Performance of the SVR ensemble models in the classification of 

drought effects 

Model Accuracy Kappa Sensitivity Specificity AUROC 

SVR Champion  0.95   0.83   0.96   0.88  90.38 

SVR Homogeneous Simple Average  0.95   0.83   0.96   0.88  90.38 

SVR Homogeneous Weighted Average  0.95   0.83   0.96   0.88  90.38 

SVR Homogeneous Stacked  0.95   0.83   0.97   0.84  92.52 

In terms of accuracy, kappa, sensitivity and specificity as stand-alone measures of 

model performance, all the model ensemble approaches almost post the same 

performances. The simple and weighted averaging approaches post the same 

performance across the metrics while the stacking approach is indicated to have 

produced SVR models that were marginally better in model sensitivity by a percentage 

point. Further analysis on the trade-off between sensitivity and specificity and a 

calculation of area under the ROC (AUROC) however settled on the superiority of the 

model stacked ensemble with an AUROC of 92.52 and thus an improvement of over 

2 percentage points in comparison to the other approaches that each had an AUROC 

of 90.38. 
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4.3.2.5 Summary on Building and evaluation of homogeneous model ensembles 

To answer to the sixth research question (RQ6) on “What is the performance of the 

Artificial Neural Networks (ANN) and Support Vector Regression (SVR) homogeneous 

ensemble models in the prediction of both drought severity and drought effects?”, we 

used the ANN and SVR  machine learning techniques of to develop model ensembles 

following on the three model ensembling approaches of simple averaging, weighted 

averaging and model stacking. 

The performances of the model ensembles were evaluated against reality using an out 

of sample testing data set of 24 data points covering the years 2016-2017 for each of 

the four counties in the study area. Different metrics were used to evaluate the model 

performance including R2 as the primary performance metrics. Mean absolute error 

(MAE), mean absolute percentage error (MAPE) and root mean squared error (RMSE) 

were also calculated. For the prediction of drought severity formulated as a 

classification problem, the metrics used were accuracy, Kappa, sensitivity and 

specificity. A final investigation of performance with a trade-off of sensitivity to 

specificity was done for each of the prediction of drought severity and drought effects 

using the AUROC. 

The investigation of normality of the proxy measure of drought effects (MUAC) 

returned non-normality. The definition of the classes for MUAC, therefore, was done 

using a scaling following on relative range difference. A binary classification was then 

defined over the drought effects variable as opposed to drought severity that is defined 

over a set of 5 classes. 

For drought severity, the performance of the approaches using a summary of key 

metrics is as presented in Table 60. The metrics include R2, overall accuracy and 

AUROC. 
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Table 60: Summary of performance of ensemble models in drought severity 

prediction 
 R2 Accuracy AUROC 

Approach ANN SVR ANN SVR ANN SVR 

Champion 0.82 0.78 0.71 0.69 89.37 88.54 

Homogeneous Simple Average 0.84 0.80 0.70 0.69 90.83 90.29 

Homogeneous Weighted Average 0.85 0.80 0.69 0.70 90.63 90.44 

Homogeneous Stacked 0.91 0.88 0.78 0.77 91.26 91.20 

 

The stacking approach produced better predictions across both homogeneous ANN 

and homogeneous SVR model ensembles as indicated by both R2 and AUROC for 

these model ensembles as compared to the ANN and SVR champion models. The 

improvement in performance derived from the linear and weighted average approaches 

range from a marginal 2 percentage points for the SVR technique to 3 percentage 

points for the ANN technique. As indicated earlier by Kappa, the better performing 

ensembles have a higher probability of having been arrived at by chance. Table 61 

provides a summary of the key performance metrics in the prediction of drought effects 

similar to those provided for the prediction of drought severity. 

Table 61: Summary of performance of ensemble models in drought effects 

prediction 

Approach  R2 Accuracy AUROC 

 ANN SVR ANN SVR ANN SVR 

Champion 0.74 0.71 0.95 0.95 90.38 90.38 

Homogeneous Simple Average 0.75 0.72 0.95 0.95 90.38 90.38 

Homogeneous Weighted Average 0.77 0.72 0.96 0.95 93.16 90.38 

Homogeneous Stacked 0.82 0.77 0.96 0.95 93.26 92.52 

The performance of the homogeneous ensembles in the prediction of drought effects 

mirrors that of drought severity. The performance of the simple average and weighted 

average homogeneous model ensembles are just marginally above those of the 

champion model as measured by R2, accuracy and AUROC. In general, the ANN 

ensembles also out-performed the SVR ensembles for each ensembling approach by 

up to 5 percentage points of R2. As classifiers, these differences become virtually lost 

at almost zero percentage point difference especially in the case of simple averaging. 
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The answer to the question on the performance of the homogeneous ensembles in the 

prediction of drought severity and the prediction of drought effects we documented the 

superiority of any homogeneous model ensemble over any of the non-ensembling 

approaches. Model stacking is guaranteed to produce the most predictive models as 

compared to non-ensembled champion models. The gain in performance by stacking 

is up to a massive 10 percentage points above the performance of the champion 

models. The achievement of an R2 of 0.91 in the prediction of drought severity is in 

fact considered an excellent model performance in the prediction of drought conditions 

1 month ahead. For the prediction of drought effects, the improvement in performance 

as a result of stacking as an approach to model ensembling is 8 percentage points for 

ANN and 6 percentage points for SVR over the respective ANN champion and SVR 

champion models respectively. These good evaluation results based on R2 for the 

stacked ensemble were supported by the AUROC as a measure of performance in 

classification that saw an improvement of 1.89 percentage points for the ANN 

technique and 2.66 percentage points for the SVR technique in the prediction of 

drought severity. This was as compared to 2.88 percentage points for the ANN 

champion and 2.14 percentage points for the SVR champion in the prediction of 

drought effects. 

  



256 

 

4.3.3 Heterogeneous model ensembles 

The seventh research question (RQ7) was formulated as “What is the performance of 

the ANN and SVR heterogeneous ensemble models in the prediction of drought severity 

and drought effects?”. To answer this research question (RQ7), we built heterogeneous 

ensemble models from the same number of models earlier chosen for model 

ensembling. The models for ensembling were: 111 models of both ANN and SVR for 

the prediction of drought severity (VCI3M) 1 month ahead and 272 models of both 

ANN and SVR for the prediction of drought effects (MUAC) 1 month ahead. The 

heterogeneous ensembles, therefore, have 222 models and 544 models for the 

prediction of drought severity and drought effects respectively. 

Heterogeneous model ensembles in the context of this study are ensembles in which 

the models used in the ensemble are built using more than one machine learning 

technique- the ANN and SVR techniques in the context of this study. The performance 

of the heterogeneous model ensembles were evaluated against the performance of the 

champion models from the ANN and SVR techniques: the ANN champion and SVR 

champion respectively. 

4.3.3.1 Heterogeneous model ensembles for the prediction of drought severity 

The model selection stage of the model ensembling process presented in Figure 4.25 

ended up with 111 models of ANN and 111 models of SVR for model ensembling. 

The use of both sets of ANN and SVR models in prediction is called heterogeneous 

ensembling. 

To realize comparable results, we used the same 111 ANN and 111 SVR models 

selected from the ensembles membership composition stage to develop the 

heterogeneous model ensembles. The models were ensembled using the three 

approaches: of simple averaging, weighted averaging and model stacking approach 

also referred to as meta-model averaging in which we used an ANN meta-model to 

learn the model weights. The ensemble realized from the averaging approaches was 

thus referred to as Heterogeneous Simple Average and Heterogeneous Weighted 

Average while the ensemble from stacking was referred to as the Heterogeneous 



257 

 

Stacked ensemble. In the weighted approach, each model was weighted based on its 

performance in the validation dataset before judging the model’s contribution to 

prediction in the test dataset.  

Regression based performance of the heterogeneous model ensembles in the 

prediction of drought severity 

From the previous results, it was established that the best performing champion models 

in the prediction of drought severity in the out of sample test dataset recorded an R2 of 

0.82 and 0.78 respectively for the ANN and SVR techniques. The loss of performance 

of the SVR modelling process of 4 percentage points in the test dataset was a good 

illustration of the need for model ensembles over single champion models. This loss 

of performance defines the lack of stability in the performance of single champion 

models. 

The choice of the model to be used as the base model for comparison was not a naïve 

decision. Three options were available for the formulation of the performance of the 

base model. The first was to assume the minimum performance of R2 of 0.78 as was 

posted by the SVR champion. This would have biased against the base models given 

the choice of the poorest performing technique. The second option was the averaging 

of the performance of the base models to an R2 of 0.80 for the ANN and SVR 

champions that had posted an R2 of 0.82 for the ANN and an R2 of 0.78 respectively. 

