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Operational Definition of Terms

For a better understanding of this thesis, the key terms in the study are given the

following operational definitions:

Drought Severity: Denotes the vegetation deficit as based on a reference threshold and
typically have values between 0 and 100 in this study with a reference sent at 35 to
denote non-drought conditions in the classification of drought. Despite the implied
similarity between drought severity and drought intensity which is the ratio of
vegetation deficit and the duration of the drought given that we a monthly frequency
of drought monitoring, we adopt drought severity to imply both in the context of this
study.

Predictive drought monitoring: Is used to imply an operational drought monitoring
system that has both aspects of drought monitoring and forecasting of future drought
conditions. For every given frequency of monitoring, actual drought conditions are

provided as well as a forecast of future conditions.
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Abstract

Droughts, with their increasing frequency of occurrence, especially in the Greater Horn
of Africa (GHA), continue to negatively affect lives and livelihoods. For example, the
2011 drought in East Africa caused massive losses documented to have cost the
Kenyan economy over US$ 12.1 billion. Consequently, the demand is ever-increasing
for ex-ante drought early warning systems with not only the ability to offer drought
forecasts with sufficient lead times but that are both stable and are of high bias. In this
study, we build predictive models one month ahead for both drought severity and
drought effects. Vegetation condition index aggregated over 3 months (VCI3M) and
nutrition of children below 5 years as indicated by Mid-Upper arm circumference
(MUAC) are used as the proxy variables for drought severity and drought effects
respectively. We present the performance of both homogeneous and heterogeneous
model ensembles in the prediction of drought severity and drought effects using the
study case techniques of artificial neural networks (ANN) and support vector
regression (SVR). For each of the homogeneous and heterogeneous model ensembles,
we investigate the performance of three model ensembling approaches of simple
averaging, ranked weighted averaging and model stacking. Applying the approach of
over-produce then select, the study used 17 years of remote sensing data and 10 years
of socio-economic data to build 244 individual ANN and SVR models from which 111
models were selected for the building of the model ensembles. The results indicate the
superiority of the heterogeneous model ensembles to both homogeneous model
ensembles and individual champion models. Model stacking as applied in
heterogeneous model ensembles is shown to be superior to both simple average and
weighted average ensembles. The heterogeneous stacked model ensemble recorded an
R? of 0.94 in the prediction of drought severity as compared to an R? of 0.83 and R? of
0.78 for both ANN and SVR champion models respectively. The superiority of the
heterogeneous stacked ensemble is extended to classification in which accuracy of
80% is recorded as compared to 69% and 71% for the ANN and SVR champion models
respectively. Additionally, the poor performance of champion models in outlier classes

is mitigated on by the use of stacked heterogeneous model ensembles. We conclude
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that despite the computational resource intensiveness of the model ensembling
approach to drought prediction, the returns in terms of model performance is worth the
investment, especially given the recent exponential increase in computational power.
We nevertheless advise evaluating the use of more techniques in the model ensembles
and the building of many more ensembles using divergent ensemble sizes to settle the
question of performance of model ensembles fully. To further increase the utility of
drought prediction, we also recommend the study of more extended forecasting periods
(up to 6 months) and to estimate how much this would degrade the prediction skill of

the ensemble models.

Keywords: general additive model; drought risk management; early warning

system; ensemble; over-fitting; model space reduction; support vector regression.
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Chapter 1: INTRODUCTION

1.1 Background

Droughts have been documented to have effects that can be viewed from different
perspectives. The social, environmental and economic effects of drought are noted to
shape the response of both research and policy. In this section, we introduce drought
from the different perspectives including economic, social, environmental, policy and

research views of the effects of droughts.
1.1.1 The Economic View

Drought is described by Below, Grover-Kopec & Dilley (2007) and Olang et al. (2013)
as one of the greatest impediments to development in Africa due to reliability on rain-
fed agriculture and high vulnerabilities as a result of poverty. Much of the continent is
dependent on rain-fed agriculture, which makes it particularly susceptible to climate
variability (Di Falco & Veronesi, 2013).

Drought economic losses range from those resulting from poor agricultural production
of both crop and livestock, loss of revenue from agricultural taxes, poor power
production from hydro-power dams, interference with transportation waterways,
timber and lumbering losses and strain on institutions that offer both credit and credit
risk insurance (Ding, Hayes & Widhalm, 2011; Wilhite & Glantz, 1985).

Several economic impacts of drought are documented in literature. The World Bank
(2011) documents that the prolonged Kenyan drought of 2008-2011 resulted in
combined damages and losses of up to US$ 12.1 billion by 2011. The Kenya drought
is documented to have left 3.7 million people faced with hunger. Howitt, Medellin-
Azuara & Lund (2014) documents that the overall effect of 2014 California Central
Valley drought is estimated at nearly US$ 2.2 billion with about 17,100 full time and
seasonal job losses. Adams et al. (2002) suggest that the 2002-2003 Australia drought
and its flow-on effects would have had up to a 1.6% loss in gross domestic product

(GDP). In the Kenya, Australia and California droughts, for example, multiple sectors



were affected including but not limited to crop agriculture, livestock agriculture, water,

nutrition, education and security.
1.1.2 The Social View

Socially, drought has several effects ranging from psychological impacts as a result of
the loss of key assets, especially among pastoral communities. Other social effects
include: health and nutrition problems resulting from limited access to water and food,
increased threats of fire and need for constant migrations that lead to interference with
family setups. Wilhite, Svoboda & Hayes (2007), for example, documents the
complexity of drought impacts and identifies conflicts especially in the access to water
resources. At the very extreme, droughts have resulted in deaths of people and animals
in addition to the increase in workloads on the society, food insecurity and the possible
impacts of malnutrition (Keshavarz, Karami & Vanclay, 2013).

In the East African context, and in recent times, populations and communities are
increasingly faced with the probability of disasters arising from drought as a hazard.
The droughts tend to be more frequent, longer and more severe in East Africa and the
Greater Horn of Africa (GHA) as documented in Gebremeskel et al. (2019). These
droughts have had the result that communities have their livelihoods disrupted to the
extent that they are then unable to use own resources to cope with the loss

consequences.

Popularly, the social and economic impacts of drought are always lumped together
with the use of the terminology “socio-economic” impacts as both hold the view of the
effects of droughts on lives and livelihoods. The use of the socio-economic
terminology is for example in Musolino, de Carli & Massarutto (2017) and Chand &
Biradar (2017).

1.1.3 The Environmental View

The elements of the environment, including plants, animals, climate, soils, rocks and
many others are vastly affected by drought conditions. Droughts, therefore, affect both
different aspects of the ecosystem and the environment. In the most, and without

guarantee, some these elements recover after droughts. Permanent destruction occurs



when desertification and loss of wildlife occurs. The loss of species is for example
documented in Kala & Silori (2013) to most common amongst species that have low
population sizes coupled with a narrow range of distribution. The destruction of both
aquaculture and wildlife habitats is, therefore, a common consequence of drought.

Wind erosion of bare soils, wildlife migration, loss of wetlands, stress to water sources
and even depletion of water resources are some of the few impacts of drought on the

environment as reviewed in Kala (2017).
1.1.4 The Policy View

There has been an increase in global concern over the ineffectiveness of current
approaches to drought risk management (DRM) that have been largely characterized
by the crisis management approach. Such approaches are reactive to the occurrence of
droughts (Wilhite, Sivakumar, & Pulwarty, 2014). The concern is the need for a
structured and proactive approach to DRM. The need for DRM has for example seen
initiatives such as the multi-stakeholder High-level Meeting on National Drought
Policy (HMNDP) in 2013. The HMNDP aimed to identify science-based actions
capable of addressing issues in DRM and to outline possible strategies for enhanced
coping capacities (Sivakumar et al., 2014). Strategic frameworks like the Drought
Resilient and Prepared Africa (DRAPA) are a direct response to the HMNDP initiative
to build an effective DRM and to build drought resilience at multiple levels:

continental, regional, national, or local/community levels for Africa.

Directly from the above realization of the need for structured and institutionalized
DRM as a result of losses associated with droughts, most countries have adopted policy
considerations meant to contain drought impacts. The need for counties to adopt
national level drought policies is for example championed in Sivakumar et al. (2011).
The key outcome of the policy response to DRM is the reduction of drought disaster
risks through structured programmatic activities by countries, regional bodies and even

international bodies.

Locally, the Kenya case that was previously characterized by crisis response and

uncoordinated management approaches to droughts and their impacts has since seen a



policy shift in the three main fronts including; the mainstreaming of drought and
drought risk management into development planning, prioritization of drought
monitoring and the formulation of relevant policies and institutions for drought risk

management. Such initiatives include:

e The 2010 Constitution of Kenya, CoK that outlines in article 43 the citizen’s
right to be free from hunger and to have adequate food of acceptable quality
(Constitution, 2010)

e The establishment of the National Drought Management Authority (NDMA)
in 2011 as a specialized institution for DRM with the mandate to coordinate all
matters relating to DRM in Kenya (Klisch, Atzberger & Luminari, 2015).

e The inclusion of the Ending Drought Emergencies (EDE) as part of the Second
Medium Term Plan (MTP I11) of the Kenya Vision 2030 that anchors DRM and
the goal of EDE long-term development blueprint for Kenya.

1.1.5 The Research and Technical View

Research in drought has been an ongoing initiative that is gaining popularity with
increasing focus and investments. The Drought Cycle Management model (DCM), the
classic variant of which is given in Figure 1.1, is the popular drought management
model of choice (Oxfam, 2009; Pantuliano & Wekesa, 2008). The DCM views drought
as a natural disaster that is both slow in onset and that has effects in phases. Through
the DCM (Figure 1.1), drought is characterized to have four phases: Normal,
Alert/Alarm, Emergency and Recovery. The current practice in drought monitoring
has however seen the extension from the initial four phases to the current five phases

as a result of the separation of the drought alert from the alarm stages.
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Figure 1.1: Drought Management Cycle (Oxfam, 2009).
Different monitoring systems have different definitions of the drought monitoring
phases. An example in case is the Kenyan cases where the National Drought
Management Authority (NDMA) that subscribes to the five phases definition outlined
above. Even though Figure 1.1 seems to suggest that the transition between the stages

is linear, in practical application, the transitions are back and forth between the stages.

The research areas that have emerged out of the DCM model and that are used in the
management of drought currently are Drought Early Warning Systems (DEWS),

drought preparedness and drought response. These research areas are as briefly

discussed:
1. Drought Early Warning Systems (DEWS)

Drought Early Warning Systems (DEWS) are the backbone of drought
monitoring and management. The increasing popularity of predictive DEWS is
based on their ability to aid stakeholders to react before a crisis occurs
especially in the light of increased damages from droughts (Adede et al.,
2019b). The implementation and deployment of DEWS is made possible by

different information management approaches. Despite the difference in



approaches to their implementation, effective DEWS should be punctuated by
the ability to assess, communicate and trigger action. Despite their reliance on
technology, DEWS should remain accurate, simple, reliable, flexible and
timely in the provision of actionable information as documented in Magno et
al. (2018) and in Motha, Wilhite & Wood (2011). Information management for
drought monitoring should be a continuous undertaking across all the phases

of drought.
Drought Preparedness

Drought preparedness is a wider concept within drought risk management
(DRM) that includes drought monitoring and forecasting, vulnerability
mitigation, resilience building, impact assessments and response planning
(Gutiérrez et al., 2014). Drought preparedness, therefore, involves long-term
undertakings of development activities and emergency planning that are aimed
at reducing vulnerabilities of communities to drought effects. Drought
preparedness is, in effect, the sum-total of pre-disaster, as well as during and
after disaster initiatives. Drought preparedness is thus the focal point of the
disaster risk reduction framework in IGAD (2007) that is presented in Figure
1.2. Closely related to the concept of drought preparedness is drought risk
reduction (DRR) that generally advocates for sufficiency of interventions that
enhance local capacities for disaster prevention and emergency preparedness
to avoid disasters. The approach of disaster risk reduction is for example
adopted in Government of Kenya (2014) for the Kenya Vision 2030’s Ending
Drought Emergencies Common Programme Framework (EDE: CPF).

Drought Response

In drought risk management (DRM), drought response is also referred to as
drought impact mitigation and is the collection of all efforts that aim to mitigate
the impacts of on-going droughts on both lives and livelihoods. A key objective
of drought response is the provision of relief to the affected population,

especially water, food and health care (FAO, 2019). The limitation of drought



response is that the mitigation measures are deployed after drought effects are
felt on lives and livelihoods. There is an increasing tendency to minimize
investments in drought response with the current paradigm shift from crisis to
risk management (Wilhite, 2014).
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( Disaster Risk Management
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Figure 1.2: Disaster risk reduction framework (IGAD, 2007)

1.2 The Current State of the Art and Future Expectations of Drought Early
Warning Systems

The current state of the art is that there is an extensive focus in drought early warning
systems for drought monitoring in most countries. Increasingly, permanent institutions
for drought monitoring are being established within countries, regionally and even
globally. Such institutions for drought risk management include the National Drought
Management Authority (NDMA\) at the local level in Kenya (Oduor, Swift & Birch,
2014), the United Nations Office for Disaster Risk Reduction (UNISDR, 2012) at the
global level and the Intergovernmental Authority on Development (IGAD) (ICPAC,
2007) at the regional level. These local, regional and international institutions are both

engaged in and are offering support in the area of drought monitoring.

The current trends in early warning either involves the use of a single indicator/index,
mostly sourced from one data source like the univariate cases in Klisch & Atzberger
(2016), AghaKouchak & Nakhjiri (2012) and Brown et al. (2015). The use of multiple



indicators is only in a few studies and is not as common. Studies that incorporate
multiple indices include those in Tadesse et al. (2010), Tadesse et al. (2014) and in
Wardlow et al. (2012) that incorporated 11 variables derived from oceanic,
environment, climate and satellite data. Incorporation of remote sensing and ground-
based data collection approaches have been suggested for use in early warning systems
including from the study in Enenkel et al. (2015). Practical implementations or even
the possible deployment of such an integrated approach that uses both remote sensing
data and ground-truthing data is widely missing from literature.

The current state of the art is domiciled in increased losses from natural disasters in
general (Da Silva, 2012). Increase in drought occurrences and damages are also
documented (Howitt et al., 2015; UNISDR, 2012; World Bank, 2011). Howitt et al.
(2015) disaggregate the losses to include a quantification of the economic impact and
job losses of the 2015 California drought. World Bank (2011) documents and
quantifies the losses from the 2008-2011 Kenyan droughts at US$ 12.1 billion. There
have been, however, counter-arguments to the observed increases in loses from natural
disasters. McMullan et al. (2016) assert that after accounting for inflation, population
increase and increase in wealth, the increasingly popular notion of an increasing trend
in losses from disasters disappears. As population increase leads to more lives being
exposed to hazards, increased wealth also ensures more possession is exposed to
drought risk. Inflation, on the other hand, ensures more recent losses are reported in
huge figures as compared to the past. It is, however, the case that the increase in

incidences and losses has seen the proliferation of efforts at drought risk management.

The increase in efforts at drought monitoring has, in general, lead to a spike in the use
of remote sensing technologies and the available vast datasets for drought monitoring.
On the global scale, despite the investments in both drought monitoring and disaster
reduction being on the ascendancy, there still exist prospects for improving on
understanding, monitoring and prediction of droughts (Wood et al., 2015). Equally,
there is a need for drought monitoring systems that take into account practicalities of

areas of interest through the investigation of the actual impact on lives and livelihoods



as a result of drought episodes. There is, therefore, need for ground-based validation

of drought monitoring data initiatives (Bachmair et al., 2016).

The current drought monitoring efforts are thus characterized by overreliance on a
single indicator/ index, specialization in single crop monitoring, non-integration of
socio-economic data to quantify impacts and non-comparison of alternative sources of
drought monitoring data. Most monitoring systems are reliant on single indices like
the vegetation indicator- the Normalized Difference Vegetation Index (NDVI) or have
a reliance on a similar group of indicators like those derived from meteorological
weather station data. A majority of these monitoring systems are also too specialized
with over-concentration on models for monitoring specific phases of droughts like
impact on selected crops without the incorporation of ground-truthing based on actual
drought impacts on the society. The data used in the current monitoring systems are
mostly sourced from single repositories without evaluation being done for

appropriateness of purpose and fit for specific scenarios being undertaken.

