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ABSTRACT 

The inhabited montane areas in Mount Kilimanjaro and Taita Hills are threatened by expansion and 

intensification of agriculture. Due to poor cropland management and destruction of remnant indigeneous 

forests on the slopes, soil conditions and micro-climate are deteriorating. This has ultimately compromised 

resilience of the plant species and carbon sequestration in the areas. The resilience will further be risked by 

climate change in the region which shows montane areas will be more vulnerable. Thus, the study aimed at 

determining model relationships of vegetation structures and carbon storage to environmental variables on the 

inhabited slopes of montane areas. One hectare plot was used for sampling Woody Plant Species (WPS), tree 

biometries (diameter>10 cm) along transects. Biodiversity indices, richness and diversity indices were used to 

determine distribution of WPS in different sites and types of cropland. Allometric model was used for 

estimating the above-ground carbon storage (AGCS) from tree biometries. Ground based Remote Sensing, 

hemispherical photography and SunScan canopy analyzer for measuring LAI in VALERI plots. Univariate and 

test statistics was performed on WPS, AGCS, LAI between site and types of cropland. Generalized Linear 

Model (GLM) was used for predicting response variable from spatial predictors physical, edaphic variables, 

vegetation index (EVI) and population density in R programme. GLM prediction models were used for spatial 

upscaling of response variables using maths algebra tool in ArcGIS 10.2. Impact of climate change on 

distributions of selected WPS Albizia gummifera (Albizia), Mangifera indica (Mango) and Persea americana 

(Avocado) was analysed under RCP 4.5 and 8.5 projections for peak periods of 2055 and 2085 with a 

machine-learning technique. Woody Plant Species Richness significantly differ between sites (t=3.06, 

p=0.002) and types of cropland with only 32% of the species shared between the two sites. The spatial 

distribution of WPSR is significantly explained by multivariate model with predictors SOC + I(Elev.2) in 

Kilimanjaro (R2=0.78 , p=0.00 , AIC=67.42) and predictors I(Elev.2) + Slope + Population Density in Taita 

Hills (R2=0.97 , p=0.00 , AIC=36.91). Spatial model for AGCS in Kilimanjaro is better explained by 

multivariate predictor SOC + CEC + pH + BD) (R2=0.94, p=0.00, AIC=91.33) and in Taita Hills model 

predictor Elev. + Slope + Population Density) shows a better spatial model distribution (R2=0.79, p=0.01, 

AIC=71.11). LAI spatial distribution in Kilimanjaro is strong and significantly varies mostly with elevation 

but no significant distribution is observed in Taita Hills with all variables. Projection of species distribution 

under baseline climate condition shows Taita Hills has significantly higher proportion of suitable areas for 

Albizia, Mango and Avocado than in Kilimanjaro (F=153.17, p=0.01). Avocado will experience upshift in 

minimum elevation range in Kilimanjaro under all RCPs except RCP 8.5, 2085 which will decrease in 

proportion of suitable area and fragmentation under RCP4.5 (2055) and RCP8.5 (2055). Mango will 

experience downshift, which will increase proportion of suitable areas in Kilimanjaro under RCP 8.5, 2085 

with fragmentation of the areas occurring under RCP4.5 (2055 & 2085) and RCP8.5 (2055). Downshift in 

Albizia and Mango will occur which will increase proportion of suitable areas in Taita Hills under RCP 8.5, 

2085. The distributions of biodiversity in montane areas are explained by multivariate predictors, which 

however differ on sites. Climate change projections will cause varied response of some species shifting 

upslope and other downslope with habitat fragmentation occurring in the montane areas. Effective monitoring 

of the inhabited montane areas should use WPSR, AGCS and LAI developed models for sustainable 

conservation of biodiversity and improved carbon sequestration. While, mitigation measures for climate 

change should have different choices of plant species for downslope and upslope in order contribute high AGC 

sequestration and sustainable livelihood on the slopes.  

 

Key words: Environmental Variables, Woody Plant Species, Agro-forestry, Cropped Land, Carbon Storage, 

Climate Change, Leaf Area Index  
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CHAPTER 1: INTRODUCTION 

 

1.1. Research Background  

Eastern Africa hosts the coastal forests and the Eastern Afromontane Biodiversity Hotspot (EABH), 

which are two of the 34 global biodiversity hotspots known worldwide for hosting significant 

endemic plant and animal species. The EABH is comprised of Eastern Arc Mountains (EAM) that 

runs from the Taita Hills of the southern Kenya to the Makambako Gap in southern Udzungwa 

Mountains and Mount Kilimanjaro of Tanzania. The EAM and Mount Kilimanjaro contain similar 

plant taxa, which suggests that the areas were spatially connected in the past or possibly by long-

distance dispersal.  

Similar to the tropical mountain, the climate variables in the Eastern Arc Mountains also vary with 

elevation (Hall et al., 2009; McCain, 2005; Rickart, 2001). Decrease in species diversity along 

elevation with a mid-elevation hump is a common pattern seen in the tropical mountains (Rahbek, 

1995; Heaney, 2001). The Eastern Arc mountain blocks are isolated, humid and are separated by 

drylands. Due to this, the forests have high levels of species richness and endemism in all biological 

groups, with many species endemic to just one or a few mountain ranges (Lovett, 1990; Hall et al., 

2009). Montane areas of Taita Hills and Kilimanjaro draw clear differences from the period of their 

geologic formations and structure that contribute to the characteristics of biodiversity and soils 

therein. While Taita Hills are formed by the ancient crystalline rocks, Kilimanjaro is formed more by 

recent volcanic activities (Lovett and Wasser, 2008). Due to this difference and substantiated 

difference on the mountains periods of exposure to a relatively stable climate, Taita Hills among 

other eastern arc mountain houses quite a significant number of endemic species. The montane areas, 

however, are very close to each other by distance and have similar climate characteristics. 

One of the most significant impacts of forest fragmentation is on carbon storage of forest fragments. 

Generally, all transitions in land cover whether wetlands, trees outside forest, agroforests, and 

plantations affect carbon storage. Deforestation in the tropics contributes about one fifth of the total 

anthropogenic CO2 emissions to the atmosphere. Forest carbon is retained and increased where 

loging is reduced (Pinard and Cropper 2000). The decline of carbon in relation to logging of timber 

depends on the volume of timber extracted, damages to the remaining stand, and the response of 

vegetation to opening. The accumulation of carbon in biomass in forest is also reduced by an increase 

in fire frequency (Pinard and Cropper 2000). The rate of recovery are site specific and depend on 

productivity of site, composition of species, alteration in necromass stores, long-term effect of non-
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detrimental tree damage, the duration of elevated mortality rates following logging, and impacts of 

soil damage on vegetation recovery. 

The amount of carbon stored in a logged or silviculturally managed forest is influenced by factors 

and processes that are both internal to the system (e.g. species composition, growth rates, decay rate) 

and external (e.g. rotation times, logging damage, timber volume extracted) (Pinard and Cropper 

2000). Pinard and Cropper (2000) simulated model of carbon storage over a 1000 year span in the 

unlogged forest. Their study demonstrates carbon storage dynamics over long period of time through:  

above-ground biomass (necromass) across 500 years following logging; canopy layers (by dbh class) 

and pioneer trees, and; carbon storage in soil, coarse woody debris stores, small woody litter and fine 

litter.  Carbon storage fluctuated between 200 and 265 Mg C ha-1. mean carbon storage over a 60 

year simulation was 220 Mg C ha-1 (SD = 11); above-ground biomass ranged from 130 to 220 Mg C 

ha-1 and showed a mean value of 166 Mg C ha-1 (SD = 19.5) over a 60 year simulation, and 170 Mg 

C ha-1 (SD=23) over a 500 year simulation. 

Three types of cropland are classified based on how the land is managed; these include rice fields, the 

cropped land and agro-forestry systems (IPCC, 2006). The latter has vegetation structure (current or 

potentially) falling below the thresholds used for the IPCC Forest Land category (Hairiah et al., 

2011). Agro-forestry leads to a more and sustainable production system and benefits to farmers, than 

many treeless alternatives (Sanchez, 1995; Leakey, 1996). Cropland coverage varies in East Africa 

from an estimation of 1.8% (Friedl et al., 2002), to 12.5% (Raman-Kutty and Foley) and 22.7% GLC 

2000 (JRL, 2005) in the late 20th century (Doherty, 2010). Over 50% of the area around Mount 

Kilimanjaro (sub-montane) is under cropland (Pfeifer et al., 2012); while, cropland in Taita Hills 

expands at the expense of shrublands and thickets (Pellikka et al., 2013). Cropland expansion is 

attributed to population growth (Balmore et al., 2001) which has increased food demand. The 

conversion of natural vegetation types into cropland adversely affect production of natural systems 

(Landmann and Dubovyk, 2014) including storage of carbon in the system. Carbon fluxes on 

woodland and forest areas converted to different types cropland considerably varies. For instance, 

about 10 Mg C ha-1 and 40 – 180 Mg C ha-1 above-ground carbon is lost when woodland and forest 

areas are converted into agro-forestry, respectively. While, 25 Mg C ha-1 and 80 to 400 Mg C ha-1 

above-ground carbon and soil organic carbon is lost when woodland and forest areas converted into 

cropped land which is under continuous cropping (Hairiah, et al., 2011). Information of carbon 

storage in the region is based on large scale assessments. In tropical Africa, carbon storage in 

cropland is estimated at 5.30 Mg C ha-1; however, cropland with preserved natural trees is estimated 

at 91.50 Mg C ha-1(Baccini et al., 2008). However, estimated range of median range of carbon in East 
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Africa cropland ranges from 1.60 to 4.80 Mg C ha-1 (Pfeifer et al., 2013). Thus, the potential 

differential interplays of climate with the above-ground carbon and soil carbon in cropped land and 

agro-forestry is eminent in the slopes of Taita Hills and Mount Kilimanjaro. A synergy from other 

soil factors may substantially contribute to the visible or imperceptible interactions. These 

interactions may be locally based depending on how the croplands have been managed over long 

period of time. Management of carbon sequestration on cropland will meet the demand for carbon 

balance in the above ground and conservation of biodiversity (Hairiah, et al., 2011).  

LAI plays important role in influencing microclimate within- and the below-canopy microclimate, 

intercepting canopy water, extinguishing solar radiation, and the exchange of water and carbon gas 

(Bréda 2003). Any change in canopy LAI is accompanied by modifications in stand productivity 

(Bréda 2003). Estimation of LAI can be conducted using direct and indirect approaches. The indirect 

LAI determination are normally chosen over direct approaches because they are generally faster, 

amenable to automation, and thus allow for a larger spatial sample to be acquired (Pfeifer et al. 2012; 

Gonsamo 2009). LAI can be estimated indirectly using ground based optical instruments and remote 

sensing techniques. The latter uses theoretical light extinction models which relies on measurements 

of light transmission, gap fraction, and canopy reflectances (see Gonsamo 2009). Ground based 

optical measurements of LAI can be undertaken by measuring of; diffuse light transmission or record 

canopy gaps within hemispherical view (e.g., LAI-2000 and hemispherical photography); the direct 

solar irradiance (sunflecks) (e.g., DEMON, quantum sensors, and TRAC), and; vertical distribution 

of canopy elements (optical point-quadrant method). Estimation of LAI from remotely sensed data 

uses empirical models which consist of mathematical combinations of two or more spectral bands of 

optical sensor data to generate Spectral Vegetation Indices (SVIs) (Pfeifer et al. 2012). SVIs 

maximizes sensitivity to characteristics of vegetation while minimizes soil background reflectance, 

topographic, directional, and atmospheric effects which are confounding factors (Gonsamo, 2009). 

SVIs correlate with LAI and biomass productivity (Sjöström et al., 2011). Normalized Difference 

Vegetation Index (NDVI) is the commonly used SVI. Some statistical approaches such as the Least 

Square Regression (LSR) analysis can be used to retrieve LAI based on relationship with SVI and 

produced regional scale LAI map (Gonsamo 2009). 

Climate change is likely to affect fire incidences in woodlands by altering their intensity, frequency, 

extent, and seasonality in tropical Africa. Individual species are likely to shift in ranges in African 

woodland due to climate change. Increased emissions of CO2 is related to temperature increase, 

which affects species, populations, and ecosystems through climate change (Lovejoy, 2010). The 

geographical distribution of some species and timing of their life cycles is changing (Root et al. 
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2003). Species occuring at high altitudes are vulnerable due to limitation of expansion in upslope 

ranges (Lovejoy, 2010). Crop plant diversity along altitudes are uniquely different due to variation in 

water availability, temperature and soil factors along the elevation gradients. Thus, crop distributions 

are now threatened by the impacts of climate change and changes in land use. East Africa has 

experienced variation in climate, witnessing a variation of rainfall distribution and quantity over 

space and through time (Marchant et al., 2007). The East Africa montane forests have continuously 

received orographic rainfall, or occult precipitation (Marchant et al., 2007; Hemp, 2006; Servant et 

al., 1993; Maley and Elenga, 1993), which makes them unique in biodiversity over the adjacent 

lowland areas. Croplands in the mountain areas receive relatively high amount of rainfall but varying 

between 800 to 1400 mmy-1 in Taita Hills (Himberg, 2011), and to 1800 mmy-1 in Kilimanjaro 

(Misana, et al., 2012). Due to high population densities in these areas, they support small-scale 

farming typically consisting of mixed crops and tree crops while monocropping systems are 

predominant in the lowland areas which receive considerably lower amount of rainfall.  

The distribution and survival species in the 21st century will adversely be affected by climate change 

though at present, land use is conspicuously the main cause of habitat loss and species extinction 

(Dawson et al., 2011). Climate change will make agriculture vulnerable to climate change due water 

balance requirement. Subsistence farmers will be adversely affected since they are not resilient to 

climate change (Verchot et. al., 2006). Due to this, agro-forestry is gaining popularity for enhancing 

resilience of agricultural landscape to climate change by enhancing carbon sequestration, improving 

food production, and increasing crop productivity (Verchot et al., 2006; Schroeder 1994).  

Despite importances attributed to agro-forestry system, knowledge on its potential interactions with 

climate is not well developed. This include absence of reliable prediction models of impact of climate 

to agro-forestry systems (Luedeling et al. 2013) while monocultured crops can reasonably be 

projected with process-based crop models. Predictive models used for evaluating organisms can be 

used in understanding agricultural systems. Under this assumption, Species Distribution Modeling 

(SDM), impacts of climate change on agroforestry can be projected (Luedeling et al., 2013). This 

approach however, encounters challenge of lack of data by most Natural History Museums and 

Herbarium collections. As a result, sample size (training samples) is often small to a hundred or less 

(Philips et al., 2004) which affects accuracy when modelling (Phillips 2006). Lastly, resolution of 

environmental data are coarse and does not synchronizes with climate variables at local scale where 

climatic condition sharply changes with steep gradient (Platts et al., 2014; Luedeling et al., 2013).  
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1.2. Problem statement 

Biodiversity and carbon storage in the Eastern Arc Mountains are potentially threatened by the 

expansion of agricultural activities and exploitation of forest resources (Pellikka et al., 2009). The 

inhabited and cultivated areas were once under forest or woodland that however has gradually been 

lost by expansion of agricultural activities. Poor cropland management on the lower montane areas 

compromises the resilience of the woody plant species and the ability of the areas to sequester more 

carbon in the above-ground. The eminent destruction has adversely affected the micro-climate which 

has adversely affected growth of crops and potential regeneration of woody plant species in the area. 

Thus, vegetation zonation along the montane areas are adversely disrupted and fragmented in the 

inhabited slopes of montane areas. The montane areas are currently experiencing change in climatic 

condition due to the global warming (Platt et al., 2008). There will be a potential upshift of species in 

high altitudes due to vulnerability to climate change (Lovejoy, 2010). The adaptation capacity of 

plant species (trees and crops) to extreme climatic conditions, parasite infestations and prevalence of 

diseases will be reduced.  In East Africa, the mean annual temperatures will increase by 1.8˚C to 

4.3˚C by 2080 (Hove et al., 2011) and precipitation will increase but varied in some regions. Climate 

change will cause a superimposed effect on biodiversity in Taita Hills and Mount Kilimanjaro.  

Most of the studies in the montane areas mostly focus issues in forest habitats with less attention on 

the inhabited areas of the mountains. Another observation made in most studies is that they are based 

on regional scale which provides more general issues in the region than local based solution.  

 

1.3. Objectives of the study 

1.3.1. Main Objectives  

This study was aimed at assessing the influence of dynamics of physical environmental factors and 

climate change in the montane areas on the distribution of the woody plant species and their 

structures (carbon storage and leaf area index) in Taita Hills (Kenya) and Mount Kilimanjaro 

(Tanzania). 

1.3.2. Specific Objectives  

The specific objectives, therefore, were to: 

1. determine correlations of environmental variables along the elevation gradient of Taita Hills  

and Mount Kilimanjaro  

2. assess the distribution and diversity of the woody plant species along the elevation gradient of 

Taita Hills  and Mount Kilimanjaro  
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3. analyze the distribution of carbon storage in  Taita Hills and Mount Kilimanjaro 

4. assess impacts of climate change on selected species in Taita Hills and Mount Kilimanjaro 

5. determine the Leaf Area Index in Taita Hills and Mount Kilimanjaro 

1.4. Research Questions  

1. Is there intercorrelation of environmental variables in types of cropland and along the 

elevation gradient of inhabited montane areas?  

2. How does the woody plant species distributed in types of cropland and by variations of 

environmental variables in montane areas?  

3. What is the distribution of the above-ground carbon storage in types of cropland and how are 

they affected by variations of environmental variables in montane areas?  

4. Does the distribution of LAI affected by the type of cropland and variations of environmental 

variables in montane areas?  

5. What is the potential impact of the projected climate change scenario on suitable areas and 

minimum elevation range for woody plant species?  

 

1.5. Study justification  

The geologic origin and period of formation of Taita Hills and Mount Kilimanjaro provide clear 

difference on the two montane areas. Taita Hills consist of the ancient crystalline mountains, while 

Kilimanjaro consist more of the recent volcanic mountain (Lovett and Wasser, 2008). This influence 

the kind of species making Taita Hills unique with its endemic species. Hence, the structure of the 

woody species contributing to the carbon storage and LAI in the montane areas needs to be 

determined. 

The montane areas are very fertile, having high amount of rainfall distribution that has promoted high 

population growth on the slopes. While his is true, the slopes of the montane areas are under 

agricultural practices that affect species richness, carbon storage and LAI distribution along the 

elevation gradient. Effect of cropland on vegetation structure on the slopes requires an understanding 

that could be useful in the development of conservation strategies.  

Taita-Taveta and Kilimanjaro ecosystems are among the Eastern Afromontane Biodiversity Hotspot 

(EABH) that are potentially affected by climate and agricultural activities. Forests in Taita have been 

reduced to just a few remnant patches (Pellika et al., 2009) due to human activities. While, in Mount 

Kilimanjaro, downward shifting of cloud forests in the past three decades is attributed to climate-

induced fires (Hemp, 2009).  
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It is therefore, envisaged that the extent and speed of climate change will severely affect distribution 

ranges of endemic plant species, habitat and water provision to low lying areas. Thus, the adaptive 

capacity of trees, crops and local community might be challenged. Attention should, therefore, be 

paid to addressing these threats through integration of biological research and spatial modeling that 

will provide direction for biodiversity conservation.  

 

1.6. Significance of the Research  

The study aim at improving knowledge on understanding how variation of physical factors and 

cropland management along the elevation affects the vegetation structures of woody plant species, 

carbon storage and LAI. Derived knowledge would be vital for application on biodiversity 

conservation and agricultural development in the area.  

Interaction model for the physical factors and vegetation structures would be important in 

identification of appropriate interventions along the elevation gradients and on the type of cropland in 

Taita Hills and Mount Kilimanjaro. In addition, interaction model will, therefore, enable prediction of 

responses to climate and land use changes at a species level in order to strengthen conservation 

initiatives in these areas.  

It is envisaged that the outcome of this research will be very important for policy formulations and 

decision makers in agricultural and biodiversity conservation. These will include the Ministry of 

Agriculture, agriculture based NGOs and farmers. The use of the information generated by this study 

will provide an opportunity for mitigating impact of climate change not only in Taita Hills and 

Mount Kilimanjaro but mainstreamed across the country. 

 

1.7. Scope of Work 

This study mainly focuses on the distribution of response variables (biodiversity and carbon storage) 

on the elevation gradients of inhabited slopes of Taita Hills and Mount Kilimanjaro. Predictor 

variables were mainly the physical variables (elevation and slope), edaphic variables (pH, CEC, BD 

and SOC) and climate variables (MAT and MAP). The physical variables are the main determinant 

of climate conditions in the montane areas which ultimately influences the distribution of woody 

plant species and carbon storage. Edaphic variables selected on the basis of their direct influence 

vegetation have on them hence they can portray the condition of vegetation in the environment. Only 

few variables of climate and soil were selected because of high intercorrelation which would produce 

similar relationships with the response variables. Biodiversity aspects are restricted to the Woody 

Plant Species Diversity and Richness, whereby trees with diameter at breast height of 10 cm are 
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considered in the analysis. Leaf Area Index measurements from SunScan and Hemispherical photos 

are used in this study together with the Enhanced Vegetation Index. Carbon storage assessed here is 

the above-ground Carbon Storage of measured derived from biomass generated from tree biometric 

measurements of diameter at breast height and height of the tree.  

 

1.8. Organization of the Report 

This report has five chapters with sub-sections. Chapter one is an introduction of the study which 

covers research background, problem statement, objective of the study, research questions, 

justification and significance of the study. The second chapter consists of literature review on 

montane biodiversity, carbon storage, species distribution modelling, and climate change and leaf 

area index. The third chapter presents materials and methods used in carrying out the research in the 

field and analysis. Chapter four presents results and discussion on the research objectives. Discussion 

of results is combined in one sub-chapter at the end of chapter four. Chapter five has conclusions and 

recommendations for the study.  
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CHAPTER 2: LITERATURE REVIEW  

 

2.1 Montane Biodiversity  

Globally, the mountain regions constitute an estimated 20-24% of the surface area and these are 

scattered throughout the latitudes. The distribution of montane biodiversity patterns in the mountain 

regions is determined by the extensive highland areas. The mountain regions consist of biodiversity 

hotspot that has high levels of species richness and endemism (Cronin et. al., 2015; Oates et. al., 

2004). Some of the hotspots are the West African Forests Biodiversity Hotspot and Eastern 

Afromontane Biodiversity Hotspot. The former consists of the Biafran Forest and Highlands (BFH) 

that is divided ino three ecoregions; Highlands of Cameroon, the montane forests of Mount 

Cameroon-Bioko and Cross-Sanaga-Bioko (Cronin et. al., 2015; Olson et. al., 2001). In Biafran 

Forests and Highlands, biodiversity is not evenly distributed however, the patterns of endemism 

relates with the elevational gradient having the concentration of species increasing towards the 

highland areas (Barthlott et al., 1996; Oates et al., 2004; Cronin et al., 2015). The biogeography and 

geology of the mountains has an influence on the distribution of the montane biodiversity.  Montane 

areas with similar geologic evolution and biogeographic history tend to have similar biodiversity 

patterns and endemism in Bioko, Mount Cameroon and mainland Africa are more similar to those of 

the outer islands of the Gulf of Guinea (Jones et al., 1994).  

The Eastern Afromontane Biodiversity Hotspot consists of several merged “ecoregions” ranging 

between latitudes 22°N and 22°S (Burgess et al., 2004a), and 34 biodiversity hotspots (BirdLife 

International, 2012). The Climate of this region is mainly driven by the Inter-Tropical Convergence 

Zone and the El Nino Southern Oscillation (BirdLife International, 2012). The Afromontane climate 

has relatively stabilized over the recent period due to the effect of the Indian Ocean. In the recent past 

however, variation in climate variables have been observed; for instance in the East Africa, climate 

variability has been documented with the variation of rainfall distribution and quantity over space 

and time (Marchant et al., 2007). Unlike other forests, the montane forests have continuously 

received orographic rainfall, occult precipitation, which depend on the presence of vegetation, or 

strip moisture from the air (Marchant et al., 2007; Hemp, 2006; Servant et al., 1993; Maley and 

Elenga, 1993). 

Topography plays important role by influencing the climate across a landscape; for instance, 

highland areas influences rainfall by forcing moisture laden air to rise, cool and condense, acting as 

water tower to the surrounding lowlands (Marchant et al., 2007; Gasse,2002). The topographic 

phenomenon on climate is also observed on its influence on the distribution of vegetation 
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(Stephenson, 1989). In particular, elevation is pointed out to be a strong determinant of the 

distribution of the tree species in the montane areas (Hemp, 2006; Vazques and Givnish, 1998; 

Gentry, 1995; Woldu et al., 1989, Hamilton et al., 1989). Alves et al., (2010) cites account by Grubb 

(1977) on how vegetation zonation can be compressed within short elevation gradients influencing 

the appearance of montane cloud forests in lower elevations. Edaphic discontinuity and changes in 

microclimate can be observed over short gradients than longer elevation gradient distance, (Alves et 

al., 2010; Ashton, 2003; Takyu et al., 2003; Daws et al., 2002).   

 

2.2. Carbon Storage  

An assessment of the distribution of carbon storage in the earth’s biosphere indicates that about 19% 

of the carbon occurs in plants and 81 % are located in soil (IPCC, 2007).  Within the biosphere, 31% 

occurs in the biomasses and 69 % are in the soil in forests in the tropical, temperate and boreal areas. 

An estimation of 50% of carbon occurs in the tropical forests, while the other 50% is in the soil. One-

third of the tropical forest and 25% of the tropical forest carbon stock occurs in Africa (Marshall et. 

al., 2012; Saatchi et al., 2011). The mountain regions form unique ecosystems that play important 

role in carbon storage in biosphere and carbon sequestration, particularly in arid and semi-arid areas 

(IPCC, 2007; Moser et. al., 2005; Vare et. al 2003; Spehn and Korner, 2005). Forests are estimated to 

sequester the largest fraction of carbon stock at 1,640 PgC of terrestrial ecosystem (IPCC, 2007; 

Sabine et. al., 2004). Thus, they are vital pools of carbon which continuously exchange CO2 with the 

atmosphere (Oyebo, 2011). These pools, however, are vulnerable to landuse and climate change 

(IPCC 2007). Reforestation of degraded forest and development in agro-forestry would contribute to 

stabilizing the atmospheric CO2 (Unruh et. al., 1993), and mitigation of climate change (IPCC, 2007).  

Different vegetation types are highly influenced by climate variation over landscape. Increase of the 

distribution of woody plant species from the semi-arid to humid conditions in Southern Africa is 

observed by Brien (1993). In the recent past, the assessment of climatology layers with historical 

MODIS-derived estimates of woody vegetation fractional cover explain changes of the woody 

vegetation cover in Africa (Good and Caylor, 2011). In a local scale, variation in climate and soil has 

been shown to cause site differences in the tree life history within a community (Muller-Landau, 

2004). Under such circumstance, the mean Wood Specific Gravity (WSG) differs from close distance 

sites among species and communities (Muller-Landau, 2004). WSG is highly correlated with the 

density of carbon per unit volume and thus is of direct importance for estimating ecosystem carbon 

storage and fluxes (Muller-Landau, 2004; Brown, 1997, Fearnside, 1997, Nelson et al., 1999). Large 
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scale estimation of biomass, and carbon storage, requires a combination of ground-based and remote 

sensing methods (Marshall et. al., 2012).  

In this study, the focus is on carbon storage at two sites in the Eastern Afromontane Biodiversity 

Hotspots, along transects with mosaics of various land-use. Since remotely-sensed spectral 

reflectance measurements are potentially useful in predicting biomass (Gemmell, 1995; Shugart et 

al., 2000; Phr and Donoghue, 2000; Baccini et al., 2008), relationship of MODIS-EVI was used to 

upscale plot carbon to a wider connected landscape of transect buffer.  This is then used to explore 

interaction of carbon storage with the climatological layers along the elevation gradient under 

concomitant influences of soil and population, within and between sites. 

 

2.3. Climate Change  

Changes in CO2 level in the atmosphere influences changes in the physical environment related to 

temperature increase, which has culminated in climate change. Populations, species and ecosystems 

respond to these changes (Lovejoy, 2010). The geographical distribution and timing of life cycles of 

some species is changing (Root, et. al. 2003). Species in high altitudes are vulnerable to climate 

change because upslope movement in search of suitable conditions is limited (Lovejoy, 2010). Crop 

plant diversity along altitudes uniquely varies due to difference in water availability, temperature and 

soil factors. It is currently evident that ecosystem services offered by the habitats are now threatened 

by climate change and anthropogenic land use changes. It has been estimated that about 12% of the 

endemic species will become extinct by 2100 as a result of climate change, and further loss will be 

caused by land use changes, mainly deforestation. 

Studies of species migration of the Holocene period, when climatic warming was at a lower rate than 

is projected by the Generalized Circulation Models show that: (1) species shifted their geographical 

ranges, generally northwards; (2) responses of species were individualistic - the rates and direction of 

migration differed among taxa and species assemblages did not remain the same an  (3) Species 

responded in an equilibrium manner and, at the continental scale of evaluation, competition and 

dispersal mechanisms did not seem to play a large role in the responses of species (Iverson and 

Prasad 1998). Currently, greenhouse warming is on the rise and the landscape fragmentation might 

affect competition, dispersal ability, and non-equilibrium  

Important driving factors in vegetation modeling are climatic, edaphic, and topographic variables. In 

presence of environmental variables, geographical distribution of vegetation can be predicted. 

According to Iverson and Prasad (1998), modeling of vegetation pattern at local scale depends 

largely on local variations of topography and geomorphology (see Iverson and Prasad 1998). At 
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regional scales, overall vegetation patterns have been assumed to depend more on general climatic 

patterns.  

Representative Concentration Pathways (RCPs) are set of scenario containing emission, 

concentration and landuse trajectories. There are four trajectories that describe four possible future 

climate scenarios depending on how much greenhouse gases are emitted; these include RCP8.5, 

RCP6, RCP4.5 and RCP2.6. These trajectories were adopted by IPCCC in 2014 for future climate 

simulations and research. The RCP8.5 is unique by an increasing emission of greenhouse gas over 

time, a representative of scenarios that lead to high concentration levels of greenhouse gas (Riahi, et 

al., 2007). RCP6 is a scenario where total radiative forcing stabilized shortly after 2100 without 

overshoot, by the application of variety of technologies and strategies for reducing emissions of 

greenhouse gas (Fujino, et al., 2006; Hijioka, et al., 2008). The RCP4.5 is a scenario where the total 

radiative forcing stabilize shortly after 2100, without overshooting target level of the long-run 

radiative forcing (Clarke, et al., 2007; Smith and Wigley, 2006; Wise, et al., 2009). The RCP2.6 is a 

representative of scenarios that lead to a very low concentration levels of the greenhouse gas. It is a 

“peak-and-decline” scenario. Its radiative forcing level first reaches a value of around 3.1 W/m2 by 

mid-century, and returns to 2.6 W/m2 by 2100.  

 

2.4. Species Distribution Modeling 

2.4.1. Species distribution models 

There are varieties of modeling techniques that can be used for developing species distribution 

model. These models commonly utilize associations between environmental variables and known 

species occurrence records to identify environmental condition within which population can be 

maintained (Pearson, 2007). The spatial distribution suitable for the species can then be estimated 

across a study region. Environmental conditions are characterized for suitable species and then, 

identification of suitable environment in space is done.  

Environmental conditions suitable for species may be characterized using either mechanistic or 

correlative approach. Mechanistic models aim to incorporate physiologically limiting mechanisms in 

species tolerance to environmental conditions. The models require detailed understanding of the 

physiological response of species to environmental factors and therefore difficult to develop for all 

but for most well understood species (Pearson, 2007). Correlative models aim to estimate the 

environmental conditions that are suitable for a species by associating known species occurrence 

records with suites of environmental variables that can reasonably be expected to affect the species 
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physiology and probability of persistence. The central premise of this approach is that the observed 

distribution of a species provides useful information pertaining to the environmental requirements of 

that species.  

The widely used species distribution models are correlative and they involve two types of model 

input data namely: 1) known species’ occurrence records and 2) a suite of environmental variables. 

‘Raw’ environmental variables, such as daily precipitation records collected from weather stations 

are often processed to generate model inputs. The species occurrence records and environmental 

variables are entered into an algorithm that aims to identify environmental conditions that are 

associated with species occurrence. In most cases, algorithm that can integrate more than two 

environmental variables is preferred since species are likely to respond to multiple factors. Also, 

algorithms that can incorporate interactions among variables are also preferred (Elith et al. 2006). 

Species distribution models that have been used mostly are the statistical (e.g. generalized linear 

models and generalized additive models). Other approaches are based on machine-learning 

techniques; maximum entropy [MAXENT] and artificial neural networks [ANNs]) (Pearson, 2007).   

One key factor the model algorithm requires is species data type.  ANNs algorithm requiresd data on 

observed species absence and operates by contrasting sites where species has been detected with sites 

where the species has been recorded as absence. Reliable absence data is often not available; hence 

other algorithms that do not require obsence are handy. Maxent algorithm is therefore important in 

this case because it uses ‘presence only’ data with a background environmental data for entire study 

area. In addition, maxent can utilize both continuous and categorical variables to produce a 

continuous output predictions.      