The third option was to assume the model outputs as representing prediction of the 

same data points in space. The two predictions were then averaged and new 

performance evaluation was undertaken. This raised an R2 of 0.82. The latter two 

options were judged to be ensemble approaches in themselves and would not amount 

to a pure selection of champions as used in most modelling approaches. We, therefore, 

settled on the comparison with both the ANN champion and the SVR champion 

model’s performance. The base R2 was therefore set at 0.78 for the SVR champion and 

at 0.82 for the ANN champion. The desired performance is an R2 of greater than 0.82 

for the heterogeneous ensembles. More desirable was a heterogeneous ensemble that 



258 

 

outperforms both the ANN and SVR champion models while also outperforming the 

homogeneous ensembles. 

The performance of the heterogeneous model ensemble in the prediction of drought 

severity as compared to the ANN champion and the SVR champion is provided in 

Table 62. 

Table 62: Summary performance of the heterogeneous model ensemble in the 

prediction of drought severity (VCI3M) 1 month ahead 
 MAE MAPE RMSE R2 

ANN Champion 4.74 0.18 6.31 0.82 

SVR Champion 5.09 0.19 6.95 0.78 

Heterogeneous Simple Average 4.68 0.18 6.39 0.82 

Heterogeneous Weighted Average 4.56 0.17 6.22 0.82 

Heterogeneous Stacked 2.81 0.11 3.77 0.94 

The heterogeneous ensembles have a mixed set of performances in the prediction of 

drought severity as compared to the ANN and SVR champion models. All the 

heterogeneous ensembles out-perform the SVR champion. The ANN champion, 

however, remains competitive, at an R2 of 0.82, to the heterogeneous ensembles 

realised from the averaging approaches of both linear and weighted average ensembles. 

Evidently, the stacked heterogeneous model ensemble posts a distinct improvement in 

the prediction of drought severity as indicated by VCI3M value 1 month ahead at an 

R2 of 0.94.   The stacked model approach to ensembling is, in this case, a distinctly 

superior method in the prediction of future drought conditions as compared to the 

selection of single champion models. 

An extended analysis of the performance of the heterogeneous model ensemble in the 

prediction of drought severity posed as a regression problem is provided in Figure 4.38. 

The extended analysis was for each of the 24 data points in the out-of-sample datasets 

covering the period 2016-2017 for each of the four counties in the study area. This 

makes for a total of 96 data points for the study area. 
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Figure 4.38. A plot of the actual values of drought severity (VCI3M) versus the values 

predicted 1-month ahead from the heterogeneous stacked ensemble. 

The heterogeneous stacked ensemble realised a performance for: (a) Mandera 

(R2=0.94); (b) Marsabit (R2=0.94); (c) Turkana (R2=0.91) and (d) Wajir (R2=0.96). 

The performance in the prediction of VCI3M values 1 month ahead, therefore, realized 

an excellent prediction with R2 between 0.91 and 0.96 across all the counties. The 

performance across the counties posted an acceptable distribution at the county level. 

The performance at the county level is particularly important given it is for a model 

developed for a bigger administrative unit but whose performance at prediction is 

analysed to be acceptable at downscaled lower administrative units. 

Classification based performance of the heterogeneous model ensembles in the 

prediction of drought severity. 

The presentation of the results of the performance of the heterogeneous model 

ensembles as a classification problem follows on the formulation of drought effects 

classes on the proxy variable MUAC as was the case for homogeneous models. Tables 

63 to 65 document the performance of the heterogeneous model ensembles when 

formulated as a classifier. 
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Table 63: Performance of the heterogeneous model ensemble by overall accuracy 

and Kappa in the prediction of drought severity 

Model Accuracy Kappa AUROC 

ANN Champion  0.71   0.60  89.37 

SVR Champion  0.69   0.57  88.54 

Heterogeneous Simple Average 0.70 0.58 90.44 

Heterogeneous Weighted 

Average 
0.71 0.60 90.45 

Heterogeneous Stacked 0.80 0.73 92.26 

 

Table 64: Performance of the heterogeneous model ensemble by sensitivity in the 

prediction of drought severity  

Model Class 

1 2 3 4 5 

ANN Champion 0  0.82   0.63   0.73   0.78  

SVR Champion  0    0.77   0.64   0.69   0.70  

Heterogeneous Simple Average NA 0.86 0.63 0.68 0.70 

Heterogeneous Weighted Average NA 0.86 0.64 0.68 0.70 

Heterogeneous Stacked NA 0.88 0.77 0.86 0.67 

 

Table 65: Performance of the heterogeneous model ensemble by specificity in the 

prediction of drought severity 

Model Class 

1 2 3 4 5 

ANN Champion  0.99   0.86   0.88   0.91   0.95  

SVR Champion  0.99   0.89   0.84   0.90   0.95  

Heterogeneous Simple Average 0.99 0.87 0.89 0.89 0.95 

Heterogeneous Weighted Average 0.99 0.88 0.89 0.89 0.95 

Heterogeneous Stacked 0.99 0.92 0.93 0.91 0.99 

The heterogeneous simple average ensemble in Table 63 performs poorer than the 

ANN champion model in overall model accuracy. It is also noted that the better the 

model performance the higher the Kappa thereby implying the higher the probability 

that the resultant classifier models were obtained by chance. 

In terms of sensitivity as provided in Table 64, the first two classes marked by low 

vegetation cover are noted to easier return true positive predictions as compared to the 

other classes. This performance is replicated in specificity as shown in Table 65 where 

the classes 2-4 have lower performance across all the ensembling approaches as 

compared to classes 1 and 5. This implies that the heterogeneous models are efficient 

at predicting the outlier drought conditions as compared to the other classes of drought.  
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An investigation into the trade-off between sensitivity and specificity of the 

heterogeneous models for the prediction of drought sensitivity, however, realised an 

area under the ROC (AUROC) of 92.26% for the heterogeneous stacked model 

ensemble as indicated in Table 63. The heterogeneous stacked ensemble is thus noted 

to out-perform the other approaches to model ensembling and is trailed by both the 

linear averaged and weighted averaged ensembles that post almost a similar 

performance with an AUROC of 90.44% and 90.45% respectively. 

Further analysis of the performance of the heterogeneous model ensembles in the 

prediction of drought severity classes at the county level using model accuracy is 

provided in Table 66. 

Table 66: Classification accuracy of the heterogeneous ensemble 
 Mandera Marsabit Turkana Wajir Overall 

ANN Champion 71 75 71 67 71 

SVR Champion  58   75   83   58   69  

Heterogeneous Simple Average  63   83   71   63   70  

Heterogeneous Weighted Average  63   83   71   67   71  

Heterogeneous Stacked  71   88   79   83   80  

It is quite evident from Table 66 that the model stacking approach to model ensembling 

offers quite a good return in predictive accuracy at 80% as compared to the linear 

average and the weighted approaches that are by and large only comparable in 

performance with each other and with the best performing champion model- the ANN 

champion model. At the county level, all the counties registered an accuracy of more 

than 70% with the best at 88% in Marsabit. A visualization of the month on month 

performance of the heterogenous stacked classifier at the county level is provided in 

Figure 4.39. 
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Figure 4.39. Performance of the heterogeneous ensemble classifier for each of the counties. 

The months of difference in Figure 4.39 are presented in grey while those of agreement 

are in blue. The performance of the heterogeneous stacked classifiers with an overall 

accuracy of 80% is superior to that of the best champion model, the ANN champion 

model, that posted an accuracy of 71% over the entire test data set. Even at the county 

level, the heterogeneous stacked classifier outperforms the champion classifiers across 

all counties except for Turkana where the SVR champion performs better as earlier 

highlighted in Table 66 in bold. It is this superiority of the SRV model in the Turkana 

dataset that perhaps lends the opportunity for model ensembling.  

Give the interest of this study in the correctness of the prediction of moderate to 

extreme drought, a final analysis was done on the utility of the heterogeneous stacked 

ensemble in the prediction of moderate to extreme drought classes. This view of 

analysis was informed by the pilot study that earlier showed the poor performance of 

the champion models in the prediction of moderate to extreme drought classes in the 

prediction of drought severity as was presented in Figure 3.32. Table 67 presents the 

performance of the stacked ensembles in the prediction of moderate to extreme 

vegetation deficits across the different classes for the counties in the study area as 

compared to the champion models. 
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Table 67: Model accuracy in the prediction of moderate to extreme drought of the 

heterogeneous stacked ensembles compared to the champion ANN and SVR 

models 

 County ANN Champion SVR Champion 
Heterogeneous 

Stacked Ensemble 

Mandera  62   46  69  

Marsabit  71   71  94  

Turkana  75   100  83  

Wajir  72   61  78  

Overall 70  69  82 

The heterogeneous stacked ensemble is shown in Table 67 to offer the best 

performance in the prediction of moderate to extreme vegetation deficit. The 

distributions across the counties are also acceptable as compared, for example, to the 

SVR champion that performs below chance with an accuracy less than 50% for 

Mandera county. Two things particularly stood out in the performance of the 

heterogeneous ensemble: 

• The relatively high predictive power of the heterogeneous ensemble at an 

average accuracy of 82% as compared to 70% and 69% for the ANN champion 

and SVR champion respectively. 