The future of Drought Early Warning Systems (DEWS) is, for example, documented
by Enenkel et al. (2015). The ideal DEWS is documented to include the key approaches
of integration of remote sensing and socio-economic data, the thresholding of the
integrated indicators and calibration of the integrated data into a Decision Support
Systems (DSS). The remote sensing data types that could be used within DEWS
include precipitation data, temperature data, evapotranspiration data and vegetation
data. Precipitation data could from both ground-based rain-gauges and satellite-
derived and modelled sources like Climate Hazards Group InfraRed Precipitation with
Station data (CHIRPS) and Tropical Applications of Meteorology using SATellite
(TAMSAT). Vegetation Indices (VIs) are mostly based on the Normalized Difference
Vegetation Index (NDVI). Possible sources for vegetation indices are Moderate
Resolution Imaging Spectroradiometer (MODIS), Land Satellite (LANDSAT),
Advanced Very High-Resolution Radiometer (AVHRR) and SPOT Vegetation among
others (Liu, 2015).



1.3 Problem Statement

There is an increase in both the frequency of droughts and the resulting economic
losses from droughts, especially in the context of the GHA and particularly in Kenya
and the wider East Africa. This spike in drought-related losses has led to the focus on
Drought Risk Management (DRM) systems whose key elements are drought risk

identification, drought monitoring, drought preparedness, and drought mitigation.

While drought risk identification involves the agreement on the definition of droughts
based on some objective parameters, drought risk monitoring is based on the
establishment of appropriate drought early warning systems (EWS) that signal the
advent, progression and even possible cessation of drought events. As advocated by
Mariotti et al. (2013), drought risk identification and drought early warning systems
are the starting points to sound drought risk management that can greatly reduce the

severity of social and economic damage by droughts.

The current drought early warning systems (DEWS) are characterised by four key
features: popularity in the use of a single index, exclusion of the effects of drought,
delayed availability of monitoring products and the tendency to use single techniques

in the prediction of future drought conditions.

The tendency to use a single index for drought monitoring with precipitation the most
used as recommended by WMO (2012). The tendency to use the single index is despite
the proliferation of multiple indexes as reviewed in Su et al. (2017) and in
AghaKouchak et al. (2015) and the segmentation of drought into four phases and hence
types: meteorological, hydrological, vegetation and socio-economic droughts as
documented in Hao, Singh & Xia (2018) and UNOOSA (2015).

The second characterization of the current DEWS is the fact that the aspects of human
livelihoods that define socio-economic droughts are rarely part of these DEWS with
most systems purely reliant on remote sensing data without an element of ground-
truthing like the case in The African Drought Monitor (Sheffield et al., 2008), Klisch
& Atzberger (2016) and the Famine Early Warning System, FEWS NET (Brown et al.,

2015) amongst many other DEWS. The incorporation of socio-economic data as a
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possible ground-truthing in DEWS is advocated for in a few studies including in
Bachmair et al. (2016), Hao, Singh & Xia (2018), Enenkel et al. (2015), Jenkins (2012)
and Massarutto et al. (2013). The study in Hao, Singh & Xia (2018) for example
documents the popularity of prediction of drought signals but with less effort invested
in the prediction of the effects of such droughts on the society. The lack of systems
that predict effects of droughts is the same gap identified in Bachmair et al. (2016) that
surveyed 33 DEWS experts that advocate the inclusion of effects of droughts on the
society as part of drought monitoring.

The third characterization of the state of art DEWS is that the vast implementations of
the DEWS are ex-post or at best near real time (NRT). Existing DEWS thus mostly
provide information at or after the lapse of the periods of monitoring. Moreover, the
realisation of NRT systems is limited by the processing latencies that are inherent in

the satellite-based data on which most of these systems are premised.

The final characterization of existing DEWS is that in addition to the above limitations,
even instances of ex-ante systems mostly follow the common approach of searching
for the single best performer/champion model, often using a single modelling
technique. The use of the single index in a single technique is documented in a majority
of studies with those in Ali et al. (2017) and Khadr (2016) as examples. Generally,
predictive systems realised from the approach of selection of a champion model have
a low predictive capacity that wanes in the prediction of future conditions as
empirically proven in Meade & Islam (1998). Even in cases where multiple techniques
are used, the objective is majorly the choice between competing model building

techniques rather than the realization of synergies from the independent techniques.

From the characterization of the drought monitoring problem and the state of the art,
this research focuses on gaps in the two perspectives to the drought prediction problem:

the data perspective and the modelling process perspective.

1) The data perspective that is replete with data issues and the need for use of
multiple indices covering the entire drought spectrum. With droughts having

different definitions as documented in Lloyd-Hughes (2014), the use of
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multiple indices in drought monitoring and drought prediction is a possible
mitigation to the over-reliance on single-index models. The use of multiple
indices makes sense much more in the face of the availability of many drought
indices appropriate for drought monitoring across the different types of
drought. Multivariate systems demand the identification and processing of the
multiple datasets which is itself not a trivial undertaking (Bunting, 2017). The
assessment of these datasets for appropriateness of purpose and their
conversion to indices responsive to drought would thus be a logical step before
their use for drought monitoring or drought prediction.

2) Modelling process perspective that should not only see the use of multiple
indices across the different types of drought but also aim for highly predictive
models through the harnessing of the different strengths of multiple prediction
techniques. Such predictive systems realized from the combination of multiple
techniques have been advocated to have high predictive performance that

remains stable into the future (Hagedorn, Doblas-Reyes & Palmer, 2005).

The objective of the research is to build the ideal future drought prediction system with
high predictive performance and future stability that also integrates multiple indexes
from all the types of drought including data on effects of drought on society. The higher
predictive performance and stability of the predictive system will be realized through
model ensembling ideally built using multiple drought prediction techniques.
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1.4 Research Objectives
1.4.1 Overall Objective

The overall objective of this research is to build and evaluate the performance of both
homogeneous and heterogeneous models in the prediction of drought severity and

drought effects using remote sensing and socio-economic data.
1.4.2 Specific Objectives

I.  Determine the different biophysical and socio-economic variables that are used
in the monitoring of drought and investigate their relationship with drought.

ii.  Build and evaluate the performance of multiple drought prediction models
using Artificial Neural Networks (ANN) and Support Vector Regression
(SVR) as the case study Machine Learning methods.

iii.  Build and evaluate the performance of homogeneous and heterogeneous
ensemble models of both ANN and SVR in the prediction of drought severity
and drought effects.
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1.5 Research Questions

The research questions are mapped to the research objectives as provided in Table 1.

Table 1. Mapping of research objectives to research questions

Obj — RQ .
No. Objective NG, Research Question
. . . . What are the different biophysical
Di‘;rm'f‘e the r(]jlfr;e'rent ?'%F;hyi;f?l RO1 and socio-economic variables that are
and soclo-economic variables tha used in the monitoring/ prediction of
are used in the monitoring/
01 e drought?
prediction of drought and _ o
investigate their relationship with How do the variables identified for
drought. RQ2 drought monitoring relate with
drought?
What are the multiple models of both
Build and evaluate the performance Artl:;lClaj Neural Networks (A.NN)
of multiple models for drought RQ3 an SUPEOH Vec;[orbR_ei‘g][ewr? N
prediction using Artificial Neural (S_VR) that can be built for t €
02 Networks (ANN) and Support prediction of both drought severity
: and drought effects?
Vector Regression (SVR) as the
Machine Learni .
case studym e?ﬁ ol?se earning What is the performance of the ANN
RQ4  models as compared to SVR models
in the prediction of drought severity?
What is the performance of the ANN
RQ5  models as compared to SVR models
in the prediction of drought effects?
What is the performance of the
Artificial Neural Networks (ANN)
. and Support Vector Regression
Build and evaluate the performance RQ6 (SVR) homogeneous ensemble
of homogeneous and heterogeneous . .
models in the prediction of both
O3  ensemble models of both ANN and drouaht severity and drouaht effects?
SVR in the prediction of drought g y g '
severity and drought effects What is the performance of the ANN
RQ7 and SVR heterogeneous ensemble

models in the prediction of drought
severity and drought effects?

From Table 1, the three research objectives are considered achieved when the research

questions are answered for each. The first objective is a function of both literature

review and data preliminary analysis at the pre-modelling stage. The second objective

is achieved by building multiple ANN and SVR models and choosing which are
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considered predictive of drought. Finally, the third objective considers the building of
homogeneous and heterogeneous model ensembles using different methods and
evaluating their performance with the traditional champion model approach as the
baseline.

1.6 Significance

The study sets out to settle the comparative performance between heterogeneous and
homogeneous model ensembles built using both biophysical and socio-economic data
in the prediction of future drought conditions. The aim is to find out if model
ensembling offers better returns in the prediction of future drought conditions as
compared to the tradition single best model selection approach. The benefits of the
study can thus be reviewed in terms of significance to the wider society and
subsequently to both the research community and the practitioners in drought

monitoring.

The definition of drought in this study is done in terms of vegetation conditions that is
in itself a proxy to agricultural drought. On the other hand, the definition of drought
effects is done in terms of malnutrition conditions for children under five years.
Vegetation conditions closely mirror pasture and browse conditions. The communities
in the study area having their economies mainly driven by pastoralism will relate to
the results of the predictive system developed from this study. Proactive drought
monitoring is bound to ensure minimized losses of both lives and livelihoods as a result
of well-targeted drought interventions that are a product of better-formulated drought
response plans. The collection of household data on drought effects will make for a
ground-level driven monitoring system and given the fact that both predicted quantities

are measured will assure the society on the objectivity of the predictions.

The government will have an opportunity to retune the current drought policies to have
drought prediction as a minimal requirement of the drought early warning systems
(DEWS). Such an opportunity will see the incorporation of policy elements that further
enhance the “no regrets approach” to drought response and hence the possibility of

incorporating intervention funding based on forecasts.
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The practitioners and research community in drought monitoring will, however, be the
greatest beneficiaries of this study. Since the study widely investigates the performance
of ensemble models as compared to the current approach of single champion models
and empirically grounds the superiority of stacked model ensembles, the research
community has an opportunity to develop better predictive models that remain stable
into the future. The study offers three approaches to model ensembling with a set of
metrics to help choose which approach offers the most predictable models. The fact
that the study also builds a model that down-scales spatially makes for an optimal

approach for drought prediction for multiple spatial units.

The automation of model building is perhaps the most useful benefit to practitioners.
With the reduction of human intervention in arriving at the models, objectivity is
amplified and this widens acceptance of the model outputs within the wider research
community. An additional benefit to both researchers and practitioners will be the pre-
processed datasets that arise from this study. Even for cases out of the study area used
for this study, the set of scripts can be shared for download and pre-processing of the
data.

The prediction of socio-economic conditions as a result of future drought conditions
will make for a set of directly actionable outputs out of a drought monitoring system
that is expected to guide both drought preparedness and drought response in a model
that can support feedback to the communities on terms and concepts commonly

understood between them and the practitioners.
1.7 Assumptions
The following are the assumptions that will be made during the study.

i. The chosen data sources for the study were assumed to be available in the future

for any efforts to replicate, extend and/or validate the results of the study.

ii. Transformation of data and selection of variables was undertaken as a part of the
study and is premised on such transformations yielding variables useful in drought

monitoring and the development of predictive models. Some of the
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transformations, to avoid data loss, are done from the data collection point at the

pixel level.

iii. Although we assume that the data sourced from the operational data warehouses
are representative of reality, we carried out an independent test of reasonableness

on the data using statistical analysis methods.

iv. That the chosen area of study, being drought-prone, will continue to exhibit this
tendency in the future and that the results being objectively obtained and
documented lend themselves to generalizability beyond the area of study and into

the future.

1.8 Scope

The main focus of this study was the need for predictive drought models with high
predictive power and that integrate variables on the effects of droughts. The
predictivity of the models is proposed to be achieved through model ensembles on data

covering the selected study area for the period 2001-2017.

The research, therefore, focused on the identification of variables for drought
monitoring, the identification of open access sources of the data, the extraction and
pre-processing of the data. Subsequently, the formulation of ensemble models and the
evaluation of their performance in the prediction of both drought severity and drought
effects were undertaken. We addressed issues of variable selection between competing
datasets, the over-production of models and subsequent selection of model ensemble

membership and the incorporation of both remote sensing and socio-economic data.

The development of the experimental and investigative tools followed a review of
literature and past studies and hence was grounded in theory. Two sets of scripts were
developed. The first, Multisensor Remote Sensing Data Pre-processing (MSRSDP)
tool, was developed as a series of scripts that automated the download and pre-
processing of different remote sensing data. The scrips automatically download,
spatially sub-set, smooth the data and correct for noise in the data and finally

(dis)aggregates the data to a monthly frequency for the experimental phase of the
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study. The second set of scripts were for the development of the individual ANN and

SVR models and their subsequent ensembling using multiple methods.

The modelling tool is scoped to be able to handle multi-sensor data modelling using
multiple approaches. Such proposed approaches include the comparison of
distributions, comparison of correlations and the comparison of seasonally of the data
using seasonally adjusted correlations. For the selection between competing but
duplicative datasets like TAMSAT and CHIRPS, the multiple metrics used included
the spearman’s correlation coefficient, Akaike information criterion (AIC), the relative
importance of variables as partitioned by R? and the use of modelling approaches like

support vector regression (SVR) and general additive models (GAM).

The modelling methodology used for this study integrated an ensemble of ANN and
SVR techniques and investigated the performance of the different methods of the

combination of multiple models in the model ensembles.

The study method did not model on multiple vegetation sensor data since only one
NDVI remote sensing data source was included, together with rainfall data that is a
choice between TAMSAT and CHIRPS. Other datasets included those that influence
hydrological droughts like land surface temperature and evapotranspiration. We
recognize that this approach leaves out other competing sources of remote sensing
data.

1.9 Thesis Overview

The rest of the thesis is organised into chapters as follows: -

e Chapter 2 aims to domicile the twin problems of drought prediction and the use of
model ensembles in the realization of better predictive models. In this chapter, we
define drought as an objectively measurable concept based on the key concepts of
deficiency in precipitation, deviation from historical conditions, occurrence in
space and time, intensity and duration and the idea of progression in drought
conditions. The section also reviews drought monitoring systems that are both ex-
post and ex-ante in nature to identify the remote sensing indicators that have been
used to study the drought phenomenon. The basis for use of both remote sensing
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and socio-economic data in drought monitoring is established and a survey of both
statistical and machine learning approaches carried out. The documentation, in
literature of common methods used to realise highly predictive drought models is
reviewed together with the accompanying algorithms. The ultimate objective of
the chapter is the identification of similar works, gaps and the attendant possible
methods that can be used to make contributions towards the realization of highly
predictive models.

Chapter 3 documents the methodology used in the realization of the objectives of
this research undertaking. This covers the identification and documentation of the
data sources for the different kind of data required for this study and the subsequent
methods of data collection for such data. The appropriate methods for the analysis
as established with the tools and techniques outlined. The chapter presents the
results from the pre-study that was run to establish the viability of both the
methodology and the assumptions made for the study.

Chapter 4 presents the results from the different models developed and evaluated
in the process of the study. The results are presented and discussed to make it clear
on how the research questions are answered. The documentation follows on the
order in which the objectives and research questions were formulated.

Chapter 5 outlines the summary of the major findings and contributions of the
research into the integration of socio-economic data in drought prediction models
and the performance of model ensembles in predictive drought monitoring. This
section documents the limitations of the research, opportunities for practitioners
and highlights the possible points for future research.

Appendices that further support the results of this study are also provided. Such
includes the full list of models developed and the validation for correctness of some

of the assumptions made by the study.
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Chapter 2: LITERATURE REVIEW

2.1 Prelude

The chapter undertakes to identify relevant literature, evaluate the sources and identify
the gaps especially as relates to the prediction of droughts. The section aims to identify
what has been and what has not been investigated, outline the key datasets used, review
how key concepts have been defined and how these concepts have been ultimately
measured. Besides, the section provides evidence on which basis the findings of the
study are supported. Ultimately, this section offers theoretical underpinning for this
research. In it, we define the problem of drought and drought prediction as a specific
type from the general set of prediction problems that are premised on using specific
past examples to generate a broad generalization of the future. A targeted review of

past studies and the trends in drought monitoring is presented in this section.
2.2 Definition of drought

Drought is one of the natural disasters that is the most widespread and strongest felt
even though it is not widely understood due to its causes being as a result of the

interaction of multiple complex factors.