 

2.4.2. Maximum Entropy (Maxent) 

Species distribution modeling using Maxent is based on machine learning technique. Maxent refers 

to an implementation of the maximum entropy method. According to Pearson (2007) the method uses 

‘background’ environmental data for the entire study area. It focuses on how environment where the 

species is known to occur relates to the environment across the study area (the ‘background’). The 

approach taken in this study is to approximate unknown probability distribution π over a finite set X, 

(which was the pixels in the study area) as explained by Phillips et al. (2006). The distribution π 

assigns a non-negative probability π(x) to each x, and these probabilities sum to 1. The approximation 

of π is also a probability distribution, which is denoted as 
^

 . The entropy of 
^

  is defined as:  
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Where ln is the natural logarithm. The entropy is non-negative and is at most the natural log of the 

number of elements in X. entropy is described as “a measure of how much ‘choice’ is involved in the 

selection of event” (Phillips, 2006). Thus, a distribution with higher entropy involves more choices 

(i.e., it is less constrained). The maximum entropy principle can therefore, be interpreted as saying 

that no unfound constraints should be placed on 
^

 , or alternatively. In the recent past, maximum 

entropy principle has been of interest to the machine learning community, with major contribution 

being the development of efficient algorithms for finding the Maxent distribution. The constraints of 

the unknown probability distribution π is formalized by assuming that we have a set of known real-

valued functions f1, . . . . , fn on X, known as “features” (which for this case are the environmental 

variables or functions thereof). It is assumed that the information known about π is characterized by 

expectations (averages) of the features under π. Each feature fj assigns a real value fj(x) to each point 

x in X. The expectation of the feature fj  under π  is defined as    xfx jXx 
  and denoted by  jf , 

which in general for any probability distribution ρ and function f, the notation  fp  is used to denote 

the expectation of f and p. feature expectations  jf  was approximated using a set of sample points 

x1 , . . . . , xm drawn independently from X (with replacement) according to the probability 

distribution π (Phillips et. al., 2006). The empirical average of fj is  i

m

i j xf
m
 1

1
, which can be 

written as  jf
~

  where 
~

    is the uniform distribution on the sample points and used as an estimate 

of  jf .  Based on the maximum entropy principle, the probability distribution 
^

  of maximum 

entropy was sought subject to the constant that each feature fj has the same mean under 
^

  as 

observed empirically, i.e.  

 jf
^

   =  jf
~

  for each feature fj                                   (2.2) 

Mathematical theory of convex duality can be used to show that this characterization uniquely 

determines  
^

  , and that  
^

  has an alternative characterization, which can only be described as 

follows, considering all probability distributions of the form; 

 
 






Z

e
xq

xf.

                                                                                 (2.3) 
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Where λ is a vector of n real-valued coefficients or feature weights, f denotes the vector of all n 

features, and Zλ is a normalizing constant that ensures that qλ sums to 1 (Gibbs distributions). Convex 

duality shows that the Maxent probability distribution 
^

  is exactly equal to the Gibbs probability 

distribution qλ that maximizes the likelihood (i.e. probability) of the sum m sample points. It also 

minimizes the negative log likelihood of the sample points  

   qln
~!

                                                                                  (2.4) 

Which can also be written as   


m

i ixf
m

Z
1

.
1

ln   and termed as the “log loss”. The empirical 

feature means will typically not be equal to the true means but will only approximate them. The 

means under 
^

  was restricted to be close to their empirical values by relaxing the constraint in  jf
^

   

=  jf
~

    (see 2004; Phillips et al., 2006) by replacing it with     jjj ff  
~^

, for each feature fj 

for some constant βj. This also changes the dual characterization, resulting in a form of 
1 -

regularization: the Maxent distribution is now shown to be the Gibbs distribution that minimizes  

   jjq    ln
~

                                                                          (2.5) 

Where the first term is the log loss, while the second term penalizes the use of large values for the 

weights j  (the environmental variable). Regularization forces Maxent to focus on the most 

important features, and 
1 -regularization tend to produce models with few non-zero j  values 

(Williams, 1995; Phillips et al., 2006). Such models are less likely to overfit, because they have fewer 

parameters. 

 

2.5. Leaf Area Index 

LAI has been defined in different ways, as captured by Gonsamo (2009), based on various leaf shape 

and area. However, the purpose for which LAI is derived normally determines its definitions. These 

include analysis of vegetation growth, physiological activity, light attenuation, which are studied on 

the basis of common measurements of LAI.  Gonsamo (2009) provides an overview of the most 

common measures of LAI as adopted in this review; ‘total LAI’, ‘One sided LAI’, horizontally 

projected LAI, and hemi-surface LAI. The definition of ‘total LAI’ was used in earlier studies of 

needle areas for coniferous and currently rarely used (Gonsamo 2009). Common values for LAI uses 

definitions of ‘one-sided’ and ‘horizontally projected’ LAI. LAI definition of ‘One sided’ lacks the 
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meaning for non-flat, highly clumped, or rolled leaves. The most widely accepted definition of LAI is 

the ‘hemi-surface LAI’, defined as the one half the total leaf surface area per unit ground surface area 

projected on the horizontal datum (Gonsamo 2009; Pfeifer et al. 2012).  LAI can as well be defined 

as;  

ALLAI /                                                                         (2.6) 

Where L is the leaf area of a canopy per unit surface area A on ground. In case of non-flat leaves, LAI 

can be defined as half the total intercepting area per unit surface area on the ground. The relationship 

between projected area and total or half surface area of leaves are shape specific. For instance, a disk 

and a sphere with the same diameter have the same maximum projected area, but the sphere 

intercepts twice as much as light as the disk with random angular distribution when averaged for all 

radiation incidence angles. It therefore implies that half the surface area of a sphere is twice the area 

of half the surface area of a disk (Gonsamo, 2009).  

LAI drives both the within- and the below-canopy microclimate, determines and controls canopy 

water interception, radiation extinction, water and carbon gas exchange and is, therefore, a key 

component of biogeochemical cycles in ecosystems (Bréda, 2003).  It has wider application in 

models since it is a major deriving factor in soil- vegetation-atmosphere, biogeochemical cycles and 

agro-meteorology models (Gonsamo, 2009). Any change in canopy LAI (by frost, storm, defoliation, 

drought, management practice) is accompanied by modifications in stand productivity (Bréda, 2003). 

Estimation of LAI can be conducted by using direct and indirect approaches. Current study focuses 

on the latter.  

 

2.5.1. Indirect LAI determination  

Here leaf area is determined by inferences from observations of another variable. They are generally 

faster, amenable to automation, and thus allow for a lager spatial sample to be acquired. Indirect 

methods of estimating LAI in situ can be divided in two categories: (1) indirect contact LAI 

measurements and; (2) indirect non-contact measurements. There are ground-based measurements 

that usually integrate over one single stand only while air-and space-borne measurements are applied 

for determining LAI on landscape or forest level (Gonsamo, 2009).  

 

2.5.2. Allometric technique 

The technique relies on relationships between leaf area and dimensions of the woody plant element 

carrying the green leaf biomass i.e. tree height, crown base height, stem diameter etc. Allometric 

relations between leaf area determined via destructive sampling and the basal area of the 
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physiologically active sapwood area have been proposed. Such sapwood-to-leaf-area conversions are 

based on the pipe model theory that stems and branches are considered an assemblage of pipes 

supporting a given amount of foliage. The highest correlation coefficient were found between 

sapwood area and leaf area (Jonchkeere, 2004) very high correlation coefficients between stem basal 

area and leaf area, and between Diameter-at-Breast-Height (DBH) and leaf area (Jonchkeere, 2004) 

of trees in the same stand. The use of sapwood area or DBH to predict LAI may result in 

considerable LAI overestimation. Physiologically, the amount of foliage supported by sapwood 

decreases as tree approach maximum height, likely because of hydraulic limitations to water 

transport in all trees that lead to cavitations of vessels (Gower, et al., 1999). The relationship between 

leaf area and sapwood area is governed by sapwood permeability as indicated by the linear relation 

between leaf area and the product of sapwood area and sapwood permeability. Sapwood area, 

sapwood permeability, and the product of these two variables decreased with depth through the 

crown of the trees. According to Gower, et al., (1999) the method is more appropriate than optical 

gap fraction-based measurements, for stands with high leaf area, because these optical measurements 

saturate at LAI values of about 5. Allometric equations are restricted because of their site-specificity, 

as sapwood area/leaf area relationships have been shown to be stand-specific and dependent on 

season, site fertility – e.g. nutrition and soil water availability -, local climate, and canopy structure – 

e.g. age, stand density, tree size and forest management (Jonchkeere, 2004).   

 

2.5.3. Optical Remote Sensing of Leaf Area Index 

Indirect approaches have enabled efficient estimation of LAI efficient for canopy structure over large 

areas (Pfeifer, et al., 2012; Gonsamo, 2009). Indirect methods derives LAI from measurements of the 

transmission of radiation through canopy which make use of the radiative transfer theory (Jonckheere 

et al., 2006; Breda, 2003). The methods are non-destructive that applies statistical and probability 

approach to foliar element pattern in the canopy (Bréda 2003).  Remote sensing methods and ground 

based optical instruments are used for estimating LAI indirectly by measuring light transmission, gap 

fraction, and canopy reflectances using theoretical light extinction models (Gonsamo 2009). Ground 

based optical measurements of LAI uses related light extinction models to describe canopy structural 

variables. Thus, three types of ground based optical measure can be used; measuring diffuse light 

transmission (canopy gaps) within hemispherical view (e.g., hemispherical photography and LAI-

2000); measuring the vertical distribution of canopy elements (optical point-quadrant method), and; 

measuring the direct solar irradiance (sunflecks) at a known solar angles along a transect (e.g., 

DEMON, quantum sensors, and TRAC), and (c)  
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2.5.4. Empirical models for estimating LAI 

Empirical models for LAI can be estimated from remotely sensed data which typically relies on 

Spectral Vegetation Indices (SVIs) consisting of mathematical combinations of two or more spectral 

bands of optical sensor data (Pfeifer et al., 2012). SVIs correlate with LAI and productivity (Sjöström 

et al., 2011). Empirical model rely on physically based relationships between LAI and canopy 

spectral reflectance. Spectral reflectance and transmittance of leaves in the near infrared region is 

high and absorptance is low.  Early studies indicated leaf reflectance measurements of visible and 

near infrared energy strongly correlates between the Red and Near Infrared transmittance ratio and 

LAI measured on ground (Gonsamo 2009). The most commonly used SVI is the Normalized 

Difference Vegetation Index (NDVI). SVIs maximize sensitivity to the characteristics of vegetation 

but minimizes reflectance from soil, directional, atmospheric, and topographic effects which are 

apparently confounding factors (Gonsamo, 2009). The shortwave infrared (SWIR) reflectance in 

SVIs can be used to minimize the influences of background soil or land cover variation during 

empirical LAI modeling. Remotely sensed spectral bands can be related with the amount of 

photosynthetic biomass (through algebraic combinations) and all bare soil form a line in spectral 

space.  

Least Square Regression (LSR) analysis, which combines linear, exponential and polynomial 

regressions can be used for empirical retrieval of LAI based on LAI-SVI relationship. Thus, large 

scale regional LAI map can be produced using LSR techniques (Gonsamo 2009). However, LSR 

normally has limitation in application; it assumes that the structural data model for deriving unbiased 

estimates errors are spatially independent and there is no measurement errors in the independent 

(SVI) variable. However, LSR can be a biased predictor when there is error in measurement arising 

from functional than structural data model. In the presence of measurement errors, modified least 

square and Thiel-Sen regression analysis has been demonstrated by Fernandes and Leblanc (2005) 

(Gonsamo, 2009) to approximate analysis of its prediction confidence intervals. LSR limitations has, 

however, been circumvented by constructing an integrated, Canonical Correlation Analysis (CCA), 

index to represent multiple predictor variables in a simple linear context (Gonsamo 2009). CCA 

proved to be powerful tool for empirical retrieval of LAI (Heiskanen, 2006; Lee et al., 2004). LAI-

SVI empirical relationship and can be established by fitting measured LAI values to the 

corresponding SVI using LSR, generic form expressed as: 

)(SVIfLAI                                                                                   (2.7)                                                             
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Advantage of the SVI based empirical approach over physically based reflectance or canopy models, 

is its simplicity and ease of computation. However, it is associated with two major difficulties: (a) 

SVI normally approaches a saturation level asymptotically when LAI exceeds a certain value, 

depending on the type of SVI and; there is no unique relationships between LAI and SVI of a choice, 

but rather a family of relationships, each a function of chlorophyll content and/or other canopy 

characteristics, soil background effects and external conditions. Thus, there is no universal SVI-LAI 

equation applicable to diverse vegetation type; it is, therefore, difficult to use the empirical LAI 

modeling with large remote sensing images. Based on these limitations and considering the 

theoretical formulation of SVI-LAI relationships, SVI predicting power and stability can be assessed 

based on: 

)(LAIfSVI                                                             (2.8)                                                                               

This equation is used to localize SVI-LAI solutions. Sensitivity analysis of SVI to LAI has been 

carried out by various studies. These include the relative equivalent noise (REN) and vegetation 

equivalent noise (VEN) to represent noise in SVI (Gonsama, 2009).  

 

2.6. Sustainable Development Goals  

The 2030 Agenda for Sustainable Development has 17 Goals that were adopted by Member States of 

the United Nations in the year 2015 (United Nations, 2017). Relevant to this study is SDGs 13 and 15 

which are interrelated. SDG 15 focuses on protection and restoration of biodiversity which helps in 

mitigating climate change through providing landscape resilience to the impacts. Currently, climate 

change is partially driven by land use changes which destroy landscape potential to sequester carbon. 

In turn, climate change affects species distribution especially in montane areas where species range 

shifts upslope or downslope. The alteration of climate pattern in the region will adversely affect 

growth of agricultural crops and distribution natural plants on the landscape. Thus, long term carbon 

sequestration and system resilience is precarious. Mitigating climate change and its impacts requires 

anchorage of strategies on the Paris Agreement on climate change. Most nations, the Government of 

Kenya included, have followed up by preparing the Nationally Determined Contributions (NDCs) 

(United Nations, 2017). The NDCs outlines development approaches and actions aimed at lowering 

greenhouse gas emissions and building climate resilience. This study plays important role in 

contributing information on carbon sequestration in montane areas and potential impact of climate 

change on agroforestry and carbon sequestration. Reducing GreenHouse Gases is part of NDC 

commitment by the Government of Kenya pursued by relevant authorities.   
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2.7. Statistical Analysis     

Research samples can be analyzed by different types of statistics. One of the simplest statistical 

analyses that are important to subject sample data is a common descriptive statistics. The descriptive 

statistic analysis provides simple summaries about sample and observations made during research. 

Analysis of distribution of a single variable in statitstics is referred to as univariate analysis while 

analysis of more than one variable is bivariate or multivariate analysis (Johnson and Wicherin, 2007; 

Ruohonen, 2011). The range analysis is an aspect of descriptive statistics that describes the minimum 

and the maximum values distribution of sample data; while frequency describe how many times 

certain values or feature appears in a set of sample data. The central tendency of sample data is 

described by mean, median and mode. The mean measures the average of sum of values in a sample 

data and the median measures the distribution of data value in the middle of a set of sampe data. 

Visual inspections of data provide a quick check on normal distribution of univariate sample data. 

These include the frequency distribution (histogram), boxplot, P-P plot (probability-probability plot), 

and Q-Q plot (quantile-quantile plot) (Johnson and Wicherin, 2007). Commonly used for inspecting 

normally distributed data for single variables is boxplot; this is because it shows more information 

than other visual inspections. Beyond the descriptive statistics, inferential statistics are used when 

conclusion needs to be drawn about sample data. Some of inferential statistical test for distributions 

of data are Fisher’s F test which is used for comparing variance of two independent data samples. 

Independent T-Test - Tests for the difference between the same variable from different populations. 

Student’s t test is used in small-sample work for comparing two parameter estimates (McCrawley, 

2007). While, the Fisher’s F, in analysis of variance (ANOVA) is used for comparing two variances 

(Ruohonen, 2011). Student t test and ANOVA tests variables that are in continuous scale and 

approximate normally distributed. Mean is the representative measure for normally distributed 

continuous variable and statistical methods used to compare between the means are called parametric 

methods. For non-normal continuous variable, median is representative measure, and in this situation, 

comparison between the groups is performed using non-parametric methods. Most parametric test has 

an alternative nonparametric test. 

Quantitative measures of dependence include correlation analysis; Pearson’s R is used when both 

variables are continuous or Spearman's rho if one or both are not continuous variables. Pearson’s R 

correlation tests for the strength of the association between two continuous variables. Simple 

regression can also be used to measure dependence, which tests how change in the predictor variable 

predicts the level of change in the outcome variable. Multiple linear regression is performed to test 

how changes in the combination of two or more predictor variables predict the level of change in the 
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outcome variable (Johnson and Wicherin, 2007). Many of the basic statistical methods such as 

regression and Student’s t test assume that variance is constant, but in many applications this 

assumption is untenable. GLM comes in handy since it is used when variance is not constant, and/or 

when the errors are not normally distributed (McCrawley, 2007). 

 

2.8. Summary 

This section addresses issues on the distribution of biodiversity, carbon storage and Leaf Area Index 

and species distribution modeling under the climate change specifically in East Africa. Most of the 

studies have been focused on the forest areas not taking consideration of the inhabited part of the 

mountain slopes to be important areas for species conservation. The carbon storage on the inhabited 

parts of the mountain slopes cannot be neglected as these areas potentially form conservation hotspot 

due to challenges it present to biodiversity conservation. Very important but less conspicuous in most 

studies are role of croplands on biodiversity (especially species richness) and carbon storage. Despite 

most studies concentrating on the influence of physical factors, cropland matrix are also important to 

look at since they potentially affect biodiversity and carbon storage.  

Most of researches on mountain biodiversity always focus on one mountain. Consideration of the 

potential effect of evolution on the mountain on bioversity has not been made. For instance, 

comparative studies on mountain areas that evolved differently like Taita Hills and Mount 

Kilimanjaro (Eastern Arc Mountain) are scanty in libraries. The evolution of these mountains affects 

their soils and underlying geology hence, the plant species and even agricultural activities.  

This study was based in Taita Hills and Mount Kilimanjaro up to the highest elevation with 

croplands. Focus on the two mountains was to provide any local or site based difference intrinsic to 

the mountain areas.   
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CHAPTER 3: STUDY MATERIALS AND METHODS  

 

3.1 Study Area 

3.1.1. Kenya - Taita Hills 

The location of Taita Hills occur within Taita-Taveta County, previously mentioned in other 

literature as Taita-Taveta District (Himberg, 2011). The county occurs between 20 46′ South and 40 

10 South and longitudes 300 14′ east and 370 36′ east. It is bordered by Tana River, Kitui and 

Makueni Counties to the north, Kwale and Kilifi counties to the east, Kajiado County to the 

northwest and the Republic of Tanzania to the south and southwest (Fig. 3.1).  

Taita Hills are a series of the eastern arc mountains located in south-eastern Kenya. The hills are 

unique in their geomorphologic setup amidst the low plain lands of Tsavo. The area is divided into 

three major Agro-Ecological Zones; upper zone, lower zone and volcanic foothills. The lower zone 

comprises of Tsavo plains that range from 400 to 600 m above sea level (Himberg, 2006). The Taita 

Hills transend the volcanic foothills from 700 to 2208 m above sea level (Pellika, 2009). However, an 

illustrative mountainous part of Taita Hills, that forms the upper zone, is vivid from 1,200 m above 

sea level (Himberg, 2006).  The highest peak in Taita Hills is Vuria at 2208 m followed by Yale at 

2115m. The central mountain massive area is called Dabida; others include Mbololo, Sagala and 

Kasigau. The area of study is marked by a transect that runs from lowland in Mwatate area at 

elevation 840m asl through to high areas in Vuria (2200m a.s.l.). The volcanic foothills in Taveta 

Division has potential for underground water and springs emanating from Taita Hills; while the lower 

plain has precious gemstones that are mined. 

The area experiences two rainy seasons per year. The long rains fall on the hills from March to May 

and the short rains from October to December. Up in the hills the average rainfall is 1,500mm or 

more per year while surrounding plains have a maximum of 500 mm per year. 

The southeastern slopes of Taita Hills receive more precipitation than the northwestern slopes due to 

the orographic rainfall pattern (Jaetzold and Schmidt 1983). An annual mean temperature varying 

from 16°C to 18° C is experienced on the hills; while an annual mean temperature of 25° C occur in 

the surrounding plains.  The major rivers in the district are Tsavo, Voi and Lumi. Small springs and 

streams in the district include Njuguini, Sanite, Njokubwa Kitobo, Maji Wadeni, Humas Springs and 

Lemonya Springs. There are two lakes, Jipe and Challa both found in Taita Taveta Division. Lake 

Challa is a crater lake with minimal economic exploitation, while Lake Jipe has some economic 

activities covering small scale irrigation and artisenal fishery. Both lakes are served by springs 

emanating from Mt. Kilimanjaro. 
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Taita Taveta is classified as an arid and semi-arid (ASAL) district. Out of the total area of 

17,128.3 Km2 covered by the district 10,680.7 km2 or 62 per cent is occupied by Tsavo East and 

West National parks, 4,100.7 km2 or 24 per cent is range land suitable for ranching and dry land 

farming, while only 2,055.4 km2or 12 per cent is available for rain-fed agriculture. Of the 2,055.4 

km2 arable land, 1,774.5 km2 or 74 per cent is low potential agriculture land, receiving an annual 

mean rainfall of 650mm.The upper zone is suitable for horticultural farming. 

Three types of forests occur in the Taita Hills: indigenous forests, and traditionally protected (sacred 

forests called fighis), and plantation forests. The indigenous forest has an approximated total area of  

6 km² with forest with closed and intact canopy with two square kilometres. The remaining four 

square kilometres is open forest with broken and non-contiguous canopy (Newmark 2002). 

 

3.1.2. Tanzania - Kilimanjaro Area 

Field survey was conducted in Mount Kilimanjaro area, in southern slopes of the mountain (Fig. 3.1). 

The area lies in Kilimanjaro Region, which is bordered to the north and east by Kenya, to the South 

by Tanga Region, to the Southwest by the Manyara Region, and to the West by the Arusha Region. 

Administratively, the region is divided into seven districts: Rombo, Hai, Moshi Rural, Moshi Urban, 

Mwanga, Siha and Same. Moshi Rural, in which the study site is located, is divided into 31 wards. 

The study site traverses Kirua Vunjo Kusini (South), Kirua Vunjo Magharibi (West) and Kirua Vunjo 

Mashariki (East). Kilimanjaro area has three major agroecological zones: the highland zone (1200 - 

1800 m asl) with coffee - banana belt occurring below a narrow forest strip half-mile; the midland 

zone occur between 900 and 1200m is dominated by maize and beans, and; the lowland zone which 

is occurs below 900m asl) (Misana et al., 2012). The narrow forest strip was established as a social 

and buffer to forest on the lower edge of the forest to provide fuelwood and wood products to local 

people (Misana et al., 2012). 

The montane forest has trees of different genera including, Camphor, Ocotea and understorey ferns 

and Cyathea spp.. The study area falls below montane forest, which Munishi (2007) describe as 

densely populated agro-forest area that integrates multi-purpose trees such as Gravillea, Albizia, 

Cordia and Eucalyptus (mainly above 900 m above sea level). The area is predominated by fertile red 

volcanic soils while some areas in the lowlands are dotted by black cotton soil.   

Annual rainfall varies with altitude. The highlands receive an annual rainfall of about 1200 to 2000 

mm; midlands (1000 to 1200 mm) and; lowlands (400 to 900 mm). The montane zone, which is a 

forest belt above 1800 m, receives the highest rainfall in excess of 2000 mm per year.  
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The area supports agricultural development in the region due to the fertile soils and favourable 

climate. Population density is high and varies within the agro-ecological zones. For instance, in the 

lower slopes population density in 2002 was 200 persons/km2, 650 persons/km2on the higher slopes. 

The southern slopes between 1200 to 1800 m above sea level are most densely populated zone (Soini, 

2005).    

 

 

Figure 3.1 - Map of study sites showing distribution of plot locations on transect in Taita Hills (right) and Kilimanjaro (left). 

 

3.2. Research Design 

Study transects running approximately 30 km long was established on the inhabited slopes of Mount 

Kilimanjaro and Taita Hills. A buffer of 4 km was generated on either side of the line transect; that is 

8 km wide belt transect. In Taita Hills the transect runs from Mwatate from an elevation 840 m 

through Wundanyi to about 2000m in Vuria. While in Mount Kilimanjaro it starts from Miwaleni 

area at about 730 m and running northwards to Kirua-Vunjo at an elevation of 1800 m, near the 

boundary of the National Park (TANAPA).  

Stratified random sampling 30 georeferenced points were initially generated along the transect. The 

points were traced using a Global Positioning System (GPS). During the exercise, the points were 
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noted whether it falls in agroforestry area or cropped land, according to description of IPCC, (2006).  

In Kilimanjaro, 15 georeferenced points occurred in each type of cropland; while in Taita Hills, 20 

occurred in agroforestry areas and 10 in cropped land. These points were further adjusted by 

removing some which were very close (< 1km) to each other. This was to avoid possibility of more 

than one point appearing in a pixel of environmental layers which some has a resolution of 930m. 

Finally, the number of plots used for sampling in Kilimanjaro was 12; 6 one hectare plots occurring 

in both agroforestry areas and cropped land. In Taita Hills, a total of 14 one hectare plots; 7 plots 

distributed in both agroforestry areas and cropped land. One hectare sampling plots was used for 

collecting primary data for species, tree biometries, and measurements of LAI. An opportunistic 

sampling of woody plant species was carried out for species distribution on the transect. Secondary 

data was acquired for species distribution data and spatial environmental layers (variables).  

 

3.3. Data Sources and Tools 

This section describes the data sources and tools used in this study. 

3.3.1. Data Sources 

i. Primary data 

Data collected included the woody tree species, abundance, tree diameter at breast height (dbh), tree 

height, SunScan leaf area index, Hemispherical photographs. Field samples were acquired from one 

hectare plot (100 m x 100 m plot) from a transect that rran from the lowland in Kenya (Taita Hills); 

Mwatate area (approx. 840 m asl) to high areas in Vuria (2200 m asl). In Tanzania (Kilimanjaro), the 

transect ran from low lying areas of Miwaleni (716 m asl) to high areas in Kirua-Vunjo (1800 m asl). 

Sampling plot was established a random point across a one Kilometer buffer on either side of the line 

transect. Distribution along the altitudinal gradient was taken into consideration to cover rainfall and 

temperature gradients in the areas were considered. Identification of sites for sampling was facilitated 

by use of aerial photos and ground survey. Depending on the variety of land cover types across the 

transect, one or more plots were established.  

 

ii. Secondary data  

These are data that were acquired from various sources as input data for this study. These included 

species occurrence data, environmental layers such as the climate projection layers, biophysical 

layers and edaphic variable layers.  

a) Species distribution data 
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Online database such as Global Biodiversity Information Facility (GBIF), PROTO were used as 

sources for searching species distribution data.  

 

b) Environmental Variables: 

Biophysical variable: Biophysical variable used was the Moderate Resolution Imaging 

Spectroradiometer (MODIS) Enhanced Vegetation Indices (EVI) (MODIS-EVI). MODIS-EVI, 16-

days intervals was downloaded from the NASA archives for months corresponding to periods when 

field data was collected in 2012, 2013 and 2014 (Fig. 3.2, Table 3.1). These covered Taita Hills and 

Kilimanjaro area with the mean MODIS-EVI for the periods used as environmental variables. 

MODIS-EVI is considered due to the effect of EVI on minimizing variations in canopy background 

such as soil reflectance (Huete and Didan, 2006).  

 

Edaphic variables: Four edaphic variables were selected for analysis; these included the soil pH, 

soil organic carbon (SOC), Cation Exchange Capacity (CEC), and soil bulk density (BD) (Fig.3.2, 

Table. 3.1). The soil variable layers were downloaded in October 2014 from isric database..   
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Figure 3.2 - Spatial environmental variable layers in Kilimanjaro and Taita Hills transect: EVI - Enhanced Vegetation Index, 

MAT - Mean Annual Temperature, BD-Soil Bulk Density, pH, and SOC-Soil Organic Carbon 
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Table 3. 1: The environmental factors, variables (and their units) used as predictor variables including their spatial resolution 

and their sources (2014).  

Environmental  

factors 

Variable Abbr. Unit of  

Measurement 

Spatial 

Resolution 

Source of 

data 

Edaphic factors 

six layers mean 

estimate for depths; 

2.5, 10, 22.5, 45, 

80, and 150 cm 

depths 

 

Soil Organic Carbon SOC C/permilles 930m  isric.org  

Cation Exchange Capacity CEC  cmolc/kg 930m  isric.org 

pH  pH   isric.org 

Bulk Density BD kg/m3 930m  isric.org 

Climate factors Mean Annual Temperature 

(WorldClim ID – BIO1) 

MAT OC 659m WorldClim 

Mean Annual Precipitation 

(WorldClim ID – BIO12) 

 

MAP mm y-1 659m  WorldClim 

Biophysical factor Enhanced Vegetation Index  

MODIS-EVI 16 days 

interval 

 

EVI  659m NASA 

Land-use Cropped land These are sparsely populated areas predominated by 

mono-cropping system  

Agro-forestry These are moderate to densely populated areas with 

fruit trees, and other trees. Mixed crops both cash and 

food crops 

 

c) Climate baselines and projection layers  

High-resolution ensemble climate projections for Africa were obtained from WorldClim while 

current climate layer variables were from the high-resolution ensemble climate projections for Africa 

from the WorldClim Baseline climate data; Temperature and Moisture variables (Table 3.2). 

Climate layers used for SDM were the future projected climate layers, the ensembled Representative 

Concentration Pathway (RCP) of IPCC-AR5 (RCP4.5 and RCP8.5) at 30s resolution. The RCP4.5 

and 8.5 projections were for the mid-century 2041-2070 (2055) and late-century 2071-2100 (2085).  
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Table 3. 2: Climate variables  

Temperature (tbio) 

Mean annual temperature [BIO1] 

Mean diurnal range in temp [BIO2]  

Isothermality [BIO3]  

Temperature Seasonality [4] [BIO4] 

Max temp warmest month  [BIO5]  

Min temp coolest month [BIO6] 

Annual temperature range [5] [BIO7] 

Mean temp warmest quarter [6] [BIO10]  

Mean temp coolest quarter [6] [BIO11]  

Potential evapotranspiration [7] [PET]  

 

Moisture (mbio) 

Mean annual rainfall [8] [BIO12]  

Rainfall wettest month [BIO13] 

Rainfall driest month [BIO14] 

Rainfall seasonality [4] [BIO15]  

Rainfall wettest quarter [6] [BIO16]  

Rainfall driest quarter [6] [BIO17] 

Annual moisture index [9] [MI] 

Moisture index moist quarter [6] [MIMQ] 

Moisture index arid quarter [6] [MIAQ] 

Number of dry months [10] [DM] 

Length of longest dry season [11] [LLDS] 

 

 

3.3.2. Tools  

a) Equipments 

i. SunScan (Delta-T Device) was used for measuring LAI in low canopy vegetation including 

crops 

ii. Hemispherical camera, Nikon D5000 fitted with a fish-eye lens adapter (Nikon FC -lens 5mm 

f/2.8, focal length of 5mm, and operating at manual focus mode) was used for taking 

hemispherical photographs for canopy gap fractions. 

iii. Range pointer (with LED) was used for measuring tree heights 
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iv. Global Positioning System (GPS), Garmin 550 T was used for taking geographical references of 

sample measurements taken, tracing sampling locations in the field, laying plot designs (of 20m 

x 20m and 100m x 100m size).  

v. Compass was used for taking slope directions, laying plot designs (of 20m x 20m and 100m x 

100m size).  

vi.  Tape measure (50m) was used for laying plots (of 20m x 20m and 100m x 100m size) in dense 

canopy areas where GPS cannot receive signals from GPS satellites in space.  

 

b) Software 

i. ARCGIS 10.2 was used for generating spatial interpolations, species distribution models, and 

output maps  

ii. CAN-EYE software was used for processing hemispherical photographs for the extraction of 

Leaf Area Index (LAI).   

iii. R Statistics was used for statistical analysis and modeling  

 

3.3. Methods 

3.3.1. Spatial Data Preparation 

The spatial environmental layers (variables) were acquired in raster format in different spatial 

resolutions.  The layers were resampled to 930m resolution in ArcGIS 10.2, the smallest scale for 

edaphic variables. The transect buffer area was used for clipping the raster layers using extract by 

mask in ArcGIS. Plot data points were overlaid on the layers to ensure not more than one plot occur 

in a pixel of 930m resolution. Pixel values on where the plots occur were extracted by Extract to 

Point tool in ArcGIS where attributes of all environmental layers were created in one data point layer. 

The data point values was exported to spreadsheet from where attributes were linked up and used for 

statistic analysis and spatial modeling.    

3.3.2. Distribution of environmental variables 

Extracted values for environmental values were analysed against elevation values and intercorrelated 

against each other using Pearson correlation. The values were disaggregated by types of cropland 

their means compared using Student t-test and variation compared by Fischer F test within and 

between the sites.  
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3.3.3. Species abundance and distribution  

Species distributions were acquired from field sampling as well as existing databases both in Kenya 

and Tanzania. Species distributions were extracted from the databases of the National Museums of 

Tanzania and the National Museums of Kenya, and other organizations. Most of the data had both 

species and spatial attributes, which was important for analysis.  Field sampling was carried out along 

an established transect on 1 hectare plot. GPS was used to mark geographic locations (latitude and 

longitude) and elevation.  14 plots were established in Taita Hills and another 12 in Kilimanjaro area. 

Woody plant species were assessed in these plots making observations on the population structures 

within the plot. Crop types, especially low canopy plants were recorded during the field survey.  

 

3.3.4. Woody plant Species diversity indices 

Various diversity indices were analyzed to assess the species association between the types of 

cropland in Mt. Kilimanjaro and Taita Hills . Indices used include were: Species Richness (Chao1), 

Evenness (e^H/S), Equitability (J), Dominance (D), Shannon Wiener Index. Bias corrected estimation 

of total species richness was derived using Chao1 (Hammer et al., 

2001). Evenness was used to indicate how similar, in abundance, the species are along the elevation 

gradient in each site. Evenness of species distribution was calculated based on Buzas and Gibson 

Evenness index (Hammer et al., 2001)  

 

E=e^H/S                                                                                (3.1) 

where e is the natural logarithm, H is Shannon index diversity and S is the species richness. 

 

Equitability (J) was used to measure how individual species are evenly distributed among the present 

taxa. This measure is given by dividing Shannon diversity by the logarithm of number of taxa. 