• The relatively moderate range between the best and the worst performance at 

the county level with a difference of 25 percentage points difference as 

compared to say the SVR champion that posted a difference of 54 percentage 

points. 
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4.3.3.2 Heterogeneous model ensembles for the prediction of drought effects 

The ANN and SVR champion models in the prediction of drought effects had an R2 of 

0.74 and 0.71 respectively. Like in the homogeneous ensembles, the prediction of 

drought effects using heterogeneous ensembles was done using the top 272 models of 

both ANN and SVR. 

Regression based performance of heterogeneous model ensembles in the 

prediction of drought effects 

Table 68 presents the performance of the heterogeneous model ensembles of ANN and 

SVR in the prediction of drought effects following on the different model ensembling 

approaches. 

Table 68: Performance of the heterogeneous model ensembles in the prediction of 

drought effects (MUAC) 
 MAE MAPE RMSE R2 

ANN Champion 1.49 0.08 2.13 0.74 

SVR Champion 1.62 0.09 2.25 0.71 

Heterogeneous Simple Average  1.54   0.08   2.09   0.75  

Heterogeneous Weighted Average  1.65   0.09   2.15   0.78  

Heterogeneous Stacked  1.41   0.08   1.84   0.82  

The stacked heterogeneous ensemble approach out-performs the simple average and 

ranked weighted ensemble approaches in all the metrics of performance measurement. 

For the prediction of drought effects, the stacking approach offers an 8 and 11 

percentage points improvement in performance as compared to the ANN champion and 

the SVR champion models respectively. All ensembling approaches also perform 

better than the use of the champion models. 
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Classification based performance of heterogeneous model ensembles for drought 

effects 

Using the ensemble models as a drought effects classifier produces the results 

presented in Table 69. 

Table 69: Performance of the heterogeneous ensemble in the classification of 

drought effects  

Model Accuracy Kappa Sensitivity Specificity AUROC 

ANN Champion 0.95 0.83 0.96 0.88 90.38 

SVR Champion  0.95   0.83   0.96   0.88  90.38 

Heterogeneous Simple Average  0.95   0.83   0.96   0.88  90.38 

Heterogeneous Weighted Average  0.93   0.74   0.94   0.87  84.83 

Heterogeneous Stacked  0.96   0.86   0.97   0.89  93.16 

The highest accuracy in the classification of drought effects is realised from the model 

stacking approach. In the classification of drought effects, all the ensembling 

approaches except weighted average remain competitive based on the different 

performance measures of accuracy, kappa, sensitivity and specificity. The AUROC 

clearly confirms the poor performance of the weighted ensemble approach to model 

ensembling. The weighted ensembles posted a performance that falls below the 

performance of the ANN champion and SVR champion in the prediction of MUAC 

conditions 1 month ahead by up to 5.5 percentage points. 

4.3.3.3 Summary on Building and evaluation of heterogeneous model ensembles 

To answer to the research question RQ7 “What is the performance of the ANN and 

SVR heterogeneous ensemble models in the prediction of drought severity and drought 

effects?” we built heterogeneous ensemble models of both ANN and SVR using the 

three different approaches of simple averaging, weighted averaging and ANN-driven 

model ensembling. 

In the prediction of drought severity, a summary of the performance of the different 

heterogeneous ensembles is presented in Table 70. The summary compares the 

performance of the heterogeneous model ensembles to those of the homogeneous 

ensembling approaches. The base models are the champion modes for the prediction 
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of drought severity with an R2 of 0.82 and 0.78 for the ANN and the SVR techniques 

respectively. 

Table 70: Performance of heterogeneous as compared to homogeneous ensembles 

in the prediction of drought severity (VCI3M) 

Approach R2 RMSE Accuracy Kappa AUROC 

Champion ANN 0.82 6.31 0.71 0.60 89.37 

Champion SVR 0.78 6.95 0.69 0.57 88.54 

Homogeneous Simple Average (ANN) 0.84 5.96 0.70 0.58 90.83 

Homogeneous Simple Average (SVR) 0.80 6.64 0.69 0.57 90.29 

Heterogeneous Simple Average 0.82 6.39 0.70 0.58 90.44 

Homogeneous Weighted Average (ANN) 0.85 5.85 0.69 0.57 90.63 

Homogeneous Weighted Average (SVR) 0.80 6.65 0.70 0.58 90.44 

Heterogeneous Weighted Average 0.82 6.22 0.71 0.60 90.45 

Homogeneous Stacked (ANN) 0.91 4.40 0.78 0.70 91.26 

Homogeneous Stacked (SVR) 0.88 5.09 0.77 0.69 91.20 

Heterogeneous Stacked 0.94 3.77 0.80 0.73 92.26 

 

The comparison between heterogeneous and homogeneous model ensembles returns 

mixed results. The ensembles remain competitive in their performance between the 

homogeneous and the heterogeneous and as compared to the champion models. Cases 

of loss of performance were recorded for the weighted ensembles. It is, however, a 

guarantee that using model stacking on heterogeneous model ensembles posts better 

results than any of the ensembling approaches both for homogeneous ensembles and 

for heterogeneous ensembles. Stacked heterogeneous model ensembles registered the 

best performance in both classification and regression in the prediction of drought 

severity. 

The performance of the ensembles as compared to the champion models in the 

prediction of drought effects on malnutrition (MUAC) is as provided in Table 71.  
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Table 71: Summary of performance in prediction of drought effects (MUAC) 

Approach Regression (R2) Accuracy (%) 

Champion ANN 0.74 95 

Champion SVR 0.71 95 

Homogeneous Simple Average (ANN) 0.75 95 

Homogeneous Simple Average (SVR) 0.72 95 

Heterogeneous Simple Average 0.75 95 

Homogeneous Weighted Average (ANN) 0.77 96 

Homogeneous Weighted Average (SVR) 0.72 95 

Heterogeneous Weighted Average 0.78 93 

Homogeneous Stacked (ANN) 0.82 96 

Homogeneous Stacked (SVR) 0.77 95 

Heterogeneous Stacked 0.82 96 

In the prediction of drought effects, the performance of the heterogeneous model 

ensembles reinforces the superiority of stacking approach to model ensembling with 

an R2 of 0.82 and an accuracy of 96%. 

4.4 Highlight of Key Findings in Context 

In this sub-section, we highlight the key findings of the study in the context of related 

studies. Higher correlations were recorded between the vegetation datasets and drought 

severity as compared to the precipitation datasets and the other datasets. This is an 

expected consequence of the definition of drought severity in terms of vegetation 

deficit that therefore makes variables on vegetation conditions good predictors. On the 

other hand, rainfall anomalies may or may not lead to significant changes in vegetation 

conditions as this could be a function of available water resources. It is for this reason 

that many studies on agricultural drought prefer observing directly the vegetation 

conditions, without relying on rainfall data that are often sparse for actual 

measurements and suffer high uncertainties in the case of modelled outputs (Dinku et 

al., 2007). 

It is the expectation in theory that heterogeneous ensembles should outperform both 

homogeneous and champion model ensembles in both regression and classification. 

This is widely the case in this study that mirrors similar results documented in 

Petrakova, Affenzeller & Merkurjeva (2015). With an overall R2 of 0.94 in regression 

and an accuracy of 80% in classification, the stacked heterogeneous model ensemble 
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is superior to both the homogeneous ensembles and the champion model approach to 

the prediction of future vegetation conditions as a proxy in the prediction of drought 

severity. The superiority of the ensembles against champion models especially, as 

indicated by overall prediction accuracy, is however not guaranteed for generalization 

across the spatial units. The case in Table 66 has the ANN champion and the SVR 

champion outperforming the heterogeneous ensembles in classification accuracy for 

Mandera and Turkana respectively. This observation makes for the caution in the use 

of model ensembles as in some tasks, loss of performance can be realized. This loss 

for performance was observed in the estimation of software efforts in Elish (2013) and 

in Kocaguneli, Kultur & Bener (2009). The study in Elish (2013) had a voting 

ensemble model derived from five techniques outperforming single models of the 

techniques in only three out of five datasets. Kocaguneli, Kultur & Bener (2009) saw 

heterogeneous ensembles realize accuracies that were far from outperforming single 

learners. 

The building of models that are not specific to each spatial unit of analysis provides an 

opportunity to scale this approach to the prediction of vegetation conditions across 

multiple spatial extents. Building spatially down scalable models together with the 

illustrated generalizability with time as modelled using test data from the future makes 

this approach highly generalizable both spatially and temporally. This is as opposed to 

models fine-tuned for each spatial unit separately as were for example reported in Nay, 

Burchfield & Gilligan (2018). 