Drought is defined in diverse ways, the common of which is the deficiency in
precipitation over an extended period, usually a season or more, resulting in the
shortage of water causing adverse impacts on vegetation, animals and/ or people and
thus hindering various economic sectors like agriculture, industry, hydropower
generation and recreation sectors (Bordi et al, 2005; Morid, Smakhtin & Bagherzadeh,
2007; Schipper, 2003; UNISDR, 2009). It is noted, however, that drought does not
have a direct one sums it all definition and interpretation as earlier documented in
Palmer (1965) and even recently in Lloyd-Hughes (2014). The view of deficiency of
precipitation, based on the definition of drought above will, therefore, be sector and
time-specific and based on some concept of anomaly/ deviation from some expected

conditions.
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The other aspects noted in the definition of drought include its characterization as the
most complex natural disaster that is however less understood as documented in Morid,
Smakhtin & Bagherzadeh (2007) and Ali et al. (2017). That drought is a complex
natural disaster is attributed to both the difficulty in definition their beginning (onset)
and/or end (off-set) and their tendency to also lead to and be accompanied by other

disasters like extreme heats and wildfires.

As opposed to other disasters, droughts are described as slow on-set hazards and hence
viewed as a creeping phenomenon with which comes the benefit of time that could be
used to undertake effective mitigation and preparedness measures (UNISDR, 2009;
Wilhite, 2006). Droughts are documented to exhibit a rarity in occurrence as compared
to other natural disasters as illustrated in Figure 2.1. For example, from Figure 2.1 it is
clear that drought is indicated to trail other distinct disasters like earthquakes and

floods in the frequency of occurrence by a factor of at least 5.6 (EMDAT, 2012)

sum of Number of disasters (EMDAT (2017)) (reported disasters)

16000
14000
12000
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8000
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4000

2000 714 1352 1424 550

14441

No of disasters

Figure 2.1: The frequency of different world disasters (1900-2017).

As evidenced in Figure 2.2, over the decades from the 1900s and despite the rarity in
the occurrence of drought as compared to other major disasters, the social impact of
drought as indicated by the number of deaths supersede those of other disasters. This
observation was made earlier in (Hewitt, 1997). This is perhaps a direct result of the
tendency of drought to cover wider areas and thus guaranteeing greater impacts on

both lives and livelihoods.
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Figure 2.2: Global average deaths from selected natural disasters by decade for the decades
1900s-2010s (EMDAT, 2012).

Despite the documentation of the reduction in the average number of deaths
attributable to drought over the decades (EMDAT, 2012), it is also the case that the
numbers affected by drought as shown in Figure 2.3(a) is higher than that for
earthquakes, floods and storms. Furthermore, the economic losses due to droughts

have been rising over the years as shown in Figure 2.3(b).
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Figure 2.3: Number of people affected by different disasters (a) and the economic losses from
drought over the years-1965-2019 (b) (EMDAT, 2012).
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Zeroed in to Kenya and East Africa, there is an increase in both the frequency of
drought and the cost of economic losses as a result of droughts particularly in Kenya
and East Africa. For example, Government of Kenya (2012) documents the 2008-2011
drought in Kenya as having made 3.7 million people food insecure with economic
losses approximated at US$ 12.1 billion. These losses in Kenya mirror the global
scenario where the 2014 California drought was projected to have cost a total of US$
2.2 Dbillion in losses as documented in Cody, Folger & Brougher (2009) that also
observe the increase in the ability of droughts to cause widespread misery. Further
documentation of losses due to drought are reviewed in Ding, Hayes & Widhalm
(2011) with a caution on the use of the estimates due to differences in methodologies
and the non-documentation of some droughts with localized impacts given limited
spatial and temporal extents of coverage.

2.3 Key concepts in the definition of drought

Despite the non -existence of a uniform definition of drought as a result of differences
in its perception, there are a set of concepts common to most definitions. For the
investigation of the drought phenomenon, given this very non-universality in its
definition, there is a need for the identification and documentation of these key
concepts and characteristics. In fact, as documented earlier in Wilhite (1993) and
recently in Lloyd-Hughes (2014), the absence of a universal definition of drought is

perhaps the source of differences in the methodologies for drought monitoring.

The absence of a universal definition of drought is, however, not a problem in itself.
This is because drought affects multiple sectors of an economy and livelihoods and
thus perspectives are bound to differ in its definition. Despite the differences in the
definition of drought that could be either conceptual or operational, the following key

concepts keep recurring: -

e Deficiency of precipitation
The greatest basis of the definition of drought and its sub-sequent monitoring
is the deficiency of precipitation over a period of time. This is a pointer to
precipitation as the key variable for drought monitoring. This definition is
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adopted by many studies including in Bordi et al. (2005) and Morid, Smakhtin
& Bagherzadeh (2007) and those provided in the earlier section on drought
definition.

Deviation from some historical conditions

The deviations in precipitation, even when drought is defined in terms
sufficiency of precipitation has to be considered abnormal. The deviation is a
measure based on some normal conditions that are often defined based on an
identified historical period. The abnormal deviations are referred to as an
anomaly. The concept of anomalies is for example documented Hayes et al.
(2011) in the review of precipitation deficits compared to the historical
averages for a given region. Drought monitoring would, therefore, be equated
to the process of monitoring the occurrence of these anomalies in the
precipitation and indeed of any other drought indicator over a given spatial
extent. A comprehensive review of some of the anomalies is provided in
Eslamian et al. (2017) and Zargar et al. (2011).

The occurrence in space

The definition and occurrence of drought are both based on space. The concept
of space, in terms of drought monitoring, implies a location, area or polygon.
This implies that what is drought in one location should not necessarily be a
drought in another location. Augured with the concept of anomalies, this
implies that droughts, their occurrence and severity are defined by occurrence
in a spatial extent. The definition of drought with the concept of spatial extent
is almost universal and is for example in Adede et al. (2019a), WMO (2012),
Klisch & Atzberger (2016), Klisch, Atzberger & Luminari (2015) amongst
many other studies. The concept of space in the definition of droughts goes
together with that of time thereby implying droughts as having both a spatial
extent and temporal extent.

The occurrence in time

The definition of normal conditions for a spatial extent or location is based on

some historical reference. Also, all spatial extents more or less are expected to
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have periods of reduced precipitation. Not all these periods should be
interoperated to be drought episodes. Drought periods must, therefore, ideally,
also be defined for the same time in history. The definition of the popular
indices like standardized precipitation index (SPI) in WMO (2012) and
vegetation condition index (VCI) in Kogan (1990) are quite strong in applying
the concept of time in the definition of drought. The concept of time, like of
space defined above, are also used in Adede et al. (2019a) and in Adede et al.
(2019a) together with Klisch & Atzberger (2016).

Severity and duration

Once established, the severity of a drought is a measure or quantification of its
deviation from a set threshold as defined by the run theory in Zhang et al.
(2015). Duration, on the other hand, is mostly referred to as the period of
occurrence of a specific drought and involves the capability to pinpoint the
period between the onset and the off-set of the drought.

The idea of slow onset and progression in time and space

Droughts are considered slow onset with the ability to progress both in space
and time (UNISDR, 2009; Wilhite, 2006). This slow onset nature of droughts
is the characteristic that lends droughts towards being a monitorable and
predictable event that offers time for intervention planning. The slow onset
view of droughts has however been challenged by Basara et al. (2019) and
Otkin et al. (2016) that documents the 2012 Continental US flash drought that
was modelled using variables like evapotranspiration, soil moisture and
vegetation conditions in addition to precipitation.

Effects on sectors

Droughts, as documented variously and specifically in Bordi et al. (2005),
Morid et al. (2007), Schipper (2003) and UNISDR (2009) are documented to
have effects or impacts on different sectors of the economy. While some effects

are direct, others are indirect and affect the socio-economic aspects of societies.
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2.4 Types of drought

Apart from the identification of the key concepts in the definition of drought, the

alternative view to a global definition is the classification/categorization of droughts

into types. The alternative methods in the classification of droughts are documented in
Demuth & Stahl (2001), Monacelli, Galluccio, & Abbafatim (2005) as based on either

of the basis on which the drought is defined or on the discipline of practice.

Formulation of drought as the basis for classification
Based on the formulation and definition of droughts, they can be classified into
two distinct types as either conceptual or operational. Conceptual droughts
have no basis for rolling assessments and are thus broad and general in their
definition. On the other hand, operational droughts have the determination of
onset, severity and offset of drought episodes as their objective. Operational
drought monitoring is therefore based on some concept of an operational
definition of drought. This approach makes the study of droughts a more
structured concept since we can define it in terms of on-set, off-set, duration,
severity and even extents of occurrence.
The disciplinary perspective of drought as the basis for classification
Disciplinary perspectives to drought definition use the concepts of operational
drought to define droughts as viewed by different sectors of practice. This
approach gives the categories of drought as any of meteorological,
hydrological, agricultural, and socio-economic droughts. The description of the
droughts based on their types by discipline is provided in UNOOSA (2015) and
is amplified in drought monitoring studies. These different types of drought are
elaborated as follows:
= Meteorological drought is defined in terms of the magnitude of a
precipitation shortfall and the duration of this shortfall event and is
noted to be a broader definition of drought as opposed to the other types
of droughts. Studies that document meteorological droughts include
Bordi et al. (2005), Huang et al. (2016), Khadr (2016).
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= Hydrological drought is usually based on surface and sub-surface water
supplies. It is always closely related to agricultural drought. The
indexes used to monitor this type of drought are therefore based on
water sources. An example study that document hydrological drought
is, for example, Kubiak-Wojcicka & Bak (2018) that is based on river
flow.

= Agricultural drought is mostly defined in terms of the impacts of
droughts on agriculture as indicated by precipitation deficits, soil
moisture and evapotranspiration. The monitoring of agricultural
drought is for example in Gu et al. (2008), Klisch & Atzberger (2016),
Svoboda et al. (2002) and Tadesse et al. (2014).

= Socio-Economic drought is the result of droughts affecting people, lives
and livelihoods. It is therefore characterized by the destabilization of
normal demand and supply systems of some economic goods with the
progression of a drought event. Possible use of socio-economic data in
drought monitoring is provided in Enenkel et al. (2015), Jenkins (2012)
and Garrido (2014).

Adopting the operational definition of droughts that covers the entire of the types of
disciplinary drought definition as advocated for in Enenkel et al. (2015) would be a
powerful formulation of an operational drought monitoring system. A sound DEWS
would, therefore, be indicated by the objective definition of drought that incorporates
the key characteristics of drought identified in section 2.3 that includes: spatial extent,
temporal coverage, severity, duration and the definition of reference/normal conditions
and periods.

2.5 Drought Risk Management (DRM)

The quantification of drought, just like its direct modelling, remains a difficult
undertaking. This is as opposed to the effects of drought that are, however, identifiable

and are perhaps measurable. The management of droughts can thus be viewed as the
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minimization of drought risk. Drought risk can be viewed as the likelihood that drought

leads to casualties, damage or loss.

With the risk view in mind, drought can be viewed as a natural hazard whose
occurrence leads to a disaster. It is, however, the case that the drought hazard has a
chance or probability of occurrence when defined in the confines of space and time.
This probability of drought occurring is defined as the risk to drought and is what the

drought risk management initiatives centre around.

There are two approaches to handling the problem of droughts. First, is the episodic
approach that reacts to droughts at their time of occurrence. Second is a strategic
approach that adopts the definition of drought as a risk and proactively manages the
risk of droughts. Given that droughts are natural disasters, the choice between these
approaches then begs the question on the methods for drought risk management.

The traditional approach to drought management, in which droughts are monitored and
responded to as and after they unravel, and the learning on the losses from past drought
events, has led to a shift towards Drought Risk Management (DRM). DRM s
considered a holistic approach that includes the following: -

e Drought sensitive policy formulation

This step involves the definition of drought-sensitive policies at global, regional,
national and even sub-national levels that are geared towards ensuring droughts do
not lead to losses. The formulation of global bodies with mandates on drought
monitoring is one of the initiatives at this level of drought risk management
(DRM). In Kenya for example, there has been the formulation of the Ending
Drought Emergencies (EDE) under the Vision 2030 (Vision 2030, 2007). The
effect of the formulation of drought-sensitive policy is to mainstream drought risk

management in the normal programming of any given country.
e Prioritization of drought monitoring

Drought losses have led to the realization of need by governments, including GoK,
on the need to have an effective Drought Early Warning System (DEWS). DEWS
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provide information on occurring hazards that might evolve into disasters unless
early response and possible mitigation measures are initiated. The objective of a
DEWS is to monitor droughts in an objective way that also tracks the evolution of
the hazard through stages that are part of an overall management cycle. The DEWS
implemented for drought monitoring should be comprehensive and responsive to
environmental and climatic events. ILRI (2009) notes that Drought is the prime
recurrent natural disaster in Kenya that affects up to 10 million people, mostly
pastoralists. ILRI notes that, despite a National Drought Management System
being in force in Kenya for almost 20-year, one common limitation that is
highlighted is that the systems remained static in the past with methodologies in
place long after they were established. As documented by ILRI (2009), the
Government of Kenya (GoK) and the European Union (EU) initiated a process to
review both the DEWS and the drought response strategies in Kenya. This
particular initiative aimed to make an evidence-based drought early warning
system that together with assessment of vulnerabilities can form a basis for early
response to drought. The evidence-based system is expected to ride on the fact that,
in the context of Kenya, drought is a slow onset hazard (UNISDR, 2009) that by

and large provides a window for response and mitigation.
e Legislation on and Institutionalization of drought management initiatives

At the national level for many governments, there has been witnessed the
establishment of specialized institutions for drought and drought risk management.
The National Drought Management Authority (NDMA) in 2011 and subsequent
legislation of the NMDA in Act No 4 of 2016 as a permanent drought management
body is one of the successes of the influence on policy that is attributed to drought
and the effects of droughts. The NDMA is in charge of drought monitoring and
resilience building with the overall aim of ensuring droughts do not become
disasters. Other initiatives include the establishment of a Drought Contingency
Fund project (DCF-P) that provides funding for both drought preparedness and
drought response activities and its institutionalization through the establishment of
the National Drought Emergency Fund (NDEF).
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e The adoption and implementation of a Drought Risk Management (DRM)

Framework

Drought risk management (DRM) is mostly driven by frameworks that have been
formulated over the years. One such framework is the Hyogo Framework of
Action, HFA (UNISDR, 2005) while another is the UNISDR principles to drought

risks management. These are summarized as shown in Figure 2.4.

I

.

Make Disaster Risk Reduction a Priority Policy and Governance
\ SN S
N 7 -
2 Know the Risks and Act Drou'ght-Rlsk Identlﬁcatmn,'rlsk
Monitoring and Early Warning
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~ N

Drought ~ Awareness, Knowledge

3 Build Understanding and Awareness Management and Education
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4 Reduce Risks Reducing underlying factors of
drought risk
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5 Be Prepared and Ready to Act Enhancing mitigation measures and
preparedness for drought
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Figure 2.4: Hyogo Framework for Action (HFA) Priorities for Action (PFA) and UNISDR
guiding Principles from the Sendai Framework

At the very basic, the risks of droughts can be modelled as shown in Equation 1&
2. The approach of risk management is to view drought risk as a function of the

elements of hazard (H), vulnerability (V), exposure (E) and capacity (C).

(HxV)
R = (1)
R = H X E XV oot )

Equations 1 and 2 are basically the same since both assert that drought risk (R) directly
depends on the hazard (drought, H) and vulnerability (V) for the exposed elements. In
equation 1, drought risk (R) is mitigated by the capacity (C) of the exposed elements. On the
other hand, equation 2 assumes vulnerability (V) as what remains after capacity (C) is
accounted for.
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The above Equations are a reduction of the Drought Risk Management (DRM)
framework that is an extracted from the Hyogo Framework of Action, HFA and the
Sendai Framework’s UNISDR principles (UNISDR, 2005).

The key elements of drought risk management (DRM) therefore include: drought
contingency planning, drought early warning, drought resilience building, drought
preparedness, drought impact assessment, drought communication, drought response
and drought recovery all carried out in the context of a drought early warning system
(DEWS). Absence of these aspects of DRM, especially that of DEWS has resulted in
reactive systems as opposed to the demand for proactive systems. One key tenet of the
DRM approach is the need for reliable prediction-driven systems and models that are
incorporated as part of the DEWS. In fact, it is our observation that a predictive drought
early warning system that provides a preview of the expected future condition is the

one key weakness that plagues most of the existing drought early warning initiatives.