Dominance of species assessed the proportion of the most abundant species in each site. Dominance 

D is given by 1-Simpson index. This value range from 0 (where all taxa are equally present) to 1 

(where one taxon completely dominates the community). Berger-Parker Dominance was used to 

calculate the total number of individuals in the dominant taxon relative to sample population (n). The 

diversity of woody plant species in the types of cropland, and between the sites was derived using 

Shannon Diversity Index (H), an index which considers the number of individuals as well as number 

of taxa (species richness).  
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Upscaling of species richness on a map was performed using a background environmental variable 

that has high correlation with the richness.  

 

3.3.5. Comparison of diversities  

Shannon diversity t test was used for comparing the Shannon diversities of the woody plant 

community in Taita Hills and Mount Kilimanjaro, and; the woody plant community in cropped land 

and agro-forestry within and between sites.   

 

3.3.6. Similarity and Distance Indices  

The woody plant communities were compared across the two sites using Jaccard index. This index 

measures similarity of the community based on binary data. The index calculated the proportion of 

woody plant species shared between Taita Hills and Mount Kilimanjaro. Jaccard’s index is expressed 

as follows:  

KTTK

KT

SSS

S
J


                                                                                      (3.4) 

Where SK and ST are the numbers of species that are unique to Taita Hills and Mount Kilimanjaro, 

respectively and, SKT is the number of species common to the two sites. The index (J) was then 

converted into percentage.    

 

3.3.7. Measurement of Above-Ground Carbon Storage 

A total of 14 plots and 12 plots of 1 ha were sampled for DBH along the elevation gradients of Taita 

Hills and Kilimanjaro respectively. Out of 12 plots sampled in Kilimanjaro, 6 plots occurred in both 

agro-forestry areas and cropped land. While, 7 plots were distributed in both cropped land and agro-

forestry areas in Taita Hills.  

DBH measurements were restricted on the woody plant species with DBH >= 10 cm. In Kilimanjaro, 

sampling was carried out from the elevation 715m asl in Miwaleni spring area to the elevation of 

1700m asl near the boundary of Kilimanjaro National Park (KINAPA) while in Taita Hills, the 

lowest elevation was 716m asl in Mwatate and the highest was 1952m asl. A total of 982 individual 
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woody trees were sampled for diameter at breast height (dbh) in Kilimanjaro while in Taita, 953 trees 

were sampled from the lowland of Mwatate to Vuria transect at 1952m asl. Variables that were 

measured include the tree DBH, Height and the stock density of the population. 

 

3.3.8. Plot Carbon Estimation 

Biomass above the ground was derived from the tree biometric parameters mainly the diameter-at-

breast height (D) and tree height (H) measured from the plot with the wood specific density as a 

function in the model. Database for the Global Wood Density (Zanne et al., 2009) was used for 

referencing the Wood Specific Gravity (  ) of the woody trees at species level, genus or family. An 

improved pantropical allometric model by Chave et al., (2014) was employed for estimation of 

biomass above the ground. Biomass above the ground was converted to AGC at plot level using 50 

%, a ratio assumed to be AGC in AGB (Marshal et al., 2012; Chave et al., 2005). 

 

  976.020673.0 HDAGB                                                                     (3.5) 

 

The above model (eq 3.5), performed well across different types of forest and bioclimatic conditions 

(Chave et al., 2014). Measuring heights of all trees in dense forests and variable landscape was not 

easy to use inclinometer due to invisibility of the tree crown. Efforts were made to measure 

approximately 100 individual trees in the four plots in the forest then estimated height of the 

remaining individuals in a plot by height-dbh relationship model. An exponential allometric model 

for estimating height-diameter relationship (Marshall et al., 2012; Fang and Bailey, 1998) was used 

to estimate the heights for trees whose height was not recorded on the four forest plots (eq. 3.6).  

      10exp1minmaxmin  dbhcHHHHest                                       (3.6) 

 

3.3.9. Modeling Response Variables and Model Validation 

Modeled response variables were Species Richness, AGCS and LAI in Taita Hills and Mount 

Kilimanjaro. Regression models provided means of prioritizing predictor variable used for modeling 

response variable on the transects. Model of species richness were generated and the Akaike 

Information Criterion (AIC) was used for selecting the best model that explained the relationship of 

response variable with the predictor variable. Regression model that had the best fit and least AIC 

from each site was used for modeling response variable. Out of 12 plot data, eight were used for 

generating regression models in each site while four plots data points were preserved from modeling 
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for validation of the models. These point values were selected randomly; two from agro-forestry 

areas and another two from cropped lands. Once the model was generated the preserved predictor 

variable for the plots were ran on the model to predict response variable in plots. After this, the 

modeled response variable and plot response variable data were compared using One-Way ANOVA 

and also correlation analysis.   

 

3.3.10. Measurement of Leaf Area Index  

Indirect methods for estimating LAI on ground was employed in accordance to Pfeifer et al., (2012). 

Hemispherical photography and SunScan measurements were made within the series of established 

one hectare plots that run from low to high elevations of Taita Hills and Mount Kilimanjaro. Plot for 

measuring LAI was designed similar to VALERI for elementary sampling units (Pfeifer et al 2012; 

Garrigues et al., 2002) was adopted for sampling LAI in the field. Five subplots measuring 20 x 20 m 

were established within 100 m x 100 m as shown in figure 3.3.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 - Plot-based sampling design for measuring LAI by hemispherical photography and SunScan Instrument. 

 

 

 

100 m 

   

  

 

100 m 

 

20 

m 

20 m 

Sub-plot 20m x 20m with 13 sampling 

points marked with GPS. The two 

diagonal points were additionally 

marked with a coloured ribbon for 

ease of tracing 



34 

 

3.3.11. Measurements of LAI using SunScan Instrument 

Photosynthetically Active Radiation (PAR) can be measured by SunScan Instrument below canopy 

using a 1 m probe with 64 light sensors (photodiode). Through this, a simplified radiative transfer 

approximation derives LAI using direct and diffuse attenuation through the canopy (Webb et al., 

2008).  

The device was used for measuring LAI within the designed VALERI sampling unit plots. Three 

measurements of LAI were taken at each of the 13 points of the five sub-plots within the 100m x 

100m plot. Two levels of heights were used for measuring LAI using sunscan; height of 1.3m above 

the ground and on the ground-with the tip of the probe resting on the upper side of the slope. The 

probe was directed to a general direction south-north, southeast-northwest and southwest-northeast 

when taking three reading of LAI. This was done in order to prevent the effect of overcast of shadow 

that would come from the user/personnel when the sun is at an oblique angle at the East and West.     

 

3.3.12. Operation of the sunscan device system in the field 

Effective operation in the field required a remote connection that was set-up for the SunScan probe to 

use a radio receiver (434 MHz). However, a cable was used in case dense vegetation or uneven 

terrain caused obstruction of the radio wave (Fig. 3.4). Within the sunscan set-up, a sunshine sensor 

was mounted on a telescopic tripod at a vantage point which transmitted radio waves to the Radio 

receiver (434 MHz). Before reading was taken, the probe and Sunshine Sensor (BF3) was checked 

for matching. Personal Digital Assistance (PDA) for the device configures, observes and stores 

readings input from the SunScan probe. SunScan probe and Sunshine Sensor (BF3) was checked for 

free dirt before measurements were taken and held horizontally (maintained by a water bubble 

leveler) in uniform to sunlight in an open area (above canopy). SunScan probe (1 m) outputs into 

digital PAR readings, which was sent to the PDA via a cable link. Normally, readings from probe and 

the Sunshine Sensor (BF3) was accepted if they are within a range of 5 – 10 % of each other, to 

reduce errors contributed to canopies where transmission is below 50 %. 
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Figure 3.4 - An overview of system set-up and process for measuring LAI using SunScan (Delta T –Device) 

3.3.13. Measurements of LAI using hemispherical photography 

Hemispherical photographs were taken using Nikon D5000 fitted with a fish-eye lens adapter (Nikon 

FC -lens 5mm f/2.8, focal length of 5mm, and operating at manual focus mode). Hemispherical 

camera provides a wider angle of view of 180o (Jonckheere et al., 2004). Photography was 

undartaken at each of the 13 points established within the subplots in the 100m x 100m plots (as 

shown in figure 3.3), in 19 sites in Taita Hills and 13 sites in Kilimanjaro, established along the 

altitudinal gradients. Procedure adopted by Pfeifer et al., 2012; Gonsamo 2009 was used in the field 

to set up by mounting it on a tripod set with the lens facing vertically upwards, at an approximat 

height of 1.3 m, beneath vegetation canopy (Jonckheere et al., 2005b). Compass direction was used 

to orient the head of the camera to face north and the camera lens leveled to the horizontal datum 

using a bubble. The camera was set at an aperture of f/14. The initial shutter speed was assigned 

automatically (C1 = Automatic) and subsequent speed taken in arithmetic progression in adjusted 

manual mode. Five photographs were taken at each sampling point within the shortest time possible 

to avoid the changes in light regimes as recommended by Gonsamo (2009). The general slope angle 

and direction was measured using inclinometer and compass at each sampling point, respectively.  

 

3.3.14. Processing of hemispherical images 

This process followed a procedure that was used by Pfeifer et al., (2012). Images were downloaded 

for processing. Values of pixel for band blue were obtained from each RGB image for maximizing 

contrast between the leaf and the sky. The band is highly absorbed by the leaves and characterized by 

sky scattering (Jonckheere et al., 2005b; Pfeifer et al 2012). Threshold for optimal brightness was 

established for distinction of the vegetation from sky (Jonckheere et al., 2005b; Pfeifer et al 2012). 
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Pfeifer et al., (2012) used the global Ridler and Calvard method which is commonly applied for 

thresholding in each image (Ridler and Calvard, 1978; Pfeifer et al 2012); this was in order to rely on 

the results of hemispherical photography (Gonsamo and Pellika, 2008; Pfeifer et al., 2012). 

Extraction of band blue and threshold calculation was performed by the C-shell script (Remote 

Sensin Unit, University College London). These generated binary images were later analyzed using 

CAN-EYE V6 (Weiss and Baret, 2010; Pfeifer et al., 2012). The hemispherical lens was limited to a 

field of view of 60o in CAN-EYE to avoid mixed pixels that causes misclassifications towards the 

edge of the image (Weiss and Barret, 2010).  

 

3.3.15. LAI-SVIs model 

Enhanced Vegetation Indices of 930m resolution which corresponded to the dates of data collection 

in the field were downloaded from NASA archive. This was done in order to capture variation of LAI 

with season. Field plot data were then corresponded with the EVI pixels at the geolocation points of 

plots along the transect using data management tool in ArcGIS 10.2. 

 

3.3.16. Maximum Entropy (Maxent) Model calibration and validation  

i. Model Calibration: Jackknifing and analysis of variable importance  

Spatial climate variability was captured by using climate spatial layer over a wider landscape of 

Kenya and Tanzania. In addition to this, calibration of maxent model was performed using jackknife 

in order: to achieve simplicity, local and global unbiasedness, and reduction of oversmoothing 

tendency. The second contribution is to set limit of confidence for a reserve estimate of a general 

shape using jackknife standard deviation (Adisoma, 1993).  

Relative contribution of the environmental variables to the Maxent model was estimated by 

determining percentage contribution and permutation importance. Maxent determines the first 

estimate in each iteration of the training algorithm by adding the increase in regularized gain to the 

contribution of the corresponding variables, or subtracted from it if the change to the absolute value 

of lambda is negative. Permutation importance was estimated by maxent for each environmental 

variable in turn.  
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ii. Maxent Model Validation 

Seven replicates were used for subsampling and cross-validation. Replicate option was used for 

multiple runs for the same species. In this option, the occurrence data were randomly split into a 

number of equal-size groups called “folds”, and models were created leaving out each fold in turn. 

The left out turns were used for evaluation. The advantage of cross-validation is that it uses all of the 

data for validation, which makes better use of small data sets (Phillips et. al., 2006). Replicates were 

used in combination with holding 25% of the data for testing (Random Test). This enabled the ability 

to test the model performance while taking advantage of all available data without having an 

independent dataset. Replications also provided a way to measure the amount of variability in the 

model.  

 

iii. Maxent Parameter tuning 

Tuning the parameters of modeling poses several challenges. When the number of tune parameters is 

large, running the model may be prohibitive due to more time required for tuning each species 

separately. In maxent, several settings affect model accuracy by determining the type and complexity 

of dependencies on the environment that maxent tries to fit. Maxent machine was tuned to the 

following parameters:  

 Tuned settings: Random test percentage (25%), Replicates (7), Replicated run type – 

crossvalidate, Maximum iteration – 5,000.   

 Default settings:  Regularization multiplier – 1, Max number of background points – 10,000, 

Convergence threshold 0.00001, Adjust sample radius – 0, Default prevalence – 0.5, Apply 

threshold rule – 10 percentile training presence, Threads – 1, Lq to, lqp threshold -80, Linear 

to lq threshold – 10, Hinge threshold 15\Beta threshold -: -1, Beta categorical -: -1, Beta lqp -: 

-1, and Beta hinge -: -1.   

 

iv. Selection of suitable areas for species 

After the probability distribution layers of the species were generated, selection of areas that are 

suitable was performed. A threshold of 0.6 and any value above was selected since these were 

considered to be areas very suitable for the distribution of the species selected together or separately.  

Selection was done at two levels: areas very suitable for a single species and; areas suitable for 

Albizia gummifera, Mangifera indica and Persea americana. Selection of the latter was performed 
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under multicriteria selection in ArcGIS model builder based on threshold set in the raster calculator 

as shown in figure 3.5.   

 

 

Figure 3.5 - Multicriteria selection performed in ArcGIS model builder for the intersection of suitable areas (probability > 0.6) 

for the projected distribution of species A. gummifera, M. indica and P. americana. 

 

v. Measure of maxent model performance 

Test omission rate and predicted area averaged over the replicate runs were used by maxent to 

generate cumulative threshold presented in a model graph. The performance of Maximum Entropy 

model was treated as good after observing the omission rate and the predicted omission closer to each 

other.in addition, the Area under Receiver Operation Curve (ROC) - Area Under Curve (AUC) was 

used to measure performance when it is above 0.75 (Phillips et. al., 2006; Phillips et al. 2008; Elith 

2002).  

 

3.3.17. Data Exploration 

Normal distribution tests were used for diagnosis normality of datasets (variables). Visual approach 

was used for observing normal distributions. Both parametric and non-parametric (transformed) 

datasets were tested for normality. The two approaches were used for systemic, provision of a wider 

view of data behaviour and a more informed decision for choosing a particular transformation that 

optimally fits model.  
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Visual tests: These methods relied on the shapes of the plot graphs to diagnose the pattern of 

distribution of a dataset. Three approaches were considered for visual normality tests; kernel density 

distribution, boxplot and Q-Q plot methods. At any one time, at least two or all were used to provide 

a descriptive pattern of the distribution dataset based on univariate statistics.  

 

3.3.18. Data extraction and Statistical Modeling  

Environmental variable values were extracted with ArcGIS 10.2 using plot spatial references to (Fig. 

3.5). The aggregation of values to major land-uses was performed in spreadsheet for Taita Hills and 

Kilimanjaro and later statistical analysis was used. R programme was used in the statistical analysis. 

Here, data was described using univariate statistics. Boxplots were used to describe the distribution 

of variables and visualization of the amount of variables in agro-forestry and cropped land in Taita 

Hills and Kilimanjaro.   

Fischer’s F test was used for testing statistical significance in data variation between types of 

cropland, and study sites. Difference in the mean of data was tested for significance using the 

Student’s t test between agro-forestry and cropped land in study sites; agro-forestry, and cropped land 

between study sites.  

The relationships of WPSR, AGC, and LAI with the environmental variables was assessed using 

Generalized Linear Model (GLM/LM). The polynomial orders (2nd or 3rd) order of was used for 

fitting relation model where non-linear patterns occur with data points The model relationship that 

was best explaining the distribution of AGC were qualified by an Akaike Information Criterion 

(AIC) that ranked models on different types of cropland and study sites. The plot data was upscaled 

using R program under GLM function and visualized within buffer of transect with ArcGIS 10.2. 

 

i. Multivariate Analysis 

Multivariate models were formulated based on assumptions of the multiple linear and interactions 

main effect mean of predictor variables on richness of the Woody Plant Species Richness (WPSR) 

and Above-Ground Carbon Storage (AGCS).  

The initial multivariate formula treated response variables with the variation of physical factors 

(elevation and slope angle), and edaphic factors (SOC, CEC, BD and pH). These models were 

updated in R by either removing and/or adding an interactive term or additive predictor variables 

such as population density.   
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ii. Evaluation of WPSR and AGCS models 

Prediction of WPSR and AGCS was performed on the surface of the physical and edaphic variables 

by extrapolation using GLM in R. The predicted WPSR and AGCS values were compared with the 

plot values by correlation to determine the model that provide better estimation of WPSR and AGCS 

in Taita Hills  and Mount Kilimanjaro. Visual inspection of data values and spatial models generated 

were also used to evaluate the model. The model that provided better estimation was considered as 

the robust model for future application.   

 

iii. Comparison analysis of species suitable areas  

One-way ANOVA was used to compare areas that are suitable for Albizia, Mango and Avocado in 

each site and specific RCP and period. Pairwise comparison (Kruskal-Wallis) was used to compare 

suitable areas between species in sites within a specific RCP. Suitable areas for each species were 

compared between sites using One-Way ANOVA in a specific RCP.   

Suitable areas for the projected baseline species distribution was compared with the projected future 

species distribution using One-Way ANOVA under same RCP, and between species suitable areas in 

same period of projection but different RCP. Chi2 test was used for comparing predicted suitable and 

unsuitable areas for the species within sites in the same RCP and period.  

Visual presentation of projected suitable areas for the species were done using bar graphs (with 

standard error/deviation) and time series presenting trend of change in projection of species suitable 

areas from baseline, projection periods 2055 and 2085 in the same RCP.  
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CHAPTER 4: RESULTS AND DISCUSSIONS 

4.1. Introduction to Results 

Results are presented in sub-sections based on the specific obectives of the study. The result based on 

the first objective is in sub-section 4.2 which represents the relationships of environmental variables 

with the elevation gradients in Mount Kilimanjaro and Taita Hills. The variables are intercorrelated 

on a correlation matrix which summarizes the association. The environmental variables are compared 

by types of cropland within site and between sites. The second objective which focuses on the 

distribution of the woody plant species is presented in sub-section 4.3. These are woody species with 

DBH > 10 cm. The results presented in this section are the species diversity indices for the two 

montane areas. A similarity and distance index results are presented to indicate similarity between the 

site and types of cropland. Relationships of woody plant species richness (WPSR) is established to 

the stock density of trees. The distribution of stock density is also established in the types of 

croplands in the two sites. Predictions for the WPSR response in the montane areas are established 

under univariate and multivariate models. The third objective is underscored by results in sub-section 

4.4 on the above-ground carbon storage on sites and in types of cropland. Distribution of AGCS on 

species is presented in this section. The response of AGCS is predicted under univariate and 

multivariate models along the elevation gradients and within types of cropland. Results for the fourth 

objective, focusing on LAI, are presented in sub-section 4.5. Distribution of site LAI from 

hemispherical photography is presented together withits correlation with SunScan LAI. The section 

also has predictions of LAI under univariate models. The last sub-section is 4.6 which presents 

species distribution model under different RCPs and peak periods of emission. It contains results of 

maxent omission tests, performance, species elevation shift and changes in suitable areas.   

       

4.2. Distribution of Environmental variables 

Two types of cropland namely, cropped land and agro-forestry system were recorded in Taita Hills 

and Mt. Kilimanjaro. Distributions of environmental gradients were assessed within the types of 

croplands and along the elevation gradients. The variables include; physical variables, soil variables, 

and human population density.  

 

4.1.1. Physical variable relationships 

Slope angle (degree) shows significantly increasing trend with increase of elevation in both 

Kilimanjaro (R=0.63, p=0.03) and Taita Hills (R=0.61, p=0.02) (Fig. 4.1a). Correlation of slope 
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angle with elevation in both Kilimanjaro and Taita Hills are apparently similar. However, the slope 

angle in Kilimanjaro responds relatively better to increase of elevation than in Taita Hills.   

The Mean Annual Precipitation (MAP) and Mean Annual Temperature (MAT) significantly correlate 

highly with the elevation. MAP increases with increase of elevation (R=0.99, p=0.00); while MAT 

decreases with increase of elevation (R=-0.99, p=0.00) in both Kilimanjaro and Taita Hills (Fig. 

4.1b). In most cases, low elevation receives lower precipitation than areas in higher elevation. 

Temperatures are higher in low elevation and tend to decrease with increase in elevation. Therefore, 

low elevations have low MAP and high MAT, while MAP is high and MAT is low in higher 

elevations.   

  

  

Figure 4.1 - The distribution of physical variables with increase in elevation in Mount Kilimanjaro and Taita Hills 

 

4.1.2. Edaphic variable Versus Elevation 

Soil pH decreases with the increase in elevation both in Taita Hills (R=-0.55, p=0.05) and Mount 

Kilimanjaro (R=-0.95, p=0.00) as shown in figure 4.2(a). The soil BD shows significant decreasing 

(4.1b) 
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trend in Mt. Kilimanjaro with increase in elevation (R=-0.84, p=0.00), while decrease of BD is 

observed in Taita Hills but not significant (R=-0.18, p=0.54) (Fig. 4.2b).  

Increase in elevation is associated with decrease of 24% and 22% of CEC in Kilimanjaro and Taita 

Hills. However no significant correlation was observed observed (Fig. 4.2c). 

About 96% of SOC increases with the increase of elevation in Kilimanjaro (p=0.00); while only 50% 

of SOC increases with increase in elevation but not significantly explained in Taita Hills (p=0.07) 

(Fig. 4.2d).  

   

  

  

  

 

Figure 4.2 - The relationship of soil variables with elevation in Mount Kilimanjaro and Taita Hills. 

4.1.3. Human Population Density  

Population density distribution along the elevation gradients on Mount Kilimanjaro significantly 

associate (R=0.65, p= 0.02) as evident in figure 4.3. Only 10% of the population density is explained 

(a) 

(b) 

(c) 

(d) 
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by the increase in elevation in Taita Hills but this is not significant. No significant difference was 

observed on population density between the sites and between the elevation categories. 

  

Figure 4.3 - The distribution of population density (1km2) along the elevation gradient in Kilimanjaro (R=0.65, p=0.02) and 

Taita Hills (R=0.1, p>0.05). 

4.1.4. Comparison of environmental variables in Croplands 

i. Climate Variables 

The mean of the annual temperature (MAP) for cropped land in Kilimanjaro is 23.3±0.31 oC, which 

is 3.75 oC more than the mean of MAT in agro-forestry area 19.55±0.44 oC. This does not show 

significant variation but the mean of MAT is significantly different (t=7.02, p=0.000) (Fig. 4.4; 

Table. 4.1). The difference of MAT between the cropped land and agro-forestry areas in Taita is 1.65 

oC; which is 2.3 times less than the difference in Kilimanjaro (Fig. 4.4; Table. 4.1). No significant 

differences were observed in the variance and mean of MAT in cropped land and agro-forestry in 

Taita Hills (Fig. 4.4; Table. 4.1). Significant variation occur in MAT in cropped lands in Taita Hills 

and Kilimanjaro (F=8.00, p=0.040).  

The cropped land of Kilimanjaro has mean MAP twice the amount in agro-forestry (Fig. 4.4; Table. 

4.1) and this is significantly different (t=-8.28, p=0.000). However, no significant variation occur in 

MAT in cropped land and agro-forestry.  Despite MAP in cropped land in Taita Hills being higher 

than the amount in cropped land in Kilimanjaro (Fig. 4.4; Table. 4.1), no significant difference is 

observed in their variance and mean. The mean for MAP in agro-forestry in Kilimanjaro 

(1249.85±59.66 mmy-1) and Taita Hills (919.45±64.85 mmy-1) do not vary significantly except on 

their means (t=3.75, p=0.004) (Fig. 4.4; Table. 4.1).  
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Figure 4.4 - Boxplot for the distribution of MAT and MAP in cropped land and Agro-forestry areas in Kilimanjaro and Taita 

Hills. KAgro-forestry means Agro-forestry in Kilimanjaro etc. 

 

ii. Enhanced Vegetation Index 

The difference in mean EVI in agro-forestry area and cropped lands in Kilimanjaro is 0.29 while in 

Taita Hills, it is 0.07. Significant difference occur in EVI variance and mean in agro-forestry and 

cropped lands on Mount Kilimanjaro (F=3.36, p=0.000; t=-6.64, p=0.000). Cropped land in Taita has 

significantly high EVI mean than in cropped land in Kilimanjaro (t=-3.47, p=0.000); though not 

significantly varied (Fig. 4.4; Table. 4.1).  

E
V

I 

 

Figure 4.5 - Boxplot for the distribution of EVI in cropped land and Agro-forestry areas in Kilimanjaro and Taita Hills. 

KAgro-forestry means Agro-forestry in Kilimanjaro etc. 

iii. Edaphic factors 

The mean for pH in cropped land (0.38±0.04) and Agro-forestry (0.67±0.02) in Kilimanjaro are 

significantly different in their variance and means (F=43.26, p=0.001; t=7.24, p=0.000). The pH in 

agro-forestry in Taita Hills and Kilimanjaro varies significantly (F=45.15, p=0.001) but no 

significant difference on their means. The mean pH between cropped lands in Taita Hills and 

Kilimanjaro differ significant (t=3.27, p=0.008); however, no significant variation is observed (Fig. 

4.4; Table. 4.1). 
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The mean of SOC in agro-forestry in Kilimanjaro is significantly different with SOC in cropped land 

(t=-8.20, p=0.000). SOC in cropped lands in Taita Hills and Kilimanjaro significantly varies (F=7.63, 

p=0.044) and differ in their means (t=-3.53, p=0.006) (Fig. 4.4; Table. 4.1). The mean of CEC in 

agro-forestry in Kilimanjaro (21.36±0.55) and Taita Hills (10.92±1.18) is significantly different 

(t=8.02, p=0.000). Similarly, the mean of CEC in cropped land in Kilimanjaro (20.25±1.38) and Taita 

Hills (9.03±1.37) is significantly different (t=5.75, p=0.000) (Fig. 4.4; Table. 4.1).  

Agro-forestry and cropped land in Kilimanjaro differ significantly in the mean of BD (t=6.43, 

p=0.000). Also, BD in cropped lands in Kilimanjaro and Taita Hills significantly differ in mean 

(t=2.70, p=0.022) (Fig. 4.4; Table. 4.1).  
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Figure 4.6 - Boxplot for the distribution of pH, SOC, CEC and BD in cropped land and Agro-forestry areas in Kilimanjaro and 

Taita Hills. KAgro-forestry means Agro-forestry in Kilimanjaro etc. 
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Table 4. 1: The distribution of MAT, MAP, EVI, pH, SOC, CEC, BD in cropped lands and Agro-forestry areas in Taita Hills 

and Kilimanjaro.  

Variable 

 

Comparison Mean±SE Fischer’s F test Student’s t test 

Kilimanjaro Taita F p t p 

MAT 

 

 

Between 

Sites 

Agro-forestry 19.55±0.44 19.7±0.92 4.44 0.13 -0.15 0.89 

Cropped Land 23.3±0.31 21.35±0.87 8.00 0.04 -2.11 0.06 

Within 

Site 

Cropped land Vs  

Agro-forestry  

Kilimanjaro 1.99 0.47 7.02 0.00 

Taita 1.11 0.92 1.30 0.22 

MAP Between 

Sites 

Agro-forestry 1249.85±59.66 919.45±64.85 1.18 0.86 3.75 0.00 

Cropped Land 612.37±48.67 789.86±74.23 2.33 0.38 2.00 0.07 

Within 

Site 

Cropped land Vs  

Agro-forestry 

Kilimanjaro 1.50 0.67 -8.28 0.00 

Taita 1.31 0.77 -1.32 0.22 

EVI Between 

Sites 

Agro-forestry 0.67±0.02 0.64±0.02 1.27 0.80 1.04 0.32 

Cropped Land 0.38±0.04 0.57±0.04 1.06 0.95 -3.47 0.01 

 Cropped land Vs  

Agro-forestry 

Kilimanjaro 3.36 0.00 -6.64 0.00 

Taita 4.51 0.12 -1.60 0.14 

pH Between 

Sites  

Agro-forestry 5.46±0.02 5.56±0.16 45.15 0.00 -0.60 0.56 

Cropped Land 6.63±0.16 5.71±0.23 2.08 0.44 3.27 0.01 

Within 

Site  

Cropped land Vs  

Agro-forestry 

Kilimanjaro 43.26 0.00 7.24 0.00 

Taita 2.00 0.47 0.54 0.60 

SOC Between 

Sites 

Agro-forestry 21.95±1.84 17.67±1.2 2.35 0.37 -1.95 0.08 

Cropped Land 5.67±0.74 13.33±2.04 7.63 0.04 -3.53 0.01 

Within 

Site 

Cropped land Vs  

Agro-forestry 

Kilimanjaro 6.20 0.07 -8.20 0.00 

Taita 2.89 0.27 -1.83 0.10 

CEC 

 

 

 

Between 

Sites 

Agro-forestry 21.36±0.55 10.92±1.18 4.70 0.12 8.02 0.00 

Cropped Land 20.25±1.38 9.03±1.37 1.01 0.99 5.75 0.00 

Within 

Site 

Cropped land Vs  

Agro-forestry 

Kilimanjaro 6.44 0.06 -0.65 0.47 

Taita 1.35 0.75 -1.04 0.32 

BD 

 

 

Between 

Sites 

Agro-forestry 1140.86±27.82 1200.86±34.32 1.52 0.66 -1.36 0.20 

Cropped Land 1395.00±28.09 1267.70±37.80 1.81 0.53 2.70 0.02 

Within 

Site 

Cropped land Vs  

Agro-forestry 

 Kilimanjaro 1.02 0.98 6.43 0.00 

Taita 1.21 0.84 1.31 0.22 

 

4.1.5. Correlation of environmental variables 

MAP and MAT correlate strongly but negatively in both cropped land and agro-forestry in Taita Hills 

and Kilimanjaro (Table 4.2). EVI and SOC are strongly correlated in cropped lands but poorly 

correlated in agro-forestry area in both Taita Hills and Kilimanjaro (Table 4.2).   

pH and SOC are strongly correlated in agro-forestry area in Kilimanjaro and Taita Hills but poorly 

correlated in cropped lands. Strong correlation occurs between SOC and BD, CEC and BD in 

cropped land and agro-forestry in Kilimanjaro and Taita Hills (Table 4.2).    
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Table 4. 2: Intercorrelation matrix of MAT, MAP, EVI, pH, SOC, CEC, BD in agro-forestry and cropped lands in Kilimanjaro 

and Taita Hills. 

   MAT MAP EVI pH SOC CEC BD  
K
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im

a
n
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 -
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p

p
ed
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d
 

 

MAT  

 

0.00 0.43 0.07 0.65 0.50 0.63 

p
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a
lu

e 

MAP 

C
o
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el

a
ti

o
n

 

-0.96 

 

0.35 0.23 0.48 0.81 0.91 

EVI -0.40 0.47 

 

0.73 0.01 0.37 0.12 

pH 0.78 -0.58 -0.19 

 

0.95 0.11 0.28 

SOC -0.24 0.36 0.93 0.04 

 

0.12 0.04 

CEC 0.35 -0.13 0.45 0.72 0.70 

 

0.02 

BD -0.26 0.06 -0.70 -0.53 -0.84 -0.90 
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e MAP -0.95 

 

0.53 0.79 0.61 0.32 0.48 

EVI -0.51 0.33 

 

0.69 0.98 0.12 0.52 

pH 0.07 -0.14 0.21 

 

0.03 0.34 0.05 

SOC 0.12 -0.27 0.01 0.87 

 

0.14 0.01 

CEC 0.53 -0.49 -0.71 0.47 0.68 

 

0.02 

BD -0.33 0.36 0.33 -0.81 -0.92 -0.87 
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0.95 0.11 0.28 

SOC -0.24 0.36 0.93 0.04 
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EVI -0.51 0.34 

 

0.69 0.98 0.12 0.52 

pH 0.07 -0.14 0.21 

 

0.05 0.34 0.05 

SOC 0.13 -0.27 0.01 0.87 

 

0.14 0.01 

CEC 0.53 -0.49 -0.71 0.47 0.68 

 

0.02 

BD -0.33 0.36 0.33 -0.81 -0.92 -0.87 
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Table 4. 3: Correlation\p-value table for intercorrelation analysis of Elevation, MAT, MAP, EVI, pH, SOC, CEC, BD and 

Population density in Kilimanjaro.   

Kilimanjaro Elev MAT MAP Pop. Density SOC EVI CEC Slope BD pH 

Elev 

 

0.00 0.00 0.02 0.00 0.00 0.45 0.03 0.00 0.00 

MAT -1.00 

 

0.00 0.02 0.00 0.00 0.46 0.03 0.00 0.00 

MAP 0.93 -0.94 

 

0.00 0.00 0.00 0.39 0.02 0.00 0.00 

Pop. Density 0.65 -0.64 0.83 

 

0.01 0.07 0.48 0.09 0.00 0.02 

SOC 0.96 -0.96 0.91 0.68 

 

0.00 0.77 0.05 0.00 0.00 

Evi 0.84 -0.85 0.83 0.54 0.85 

 

0.43 0.03 0.02 0.00 

CEC -0.24 0.24 -0.27 -0.23 -0.09 -0.25 

 

0.06 0.45 0.31 

Slope 0.63 -0.63 0.65 0.52 0.57 0.61 -0.55 

 

0.02 0.01 

BD -0.85 0.84 -0.94 -0.87 -0.83 -0.65 0.24 -0.67 

 

0.00 

PH -0.95 0.96 -0.94 -0.68 -0.93 -0.93 0.32 -0.74 0.85 

  

 

Table 4. 4: Correlation\p-value table for intercorrelation analysis of the Elevation, MAT, MAP, EVI, pH, SOC, CEC, BD and 

Population density in Taita Hills. 

  p-values 

 Taita Hills Elev MAT MAP Pop. Density SOC Evi CEC Slope BD PH 

C
o

rr
el

at
io

n
 V

al
u

es
 

Elev 

 

0.00 0.00 0.73 0.07 0.00 0.44 0.02 0.54 0.15 

MAT -0.99 

 

0.00 0.67 0.07 0.00 0.44 0.02 0.51 0.14 

MAP 0.97 -0.97 

 

0.62 0.04 0.00 0.39 0.02 0.51 0.13 

Pop. Density 0.10 -0.12 0.14 

 

0.40 0.73 0.58 0.50 0.26 0.93 

SOC 0.50 -0.50 0.55 0.25 

 

0.00 0.03 0.37 0.00 0.51 

Evi 0.73 -0.71 0.82 -0.10 0.72 

 

0.85 0.07 0.16 0.50 

CEC -0.22 0.22 -0.25 0.16 0.57 0.06 

 

0.23 0.00 0.06 

Slope 0.61 -0.62 0.62 -0.20 0.26 0.50 -0.35 

 

0.92 0.99 

BD -0.18 0.19 -0.19 -0.32 -0.86 -0.40 -0.84 0.03 

 

0.18 

PH -0.40 0.42 -0.42 0.03 0.19 -0.20 0.52 0.00 -0.38 

  

4.1.6. Key Findings for objective 1 

Environmental variables MAT, CEC, BD and pH correlate negatively with elevation in the montane 

areas. While, MAP, Slope, Population Density, SOC and EVI positively correlate with elevation.   