The superiority in performance between ANN and SVR and indeed between any two 

machine learning techniques is one on which the jury is still out. In this study, the ANN 

technique is shown to generally outperform SVR in predictive performance in the ratio 

of 43% to 5% and a tie in 52% of the cases respectively. This superiority of the ANN 

to SVR is also observed in the prediction of pipe burst rates in Shirzad, Tabesh & 

Farmani (2014). Other studies like that in Mokhtarzad et al. (2017) document the SVR 

to be superior to the ANN. Depending on the application of the techniques, it remains 

non-clear to pick out one between ANN and SVR as superior to the other. What is 
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clear in this study, however, is that the ANN champion model outperforms the SVR 

champion in the unseen data even though they remain competitive in model training. 

The ANN technique is particularly documented to be more susceptible to overfitting 

in cases of large networks. This is however not the case in this study as it produces 

mixed results. The prediction of drought severity documents overfitting as more 

pronounced in SVR as compared to ANN at 9% to 6%. This result should be 

interpreted also in the context that overfitting remains confined to only models with R2 

≤ 0.5 in SVR as compared to the ANN technique that has two overfit models with R2 

≥ 0.7. A contrasting set of results was however reported from the prediction of drought 

effects on nutrition conditions where overfitting was an exclusive occurrence in the 

ANN technique with 27% of ANN models reporting overfitting as compared to the 

non-occurrence of overfitting in the SVR technique. In both instances, we judge 

overfitting to have been more pronounced amongst the less predictive models as 

compared to the normal occurrence of overfitting amongst models that are generally 

judged to be highly predictive. The reduced occurrence of overfitting could be 

attributed to the use of a sample size that was adequate in the model training process, 

thus avoiding the high dimension, low sample size learning scenarios as documented 

in Liu et al. (2017). 

Finally, the prediction of nutrition status 1 month ahead for children under 5 years old 

gives a promising performance.  With 272 models of ANN and a similar number of 

SVR models realised with R2≥0.7 and at the same time not overfit, there is potential to 

develop enough models for ensembling using the approach of this study. As the case 

for drought severity, the stacked approach is shown to be superior to the other model 

ensembling approaches in the prediction of drought effects. In regression, the 8% and 

11% lead for homogeneous stacked ANN and SVR respectively offer enough 

motivation for the use of this approach in realizing highly predictive models. It is, 

however, the case that for classification, stacking remains competitive to other 

approaches, perhaps due to the large bands used to realise the classes. 
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Chapter 5: CONCLUSION 

5.1 Summary of the research 

The prediction of drought is one of the fundamental improvements to drought early 

warning systems (DEWS). The demand for drought early warning systems that 

incorporate prediction is ever increasing. This demand for predictive systems is in 

congruence with the need not just for such systems but in a context where they offer 

highly accurate and stable predictions of future drought conditions. This study 

produced base models of both ANN and SVR that were then investigated for 

performance in term of champion models, homogeneous ensembles and heterogeneous 

ensembles. The drought models also aimed to solve the tendency to build predictive 

models only using only one index or a group of indexes not covering the entire 

spectrum of drought that is made up of meteorological, hydrological, agricultural and 

socio-economic droughts. The achievements of this study were majorly documented 

in two chapters beginning with methodology and ending with the chapter on results 

and discussion. 

Chapter one presented the introduction to the study. The section on introduction 

covered the background to the study that outlined the economic, social, environmental, 

policy and technical and research views to the problem of drought. The current state 

of the art in drought prediction and in drought monitoring and the future expectations 

from drought early warning systems (DEWS) were documented. The introduction also 

formulated the problem statement of the study and anchored it in the study objectives 

and research questions. The objective of the study revolved around the investigation 

of all variables used in the study of drought and the role of model ensembling in the 

improvement of both model accuracy and model stability. 

The chapter on literature review anchored the research on theory, identified datasets 

used in the study and was the basis of evidence that supports the findings of this study. 

The chapter reviewed the definitions of drought establishing the non-agreement on a 

single definition and view of the phenomenon. The types of drought we reviewed and 

methods used in the prediction of droughts were reviewed. The chapter documented 
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the emerging trends in drought management especially on ensemble modelling and the 

increasing need for integration of socio-economic data for the ground-truthing of the 

effects of drought. The chapter also reviewed model ensembling and ensembling 

methods as an emerging trend in the development of predictive models even in fields 

away from drought monitoring. The chapter on literature review finally outlined the 

conceptual framework concluding with the identification of variables to be used in the 

study of the prediction of both drought severity and drought effects. 

The third chapter dealt with the question of research design and methodology. The 

correlational research design was exhaustively documented and justification as to why 

other research designs were not suitable choices for the study provided. Data collection 

and pre-processing for both remote sensing and socio-economic data was covered in 

this section including the need for automated process in the download, sub-setting, 

smoothing and aggregating of the remote sensing datasets. The machine learning 

techniques for regression were reviewed with the case study techniques of ANN and 

SVR detailed in-terms of their methodology and process of use. Model ensembling 

approaches were reviewed including the ensembling types – both homogeneous and 

heterogeneous. 

Chapter four presented the results from the study organised by the study objectives. 

The next sections of this chapter review the significance of the study, the key 

achievements under each objective, generalization, limitations of the study and 

recommendations for the furtherance of the work. 

5.2 Achievements 

The study had three objectives each with two research questions except for the second 

objective that had three research questions. Answering the questions would be 

interpreted as meeting the objectives of the study. This sub-section presents a summary 

of the achievements organized by the objectives and questions.  
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5.2.1 Objective One: Determine the different biophysical and socio-economic 

variables that are used in the monitoring/ prediction of drought and investigate their 

relationship with drought. 

In this objective, we undertook review literature to assemble the set of indicators across 

all the drought types of meteorological, hydrological, agricultural and socio-economic 

that have been variously used for drought monitoring and drought prediction. The 

variables covered all the listed types of drought. Further to this, the relationships 

amongst these variables were investigated as well as their relationship to drought 

severity. The achievements under the two research questions are: 

5.2.1.1: RQ1: What are the different biophysical and socio-economic variables that 

are used in the monitoring/ prediction of drought? 

A total of 16 variables used in drought monitoring as applied to drought severity were 

identified. Two variables- MUAC and TOT were identified for the quantification of 

drought impacts on the nutrition of children below 5 years. 

5.2.1.2: RQ2: How do the variables identified for drought monitoring relate with 

drought? 

The variables identified from RQ1 were investigated for relationships amongst 

themselves and with drought severity (VCI3M). The first part of the investigation was 

geared towards the selection between TAMSAT and CHIRPS variables to retain the 

most predictive of the two datasets. 

The study successfully showed that both sets of TAMSAT and CHIRPS datasets were 

non-normally distributed by both visual inspection and Shapiro-Wilk test. The two 

datasets remained competitive in the prediction of drought severity based on multiple 

metrics for variable selection. The multiple set of metrics used included Spearman’s 

correlation coefficient, Stepwise regression, Akaike information criterion and relative 

importance criterion that ended up with TAMSAT having the best top two ranked 

variables over those of TAMSAT. Similar results were recorded by modelling using 

both GAM and SVR techniques. On the results of the above selection criteria, the study 

settled on TAMSAT as the source of precipitation data. 
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On correlation with drought severity, the vegetation condition variables were shown 

to generally have a higher correlation with drought severity with lagged values of 

VCI3M, VCI1M and VCIdekad having correlation coefficients above 0.8 (r>0.8). 

SPEI1M and SPEI3M had the lowest correlations with drought severity (r<0.3). The 

temperature condition index aggregated over the last one month (TCI1M) had a strong 

negative correlation to drought severity. The variables, therefore, exhibited different 

relationships with drought severity and were capable of offering value in the prediction 

of drought severity. 

5.2.2 Objective Two: To “build and evaluate the performance of multiple models for 

drought prediction using Artificial Neural Networks (ANN) and Support Vector 

Regression (SVR) as the case study Machine Learning methods”, the study built 

multiple ANN and SVR models from which model ensembles were built. The 

achievements of each of the research questions are as outlined in 5.2.2.1 and 5.2.2.2 

respectively.  

5.2.2.1: RQ3: What are the multiple models of both Artificial Neural Networks (ANN) 

and Support Vector Regression (SVR) that can be built for the prediction of both 

drought severity and drought effects? 

The study, by experimentation, defined the configuration of 2-5-3-1 for the prediction 

of drought severity. A total of 143 models were built using both ANN and SVR from 

the sized down modelling space through an automated process using a set of R scripts. 

The ANN and SVR techniques were presented with similar but randomly partitioned 

10 sub-sets of the training data.  A total of 111 models and 272 models each from the 

ANN and SVR techniques that had R2 >0.7 in the validation dataset and were not 

overfit were then chosen for model ensembling in the prediction of drought severity 

and drought effects respectively. 

5.2.2.2: RQ4: What is the performance of the ANN models as compared to SVR models 

in the prediction of drought severity? 