DEWS are by their nature domiciles in the second action point of the Hyogo
framework (Know the risks and act) as well the UNISDR principle on Drought Risk
Identification, Risk Monitoring and Early Warning systems. The early provision of
drought information for early action would thus be viewed as a key undertaking of
DEWS.

2.6 Drought Monitoring Systems

From the key concepts of drought in section 2.3, four concepts are particularly
important when it comes to operational drought monitoring. As also defined in section
2.4, operational drought monitoring is concerned with the definition of drought
severity, onset and offset. The four concepts of drought deemed important are:
droughts having both a spatial extent of coverage and temporal coverage (Tsakiris et
al., 2013); droughts as slow-onset disasters (UNISDR, 2009; Wilhite, 2006) and
droughts as being progressive along some objective measure of severity (UNOOSA,
2015). The implication is such that, we can monitor drought for a given location and
time with the benefit of time to quantify the changes in its severity. With the benefit of

time as drought progresses, it is then possible to model drought impacts for a spatial
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extent of interest. Such operational monitoring would be achieved through drought

early warning systems (DEWS).

A DEWS would thus have its key goal as the operational monitoring of droughts in the
context of their severity and progression in time over a given spatial extent under
consideration. The establishment of a DEWS would thus be justifiable based on the
realization that better improved and timely drought-related decisions lead to reduced
impacts on both people’s lives and livelihoods. Typically, a DEWS would have a
selected extent of coverage with the possibility of having multiple statistics for
multiple extents over a selected frequency of monitoring that could be any of daily,

pentadal, weekly, decadal, bi-weekly, monthly, quarterly, semi-annually, annually etc.

To achieve operational drought monitoring, drought has to be defined. According to
Wilhite (2006), Morid, Smakhtin & Bagherzadeh (2007) and Bordi et al. (2005)
drought can be viewed as a cumulative departure from normal or expected
conditions/levels of precipitation. The normal is defined differently in various
monitoring systems. The most common definition of normal is the long-term average.
The acceleration of drought and effects of droughts once onset is documented to be at
varying speeds for various spatial extents. This, therefore, makes it necessary to have

in-place drought monitoring systems to areas prone to drought related disasters.

Drought monitoring systems are thus deployed to identify changes in climate and
hence aim to detect the likelihood of occurrence and the expected severity of drought.
The key is to avail drought related information to decision makers in time to make
drought risk management an active and continuous process rather than a reactive
process. Drought monitoring systems have thus been used to provide historical records
to assess changing conditions and thus provide early warnings of potential drought

threats.

Due to the complex nature of drought as a disaster, Drought Early Warning Systems
(DEWS) have been noted to be more complex as compared to those of other natural
disasters (UNISDR, 2006). This complexity has ensured that they are less developed

as compared to their peers, like say for floods. Ground sourced precipitation
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measurements and the related precipitation anomalies have been used as the common

parameter for monitoring droughts. Recent developments include incorporation of

Remote Sensing data in the form of rainfall estimates (RFE) and Vegetation Indexes

(VIs) as proxies to drought monitoring (Niemeyer, 2008).

DEWS that are well designed should meet the three-point criteria guided by

objectivity, sensitivity to small changes and communicability.

Objectivity ensures that the definition of drought is well thought out and thus
not subjective. In operational drought monitoring, once a definition is adopted,
it is retained throughout the monitoring of the event. Even for cases where
drought classes are used, they must be objectively determined. Objectivity
builds confidence in a DEWS (Quiring, 2009) and is characterized by the
ability to identify and use representative and reliable data. Any forecasts made
should also be based on the integration of data from different sources including
those on drought impacts possibly realized from field-based assessments.
Sensitivity to changes as advanced in Wilhite & Svoboda (2000) ensures a
DEWS has the ability to detect on-set and secession of droughts that are key
milestones that determine the kind of responses required. DEWS must be able
to signal drought situations before they occur even for localized cases of
drought. The ability to detect these changes, however small is what sets apart
DEWS in terms of their ability to contribute to the management of drought
events especially when famines are ab outcome.

Ease of and regularity in the communication of the products/outputs of a
DEWS is a key requirement as documented in Grasso & Singh (2011). The
systems generally remain non-technical in their outputs so as to be useful to a
wider audience. Dissemination and communication of results stakeholders
should also be in a timely manner. Objectivity in the definition of drought and
consistency in the application of DEWS improved communicability as results

are then trusted.
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DEWS, based on a review of literature, can be categorized based on their extent of
coverage and on their timelines for delivery of their products and outputs.
Geographical coverage is used to popularly characterized the systems into Local (sub-
national) systems that are majorly within small spatial extents, National systems
whose coverage is a whole country, for example, the system in Klisch & Atzberger
(2016) and the United States Drought Monitor (Svoboda et al., 2002), Regional
systems that cover more than a country like the case of the African Drought Monitor
(Sheffield et al., 2008) and Global systems whose coverage is the whole globe like the
systems in Hao et al. (2014). It is generally the expectation that the larger the coverage,
the more generalized the results and thus the more information loss occurs. Such large-
scale DEWS are bound to miss the small extent and restricted time-scale occurrences
of droughts.

On the other hand, timeliness in the delivery of products separates the systems into ex-
post systems for example in Hayes et al. (1999) and in Brown et al. (2015); and ex-
ante systems (Tadesse et al., 2014; Wardlow et al., 2012). Ex-post and ex-ante systems
are also referred to as monitoring and predictive systems respectively.

Even though the terms Drought Monitoring System (DMS) and Drought Early
Warning Systems (DEWS) are used interchangeably, it is our opinion that the
difference should be that a DEWS offers a longer lead time as compared to a DMS in
the provision of monitoring products and thus majorly driven by prediction of
droughts. DEWS must be ex-ante systems while DMS should ideally be optionally ex-
ante. With the ever recurring and intensifying reequipment for provision of early and

timely information, DMS face the increasing need for predictive components.
2.7 Data and Indicators for Drought Monitoring

The process of operationalizing drought early warning systems (DEWS) involves the
collection of data (Wilhite, Sivakumar & Wood, 2000) for the extents of interest. The
data collected is basically of four categories: Precipitation data, hydrological data,
vegetation data and in some cases, socio-economic data. A review of the data for

drought monitoring is provided here following in the earlier classification of droughts
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based on operational monitoring systems into Meteorological, Hydrological,
Agricultural and Socio-Economic drought. Remote sensing data are discussed in the
light of Meteorological, Hydrological and Agricultural Drought while Socio-
Economic data is done in the context of Socio-Economic drought.

Figure 2.5 provides a model for the discussion on the data requirements for drought
monitoring. The model is based on UNOOSA (2015) that documents different types
of drought and asserts their successive nature. The drought types of meteorological,
hydrological and agricultural are noted to follow each other with the progression of the

deficiency of precipitation.

- Hydrological Agricultural Socio-Economic
Meterological drought drought drought Drought

Figure 2.5: Drought types and their progression.

The different types of drought are operationally defined differently. Meteorological
drought is defined in terms of the deficiency of precipitation (degree of dryness) and
the period of the deficiency, mostly over more than a season. Agricultural drought, on
the other hand, is defined by the effect of the deficiency of water for plant growth and
soil moisture. Hydrological drought is characterized by the drying up of surface and

sub-surface water sources.

At the extreme end of a drought are the effects on the socio-economic indicators of
areas of coverage including supply and demand for economic goods like water, milk,
forage, food prices and hydroelectric power. Socio-Economic droughts are

characterized by demand surpassing supply of the climate-dependent economic goods.

2.7.1 Remote Sensing data for drought monitoring

Remote Sensing is a data collection technique at the core of which is a sensing device
that collects information from an object without physical contact. The greatest
application of remote sensing would be to get data from instances where accessibility
is a limitation (Patruno, Fitrzyk & Delgado Blasco, 2020). The principles of remote

sensing of efficiency and effectiveness have been variously documented (Berhan et al.,
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2011; Few, 2009; Huete et al., 2002; Ojala, 2003). There is an increasing availability

of remote sensing data; even at high resolutions with some of these sources having

some level of pre-processing for the data.

The popularity of remote sensing data (RSD) for drought monitoring is attributed to

the following reasons based on the desirable characteristics of the data as documented
in Wardlow & Anderson (2012) and Gu et al. (2008): -

Greater spatial and temporal coverage is provided by Remote Sensing of
drought conditions than from site measurements of precipitation, soil moisture
(SM), Land Surface Temperatures (LST) and vegetation cover. The sensors,
having an automated approach are thus able to cover larger regions and at ever-

increasingly high resolutions.

Timely provision of information from remote sensing through variously
automated data acquisition processes ensures non-delay of operational
processes. The data satellites deliver data at regular intervals and repositories
have the data provided on time at frequencies of design and contract. Planning

around this attribute is made easy as products end up having timely delivery.

Non-biased and accurate information out of remote sensing processes ensures
reliability and trust in the data. Data accuracy issues are mostly due to factors
like cloud cover and atmospheric interference that have methodologies for their
corrections. As opposed to human-driven data collection, satellites are setup
for objectivity, especially after design limitations are accounted for.

Spatially continuous measurements provided by remote sensing data ensure
data is available over large geographical areas including areas where access is
limited and ground observations sparse or virtually non-existent. This is as
opposed to other methods that have discrete and possibly categorized data

collected over some desired extent.

Consistent frequency of revisit of the satellites ensures that the data is regular

and can thus be used to form trends for the same spatial coverage over the same
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period in history. This is perhaps the property that makes remote sensing data

appropriate for operational drought early warning systems.

e Availability of historical data from remote sensing data repositories ensures
the possibility of comparisons based on the historical cases for the detection of
anomalies, which is the best way to define droughts. The historical data helps
to support the building of historical trends capable of delivering value to studies
that model changes over time. The availability of historical datasets ensures the
building of models can befit both from being undertaken immediately and

being validated prior to deployment for operational use.

e Simplicity in the calculation of anomalies indices and makes for the
popularity of the use of remote sensing data. The indices also lend themselves
to data visualization using different techniques like maps, dashboards, tables,
charts, and matrices. The interpretation of the indices at times, however,

becomes a limitation requiring some level of skill.

From the studies in Wardlow & Anderson (2012) and Gu et al. (2008), remote sensing
applications for drought monitoring, therefore, require data sets that, first, hold the
ideal characteristics of being able to be incorporated into operational data production
that is routine (regular intervals- dekadal, monthly, 3-monthly etc.), The second
desirable characteristic is the possession of a historical archive that can facilitate the
calculation of anomalies based on any of but not limited to the per cent of average,
relative ranges and standard deviations. The third is that the data be highly available
and easily accessible, including availability in multiple formats that are relatively
inexpensive to extract from and deploy into monitoring systems. The fourth desirable
characteristic is that the data should be amenable to validation and reproducibility by
subject matter experts, especially across multiple locations and time periods.
Additionally, the data for drought monitoring should be location-aware and also be
location sensitive for better identification of possible hotspots as advanced in Few
(2009).
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Key issues in the selection of remote sensing images for any purpose is, apart from the

intended application, guided by the following considerations:

e Repetition rate/ frequency of the sensor/ satellite

e The spectral resolution that defines the number of spectral bands of the
electromagnetic spectrum covered by the satellite

e Spatial resolution that defines the unit area for which data is collected. This
unit is referred to as the pixel size.

e Costas compared to the value offered by the information. In cases where open-
source data is fit for purpose, cost is a justification enough to choose them.

Another element that is important but is often overlooked in the identification and use
of remote sensing data is the aspect of data formats. In the most. Remote sensing is
sourced in the form of raster images in any of the valid formats including, but not
limited to, TIF, GeoTIFF, ECW, GRID, IMG, JP2, SID. The images either come with
the metadata as part of the images like is in GeoTIFF or a separate file as is in the case
of IMG files. The choice of processing tools at times constrains the data formats to be

preferred thought conversion from one format to another is widely supported.
2.7.2 Remote Sensing Indicators for drought monitoring

In this section, we review how remote sensing data is processed to realize drought-
sensitive indicators. We then proceed to outline some of the important drought

indicators and how they are realized from the raw datasets.

For the remote sensing data to be used for drought monitoring, the data must be
processed into indicators that both quantify drought and that are at the same time

sensitive to changes in drought conditions.

The definition of the indicators is both a data problem and an interpretation problem.
A data problem in the sense that the indicators have to be based on some specific data
that is guaranteed to be available in the future. The interpretation problem implies that
the indicators will need to be easily interpreted, especially in operational drought

monitoring. Since drought is widely defined as a deviation from some normal
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conditions, most of the data transformations are “difference” transformations between
images of interest and some reference periods. A summary of these calculations/

transformations of the remote sensing data are as provided in Table 2.

Table 2: Common “Difference” indicators used in drought monitoring.
Most common is the definition of absolute, relative and standardized differences

Transformation Transformation Formula

Absolute Difference to the _ .
historical median ADhm(y’ P) = X(Yv p) - Medlan(p) '"(3)
Absolute Difference to the
ADpo(y,v) = X(y,p) — Mean(p) ---(4)
RDpm(y,p) = [X(y,p) — Median(p)]/MEDIAN (p) ---(5)

historical average
Relative Difference to the
RDpo(y,p) = [X(y,p) — Mean(p)]/Mean(p) ---(6)

historical median
Relative Difference to the
historical mean

Standardized Difference SD,(y,p) = [X(y,p) — Mean(p)]/StDEV (p) ---(7)
Relative Range Difference RR,(y,p) = [X(y,p) — Min(p)]/[Max(p) — MIN (p)]--(8)
Historical Probability HP, (y,p) = Prob of [X(y,p)] in hist.distribution---(9)
Historical Rank HP,(y,p) = Rank of [X(y,p)] in hist.distribution---(10)

Table 2 shows the difference transformations frequently used to realize drought

indicators. The difference indicators popularly used include:

e The absolute difference indicators (Equation 3 & 4) which subtract one image
from a reference image that is any of the mean or median images.

e The relative differences (Equation 5 & 6) that further calculate the ratio of the
“difference ” transformations to the reference mean or median image used in
the transformation. In essence, the relative differences make the actual
differences less pronounced.

e The standardised difference (Equation 7) and relative range difference
(Equation 8) are perhaps the most popular. The standard difference approach
gets the number of standardised deviations an image is away from the mean of
a reference historical period. A variant of this is recommended by WMO (2012)
in which the new image values were resampled such that the mean is zero (0)
and the standard deviation is one (1). The relative range, as opposed to the
standardised approach, transforms the difference between the current value and

the minimum value from the reference period with the range of the values from
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the reference period. In essence, it stretches the current value within the range
if the minimum and maximum historical data mostly from a similar period in
history. An evaluation of this stretching is for example used in Kogan (1990)
and in Klisch & Atzberger (2016).

e The historical probability (Equation 9) and historical rank (Equation 10) that
both calculate the probability and rank of the current values in the historical

distributions respectively

The above transformations of remote sensing data depend on data and are in essence
only useful if parameters to be monitored from space are identified and respective
datasets made available in formats considered appropriate for the calculation of the

indexes.

The possible parameters to be monitored from space using Remote Sensing
technologies for the different phase of the drought are documented in (Khamala, 2017;
UNOOSA, 2015; Zargar et al., 2011). The parameters to be monitored include, but are
not limited to Precipitation (PPT), Surface Water Storage (SWS), Ground Water (GW),
Land Surface Temperatures (LST), Evapotranspiration (EVT), Snow, Soil Moisture
(SM) and Vegetation (VGT). The parameters are mostly monitored at Global,
Regional, National and sub-national levels.

The remote sensing indicators, reviewed following on the types of droughts earlier

defined are described as provided here next.
e Meteorological drought indicators

Meteorological drought monitoring is mostly based on precipitation. Precipitation, in
the forms of rain, snow, hail and any other is characterized by the accompanying
complexity in their modelling. This is despite the need for quality and well-validated
precipitation products, especially in the support of agriculture. There is growing
literature and use of satellite-based precipitation data for drought monitoring (Funk et
al., 2014; Maidment et al., 2014; Toté et al., 2015).
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Satellite driven precipitation products are useful for drought and flood early warning
systems and are meant to overcome the problem of limited distribution of rain-gauge
observations and the tendency to have missing data from physical stations. The
incompleteness of precipitation data may be due to damaged measuring instruments,
changes to instrumentation with time, changes in data collectors and or change of
measuring sites as documented in Sattari, Rezazadeh-Joudi & Kusiak (2017). There is,
therefore, need to validate and document the accuracies of the precipitation products
especially if physical ran gauge station data is to be used.