Edaphic variables, except CEC, significantly correlate with elevation in Kilimanjaro. Only MAT, 

MAP, EVI and Slope significantly correlate with the elevation in Taita Hills. Distribution of MAT, 

MAP, EVI and edaphic variables in agroforestry areas and cropped lands on Mount Kilimanjaro are 

significantly different but not in Taita Hills. However, MAT, MAP and EVI in cropped lands in the 

two sites are significantly different.  
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4.3. Woody plant species distribution, diversity and structure along the elevation of Taita 

Hills and Mount Kilimanjaro  

 

4.2.1. Woody plant Species Diversity Indices 

Between sites: WPS sampled in Taita Hills and Mount Kilimanjaro show, under rarefaction curve, 

the species almost reached asymptote level (Fig. 4.7). That is, very few sampling would be required 

in the two sites in order to reach the level where no more species would be recovered on the sites.  

The estimated species richness of the woody plant species on the inhabited section of the sites are 

relatively similar; 70 (Chao1) in Kilimanjaro and 74 (Chao1) in Taita Hills. Species diversity is 

relatively higher in the two sites. However, the latter has more diverse species indicated by Shannon 

Index (H=3.41) than in Mount Kilimanjaro (H=3.24) (Table 4.5). Species diversity is significantly 

different between the inhabited areas of the two sites (t=3.06, p=0.002).  

The distribution of woody species in Kilimanjaro site, e^H/S=0.38, is fairly even than in Taita Hills 

slope (e^H/S=0.42). Thus, the distribution of woody species tends to vary more in Taita Hills. Species 

abundance are relatively distributed among the present taxa (ratio) in the two sites; given by 

Equitability (J); in Kilimanjaro J=0.77) and Taita Hills (J=0.80) (Table 4.5). Very low dominance 

(D) of species in the two sites indicates no species is dominant in Taita (D=0.06) and Kilimanjaro 

(D=0.07) but are relatively distributed along the sites. Species dominance in the two sites is very low.  
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Figure 4.7 - Species rarefaction - accumulation curves of species against sample in Kilimanjaro and Taita Hills 

 

 

Croplands between sites: The rarefaction curve of the sampled individual woody plant species in 

agro-forestry in Kilimanjaro reached asymptote level (Fig. 4.8). Very few or no species would be 
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recovered with increased sampling efforts in the area. While, agro-forestry areas in Taita Hills still 

requires more sampling in order to reach the level where no more species would be recovered (Fig. 

4.8). Sampling in Cropped land in Taita Hills show species accumulation reaching near asymptote 

level but species sampled in Kilimanjaro Cropped land requires more sampling.  

The inhabited areas of Taita Hills have more species richness in agro-forestry areas (Chao1=58) and 

Cropped lands (Chao1=50) than the croplands in Kilimanjaro (Table 4.5). Thus, croplands in Taita 

Hills are more diverse than the croplands in Kilimanjaro (Table 4.5) Hills (H=3.30) and Kilimanjaro 

(H=3.13) (Table 4.5). Shannon diversity t test performed shows that significant differences occur 

between the diversities in agro-forestry areas between sites (t=4.16, p=0.00) and in Cropped lands 

between sites (t=1.99, p=0.05), and agro-forestry and Cropped lands within sites, Kilimanjaro 

(t=2.49, p=0.01) and Taita Hills (t=2.25, p=0.02).   

The individual woody plant species in agro-forestry areas in Kilimanjaro (n=6) are evenly distributed 

(e^H/S=0.43) among the species per ha more than the individuals in Taita Hills agro-forestry areas 

(n=8) (e^H/S=0.38). The distribution of individual species in Cropped lands in Kilimanjaro (n=6) and 

Taita Hills (n=7) are relatively similar in evenness (Table 4.5).  

In agro-forestry areas and Cropped lands, the distribution of the individual species among the present 

taxa is relatively similar, in Kilimanjaro and Taita Hills, respectively. However, Equitability is higher 

in Cropped lands than agro-forestry areas (Table 4.5).    

Agro-forestry areas and Cropped lands have very low dominance (D=1-Simpson), meaning all 

species in the croplands in the two sites are equally present and very few or no species is dominant 

(Table 4.5). Persea americana is the most dominant species (D=0.019) along the elevation gradients 

of Mount Kilimanjaro and in agro-forestry within the site. In Taita Hills, G. robusta dominate the 

(D=0.036) and in agro-forestry within the site. The Cropped lands in Kilimanjaro is dominated by M. 

indica (D=0.024), while Eucalyptus maculata dominate in Cropped lands in Taita Hills (D=0.017) 

(Table 4.6).  
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Figure 4.8 - Species rarefaction - accumulation curve of species against sample in types of cropland in Kilimanjaro and Taita 

Hills 

 

 Table 4. 5: Species indices. Individuals per ha.  

 

Site Agro-forestry Cropped land 

Diversity Indices 

Kilimanjaro 

(n=12) 

Taita Hills 

(n=15) 

Kilimanjaro 

(n=6) 

Taita Hills 

(n=8) 

Kilimanjaro 

(n=6) 

Taita Hills 

(n=7) 

Taxa (S) 66 73 39 58 42 50 

Individuals 75 76 117 100 33.53 49.9 

Dominance (D) 0.07 0.06 0.09 0.09 0.08 0.06 

Simpson (1-D) 0.93 0.94 0.91 0.91 0.92 0.94 

Shannon (H) 3.24 3.41 2.82 3.10 3.13 3.30 

Evenness (e^H/S) 0.38 0.41 0.43 0.38 0.54 0.54 

Brillouin 2.59 2.74 2.48 2.60 2.28 2.55 

Menhinick 7.38 8.35 3.60 5.81 7.25 7.08 

Margalef 14.58 16.61 7.98 12.39 11.67 12.53 

Equitability (J) 0.77 0.79 0.77 0.76 0.84 0.84 

Fisher (α) 201.80 819.50 20.46 57.96 0 0 

Berger-Parker 0.14 0.19 0.17 0.25 0.23 0.13 

Chao-1 70 74 40 59 42 50 

 

 

 

 

 



53 

 

4.2.2. Similarity and Distance index: Jaccard’s index  

The distribution of WPS in Taita Hills and Kilimanjaro indicate sites share about 32% of the total 

104 species recorded in the two sites (cluster C, Fig. 4.9). 30% of the species are unique to Mount 

Kilimanjaro (cluster B, Fig. 4.9) while 39% are unique to Taita Hills (cluster A, Fig. 4.9). These 

species are indicated on the similarity and distance cluster analysis (Fig. 4.9). 

Agro-forestry areas and cropped lands in Kilimanjaro share 26% of the 66 species recorded (cluster 

C, Fig. 4.10). About 38% of the species only occur in cropped lands (cluster A, Fig. 4.9) while 33% 

are unique to agro-forestry areas in Kilimanjaro (cluster B, Fig. 4.10). 

About 48% of the 73 species recorded along the elevation gradients of Taita Hills are shared by agro-

forestry areas and Cropped land (cluster B, Fig. 4.11). Species that are unique to agro-forestry areas 

in Taita Hills comprises 32% (cluster C, Fig. 4.11) and while those for cropped land forms only 20% 

(cluster A, Fig. 4.11).  

A total of 77 species occur in agro-forestry areas in Taita Hills and Mount Kilimanjaro. About 26% 

of the species are shared between agro-forestry areas in the two sites while 25% and 45% are unique 

to agro-forestry areas in Taita Hills and Kilimanjaro, respectively. Cropped land in Taita Hills and 

Kilimanjaro recorded about 76 species. Out of this, 21% is shared by cropped land in the two sites 

while 34% and 45% are unique to Kilimanjaro and Taita Hills respectively. 
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Figure 4.9 - Similarity clusters of the Woody Plant Species on inhabited section of Mount Kilimanjaro and Taita Hills. 
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Figure 4.10 - Similarity clusters of the Woody Plant Species in types of cropland in Mount Kilimanjaro. 
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Figure 4.11 - Similarity clusters of the Woody Plant Species in types of cropland in Taita Hills. 
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4.2.3. Stock density distribution 

Taita Hills and Mount Kilimanjaro have relatively similar stock density of 75 and 76 individuals per 

hectare, respectively, in each site. No significant differences occur between the stock density in Taita 

Hills and Mount Kilimanjaro.   

Grevillea robusta, which is the dominant species in Taita Hills, has highest density distribution, 

approximately 19 % per hectare, compared to all species in the two sites (Appendix I). G. robusta 

also dominate in agro-forestry areas in the two sites. Persea americana, which has a density 

distribution 14% is dominant in Kilimanjaro is followed by G. robusta with density distribution of 11 

% (Fig. 4.12 and Appendix I).  

The Cropped lands in Kilimanjaro are dominated by Mangifera indica, 9 individual per ha (Fig. 4.12 

and Appendix II); while Eucalyptus maculata is abundant 4 individuals per ha in Taita Hills (Fig. 

4.13 and Appendix III). Stock density of WPS in agro-forestry in Kilimanjaro is 59 individuals per ha 

(Chao1), and 16 per ha in Cropped land (Table 4.5). The two types of croplands significant differ in 

Kilimanjaro (F=6.32, p=0.01).  

High stock density occur in agro-forestry areas in Taita Hills with densities of 100 per ha and 

Cropped land with 50 individuals per ha (Table 4.5). However, the density distribution between the 

agro-forestry and Cropped land in Taita Hills are not significantly different (F=3.64, p=0.05854). The 

stock density in agro-forestry areas and cropped land between the two sites do not differ significantly 

(Table 4.5).  

 

Figure 4.12 - Woody plant species and distribution of abundance in types of Cropland in Kilimanjaro 
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Figure 4.13 - Woody plant species and distribution of abundance in types of Cropland in Taita Hills. 

 

4.2.4. Relative frequency and density distribution  

The most frequently observed WPS in Kilimanjaro are A. gummifera (frequency=75%) and M. indica 

(frequency=74%) followed by G. robusta (frequency=67%). Grevillea robusta has high frequency of 

occurrence (80%) in Taita Hills followed by P. americana (73%) and Psidium guajava (67%).  

Agro-forestry areas in Kilimanjaro have a high frequency of 100% for A. gummifera, G. robusta, 

Prunus africana. While, the woody species with the highest frequency in Taita Hills agro-forestry are 

G. robusta and P. americana each with a frequency of 100%.  

The Cropped land of Mount Kilimanjaro has Acacia seyal with high frequency of distribution 

compared to other species (frequency=67%) followed by M. indica, Croton macrostachyus, Ficus 

sycomorus, Combretum molle, each with frequency of 50%. Five woody species have relatively high 

frequency of distribution of 57% compared to the other species in Cropped land. These include G. 

robusta, P. guajava, Ficus sycomorus, Mangifera indica and P. americana.  

Relative frequency of woody plant species are more varied with the increase in relative density in 

Taita Hills than in Kilimanjaro (Fig 4.14a). Increase in species relative frequency in Kilimanjaro 

would probably reach a point where it levels out before attaining 100% distribution even with the 

increase in species relative density. In Taita Hills, some woody species might attain 100% relative 

frequency but their relative density must be high. 
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The stock density varies with the increase in the woody plant species richness in Mount Kilimanjaro 

(R2=0.60, F=15.13, p= 0.00) under linear model (Fig. 4.14b). While, in Taita Hills the relationship is 

very strong and significantly increases with the increase of WPSR under quadratic model (Fig. 

4.14b).     
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Figure 4.14 - Relationship of relative frequencies and relative density, and stock density with the woody palnt species richness 

in Kilimanjaro and Taita Hills. 

 

4.2.5. Comparison of Stock Density in Types of Cropland  

Relative densities of woody species in agro-forestry areas in Kilimanjaro and Taita Hills were higher 

than Cropped lands mean (Mean±SE) relative abundance in Kilimanjaro (117.17±17.83) and 

Fig. 4.14 (b) 

Fig.4.14 (a) 
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(109.17±16.21). However, no significant difference is observed on agro-forestry between the sites 

(Fig. 4.15). In Taita Hills, both mean and variation of relative density in agro-forestry area is 

significantly higher than in Cropped land; t=4.8431, p=0.00; F=46.12, p=0.00.  Only mean of the 

relative density of the woody plant species in Kilimanjaro differ significantly between agro-forestry 

and Cropped land (t=3.89, p=0.0029933) (Fig. 4.15).    
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Figure 4.15 - Boxplot showing the distribution of stock density (abundance) of WPS in Taita Hills and Kilimanjaro, in different 

croplands (Agro-forestry and Cropped land). 

 

4.2.6. Prediction of Woody Species Richness 

i. Univariate Model Response 

Relationships of the woody species richness were assessed against predictor variables: physical 

variables (elevation and slope); edaphic variables (soil BD, pH, SOC and CEC); biophysical variable 

(EVI), and human population density. The interactions of the richness with the environmental 

variables provided a local based model.  

a. Physical variables 

WPSR in Kilimanjaro significantly increases with the increase in elevation (R2=0.58, p=0.02; 2nd 

polynomial fit) (Fig. 4.16b, Table 4.6) and slopes (R2=0.66, p=0.01: 2nd polynomial fit) (Fig. 4.16a, 

Table 4.6) but tend to decrease as elevation and slopes approaches maximum levels along transect. 

Increase in slope angle in agro-forestry areas in Taita Hills and Mount Kilimanjaro is associated with 

decrease in woody species richness though not significantly. On the other hand, species richness 

increases with increase in slope angle in the cropped land in the two sites but the relationship is not 

significant.   
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In Taita Hills, richness increases significantly with the increase in elevation from the lower elevation 

areas (R2=0.90, p=0.00: 2nd polynomial fit) but decreases drastically towards the higher elevation 

areas, while richness increases significantly with the increase in slope (R2=0.62, p=0.01: Linear fit) 

(Fig. 4.16a, Table 4.6). Significant change in woody species richness is observed in in Taita Hills 

agro-forestry with change in elevation but not in Kilimanjaro. That is, species richness in Taita Hills 

agro-forestry decreased significantly with the increase in elevation (R2=0.71, p=0.03: Linear fit). 

Richness changes significantly with increase in elevation only in Kilimanjaro (R2=0.87, p=0.5) (Fig. 

4.16b, Table 4.6).   

  Kilimanjaro Taita Hills 

  

   

Figure 4.16 - WPSR (SpRichness) with the variation of the physical variables (slope and elevation) in Kilimanjaro and Taita Hills. 

b. Edaphic Variables  

The woody species richness decreases with the increase in soil BD and pH in both transects of Taita 

Hills and Mount Kilimanjaro. The decrease in richness is only significant in Kilimanjaro, pH 

(R2=0.41, p=0.02: Linear fit) (Fig. 4.14a, Table 4.6) and BD (R2=0.35, p=0.04: Linear fit) (Fig. 

4.17b, Table 4.6).  The distribution of richness increases slightly and then drastically decreases, 

significantly, with the increase in CEC in Kilimanjaro (R2=0.78, p=0.00; 2nd polynomial fit). 

However, increase in richness observed in Taita Hills is not significantly related to the increase in 

CEC (Fig. 4.17c, Table 4.6). Species richness increases with the increase in SOC in Taita Hills and 

Kilimanjaro but no significant relationship observed (Fig. 4.17d, Table 4.6).  

(a) 

(b) 
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Kilimanjaro Taita Hills 

  

 
 

  

  
Figure 4.17 - WPSR (SpRichness) distribution with the variation of the soil variables (pH, BD, CEC and SOC) in 

Kilimanjaro and Taita Hills. 

 

c. Enhanced Vegetation Index  

In both slopes of Taita Hills and Mount Kilimanjaro, woody species richness increases with the 

increase in EVI but no significant relationship is observed in the two sites (Fig. 4.18a, Table 4.6).  

(a) 

(b) 

(c) 

(d) 
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Kilimanjaro Taita Hills 

  

  

Figure 4.18 - WPSR (SpRichness) distribution with variation of the Enhanced Vegetation Index (EVI) and Population Density 

(Pop) in Kilimanjaro and in Taita Hills. 

 

d. Population Density 

Distribution of woody species richness increases with the increase of human population density in 

Kilimanjaro and Taita Hills (Fig. 4.18b, Table 4.6) but with no significant relationship is observed 

between the variables. The change in woody species richness with increase of population density is 

more varied on landscape where there is low to high population density (Fig. 4.18b, Table 4.6).  

 

 

 

 

 

 

 

(a) 

(b) 
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Table 4.6: Univariate model relationship of species richness (SpRichness) with variation of environmental variables in 

Kilimanjaro and Taita Hills.  

  

Site  Species Richness Model 

RSE DF 

R2: F: p-value AIC: 
K

il
im

a
n

ja
ro

 
KRichMod CEC<-lm(SpRichness~CEC+I(CEC^2)) 4.89 9 0.45 3.628 0.07 76.70 

KRichMod Slope<- 

lm(SpRichness~Slope+I(Slope^2))  

3.82 9 0.66 

 

8.80 

 

0.01 

 

70.79 

 

KRichMod Elev<-lm(SpRichness~Elev+I(Elev^2)) 4.26 6.21 0.58 6.21 0.02 73.39 

KRichMod pH<-lm(SpRichness~pH) 4.78 10 0.41 7.02 0.02 75.41 

KRichMod BD<-lm(SpRichness~BD) 5.02 10 0.35 5.44 0.04 76.59 

KRichMod SOC<-lm(SpRichness~SOC+I(SOC^2)) 5.26 9 0.36 2.54 0.13 78.45 

KRichMod EVI<-lm(SpRichness~EVI) 5.33  10 0.27 3.69 0.08 78.03 

KRichMod Pop<-lm(SpRichness~Pop) 

 

5.45 10 0.24 

 

3.10 

 

0.11 

 

78.56 
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TRichMod Elev<-lm(SpRichness~Elev+I(Elev^2)) 1.79 7 0.90 29.92 0.00 44.49 

TRichMod Slope<-lm(SpRichness ~ Slope) 3.18 8 0.62 13.20 0.01 55.31 

TRichMod Pop<-lm(SpRichness~Pop+I(Pop^2)) 4.60 7 0.31 1.58 0.27 63.32 

TRichMod SOC<-lm(SpRichness~SOC) 4.61 8 0.21 2.14 0.18 62.69 

TRichMod CEC<-lm(SpRichness ~ CEC) 5.18 8 0.00 0.01 0.94 65.05 

TRichMod BD<-lm(SpRichness~BD) 5.07 8 0.4 0.36 0.57 64.62 

TRichMod EVI<-lm(SpRichness~ EVI + I(EVI^2)) 4.22 7 0.42 2.54 0.14 61.60 

TRichMod pH<-lm(SpRichness~pH) 4.94 8 0.09 0.81 0.40 64.09 

 

ii. Multivariate Model Response  

Some multiple predictors play an important role in the distribution of the woody species richness 

along the elevation gradients of Taita Hills and Mount Kilimanjaro. Variation of elevation and slope 

angle apparently contribute more to the distribution of woody species richness than edaphic factors in 

each site. While, elevation and slope variation contribute significantly to the variation of woody 

species richness in Taita, edaphic variables significantly explain WPSR distribution in Kilimanjaro. 

The multiple linear main effect mean of elevation and slope (TRichMod1) significantly contributes 

70% of the variation of the woody species richness (p=0.02, AIC=55.30) in Taita Hills (Table 4.7). 

When quadratic term is introduced to TRichMod1 (i.e. TRichMod2), significant variation in woody 

species richness in Taita Hills is observed (R2=0.95, p=0.0003, AIC=39.5) (Table 4.7), while the 

addition of the quadratic term into the KRichMod1 (i.e. KRichMod2) only contributes an 

insignificant 58% variation in richness in Kilimanjaro (Table 4.7).  

Population density was deemed an important factor that could influence the distribution of woody 

species richness. Thus, it was introduced into the first and the second models in each site and an 

assessment made on the main effect mean on the woody species richness. Addition of this factor into 
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the first multivariate model significantly increased the contribution of the multiple predictors 

(TRichMod3) on the variation of woody species richness to 86% (p=0.005, AIC=49.11) in Taita Hills 

(Table 4.7). The increased contribution of the new model (KRichMod3) on the variation of woody 

species richness in Kilimanjaro is very significant (Table 4.7). It is only in Taita Hills where 

population density, apparently, has an increased contribution to variation of the WPSR. When 

population density is added into the second model that considered quadratic term of the elevation, 

negligible but significant improvement on the main effect mean was observed on WPSR in Taita 

Hills (R2=0.97, p=0.0007, AIC=36.91) but very weak and insignificant contribution of the model 

observed on the variation of WPSR in Kilimanjaro (Table 4.7).  In Taita Hills, the quadratic term of 

the elevation seems to have more contribution on the variation of WPSR than observed in 

Kilimanjaro.    

Independent treatment of edaphic variables SOC, CEC, BD and pH in a multivariate analysis as 

additive predictor variables (SpRichness~ SOC + CEC + BD + pH) does not show significant 

contribution to the variation of the WPSR in both sites. However, after several formulations of 

multivariate models by updating the above by removing and/or adding interactive terms and 

population density to the model significant relationships were observed with WPSR only in 

Kilimanjaro. The distribution of WPSR in Taita Hills does not seem to relate with the edaphic factors 

as observed in Kilimanjaro. The multiple main effect mean of pH and CEC contribute to 58% of 

variation of WPSR in Kilimanjaro (p=0.02, AIC=73.5). Separate treatment of the interactive terms of 

BD and CEC, and pH, CEC and BD in multivariate model shows the significant contribution of their 

interaction on the variation of WPSR in Kilimanjaro (Table 4.7).   

Expansion of an additive model combining the physical factors, edaphic variables, and population 

density improved fitting of the models, especially in Kilimanjaro (Table 4.7). Inclusion of population 

density into the model tend to minimize the Residual Standard Error (RSE) in Taita Hills model 

raising the R2 from 0.98 to 1 (RSE=0.26, F=392, p=0.04, AIC=-1.46) (Table 4.7). Under this model, 

population density seems to play additional role in the distribution of WPSR in Taita Hills. 

Application of similar model in Kilimanjaro only shows about 76% variation affected but no 

significant relationship (Table 4.7).  Updating the model in Kilimanjaro significantly improves on the 

relationship of multiple predictors with the WPSR (Table 4.7). Thus, additive model of SOC and 

quadratic function of the elevation (2nd order) significantly explain 78% variation in WPSR (F=9.67, 

p=0.01, AIC=67.42) (Table 4.7). Subsequent additive models that were updated in Kilimanjaro show 

significant relationships, but with a slight reduction in fitting of the model (Table 4.8).  
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Table 4. 7: The univariate and multivariate models of WPSR (SpRichness) with environmental variables in Kilimanjaro and 

Taita Hills.  

Model RSE DF R2 F p-val. AIC 

Univariate Model       
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TrichMod Elev<-lm(SpRichness~Elev + I(Elev^2) 1.79 7 0.90 29.92 0.00 44.49 

TrichMod Slope<-lm(SpRichness~Slope) 

 

 

3.18 8 0.62 13.20 0.01 55.31 
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 KRichMod Slope<-lm(SpRichness~Slope + I(Slope^2)) 3.82 9 0.66 8.80 0.01 70.79 

KRichMod Elev<-lm(SpRichness~Elev + I(Elev^2)) 4.26 9 0.58 6.21 0.02 73.39 

KRichMod pH<-lm(SpRichness~pH) 4.78 10 0.41 7.02 0.02 75.41 

KRichMod BD<-lm(SpRichness~BD) 5.02 10 0.35 5.44 0.04 76.59 

 

Multivariate Model 

      

T
a

it
a

 H
il

ls
 

TRichMod1<-lm(SpRichness~Elev + Slope) 3.08 7 0.70 7.84 0.02 55.30 

TRichMod2<-lm(SpRichness~Elev + I(Elev^2) + Slope)  1.37 6 0.95 36.44 0.00 39.50 

TRichMod3<-lm(SpRichness~Elev + Slope + Pop) 2.21 6 0.86 12.69 0.01 49.11 

TRichMod5<-lm(SpRichness~Elev + I(Elev^2) + Slope + Pop) 1.19 5 0.97 36.76 0.00 36.91 

TRichMod11<-lm(SpRichness~SOC + pH + CEC + BD + Elev + 

I(Elev^2) + Slope + Pop) 

 

 

0.26 1 1.00 392 0.04 -1.46 
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KRichMod1<-(lm(SpRichness~Elev + Slope)) 4.63 9 0.50 4.58 0.04 75.37 

KRichMod5<-lm(SpRichness~ CEC + pH) 4.28 9 0.58 6.11 0.02 73.51 

KRichMod6<-lm(SpRichness ~ SOC + Slope + Elev + Pop) 3.73 7 0.75 5.23 0.03 71.20 

KRichMod7<-lm(SpRichness ~ SOC + Elev + Pop) 3.80 8 0.70 6.34 0.02 71.20 

KRichMod8<-lm(SpRichness ~ SOC + Elev) 4.04 9 0.62 7.41 0.01 72.12 

KRichMod9<-lm(SpRichness ~ SOC + Elev + I(Elev^2)) 3.24 8 0.78 9.67 0.01 67.42 

 

 

iii. Woody Plant Species Richness Model Comparisons 

Univariate and multivariate models that significantly fitted richness model were considered for 

comparison to establish differences among and between them. It is assumed that models that are 

significantly different relate with the WPSR in a different way. 

 

a. Mount Kilimanjaro models comparison  

Univariate model with elevation as a predictor (KRichMod Elev) in Kilimanjaro is significantly 

different from additive model of SOC, Elevation and quadratic term of elevation (KRichMod9) 

(ANOVA F=7.54, p=0.03) (Table 4.8). The difference is apparently caused by inclusion of SOC into 
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the former model. KRichMod Elev model has AIC value of 73.39 while KRichMod9 has lower AIC 

of 67.42 (Table 4.8). SOC probably contribute to the difference on how the additive predictors relate 

with the WPSR.  

The univariate slope (KRichMod Slope) is significantly different from the univariate models with pH 

(KRichMod pH) (ANOVA F=6.63, p=0.03) and BD (KRichMod BD) (ANOVA F=8.24, p=0.02) 

(Table 4.8). Thus, slope variable and pH, and BD are not related in their relationship with the WPSR 

in Kilimanjaro. However, KRichMod pH and KRichMod BD are not significantly different and 

therefore these models are assumed to be similar in predicting WPSR in Kilimanjaro (Table 4.8). 

KRichMod Slope is however more preferred model than the other two due to its lower AIC value 

(Table 4.8).  

The multivariate elevation and slope (KRichMod1) is significantly different from the multivariate 

SOC, Elevation, and Population (KRichMod7) in their influence on WPSR (ANOVA F=5.38, 

p=0.05) and multivariate SOC and quadratic term of elevation (KRichMod9) (ANOVA F=10.33, 

p=0.01) (Table 4.8). However, KRichMod7 and KRichMod9 are not significantly different and 

therefore these models are assumed to be similar in modeling WPSR in Kilimanjaro. KRichMod7 is 

apparently the preferred model among the three models due to its low AIC value (Table 4.8).   

Comparison of multivariate CEC and pH model (KRichMod5) with the KRichMod9 model (SOC 

and quadratic term of elevation) with WPSR indicate significant differences between the two models 

(ANOVA F=7.69, p=0.02) (Table 4.8). KRichMod9 model has lower AIC (R2=0.78, p=0.01, 

AIC=67.42) compared to KRichMod5 (R2=0.58, p=0.02, AIC=73.37) (Table 4.8). KRichMod9 

model is also significantly different from KRichMod8 (SOC and elevation) (ANOVA F=5.98, 

p=0.04) (Table 4.8), with the latter having AIC=72.12, higher than KRichMod9 (Table 4.8).   

The univariate elevation with quadratic term (KRichMod Elev) and multivariate SOC and quadratic 

term of elevation (KRichMod9) relationship with WPSR are significantly different (ANOVA F=7.54, 

p=0.03) (Table 4.8). It is apparent that the inclusion of SOC in the elevation model creates difference 

on prediction of WPSR. Its inclusion in KRichMod Elev explains why the AIC value for KRichMod9 

is lower than KRichMod Elev (Table 4.8).  

The difference in WPSR response to the univariate BD (KRichMod BD) and multivariate SOC, 

elevation and Population density (KRichMod7) is significant (ANOVA F=4.75, p=0.04), significant 

with multivariate SOC and elevation (KRichMod8) (F=6.43, p=0.03) and also significant with 

multivariate SOC, elevation with quadratic term (KRichMod9) (ANOVA F=7.98, p=0.01) (Table 

4.8). KRichMod8 and KRichMod9 models are significantly different (ANOVA F=5.98, p=0.04) 

KRichMod9 is the most preferred because it has low AIC than the three models (Table 4.8).  
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Table 4. 8: Comparison of Species Richness Models from Mount Kilimanjaro; F-statistic\p-value (ANOVA) of model 

comparisons. 

Kilimanjaro F/p-Value (ANOVA) 
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KRichMod Elev  1 0.09 0.06 1 1 0.17 0.11 1 0.03 

KRichMod Slope 0  0.03 0.02 1 1 0.35 0.32 1 0.07 

KRichMod pH 3.59 6.63  1 0.23 0.10 0.10 0.07 0.05 0.02 

KRichMod BD 4.88 8.24 0  0.13 0.06 0.07 0.04 0.03 0.01 

KRichMod1 0 0 1.67 2.77  1 0.09 0.05 1 0.01 

KRichMod5 0 0 3.46 4.75 0  0.16 0.10 1 0.02 

KRichMod6 2.36 1.22 3.13 3.69 3.41 2.42  0.30 0.24 1 

KRichMod7 3.34 1.14 3.93 4.75 5.38 3.46 1.27  0.18 1 

KRichMod8 0 0 4.99 6.43 0 0 1.77 2.21  0.04 

KRichMod9 7.54 4.59 6.86 7.98 10.33 7.69 0 0 5.98  

N.B: KRICHMOD = Kilimanjaro Species Richness Model 

 

b. Taita Hills Models Comparisons 

Univariate elevation (TRichMod Elev) and univariate slope (TRichMod Slope) relates significantly 

with WPSR on transect (ANOVA F=18.23, p=0.00) (Table 4.9). TRichMod Elev has a lower AIC 

(44.49) compared to TRichMod Slope (AIC=55.31), hence preferred compared to the latter (Table 

4.9).   

The relationship of multivariate elevation and slope (TRichMod1) with the WPSR significantly differ 

with how the multivariate slope and elevation with quadratic pattern (TRichMod2) (ANOVA 

F=29.58, p=0.00), multivariate elevation, slope and population density (TRichMod3) (ANOVA 

F=7.60, p=0.03) and multivariate elevation with quadratic term, slope and population density 

(TRichMod5) (ANOVA F=20.96, p=0.00) relate with WPSR (Table 4.9). Among these models, only 

TRichMod3 and TRichMod5 significantly differ on their relationship with WPSR (ANOVA 

F=15.70, p=0.01 (Table 4.9). TRichMod5 has the lowest AIC (36.91) than models considered in this 

comparisons (Table 4.9).  
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Table 4. 9: Comparison of Species Richness Models from Taita Hills; F-statistic\p-value (ANOVA) of model comparisons. 

Taita Hills         F/p-Value (ANOVA) 
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TRichMod Elev  0.00 1 0.05 1 1 0.06 0.10 

TRichMod Slope 18.23  0.25 0.00 0.05 0.03 0.00 0.06 

TRichMod1 0 1.56  0.00 0.03 1 0.00 0.06 

TRichMod2 6.08 18.76 29.58  1 0.01 0.15 0.13 

TRichMod3 0 5.32 7.60 0  0.19 0.01 0.08 

TRichMod4 0 7.28 0 15.34 2.16  0.01 0.08 

TRichMod5 5.46 17.46 20.96 2.91 15.70 11.57  1 

TRichMod11 54.58 168.99 161.14 32.44 85.20 96.57 0  

N.B: TRICHMOD = Taita Species Richness Model 

 

 

iv. Evaluation of Richness models 

a. Mount Kilimanjaro Richness Model Evaluation 

Prediction of five models correlated significantly with the plot WPSR data in both Kilimanjaro and 

Taita Hills.  

In Kilimanjaro area, the univariate elevation (KRichMod Elev) significantly correlated with 78% of 

plot WPSR (p=0.00) (Table 4.10). This model however predicts negative values for the WPSR in the 

lower elevation but estimates the upper range of WPSR better (Fig. 4.19). It also underestimates 

richness at the mid elevation area.   

The prediction of the WPSR by univariate pH (KRichMod pH) and univariate BD (KRichMod BD) 

correlates significantly each with 61% of the plot WPSR, p=0.03 and p=0.04, respectively (Table 

4.10). The two models estimate very well the range values for plot WPSR along the transect, but 

seems to underestimate WPSR in the mid transect areas (Fig. 4.19).   