The study exhaustively investigated the performance of the ANN and SVR models in 

the prediction of drought severity using multiple performance metrics. The prediction 
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tasks were each investigated as both a regression problem and subsequently in the 

operational application as a classification problem. 

The problem of loss of performance for single champion models is elaborated by the 

fact that in model validation both the ANN and SVR had the same performance 

(R2=0.83) as regressors while in the testing dataset (2016-2017), the SVR champion 

lost performance to post an R2 of 0.78. This potential loss of performance by single 

champion models in the prediction of drought severity justifies model ensembling. 

The study successfully showed that champion models for the prediction of drought 

severity from the ANN and SVR techniques are predictive and therefore the techniques 

remain appropriate and are capable of handling the non-linear nature of the remote 

sensing. While the ANN technique is susceptible to overfitting, it produced stable 

models capable of offering good predictive power in out of sample datasets. 

5.2.2.3: RQ5: What is the performance of the ANN models as compared to SVR models 

in the prediction of drought effects? 

Like was the case for drought severity, from the total of 976 models, we established 

the superiority of the SVR technique over the ANN technique. More SVR models had 

R2 of 0.7 and above as compared to the ANN models. Even reduced to the basic 

threshold of above chance models with R2≥0.5, SVR marginally beat ANN by 488 to 

487 models. An interesting result was the fact that despite the better performance of 

the SVR technique in generating many models considered predictive, the ANN 

champion model still outperformed the SVR champion model in model validation and 

model testing. 

5.2.3 Objective Three: To “build and evaluate the performance of homogeneous and 

heterogeneous ensemble models of both ANN and SVR in the prediction of drought 

severity and drought effects.”, the study built homogeneous and heterogeneous model 

ensembles for the prediction of both drought severity and drought effects and 

investigated their performance as outline in 5.2.3.1 and 5.2.3.2 respectively. 
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5.2.3.1: RQ6: What is the performance of the Artificial Neural Networks (ANN) and 

Support Vector Regression (SVR) homogeneous ensemble models in the prediction of 

both drought severity and drought effects? 

The ANN and SVR techniques each had 111 models chosen for model ensembling. 

Each technique had its 111 models ensembled separately using three approaches to 

model ensembling. 

The study showed the superiority of stacking as a homogeneous model ensembling 

approach in the prediction of both drought severity and drought effects. In regression, 

model stacking had performance gains from R2=0.82 to R2 =0.91 for the ANN 

technique and from R2=0.78 to R2 =0.88 for the SVR technique.  As classifiers, the 

AUROC for each case improved from 89.37% to 91.26% for the ANN and from 88.54 

to 91.20 for the SVR techniques respectively. Similar results were posted in the 

prediction of drought effects with the homogeneous ANN ensembles improving in 

performance from 0.74 to 0.82 in R2 using the stacking approach while SVR 

homogeneous improved from 0.71 to 0.77. 

5.2.3.2: RQ7: What is the performance of the ANN and SVR heterogeneous ensemble 

models in the prediction of drought severity and drought effects? 

In the prediction of drought severity, stacking of heterogeneous models improved the 

performance of the champion models from R2 of 0.82 for ANN and 0.78 for SVR to 

an R2 of 0.94. This as compared to R2 of 0.82 for both simple and weighted averaging. 

In the prediction of drought effects, the stacked approach to building ensembles still 

out-performed the other approaches.  The heterogeneous ensembles out-performed the 

homogeneous ensembles except for stacking that returns the same R2 of 0.82. In 

summary, the study achieved to show that: 

• Any model ensembling outperforms the champion models in both regression 

and classification and also realizes relatively more stability in the testing data. 

• Stacking guarantees better performance as compared to non-weighted simple 

averaging and rank weighted averaging. 
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• In the prediction of both drought severity and drought effects, heterogeneous 

ensembles out-perform both homogeneous ensembles and single champion 

models in both regression and classification. 

• The simple and weighted averaging approaches at times do not guarantee an 

improvement in performance as evidenced by the case recorded by the study. 

5.3 Contributions 

The contributions of the study have been grouped as theoretical, practical or 

methodological. 

5.3.1 Theoretical Contribution 

The study investigated relationships between vegetation datasets processed using 

different approaches. The contribution of this investigation is a guide to the choice of 

pre-processing steps. With different datasets from the same base MODIS datasets, we 

have shown pre-processing steps do make a difference but the statistical test for 

agreements show very high correlations amongst the datasets. In this aspect, the study 

bridged the gap between theory and practice by actual comparison of competing 

datasets prior to a model building process rather than the approach of use of non-

objectively chosen data sets. 

The study reviewed existing literature and documented the tendency of drought 

monitoring studies to focus on one type of drought from the set of meteorological, 

hydrological, agricultural and socio-economic droughts. We make a theoretical 

contribution to the use of multiple indicators covering the whole set of drought types. 

The inclusion of socio-economic data in the predictive study is useful especially in 

ground-truthing the effects of drought on elements at risk. The theory on the 

development of predictive models, for both drought severity and drought effects, is a 

key formulation of this study. While the collection of socio-economic data is non-

trivial, their use in drought management amounts to ground validation of drought 

impacts. 
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The study delivered an evaluation premise that is appropriate in the determination of 

the best methods for the development of model ensembles. The question on the 

performance of model ensembles based on the competing methods of linear average, 

rank weighted average and model stacking proved the theoretical assumption of the 

superiority of model stacking. 

5.3.2 Methodological Contribution 

The methodological contributions are in multiple aspects of the processes that 

delivered this study. First, as opposed to most methods, we developed model 

ensembles and compared them to the common practice of building single champion 

models. The methodology also investigated, empirically, the performance of both 

homogeneous and heterogeneous model ensembles using multiple machine learning 

techniques of artificial neural networks (ANN) and support vector regression (SVR). 

Multiple approaches were used in the building of the model ensembles including 

simple and weighted averaging and model stacking using ANN perceptron learnt 

weights. A settlement of the superiority of model stacking in the building of model 

ensembles is a contribution to both theory and methodology. This is augmented by the 

use of the statistical General Additive Model (GAM) approach in the reduction of 

model space complexity using objective multiple model evaluation parameters. The 

study empirically established the utility of assumptions and the use of GAM technique 

in model space reduction together with model ensemble membership selection in 

realising fewer but more predictive ensemble membership. 

5.3.3 Technical Contributions 

The study delivers a set of R scripts for both the download and pre-processing of the 

non-vegetation remote sensing data and also for the creating of champion models, 

homogeneous and heterogeneous model ensembles.  Despite some of the steps in the 

development of the ensembles requiring handcrafting, the automation of the processes 

ensures the studies can be replicated. The model building process had the script 

modified to loop through all models in the model space, bootstrap aggregated the 

training data, build all the ANN and SVR models on the different training data sets and 
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logged the results of model training, validation and evaluation of performance metrics. 

An additional practical contribution of the research is the publication of two research 

papers as an output of the research. 

5.4 Generalization of results 

Two questions on the models produced are if they can be applied in areas not specific 

to the area of study and if the models will perform well in the future. The ability of the 

location-specific models to be applicable in other areas is referred to as transferability 

while the ability of the models to perform well in previously unseen data is referred to 

as generalization. 

Apart from the socio-economic data used in the prediction of drought effects, the other 

datasets can be sourced from open source remote sensing data repositories. 

Appropriate replacement of the TAMSAT datasets with any global dataset will ensure 

the results can be replicated globally using the methodology and datasets chosen. In 

fact, for the African continent, the only effort would be to avail the appropriate 

demarcation of a study area preferably as a shapefile. The investigation of the 

prediction of drought effects will, however, demand the search for data on terms of 

trade from markets monitoring and such other market performance data and also data 

on Mid-Upper Arm Circumference even from hospital admission in some instances. 

The question on generalization was well handled by the study methodology on the 

building and validation of models. The out of sample dataset for 24 months across the 

counties in the study areas showed good generalizability at R2 of 0.83 for the ANN, 

0.78 for the SVR and up to 0.94 for the stacked heterogeneous model ensembles. The 

delivered models and application of the techniques resulted in a methodology that is 

generalizable both spatially, hence by location, and temporally into the future. 

5.5 Limitations 

There is opportunity to do multiple predictions with different lead times so as to offer 

longer time frames for drought preparedness and better intervention planning. An 

example would be the possibility of offering 3-months and possibly 6-months 

predictive models. These will, however, require a longer temporal coverage of the 
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historical data since lagging the variables reduces the data available for the training of 

the models. 

The study chose two machine learning techniques. The two techniques of Artificial 

Neural Networks (ANN) and Support Vector Regression (SVR) were chosen on the 

basis of their appropriateness for regression and their ability to model non-linear 

decision surfaces. The techniques have outputs that are non-linear with respect to the 

model inputs. The study could benefit from more algorithms that have these 

characteristics and that can then make for more than two techniques in the investigation 

of heterogeneous model ensembling. 