Toté et al. (2015) document the algorithmic approaches to the derivation of satellite-
based precipitation products. These algorithms that derive precipitation from satellites
are either Thermal Infrared (TIR) or Passive Microwave (PM) based. The basic
assumption in the modelling of precipitation from satellites is the linear relationship
between rainfall and cloud cover duration (CCD). Passive Microwaves are capable of
penetrating clouds and thus capture better instantaneous rains and are more accurate
over short periods compared to TIR based products that offer better accuracy over
longer monitoring periods. TIR based algorithms are, however, susceptible to False
Positives (FP) as a result of cold clouds with no rains like cirrus clouds and False
Negatives on warm clouds not normally associated with rains like stratiform clouds

but that then yield rains.

There is an increasing approach in combining both thermal infrared and passive
microwave in precipitation monitoring. Examples of TIR microwaves includes
Meteosat-8 and Geostationary Operational Environmental Satellite (GOES) while
those of Passive Microwave (PM) includes (Special Sensor Microwave Imager,
SSM/I; Tropical Rainfall Measuring Mission, TRMM and Advanced Microwave
Sounding Unit, AMSU).

The current state of the art in the modelling of precipitation data from satellites
involves the use of ground-based information to validate the modelled data. The
blending with rain gauge data is meant to improve on accuracy and is documented for
example in Sheffield (2014). Sheffield (2014), for example, use of rainfall data as
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achieving a 20% reduction of errors in P-values with 2 rain gauges per 1-degree box
that is approximately a 111km box. A drastic reduction to 5% is recorded to be
achieved with the use of 5 rain-gauges clearly indicating the benefit of use of more
rain gauges in the calibration of satellite-derived precipitation datasets.

Modelling based satellite-derived precipitation data that use the validation approach
include those from TAMSAT-Tropical Applications of Meteorology using SATellite
(TAMSAT) in (Maidment et al., 2014) and The Climate Hazards Group Infrared
Precipitation with Stations, CHIRPS (Funk et al., 2014). There are current efforts,
including the Global Precipitation Mission (GPM) Microwave Imager (MWI) to
monitor both precipitation intensity and the 3D structure of rainfall particles through

its Dual-frequency Precipitation Radar (DPR).

The common indices used for drought monitoring that are derived from Precipitation
data sets includes, but are not limited to Rainfall Estimates (RFE) that is the absolute
approximations of precipitation (Tarnavsky et al., 2014), Standardized Precipitation
Index (SP1) (WMO, 2012) that is as standardised difference calculate from the general
formulation in Equation (7) and Rainfall Condition Index (RCI) (Du et al., 2013) that

is a relative range difference calculated following on Equation (8).
e Hydrological & Agricultural Indicators

Hydrological and Agricultural drought indicators have a fine line in literature with
quite a lot of overlaps. The various indicators in this category that are derivable from
remotely sensed data include Land Surface Temperature (LST) (Wan, Hook & Hulley,
2015), Evapotranspiration (EVT) and Potential Evapotranspiration (PET) as
documented in Running, Mu & Zhao (2017), Standard Precipitation and
Evapotranspiration Index (SPEI) (Begueria et al., 2014), Soil Moisture (SM), Stream
Flow Index (SFI). It is instructive to note that some of these like SM are modelled
variables just like satellite-derived precipitation data. While Normalized Difference
Vegetation Index (NDVI) is a direct measurement of vegetation conditions, the other
hydrological variables based on groundwater and streamflow are measurements that

are at times not directly provided through remote sensing approaches. In fact, some
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regions that experience perpetual aridity do not have the benefit of rivers/ permanent

streams on which most hydrological drought indicators are based.

Remotely sensed Vegetation Indices (VIs) have been widely used in the monitoring of
greenness of vegetation and indirectly for drought monitoring and even crop
monitoring (Mainardi, 2011; McVicar & Jupp, 1998; Peters et al., 2002; Rembold et
al., 2013; Rojas, Vrieling & Rembold, 2011; Unganai & Kogan, 1998). The most
common of these indices used are those that transform spectral bands signals of sensor
instruments to corresponding vegetation conditions. NDVI is the most common of the
vegetation indices used for the above and also in monitoring changes in phenology,

changes in land cover and land use and effects of global warming.

The NDVI measures/quantifies the relative abundance and activity of green vegetation
and is correlated with chlorophyll. Most of the applications of NDV1 above are based
on the extraction of trends from NDVI time series data. The derivation of the NDVI is

from the reflectances of two bands of a sensor and is calculated from Equation 11.

NDVI = R R (11)
(NIR+RED)

NIR and RED are spectral reflectance measurements in the red and near infra-red
bands respectively. Healthy vegetation has higher NIR reflectance and low
reflectance on the RED band since the same is absorbed for photosynthetic activity.
High NDVI, therefore, implies green vegetation. NDV1 0.6-0.8 implies highly dense
vegetation comparable to temperate and tropical rainforests; 0.2-0.3 implies moderate
density (shrubs and grassland) while 0.1 and below signifies barren areas, rock, sand
and snow (Quiring & Ganesh, 2010).

The NDVI has been utilized for many years to measure and monitor plant growth and
vigour, vegetation cover and biomass production from multispectral satellite data.
NDVI has been used in the monitoring of plants during the growing season since it
indicates expected greenness for specified time periods in history. Healthy vegetation
denotes favourable climatic and environmental conditions, while poor vegetation
condition is indicative of droughts and diminished productivity. At the same time, the
interaction between precipitation and vegetation is recognized and has been modelled.

There however remains the need to model the lag effect of NDVI on meteorological
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drought (Zambrano et al., 2016; Zhang et al., 2013). There exist multiple sensors,
satellites and data sources from which space monitored vegetation data can be sourced.
Some of these sources for satellite driven vegetation indices are as discussed below
with a summary of their characteristics as shown in Table 3.

Table 3: Sources and attributes of NDVI Products (Phenology, 2011)

Orbit Years of Spatial Processed

Sensor Satellite Frequency Data Resolution  Time Step Latency
AVHRR ~ NOAA Daily 1989- 1km Lweek, o hours
series present 2-week
NOAA . 1982- 3x
AVHRR series Daily 2006 8 km monthly N/A
Thematic Landsat 1982-
Mapper A5 16 days 2011 30m By scene N/A
Enhanced 1999-
Thematic ~ Landsat 7 16 days 30m By scene ~1-3 days
present
Mapper +
SPOT- 1999-
VGT VGT 1-2 days present 1.15 km 10-day ~3 months
2000- 250/500m  8-day, 16- _
MODIS Terra 1-2 days present I 1km day 7-30 days
2002- 250/500m  8-day, 16-
MODIS Agqua 1-2 days present /1 km day 7-30 days

Despite the popularity of the NDVI, there are documented limitations of the NDVI
index and its usage. The three main limitations include: (1) saturation of NDVI values,
(2) difficulty in interpretation and (3) susceptibility to atmospheric interferences,

especially of cloud cover.

The first limitation of NDV1 is the saturation problem of the values as is articulated in
Liu, Qin and Zhan (2012) and in Huete et al. (2002). The saturation problem arises
because the NDVI is a ratio of the values of the red and infrared bands that are not
linear in their relationship. The problem is a dynamic range expansion problem
characterized by the decrease in the intensity of a spectral line especially in light of
dense vegetation. In modelling, this is handled by transformation to ensure the
indicator is linearized. There are popular alternatives to the NDVI that handle the
problem of saturation. Such includes Fraction of absorbed photosynthetically active
radiation, fAPAR (Meroni et. al., 2013).
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Second, to the problem of saturation, is the inherent problem of difficulty in the
interpretation of the NDVI1 values due to the range of the values from -1 to +1. An
absolute NDVI value might not be a good indication of the exact occurrence of any
deficiencies of vegetation cover. There is always then need to mitigated on this
through the calculation of relative range indicators or ratios from the absolute NDVI
values. Therefore, there exists an increasing use of NDVI values in the calculation of
indices for drought monitoring. Such indices that are strictly NDVI derived includes
Vegetation Condition Index (VCI) and Standardized Vegetation Index (ZVI). These
are modelled as shown in Equations 12 and 13 (Klisch & Atzberger, 2016). The VCI
(Kogan, 1990) reflects both spatial and temporal vegetation variability and also
identifies the impact of weather on vegetation. The VVCI is therefore appropriate for the
monitoring of agricultural drought since it shows the variability of vegetation intensity

for similar times in history (Zambrano et al., 2016).

Vel = 100 « _NDVI = NDVImin)
= *
NDVImax — NDVImin ............................................ (12)

2V = (NDVI — NDVImean) cooieieieiieice e, (13)
B std(NDVI)

The VCl and ZV1 (Equation 12 & 13) are calculated similar periods hence for the same
time steps in history. The use of the time and space elements in the calculation of the
VCl ensure that we compare only the comparables. Therefore, for monthly monitoring,
every month’s values will be computed based on that given month’s min and max for
V/CI just as the standard deviation and mean are also time-step dependent for the
calculation of ZV1.

Finally, and in addition to the problems of saturation and difficulty in interpretation, is
the third limitation of the effect of noise on the NDVI due to both cloud cover and
atmospheric interferences on the sensors that leads to the wrong quantification of
vegetation greenness. The problem of cloud cover is for example documented in Park
(2013). Image processing must thus take cognizance to eliminate the effects of clouds

and shadows attributable to topography and saturation values in the numbers generated
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by the geometry of the satellite observation or as implied by interference by the

presence of water on leaves.
2.7.3 Issues in the Use of Remote Sensing Data for Drought Monitoring

The issues in the use of Remote Sensing data can be broadly grouped into three
categories: The problem of multiplicity of data sources, the availability of vast of
volumes of data and the quality of data, especially as applied to drought monitoring.

These issues are discussed in the context of predictive systems for drought monitoring.

2.7.3.1 Problems and opportunities in the multiplicity of remote sensing data

Sources

Efforts at drought monitoring exist in a context that is characterized by three main

points of general convergence that includes:

e the agreement on the existence of different types of drought- meteorological,
agricultural, hydrological and socio-economic droughts (UNOOSA, 2015) that
was illustrated in Figure 2.5 above.

e the non-existence of an agreed single one fits all definition of drought with the
monitoring systems, therefore, aiming to monitor droughts in a context where
multiple definitions exist (Lloyd-Hughes, 2014).

e the existence of multiple sensors, satellites and data providers of the same
drought monitoring data and information. These different data and information
come in different formats and with different spatial and temporal, repeat

frequencies and data usage policies.

The above realities led to the existence of a multiplicity of indicators and indexes
meant to monitor different types and phases of drought. The differences in the
definition of drought ensure that there can never exist a one size fits all specification
of drought monitoring requirements. Use of multi-sensor data has been documented to
offer improved accuracies and result in better inferences as compared to when a single

sensor is used (Dalla Mura et al., 2015).
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Even when the drought monitoring data sources are agreed on, there still exist subtle
differences in the indicators and or indices that are then extracted from the sources for
drought monitoring. The multiple sources can be used together in different approaches:
data fusion (Dalla Mura et al., 2015; Khaleghi et al., 2013) and multi indicator
applications both through indicators and indices. Generally, indicators and indices
have no major differences except for the possibility that indices could have more than

a single indicator in its definition.

The problem of multiple sources of data and multiple indices is, therefore, itself an

opportunity for decision making as pertains choice of the following:

i.  The choice of what source(s) of data are appropriate for the problem at
hand. This appropriateness is based on time-scales, re-visit frequencies and
spatial coverage of the data

ii.  The desirable characteristics of the drought to be subject of monitoring
including severity, duration and spatial extent.

iii.  Availability of historical records and ease of access or computations of the
same.

iv.  The ability of the data to support near real time computation and thus

incorporation into early warning systems.
Approaches to address the Multi-source data problem in drought monitoring

The multi-source data problem raises the need to understand the commonalities
between the multiple data sources, multiple indicators and indices. This is so, due to
the existence of an array of indices and data sources that are in the vast competitive,
complementary and or independent. Approaches to handling multiple datasets in the
case of drought monitoring include the use of a single indicator/ index or the use of

multiple indicators/indexes.

e Use a single indicator /index is the premise of most drought monitoring systems.
The basis of this approach is the use and reliance upon a single drought indicator or
index. The use of a single indicator can be viewed as a naive approach while that of

a single index could be viewed as a data reduction and simplification approach for
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ease of communication. An example is a recommendation by the World
Meteorological Organization (WMO) on the use of the Standardized Precipitation
Index (SPI) as the unifier index for drought monitoring (Hayes et al., 2011). Klisch
& Atzberger (2016) also documented the use of the Vegetation Condition Index
(VCI) in a single indicator drought monitoring model. This approach, therefore,
remains easy to interpret and communicate but would not make for an effective
decision support system as in the most, it covers only one type of drought.

The use of multiple indicator/indices for drought monitoring is becoming
increasingly applicable in drought monitoring. In this approach, multiple indicators/
indices are used to monitor drought either of different types or of drought in its
entirety. The approach involves either the calculation of a hybrid/super index that
combines multiple indices or the use of multiple different indices in a multivariable
setup. Such approaches are documented in different studies:

o Enenkel et al. (2016) use the Enhanced Combined Drought Index (ECDI)
that integrates four input datasets: rainfall, moisture, land surface
temperature, and vegetation status. The datasets are weighted for each pixel
with an automated redistribution of weights for cases when missing data is
encountered in any of the component datasets. This study proposes the
combination of this dataset with socio-economic data sourced using
smartphones from the communities.

o Hao & AghaKouchak (2013) used the Multivariate Standardized Drought
Index (MSDI) that probabilistically integrates the Standardized
Precipitation Index (SPI) and the Standardized Soil Moisture Index (SSI) for
drought characterization. The key reason advanced by the study for use of
multiple indexes is the insufficiency of a single index to reliably assess
drought risk and serve for decision making. The approach can, therefore, be
referred to as multivariate, multi-index drought-modelling.

o Vicente-Serrano et al. (2012) that compares the Standardized Precipitation-

Evapotranspiration Index (SPEI) and the Standardized Precipitation Index
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(SPI) over other Palmer's drought indicators. The study documents the
superiority of the performance of SPEI & SPI over the Palmers indices.

o Sun, Mitchel & Davidson (2012) proposed and used a Multi-Index Drought
(MID) model that combines various indicators for agricultural drought in
the assessment of wheat crop yields. The study reported the superiority of
the MID models over single indices/ indicator models.

o Zhu et al. (2016) documents the use of both the Standardized Precipitation-
Evapotranspiration Index (SPEI) and the Standardized Precipitation Index
(SPI) calculated over a period of 1 to 12 months to detect hydrological
droughts. Use of multiple time-scales realized better probability of detection
of hydrological droughts making for a good alternative when streamflow
data is not available.

o Touma et al. (2015) use a multi-model and multi-index approach to the
evaluation of drought characteristics. Data from 15 climate models from and
multiple indices are used to assess the likelihood of changes in the spatial
extent, duration and number of occurrences of future droughts. The four
drought indices: the Standardized Precipitation Index (SPI), the
Standardized Runoff Index (SRI), the Standardized Precipitation—
Evapotranspiration Index (SPEI) and the Supply—Demand Drought Index
(SDDI) are used.

The three main issues around the use of multiple indices include the assurance of
continued availability of the multiple datasets from the multiple sources, the ease of
interpretation of the resultant index and the handling of the computational complexity
that in most cases are part of their derivations.

In the context of drought monitoring, the simplest application of remote sensing data
has either of or both of precipitation and vegetation-based indexes. Even in these
simple applications of the remote sensing is afflicted with the diversity that comes with
the precipitation and NDVI1 products. Meroni et al. (2013) have discussed these factors
as spatial and temporal resolution and the availability and quality of data together with

the intended application and application areas into which the data will be deployed.
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As an illustration, a consideration of vegetation datasets documents several satellites
that have provided large scale monitoring for vegetation. Several NDVI datasets with
global coverage are available borne out of diverse sensors and algorithms. Possible
sensor sources of NDVI data include AVHRR NOAA, MODIS NASA, SPOT
VEGETATION (VGT) and SeaWiFS (Meroni et al., 2013; Scheftic et al., 2014;
Wenxia et al., 2014). There have been undertakings to construct NDVI time series that

extend their coverage to the early 1980s.