An estimated 70% of predicted WPSR by KRichMod5 (univariate CEC and pH) correlates 

significantly with the plot WPSR (p=0.01) (Table 4.10). The model fixes very well the range of plot 

WPSR but underestimates in the lower-mid transect (Fig. 4.19).   

Predicted WPSR by KRichMod9 (univariate SOC, and quadratic term of elevation) correlates 

significantly with 78% of the plot WPSR (Table 4.10). The model fixes the upper plot WPSR value 

very well but the lower transect is predicted to be negative (Fig. 4.19).  
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Model KRichMod5 (multivariate CEC and pH) is apparently preferred in Kilimanjaro among the 

models generated; this is followed by KRichMod pH and KRichMod BD. 

 

Table 4. 10: Validation of prediction models with observed WPSR in Kilimanjaro using correlation (R).  

MODEL   Model Validation (PredRich. Vs PlotRich) 

Univariate Model R p-value 

KRichMod Slope<-lm(SpRichness~Slope + I(Slope^2)) -0.13 0.68 

KRichMod Elev<-lm(SpRichness~Elev + I(Elev^2)) 0.78 0.00 

KRichMod pH<-lm(SpRichness~pH) 0.61 0.03 

KRichMod BD<-lm(SpRichness~BD) 0.61 0.04 

Multivariate Model   

KRichMod1<-(lm(SpRichness~Elev + Slope)) 0.45 0.14 

KRichMod5<-lm(SpRichness~ CEC + pH) 0.70  0.01 

KRichMod6<-lm(SpRichness ~ SOC + Slope + Elev + Pop) 0.48 0.12 

KRichMod7<-lm(SpRichness ~ SOC + Elev + Pop) 0.48 0.11 

KRichMod8<-lm(SpRichness ~ SOC + Elev) 0.56 0.06 

KRichMod9<-lm(SpRichness ~ SOC + Elev + I(Elev^2)) 0.78 0.00 
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Figure 4.19 - Predicted WPSR on transect in Kilimanjaro. KRichMod is Kilimanjaro Species Richness Model. 
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b. Taita Hills Richness Model Evaluation 

Five WPSR model predictions are significantly correlated with the plot WPSR data in Taita Hills. 

These models include: Univariate elevation and its quadratic terms (TRichMod Elev); multivariate 

elevation and slope (TRichMod1); multivariate slope and elevation and its quadratic terms 

(TRichMod2); multivariate elevation, slope and population density (TRichMod3), and multivariate 

slope, population density, elevation and its quadratic terms (TRichMod5).  

Predictions of TRichMod Elev correlate significantly with 97% of the plot WPSR (p=0.00) (Table 

4.11). The model prediction reflects the plot richness values. However, it does not extrapolate 

maximum richness beyond the maximum plot richness values (Fig. 4.17). 

TRichMod1 predictions significantly correlate with 67% of the plot WPSR (p=0.03) but 

overestimates richness in the lower and upper transect areas (Table 4.11). The model however, 

extrapolates range values of WPSR that consider possible higher richness in areas observation was 

not made (Fig. 4.20).   

WPSR predictions of TRichMod2 correlates significantly with 98% of the plot WPSR (p=0.00) 

(Table 4.11). The model prediction reflects the plot richness values. Unlike TRichMod Elev, the 

model extrapolates range values of WPSR that consider possible higher richness in areas observation 

was not made (Fig. 4.20). 

TRichMod3 predictions of WPSR correlate significantly with 69% of plot WPSR values (p=0.03) 

(Table 4.11). The model appears to be under- and over-estimate some plot WPSR values. It predicts 

some areas would have zero richness per hectare. This is based on the estimated lower range (Fig. 

4.20).    

TRichMod5 predictions of WPSR correlate significantly with 97% of plot WPSR values (p=0.00) 

(Table 4.11). The model prediction reflects the plot richness values. This model is close to 

TRichMod Elev and 2. However, areas with high richness tend to minimize in this model (Fig. 4.20). 

The most preferred model for predicting the WPSR in Taita Hills is TRichMod2 because of its 

extrapolation range values of richness and a reflection of predicted richness which is closer to plot 

WPSR. Other models tend to under or over-estimate richness and also depict unrealistic minimum 

range of richness in the lower transect area.  
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Table 4. 11: Validation of prediction models with WPSR in Taita Hills using correlation (R).   

Model  Model Validation (PredRich. Vs PlotRich) 

 R p-value 

Univariate Model   

TrichMod Elev<-lm(SpRichness~Elev + I(Elev^2) 0.97 0.00 

TrichMod Slope<-lm(SpRichness~Slope) 0.51 0.13 

Multivariate Model   

TRichMod1<-lm(SpRichness~Elev + Slope) 0.67 0.03 

TRichMod2<-lm(SpRichness~Elev + I(Elev^2) + Slope)  0.98 0.00 

TRichMod3<-lm(SpRichness~Elev + Slope + Pop) 0.69 0.03 

TRichMod5<-lm(SpRichness~Elev + I(Elev^2) + Slope + Pop) 0.97 0.00 

TRichMod11<-lm(SpRichness~SOC + pH + CEC + BD + Elev + 

I(Elev^2) + Slope + Pop) 

0.41 0.24 
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Figure 4.20 - Predicted WPSR distribution on transect in Taita Hills. TRichMod is Taita Hills Species Richness Model. 



75 

 

4.2.7. Key Findings for objective 2 

The woody plant species richness are significantly different on the inhabited areas of Mount 

Kilimanjaro and Taita Hills (Shannon Diversity Test, t=3.06, p=0.002). Significant difference is also 

observed on WPSR in types of cropland between and within site. The two sites has about 32% of the 

species occurring in both sites, 30% occur only in Kilimanjaro and 39% occur only in Taita Hills. In 

Kilimanjaro, 26% of species in the site occur in both types of cropland. While in Taita Hills 48% of 

the species occur in both types of cropland. The stock density of the trees has significant relationship 

in Kilimanjaro (R2=0.60, p=0.00) and Taita Hills (R2=0.95, p=0.00). The spatial distribution of 

WPSR is explained better by univariate model of elevation (R2=0.90, p=0.00, AIC=44.49) in Taita 

Hills and univariate model of slope (R2=0.66, p=0.01, AIC=70.79) in Kilimanjaro. The simulteneous 

influence of SOC and elevation (2nd order) is very useful in explaining the spatial distribution of 

WPSR in Kilimanjaro (R2=0.78, p=0.00, AIC=67.42). In Taita Hills, the spatial distribution of WPSR 

is simultenously better explained by quadratic function of elevation, slope and population density 

(R2=0.95, p=0.00, AIC=36.91). 
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4.4. Carbon Storage along the elevation gradient of Taita Hills and Mount Kilimanjaro 

4.4.1. Site AGCS 

The transect from Mount Kilimanjaro recorded a total minimum of AGCS of 1.01 Ct/ha and 

maximum of 68.28 Ct/ha. Areas with low and high AGCS per ha are more varied on Kilimanjaro. 

This is explained by the boxplot long whiskers below and above the boxplot (i.e. below 1st and 3rd 

quartiles) (Fig 4.21). However, areas with moderate AGCS do not vary as explained by the median 

(41.90) which is relatively closer to the mean (39.06±) of AGCS in Kilimanjaro (Fig 4.21).  

In Taita Hills, areas with high AGCS vary more than areas with low AGCS occuring above the 3rd 

quartile (37.84) than below the 1st quartile (14.06) (Fig 4.21). The mean of AGC along the inhabited 

section of Taita Hills is 27.21±4.62 Ct/ha which is relatively closer to the median 24.2, implying that 

areas with moderate AGCS vary less than slope areas with low AGCS and far less than slopes with 

high AGCS. The amount of AGCS in Taita Hills and Kilimanjaro are however, not significantly 

different in the mean and variation in AGCS as tested by (t test and Fischer’s test).     

 

Figure 4.21 - Boxplot of AGCS distribution in Taita Hills and Mount Kilimanjaro. 

 

4.3.2. AGCS in Types of Cropland 

Cropped land in Kilimanjaro has mean AGCS estimated at 19.67±5.18 Mg C/ha. This is 

approximately 1/3 times the mean AGC in agro-forestry 58.45±2.75 Ct/ha in the same site. AGC 

varies significantly in cropped land and agro-forestry in Kilimanjaro (F=17.41, p=0.007), and their 

means differ significantly (t=4.62, p=0.001) (Fig. 4, 22;Table 4.12 ). In Taita Hills, in cropped land 

has mean of AGCS estimated at 13.69±1.54 Mg C/ha; approximately 1/3 times the mean AGC in 

agro-forestry (43.95±7.4 Mg C/ha. The AGCS in cropped lands and agro-forestry areas in Taita Hills 

differ significantly in means (t=4.86, p=0.001) but not in their variance (Fig. 4.21; Table 4.12). Agro-
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forestry in Taita Hills has AGCS 1.3 times the amount of AGCS in Kilimanjaro with significant 

variation in their AFCS (F= 9.36, p=0.028) (Fig. 4.22; Table 4.12). The cropped land in Taita has 

AGCS is approximately 1.5 times AGCS in Kilimanjaro. The AGCS in the cropped land significantly 

varies (F=10.92, p=0.020) between the sites but their means are not significantly different (Fig. 4.22; 

Table 4.12).  
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Figure 4.22 - Distribution of AGC in types of cropland in Kilimanjaro and Taita Hills. KAgro-forestry means Agro-forestry in 

Kilimanjaro. 

 

Table 4. 12: AGCS distribution in cropped lands and Agro-forestry areas in Kilimanjaro and Taita Hills. 

Comparison AGCS (Mean±SE) Fischer’s F test Student’s t test 

Kilimanjaro Taita F p t p 

Between 

Sites 

Agro-forestry 58.45±2.75 43.95±7.4 9.36 0.03 1.95 0.08 

Cropped Land  19.67±5.18 13.69±1.54 10.92 0.02 0.58 0.57 

Within Site Cropped land Vs  

Agro-forestry 

Kilimanjaro 17.41 0.01 4.62 0.00 

Taita 5.87 0.08 4.86 0.00 

 

4.3.3. Species AGCS  

AGCS distribution among WPS in Kilimanjaro is dominated by A. gummifera with storage estimated 

at 8.6 Mg C/ha; this is followed by P. americana (3.5 Mg C/ha), and Ficus sycomorus (3.3 Mg C/ha) 

(Fig. 4.23). In Taita Hills, the dominant WPS is G. robusta which has AGCS of about 4.6 Mg C/ha; 

this is followed by M. indica (2.6 Mg C/ha), and Eucalyptus maculata with 1.7 Mg C/ha (Fig. 4.24).  

In Kilimanjaro, the highest AGCS in agro-forestry occur on A. gummifera which is estimated at with 

7.7 Mg C/ha, while G. robusta dominates Taita Hills (7.6 Mg C/ha). AGCS on Cropped land in Taita 

Hills and Kilimanjaro is dominated by M. indica which AGCS is estimated at 3.2 Ct/ha and 2.3 Mg 

C/ha, in respective sites.  
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Figure 4.23 - AGCS distribution on WPS in Mount Kilimanjaro. 

 

 

 

 

Figure 4.24 - AGCS distribution on WPS in Taita Hills. 

 

4.3.4. Relationship of AGCS with Woody Plant Species  

Distribution of AGCS increases with the increase in WPSR and stock density in Taita Hills and 

Kilimanjaro. Square root of AGCS increases significantly with increase in stock density of WPS in 

Kilimanjaro (F=7.81, R2=0.44, p=0.02) (Fig. 4.25a). However, the stock density and WPSR in 

Kilimanjaro correlates by 77%.   
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AGCS significantly increases with the increase in WPSR (F=15.62, R2=0.66, p=0.00) and stock 

density (F=20.19, R2=0.72, p=0.00) in Taita Hills (Fig. 4.25b). The stock density and WPSR for 

Taita Hills are significantly related (R2=0.95, F=89.93, p=0.00).  
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Figure 4.25 - AGCS (Carb) relationship with WPSR (SpRich), and stock density (abundance). 4.25a – in Kilimanjaro. 4.25b – 

in Taita Hills 

 

4.3.5. Relationship of AGCS with environmental variables along elevation gradients 

i. Univariate  

Relationships of the AGCS were assessed against predictor variables: physical variables (elevation 

and slope); edaphic variables (soil BD, pH, SOC and CEC); biophysical variable (EVI), and human 

population density.  

a. Physical variables 

Distribution of AGCS varies highly and does not fit significantly with the increase in slope angle in 

Kilimanjaro slopes but certainly with the variation of elevation (F=12.54, R2= 0.72, p=0.00) (Fig. 

(a) 

(b) 
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4.26a, Table 4.13). In Taita Hills, it is the slope angle variation that has significant influence (F=5.94, 

R2=0.73, p=0.00) (Fig. 4.26a, Table 4.13) on the distribution of AGCS ompared to the elevation (Fig. 

4.26b, Table 4.13). Thus, AGCS in Taita Hills increases significantly with increase of the slope. 

Areas in Taita Hills and Kilimanjaro with low slope gradient are preferred for crop cultivation than 

steep areas. However, steep areas has more preserved and planted trees or trees.      

Kilimanjaro Taita Hills 

  

  

Figure 4.26 - AGCS relationship with physical variables in Taita Hills and Kilimanjaro. 

 

b. Edaphic Variables 

Relationship of AGCS with pH seems to be significant only in Kilimanjaro (F=39.14, R2=0.80, 

p=0.00) but not in Taita Hills. AGCS decreases significantly with the increase in soil pH in 

Kilimanjaro but the trend is unclear in Taita Hills (Fig. 4.27a, Table 4.13).  

AGCS shows slight increase with increase in CEC in Taita Hills and Kilimanjaro, though the 

relationship is not significant (Fig. 4.27b, Table 4.13). CEC is predominantly influenced by the 

underlying soil and geology.    

The increase in AGCS relates with the increase in Soil BD levels in Kilimajaro and Taita Hills (Fig. 

4.27c, Table 4.13). This increase is only significant in Kilimanjaro (F=14.97, p= 0.00.  

AGCS increases significantly with increase in SOC in Kilimanjaro (R2=0.72, p=0.00) and Taita Hills 

(R2=0.56, p=0.01) (Fig. 4.27d, Table 4.13). The relationship between AGCS and SOC is stronger in 

Kilimanjaro than in Taita Hills. High SOC are associated with areas with more vegetation cover. Soil 

(a) 

(b) 
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pH varies with the amount of SOC, and is less in areas with more trees but high in areas will less 

vegetation cover.   

 

Kilimanjaro Taita Hills 

  

  

   

  

Figure 4.27 - Relationship of AGCS with the edaphic variables in Taita Hills and Kilimanjaro. 4.27a –pH. 4.27b –CEC 4.27c –

BD . 4.27d –SOC. 

 

(a) 

(b) 

(c) 

(d) 



82 

 

c. Population Density 

AGCS significantly increases with increase in population density in Taita Hills (Fig. 4.28, Table 

4.13). Though increase in AGCS is observed with the increase in population density in Kilimanjaro, 

their relationship is not significant (Fig. 4.28, Table 4.13). High AGCS observed in high density 

areas on the slope can be explained by trees under agro-forestry.   

 

Kilimanjaro Taita Hills 

  

Figure 4 28 - Relationship of AGCS with population density (per 1km2) in Taita Hills  and Kilimanjaro. 

d. Enhanced Vegetation Index 

AGCS significantly increases with increase of EVI in Kilimanjaro (R2=0.68, p=0.00) and Taita Hills 

(R2=0.41, p=0.05) (Fig. 4.29, Table 4.13). The increase of AGCS is more varied in Kilimanjaro 

where EVI is low. Areas with higher EVI seem to have slightly varying AGCS. Variation of AGCS 

seems to occur more in areas with high EVI in Taita.   

 

Kilimanjaro Taita Hills 

  

Figure 4 29 - Relationship of AGCS with Enhanced Vegetation Index (EVI) in Taita Hills and Kilimanjaro. 
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Table 4. 13: The univariate models for AGCS (Carb) with environmental variables in Kilimanjaro and Taita Hills.  

Univariate Model  RSE DF Mult. R2 F p-

value 

AIC 

T
ai

ta
 H

il
ls

 

TCarbMod Elev<-lm(Carb~Elev) 0.27 8 0.27 2.94 0.13 77.61 

TCarbMod Slope<-lm(Carb~Slope) 5.94 8 0.73 21.27 0.00 67.77 

TCarbMod pH<-lm(Carb~pH) 11.35 8 0.00 0.01 0.95 80.73 

TCarbMod SOC<-lm(Carb~SOC) 7.53 8 0.56 10.18 0.01 72.53 

TCarbMod CEC<-lm(Carb~CEC) 9.95 8 0.23 2.43 0.16 78.09 

TCarbMod BD<-lm(Carb~BD) 9.08 8 0.36 4.49 0.07 76.28 

TCarbMod Pop<-lm(Carb~Pop) 8.64 8 0.42 5.83 0.04 75.27 

TCarbMod EVI<-lm(Carb~EVI) 

 

8.71 8 0.41 5.59 0.05 75.44 

K
il

im
an

ja
ro

 

KCarbMod Elev<-lm(Carb~Elev) 12.54 10 0.72 25.24 0.00 98.56 

KCarbMod Slope<-lm(Carb~Slope) 19.76 10 0.30 4.20 0.07 109.47 

KCarbMod EVI<-lm(Carb~EVI) 13.32 10 0.68 21.27 0.00 100.00 

KCarbMod pH<-lm(Carb~pH) 10.62 10 0.80 39.14 0.00 94.58 

KCarbMod SOC<-lm(Carb~SOC) 12.44 10 0.72 25.82 0.00 98.37 

KCarbMod CEC<-lm(Carb~CEC) 22.78 10 0.06 0.68 0.43 112.9 

KCarbMod BD<-lm(Carb~BD) 14.90 10 0.60 14.97 0.00 102.7 

KCarbMod Pop<-lm(Carb~Pop) 19.67 10 0.30 4.33 0.06 109.36 

 

ii. Multivariate Response  

Multiple predictor variables were tested for multivariate response of AGCS along the elevation 

gradients of Taita Hills and Mount Kilimanjaro. Combinations of some variables in multivariate model 

showed significant response of AGCS to the multiple predictors while, others did not. Models that 

significantly explained the distribution of AGCS on the mountain slopes are described below.  

 

a. Kilimanjaro AGCS Multivariate Response  

AGCS significant respond to multivariates elevation and slope in Kilimanjaro (KCarbMod1 (Table 

4.14): F=11.41, R2=0.72, p=0.00). The relationship of AGCS with elevation under multiple response 

analysis is significant (F=22.78, p=0.001) but not with the slope on Kilimanjaro (Table 4.14). Thus, the 

influence of elevation on the distribution of AGCS is more than the slope angle. Introduction of 

quadratic function of the elevation variable (KCarbMod2) (Table 4.14) in the above model 

significantly fitted and increased the multivariate relationship (F=13.77, R2=0.84, p=0.00). Under this 

model, slope variable is not contributing significantly to the model response.  

Response of AGCS to multiple variables of edaphic factors that constituted SOC, CEC, pH and BD 

(KCarbMod7) (Table 4.14) in Kilimanjaro was very strong and significantly fitted (F=16.19, R2=0.90, 
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p=0.001). Predictor variables that contribute significantly under the above multivariable analysis are 

SOC (F=51.72, p=0.00) and pH (F=12.72, p=0.01) (Table 4.14).  

When physical and edaphic factors in Kilimanjaro are combined in a model (KCarbMod12) (Table 

4.14), the multivariate response of AGCS is significantly fitted (F=8.50, R2=0.94, p=0.03). Predictor 

variables that contribute significantly under the above multivariable analysis are SOC (F=45.75, 

p=0.00) and pH (F=11.25, p=0.03).  

 

b. Taita Hills AGCS Multivariate Response  

Response of AGCS to multiple predictors (elevation and slope) variables are significant in Taita Hills 

(TCarbMod1 (Table 4.14): F=9.32, R2=0.73, p=0.01, AIC=69.75). The two variables plays significant 

contribution to the model: Elevation, F=6.89, p=0.03 and Slope angle F=11.75, p=0.01. Apparently, 

slope angle contributes significantly to the distribution of AGCS than the elevation in Taita Hills. 

When quadratic term (2nd polynomial order) of elevation is added (TCarbMod2) (Table 4.14), the 

relationship of AGCS to the multiple predictors slightly and significantly increases (F=6.15, R2=0.76, 

p=0.03, AIC=70.69).   

Addition of population density into the model with the physical factors in Taita Hills (TCarbMod3) 

(Table 4.14) shows high and significantly fitted model (F=16.12, R2=0.89, p=0.003, AIC=62.70). All 

variables in the model (TCarbMod3) show significant contribution: elevation (F=14.61, p=0.01), slope 

(F=24.91, p=0.00), and population density (F=8.84, p=0.03). Thus, about 89% of AGCS distribution is 

related to the variation of simultaneous variation of elevation, slope and population density. Addition 

of an 2nd order polynomial to TCarbMod3 does not change the relationship.  

 

Table 4. 14: The multivariate model for AGCS (Carb) distribution with environmental variables in Kilimanjaro and Taita 

Hills.  

Model  

Multivariate Model  RSE DF Mult. 

R2 

F p-

value 

AIC 

T
a

it
a

 H
il

ls
 

TCarbMod1<-lm(Carb~Elev + Slope) 6.34 7 0.73 9.32 0.01 69.75 

TCarbMod2<-lm(Carb~Elev + I(Elev^2) + 

Slope) 

6.49 6 0.76 6.15 0.03 70.69 

TCarbMod3<-lm(Carb~Elev + Slope + Pop) 4.36 6 0.89 16.12 0.00 62.70 

TCarbMod5<-lm(Carb~Elev + I(Elev^2) + 

Slope + Pop) 

 

4.70 5 0.89 10.41 0.01 64.41 

K
il

im
a

n
ja

ro
 KCarbMod1<-lm(Carb~Elev + Slope) 13.2 9 0.72 11.41 0.00 100.53 

KCarbMod2<-lm(Carb~Elev + I(Elev^2) + 10.60 8 0.84 13.77 0.00 98.05 
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Slope) 

KCarbMod7<-lm(Carb~SOC + CEC + pH + 

BD) 

8.79 7 0.90 16.19 0.00 91.75 

KCarbMod12<-lm(Carb~SOC + CEC + pH + 

BD + Elev.1 + I(Elev.1^2) + Slope) 

9.35 4 0.94 8.50 0.03 92.51 

 

 

iii. AGCS Model Comparisons 

Model comparisons are described for the univariate and multivariate models for distribution of AGCS 

in the two sites. An assessment of the models was conducted in order to establish their differences and 

models that perform better in explaining variation of AGCS in Taita Hills and Kilimanjaro. However, 

Table 4.15 and 4.16 provides matrix of comparisons of all models used in the analysis. Single 

variables considered in modeling forms univariate models. These include the elevation, slope angle, 

soil pH, CEC, soil BD, SOC, EVI and population density. The single variables are combined to form 

multivariate model that are presented here based on the models that significantly explained AGCS 

distribution in Taita Hills and Mount Kilimanjaro.  

 

a. Mount Kilimanjaro AGCS model comparison 

Comparison made between the univariate models showed no significant difference on how the 

models influence the AGCS in Kilimanjaro (Table 4.15). Significant differences were, however, 

observed between some of the univariate and multivariate models. The univariate slope, CEC and 

population density significantly differed with the multitivariate KCarbMod1, KCarbMod2, 

KCarbMod7 and KCarbMod12 models (Table 4.15). Other differences were observed between 

multivariate KCarbMod7 model and univariate elevation model (ANOVA F=4.45, p=0.05), BD 

(ANOVA F=7.25, p=0.02), SOC (ANOVA F=4.35, p=0.05), EVI (ANOVA F=5.32, p=0.03), 

KCarbMod1 (ANOVA F=6.65, p=0.02), KCarbMod2 (ANOVA F=6.98, p=0.03) (Table 4.15).  

Among these models, multivariate KCarbMod7 model (AIC=91.75) performs better than all models 

in the analysis. This is followed by KCarbMod12 (Table 4.13 and 4.14), which has pH, CEC, BD and 

SOC variables similar to KCarbMod7 model but slightly differ due to the inclusion of elevation and 

slope angle variables in the model. This potentially implies that soil variables simultaneously 

influence AGCS distribution in Kilimanjaro more than other models.  
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Table 4. 15: Matrix table for AGCS model comparisons for Mount Kilimanjaro.  
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/1

2
  

KCarbMod Elev  1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.88 0.22 0.05 0.22 

KCarbMod Slope 0.00  1.00 1.00 1.00 1.00 1.00 1.00 0.01 0.01 0.00 0.04 

KCarbMod pH 0.00 0.00  1.00 1.00 1.00 1.00 1.00 1.00 0.84 0.14 0.37 

KCarbMod CEC 0.00 0.00 0.00  1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.03 

KCarbMod BD 0.00 0.00 0.00 0.00  1.00 1.00 1.00 0.09 0.06 0.02 0.12 

KCarbMod SOC 0.00 0.00 0.00 0.00 0.00  1.00 1.00 1.00 0.24 0.05 0.22 

KCarbMod EVI 0.00 0.00 0.00 0.00 0.00 0.00  1.00 0.31 0.14 0.03 0.18 

KCarbMod Pop 0.00 0.00 0.00 0.00 0.00 0.00 0.00  0.01 0.01 0.00 0.04 

KCarbMod1 0.03 12.7

6 

0.00 20.7

9 

3.74 0.00 1.17 13.1

9 

 0.09 0.02 0.17 

KCarbMod2 1.83 9.91 0.18 15.2

3 

4.23 1.73 2.57 10.3

3 

3.62  0.03 0.25 

KCarbMod7 4.45 14.5

1 

2.53 20.0

7 

7.25 4.35 5.32 14.3

5 

6.65 6.98  0.59 

KCarbMod12 2.34 6.78 1.49 9.24 3.57 2.27 2.72 6.71 2.79 2.09 0.73  

Note: The univariate model: elevation (KCarbMod Elev) , slope (KCarbMod Slope), pH (KCarbMod pH), CEC (KCarbMod CEC), BD (KCarbMod 

BD), SOC (KCarbMod SOC), EVI (KCarbMod EVI) and Population density (KCarbMod Pop). The multivariate models include KCarbMod1 (elevation 

+ slope), KCarbMod2 (Elevation + I(Elevation^2) + Slope), KCarbMod3 (SOC + CEC + pH + BD), and KCarbMod4 (SOC + CEC + pH + BD + 

Elevation + I(Elevation^2) + Slope). 

 

b. Taita Hills AGCS Models Comparisons 

The univariate models do not differ significantly on how they explain the distribution of AGCS in 

Taita Hills (Table 4.16). However, most of them differed significantly with the multivariate models 

in explaining the variation of AGCS along the elevation gradients. For instance univariate elevation, 

pH, CEC models differed significantly with multivariate models such as TCarbMod1, TCarbMod2, 

TCarbMod3 and TCarbMod5 (Table 4.16).  The univariate BD, EVI and population density differ 

significantly with multivariate models TCarbMod1, TCarbMod3 and TCarbMod5 (Table 4.16). 

While the univariate SOC model differed significantly the multivariate model TCarbMod3 (Table 

4.16) and TCarbMod5 (Table 4.16). The univariate slope model apparently has no significant 

difference with other models in explaining effectively the distribution of AGCS in Taita Hills (Table 

4.16). Multivariate models TCarbMod1 and TCarbMod3 (ANOVA F=8.84, p=0.03), and 

TCarbMod2 and TCarbMod5 (ANOVA F=6.44, p=0.05) significantly differed on how they explain 

the distribution of AGCS. These models have physical variables except in model TCarbMod3 and 

TCarbMod5 where population density included in the multivariate model. They also have relatively 

low AIC than their comparatives hence population density apparently is critical in performance of the 

models.   
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Among these models, TCarbMod3 explain better AGCS distribution in Taita Hills. TCarbMod3 has 

low AIC (62.70) followed by TCarbMod5 (AIC=64.41) (Table 4.13 and 4.14). The multivariate 

models that siginificantly explain the distribution of AGCS in Taita Hills only has physical variables 

while others include population density. It is however apparent that the distribution of AGCS in Taita 

Hills is majorly influenced simultaneously by physical variables and population density. 

Table 4. 16: Matrix table for AGCS model comparisons for Taita Hills.   
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TCarbMod Elev  1 1 1 1 1 1 1 0.01 0.04 0.00 0.02 

TCarbMod 

Slope 

0  1 1 1 1 1 1 0.93 0.72 0.07 0.17 

TCarbMod pH 0 0  1 1 1 1 1 0.00 0.02 0.00 0.01 

TCarbMod 

CEC 

0 0 0  1 1 1 1 0.01 0.03 0.00 0.01 

TCarbMod BD 0 0 0 0  1 1 1 0.02 0.06 0.01 0.02 

TCarbMod 

SOC 

0 0 0 0 0  1 1 0.08 0.17 0.02 0.05 

TCarbMod EVI 0 0 0 0 0 0  1 0.03 0.07 0.01 0.03 

TCarbMod Pop 0 0 0 0 0 0 0  0.03 0.08 0.01 0.03 

TCarbMod1 11.75 0.01 18.63 12.68 9.42 4.28 8.10 7.84  0.44 0.03 0.10 

TCarbMod2 5.94 0.34 9.22 

24.159 

13.866 

6.38 4.83 2.38 4.20 4.07 0.67  1 0.05 

TCarbMod3 16.87 4.43 24.16 17.85 14.4 8.96 13.00 12.72 8.84 0  0.72 

TCarbMod5 9.70 2.58 13.87 10.26 8.28 5.17 7.48 7.33 3.8648 6.44 0.15  

Note: The univariate model: elevation (TCarbMod Elev) , slope (TCarbMod Slope), pH (TCarbMod pH), CEC (TCarbMod CEC), BD (TCarbMod 

BD), SOC (TCarbMod SOC), EVI (TCarbMod EVI) and Population density (TCarbMod Pop). The multivariate models include TCarbMod1 (elevation 

+ slope), TCarbMod2 (Elevation + I(Elevation^2) + Slope), TCarbMod3 (elevation + slope + Population density), and TCarbMod4 (Elevation + 

I(Elevation^2) + Slope + Population density). 

 

iv. Evaluation of models 

Evaluation of models was perfomed in order to ascertain the precision of the GLM predicted AGCS. 

Correlation analysis of AGCS predicted by GLM and observed plot carbon was undertaken. Only 

models that contribute significantly to the distribution of AGCS are considered in the evaluation. The 

Akaike Information Criterion was also generated for the evaluation. Spatial modeling of AGCS was 

performed on the background environmental variable and classification done using five interval 

classes.  
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a. Mount Kilimanjaro AGCS Model Evaluation 

AGCS predicted by GLM significantly correlated with observed AGCS in Kilimanjaro (Table 4.17). 

Some of these models vary on how they predict spatial AGCS distribution in Kilimanjaro. For 

instance, univariate elevation model sets the upper range of spatially predicted AGCS relative to the 

observed AGCS in Kilimanjaro. However, spatial AGCS class limit does not compare relatively with 

the observed plot AGCS values in the lower and upper classes (Fig.4.30). The univariate pH model 

sets the lower and upper range of spatially predicted AGCS relative to the observed AGCS. 

Discrepancies AGCS classes were observed only in the mid classes (Fig.4.30). While, the univariate 

BD model sets the lower limit of AGCS negative value the upper limits of spatially predicted AGCS 

is very high (Fig.4.30). The predicted AGCS value classes by the univariate SOC model does not 

compare relatively with the observed plot AGCS values (Fig.4.30). Most of AGCS predicted by SOC 

model fall under two major AGCS classes that set a wide range of AGCS classes. The univariate EVI 

model sets the lower and the upper AGCS values comparable to the observed AGCS values, 

especially on the upper limit. However, it is only in the upper classes of AGCS that the predicted 

AGCS compares with the observed plot AGCS.   

Most of multivariate models set the lower values of predicted AGCS negative. These include model 

KCarbMod2, KCarbMod7 and KCarbMod12 (Table 4.17). Spatial AGCS predicted by these models 

do not compare relatively with the observed plot AGCS values (Fig.4.30). The model KCarbMod1 

does not set AGCS range values comparable to the observed plot values. Moreover, most of the 

predicted AGCS values donot compare relatively to the observed plot AGCS values (Fig.4.30).  

The univariate pH model apparently performs better than other models in predicting AGCS in 

Kilimanjaro (AIC=94.29). The predicted AGCS by this model correlates highly and significantly 

with the observed plot AGCS. Visual assessment of the AGCS spatial model generated from the 

univariate pH model closely compares with the observed plot AGCS (Fig.4.30).     
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Table 4. 17: Evaluated AGCS prediction by correlation with observed AGCS in Kilimanjaro. PredCarb is 

predicted AGCS and PlotCarb is observed plot AGCS. 

Model PredCarb. Vs PlotCarb 

 R p-value AIC 

U
n

iv
a

ri
a

te
 M

o
d

el
 KCarbMod Elev<-lm(Carb~Elev) 0.83 0.00 99.79 

KCarbMod pH<-lm(Carb~pH) 0.90 0.00 94.29 

KCarbMod BD<-lm(Carb~BD) 0.79 0.00 102.21 

KCarbMod SOC<-lm(Carb~SOC) 0.86 0.00 97.42 

KCarbMod EVI<-lm(Carb~EVI) 0.86 0.00 97.51 

M
u

lt
iv

a
ri

a
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KCarbMod1<-lm(Carb~Elev + Slope) 0.83 0.00 99.60 

KCarbMod2<-lm(Carb~Elev + I(Elev^2) + Slope) 0.83 0.00 99.87 

KCarbMod7<-lm(Carb~SOC + CEC + pH + BD) 0.94 0.00 87.20 

KCarbMod12<-lm(Carb~SOC + CEC + pH + BD + 

Elev.1 + I(Elev.1^2) + Slope) 

0.92 

 

 

 

0.00 

 

 

 

91.33 
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Figure 4.30 - Predicted AGCS spatial model established from univariate and multivariate models for Kilimanjaro. 