The investigation of drought effects was done using two variables- MUAC and Terms 

of Trade (ToT). The use of ToT was to reduce the model space complexity by reducing 

the number of possible models to be computed and hence ensembled. The set of models 

for prediction of drought effects was also built as a combination of the two socio-

economic variables and the models deemed to have been predictive of drought 

severity. Though this set up is logical since it links drought effects to drought severity, 

even the other models left out could be good performers in the prediction of drought 

effects. Computational power permitting, the model space could be brute-forced as a 

whole in the realization of all possible predictive models for drought effects. 

5.6 Opportunities for Operational drought monitoring 

The opportunity for operational drought monitoring from this research can be viewed 

in two aspects. First, the predictive model can be used with some lead time for drought 

response planning. The predictions being for both drought severity and drought effects 

make for the incorporation of ground truths in both the monitoring and prediction of 

drought. Second, is the fact that the study used multiple indicators and multiple indexes 

in the prediction of future drought conditions using multiple models whose 

performance was investigated based on multiple ensemble methods. 

The approach to prediction using model ensembles overcomes the tendency of 

champion models to lose predictive power as was illustrated with the case of the 

champion SVR model that lost performance from an R2 of 0.83 to 0.78 between 
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validation and test datasets. Even in the case of the SVR model, the second-best model 

in training and validation was able to maintain performance at an R2 of 0.83 in both 

validation and testing datasets. Ensembling overcomes this limitation of the choice of 

a single best performer model and offers better predictive power. Such highly 

predictive and stable models realized from model ensembling build confidence in 

model outputs especially in real-life applications that involve resource allocations. 

5.7 Future Work 

One critical variable for hydrological drought that was not included in the study but 

provides for a future opportunity is streamflow index. The streamflow index was not 

used as a result of the non-existence of large water bodies in the study area except for 

Turkana county.  

The section on the limitations of the study documented an opportunity in the 

development of multiple periods for predictions through longer lags of the variables. 

Sample periods would, for example, be 6 months and 12 months lead times for better 

drought preparedness. 

An additional opportunity for enhancement would be to work with the players in the 

food security sectors to document most of the indicators that are used in food security 

assessment and that are deemed important for drought monitoring. Augmenting the 

identified socio-economic data with those from food security would offer longer-term 

time series data. 

Finally, models predicting multiple aspects of the effects of droughts like say prices 

together with malnutrition and possibly others like crop yields would be a natural 

progression of this study.  
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Appendixes 

Appendix A: The getImageWeights function 

 The getImageWeights function is used to convert the VI Usefulness values to 

corresponging weights for image smoothing. 

 

bitShift<-2 

bitMask<-15 

 

 

VIqual   <- raster(ncol=10,nrow=10) 

VIqual[] <- bit 

viu      <- extractBits(VIqual,bitShift,bitMask) 

 

GetImageWeighs <- function(x,minthres=3,maxthres=7) 

{ 

  maxthres <- maxthres - (minthres-1) # apply shift also to maxthres 

   

  x <- x-minthres # shift vector 

  x[x < 0] <- 0 

  x[x >= maxthres] <- maxthres 

   

  # create weights 

  x <- ((-1) * (x - maxthres))/maxthres 

  return(x) 

} 

 

#Use of function 

weights <- calc(viu,fun= getImageWeights) 

plot(weights) 
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Appendix B: Lag-time performance of the models (GAM & ANN) 

The study built 102 models using the General Additive Model (GAM) technique. The 

models were for 1, 2 and 3-month lags on 34 unique model variables. We present the 

analysis of the lag time performance of the GAM and ANN approaches, assuming the 

case that the ANN method was also run on the initial set of models as the GAM 

technique. 

1. GAM Model performance by lag time 

The comparison of the lag-based performance of the GAM models ordered by their 

performance in 1-month lag is provided in Figure B1. A summary of the descriptive 

statistics of the models based on lag time is presented in Figure B1. 

 

Figure B1. Lag-based performance of the GAM models. The 1-month lags are in 

blue lines, the 2-month lags in orange lines and 3-month lags in grey. 

The models build using 1-month lag variables are shown to perform better than the 2-

month and 3-month lags except in 8 out of the 34 cases when 2-month lag time models 

outperform the 1-month lag models. Even in these 8 cases, the performance of the 2-

month lags was still below R2 of 0.5. 
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Table B1: Summary of model performance by lag time 

Statistic Lag1 Lag2 Lag3 

Mean 0.62 0.44 0.25 

Median 0.78 0.49 0.27 

Range 0.76 0.47 0.24 

Minimum 0.09 0.13 0.09 

Maximum 0.85 0.61 0.33 

From Table B1, a summary of performance of all the GAM models shows that 1-month 

prediction has the best performance as compared to the 2-3 months prediction ahead. 

Despite posting the highest range, 1-month predictions still post a mean performance 

of R2=0.62 as compared to 0.44 and 0.25 for 2-month and 3-month lag times, 

respectively. 

2. ANN Model performance by lag time 

The study proceeded, in the test of assumptions, to run the ANN process on the entire 

set of models in the ANN process. A summary of the results is provided following on 

the same set as the GAM models. 

In training, as measured by the performance in the 30% (validation) dataset portion of 

the training data, the performance of the ANN models is as shown in Figure B2. A 

summary of the descriptive statistics of the ANN models is provided in Table B2. 

 

 

Figure B2. Lag-based performance of the full set (102) ANN models. The 1-month 

lags are in blue lines, the 2-month lags in orange lines and 3-month lags in grey. 
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From Figure B2, it is shown that for each of the models, predictions 1-month ahead 

outperform those for 2-month and 3-month ahead except for the last cases 3 cases 

(models 32-34) when predictions 2-month ahead are better. At no point does any model 

have its predictions 3-month ahead out-perform any of the short time period 

predictions. 

Table B2: Summary of model performance by lag time 

Statistic Lag 1 Lag 2 Lag 3 

Mean 0.60 0.36 0.15 

Median 0.76 0.38 0.15 

Range 0.76 0.40 0.22 

Minimum 0.07 0.11 0.03 

Maximum 0.83 0.51 0.25 

The predictions 1-month ahead post the highest range but still end up recording the 

highest mean of the lagged predictions. At an average R2 of 0.6 for all the 102 models, 

the predictions 1-month ahead are judged predictive enough for use in an operational 

ex-ante system. The best model for prediction 1-month ahead differs from the best 

model for 2-month and 3-month ahead predictions. Both models have the variable 

VCIDekad while RFE for the predictions 1-month ahead and SPI1M for both 

predictions 2-months and 3-months ahead. 

Appendix C: Full-list of the performance of the pre-study GAM and ANN models 

The full list of GAM models is presented in Table C3 while that of ANN models is 

presented in Table C4 respectively. 

Table C3. GAM models in decreasing order of R2 with the overfit index provided. 

No Model 
R2  

Training  

R2  

Validation 

Overfit 

Index 
Overfit Lag Time 

1 VCIDekad_lag1+SPI1M_lag1 0.86 0.85 0.01 No Lag1 

2 VCIDekad_lag1+SPI3M_lag1 0.86 0.85 0.01 No Lag1 

3 VCIDekad_lag1+RFE1M_lag1 0.85 0.85 0.01 No Lag1 

4 VCI1M_lag1+SPI3M_lag1 0.85 0.84 0.01 No Lag1 

5 VCI1M_lag1+SPI1M_lag1 0.85 0.84 0.01 No Lag1 

6 VCI1M_lag1+RFE1M_lag1 0.85 0.84 0.01 No Lag1 

7 VCIDekad_lag1+RCI1M_lag1 0.85 0.84 0.01 No Lag1 

8 VCI1M_lag1+RCI1M_lag1 0.84 0.83 0.01 No Lag1 
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9 VCIDekad_lag1+RCI3M_lag1 0.84 0.83 0.01 No Lag1 