In the cases where multiple data sources exist, comparison for purpose and objectivity
in choice of datasets becomes a key undertaking. The choice is therefore between
products with competing characteristics. The use of multiple indices or selection of
single indices from several possible multiple sources is mainly driven by the use of
data comparison techniques that are then geared towards ensuring objectivity in the
choice of datasets for drought monitoring. The available datasets should thus be
evaluated for similarity and divergence like is the case in Albarakat & Lakshmi (2019)
and Martinez-Beltran et al. (2009). Such identified similarities or divergences can
inform the best course of the use of the multiple datasets which could be either the

selection of a single one or use the multiple sets of data.

The methods documented for the investigation of similarities and differences between
similar remote sensing datasets includes a comparison of distributions, comparison of

correlations and comparison of agreements. These are summarized as follows: -
Comparison of distribution

The use of distribution functions to describe similarities or differences between data
sets is a widely employed method. The four characteristics of data that determine a
choice of distribution are possible data values based on whether the data values are
discrete or continuous; symmetry and direction of the symmetry that indicates the
presence of both positive and negative outliers; the existence of upper and lower limits
on the data for example if between 0 and 100 and the likelihood of observing extreme
values based on the frequency of the extreme values. The comparison of NDV1 datasets
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from multiple sources is for example documented in Yin et al. (2012) for MODIS,
AVHRR and SPOT-VGT.

The approaches to the statistics of distribution can be classified based on whether
distribution parameters are known beforehand on the data. This gives either parametric
or non-parametric methods. Parametric Methods are those that make inference based
on the assumption of parameters to a distribution function. Such is the basis of use of
the standard distributions including Binomial, Poisson, Geometric and Discrete
uniform distributions. Parametric methods, therefore, rely on the tremendous reduction
of original problems to a few parameters. This reduction is achieved by making many
and mostly over-restrictive assumptions. They are convenient when correct, efficient
and easy to interpret. Non-parametric methods, as opposed to parametric methods,
non-parametric methods make as few assumptions as possible. A distribution form is
thus not defined over a function F(x) as long as it is cumulative distribution function.
This approach, therefore, leads to the approximation of a function as opposed to a
parameter. One non-parametric approach that is commonly used to visually compare
data distributions is the Empirical Cumulative Distribution Function (ECDF). The

ECDF is defined as shown in Equation 14: -
F(x) = %Z’fl (x;x) where I is the indicator function................ (14)

F is the CDF function and is noted to put a mass of 1/n at each data point x;
Comparison of correlation

Correlations are used to describe the existence of a relationship between variables, with
the concept extendable to cover datasets. The investigation of correlation is quite
popular in the investigation of data archives for both agreement and differences. The
correlational analysis is for example used in Yin et al. (2012) to analyze differences
and agreements among MODIS, AVHRR and SPOT-VGT datasets. The use of NDVI
trends in Yin et al. (2012) in our opinion is essentially the same approach to the
investigation of correlations despite the study treating them as different. The

correlational analysis approach is also used in Song, Ma & Veroustraete (2010) to
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validate the linear relationship between the two types of NDVI products from SPOT-
VGT and AVHRR sensors. The most common methods of specifying correlation are

Scatter Plot and Correlation Coefficient as discussed here next:

Scatter plots that have two data sets plotted on a graph of paper along the same x and
y axes. A visual inspection can be used to decide whether the correlation, r is perfectly
positive and therefore r=+1 and all points lie on a straight line, correlation is perfectly
negative when r=-1 and any dispersions based on their directions result in either
high/low degree positive/negative correlations. The base case, r=0 implies either a
broad spread over a broad area with a downward trend or absence of correlation. The
method is widely documented to be non-mathematical, naive and un-reliable without

the ability to measure the degree of correlation.

Coefficients of Correlation is defined by Equation 15. Denoted as r, the linear
correlation coefficient measures the strength and direction of a derived linear
relationship between two variables. The interpretation is much like the Scatter plot, but

with a mathematical quantification and direction specification of correlation.

With a value between -1 and 1, the interpretation is that a value approaching -1 implies
a strong negative correlation, 0 no correlation and those approaching +1 have a strong
positive correlation. Heuristically, a 0.7 cut off signals a strong correlation while below
0.5 implies a weak correlation. For the formulation of magnitude, the determinant of
correlation- r? or R?, is always used. R? implies the proportion of variations of y
explained by the linear relationship between x and y. The limitation in correlations is

that we only measure linear co-variation and not actual difference.

r= Iy - @02 Y) e ettt e (15)

J[anz -0 nEy’ - E’]
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Comparison of agreement

Agreement methods measure agreement between two variables and by extension
datasets. The bounds of the agreement coefficient (AC) is defined between 0 and 1 for
no agreement to perfect agreement for this measure thereby making it easy to interpret.
The AC as documented in Ji & Gallo (2006) is noted to be non-dimensional, bounded,
symmetric and distinguishable between symmetric and un-symmetric differences. The
AC is defined in Equation 16.

AC =1—=2 (16)

Where, SSD is the sum of square difference (SSD) and SPOD is the sum of potential
difference (Meroni et al., 2013). SPOD is defined by Equation 17.

SPOD =( |X; = X|+|X=-Y)( |Y; =Y|+|X=Y) ... (17)
2.7.3.2 Problem of availability of vast volumes of remote sensing data

There is an explosion in the availability of remote sensing data at volumes and
frequencies that qualify it for big data. Big data was previously characterized by three
attributes: volume in the order of exabytes of data, velocity based on a very high
frequency of incidence, variety in different formats- both structured and unstructured
as initially documented in Russom (2011). Additional characteristics now documented
in big data include veracity and value (Anuradha, 2015). While veracity raises quality
issues on the data by positing questions on completeness, cleanliness and accuracy of
the data, value is perhaps the most important as it poses the question of business value
derivable from the data. The specific case of climate data, that is the basis of this study,

has complexity in presentation and storage as an attendant characteristic.

The availability of vast volumes of data covering long periods and at regular
frequencies and with expected availability in the future makes an opportunity rather
than a limitation. With the enhancement of big data analysis techniques, the discovery
of nuggets of importance from these data makes for a perfect convergence of data and
tools. The data repositories form time series data that can be subjected to time series

analysis and even prediction using machine learning techniques. The two common
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models for time series analysis are the Brockwell and Davis generic model and the

Fourier series model.
e Brockwell and Davis Generic model

One generic model that remains popular for time series analysis is the model
described in Brockwell & Davis (2006) that is summarized in Figure 2.6.
Although the steps were presented as sequential, our understanding of the
model is that it has an inherent back and forth mechanism between the

subsequent stages of the process.

Step 1: Plot the series and examine main graph features

Trend Seasonal QOutliers Residuals

Step 2: Remove trend and seasonal compenents and outliers

Step 3: Choose a model to fit the residuals

Step 4: Use model for forecasting

Figure 2.6: The Brockwell and Davis Model for time series modelling
(Brockwell & Davis, 2006)

The Brockwell & Davis model aims to realize the stationary components of the
time series that are referred to as residuals even in cases in which it is necessary
to do transformations. The choice of model to fit residuals uses many sample

statistics like the autocorrelation function.

Data for drought monitoring, both Remote Sensing and Socio-Economic data,
is generally collected in regular time intervals that could be any of daily,
weekly, dekadal, monthly, quarterly, annually etc. The data, therefore, has a
temporal dimension on top of the spatial dimension that is majorly inherent in
the data. The regularity of the data collection makes this data to be interpretable
as time series data. Brockwell & Davis (2006) define a time series to be a set
of observations x:, each one being recorded at a specific time t. This definition
is extended to define discrete time series to be that in which the time intervals,
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t, are discrete. Drought monitoring data are thus, generally, discrete time series

datasets.
e Fourier series model

An alternative model to the Brockwell and Davis model is the resolution and
expression of the time series as a component of its Fourier components. The

modelling expresses the time series as a set of waves with different frequencies.

Temporal domain data can be transformed to an equivalent frequency domain
using by the use of Fourier analysis (Moody & Johnson, 2001). For discrete
data like that of the remote sensing time series data, a discrete Fourier transform
(DFT) is used as long as there exists regularity of spacing of the data points in

the temporal domain.

The use of the above models in the analysis of multiple datasets is, in essence,
a data comparison problem that aims to realize the differences and similarities
between multiple time series data. The methods of data comparison have the
objective of realizing insights on the distribution, correlation or agreement
between the data items (time series) of comparison. Below we describe some
of the specific approaches to the comparison of the different datasets and time
series that fall within the generic model of Brockwell & Davis (2006).

The processing and analysis of time series data are primarily geared towards generating
models that are meant to achieve some specific objectives. These objectives include
those of decomposition of the time series though the extraction and separation of the
time series into trend, seasonal and random components as documented in Brandt et
al. (2014). The decomposition is based on a locally weighted regression smoother

filter. The season term is generally dropped off from the long-term analysis.

Further to the decomposition of the time series data is noise filtering that involves the
removal of any un-intended but captured data that lead to effects and biases on the
captured values. The objective of the prediction of future values based on the existing

values is meant to offer support for early and real time or near real time monitoring.
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Accompanying the decomposition of datasets are the twin concepts of hypotheses
testing and simulation for the generation of new insights. Testing some given
hypotheses such as increasing frequency of droughts over the years for some given
spatial coverage is meant to provide evidence for areas that need closer attention while
the simulation of the data in novel ways is meant to lead to the generation of new

insights.

Essentially, the problem of multiple time series data comparison for similarities and
differences has been widely studied. In its simplicity, the comparison of multiple time
series data can be defined as that of seeking a constant model with a goodness of fit
that is capable of accounting to the difference and/or similarities between different
time-series data (Jin, 2011). The wider goal is to account for the differences and
similarities and extend these to multiple time series that could, in essence, be of
different lengths.

2.7.3.3 Problem of quality of data in remote sensing

Data quality, as opposed to say quality as understood in manufacturing, is defined in
terms of intangible characteristics as opposed to physical properties. The issue of data
quality is increasingly becoming crucial in remote sensing for a trio of reasons: (1) is
the fact that many non-government entities are getting into space and deploying
satellites; (2) is the increasing use of remote sensing data for decision making even in
critical applications and; (3) is the continued reliance on digital technologies and thus

secondary sources for the data as advanced by Batini et al. (2017).

The concept of data quality is best described in-line with the key attributes of resolution
(Lefsky & Cohen, 2003). Types of resolution include: the spatial resolution that
defines pixel sizes, the radiometric resolution that defines the different number of
intensity values in an image, the spectral resolution that defines the number of
channels recorded and temporal resolution that defines the frequency of the data

capture and thus a major basis for monitoring systems.
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Figure 2.7 illustrates the data quality definitions for remote sensing data based on the
above resolutions- spatial, radiometric, spectral and temporal using a 3x4 image with

a total of 12 pixels for each band.

Figure 2.7: A sample illustration of a 3-band 3x4 remote sensing image.

Remote sensing images are raster images provided as matrixes with a given number of
rows and columns. While geometric or spatial precision is a definition of the
homogeneity of the pixels for all the bands, radiometric precision concerns the
representativeness of the digital values stored for each pixel as a measure of
reflectivity. The accuracy in the separation of the bands defines the spectral precision
while temporal precision would imply the metadata on date and time of capture remain
accurate. Finally, as positional precision defines the image and its relation to a
coordinate system, attribute accuracy is indicated by the goodness of measure of

thematic interest.

Assuming the correct set up of both satellites and sensors, the most common causes of
data quality issues in remote sensing images is the loss of radiation as a result of
interaction with the atmosphere. One such cause of loss of radiation is the effect of
clouds in the obstruction of radiations from interacting with objects of interest.
Handling effects of atmospheric interference is key in remote sensing data since it is
the biggest cause of radiometric inaccuracy of remote sensing images. There have been
documented cases of some areas of interest being covered by clouds up to 67% of the
time within the year (Wang et al., 1999).
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Data smoothing and filtering as well elaborated in Klisch & Atzberger (2016) are
especially important in the processing of remotely sensed data particularly for
vegetation that is in the most cases affected by cloud cover and other atmospheric
interferences. In this aspect, the processing of Remote Sensing data could benefit from
data mining models that have been advanced for their ability to fill in the gaps in data

by extrapolating and estimating necessary parameters.
2.7.4 Socio-Economic Data for drought monitoring

Despite the documented socio-economic effects of drought, not much documentation
exists in their modelling within the practice of drought monitoring. This is perhaps
because of their tendency to be affected late in the drought cycle or because of their
affinity to have their trends affected by interventions in the form of drought response
and mitigation that serve to minimize impacts of droughts on communities. A good
review of interventions in the pastoral livestock sector and their possible socio-

economic benefits is provided in Morton et al. (2005).

The effects of drought are generally considered in the three categories: social,
economic and environmental effects. Jenkins (2012) and Garrido (2014) document the
Hochrainer model (Figure 2.8) that describes the categorization of the impacts of
drought based on the three widely used categories of society, economy and
environment. An alternative to this common classification views drought in terms of
the sectors affected, effects on supply and demand, whether impacts are tangible or

intangible and the effects on the environment.

Direct, indirect or secondary micro-impacts of products are realized based on the
sectors that are affected by the drought. Direct effects are those that mainly impact the
productive sectors of crop agriculture, livestock production, fish production etc. while
indirect impacts are generally results of the direct impacts like effects on the
agricultural food sector. While non-market impacts like welfare reductions are due to
effects on demand and supply markets (Garrido, 2014) that then lead to effects on
access and subsequently impact the welfare of communities under exposure; Tangible

and intangible impacts is an alternative classification offered by Massarutto et al.
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(2013) that in addition to direct and indirect impact, also considers the impacts on
lifestyle, health and social tension. On the other hand, environmental impacts include
those on water systems (both surface and groundwater) and effects of wetlands at the

occurrence of extreme droughts.

[ Drought ]

Society Economy Environment
..................... R e

Direct Loss of life Crop damage |- Damage to
Impacts habitat
Indirect Disease, Poverty Business Loss of
Impacts interruption biodiversity
Secondary > Recons'gructipn
macroeconomic impacts and relief/ aid  [€

Figure 2.8: The Hochrainer illustration of the impact of drought showing the social,
economic and environmental impacts of drought (Jenkins, 2012)

Given that droughts have both a spatial and temporal coverage, impacts of their
occurrence on these extents can be monitored by proxy indicators that quantify the
impacts of the droughts on the socio-economic conditions of the areas of coverage.
This approach, as documented in Massarutto et al. (2013), should involve the twin
requirements of the quantification of the socio-economic and environmental effects of
drought events and the modelling of the relationship between the socio-economic

impacts and selected variables that monitor and are associated with drought.

The limitations to the use of Socio-Economic data in drought monitoring are majorly
due to three broad issues around the identification, documentation and quantification
of droughts and the losses attributable to their impacts. While environmental and even

socio-economic impacts of drought are generally difficult to identify and quantify in
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monetary terms (Ding, Hayes & Widhalm, 2011), intangible impacts of drought are
even more difficult to identify. The quantification of non-tangible impacts of drought

is therefore guaranteed to be a non- trivial task.
2.7.5 Socio-Economic Indicators for drought monitoring

Just as the case for remote sensing data, to be used in drought monitoring and drought
prediction, socio-economic data has to be transformed into indicators that are capable
of correlating to drought. Such transformations should aim to make the datasets
sensitive to changes in drought severity. The classification of impacts of drought on
socio-economic terms follows the model provided in Figure 2.9 that categorizes the

impacts into those on production, access and welfare.

The categories of socio-economic data that can be collected for drought impacts
include the impacts on crop and livestock agriculture, access indicators like market

prices and welfare indicators like nutrition-based indicators.

Production

Figure 2.9: Sequence of effects of drought on livelihoods as drought progresses.

Changes in drought severity or enhanced exposure periods lead to an impact on both
crop and livestock production. Access to produce is then affected as a result of high
demand in the context of reduced supply for particular goods and services. The welfare
of the communities is the last aspect to be affected, especially with malnutrition rates
getting escalated to beyond normal levels.