Note: The univariate model: elevation (KCarbMod Elev) , slope (KCarbMod Slope), pH (KCarbMod pH), CEC (KCarbMod CEC), BD (KCarbMod 

BD), SOC (KCarbMod SOC), EVI (KCarbMod EVI) and Population density (KCarbMod Pop). The multivariate models include KCarbMod1 (elevation 

+ slope), KCarbMod2 (Elevation + I(Elevation^2) + Slope), KCarbMod3 (SOC + CEC + pH + BD), and KCarbMod4 (SOC + CEC + pH + BD + 

Elevation + I(Elevation^2) + Slope).    
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b. Taita Hills AGCS Model Evaluation  

Four models predicted AGCS that significantly correlated with the observed AGCS in Taita Hills 

(Table 4.18). These models included the univariate SOC and EVI, and multivariate TCarbMod2 

(Table 4.18) and TCarbMod3 (Table 4.18).  

Visual comparison of the observed plot AGCS show that  most of the values do not compare with the 

spatially predicted AGCS by univariate slope, population density models and multivariate models 

TCarbMod1, TCarbMod2 and TCarbMod5 (Fig. 4.31). However, spatially predicted AGCS for 

univariate SOC and EVI, and multivariate model TCarbMod3 relatively compare with the observed 

plot AGCS values (Fig. 4.31). 

The models that performs better are the multivariate model TCarbMod3 (AIC=71.11) and univariate 

SOC model (AIC=71.58) performs better in predicting AGCS; their prediction of AGCS significantly 

correlates with the observed plot AGCS. TCarbMod3 consist of physical variable (elevation and 

slope) and population density variables that simultaneously affect AGCS distribution in Taita Hills.  

 

Table 4. 18: Evaluated AGCS prediction by correlation with observed AGCS in Taita Hills. PredCarb is predicted AGCS and 

PlotCarb is observed plot AGCS.  

Model PredCarb. Vs PlotCarb (R, p-val.) 

 R p-value AIC 

U
n

iv
a

ri
a

te
 TCarbMod Slope<-lm(Carb~Slope) 0.567 0.10 77.04 

TCarbMod SOC<-lm(Carb~SOC) 0.77 0.01 71.58 

TCarbMod EVI<-lm(Carb~EVI) 0.67 0.03 74.79 

TCarbMod Pop<-lm(Carb~Pop) 0.05 0.89 80.71 

M
u

lt
iv

a
ri

a
te

 

 

TCarbMod1<-lm(Carb~Elev + Slope) 

 

0.56 

 

0.09 

 

77.00 

TCarbMod2<-lm(Carb~Elev + I(Elev^2) + Slope) 0.64 0.05 75.49 

TCarbMod3<-lm(Carb~Elev + Slope + Pop) 0.79 0.01 71.11 

TCarbMod5<-lm(Carb~Elev + I(Elev^2) + Slope + Pop) 0.13 0.73 80.57 
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Figure 4.31 - Predicted AGCS spatial model established from univariate and multivariate models for Taita Hills. 

Note: The univariate models are: slope (TCarbMod Slope), SOC (TCarbMod SOC), EVI (TCarbMod EVI) and Population density (TCarbMod Pop). 

The multivariate models include: TCarbMod1 (elevation + slope), TCarbMod2 (Elevation + I(Elevation^2) + Slope), TCarbMod3 (Elevation + Slope + 

Population density), and TCarbMod5 (Elevation + I(Elevation^2) + Slope + Population density).    
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4.3.6. Relationship of AGCS with environmental variables in cropland  

There is significant relationship between the above-ground carbon (AGCS) with the mean annual 

temperature (MAT) in agro-forestry in Kilimanjaro (R2=0.97, p=0.00) when the relationship is fitted 

by 2nd order of polynomial (Fig. 4.32; Table 4.19). The relationship between AGCS and MAP in 

agro-forestry in Kilimanjaro is significantly fitted by the 2nd order of polynomial (R2= 0.87, p=0.045) 

(Fig. 4.32; Table 4.19). AGCS response to EVI in agro-forestry in Kilimanjaro is very significant 

(R2=0.92, p=0.020) (Fig. 4.32; Table 4.19). AGC and CEC polynomial relationships (2nd order) in 

agro-forestry in Kilimanjaro is significant (R2=0.91, p=0.027) (Fig. 4.32; Table 4.19). AGCS 

response to BD in agro-forestry polynomial relationship (2nd order) in Kilimanjaro is significant 

(R2=0.87, p=0.045) (Fig. 4.32; Table 4.19). The relationship of AGC in agro-forestry Taita Hills on 

the above variables are strong but are not significant (Fig. 4.32; Table 4.19). The response of AGC to 

MAT, MAP, EVI, CEC and BD in cropped lands are weak and not significant in Taita Hills and 

Kilimanjaro (Fig. 4.32; Table 4.19).    

AGC and pH polynomial relationship (3rd order) in agro-forestry in Taita Hills is very strong and 

significant (R2=0.98, p=0.031) (Fig. 4.32; Table 4.19). While in cropped land in Taita Hills AGC and 

SOC polynomial relationship (1st order) is significant (R2=0.70, p=0.00) (Fig. 4.32; Table 4.19).   
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Kilimanjaro Taita Hills 

Agro-forestry Cropped land Agro-forestry Cropped land 

    

    

    

    

    

    

    

Figure 4.32 - Model relationships for AGCS with environmental variables in cropped land and Agro-forestry in Kilimanjaro 

and Taita Hills. 

 

 

BD BD BD BD 



95 

 

Table 4. 19: Model relationships for AGCS with environmental variables in cropped land and Agro-forestry in Kilimanjaro 

and Taita Hills. 

   Kilimanjaro  Taita 

Variable Land-use Fit. Order R2 p AIC Fit. Order R2 p AIC 

MAT Agro-forestry x2 0.96 0.008 36 x3 0.91 0.135 46 

Cropped land x2 0.37 0.500 52 x 0.17 0.927 41 

MAP Agro-forestry x2 0.87 0.045 34 x2 0.78 0.104 50 

Cropped land x2 0.34 0.538 52 x 0.21 0.367 37 

EVI Agro-forestry x2 0.92 0.020 31 x2 0.26 0.639 57 

Cropped land x2 0.14 0.805 54 x2 0.72 0.152 32 

pH Agro-forestry x 0.50 0.115 41 x3 0.98 0.031 38 

Cropped land x 0.14 0.458 52 x 0.10 0.540 37 

SOC Agro-forestry x3 0.81 0.272 39 x 0.43 0.160 53 

Cropped land x2 0.36 0.507 52 x 0.70 0.038 31 

CEC Agro-forestry x2 0.91 0.027 32 x2 0.64 0.213 53 

Cropped land x2 0.12 0.820 54 x 0.14 0.474 37 

BD Agro-forestry x2 0.87 0.045 35 x2 0.29 0.599 57 

Cropped land x 0.03 0.760 52 x3 0.50 0.652 38 

 

4.3.7. Key Findings for objective 3 

The amounts of AGCS in the two sites are comparable. However, it is significantly varied in 

agroforestry areas (F=9.36, p=0.03) and cropped lands (F=10.92, p=0.02) between Kilimanjaro and 

Taita Hills. Within sites, AGCS significantly differs in types of cropland in Kilimanjaro (t=4.62, 

p=0.00) and Taita Hills (t=4.86, p=0.00). Distribution of AGCS increases significantly with increase 

in stock density of WPS in Kilimanjaro (R2=0.44, p=0.02) but not with WPSR. While AGCS 

significantly relate with WPSR (R2=0.66, p=0.00) and stock density (R2=0.72, p=0.00) in Taita Hills.  

The univariate models that usefully explain the spatial distribution of AGCS in Kilimanjaro are pH 

(R2=0.90, p=0.00, AIC=94.29)   and SOC (R2=0.86, p=0.00, AIC=97.42). While in Taita Hills 

models that significantly explain better the spatial distribution of AGCS are SOC (R2=0.77, p=0.01, 

AIC=71.58) and EVI (R2=0.67, p=0.03, AIC=74.79). Under multivariate analysis, spatial distribution 

of AGCS in Kilimanjaro is explained better by multivariate model with SOC, CEC, pH, and BD) 

(R2=0.94, p=0.00, AIC=91.33). While in Taita the multivariate model Elevation,  Slope, and 

Population Density shows significantly explain better spatial distribution of AGCS in Taita Hills 

(R2=0.94, p=0.00, AIC=71.11).  
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4.5. The distribution of the Leaf Area Index in Taita Hills and Mount Kilimanjaro 

  

4.4.1. Site LAIHemi 

The total average LAI in Taita Hills (1.64±0.36) is relatively higher than in Kilimanjaro (1.22±0.29). 

However, LAI in Taita Hills is more varied than in Kilimanjaro within the transects. Within site, LAI 

in the upper quartile in Kilimanjaro are more varied than the lower quartile. The value of LAI data in 

Taita Hills in the upper and lower quartiles are relatively varied (Fig. 4.33).  

No significant differences were observed on the means and variations of LAI between the two sites. 

Significant differences only occured in the distribution of LAI along the elevation within the 

inhabited area of Kilimanjaro (t=4.24, p=0.00) and Taita Hills (t=4.58, p=0.00).  
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Figure 4.33 - Boxplot comparisons of Leaf Area Index in Taita Hills and Mount Kilimanjaro 

 

Mean LAI are relatively higher in agro-forestry area than in cropped land in both sites. Agro-forestry 

and cropped areas in the Taita Hill transect has a higher LAI than counterparts in Kilimanjaro (Fig 

4.34) (mean of LAI in agro-forestry in Kilimanjaro 2.05±0.26, Taita Hills 2.48±0.37); cropped land 

(Kilimanjaro 0.40±0.16, Taita Hills 0.80±0.30) (Table 4.20). The mean and variation of LAI in agro-

forestry areas in both sites do not differ significantly and this also applies to the mean LAI in cropped 

lands.  

Observation within site shows that the mean distribution of LAI between cropped land and agro-

forestry in Taita Hills and Kilimanjaro are significantly different (Kilimanjaro t=5.48, p=0.00 and 
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Taita Hills t=3.56, p=0.00). The variation of LAI between the two crop management system in Taita 

Hills and Kilimanjaro are not significant.   
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Figure 4.34 -Boxplot comparisons of Leaf Area Index (LAI) within and between types of Croplands between the inhabited area 

of Taita Hills and Mount Kilimanjaro. K Agrof (Agro-forestry in Mount Kilimanajro) etc. 

 

4.4.2. Correlation of LAIHemi and LAISunScan 

Measurements of LAI from SunScan (LAISunScan) and the values from hemispherical camera 

(LAIHemi) are strongly associated in Kilimanjaro (R=0.84, p=0.00) and Taita Hills (R=0.76, p=0.00). 

Kilimanjaro shows very distinct association of LAISunScan with LAIHemi in the agro-forestry and 

cropped lands. Low levels of LAISunScan are predominant in cropped lands in Kilimanjaro, while high 

levels of LAISunScan occur in agro-forestry areas (Fig. 4.35). In Taita Hills the values of LAISunScan and 

high LAIHemi relatively compares.    
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Kilimanjaro Taita Hills 

  

Figure 4. 1: Correlation of LAISunScan with increasing LAIHemi in Kilimanjaro and Taita Hills. Blue dot (Cropped land), Cyan 

dot (Agro-forestry), Green dot (Forest) and purple dot (woodland).  

 

4.4.3. Modeling LAIHemi with environmental variables  

i. Modeling LAI with Elevation  

Most of the distributions of LAI data points from Kilimanjaro are closer to the regression fit line. 

LAI on lower elevation are very close to the fit line but towards the upper elevation, few points tend 

slightly away from the fit line.  Thus, areas with high LAI in Kilimanjaro are more varied than areas 

with low LAI values. LAI increases significantly with increase in elevation in Kilimanjaro transect 

(R2=0.93, p=0.000) (Fig. 4.36, Table 4.20). In Taita Hills, most of LAI data points are away from the 

regression fit line, in the lower and upper elevation. Thus, LAI values are very varied from the lower 

to the upper elevation in Taita Hills, hence LAI does not show any relationship with the elevation.  

 

Kilimanjaro Taita Hills 

  

Figure 4.35 - Relationship of LAIHemi with increasing elevation in Kilimanjaro and Taita Hills. Blue dot (Agro-forestry) and 

Green dot (Cropped land). 
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Table 4. 20: Relationships of Leaf Area Index (LAI) with elevation gradients and in types of croplands in Mount Kilimanjaro 

and Taita Hills.   

Variable Type  Model R2 p-value 

Kilimanjaro Elev. Transect LAIHemi=0.003*Elevation – 1.89 0.93 0.00 

Agro-forestry LAIHemi =0.002*Elevation – 0.06 0.46 0.21 

Cropped land LAIHemi =0.003*Elevation – 1.89 0.85 0.01 

Taita Hills  Elev. Transect LAIHemi =-0.0004*Elev + 2.15 0.02 0.70 

Agro-forestry LAIHemi =-0.002*Elev + 4.60 0.39 0.26 

Cropped land LAIHemi =-0.0004*Elev + 1.27 0.08 0.65 

 

Agro-forestry areas in Kilimanjaro, LAI increases with increase in elevation. However, the 

distribution of LAI along the elevation is varied and this is observed on the LAI data points that are 

scattered away from the regression fit line (Fig. 4.35). The influence of elevation on LAI in agro-

forestry area is explained by about 46% of LAI (R2=0.46, p=0.206) (Table 4.20) but this is not 

significantly related.  In Taita Hills, distribution of LAI shows a decrease with increase in elevation. 

LAI data values are varied along the elevation and only 39% of LAI in Taita Hills shows decrease 

with increase in elevation (R2=0.39, p=0.257), however there is no significant relationship.   

The distribution of LAI in Kilimanjaro cropped land increases significantly with increase in elevation 

(R2=0.85, p=0.008) (Table 4.20). Most of the LAI point data are closer to the regression fit line 

indicating that low variation occurs in the Cropped land along the elevations of Kilimanjaro. 

Decrease of LAI is observed with increase in elevation within Cropped land in Taita Hills. However, 

this relationship is not significant (R2=0.08, p=0.65) (Table 4.20). LAI is very varied along the 

elevation in Cropped land in Taita Hills compared to agro-forestry areas though all show decrease in 

LAI with increase in elevation.  

ii. Modeling LAI with Climate Variables  

The LAIHemi distribution in Kilimanjaro transect shows significant decrease in values with increase in 

the mean annual temperature (MAT) (R2=0.92, p=0.000) (Table 4.21). While decrease is also 

observed in Taita Hills, LAIHemi distribution is more varied with increase in MAT and no significant 

relationship is observed (Fig 4.36a). Cropped land LAIHemi in Kilimanjaro significantly relate with 

MAT along the elevation (R2=0.93, p=0.002) (Table 4.21). LAIHemi values decrease with the increase 

of MAT. Contrary to this, in Taita Hills, the distribution LAIHemi in cropped land increases with 

increase of MAT. The distribution of LAIHemi, however, in agro-forestry areas of the two sites, shows 

decrease with increase in MAT but with no significant relationship (Table 4.21).      

The mean annual precipitation (MAP) significantly influences about 70% of LAI distribution in 

Kilimanjaro (R2=0.70, p=0.0006) (Table 4.21). The distribution of LAIHemi in the area is however, 

varied with higher amount of MAP in the area. Taita Hills transect has a highly varied LAIHemi, 
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which increases with increase of MAP (Fig. 4.36b). This is indicated by the distribution of LAIHemi 

data points that tend to be away from the regression fit line. LAIHemi in Cropped land in Kilimanjaro 

relates with the distribution of MAP significantly (R2=0.85, p=0.009) (Table 4.21). While LAIHemi 

increases with increase in MAP in Cropped land, LAIHemi in Kilimanjaro agro-forestry areas shows 

relative decrease with increase in MAP (Fig. 4.36b). The opposite is observed in Taita Hills where 

LAIHemi in cropped land relatively decreases with increase in MAP but, increases with increase in 

MAP (R2 = 0.55, p = 0.150) (Fig. 4.36b, Table 4.21).      

 

Kilimanjaro Taita Hills 

  

  

Figure 4.36 - Relationship of LAIHemi with MAT and MAP in Taita Hills and Kilimanjaro. 

 

 

 

 

 

 

 

 

Fig. 4.36a 

Fig. 4.36b 
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Table 4. 21: Relationships of Leaf Area Index (LAI) with MAP and MAT along the elevation gradients and in types of 

croplands in Mount Kilimanjaro and Taita Hills.   

Variable Type  Model R2 p-value 

Kilimanjaro 

 

Elev. Transect LAIHemi = -0.4877* MAT + 11.809  0.92 0.00 

Agro-forestry LAIHemi = -0.0345* MAT + 2.73 0.00 0.91 

Cropped land LAIHemi = -0.5064* MAT +12.19 0.93 0.00 

Elev. Transect LAIHemi = 0.0024* MAP - 0.9697 0.71 0.00 

Agro-forestry LAIHemi = -0.0009* MAP + 3.2048 0.05 0.68 

Cropped land LAIHemi = 0.0031* MAP - 1.4828 0.85 0.01 

Taita Hills Elev. Transect LAIHemi =-0.2594* MAT + 7.0832  0.25 0.14 

Agro-forestry LAIHemi=-0.1864* MAT +6.20 0.30 0.34 

Cropped land LAIHemi =0.1862* MAT - 3.30 0.18 0.42 

Elev. Transect LAIHemi = 0.0034* MAP - 1.1224 0.27 0.12 

Agro-forestry LAIHemi = 0.0036* MAP - 0.7434 0.55 0.15 

Cropped land LAIHemi = -0.0016* MAP + 1.9876 0.14   0.54 

 

iii. Modeling LAI with Edaphic Variables  

a. Soil Organic Carbon 

LAI increases with the increase in SOC in Kilimanjaro and Taita Hills transects (Fig. 4.37). An 

estimated 75% of LAI relate significantly with SOC jn Kilimanjaro (R2=0.76, p=0.00) (Table 4.22). 

However, LAI shows variation where SOC is high in Kilimanjaro. In Taita Hills the relationship is 

not significant and LAI varies with SOC whwther low or high. In addition, most of LAI data points 

are not close to each other.  

LAI within agro-forestry areas in Kilimanjaro shows increase with the increase in SOC values 

whereas in Taita Hills, LAI shows slight decrease with the increase in SOC. However, there is no 

significant relationship occur between LAI and SOC in agro-forestry areas in Kilimanjaro and Taita 

Hills (Table 4.22). The LAI in Cropped land in Kilimanjaro increases significantly with increase in 

SOC (R2=0.80, p=0.02) (Table 4.22). While in Taita Hills, LAI in Cropped land increases slightly 

with the increase in SOC but the relationship is not significant.  
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Figure 4.37 - Relationship of LAIHemi with increase in SOC in Kilimanjaro and Taita Hills. Blue dot (Agro-forestry) and 

Green dot (Cropped land). 

 

b. Soil Bulk Density 

LAI decreases with the increase in soil bulk density (BD) in transects in Kilimanjaro and Taita Hills 

(Fig. 4.38). The decrease in Kilimanjaro is however, significantly related to the increase in BD 

(R2=0.70, p=0.00) (Table 4.22), while the distribution of LAI in Taita Hills is more varied with the 

distribution of BD along the elevation and therefore, not related with the increase in BD.    

LAI in agro-forestry in Kilimanjaro are more varied than values in cropped land. On the other hand, 

in Taita Hills, variation of LAI occurs in both cropped land and agro-forestry. LAI does not relate 

with the increase in BD along the elevation gradient.   

 

Kilimanjaro Transect Taita Hills Transect 

  
BD BD 

Figure 4.38 - Relationship of LAIHemi with increase in BD in Kilimanjaro (R2=0.70, p=0.00) and Taita Hills (R2 =0.06, p= 

0.51). Blue dot (Agro-forestry) and Green dot (Cropped land). 

 

 

 

Kilimanjaro Taita Hills 
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Table 4. 22: Relationships of Leaf Area Index (LAI) with edaphic variables along the elevation gradients and in types of 

croplands in Mount Kilimanjaro and Taita Hills.   

Variable Type  Model R2 p-value 

Kilimanjaro Elev. Transect LAIHemi = 0.0956* SOC - 0.0951 0.76 0.00 

Agro-forestry LAIHemi = 0.03* SOC + 1.3952 0.05 0.68 

Cropped land LAIHemi = 0.1961* SOC - 0.7158 0.80 0.02 

Elev.Transect LAIHemi=-1.5086* pH +10.34 0.80 0.00 

Agro-forestry LAIHemi =10.631* pH -55.991 0.04 0.714 

Cropped land LAIHemi =-1.0166* pH +7.1282 0.95 0.00 

Elev. Transect LAIHemi = -0.0057* BD + 8.4027 0.70 0.00 

Agro-forestry LAIHemi = -0.0021* BD + 4.4335 0.05 0.88 

Cropped land LAIHemi = -0.0021* BD + 3.2824 0.13 0.48 

Elev. Transect LAIHemi =0.020056*CEC +0.80689 0.48 0.13 

Agro-forestry LAIHemi =0.46959*CEC -7.9754 0.02 0.81 

Cropped land LAIHemi =-0.11684*CEC +2.7593 0.48 0.13 

Taita Hills Elev. Transect LAIHemi = 0.0827* SOC + 0.3895 0.12 0.32 

Agro-forestry LAIHemi = -0.0353* SOC + 3.0832 0.02 0.83 

Cropped land LAIHemi = 0.0003* SOC + 0.7926 0.00 1.00 

Elev.Transect LAIHemi=-2.5953* pH +16.355 0.07 0.46 

Agro-forestry LAIHemi =-2.2269* pH +14.644 0.00 0.96 

Cropped land LAIHemi =1.553* pH -8.3308 0.28 0.36 

Elev. Transect LAIHemi= -0.0029* BD + 5.255 0.06 0.51 

Agro-forestry LAIHemi = -0.0003* BD + 2.8834 0.00 0.96 

Cropped land LAIHemi = -0.0006* BD + 1.5858 0.01 0.66 

Elev. Transect LAIHemi =0.34365*CEC -1.8167 0.05 0.53 

Agro-forestry LAIHemi =-0.25654*CEC +5.2209 0.00 0.98 

Cropped land LAIHemi =0.18425*CEC -0.93391 0.06 0.70 

 

 

c. Soil pH 

LAIHemi decreases with the increase in soil pH both in Taita Hills and Mount Kilimanjaro. In 

Kilimanjaro, the decrease is significantly related to the increase of soil pH (R2=0.80, p=0.00) (Table 

4.22). Distribution of LAIHemi in areas with low pH in Kilimanjaro is varied and these occur in agro-

forestry area (Fig. 4.39). LAIHemi in Cropped land in Kilimanjaro is less varied as most points are 

observed tending closer to the fit line. The LAI values in cropped land in Kilimanjaro are mostly 

distributed where soil pH tends to be higher along the elevation gradient (Fig. 4.39). Their 

distribution is significantly related to the soil pH (R2=0.95, p=0.01) (Table 4.22). In Taita Hills, on 

the other hand, the distribution of LAI does not relate with the increase in soil pH along the elevation 

gradient. Variations of LAI occur in low and high pH and, in agro-forestry areas and Cropped land 

(Fig. 4.39). Though, LAIHemi in agro-forestry areas are relatively higher than the values in cropped 

land.  
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Kilimanjaro Taita Hills 

  

Figure 4.39 - Relationship of LAIHemi with increase in pH in Kilimanjaro (R2=0.80, p=0.00) and Taita Hills (R2=0.07, p=0.46). 

Blue dot (Agro-forestry) and Green dot (Cropped land). 

 

d. Cation Exchange Capacity 

The distribution of LAIHemi is highly varied with the increase of CEC along the elevation gradient in 

both Taita Hills and Mount Kilimanjaro. Negligible increase in LAIHemi is observed with the increase 

of CEC in the two sites but no significant relationships (Fig 4.40).  Decreasing trend in LAI with 

increase in CEC occurs in agro-forestry areas in Kilimanjaro transect (R2=0.48, p=0.12642) but 

relationship not significant (Table 4.22). The amounts of LAIHemi, however, are higher in the agro-

forestry than in cropped land in the two sites.  

 

 

 

Kilimanjaro Taita Hills 

  

Figure 4.40 - Relationship of LAIHemi with increase in pH in Kilimanjaro (R2=0.00, p=0.88) and Taita Hills (R2=0.05, p=0.52). 

Blue dot (Agro-forestry) and Green dot (Cropped land). 
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iv. Modeling LAI with Human Population Density 

LAIHemi increases in areas with increase in population density in Kilimanjaro transectand the 

relationship of LAIHemi with population density along the elevation gradient is significant (R2=0.54, 

p=0.01). No relationship is observed between LAIHemi and population density distribution along the 

elevation gradient in Taita Hills (Table 4.23). In Kilimanjaro transect, high LAIHemi occur in areas 

with high population density and agro-forestry areas (Fig. 4.41) while in Taita Hills, high LAIHemi 

occur in agro-forestry areas though than in Cropped land though no pattern of distribution observed 

with increasing population density along the elevation gradient.  

 

  

Figure 4 41 - Relationship of LAIHemi with increase in population density in Kilimanjaro (R2 =0.54, p= 0.01) and Taita Hills (R2 

=0.01, p= 0.76). Blue dot (Agro-forestry) and Green dot (Cropped land). 

 

Table 4. 23: Relationships of Leaf Area Index (LAI) with population density along the elevation gradients and in types of 

croplands in Mount Kilimanjaro and Taita Hills.   

Variable Type  Model R2 p-value 

Pop. density Elev.Transect LAIHemi = 0.036277*PopDen - 0.17855 0.54 0.01 

Agro-forestry LAIHemi = 0.023019*PopDen +0.72757 0.08 0.60 

Cropped land LAIHemi = 0.047942*PopDen -0.5493 0.33 0.23 

Taita Hills Elev.Transect LAIHemi = 0.003*PopDen + 1.4363 0.01 0.76 

Agro-forestry LAIHemi = -0.0074*PopDen + 1.2496 0.06 0.68 

Cropped land LAIHemi = 0.0004*PopDen + 2.4443  0.00 0.95 

 

v. Modeling LAI with Enhanced Vegetation Index 

The increase of LAIHemi is significantly associated with the increase of EVI (R=0.75, p=0.00) along 

the elevation gradient in Kilimanjaro (Table 4.24). The amount of LAIHemi in agro-forestry in Mount 

Kilimanjaro area are distributed on areas with high EVI while low LAIHemi are associated with areas 

with low EVI. However, the distribution of high LAIHemi in Mount Kilimanjaro is more varied in 

areas with high EVI, with most of data points tending away from each other (Fig. 4.42). In Taita 
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Hills, low and high LAIHemi are observed in areas with high EVI while variation of LAIHemi occurs in 

areas with both low and high EVI (Fig. 4.42).  

  

Figure 4 42 - Relationship of LAIHemi with increase in EVI in Kilimanjaro (R2=0.75, p=0.00) and Taita Hills (R2 =0.11, p= 

0.36). Blue dot (Agro-forestry) and Green dot (Cropped land). 

 

Table 4. 24: Relationships of Leaf Area Index (LAI) with EVI along the elevation gradients and in types of croplands in Mount 

Kilimanjaro and Taita Hills.   

Variable Type  Model R2 p-value 

Kilimanjaro Elev. Transect LAIHemi =6.1108*EVI -1.984 0.75 0.00 

Agro-forestry LAIHemi =12.526*EVI -6.2958 0.08 0.59 

Cropped land LAIHemi =4.3151*EVI -1.2608 0.33 0.23 

Taita Hills Elev. Transect LAIHemi =13.335*EVI -6.324 0.11 0.36 

Agro-forestry LAIHemi =-16.912*EVI +13.198 0.07 0.68 

Cropped land LAIHemi =6.5488*EVI -2.8693 0.00 0.95 

 

4.4.4. Key Findings for objective 4 

Leaf Area Index in Kilimanjaro and Taita Hills are comparable. The distribution of LAI along the 

elevation of the two sites are significantly different Kilimanjaro (t=4.24, p=0.00) and Taita Hills 

(t=4.58, p=0.00). The distribution of LAI in types of cropland within the site are significantly 

different; Kilimanjaro t=5.48, p=0.00 and Taita Hills t=3.56, p=0.00). Spatial distribution of LAI is 

only explained better in Kilimanjaro by univariate models elevation (R2=0.93, p=0.00), and pH 

(R2=0.80, p=0.00) in Kilimanjaro. LAI is poorly related with the tested environmental variables in 

Taita Hills.   
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4.5. Impact of projected climate change scenarios on the selected plant species in Taita Hills 

and Mount Kilimanjaro 

 

4.5.1. Baseline climate projections  

i. Analysis of omission/commission of prediction 

Replicate model for prediction of A. gummifera shows that the omission rate is closer to the predicted 

omission line in graph for the fractional value Vs cumulative threshold (Fig. 4.43). However, 

variability of the replicate model occurs mostly at the middle. The receiver operating characteristics 

(ROC) curve for the model replicats indicates the average test AUC for the replicate runs is 0.935 

and the standard deviation is 0.011, meaning model replicates performed better in predicting the 

distribution of A. gummifera.   

In the prediction of the M. indica, the omission rate was close to the predicted omission up to the 

middle but tend to move away but close up again (Fig. 4.43). The omission rate for the replicate 

model, however, has high variability throughout. The receiver operating characteristics (ROC) curve 

for the model replicate indicates the average test AUC for the replicate runs is 0.983 and the standard 

deviation is 0.011, meaning, model replicates performed better in predicting the distribution of M. 

indica.   

The replicate model prediction for P. americana show the omission rate running slightly away from 

the predicted omission on the lower part but very close to the line from the middle to the end (Fig. 

4.43). More variability occurs in the middle of the curve. The model receiver operating 

characteristics (ROC) curve for the model replicates for P. americana indicates the average test AUC 

for the replicate runs is 0.992 and the standard deviation is 0.002; meaning, model replicates 

performed better in predicting the distribution of M. indica.   

The model predicted the species well in areas data points occur including areas away from data 

points as the potential distribution areas (Fig. 4.44). The predicted distribution by climate models 

shows the distribution of most of the species occurs in Kenya mostly around the highlands. Albizia 

has a wider distribution area in Kenya while in Tanzania, its distribution occur around Mount 

Kilimanjaro and the Arc Mountain areas. The distribution of Avocado and Mango is apparently 

conspicuous around Kenya highlands than in Tanzania. 
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Figure 4 43 - The test omission rate and ROC (AUC) for A. gummifera, M. indica and P. americana. 

 

 

 

 

 

 

 

 

 



109 

 

 Baseline RCP4.5, 2055 RCP8.5, 2055 RCP4.5, 2085 RCP8.5, 2085 

A
. 

g
u

m
m

if
er

a
 

     

M
. 

m
a
n

g
if

er
a
 

     

P
. 

a
m

er
ic

a
n
a
 

     

Figure 4.44 - Probability distribution of A. gummifera, M. indica, and P. americana from point-wise mean of 7 output grids of 

baseline climate projection. 

 

ii. Variable contribution to maxent model for the species (baseline projections) 

Percentage contributions of climate variables to maxent model for A. gummifera ranged from a 

min=0 to max=23.1 (meanSE 1.45±0.48); M. indica, min=0 and max=26.7 (meanSE 1.45±0.61), and; 

P. americana, min=0 and max=18.4% (meanSE 1.45±0.42) (Fig. 4.45).  

Different climate variables contributed variedly to the model of the species; for A. gummifera, 

maximum temperature for August contributed highly to the model (23.1%). This was followed by 

June precipitation (21.8%) and Bio4 (9.3%) (Fig. 4.45). The November precipitation contributed 

highly to the maxent model for M. indica by 26.7% followed by Bio2 (25.8%) and precipitation for 

the month of May (19.9%). The maxent model for P. americana was contributed highly by Bio14 

(18.4%) followed by the minimum monthly temperature for December (17.4%) and the mean 

monthly precipitation for November (12.2%) (Fig. 4.45).    
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The results of Two-Way ANOVA show significant differences (F=1.50, p=0.02) among the 

contributions of the climate variables, while no significant difference was observed among the 

maxent model for A. gummifera, M. indica and P. americana.   

 

 

 

 

 

Figure 4.45 - Percentage of climate variable contribution to A. gummifera, M. indica and P. america maxent model average over 

7 replicate runs for baseline condition.  

 

iii. Variable Importance to maxent model for the species (current projections) 

a. Jackknife Test on maxent model for A. gummifera (Baseline climate projection) 

The Jackknife test of regularized training gain, test of gain and AUC for A. gummifera shows that the 

climate variable with the highest gain, when used in isolation, is the monthly maximum temperature 

for September (ea tasmax 9 wc30s1) (Fig. 4.46), which appears to have the most useful information 
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by itself. The variable that decreases the gain the most when it is omitted is the monthly precipitation 

for December (ea pr 12 wc30s1) (Fig. 4.46), which appears to have the most information that is not 

present in the other variables.  

 

 

Environmental Variable         

 

Figure 4.46 - The Jackknife of regularized training gain, test gain, and AUC for A. gummifera averaged values over 7 replicate 

runs for baseline climate condition. 

 

b. Jackknife Test on maxent model for M. indica (Baseline climate projection) 

The Jackknife test of regularized training gain, test of gain and AUC for M. indica shows that the 

climate variable, with the highest gain when used in isolation, is the monthly precipitation for 

November (ea pr 11 wc30s1) (Fig. 4.47), which appears to have the most useful information by itself. 

The variable that decreases the gain the most when omitted is the monthly precipitation for February 

(pr 2) (Fig. 4.47), which appears to have the most information that is not present in the other 

variables.  
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Environmental Variable         

 

Figure 4 47 - The Jackknife of regularized training gain, test gain, and AUC for M. indica averaged values over 7 replicate runs 

for baseline climate condition. 