10 VCIDekad_lag1+RFE3M_lag1 0.84 0.83 0.01 No Lag1 

11 VCI1M_lag1+RCI3M_lag1 0.84 0.83 0.01 No Lag1 

12 VCI1M_lag1+RFE3M_lag1 0.83 0.83 0.01 No Lag1 

13 VCI3M_lag1+SPI3M_lag1 0.82 0.82 0.01 No Lag1 

14 VCIDekad_lag1 0.81 0.8 0.01 No Lag1 

15 VCI3M_lag1+RCI3M_lag1 0.81 0.8 0.01 No Lag1 

16 VCI1M_lag1 0.81 0.8 0.01 No Lag1 

17 VCI3M_lag1+SPI1M_lag1 0.81 0.79 0.01 No Lag1 

18 VCI3M_lag1+RCI1M_lag1 0.78 0.77 0.01 No Lag1 

19 VCI3M_lag1+RFE3M_lag1 0.78 0.77 0.01 No Lag1 

20 VCI3M_lag1+RFE1M_lag1 0.78 0.76 0.01 No Lag1 

21 VCI3M_lag1 0.72 0.69 0.02 No Lag1 

22 VCIDekad_lag2+SPI1M_lag2 0.61 0.61 0 No Lag2 

23 VCI1M_lag2+SPI1M_lag2 0.6 0.6 0 No Lag2 

24 VCIDekad_lag2+RFE1M_lag2 0.58 0.58 0 No Lag2 

25 VCI1M_lag2+RFE1M_lag2 0.58 0.57 0 No Lag2 

26 VCI1M_lag2+SPI3M_lag2 0.57 0.56 0.01 No Lag2 

27 VCIDekad_lag2+SPI3M_lag2 0.57 0.56 0.01 No Lag2 

28 VCI3M_lag2+SPI1M_lag2 0.56 0.56 0 No Lag2 

29 VCIDekad_lag2+RCI1M_lag2 0.56 0.55 0.02 No Lag2 

30 VCI3M_lag2+SPI3M_lag2 0.55 0.55 0 No Lag2 

31 VCI1M_lag2+RCI1M_lag2 0.56 0.55 0.02 No Lag2 

32 NDVIDekad_lag1+SPI3M_lag1 0.56 0.54 0.02 No Lag1 

33 VCIDekad_lag2+RCI3M_lag2 0.55 0.54 0.02 No Lag2 

34 VCI1M_lag2+RCI3M_lag2 0.55 0.54 0.02 No Lag2 

35 VCI3M_lag2+RCI3M_lag2 0.53 0.51 0.01 No Lag2 

36 NDVIDekad_lag2+SPI3M_lag2 0.52 0.51 0.01 No Lag2 

37 VCI3M_lag2+RCI1M_lag2 0.51 0.49 0.02 No Lag2 

38 VCI3M_lag2+RFE1M_lag2 0.5 0.49 0.01 No Lag2 

39 NDVIDekad_lag1+RCI3M_lag1 0.51 0.49 0.02 No Lag1 

40 VCI1M_lag2+RFE3M_lag2 0.51 0.49 0.02 No Lag2 

41 VCIDekad_lag2+RFE3M_lag2 0.51 0.49 0.02 No Lag2 

42 SPI3M_lag2 0.49 0.49 0 No Lag2 

43 SPI3M_lag1 0.5 0.48 0.02 No Lag1 

44 NDVIDekad_lag2+RCI3M_lag2 0.48 0.46 0.02 No Lag2 

45 VCI3M_lag2+RFE3M_lag2 0.44 0.43 0.02 No Lag2 

46 RCI3M_lag2 0.42 0.41 0.01 No Lag2 

47 VCI1M_lag2 0.43 0.4 0.03 No Lag2 

48 VCIDekad_lag2 0.43 0.4 0.03 No Lag2 

49 NDVIDekad_lag1+RFE3M_lag1 0.41 0.39 0.02 No Lag1 

50 RCI3M_lag1 0.41 0.39 0.02 No Lag1 

51 NDVIDekad_lag2+SPI1M_lag2 0.4 0.37 0.03 No Lag2 



305 

 

52 VCIDekad_lag3+SPI1M_lag3 0.35 0.33 0.01 No Lag3 

53 VCI1M_lag3+SPI1M_lag3 0.34 0.33 0.01 No Lag3 

54 NDVIDekad_lag2+RFE3M_lag2 0.35 0.33 0.02 No Lag2 

55 VCI3M_lag3+SPI1M_lag3 0.33 0.32 0.01 No Lag3 

56 VCI3M_lag2 0.33 0.31 0.02 No Lag2 

57 RFE3M_lag1 0.32 0.31 0.01 No Lag1 

58 NDVIDekad_lag3+SPI3M_lag3 0.33 0.31 0.02 No Lag3 

59* NDVIDekad_lag2+RCI1M_lag2 0.35 0.31 0.05 Yes Lag2 

60 VCI1M_lag3+SPI3M_lag3 0.32 0.31 0.02 No Lag3 

61 VCI3M_lag3+SPI3M_lag3 0.32 0.31 0.01 No Lag3 

62 VCIDekad_lag3+SPI3M_lag3 0.32 0.31 0.01 No Lag3 

63 NDVIDekad_lag2+RFE1M_lag2 0.34 0.31 0.03 No Lag2 

64 SPI3M_lag3 0.31 0.3 0.02 No Lag3 

65 SPI1M_lag2 0.32 0.29 0.03 No Lag2 

66 NDVIDekad_lag3+RCI3M_lag3 0.31 0.29 0.02 No Lag3 

67 NDVIDekad_lag1+SPI1M_lag1 0.31 0.29 0.03 No Lag1 

68 VCI1M_lag3+RCI3M_lag3 0.3 0.28 0.02 No Lag3 

69 VCI3M_lag3+RCI3M_lag3 0.3 0.28 0.02 No Lag3 

70 VCIDekad_lag3+RCI3M_lag3 0.3 0.28 0.02 No Lag3 

71 RFE3M_lag2 0.29 0.28 0.01 No Lag2 

72 VCIDekad_lag3+RFE1M_lag3 0.31 0.28 0.03 No Lag3 

73 VCI1M_lag3+RFE1M_lag3 0.31 0.28 0.03 No Lag3 

74 NDVIDekad_lag3+SPI1M_lag3 0.3 0.28 0.02 No Lag3 

75 VCIDekad_lag3+RCI1M_lag3 0.29 0.27 0.02 No Lag3 

76 VCI1M_lag3+RCI1M_lag3 0.29 0.27 0.02 No Lag3 

77 VCI3M_lag3+RFE1M_lag3 0.3 0.27 0.03 No Lag3 

78 VCI3M_lag3+RCI1M_lag3 0.28 0.26 0.02 No Lag3 

79 RCI3M_lag3 0.28 0.26 0.02 No Lag3 

80 NDVIDekad_lag1+RCI1M_lag1 0.28 0.26 0.02 No Lag1 

81 VCIDekad_lag3+RFE3M_lag3 0.25 0.24 0.01 No Lag3 

82 VCI1M_lag3+RFE3M_lag3 0.25 0.23 0.01 No Lag3 

83 NDVIDekad_lag1+RFE1M_lag1 0.26 0.23 0.02 No Lag1 

84 SPI1M_lag3 0.25 0.23 0.02 No Lag3 

85 VCI3M_lag3+RFE3M_lag3 0.24 0.23 0.02 No Lag3 

86 NDVIDekad_lag3+RCI1M_lag3 0.24 0.22 0.02 No Lag3 

87* RCI1M_lag2 0.25 0.21 0.04 Yes Lag2 

88 RFE1M_lag2 0.24 0.21 0.03 No Lag2 

89 NDVIDekad_lag3+RFE1M_lag3 0.24 0.21 0.03 No Lag3 

90 NDVIDekad_lag3+RFE3M_lag3 0.23 0.2 0.02 No Lag3 

91 RFE3M_lag3 0.21 0.19 0.02 No Lag3 

92 NDVIDekad_lag1 0.22 0.19 0.03 No Lag1 

93 VCI1M_lag3 0.19 0.18 0.01 No Lag3 

94 VCIDekad_lag3 0.19 0.18 0.01 No Lag3 
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95 RCI1M_lag3 0.19 0.17 0.02 No Lag3 

96 RFE1M_lag3 0.2 0.17 0.03 No Lag3 

97 SPI1M_lag1 0.17 0.15 0.03 No Lag1 

98 VCI3M_lag3 0.15 0.13 0.02 No Lag3 

99 NDVIDekad_lag2 0.16 0.13 0.03 No Lag2 

100 RCI1M_lag1 0.13 0.12 0.01 No Lag1 

101 RFE1M_lag1 0.11 0.09 0.02 No Lag1 

102 NDVIDekad_lag3 0.11 0.09 0.02 No Lag3 
1 The overfit models are marked with * on the column No. 

The GAM models have only 2 out of 102 (under 2%) of models judged as overfitting. 

This is as compared to the ANN models in Table C4 that indicates 64 out of 102 models 

losing performance in validation by more than an R2 of 0.03 as compared to their 

performance in training. 

Table C4. ANN models in decreasing order of R2 with the overfit index provided. 