The common production indictors for the production effects of drought include crop
yields and milk production. The market access indicators are for example documented
in FEWSNET (2009) and in Hill & Fuje (2017) and include those that measure changes
in staple prices e.g. of maize, prices of livestock and terms of exchange between staples
and popular production holdings. The effect of droughts on food prices based on survey
data is further documented for the case of a Kenyan county in Mohajan (2014) and for

hay and feed prices in Schaub & Finger (2020). One study that stands out in
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investigating the relationship between vegetation conditions and maize prices is found
in Shuaibu et al. (2016). The regression model in Shuaibu et al. (2016) concludes that
the normalized difference vegetation index (NDVI) is a good index for modelling the

change of maize prices and is hence useful or emergency planning.

The popular welfare indicator on malnutrition, the Middle-Upper Arm Circumference
(MUAC) as documented in De Onis, Yip & Mei (1997) and in James et al. (1994) is

best measured in the sub-set of the population below 5 years.
2.7.6 Methodologies of Handling Socio-Economic Loses from Drought Impacts

Drought occurrences, especially in extreme cases provide a lot of shocks to
communities as modelled by the Hochrainer model in Figure 2.8. There exist varied
ways of responding to these shocks including offering no protection to communities,
building the resilience of communities, enhancing drought preparedness and drought

response and drought insurance.

e The no protection of communities: Is an approach that is characterized by the
lack of planning coupled with the unwillingness to cushion societies from
losses. The communities are therefore left to bear the consequences of
droughts. This approach is laden with massive losses of both life and
livelihoods.

e Resilience building: Resilience building to extreme events remains quite
complex (Tortajada et al., 2017). Basically, resilience-building involves
improving the capacities of communities to handle drought shocks for
increasingly longer times and at greater impacts. This is the current method of
choice that is geared towards making communities self-reliant and therefore
prone to suffering less drought effect on both lives and livelihoods.

e Contingency planning, drought preparedness and drought response: Is an
approach that is driven by planning, in advance, for droughts. The realized
advance plans are referred to Contingency Plans and they have, in general,
well-modelled scenarios. The contingency plans are coupled with drought
preparedness that is similar to resilience building. In the event that droughts
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occur, drought response involves taking actions that protect communities from
the loss of lives and livelihoods.

e Drought Insurance: is an approach that is increasingly becoming popular as
an option for handling socio-economic losses from droughts. In this case,
premiums are agreed and paid for before-hand against possible drought
episodes, especially for agricultural droughts. Insurance risks against droughts
are considered a systematic risk and thus valued expensive. This approach
typically involves the use of an objective monitoring system, that is typically
driven by remote sensing, for the quantification of even occurrence and socio-
economic data for determination of impacts and thus levels of pay-out. An
operational drought insurance system that is based on the use of remote sensing
data in the insurance of drought losses is, for example, documented in Mude et
al. (2010) and in Chantarat et al. (2013). It is, therefore, a technical undertaking
to develop such specialized insurance schemes against, not only drought but

other natural disasters.
2.8 Formulation of the drought prediction problem
2.8.1 The generic prediction problem and drought

The drought prediction problem is a sub-set from the domain of prediction problems.
An investigation of the drought prediction problem, therefore, follows from the
definition of the prediction problem. The general formulation of the Machine Learning
approach to the definition of the prediction problem is provided in Figure 2.10.
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Figure 2.10: The machine learning approach to prediction as adapted from Mitchell (1997).

The model building process has at the core the use of historical datasets to formulate
models and that are then used to make predictions. The generic prediction model has
several steps that are geared towards realizing models capable of making predictions.
The main tasks are feature selection, model training and model parameter
approximations through model validation and the evaluation of the performance of the
models. The model function realized is finally used in the approximation of the target

i.e. drought in the case of this study.

From the generic machine learning (ML) model provided and in the context of drought
monitoring, two tasks are non-trivial. First is the definition of drought as the target
variable. The question is best answered by any of the Equations 3-10 (Table 2) that
outlined the common difference indicators used in drought monitoring. The second
task is the choice of the ML algorithm to be used in learning the model that best
approximates drought. The methods are discussed in sections 2.8.3-2.8.5 including the
possible methods for both parameters tuning and model evaluation.

Important to observe from the generic model is the attendant limitation that any
drought monitoring process would have to overcome. This limitation is on the
application of the model for scoring. In the ML problem, we predict future conditions
using past recorded conditions. In a strict sense, it is not like the generic problem where

the features of the instance are provided. In fact, the future remains strictly defined by
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the past. The concepts used in the prediction of future conditions are discussed in
section 2.8.2. The closely related concepts in prediction are Machine Learning (ML),
Knowledge Discovery from Databases (KDD), Data Mining and Artificial Intelligence
(Al). Section 2.8.3 zeroes in on the ML methods for approximating the model function.

2.8.2 Machine Learning (ML), Data Mining, Artificial Intelligence (Al) and
Knowledge Discovery from Databases (KDD).

Closely related to Machine Learning (ML) are the concepts of Data Mining,
Knowledge Discovery from Databases (KDD) and Atrtificial Intelligence (Al). They,
however, are slightly different concepts. The confusion is majorly on the twin pairs of
Data Mining and KDD; and Al versus ML. A highlight of their differences is presented
between the pairs most closely related as discussed in sections 2.8.2.1 to 2.8.2.3.

2.8.2.1 Data Mining & Knowledge Discovery from Databases (KDD)

Data mining is defined as the extraction of useful models of data either in the form of
summarization of the data or identification of extreme features of data (Han, Kamber
& Mining, 2006; Hand, Mannila & Smyth, 2001). This definition of data mining is
closely related to that of Knowledge Discovery from Databases (KDD) that is defined
with the underlying concept as the exploration and analysis of large quantities of data
in order to discover valid, novel, potentially useful and ultimately understandable
patterns (Fayyad, Piatetsky-Shapiro & Smyth, 1996; Goebel & Grunewald, 1999; Han,
Kamber & Mining, 2006). Although close in definition, it is the case that KDD is a
wider area of which data mining is a sub-process. KDD includes knowledge extraction
and representation at the tail end of its process. It is our understating that data mining
is best described as part of a process that aims to find patterns from data while KDD
is the super-process that also grapples with how to represent knowledge and reasoning

on the knowledge.
2.8.2.2 Machine Learning & Artificial Intelligence (ML versus Al)

Artificial Intelligence (Al) aims to create machines that are capable of mimicking both
the human mind and behaviour and that also has learning capabilities at its core.

Therefore, Al encompasses more than the concept of learning and includes the
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concepts of knowledge representation, reasoning and abstract thinking. Al is therefore
different from machine learning that is more focused on the creation of software

systems that can learn based on past experience.
2.8.2.3 Data Mining and Machine Learning

Data Mining is the process of identifying new patterns and insights from data. Data
Mining thus involves the extraction of regularities from very large datasets/ databases
as part of a business application process (Firnkranz, Gamberger & Lavra¢, 2012;
Kohavi, 2001). The key undertaking in Data Mining is thus the extraction of interesting
and thus non-trivial, implicit and previously unknown nuggets of potentially useful

information from data resident in large databases.

Data Mining is thus driven by four main factors that include: the data availability
factor, the need for interpretation factor, the need for prediction of the future and the

availability of storage and related technologies.

The existence of vast volumes of data (Anuradha, 2015) that is either structured or
unstructured is a drive to data mining. There is an increase in the variety of automated
data collection in diverse areas including remote sensing (Liu, 2015) that then lends
itself to data mining that generally is considered to be data-hungry. The need to make
sense of the above vast volumes of data especially that from operational systems and
data warehouses is an increasing undertaking of businesses. This is further supported
by the advancements in data storage and methodologies and tools for data analysis,
summarization and visualization that have made it easier to use data for decision
making. The need to attain the twin goals in data mining of gaining insights from data
and using the same to predict the future based on the existing past data especially for
comparative advantages is a key driver to data mining. The data collected from such is
variously documented as the next opportunity for not only productivity but also

competition and innovation (Manyika et al., 2011; Zikopoulos & Eaton, 2011).

Machine Learning (ML) is a close concept to Data Mining that is operationally defined
by Mitchell (1997) in terms of the ability of a machine to learn from experience. A

computer program is said to learn from experience E with respect to some class of
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tasks T and performance measure P if its performance at Tasks in T as measured by P
improves with experience E. The experience E is provided in terms of a training dataset
over the task T. As variously defined (Bishop, 2006; Mitchell, 1997; Nilsson, 1996),
the overriding concept in ML is the ability of the learning techniques used to not only
predict an outcome given some input but also to improve at the task given more

experience.

There exist subtle differences between Data Mining and Machine Learning. The
differences are based on focus, data requirements, and goal orientation of both Data
Mining and Machine Learning. First, whereas Data Mining focuses on the discovery
of previously unknown properties of the data, Machine Learning (ML) focuses on
known properties learnt from the previously existing data. Second, while Data Mining
is mostly driven by the existence and use of large datasets, ML though a potential
beneficiary from large datasets possesses algorithms that also lend themselves to
handling small data sets. The final difference is premised on the fact the Data Mining
has an overall goal of finding nuggets of information from the huge sets of data. This
search is not particularly based on pre-set and guided rules and goals. Data Mining
can, therefore, be terminated at the exploratory stages given it is non-specific in goal
orientation on the data while ML can be viewed as goal-oriented in the search for

specific outcomes.

Recent developments have seen the adoption of Data Mining across many industries
for diverse applications. This widespread adoption of ML approaches has then raised
the need for standardization of process of Data Mining, the result of which is the Data

Mining Process.
2.8.2.4 The Data Mining Process

The data mining process is variously described (Azevedo, 2008; Chapman et al., 2000;
Fayyad, Piatetsky-Shapiro & Smyth, 1996). Despite the differences in the description
of the Data Mining process, the common steps are summarized in the Cross-Industry
Standard Process for Data Mining (CRISP-DM) methodology (Azevedo, 2008;
Chapman et al., 2000).
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The CRISP-DM process is widely accepted and aims to simplify the Data Mining

process to a step of processes as modelled in Figure 2.11.

Business — Data
understanding g understanding

Modeling

Evaluation

Figure 2.11: CRISP-DM Data Mining Process Model.

Data is at the core of the modelling process of the methodology that also provides for model

deployment.

The data mining process (Figure 2.11) follows the steps outlined below: -

1.

Business Understanding that encompasses working with business to define
objectives from requirements and ends with a well-formulated data mining
problem to address the objectives of the solutions sought.

Data Understanding to formulate a hypothesis after getting a preliminary
understanding of the data and its associated problems.

Data Preparation in which the data is converted, through transformations and
attribute selection, to a final form from which a model will be developed.
Modelling stage that applies selected modelling techniques and is mostly
interactive with the data preparation phase.

Evaluation sub-set at which the model is assessed for performance and if its
results meet earlier set objectives and apply to the business objective. It is the

case that a choice has to be made from the use of multiple models.
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6. Deployment is a non-trial task involving the actual use of the models to offer
solutions to the earlier defined problem. Deployment takes various forms from
simple communication of results to deployment of management tools to

accompany the models.

An alternative to the CRISP-DM methodology is the SEMMA methodology. SEMMA
is an acronym for steps in this model for data mining that follows on: Sample, Explore,
Modify, Model, and Assess phases for a typical data mining process. Although
variously defined as a methodology (Azevedo, 2008; Mariscal, Marban & Fernandez,
2010; Nadali, Kakhky & Nosratabadi, 2011), SEMMA could be considered as a logical
organization of the data mining process. The Key steps of the methodology are in most
cases iterative and thus should not be linearity assumed in the progression of the data
mining process steps. The SEMMA methodology phases are as follows: -

1. Sample& Explore: - Whereas the Sample process is an optional process that
involves retaining only the data that is considered useful, the explore process
supports the discovery process on the data and can involve the use of both
visual and statistical techniques.

2. Modify and Model: - The Modify phase involves creation, selection and
transformation of variables and is succeeded by the Model phase. The
modelling phase involves the use of modelling techniques to combine variables
to predict useful outcomes.

3. Asses: - Typically, this involves the evaluation of the usefulness of findings
from a model intending to estimate how well the model performs. The most
common approach is the application of the model on both test and validation
datasets that are different from the data on which the model is trained.

It is the case that the SEMMA methodology does not explicitly provide for the key
step of data pre-processing. However, an alternative view could be that data pre-
processing is implicitly provided for within the Sample phase of the methodology. The
application of the SEMMA based methodologies will thus have to be modified to

include an extensive phase for pre-processing of the scientific data. On the other hand,
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the CRISP-DM methodology is elaborate enough to provide for all the steps required
to build models on climate data since data pre-processing is extensively provided for.
Viewed closely, it is noted that, despite the differences in number and sequences of
stages, the CRISP-DM and SEMMA methodologies, in essence, remain a description

of the same process.

The discovery of hidden nuggets is a key undertaking of data mining. Mena (1999)
documents data mining as involving the discovery of actionable and meaningful
patterns, profiles and trends by sifting through data using pattern recognition
technologies such as Neural Networks and other machine learning algorithms
including genetic algorithms. Openshaw (1999) also asserts the appropriateness of data
mining in the handling of vast volumes of data as is the case with sensor data in drought
monitoring. The possibility of the use of data mining and machine learning techniques
in data reduction and data visualization cannot be over-emphasized. This is made
possible by the suitability of machine learning algorithms in the modelling step of data
mining. The automation of the data reduction process is one benefit that drought

monitoring can realize from the combination of Data Mining and machine learning.
2.8.3 The Machine Learning methods of drought prediction

Having formulated the drought prediction problem as a machine learning problem that
uses past/ historical data to approximate a function that can be applied to predict
drought, the question then shifts to the possible methods that can be used for the

prediction.

Machine learning takes the form of any of the following popular and commonly used
three learning paradigms of supervised learning, unsupervised learning and

Reinforcement Learning.

e Supervised Learning has methods similar to those outlined in Bishop (2006)
and Mitchell (1997) in which models are presented with training data in the
form of labelled training examples. The machine in this instance is presented
with observed data that have a specified outcome referred to as output labels to

derive a function that it then uses to approximate the outcome of previously
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unseen and thus unlabeled instances. Supervised learning tasks are either
classification or regression tasks based on the outcome to be approximated. If
the outcome of the training to be approximated is discrete the task is a
classification task, while regression tasks approximate continuous value
outcomes. Supervised learning, being more structured, remains the most
common approach to ML since it is possible to subject it to evaluation for
performance.

e Un-supervised Leaning is when the training instances have no labels and the
machine is to look for relationships from the dataset provided. We assert that
Unsupervised Machine Learning is in the most similar to descriptive data
mining through which useful insight is gained. Unsupervised learning methods
rarely lend themselves to performance evaluation. The unsupervised learning
approach is more of a white-box process as compared to other machine learning
approaches like Artificial Neural Networks (ANN) that are black-box
processes (Shwartz-Ziv & Tishby, 2017).

e Reinforcement Learning is characterized by three main concepts. The concept
of a cumulative reward for a software agent, an objective or score function that
evaluates the reward at any point and the use of feedback to signal whether the
choices are towards the optimization of the cumulative rewards. An excellent
review of reinforcement learning is found in Sutton & Barto (2018).

An alternative to the popular classification of the approaches to machine learning away
from supervised, unsupervised and reinforcement learning paradigm is that proposed
in Firnkranz, Gamberger & Lavra¢ (2012). The Firnkranz approach categorizes
machine learning into symbolic and statistical approaches. Symbolic approaches are
characterized as those that involve the inductive learning of symbolic descriptions and
are thus examples based and generalization driven. Symbolic approaches include trees,
rules and logical representation. On the other hand, Statistical Approaches includes
statistical or pattern recognition methods like k-Nearest Neighbour (KNN), Instance-
Based Learning (IBL), Bayesian Classifiers (BC), Artificial Neural Networks (ANN),
Support Vector Machines (SVM) etc.
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For data mining to be undertaken, some techniques need to be applied. These
techniques can either be viewed as algorithmic or computing techniques. The
difference between the algorithmic and computing techniques, as approaches to data
mining, is that whereas algorithmic techniques are guaranteed to be finite, computing

techniques are not guaranteed to terminate.