 

c. Jackknife Test on maxent model for P. americana (Baseline climate projection) 

The Jackknife test performed using regularized training gain, test gain and AUC for P. americana 

shows the minimum monthly temperature for January (tasmin 1) (Fig. 4.48) having the highest gain 

when used in isolation. The monthly precipitation for February (pr 2) and May (pr 5) (Fig. 4.48) 

decreases the gain when omitted when Jackknife test is performed using training gain, test gain and 

AUC.  
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Figure 4.48 - The Jackknife of regularized training gain, test gain, and AUC for P. americana from averaged values 

from 7 replicate runs for baseline climate condition. 

 

4.5.2. Climate projections based on RCP4.5, 2055 (mean over 2041-2070) 

i. Analysis of omission/commission rate 

The prediction of A. gummifera shows that the omission rate is very close to the predicted omission 

line in the graph for the fractional value Vs cumulative threshold. The replicate model varies in the 

middle but less at the beginning and the end of the graph. The model replicate has ROC curve AUC 

at 0.928 and the standard deviation is 0.019, meaning that the model replicate performed better in 

predicting the distribution of A. gummifera.   

The omission rate is very close to the prediction omission for M. indica at the beginning but tends 

away at the middle. The replicate model is variable from the middle of the graph to the end. The 

receiver operating characteristics curve (average test AUC) for the species prediction is 0.969 with a 

standard deviation of 0.021. This implies that the replicate model performed better in the prediction 

of M. indica. 

The rate of omission for prediction of P. americana is relatively close to the prediction omission. 

However it tends to move away at the beginning of the graph. Variabillity of the replicate model is 

observed at the beginning but decreases slightly towards the end. The receiver operating 
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characteristic (ROC) curve indicates that an averaged test AUC for the replicate runs is 0.993 and the 

standard deviation is 0.002.   

 

ii. Variable contribution to maxent model for the species (RCP 4.5, 2055) 

Percentage contributions of climate variables to maxent model for A. gummifera ranged from a 

min=0 to max=29.5 (meanSE 1.44±0.52); M. indica, min=0 and max=31.7 (meanSE 1.45±0.61), and 

P. americana, min=0 and max=22.5% (meanSE 1.45±0.43) (Fig. 4.49).  

Different climate variables contributed differently to the model of the species; for A. gummifera, 

maximum temperature for August contributed highly to the model (29.5%). This was followed by 

June precipitation (19.7%) and Bio4 (7.1%) (Fig. 4.49). Bio2 contributed highly to the maxent model 

for M. indica (31.7 %) followed by the November precipitation (24%) and precipitation for the month 

of May (14.8%). The maxent model for P. americana was contributed highly by the monthly 

precipitation for January (22.5%), followed by the monthly minimum temperature of October (13%) 

and, the monthly minimum temperature of September (12.5%) (Fig. 4.49).    

Two-Way ANOVA showed no significant difference among the environmental variables and among 

the species distributions. The pairwise test (Kruskal-Wallis) indicated that the distribution of A. 

gummifera and M. indica are significantly different (p=0.03).   
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Figure 4.49 - Percentage of climate variable contribution to A. gummifera, M. indica and P. America maxent 

model average over 7 replicate runs for RCP4.5, 2055 (mean over 2041-2070). 

 

iii. Variable Importance to maxent model for the species (RCP4.5, 2055) 

 

a. Jackknife Test on maxent model for A.  gummifera on rcp4.5 2055 

The Jackknife test of regularized training gain, test of gain and AUC for maxent model for A.  

gummifera shows that the monthly maximum temperature for September gain most when used in 

isolation hence it has the most useful information (Fig. 4.50). The monthly precipitation for 

December (RCP4.5, 2055) decreases gain the most and therefore appears to have the most 

information that is not in other variables.   
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Figure 4 50 - The Jackknife of regularized training gain, test gain, and AUC for A. gummifera  averaged values over 7 

replicate runs for RCP4.5, 2055. 

 

b. Jackknife Test on maxent model for M. indica RCP4.5 2055 

The Jackknife test of regularized training gain and test of gain for maxent model for M. indica shows 

that the monthly precipitation of November (pr rcp45 2055 11) has the highest gain when used in 

isolation and therefore appears to have the most useful information by itself (Fig. 4.52). The AUC 

test on data showed most gain with the monthly precipitation of February (pr_rcp45_2055_2). The 

variable that decreases the gain in the jackknife test of regularized training gain, test of gain and 

AUC for maxent model for M. indica is the monthly precipitation of February (pr_rcp45_2055_2) 

(Fig. 4.52).      
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Figure 4 51 - The Jackknife of regularized training gain, test gain, and AUC for M. indica values averaged over 7 replicate runs 

for RCP4.5, 2055. 

 

c. Jackknife Test on maxent model for P. americana RCP4.5 2055 

The Jackknife test of regularized training gain, test of gain and AUC for maxent model for P. 

americana indicate that the monthly minimum temperature for January (tasmin rcp45_2055_1) has 

the highest gain when used in isolation (Fig. 4.52). This variable, therefore, appears to have the most 

useful information by itself. While, the monthly precipitation for February (pr_rcp45_2055_2) 

decreases the gain the most when it is omitted in the Jackknife test of regularized training gain, test of 

gain and AUC, which therefore appears to have the most information that is not present in other 

variables.   
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Figure 4.52 - The Jackknife of regularized training gain, test gain, and AUC for P. americana averaged values over 7 replicate runs 

for RCP4.5, 2055. 

 

4.5.3. Climate projections based on RCP 8.5, 2055 (mean over 2041-2070)  

i. Analysis of omission/commission rate 

The omission rate for the replicate prediction of A. gummifera was very close to the prediction 

omission. Neverthelssr the omission rate for the replicate model is variable. The receiver operating 

characteristics (ROC) curve has the average test AUC for the replicate run at 0.926 and the standard 

deviation was 0.020. 

Prediction of M. indica shows the omission rate tends away from the prediction omission but very 

close towards the end. The prediction of the replicate model is, however, variable throughout.  The 

ROC curve shows that the average test AUC for the replicate runs is 0.983 with a standard deviation 

of 0.008.  

P. americana prediction model has omission rate close to the prediction omission however the model 

is variable. The ROC curve for prediction of the species has an average test AUC for the replicate 

runs at 0.991 and the standard deviation is 0.002. 

 

ii. Variable contribution to maxent model for the species (RCP 8.5, 2055) 

A. gummifera: The monthly maximum temperature for August (tasmax rcp85 2055 8) contributes 

highly to the replicated maxent model for A. gummifera by 28.1%. This is followed by the monthly 
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precipitation for June (pr rcp85 2055 6) that contribute by 23.6% and Bio4 (bio4 rcp85 2055) by 8.7 

% (Fig. 4.54). In the prediction of M. indica, the Mean Annual Temperature contributes highly to the 

maxent model by 31.9% followed by the monthly precipitation for November and August 

contributing by 24.3% and 8.4%, respectively (Fig. 4.54). The monthly precipitation for August and 

the minimum monthly temperature for October contributed to the maxent model for the prediction of 

P. americana by 18.3 and 18.1% respectively. The monthly precipitation for November comes third, 

contributing 10.6% (Fig. 4.54).    

The maxent model for the three species, based on the climate variables, are not significantly different 

(Two-Way ANOVA), while the contribution of climate variables to the model for the three species is 

significantly different (Two-Way ANOVA; F=1.41, p=0.05). Contributions of the variables to the 

three species show no significant difference between the paired species (Kruskal-Wallis). 

 

 

 

Figure 4.53 - Percentage of climate variable contribution to A. gummifera, M. indica and P. america maxent model average over 

7 replicate runs for RCP 8.5, 2055. 
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iii. Variable Importance to maxent model for the species (RCP 8.5, 2055) 

A. gummifera: The environmental variable with highest gain in the maxent model for the A. 

gummifera, M. indica and P. americana when used in isolation is bio10 rcp85 2055, which therefore 

appears to have the most useful information by itself. The environmental variable that decreases the 

gain the most when it is omitted is bio10 rcp85 2055 which therefore appears to have the most 

information that is not present in the other variables.  

 

4.5.4. Climate projections based on RCP4.5, 2085 (mean over 2071-2100) 

i. Analysis of omission/commission rate 

The omission rate for the maxent model for the A. gummifera is very close to the predicted omission. 

Variability of the replicate model is observed mostly at the middle of the curve. The ROC curve has 

the averaged test AUC for the replicate runs at 0.931 with the standard deviation of 0.017.  

In the prediction of M. indica distribution, the omission rate deviates away from the prediction rate at 

the beginning of the curve but immediately runs closely to the prediction rate. However, variability of 

the maxent model is observed throughout the curve. The AUC for the ROC curve for the replicate 

runs averagely at 0.981 with the standard deviation of 0.012.   

The replicate maxent model for prediction of P. americana has omission rate that also tends away at 

the beginning of the curve but immediately runs very close to the predicted rate, though the replicate 

model is variable. The AUC for the ROC curve for the replicate model averages at 0.992 with the 

standard deviation of 0.002.   

 

ii. Variable contribution to maxent model for the species (RCP 4.5, 2085) (mean over 2071-

2100) 

Maximum monthly temperature for August (tasmax 8) followed by the monthly precipitation for June 

(pr 6), and December (pr 12), highly contributed to the replicate model for A. gummifera to the order 

of 24.8 %, 21.6% and 7.6% respectively, by 24.8 % (Fig. 4.54). Contributions to the model for M. 

indica was mostly done by the Mean diurnal range in temperature (Bio2, 28.3%), followed by the 

monthly precipitation for November (pr 11, 26.2%) and the monthly precipitation for May (pr 5, 

13.4%) (Fig. 4.54). The monthly precipitation for October (pr 10) contributed highly (21.5%) to the 

replicate maxent model for P. americana followed by the minimum monthly temperature for October 

and September which contributed 15 % and 10.5% respectively (Fig. 4.54).   
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Two-Way ANOVA showed no significant difference among the species based, on the percentage 

contribution by the environmental variables and, neither among the contributions of the 

environmental variables to the three species.  

 

 

 

 

 

Figure 4.54 - Percentage of climate variable contribution to A. gummifera, M. indica and P. america maxent model average over 

7 replicate runs for RCP 4.5, 2085 (mean over 2071-2100). 

 

iii. Variable importance RCP4.5, 2085 (mean over 2071-2100) 

The Jackknife test performed using regularized training and test gain, and AUC for the replicate 

model for A. gummifera shows that the maximum monthly temperature for September (tasmax 9) had 

the highest gain when used in isolation (Fig. 4.55). While, the monthly precipitation for December 

decreases the training and test gain, and AUC when omitted in the prediction model for A. gummifera 

(Fig. 4.55).    
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Figure 4.55 - The Jackknife of regularized training gain, test gain, and AUC for A. gummifera averaged values over 7 replicate 

runs for RCP4.5, 2085. 

 

The Jackknife test performed using regularized training and test gain on M. indica shows that the 

monthly precipitation for November (pr 11) had the highest gain when used in isolation tests (Fig. 

4.56). On the other hand AUC shows that the monthly precipitation for February (pr 2) had the 

highest gain when used in isolation tests.  

 

 

 

 

Figure 4.56 - The Jackknife of regularized training gain, test gain, and AUC for M. indica from averaged values over 7 

replicate runs for RCP4.5, 2085. 

 



123 

 

The Jackknife test performed using regularized training, test gain and AUC on P. americana shows 

that the minimum monthly temperature for January (tasmin 1) had the highest gain when used in 

isolation (Fig. 4.57). In addition it shows that while the monthly precipitation for January decreases 

(pr 1) the training gain, the monthly precipitation for May (pr 5) decreases the test gain and AUC 

when omitted in prediction model for P. Americana (Fig. 4.57).   

  

 

 

 

Figure 4.57 - The Jackknife of regularized training gain, test gain, and AUC for P. americana from averaged values over 7 

replicate runs for RCP4.5, 2085. 

 

4.5.5. Predictions by the future climate projections based on RCP 8.5, 2085 (mean over 2071-

2100) 

i. Analysis of omission/commission rate 

The omission rate for the replicate maxent model for the A. gummifera and M. indica were very close 

to the predicted omission. The omission rate for the replicate maxent model for P. americana tends to 

move away from the predicted omission at the beginning but runs towards the predicted omission 

from the middle of the curve to the end. The ROC curve has the averaged test AUC for the replicate 

maxent model for:  A. gummifera at 0.935 with the standard deviation of 0.013; M. indica at 0.983 

with the standard deviation of 0.009; P. americana at 0.992 with the standard deviation of 0.002.  
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ii. Variable contribution to maxent model for the species (RCP 8.5, 2085) (mean over 2071-

2100) 

Maximum monthly temperatures for August (tasmax 8) contributed highly to the replicate model for 

A. gummifera by 21 %, followed by the monthly precipitation for June (pr 6, 19%) and October (pr 

10, 8%) (Fig. 4.59). On the other hand, monthly precipitation for November (pr 11) mostly 

contributed to the model for M. indica by 26% followed by Mean diurnal range in temperature (bio 2, 

24%) and the monthly precipitation for August (pr 8, 11%) (Fig. 4.59).  The monthly precipitation for 

August (pr 8) contributed significantly to the replicate maxent model for P. americana (20%) 

followed by the monthly precipitation for November (pr 11, 15%) and the minimum monthly 

temperature for October (tasmin 10, 10%) (Fig. 4.59).   

Two-Way ANOVA showed significant difference (F=1.78, p=0.00) among the contributions of 

various environmental variables to the three species. However, no significant difference was 

observed among the species based on the percentage contribution by the environmental variables. 

 

 

 

 

Figure 4.58 - Percentage of climate variable contribution to A. gummifera, M. indica and P. america maxent model 

average over 7 replicate runs for RCP 8.5, 2085 (mean over 2071-2100). 
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iii. Jackknife Test of variable importance RCP8.5 2085 (mean over 2071-2100) 

The Jackknife test performed using regularized training and test gain and AUC on A. gummifera 

shows that the maximum monthly temperature for September (tasmin 9) had the highest gain when 

used in isolation (Fig. 4.59). While, the monthly precipitation for December (pr 12) decreases the 

training gain and test gain, the monthly precipitation for June (pr 6) decreases the AUC, when 

omitted in the prediction model for A. gummifera (Fig. 4.59).    

 

 

 

Figure 4 59 - The Jackknife of regularized training gain, test gain, and AUC for A. gummifera averaged values over 7 

replicate runs for RCP8.5 2085.   

The Jackknife test performed using regularized training and AUC on M. indica indicates that the 

monthly precipitation for November (pr 11) increases gain, and that the mean diurnal range in 

temperature (bio2) increases test gain, when used in isolation (Fig. 4.60). However, the monthly 

precipitation for February (pr 2) decreases the training gain, test gain and AUC when omitted in the 

prediction model for M. indica (Fig. 4.60).    
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Figure 4.60 - The Jackknife of regularized training gain, test gain, and AUC for M. indica averaged values over 7 replicate runs 

for RCP8.5, 2085. 

The Jackknife test performed using regularized training gain,test gain and AUC on P. americana 

shows that the minimum monthly temperature for January (tasmin 1) increases gain when used in 

isolation while the monthly precipitation for February (pr 2) decreases the training gain and test gain 

(Fig. 4.61). The monthly precipitation for September (pr 9) decreases AUC when omitted in the 

prediction model for P. americana.    

 

 

 

Figure 4.61 - The Jackknife of regularized training gain, test gain, and AUC for P. americana averaged values over 7 replicate 

runs for RCP8.5, 2085. 
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4.5.6. Predicted suitable areas  

i. Species suitable areas under baseline climate condition  

An estimated area of 77% of the transect area was potentially suitable for A. gummifera followed by 

P. americana (69%) and M. indica (67%) under the baseline in Taita Hills (Fig. 4.62). In 

Kilimanjaro, species that had highest potential suitable area along the elevation gradient was A. 

gummifera, 39% of the area, followed by M. indica (36%) and P. americana (28%) (Fig. 4.62). 

Comparison of suitable areas between Kilimanjaro and Taita Hills predicted under the baseline 

climate condition for A. gummifera, M. indica and P. americana shows significant difference 

(F=153.17, p=0.01). While, no significant difference was observed among the three species on 

suitable areas within site.   

  

  

Figure 4.62 - Percentage area coverage of suitable areas and unsuitable areas for A. gummifera, M. indica and P. americana in 

Taita Hills and Mount Kilimanjaro under baseline climate conditions. 

 

ii. Species suitable areas under RCP 4.5 (2055) climate condition     

Under the climate change projection based on the RCP 4.5 (2055) in Taita Hills, A. gummifera has 

about 75% of the transect area suitable for distribution, while the one with the lowest area P. 

americana has 58% (Fig. 4.63). In Kilimanjaro area, A. gummifera has 32% of the transect area 

suitable for distribution while P. americana has only 15% of potentially suitable area (Fig. 4.63).  



128 

 

Under the RCP 4.5, 2055 Climate Projection comparison of the suitable areas for the three species 

between Kilimanjaro and Taita Hills were significantly different (F=303.76, p=0.00); while no 

significant difference was observed among the three species on suitable areas in each sites.   

 

  

  

Figure 4.63 - Percentage area coverage of suitable areas and unsuitable areas for A. gummifera, M. indica and P. americana in 

Taita Hills  and Mount Kilimanjaro under RCP 4.5, 2055 climate condition. 

 

iii. Species suitable areas under RCP 8.5 (2055) climate condition     

The RCP 8.5, 2055 Climate Projection estimated a large area of 80% in Taita Hills to be potentially 

suitable for A. gummifera, M. indica (74%) and P. americana (65%) (Fig. 4.64). For Kilimanjaro 

transect, an estimated 37% of the transect area was potentially assigned to be suitable for A. 

gummifera, 33% for M. indica and 14% for P. Americana (Fig. 4.64). The projection of climate 

change based on the RCP 8.5, 2055 shows that suitable areas in Kilimanjaro and Taita Hills 

significantly differed in area size (F=216.96, p=0.00). While no significant difference was observed 

among the three species on suitable areas in each sites.    
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Figure 4.64 - Percentage area coverage of suitable areas and unsuitable areas for A. gummifera, M. indica and P. americana in 

Taita Hills  and Mount Kilimanjaro under RCP 8.5, 2055 climate condition 

 

iv. Species suitable areas under RCP 4.5 (2085) climate condition     

An estimated 80% of the transect area in Taita Hills is predicted by the RCP 4.5, 2085 Climate 

Projection as potentially suitable for A. gummifera, M. indica (72%) and P. americana (63%) (Fig. 

4.66). While in Kilimanjaro, the largest potential area of 41% is predicted to be suitable for the 

distribution of A. gummifera followed by M. indica (26%) and P. americana (18%) (Fig. 4.66). 

Suitable areas for A. gummifera, M. indica and P. americana in Kilimanjaro and Taita Hills 

significantly differed in area (F=393.02, p=0.00) based on the projection of climate change based on 

the RCP 4.5, 2085.  Also, significant difference (F=28.12, p=0.03) was observed among the three 

species on suitable areas in each sites.    
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Figure 4.65 - Percentage area coverage of suitable areas and unsuitable areas for A. gummifera, M. indica and P. americana in 

Taita Hills  and Mount Kilimanjaro under RCP 4.5, 2085 climate condition 

 

v. Species suitable areas under RCP 8.5 (2085) climate condition     

RCP 8.5, 2085 Climate Projection predicts 88% of the transect area in Taita Hills as potentially 

suitable for the distribution of A. gummifera, M. indica (80%) and P. americana (65%) (Fig. 4.66).  

In Kilimanjaro on the other hand, 37% of the transect area is predicted to be potentially suitable for 

A. gummifera. The predicted area for potential distribution of M. indica, apparently is the highest in 

the transect (59%) with P. americana having the lowest area of 32% (Fig. 4.66). Based on RCP 8.5, 

2085, potentially suitable areas for A. gummifera, M. indica and P. americana in Kilimanjaro and 

Taita Hills do not differ significantly in size and no significant difference was observed among the 

species in each site either.  
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Figure 4.66 - Percentage area coverage of suitable areas and unsuitable areas for A. gummifera, M. indica and P. americana in 

Taita Hills  and Mount Kilimanjaro under RCP 8.5, 2085 climate condition.  

 

vi. Comparison of suitable areas 

The Chi2 test for comparison performed between the predicted potential suitable and unsuitable areas 

for A. gummifera in Taita Hills based on the baseline, RCP 4.5 (2085) shows significant difference 

(Chi2=4.19, p=0.04). Predictions with the baseline and RCP 8.5 (2085) on the potential suitable and 

unsuitable areas in Taita Hills were significantly different for A. gummifera (Chi2=4.19, p=0.04) and 

M. indica (Chi2=4.34, p=0.04). Areas predicted to be potentially suitable and unsuitable for M. indica 

in Kilimanjaro by the baseline climate and RCP 8.5 (2055) are significantly different in size (Chi2= 

10.607, p=0.00). Predicted suitable and unsuitable areas for the distribution of P. americana in 

Kilimanjaro were significantly different between the baseline climate variables of the RCP 4.5 (2055) 

(Chi2=5.01, p=0.04), and RCP 8.5 (2055) (Chi2= 5.91,). Comparisons of the suitable and unsuitable 

areas for A. gummifera, M. indica and P. americana in Kilimanjaro were significantly different based 

on the predictions by the baseline climate variables (F=22.77, p=0.04), and by RCP 4.5 (2055) 

(F=25.22, p=0.04). While in Taita Hills, comparisons of the suitable and unsuitable areas for A. 

gummifera, M. indica and P. americana by the predictions based on the baseline climate variables 

were significantly different (F=47.25, p=0.02) by RCP 8.5, 2055; (F=27.84, p=0.03)  by RCP 8.5, 

2085 (F=27.84, p=0.3).  
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4.5.7. Climate change and Species elevation shift  

i. Species elevation shift Under Baseline Climate Condition  

Prediction of species suitable elevation ranges in Kilimanjaro transect indicates that Albizia 

gummifera has lowest minimum elevation range of 982m while in Taita Hills transect, its lowest 

suitable elevation range is 923m asl (Table 4.21). The minimum suitable elevation range for M. 

indica in Kilimanjaro is predicted at 1067m while in Taita Hills it is 777m. P. americana has a 

minimum suitable elevation range of 1196m in Kilimanjaro, while in Taita Hills, it has the minimum 

suitable elevation range of 824m (Table 4.21). Among the three species, A. gummifera has the lowest 

minimum suitable elevation range in Kilimanjaro whereas; M. indica has the lowest minimum 

suitable elevation range in Taita Hills. While, the three species have lowest minimum elevation range 

in Taita Hills than in Kilimanjaro which species has relatively high minimum elevation. Thus, the 

species has more suitable areas than in Kilimanjaro. 

 

ii. Species elevation shift Under RCP 4.5 Climate Change Projection 

Period 2055 (mean over 2041-2070): Projection of climate change, based on RCP 4.5, for the period 

of 2041-2070 (2055) shows that suitable elevation for A. gummifera would shift upwards by 185m 

from 982m to lowest minimum elevation range of 1167m in Kilimanjaro (Table 4.21). While in Taita 

Hills, suitable elevation range for A. gummifera will not be affected by the projected climate change 

under RCP 4.5 in the year 2055. On the other hand, suitable minimum elevation range for M. indica 

is predicted to shift downwards by 275m from 1067m to 792m in Kilimanjaro (Table 4.21). 

However, the species will not record a shift in its current minimum elevation under the RCP 4.5 

projected climate change in 2055 in Mount Kilimanjaro. P. americana suitable minimum elevation 

range is predicted to shift downwards by 104m from 1196m to 1092m in Kilimanjaro (Table 4.21), 

while in Taita Hills, the minimum suitable elevation range will shift downward by 47m from 824m to 

777m asl (Table 4.21). Under this projection of climate change, common distribution area of the 

species will decrease adversely in Kilimanjaro than in Taita Hills (Fig. 4.66). The area for M. indica 

and P. americana will reduce under the project RCP 4.5 for period 2055 (Fig. 4.68).  

Period 2085 (mean over 2071-2100): The projected climate change under RCP 4.5 for the period 

2071-2100 will cause a slight upward shift of suitable minimum elevation range in Taita Hills for A. 

gummifera by 27m, from the elevation of 982 to 1009m. While,  a downward shift of the minimum 
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suitable lower elevation for the species is observed from 923m to 777m asl in Taita Hills (Table 

4.21).  Under this RCP, A. gummifera will increase its elevation ranges in Taita Hills more in 

Kilimanjaro. The prediction of M. indica distribution under RCP4.5 for the period 2071-2100 shows 

that the species elevation range in Kilimanjaro will be fragmented into isolated elevation mosaicks. 

The lowest suitable elevation range will occur between 811-1002m asl and the upper range for the 

species will have suitable minimum elevation of 1316m. However in Taita Hills, suitable minimum 

elevation for M. indica will remain relatively stable during the period under observation (Table 4.21). 

Suitable minimum elevation range for P. americana predicted under RCP4.5 for the period 2085 

indicate that the species will shift upwards in both Taita Hills and Mount Kilimanjaro. However, 

large shift in minimum elevation will be observed in Mount Kilimanjaro. The species will shift 

upward in Kilimanajro from the current suitable minimum elevation of 1196m to 1429m, while in 

Taita Hills, upward shift will be observed from the current elevation of 824m to 940m (Table 4.21).  

The common suitable areas for the three species under this projection of climate change, will 

decrease adversely in Kilimanjaro than in Taita Hills (Fig. 4.68). The area for M. indica will reduce 

and fragmented but P. americana will only reduce in Kilimanjaro under the project RCP 4.5 for 

period 2085 (Fig. 4.66). In Taita Hills, A. gummifera will increase in area (Fig. 4.68).  

 

iii. Species elevation shift Under RCP 8.5 Climate Change Projection  

Period 2055 (mean over 2041-2070): Climate change projection under RCP 8.5 will cause suitable 

elevation range for A. gummifera to shift upwards in the year 2055, by 65m from 982m to 1047m asl 

in Mount Kilimanjaro (Table 4.21). Taita Hills, on the other hand, will have suitable elevation range 

for A. gummifera shifting slightly downward by 17m from 923m to 902m asl. Due to this, Taita Hills 

will have more suitable elevation range for A. gummifera in the year 2055 than in Kilimanjaro.  

The projection will cause M. indica to shift downwards by 264m from 1067m to 803m asl in 

Kilimanjaro in 2055, while no shift will be observed in Taita Hills (Table 4.21). Thus, in the year 

2055 M. indica will gain more suitable elevation range in Kilimanjaro but Taita Hills will still have 

more elevation range suitable for the species under RCP 8.5.  

Minimum suitable elevation range for P. americana will reduce in both Taita Hills and Mount 

Kilimanjaro in 2055 under RCP 8.5 climate change projection. P. americana will shift upwards by 

263m in Kilimanjaro from 1196m to 1459m, while the species will shift upwards by 116m in Taita 

Hills (Table 4.21). A markeable decrease in minimum suitable elevation range for P. americana will 

be observed in Kilimanjaro compared to Taita Hills. Thus, the common suitable areas for the three 
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species under this projection of climate change, will reeduce adversely in Kilimanjaro than in Taita 

Hills (Fig. 4.66). The area for M. indica P. americana will reduce and fragmented in Kilimanjaro 

under the project RCP 8.5 for period 2055 (Fig. 4.68). 

 

Period 2085 (mean over 2071-2100): Prediction of the future distribution of A. gummifera by RCP 

8.5 for the year 2085 indicate that the suitable minimum elevation range will shift upwards by 84m 

from 982m to 1066m in Kilimanjaro, while in Taita Hills, the species will shift upwards by 146m 

thus increasing the elevation range for the species (Table 4.21). Due to the anticipated climate 

change, A. gummifera in Taita Hills will gain more elevation range than in Kilimanjaro.  

Suitable minimum elevation for M. indica in Taita Hills will not be affected by the projected climate 

change under RCP 8.5 for the period 2071-2100. However, In Kilimanjaro, the suitable minimum 

elevation for the species will shift downwards by 310m from its present minimum suitable elevation 

range of 1067m to 757m asl (Table 4.21). This projection will increase the elevation range for M. 

indica in Kilimanjaro. 

While the elevation ranges for P. americana in Kilimanjaro will increase a decrease in elevation 

ranges will be observed in Taita Hills under climate change projection RCP 8.5. The minimum 

suitable elevation range for the species would shift slightly downward from the current minimum 

suitable elevation of 1196m to 1146m in Kilimanjaro and in Taita Hills it will shift upwards from 

824m to 924m asl (Table 4.21).    

Common suitable areas for the three selected species under this projection of climate change will be 

comparable with the area under baseline condition in Kilimanjaro, and in Taita Hills (Fig. 4.68). The 

area for M. indica will increase in Kilimanjaro and Taita Hills under the project RCP 8.5 for period 

2085 (Fig. 4.68). While, A. gummifera will increase in area in Taita Hills (Fig. 4.68).     
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Table 4. 25: Minimum suitable elevation ranges for A. gummifera M. indica P. Americana in Mount Kilinanjaro 

and Taita Hills under projected climate change by RCPs 4.5 and 8.5 for the period 2055 and 2085.  

 Minimum Elevation Range (m) 

 A. gummifera M. indica P. americana 

Climate 

Projection 

Kilimanjaro Taita 

Hills 

Kilimanjaro Taita 

Hills  

Kilimanjaro Taita 

Hills  

Current climate 982 923 1067 777 1196 824 

RCP 4.5, 2055 1167 (185) 923 (0) 792 (-275) 777 (0) 1092 (-104) 777 (-47) 

RCP 8.5, 2055 1047 (65) 906 (-17) 803 (-264) 777 (0) 1459 (263) 940 (116) 

RCP 4.5, 2085 1009 (27) 910 (-13) 811-1002, 

1316 

777 (0) 1429 (233) 940 (116) 

RCP 8.5, 2085 1066 (84) 777 (-

146) 

757 (-310) 777 (0) 1146 (-50) 924 (100) 
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Mount Kilimanjaro  Taita Hills  

 

Figure 4.67 - Distribution of suitable areas of A. gummifera, M. indica and P. americana in of Taita Hills and Mount 

Kilimanjaro. Suitable areas are delineated by red boundary in the model map. 

4.5.8. Key findings for objective 5 

Potential upshift of Albizia gummifera (Albizia) will occur in Kilimanjaro with highest upshift 

of 185m to be observed under RCP 4.5, 2055. Downshift of Albizia will occur in Taita Hills with 

the highest downshift of 146m observed under RCP 8.5, 2085. Potential downshift of Mangifera 

indica (Mango) will occur in Kilimanjaro under all RCP but the highest downshift of 310m will 

be observed under RCP 8.5, 2085. Both upshift and downshift will be observed on Persea 

americana (Avocado) in the two sites. In Kilimanjaro, the highest downshift of 104m will occur 

under RCP 4.5, 2055. Downshift of Avocado will only occur under RCP 4.5, 2055; while, 
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upshift will occur under RCP 8.5, 2055 and RCP 4.5, 2085 in Kilimanjaro and Taita Hills. The 

highest upshift in Kilimanjaro will be 263m and Taita Hills will be 116m for Avocado.   

Taita Hills has significantly higher suitable areas for Albizia, Mango and Avocado than in 

Kilimanjaro (F=153.17, p=0.01). Large decrease in area for Avocado is observed in Kilimanjaro 

under all RCPs except for RCP 8.5, 2085. Fragmentation of suitable is observed under RCP4.5 

(2055) and RCP8.5 (2055). High increase in suitable area for Mango is observed with Mango in 

Kilimanjaro under RCP 8.5, 2085. Fragmentations of suitable are observed under RCP4.5 (2055 

& 2085) and RCP8.5 (2055). Suitable area for Albizia and Mango will relatively increase in 

Taita Hills under RCP 8.5, 2085. 
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CHAPTER 5: DISCUSSION OF THE RESULTS 

Taita Hills and Mount Kilimanjaro constitute part of the Eastern Afromontane that form 

biodiversity hotspots in the region. However, Taita Hills are part of a series of thirteen bloc 

mountains within the Eastern Arc Mountains. The two montane areas have a clear 

biogeographical difference which indicate that Mount Kilimanjaro is a more recent volcanic 

mountain while Taita Hills are ancient crystalline mountains (Lovett and Wasser, 2008). The 

lower elevation levels for the montane areas within the mountains range between 700 – 800m 

above sea level (Cronin et al., 2014) which starts to define biodiversity hotspots for the montane 

areas. Below this elevation range, dryland biodiversity is characteristically prominent around the 

mountain areas which makes thearea an island of unique biodiversity. 

The distribution of micro-climate, vegetation and edaphic variables can be continuous in long 

elevation gradients while in short elevation gradients, the distributions are discontinuous (Alves 

et al., 2010; Ashton, 2003; Takyu et al., 2003; Daws et al., 2002). Climate conditions changes 

with the increase of elevation in the montane areas; for instance precipitation increases with the 

increase in elevation while temperatures decrease with the increase in elevation in montane 

areas. In the Eastern Arc, as in other tropical mountains, environmental gradients such as 

precipitation, temperature, and length of dry season vary with elevation (Rickart, 2001; McCain, 

2005). MAP and MAT significantly varies with the elevation gradients in Taita Hills and Mount 

Kilimanjaro. The varying climatic conditions along the elevation gradients influence the zonation 

of biomes, carbon storage, soil and biophysical variables along the elevation gradients. In 

montane areas, vegetation zonation can be compressed within short elevation gradients 

influencing the appearance of cloud montane forests in lower elevations (Grubb, 1977; Alves et 

al., 2010).  

Worth noting is the attraction that  montane areas has on  human settlement and agricultural 

activities as observed in Taita Hills  and Mount Kilimanjaro due to their favourable climatic 

conditions and soil fertility. In addition, the areas act as water towers by continuously 

condensing moisture laden air that supply water to the surrounding streams in the lowland. 