No Model 
R2 

Training 

R2  

Validation 

Overfit 

Index 
Overfit 

Lag 

Time 

1 VCIDekad_lag1+RFE1M_lag1 0.84 0.83 0.01 No 1 

2 VCI1M_lag1+RFE1M_lag1 0.84 0.83 0.01 No 1 

3 VCIDekad_lag1+SPI1M_lag1 0.84 0.82 0.02 No 1 

4 VCIDekad_lag1+SPI3M_lag1 0.84 0.82 0.02 No 1 

5 VCIDekad_lag1+RCI3M_lag1 0.84 0.82 0.02 No 1 

6 VCI1M_lag1+SPI3M_lag1 0.84 0.82 0.02 No 1 

7 VCI1M_lag1+RCI3M_lag1 0.84 0.82 0.02 No 1 

8 VCI1M_lag1+SPI1M_lag1 0.84 0.82 0.02 No 1 

9 VCIDekad_lag1+RCI1M_lag1 0.82 0.81 0.02 No 1 

10 VCI1M_lag1+RCI1M_lag1 0.82 0.80 0.02 No 1 

11 VCIDekad_lag1+RFE3M_lag1 0.82 0.80 0.02 No 1 

12 VCI1M_lag1+RFE3M_lag1 0.81 0.79 0.02 No 1 

13 VCIDekad_lag1 0.79 0.78 0.01 No 1 

14 VCI1M_lag1 0.78 0.77 0.01 No 1 

15 VCI3M_lag1+SPI3M_lag1 0.79 0.77 0.03 No 1 

16 VCI3M_lag1+RFE1M_lag1 0.77 0.77 0.01 No 1 

17 VCI3M_lag1+RCI3M_lag1 0.79 0.76 0.03 No 1 

18 VCI3M_lag1+RCI1M_lag1 0.77 0.75 0.02 No 1 

19* VCI3M_lag1+SPI1M_lag1 0.78 0.74 0.04 Yes 1 

20 VCI3M_lag1+RFE3M_lag1 0.74 0.72 0.02 No 1 

21 VCI3M_lag1 0.68 0.66 0.02 No 1 

22* NDVIDekad_lag1+SPI3M_lag1 0.60 0.57 0.04 Yes 1 

23* NDVIDekad_lag1+RCI3M_lag1 0.59 0.54 0.05 Yes 1 

24* VCI1M_lag2+SPI1M_lag2 0.57 0.51 0.06 Yes 2 

25* VCIDekad_lag2+SPI1M_lag2 0.58 0.51 0.07 Yes 2 

26* VCIDekad_lag2+SPI3M_lag2 0.54 0.51 0.04 Yes 2 

27* VCI1M_lag2+SPI3M_lag2 0.56 0.49 0.07 Yes 2 
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28* VCIDekad_lag2+RCI1M_lag2 0.53 0.47 0.06 Yes 2 

29* VCIDekad_lag2+RFE1M_lag2 0.52 0.47 0.06 Yes 2 

30* VCI1M_lag2+RCI1M_lag2 0.53 0.46 0.07 Yes 2 

31* VCI1M_lag2+RCI3M_lag2 0.53 0.46 0.08 Yes 2 

32* VCI1M_lag2+RFE1M_lag2 0.53 0.46 0.07 Yes 2 

33* VCIDekad_lag2+RCI3M_lag2 0.52 0.45 0.07 Yes 2 

34* VCI3M_lag2+SPI3M_lag2 0.52 0.44 0.08 Yes 2 

35* VCI3M_lag2+SPI1M_lag2 0.50 0.44 0.06 Yes 2 

36* SPI3M_lag1 0.47 0.43 0.03 Yes 1 

37* NDVIDekad_lag2+SPI3M_lag2 0.48 0.43 0.05 Yes 2 

38 SPI3M_lag2 0.42 0.42 0.00 No 2 

39* VCI3M_lag2+RCI3M_lag2 0.49 0.40 0.09 Yes 2 

40* NDVIDekad_lag2+RCI3M_lag2 0.45 0.40 0.05 Yes 2 

41* VCI3M_lag2+RCI1M_lag2 0.51 0.39 0.12 Yes 2 

42* RCI3M_lag1 0.43 0.39 0.04 Yes 1 

43* VCI3M_lag2+RFE1M_lag2 0.47 0.38 0.09 Yes 2 

44* NDVIDekad_lag1+RFE3M_lag1 0.47 0.37 0.09 Yes 1 

45* VCIDekad_lag2+RFE3M_lag2 0.46 0.37 0.09 Yes 2 

46* VCI1M_lag2+RFE3M_lag2 0.46 0.37 0.09 Yes 2 

47 RCI3M_lag2 0.38 0.37 0.01 No 2 

48* NDVIDekad_lag1+SPI1M_lag1 0.43 0.36 0.06 Yes 1 

49* VCI1M_lag2 0.39 0.36 0.03 Yes 2 

50* VCIDekad_lag2 0.39 0.36 0.03 Yes 2 

51* NDVIDekad_lag2+SPI1M_lag2 0.39 0.32 0.07 Yes 2 

52* NDVIDekad_lag1+RCI1M_lag1 0.35 0.32 0.03 Yes 1 

53* VCI3M_lag2+RFE3M_lag2 0.41 0.29 0.12 Yes 2 

54 NDVIDekad_lag1 0.28 0.27 0.01 No 1 

55 RFE3M_lag1 0.27 0.26 0.01 No 1 

56* NDVIDekad_lag1+RFE1M_lag1 0.34 0.26 0.08 Yes 1 

57* VCIDekad_lag3+SPI1M_lag3 0.31 0.25 0.06 Yes 3 

58 SPI1M_lag2 0.26 0.24 0.02 No 2 

59* VCI3M_lag2 0.28 0.23 0.05 Yes 2 

60* VCIDekad_lag3+SPI3M_lag3 0.30 0.23 0.07 Yes 3 

61* VCI1M_lag3+SPI1M_lag3 0.31 0.23 0.08 Yes 3 

62* VCI1M_lag3+SPI3M_lag3 0.31 0.23 0.08 Yes 3 

63* NDVIDekad_lag2+RCI1M_lag2 0.31 0.23 0.09 Yes 2 

64* VCI3M_lag3+SPI3M_lag3 0.28 0.23 0.06 Yes 3 

65* NDVIDekad_lag2+RFE3M_lag2 0.31 0.22 0.10 Yes 2 

66 SPI3M_lag3 0.23 0.22 0.01 No 3 

67* NDVIDekad_lag3+SPI3M_lag3 0.27 0.21 0.06 Yes 3 

68* VCI3M_lag3+SPI1M_lag3 0.32 0.20 0.12 Yes 3 

69 RCI1M_lag2 0.20 0.19 0.01 No 2 

70* NDVIDekad_lag2+RFE1M_lag2 0.24 0.19 0.05 Yes 2 

71* RFE3M_lag2 0.23 0.19 0.05 Yes 2 

72* NDVIDekad_lag3+RCI3M_lag3 0.27 0.18 0.09 Yes 3 

73 SPI1M_lag3 0.20 0.18 0.02 No 3 

74* NDVIDekad_lag3+SPI1M_lag3 0.27 0.17 0.10 Yes 3 

75* VCI1M_lag3+RCI3M_lag3 0.25 0.17 0.08 Yes 3 
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76* RCI3M_lag3 0.20 0.16 0.04 Yes 3 

77* VCI3M_lag3+RCI3M_lag3 0.27 0.16 0.11 Yes 3 

78* VCIDekad_lag3+RCI1M_lag3 0.27 0.16 0.11 Yes 3 

79* VCI1M_lag3+RFE1M_lag3 0.23 0.15 0.07 Yes 3 

80* VCI1M_lag3+RFE3M_lag3 0.21 0.15 0.06 Yes 3 

81* VCI3M_lag3+RCI1M_lag3 0.30 0.14 0.15 Yes 3 

82* VCIDekad_lag3+RCI3M_lag3 0.27 0.14 0.12 Yes 3 

83* VCI1M_lag3+RCI1M_lag3 0.30 0.14 0.16 Yes 3 

84* VCIDekad_lag3+RFE1M_lag3 0.24 0.14 0.10 Yes 3 

85* NDVIDekad_lag3+RFE3M_lag3 0.19 0.13 0.06 Yes 3 

86 RFE1M_lag2 0.14 0.13 0.01 No 2 

87* VCI3M_lag3+RFE1M_lag3 0.20 0.13 0.07 Yes 3 

88* VCIDekad_lag3+RFE3M_lag3 0.22 0.13 0.09 Yes 3 

89* VCI3M_lag3+RFE3M_lag3 0.19 0.12 0.07 Yes 3 

90 RFE3M_lag3 0.14 0.12 0.01 No 3 

91 VCIDekad_lag3 0.14 0.11 0.03 No 3 

92* NDVIDekad_lag3+RCI1M_lag3 0.18 0.11 0.07 Yes 3 

93 SPI1M_lag1 0.14 0.11 0.02 No 1 

94 RCI1M_lag1 0.11 0.11 (0.00) No 1 

95 NDVIDekad_lag2 0.13 0.11 0.02 No 2 

96* RCI1M_lag3 0.13 0.10 0.03 Yes 3 

97* VCI1M_lag3 0.15 0.10 0.05 Yes 3 

98 VCI3M_lag3 0.09 0.07 0.02 No 3 

99 RFE1M_lag1 0.07 0.07 (0.00) No 1 

100* NDVIDekad_lag3+RFE1M_lag3 0.14 0.06 0.08 Yes 3 

101 RFE1M_lag3 0.08 0.06 0.02 No 3 

102 NDVIDekad_lag3 0.05 0.03 0.01 No 3 

 