Although machine learning is variously defined (Bishop, 2006; Mitchell, 1997;
Nilsson, 1996), the overriding concept is the ability of the learning techniques used to
not only predict an outcome given some input but also to improve at the task given
more experience. Machine learning techniques that could be used in data mining can
be classified into either symbolic or statistical-based techniques. Whereas Statistical
methods include Logistic Regression, Linear Discriminant Analysis, Bayesian
classifiers (Langley & Sage, 1994; Witten & Frank, 2005), Regression (Gunst, 2018;
Hardle, 1990), Artificial Neural Networks (Bishop, 2006; Mitchell, 1997) and Support
Vector Machines, Symbolic methods include decision trees, rules and logical
representations (Mitchell, 1997; Witten & Frank, 2005).

Whereas pure machine learning models like artificial neural networks (ANN) rely on
automatic adjustment of parameters in an iterative process and are mainly not
transparent, purely statistical methods like Bayesian classifiers rely on noise-free data

that follow normal distributions.

The choice of a machine earning methods is guided by suitability for use on some
specific data, volumes of available data, required outputs and their levels of
transparency and idiosyncrasies of the modelling environment (Anderson, 2007). The
machine learning problem, for ease of manipulation, is always essentially reduced to

the three concepts of representation, evaluation and optimization.

Representation reduces the machine learning problem to a formal computer language
thereby defining the possible classifiers that could be trained on the data. This is in
essence, the determination of the hypothesis space, H. Closely following on
representation, is the key concept of Evaluation that involves the formulation of some

performance evaluation function against which the candidate models are evaluated.
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Evaluation is, therefore, the basis on which alternative models are weighted against
each other. The results of the model evaluation are followed by the related concept of
optimization that uses the results of the evaluation process to inform the choice of
models. Optimization involves the search for the “best” classifier from amongst the
candidate classifiers. The best classifier will be that which has the best performance
based on the objectively formulated and evaluated score function that could combine

multiple measures of performance.

In general, the simplification of the machine learning problem to a model is the very
basis of potential misuse and misinterpretation of the process. The process of machine
learning, to avoid the pitfall of over-simplification, should follow on the key guiding
principles that cover issues around the goal, representation, postulation of assumptions,
generalization and handling of the curse of dimensionality, realization of multiple
models and simplicity for the practicality of use. These key guiding principles, as
documented variously from Bishop (2006), Chao (2011) and Mitchell (1997) are

summarized as: -

1. The Goal: - the ultimate goal of machine learning is to realize models that can
be generalized past the observed training examples. Reasonable performance
at the model training is thus desired, but must not be the ultimate goal of any
machine learning problem.

2. Representation versus “Learnability”: - The ability to represent a problem as
a machine learning problem does not directly imply it is learnable. In this
context, representability can be viewed as being trivial to the learning task. It
is therefore advised that multiple representations for the same problem be
investigated.

3. No Free lunch: - The concept of “No free lunch” implies assumptions about a
learning model have to be made to make it generalizable. This is in direct
conflict with the reality of the insufficiency of the theoretical underpinnings of
machine learning.

4. The curse of dimensionality in which a learner is presented with data that has

too many features when most of such features are not direct evidence of the

73



concept to be learnt. The curse of dimensionality calls for a well-considered
feature engineering process. The presentation of data with many features not
only poses the risk of model overfitting but also a contradiction to the choice
of machine learning techniques that are known to be optimal in cases of fewer
features and low volumes of data.

5. Multiple models learning involve the learning of many models. The multiple
models learning approach is encouraged since performances differ with
different scenarios and therefore it offers the opportunity of the selection of
best performers or the use of results.

6. Simplicity does not guarantee accuracy is as opposed to the advocacy by
Occam’s razor for simple yet predictive models. It is the case that model
ensembles outperform single and simple models despite their complexity.

The study furthers the review of two approaches of in machine learning: Artificial
Neural Networks (ANN) and Support Vector Machines (SVM) in section 2.8.4 and
section 2.8.5 respectively.

2.8.4 A review of Artificial Neural Networks (ANN)

Acrtificial Neural Networks (ANNS) are a machine learning approach that mimics the
interconnectedness of the brain in the modelling process. ANNs have numerous
neurons connected to each other to be able to emulate the human brain. The
interconnectedness of the neurons is achieved by typically grouping them into layers
called input and output layers with one or more hidden layers in between. A typical set

with two hidden layers is as shown in Figure 2.12.
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Figure 2.12: An ANN model with an input, output and two hidden layers with the
configuration 3-5-3-1.

For regression, the ANN is modelled with the sigmoid unit shown in Figure 2.13 at the
centre of the design. In a multilayer network, it is these sigmoid units that are connected
in a feed-forward set up as shown in Figure 2.12. The feed-forward network can
propagate inputs forward and errors backwards to adjust weights till some
predetermined thresholds are met. The algorithm used to feed the inputs forward and
the errors backwards till a threshold is met is referred to as the backpropagation
algorithm.
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Figure 2.13: The sigmoid unit- the basis for regression modelling using ANN
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The sigmoid unit o(x) is acts as the sigmoid function and is expressed as
sigmoid function has the nice property that the output can be expressed as a function of the
inputs such that d%a(x) = J(x)(l — a(x)). The differential for the expression can thus be

obtained without necessarily expanding the expression.

The popularity of the ANN is hinged on its ability to learn discrete, real and vector-
valued functions and to vastly remain robust to errors in training data. As documented
in Mitchell (1997), ANNs have several characteristics making them suitable for
predictive modelling: (1) instances can be represented by many attribute-value pairs,
(2) the target function is either discrete, real or vector-valued, (3) training examples
may contain errors, and (4) long training times are acceptable while faster evaluation
is required. The ANNSs are, however, susceptible to overfitting (Bilbao & Bilbao, 2017)
in which case localised expert models are realised in model training that are not
practical for real-life scenarios and hence the models end up with poor performance in

test data.

A good description of ANNSs is provided in Ramos & Martinez (2013), Bishop (2006),
Nilsson (1996) and in Mas & Flores (2008). The study in Mas & Flores (2008) provides
areview to the use of the ANN’s backpropagation algorithm in remote sensing. On the
other hand, the study in Ramos & Martinez (2013) reviews the literature on ANNSs and
makes a comparative analysis of the performance of different groups of ANN in time
series forecasting. The results in Ramos & Martinez (2013) show the multi-layer

perceptron (MLP) as the best network in forecasting time series data.
2.8.5 Support Vector Machines (SVM)

At the core of SVMs is the question of separability of data points into unique classes,
typically two but in an approach that is extensible to multiple-classes and to linearly
inseparable cases. Given that the remote sensing data used for drought monitoring have
a sinusoidal trend with the effects of seasonality, it is expected that the examples are
not linearly separable. Drought monitoring data is also expected not to follow on any
of the standard distributions. We, therefore, review SVMs and their regression
implementation as support vector regression (SVRs) as capable of modelling cases of
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linear inseparability while tolerating noise in the data as documented in Mountrakis,
Im & Ogole (2011).

In the simplest approach of the SVM, the key is to create a decision boundary or
hyperplane between two classes in a setting that supports the prediction of classes
using one or more feature vectors. The aim is to have the hyperplane orientated as to
be furthest from the support vectors that are designated to be the closest data points
from each of the classes to be separated. The performance of SVM against other
approaches has been documented in Wagacha (2003) using empirical evidence while
Cristianini & Shawe-Taylor (2000) and Scholkopf, Smola & Bach (2002) provide a

comprehensive review of SVMs.

The issues in the use of SVM are documented to include the handling of noise in the
data and handling training data that are linearly inseparable. These issues are, however,

solved as follows: -

e Noise in the training data for SVMs is handled by having soft as opposed to
hard margins. Soft margins allow for misprediction of some of the support
vectors. Whereas Figure 2.14 shows the simple case of an SVM without noise,
Figure 2.15 shows the effect of noise and thus the need for a soft margin. The
case with noise, however, has a cost (C) hyperparameter introduced to take care
of the complexity of models. The aim, in this case, is to find the C that neither

overfits nor underfits the model.
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Figure 2.14: Decision boundary of SVM and a hard margin for linearly separable training
data
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Figure 2.15: Decision boundary and a soft SVM margin with noise accounted for by the cost
hyperparameter (C).

e For cases of linearly inseparable training examples, the data is mapped to a
higher dimensional feature space that could even be infinite. In some cases,

even one step of transformation realizes linear separability on the training data.
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This is as illustrated by Figure 2.16 when a transformation from (X1, x2) to the

expanded (x12, x2?) feature space is done.
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Figure 2.16: Feature transformation to higher dimensionality in an SVM.
Figure 2.16 illustrates the mapping from a feature space to a higher dimensional space
to solve the problem of non-linearly separable training data. For the cases where
transformation does not yield a linearly separable feature space, a solution can still be
formed using Kernel functions. Assuming a 2-dimensional feature space x(a), x(b)
the aim is to find the dot product of x(a.b) as is in the linear case of the SVM.
However, to achieve this, we make a transformation of the features to a higher

dimension ¢ (x,), ¢(xp) as illustrated in Equationl8.

D(x,), P(xp) = d(xg), (xp) ov v ve o . (18)

As documented in literature and illustrated in simplicity in Berwick (2003), there exist
some ¢ for which Equation 19 holds implying that the dot product is a function of the
inputs. This representation in Equation 19 makes it easy to compute k without
expanding ¢. k is referred to as a Kernel function as it corresponds to the dot product
of two feature vectors in some expanded feature space. The kernel function can be any
of linear, polynomial, radial basis or sigmoid and it is what is used to model SVMs on
non-linearly separable training data.

k(xg, xp) = d(xg) - d(xp) v vv vvvee v e (19)

A special case exists for the application of SVM on regression problems when the

output is not a classification but a real value. Like the SVM, the approach is both still
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non-parametric and permits the modelling on non-linearly separable training data,
unlike other approaches that rely on assumptions like Gauss-Markov as is the case for
Simple Linear Regression (SLR). Also, like the SVM case, with the error set to some
threshold based on the principle of maximum margin, the SVR does not care about the
prediction for cases where the error (e)respects the limit. Finally, the SVR also
supports the cost parameter and offers high flexibility as it is a distribution-free

approach.
2.9 Review of similar projects
2.9.1 Targeted review of past studies

Trnka et al., (2018) did a survey on the priority areas of drought research amongst
experts from different backgrounds. 65 experts from 20 different professions across 21
nationalities document the priority areas to include drought forecasting and prediction
amongst others like drought monitoring, impacts mitigation through both drought
resilience and adaptation to drought. The best drought predictions are then proposed
to be best those done at different time scales and also that incorporate multiple

ensembles of numeric weather models.

Apart from the survey of experts in Trnka et al., (2018), there is the presentation of a
comprehensive review of methods in Mishra & Desai (2006) that are used in predictive
drought monitoring. The limitation of stochastic approaches like autoregressive
moving average (ARMA) model and their generalizations of the autoregressive
integrated moving average (ARIMA) and their seasonal applications SARIMA are
documented. ARIMA models are also reviewed in Belayneh & Adamowski (2012) and
Mishra & Singh (2011) with their limitations described in two-fold. First is their
inability to overcome the random nature of droughts and second is their poor
performance in modelling non-linear and complex events like drought as also
elaborated in Agana & Homaifar (2017).

The approaches in drought prediction are classified into five broad categories in Mishra
& Singh (2011). These classes are Regression analysis, Time series analysis (ARIMA
based), probability models, neural networks and hybrid models. It is the take of Mishra
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& Singh that there are better prospects to the use of hybrid models that incorporate

climatic indices in the prediction of complex events like drought.

We discuss the past studies in light of the above key concepts presented in the reviewed
papers. The studies expected to overlap the categories used in the review due to

inherent complexities in drought studies. The categories include:

e Types of variables used and if entire drought types are covered and hence the
integration of socio-economic data

e Nature of study based on whether they are downscaling approaches or
investigation of new approaches.

e The type of models used and whether they are regression, probabilistic, neural

networks, time series or hybrid models.
Review by types of variables and types of drought

Most of the studies reviewed are either single variable/indicator index models or cover
a single type of drought from the four types of meteorological, hydrological,
agricultural and socio-economic. Most studies document the use of remote sensing
data as compared to socio-economic data that is indeed rarely used across the studies.
The non-use of socio-economic data implies that the quantification of the impacts of
drought is therefore largely missing from literature. The remote sensing data used can

be classified into meteorological, hydrological and hence water balance or agricultural.

Belayneh & Adamowski (2012) uses precipitation data transformed into standardized
precipitation index (SPI) with the data aggregated over 1, 3 and 12 months to predict
exclusively meteorological drought. A similar approach of using only one
precipitation-based variable or index in the prediction of one type of drought also
includes that documented in Wetterhall et al. (2015). The aim of the study in Wetterhall
et al. (2015) was to predict the probability of dry spells and below normal precipitation
over a season with lead times of between 0 and 4 months. Other studies that use SPI
as a single variable to predict meteorological drought include Khadr (2016) as well as
Wichitarapongsakun et al. (2016). The use of a single variable/indicator index is also
found in Ali et al. (2017) and Le et al. (2016) that uses Standardized Precipitation
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Evapotranspiration Index (SPEI), an extension of SPI and potential evapotranspiration

(PET) in the prediction of meteorological drought.

Despite the tendency to use a single variable to basically predict one type of drought,
there are a few approaches that deploy more than one variable to either predict on type
of drought or to predict two of the drought types. Such studies include Morid, Smakhtin
& Bagherzadeh (2007) that together with Huang et al. (2016) use both SPI and
Effective Drought Index (EDI) to investigate the severity, duration and extents of
drought events. The comparison between EDI and SPI documents the EDI to
outperform the SP1 in both Morid, Smakhtin & Bagherzadeh (2007) and Huang et al.
(2016). The use of SPI in conjunction with another variable is additionally documented
in Yuan et al. (2017) that uses SPI as the predictor variable together with standardized
streamflow index (SSI) to predict hydrological drought conditions.

Apart from the studies above that document use of remote sensing data, there is a set
of studies that either advocate for the use of socio-economic data in drought monitoring
or those that proceed to incorporate socio-economic data in drought monitoring. These

socio-economic data studies are summarized as follows:

e Hao, Singh & Xia (2018) in reviewing the advances, challenges and future
prospects in the prediction of seasonal droughts point out the limited existence
of studies that document the prediction of drought effects. The study observes
the availability of documentation on the prediction of drought signals using
different remote sensing indicators. The study points out that the identification
of drought signals does not come with the identification of the effects of the
droughts on society. The authors advocate for the exploration of indicators
appropriate for the quantification and prediction of the effects of drought in
addition to the systems that monitor the drought signals.

e Bachmair et al. (2016) document the lack of “ground-truthing” of drought
monitoring variables as viewed in terms of ensuring such indicators represent
local drought conditions and/or their impacts. The review and survey study

observes the overspecialization in agricultural drought monitoring at the
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expense of other drought types and also the analysis of drought impacts in term
of impacts on vegetation. The survey study had responses from 33 DEWS
experts and it advocates for the inclusion of the environment and society in
drought monitoring. The study refers to the inclusion of socio-economic impact
data as the “missing piece” in drought monitoring. The possible challenges to
use of socio-economic data as outlined in the study are: (1) cost of collection
of impact data (2) the many possible impact indicators; (3) differences on
drought understanding and perception of drought impacts; (4) the interaction
between impacts and vulnerability of people; (5) the delayed response between
droughts and their impacts and; (6) the complexity of multi-causality of
impacts.

Jenkins (2012) presents the analysis of economic and social impacts of
droughts within future projections of climate change. The analysis includes
both direct economic drought costs and social drought effects. The most
notable things about the study are that it is both ex-ante and is predictive. It
analyses past droughts and makes predictions of impacts of future droughts.
Direct impacts are identified based on the model used in Hochrainer et al.
(2007).

Massarutto et al. (2013) present an ex-post analysis of the socio-economic and
environmental impacts of historical drought events. The analysis is however
restricted to the agriculture and power sectors using the consumer surplus
theory.

Musolino, Massarutto & De Carli (2015) focused on a purely agricultural
market focusing on whether socio-economic impacts of droughts produce
winners as opposed to earlier approaches that focused only on losers. The study
focused on the drought impacts on market prices.

Enenkel et al. (2015) explore how to integrate non-environmental information
sourced via smartphones to augment agricultural drought monitoring in the
context where future uncertainties in drought prediction are understood. The

main drive in the study was to find, out of collaboration, better ways to turn

83



data streams into useful information for decision support. A framework is
proposed for an 