Elevation gradients affect distribution of soil pH, Cation Exchange Capacity (CEC), Bulk 

Density (BD) and Soil Organic Carbon (SOC) among others. The interaction of elevation and 

climatic condition is very crucial in their influence on the distribution vegetation cover and in 
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determining the distribution of the edaphic variables along the elevation. Vegetation cover, 

which consists of the plant species diversity and density, increases with increase in elevation in 

montane areas but decreases in higher unfavaourable altitudes (Xian, 2014). Thus, levels of soil 

organic matter in montane areas increases with the elevation of gradients (Xian, 2014). Soil 

organic matter increases the soil Cation Exchange Capacity; however, areas with clay soil would 

have higher CEC than areas with loam or silts. During the production and decomposition 

processes of plant litter (organic matters), soil pH (Xian, 2014) increases and more SOC 

(Hontoria et al., 1999) is released into the soil. The remaining organic matter forms soil organic 

content that contributes to the soil bulk density (BD) in the montane areas. Thus, soil pH, BD 

and SOC distributions are influenced by elevation gradients in montane areas; pH and BD 

decreases with increase in elevation, while SOC increases with the increase in elevation (Jenny, 

1941; Kononova, 1966; Burke et al., 1989; Hontoria et al., 1999). The distribution of the edaphic 

variables can be continuous in long elevation gradients while discontinuous in short elevation 

gradients (Alves et al., 2010; Ashton, 2003; Takyu et al., 2003; Daws et al., 2002).This implies 

that soils in the higher elevations have more SOC, low pH and BD and as the elevation decreases 

low SOC, high pH and BD occur. This pattern is clear in Kilimanjaro where 95% of soil pH, 

96% of SOC and 84% of BD significantly relate to the change in elevation. In Taita Hills, only 

the distribution of pH relates significantly to change in elevation but not as strongly as observed 

in Kilimanjaro. Edaphic discontinuity due to steep topography and microclimate variation can be 

observed in short gradients compare to long elevation gradient distance. 

The montane areas attract more human population density due to their favourable climate for 

crop growing and health among other factors (Jäger et al., 2014). Observation of human 

population density in Kilimanjaro, along side edaphic variables, shows an estimated 65% of 

human population associated with the increase in elevation; hence favourable climatic condition 

areas. Higher elevations are more attractive to agricultural crop production however the 

distribution of types of croplands would depend on climate and terrain. Agro-forestry is 

predominant in areas receiving high mean levels of precipitation and low mean temperatures. 

Most farms with agro-forestry in both Kilimanjaro and Taita Hills are distributed in the mid to 

upper elevation areas where climate is conducive for growth of crops while cropped lands occur 

mostly in the lowland areas. However, some cropped lands in Taita Hills occur in the upland 

where they experience equally conducive climate conditions.  
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Studies on the relationship of precipitation and vegetation index have always indicated very 

strong relationships (Nightingale and Phinn, 2003). Normally, high vegetation index occur in 

areas with high precipitation (Nightingale and Phinn, 2003) and this validates the Enhanced 

Vegetation Index observed in agro-forestry areas in Taita Hills  and Mount Kilimanjaro in this 

study. EVI in cropped lands differ significantly between the two sites. This difference could be 

explained by the relatively high MAP and low MAT experienced by the areas. High EVI in an 

area basically implies the area has more vegetation cover, which indicates the the area receives a 

lot of plant litter that is converted into organic matter (Xian, 2014). Thus, as the relationship 

between organic matter and pH, CEC, BD and SOC is explained previously by (Xian, 2014; 

Hontoria et al., 1999), reason why agro-forestry areas has  relatively high SOC, low pH, high 

CEC and low BD is probably explained. The distribution of soil pH, BD, CEC and SOC 

probably depend on the distribution of the soil organic matter in the types of cropland.  

Elevation is a strong determinant of the distribution of tree species in montane areas (Hemp, 

2006; Vazques and Givnish, 1998; Gentry, 1995; Woldu et al., 1989, Hamilton et al., 1989). 

There is significantly strong evidence in Taita Hills on the relationship of the woody plant 

species richness with the variation of elevation though this is not strong in Kilimanjaro. In 

Kilimanjaro banana plants and coffee plantations are dorminant in the higher elevation which 

could probably reduce richness of woody plant species. Few woody plants such as Persea 

americana, Mangifera indica and Albizia gummifera are notably abundant in the upper elevation 

in Mount Kilimanjaro.  

The characteristic biological pattern of species richness in tropical mountains is a decrease in 

species richness with elevation, with a mid elevation hump (Rahbek, 1995, 1997; Heaney, 2001). 

Thus, polynomial relationship basically provides relationship between woody plant species 

richness and elevation in both Kilimanjaro and Taita Hills. This relationship has been accounted 

for by Vazguez and Givnish (1998) in Sierra de Manantlan where they found that the numbers of 

species, genera and families per sample declined linearly with elevation. Thus, where elevation 

correlates strongly with edaphic variables like in Kilimanjaro, variation of these variables 

strongly associate with the woody plant species richness. Contrary to this, edaphic variables 

correlate weakly with the change in elevation in Taita Hills. The relationship of the woody plant 

species with topography and edaphic variables in Mount Kilimanjaro is further validated by 
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findings of Zhang et al., (2016) which confirms the relationship of the physical and edaphic 

variables with the distribution of the woody plant species. The physical variables (elevation and 

slope) are identified by many studies to be the strongest predictors of woody plant species 

(Zhang et al., 2016) and Above-ground Carbon Storage (Marshall et al., 2012). This is well 

observed in the multiple predictor variables where multiple model of elevation and slope is 

validated statistically and spatially as combined variables with strong and high certainty 

influence on the distribution of the woody plant species in Taita Hills. These variables however, 

do not play similar influence in Kilimanjaro. Multiple model of Cation Exchange Capacity and 

soil pH is validated statistically and spatially as combined variables with strong and high 

certainty influence on woody plant species distribution. 

The distribution of the woody plant species along the elevation is probably affected by the 

distribution of types of croplands along the elevation, due to the nature of crop management 

system. Unlike in Kilimanjaro, some cropped lands in Taita Hills are found in the higher 

elevation of inhabited areas, which potentially interrupts the distribution of woody species and 

continual distribution of edaphic variables. This probably explains the reason why no strong 

relationship is observed between the woody plant species richness and environmental variables 

in Taita. There are more plant species in areas with agro-forestry than cropped land due to 

cultivation of diversity of crops and integration of existing trees, active planting and tending or 

tolerance of natural regeration in fallow areas (Sodhi and Ehrlich, 2010; Schroth et al. 2004). 

Contrary to the above, species richness of woody plants between agro-forestry and cropped lands 

within Taita Hills and Mount Kilimanjaro compare relatively well/poorly. However, patterns of 

similarity in woody plant species composition shows cropped lands in Kilimanjaro has relatively 

high species; share 26% of the sites woody plant species with agro-forestry and has 38% of the 

species unique to the cropped land. In Taita Hills, agro-forestry has relatively high woody plant 

species richness; shares 48% of species with cropped lands and 32% of the sites woody plant 

species are unique to agro-forestry areas. Among the woody plant species recorded in Taita Hills 

and Mount Kilimanjaro, 32% are shared between the sites; 30% are unique to Mount 

Kilimanjaro while 39% are unique to Taita Hills.  

Even though Taita Hills has relatively high woody plant species richness than Kilimanjaro, the 

latter has relatively higher above-ground carbon storage (AGCS). The mean AGCS in Taita Hills 

and Mount Kilimanjaro are estimated at 39.06 and 27.21 Ct/ha, respectively. These are higher 
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than the amount of carbon indicated for different types of agro-forestry in Unruh et al., (1993), 

and far much more than the amount recorded from Mwanga, Kilimanjaro area (Charles et al., 

2014). The amounts of the AGCS recorded in the two sites are relatively more than the median 

carbon storage in sub-humid and semi-arid ecoregions (Schroeder, 1994). The relative 

contribution of abundant woody plant species to the AGCS is in line with the relative abundance 

as observed by Kirby and Potvin (2007) in Eastern Panama. For instance, in Taita Hills, 

Grevillea robusta is dominant on the slopes (D=0.036) and contributes high AGCS (4.6 Ct/ha) 

among other species. Unlike in Mount Kilimanjaro, G. robusta has the highest relative 

abundance of 18.2% and Persea americana is dominant (D=0.019) in Kilimanjaro but Albizia 

gummifera has more AGCS (8.6 Ct/ha) followed by P. americana (3.5 Ct/ha).  

Positive relationship (59%) was reported between AGCS and morphospecies from sites in all 

land-use types in Ipetı´-Embera´ in eastern Panama Province, Panama (Kirby and Potvin, 2007). 

While in Taita Hills, 66% of AGCS is explained significantly by the distribution of the woody 

plant species richness along the elevation gradients, the relationship is weak in Kilimanjaro. 

Influence of physical variables (elevation and slope) on woody plant species richness differ in 

relation with AGCS. Elevation strongly and significantly affects distribution of AGCS by 72% in 

Kilimanjaro while in Taita Hills it seems to affect AGCS variation by 73%. The influence of 

slope angle and elevation has been observed to be strong, explaining 63.7% of the variation in 

AGCh in Udzungwa and Usambara area (Marshall et al., 2012). Apparently, edaphic variables 

(pH, BD and SOC) seem to correlate significantly with AGCS in Kilimanjaro while the 

relationship is non-existent or weak, with some variables in Taita Hills. However, population 

density seems to associate with about 42% of AGCS distribution in Taita Hills. Evaluation of 

univariate and multivariate models statistically and spatially show that soil pH is the strongest 

and significant predictor for AGCS by 80% in Kilimanjaro. While in Taita Hills, three variables 

(elevation, slope and population density) simultaneously affect the distribution of AGCS in the 

area.  

Previously, above, the relationship of climate variables such precipitation and temperature with 

vegetation and elevation have been reviewed. Vegetation associates closely with the variation of 

climatic variables, especially precipitation and temperature and a strong association occurs 

between temporal and spatial patterns of NDVI with annual rainfall (Davenport and Nicholson 
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2007). Like other remotely sensed vegetation indices, NDVI is correlated with the Leaf Area 

Index (Purevdorj et al., 2010; Carlson and Ripley, 1997).  

Leaf Area Index (LAI) relates with elevation and slope (Bolstad et al., 2001). A similar 

relationship is reported between LAI and elevation in Kilimanjaro. The relationship between the 

distribution of LAI along the elevation gradients of Taita is however, very poor. LAI 

significantly increases with increase in elevation in cropland but not in agro-forestry probably 

due to low variation in climatic condition and similar crop management in the latter.. Similar 

patterns of LAI distribution is observed with precipitation, while LAI values decrease with the 

increase of temperature.     

Study in Amazon ecosystem reported that LAI varies with high biodiversity, topography, land 

use and edaphic heterogeneity (Araga˜o et al., 2005). The distribution of LAI in Kilimanjaro can 

be explained strongly by edaphic variables, pH, SOC, BD, while no significant relationship is 

observed in Taita Hills. Apparently, human population affects the distribution of LAI through 

land use types that cause deforestation through fire, subsistence agricultures and the keeping of 

land for pasture (Araga˜o et al., 2005; Nepstad et al., 2001; Alves, 2002). Under these 

circumstances, LAI is expected to be less, while in the more populated section of Mount 

Kilimanjaro LAI relates positively and significantly with population density.   

Climate change is envisaged to be detrimental to montane and island biodiversity due to the 

restriction in range of expansion in these areas. Due to this, studies on the effect of climate 

change in the tropical areas focus more on the montane species, looking at their elevation shifts 

or disappearances (Pounds et al. 1999). Agriculture in tropical areas is mostly vulnerable to 

climate change, particularly subsistence agriculture. This is attributed to lack of sufficient 

resources for farmers to adapt to climate change. Agro-forestry as a technology can be used to 

sustain farming and reduce vulnerability to climate change (Verchot et al., 2006). Three agro-

forestry tree species are common in Taita Hills and Mount Kilimanjaro, providing alternative 

food through their fruits and income to local farmers, while contributing to long-term local 

carbon storage in the areas. These species include Persea americana and Mangifera indica 

providing fruits for food and generating income, while, Albizia gummifera are mainly used in 

Kilimanjaro for shading coffee trees and providing habitat for the montane birds. Since agro-

forestry also relies on climatic conditions, it will be affected equally as agriculture and natural 

ecosystem around the world (Luedeling et al., 2013). For instance it will be exposed to changes 
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in temperatures and precipitation that will perhaps affect system components. Thus, the potential 

benefits of carbon storage and sequestration provided by agro-forestry and support of livehood in 

Taita Hills  and Mount Kilimanjaro will potentially be affected adversely.   

Projection of climate change under Representative Concentration Pathways (RCP 4.5 and 8.5) 

indicate that temperature and rainfall are projected to increase in East Africa in mid and late 

centuries; thus the region will be hotter and wetter (Platts et al., 2014). Within this region, 

climate change will be highly heterogeneous in magnitude and direction of change at local scale  

(BirdLife International, 2012). For instance the minimum suitable elevation range for agro-

forestry species will vary relatively among the three species within site; between RCPs and 

periods; within species between sites and between RCPs and period. These projections also point 

out that endemic plants in montane areas will be highly variable. Variation will occur between 

taxa where some ranges will expand, others will reduse while some will hardly change. Variation 

across the sites will also occur (BirdLife International, 2012).   

Albizia gummifera in Kilimanjaro will relatively lose the minimum suitable elevation range but 

will be affected mostly by RCP 4.5 in the mid century by the variation of maximum temperature 

in August and the precipitation in June. However, in Taita Hills the species will gain more 

suitable areas down the slope under RCP 8.5 in the late century. The distribution of suitable areas 

for Mangifera indica will be fragmented in Kilimanjaro but its minimum suitable elevation 

remain stable in Taita Hills under RCP4.5 in the late century influenced mostly by variation of 

the mean diurnal range in temperature and the November precipitation. Persea americana will be 

affected adversely in Kilimanjaro by RCP8.5 in mid century by restricting its minimum suitable 

elevation range upwards. The variation of the August precipitation and the October minimum 

temperature will be the main factor contributing to the impact. In the late century, climate change 

projection under RCP4.5 will restrict the minimum suitable elevation range of P. americana 

upwards the slope of mount Kilimanjaro. This shift will be propelled by variation of the October 

precipitation and minimum temperature in Kilimanjaro. Similar pattern observed on P. 

americana in Kilimanjaro will be observed in Taita Hills but the range of restriction will be 

remarkeably less than in Kilimanjaro. This comparative analysis of potential varied responses of 

the three agro-forestry species in Taita Hills  and Mount Kilimanjaro indicates the probable 

differences in the magnitude and direction of projected climate change between the sites. 

Apparently, agro-forestry tree species will be affected adversely in Kilimanjaro than Taita Hills. 
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This implies that projected climate change in Taita Hills will be relatively similar to the future 

conditions in the Eastern Arc, in the West Usambara where there will be stable water balance 

with more rain in drier months (Platts, Personal Communication).   
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CHAPTER 6: CONCLUSION, RECOMMENDATIONS AND AREAS FOR FURTHER 

RESEARCH  

6.1 Conclusions  

The distributions of environmental variables on inhabited montane areas differ on how they 

correspond to variation in elevation. Their distributions in types of croplands within a site only 

differ in variation but not in their means.  

The distribution of the woody species, above-ground carbon and leaf area index on inhabited 

montane areas are affected by different environmental variables. While, their distributions in 

types of croplands in montane areas differ in variation of richness but less in their means.  

Elevation is a strong determinant of the distribution of tree species in montane areas. Elevation 

and slope variables are simultaneously influencing the distribution of the woody plant species in 

Taita Hills, while in Kilimanjaro Cation Exchange Capacity and soil pH simultaneously 

influence the distribution of these species. Cropped land has more woody plant species richness 

in Kilimanjaro than agro-forestry. The diversity of woody plant species is however different 

between agro-forestry and cropped land; between sites; and between croplands within sites. 

However, in Taita Hills more woody plant species are in agro-forestry than cropped land. 

The distribution of the Above-ground Carbon Storage is strongly influenced by elevation in 

Kilimanjaro but this relationship is weak in Taita Hills. This is attributed to difference in crops 

grown in the site.Coffee growing is Kilimanjaro area dominant than in Taita Hills. There are 

large trees reserved in coffee plantation in Kilimanjaro used for shading. Due to absence of 

coffee in most farms in Taita Hills, similar large trees are absent. Thus, carbon storage 

significantly increases with elevation in Kilimanjaro but not Taita Hills. Apparently, edaphic 

variables (pH, BD and SOC) seem to correlate significantly with AGCS in Kilimanjaro but relate 

weakly or not at all with some variables in Taita Hills. However, population density seems to 

associate with about 42% of AGCS distribution in Taita Hills. Soil pH is the strongest and 

significant predictor of AGCS in Kilimanjaro. In Taita Hills, on the other hand, three variables 

(elevation, slope and population density) simultaneously affect the distribution of AGCS in Taita 

Hills. 

Leaf Area Index (LAI) relates with the variation of elevation and slope a similar relationship 

which exists between LAI and elevation in Kilimanjaro. The distribution of LAI along the 
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elevation gradients of Taita is however, very poor. LAI significantly increases with increase in 

elevation in cropland but not in agro-forestry probably due to low variation in climatic condition 

and similar crop management in the latter that propagates LAI distribution. Similar patterns of 

LAI distribution is observed with precipitation, while LAI values decrease with the increase in 

temperature. The distribution of LAI in Kilimanjaro can be explained strongly by edaphic 

variables, pH, SOC, BD, while no significant relationship is observed in Taita Hills. This 

difference is attributed to the way soil is managed in cropland in the two sites which determine 

the levels of soil variables.   

Climate change is envisaged to be detrimental to montane biodiversity due to the restriction in 

the range of expansion in these areas. Projection of climate change under Representative 

Concentration Pathways (RCP 4.5 and 8.5) indicate that temperature and rainfall are projected to 

increase in East Africa in mid and late century, thus the region will be hotter and wetter. Climate 

change will affect agro-forestry. For instance, Albizia gummifera distribution will shift upwards 

in Kilimanjaro under RCP 4.5 in the mid century. The species will however gain more areas 

down the slope under RCP 8.5 in the late century. Suitable areas for Mangifera indica will be 

fragmented in Kilimanjaro under RCP4.5 in the late century while its distribution will be stable 

in Taita Hills. The range of distribution of Persea americana will shift upwards in both 

Kilimanjaro and Taita Hills by mid century under RCP8.5, while under RCP4.5 the upward shift 

will occur in the late century. However in Taita Hills, the extent of the shift will be considerably 

less than in Kilimanjaro.  

 

5.2. Recommendations 

 Elevation is a strong predictor of woody plant species richness in Taita Hills but not 

significant on the distribution of the above-ground carbon storage. In order to improve on 

AGCS in Taita Hills, sustainable cropland management system should be adopted in order to 

maintain and protect the current plant diversity on farms. This will ensure more carbon 

sequestration in Taita Hills in future.  

 The envisaged climate change will potentially affect agro-forestry tree population, among 

others, in Taita Hills  and Mount Kilimanjaro. In order to arrest this potential situation, mid 

and long term planning for agro-forestry development should be initiated on inhabited slopes 
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of both Taita Hills  and Mount Kilimanjaro in order to improve on carbon storage. This effort 

should focus on enhancing Persea americana and Albizia gummifera, while Long-term 

planning should focus on enhancing the population of Mangifera indica in Kilimanjaro. 

Besides, this effort will boost the economic status of the local people who depend on agro-

forestry fruit trees in Taita Hills and Mount Kilimanjaro for their livelihoods.  

 

5.3. Areas for further studies 

Based on the observations from this study, three potential studies are recommended: 

 Assessment of effects of socio-economic value of woody plant species on the above-

ground carbon storage in Taita Hills  and Mount Kilimanjaro  

 Distribution of soil factors in relation to the crop management practices in Taita Hills 

 Implications of projected climate change on the income from agro-forestry fruit trees (P. 

americana and M. indica) in Taita Hills  and Mount Kilimanjaro 

 Modelling pest and diseases of Avocado along the elevation gradients of montane areas 
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APPENDICES 

 

APPENDIX I: Species relative density, Frequency of distribution and dominance of woody plant 

species on the inhabited slopes of Taita Hills  and Mount Kilimanjaro  

No. Scientific Name Relative Abundance Frequency % Dominance 

Kilimanjaro Taita  Kilimanjaro Taita Kilimanjaro Taita 

1.  Celtis africana  1.80 0.00 58.33 73.33 1.61 0.00 

2.  Senna siamea 1.35 0.70 50.00 6.67 0.38 0.58 

3.  Syzygium cumini 0.34 0.61 50.00 0.00 0.13 1.08 

4.  Eucalyptus globulus 0.22 0.00 50.00 0.00 0.04 0.00 

5.  Dodonea angustifolia 0.11 0.00 50.00 33.33 0.01 0.00 

6.  Prunus africana 1.69 0.52 41.67 13.33 5.42 0.48 

7.  Markhamia lutea 6.86 0.44 33.33 13.33 2.09 0.31 

8.  Albizia gummifera 10.24 0.70 8.33 0.00 20.79 0.20 

9.  Persea americana 14.40 5.85 16.67 53.33 7.69 5.57 

10.  Mangifera indica 11.25 3.67 16.67 6.67 9.15 11.53 

11.  Callistemon citrinus 0.56 0.35 33.33 53.33 0.41 0.11 

12.  Grevillea robusta 12.26 18.95 8.33 0.00 6.37 16.34 

13.  Grewia similis 0.22 0.35 25.00 13.33 0.04 0.24 

14.  Acacia abyssinica 1.80 1.31 16.67 0.00 1.71 2.10 

15.  Bridelia micrantha 1.01 2.71 16.67 33.33 0.20 1.59 

16.  Indet maasa 0.34 0.00 16.67 26.67 0.34 0.00 

17.  Combretum Indet1  0.34 0.00 16.67 13.33 0.24 0.00 

18.  Cupressus lusitanica 0.22 3.06 16.67 0.00 0.20 2.41 

19.  Euphorbiaceae 0.22 0.00 16.67 26.67 0.13 0.00 

20.  Dovyalis macrocalyx 0.11 0.00 16.67 66.67 0.09 0.00 

21.  Tabaenamontana 0.11 0.00 16.67 6.67 0.04 0.00 

22.  Ficus sycomorus 0.67 1.75 8.33 33.33 6.38 2.76 

23.  Rauvolfia caffra 5.62 0.00 0.00 6.67 6.04 0.00 

24.  Cordia africana 1.35 0.00 8.33 6.67 1.19 0.00 

25.  Dalbergia melanoxylon 1.46 0.17 8.33 0.00 0.63 0.26 

26.  Combretum molle 1.35 0.70 8.33 0.00 0.61 1.51 

27.  Acacia mearnsii 1.35 5.07 8.33 6.67 0.48 1.30 

28.  Psidium guajava 0.90 6.46 8.33 0.00 0.23 6.17 

29.  Acacia seyal 0.79 0.00 8.33 0.00 0.18 0.00 
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30.  Manihot 0.56 0.00 8.33 0.00 0.17 0.00 

31.  Bauhinia Indet1 0.34 0.00 8.33 0.00 0.28 0.00 

32.  Tamarindus indica 0.22 0.44 8.33 0.00 0.29 1.49 

33.  Bersama abyssinica 0.22 0.00 8.33 0.00 0.10 0.00 

34.  Ficus lutea 0.22 0.79 8.33 0.00 0.07 2.58 

35.  Markhamia obtusifolia 0.11 0.00 8.33 26.67 0.06 0.00 

36.  Acacia abreviata 0.11 0.00 8.33 0.00 0.05 0.00 

37.  Croton megalocarpus 0.11 0.52 8.33 0.00 0.04 0.40 

38.  Acacia tortilis 0.11 3.06 8.33 6.67 0.01 1.79 

39.  Prosopis juliflora 0.11 0.00 8.33 0.00 0.01 0.00 

40.  Podocarpus indet 0.11 0.17 8.33 13.33 0.01 0.11 

41.  Adansonia digitata 0.11 0.00 0.00 6.67 6.48 0.00 

42.  Croton macrostachyus 2.59 0.17 0.00 13.33 2.17 0.03 

43.  Ficus thoningii 0.79 0.70 0.00 6.67 3.95 3.60 

44.  Pinus pittuda 4.16 0.26 0.00 13.33 0.56 0.24 

45.  Trichilia emetica 0.11 0.00 0.00 6.67 4.54 0.00 

46.  Acacia xanthophloea 2.81 0.00 0.00 20.00 1.58 0.00 

47.  Eucalyptus maculata 1.91 4.19 0.00 6.67 0.64 6.54 

48.  Acrocarpus fraxinifolious 1.69 0.00 0.00 6.67 0.50 0.00 

49.  Erythrina abyssinica 0.90 0.26 0.00 40.00 0.68 0.91 

50.  Kigelia africana 0.67 0.00 0.00 13.33 0.68 0.00 

51.  Eryobotria japonica 1.24 1.40 0.00 26.67 0.11 0.50 

52.  Delonix regia 0.90 0.00 0.00 0.00 0.44 0.00 

53.  Fagaropsis angolensis 0.79 0.00 0.00 20.00 0.54 0.00 

54.  Indet fulameni 0.67 0.00 0.00 6.67 0.55 0.00 

55.  Euphorbia tirucalli 0.79 0.00 0.00 6.67 0.30 0.00 

56.  Acacia lahai 0.79 0.00 0.00 13.33 0.17 0.00 

57.  Macaranga capensis 0.56 0.00 0.00 13.33 0.26 0.00 

58.  Vangueria madagascarensis 0.45 0.09 0.00 6.67 0.37 0.02 

59.  Azadirachta indica 0.67 1.14 0.00 13.33 0.13 0.74 

60.  Olea africana 0.11 0.00 0.00 6.67 0.56 0.00 

61.  Araucaria araucana 0.22 0.09 0.00 26.67 0.42 0.02 

62.  Milicia excelsa 0.45 0.00 0.00 20.00 0.18 0.00 

63.  Euclea divinorum 0.45 0.00 0.00 6.67 0.13 0.00 

64.  Acacia tortilis  0.22 0.00 0.00 6.67 0.14 0.00 
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65.  Annona senegalensis 0.22 0.96 0.00 6.67 0.04 0.81 

66.  Onsignis sp 0.11 0.00 0.00 13.33 0.04 0.00 
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APPENDIX II: Species relative abundance (%) and Frequency distribution (%) of woody plant 

species in Agro-forestry areas and cropped lands on the inhabited slopes of Mount Kilimanjaro 

Scientific Name 

 

Relative Abundance  Frequency 

Agro-forestry Cropped land 

Agro-

forestry Cropped land 

Acacia abreviata 0.0 0.2 0.00 0.17 

Acacia abyssinica 0.5 0.3 0.17 0.17 

Acacia lahai 0.0 0.0 0.00 0.17 

Acacia mearnsii 2.0 0.0 0.33 0.00 

Acacia seyal 0.0 1.0 0.00 0.67 

Acacia tortilis 0.0 0.2 0.00 0.17 

Acacia xanthophloea 0.0 1.5 0.00 0.33 

Acrocarpus fraxinifolious 2.5 0.0 0.33 0.00 

Adansonia digitata 0.0 0.2 0.00 0.17 

Albizia gummifera 13.3 1.8 1.00 0.33 

Annona senegalensis 0.3 0.0 0.17 0.00 

Araucaria araucana 0.3 0.0 0.17 0.00 

Azadirachta indica 0.0 0.7 0.00 0.33 

Bauhinia Indet1 0.0 0.5 0.00 0.17 

Bersama abyssinica 0.3 0.0 0.17 0.00 

Bridelia micrantha 1.5 0.0 0.33 0.00 

Callistemon citrinus 0.0 0.8 0.00 0.17 

Celtis africana 1.2 1.5 0.67 0.33 

Combretum Indet1  0.0 0.5 0.00 0.17 

Combretum molle 0.0 2.0 0.00 0.50 

Cordia africana 1.8 0.2 0.33 0.17 

Croton macrostachyus 3.3 0.5 0.50 0.50 

Croton megalocarpus 0.2 0.0 0.17 0.00 

Cupressus lusitanica 0.3 0.0 0.17 0.00 

Dalbergia melanoxylon 2.0 0.2 0.67 0.17 

Delonix regia 1.0 0.3 0.33 0.17 

Dodonea angustifolia 0.2 0.0 0.17 0.00 

Eryobotria japonica 1.8 0.0 0.50 0.00 

Erythrina abyssinica 0.5 0.8 0.33 0.33 

Eucalyptus globulus 0.3 0.0 0.17 0.00 
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Eucalyptus maculata 2.8 0.0 0.50 0.00 

Euclea divinorum 0.7 0.0 0.17 0.00 

Euphorbia tirucalli 0.0 1.2 0.00 0.33 

Euphorbiaceae 0.0 0.3 0.00 0.17 

Fagaropsis angolensis 0.7 0.5 0.50 0.33 

Ficus lutea 0.0 0.2 0.00 0.17 

Ficus sycomorus 0.2 0.7 0.17 0.50 

Ficus thoningii 1.0 0.2 0.50 0.17 

Grevillea robusta 18.0 0.2 1.00 0.17 

Grewia similis 0.0 0.3 0.00 0.17 

Indet fulameni 1.0 0.0 0.33 0.00 

Indet maasa 0.5 0.0 0.33 0.00 

Kigelia africana 0.2 0.8 0.17 0.33 

Macaranga capensis 0.5 0.3 0.17 0.17 

Mangifera indica 8.8 7.8 0.83 0.50 

Manihot 0.0 0.8 0.00 0.17 

Markhamia lutea 10.0 0.2 0.83 0.17 

Markhamia obtusifolia 0.0 0.2 0.00 0.17 

Milicia excelsa 0.7 0.0 0.17 0.00 

Olea africana 0.0 0.2 0.00 0.17 

Onsignis sp 0.0 0.2 0.00 0.17 

Persea americana 19.7 1.7 0.83 0.33 

Pinus pittuda 6.2 0.0 0.33 0.00 

Podocarpus indet 0.0 0.2 0.00 0.17 

Prunus africana 2.5 0.0 1.00 0.00 

Psidium guajava 1.3 0.0 0.33 0.00 

Rauvolfia caffra 8.3 0.0 1.00 0.00 

Senna siamea 0.0 2.0 0.00 0.33 

Syzygium cumini 0.5 0.0 0.33 0.00 

Tabaenamontana 0.0 0.2 0.00 0.17 

Tamarindus indica 0.0 0.3 0.00 0.17 

Trichilia emetica 0.2 0.0 0.17 0.00 

Vangueria 

madagascarensis 0.0 0.7 0.00 0.33 
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APPENDIX III: Species relative abundance (%) and Frequency distribution (%) of woody plant 

species in Agro-forestry areas and cropped lands on the inhabited slopes of Taita Hills 

Scientific Name 

 

Relative Abundance Frequency Distribution 

Agro-forestry Cropped land Agro-forestry Cropped land 

Acacia  abyssinica 1.31 0.00 8.33 0.00 

Acacia  brevispica 0.00 0.17 0.00 8.33 

Acacia  mearnsii 3.49 1.57 41.67 25.00 

Acacia  mellifera 0.00 1.22 0.00 8.33 

Acacia  polyacantha 2.18 0.00 16.67 0.00 

Acacia  tortilis 0.61 2.45 25.00 16.67 

Albizia  gummifera 0.44 0.26 16.67 16.67 

Annona  senegalensis 0.61 0.35 16.67 8.33 

Araucaria  araucana 0.00 0.09 0.00 8.33 

Azadirachta  indica 0.96 0.17 25.00 16.67 

Bougainvillea  praecox 0.26 0.00 8.33 0.00 

Bridelia  micrantha 2.36 0.35 25.00 8.33 

Callistemon  citrinus 0.35 0.00 8.33 0.00 

Calyandria  Indet1 0.09 0.00 8.33 0.00 

Citrus  centhaphylum 0.00 0.09 0.00 8.33 

Citrus  hystrix 0.61 0.17 33.33 16.67 

Citrus  xanthophyla 0.00 0.35 0.00 8.33 

Clerodendron  indet 0.00 0.17 0.00 8.33 

Combretum  molle 0.00 0.70 0.00 8.33 

Commiphora  africana 0.09 1.22 8.33 8.33 

Commiphora  indet1 0.09 0.00 8.33 0.00 

Croton  macrostachyus 0.00 0.17 0.00 8.33 

Croton  megalocarpus 0.44 0.09 16.67 8.33 

Cupressus  lusitanica 0.35 2.71 16.67 25.00 

Cussonia  spicata 0.44 0.26 25.00 8.33 

Dalbergia  melanoxylon 0.00 0.17 0.00 16.67 

Dead  Tree 1.66 0.70 33.33 25.00 

Dombeya  indet 0.00 0.26 0.00 8.33 

Dovyalis  caffra 1.22 0.00 8.33 0.00 

Eryobotria  japonica 1.14 0.26 33.33 25.00 

Erythrina  abyssinica 0.09 0.17 8.33 8.33 
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Eucalyptus  grandis 6.29 0.00 16.67 0.00 

Eucalyptus  maculata 0.17 4.02 8.33 8.33 

Eucalyptus  saligna 0.96 0.00 16.67 0.00 

Ficus  lutea 0.52 0.26 8.33 8.33 

Ficus  sycomorus 0.70 1.05 33.33 33.33 

Ficus  thoningii 0.70 0.00 33.33 0.00 

Grevillea  robusta 17.21 1.75 66.67 33.33 

Grewia  bicolor 0.17 0.52 8.33 8.33 

Grewia  similis 0.17 0.17 8.33 8.33 

Invilloa  Indet 0.09 0.00 8.33 0.00 

Jacaranda  mimosifolia 0.17 0.00 16.67 0.00 

Leucina  leucocephala 4.28 0.26 16.67 16.67 

Macadamia  indet 0.00 0.17 0.00 8.33 

Maesa  lanceolata 0.61 0.17 16.67 8.33 

Maesopsis  eminii 0.61 0.26 16.67 8.33 

Mangifera  indica 2.18 1.48 25.00 33.33 

Markhamia  lutea 0.44 0.00 16.67 0.00 

Melia  volkensis 0.17 0.17 8.33 8.33 

Milletia  oblata 0.09 0.00 8.33 0.00 

Morus  alba 0.26 0.00 25.00 0.00 

Nuxia  floribunda 0.09 0.00 8.33 0.00 

Ocotea  indet 0.00 0.09 0.00 8.33 

Persea  americana 5.15 0.70 66.67 25.00 

Pinus  pittuda 0.26 0.00 16.67 0.00 

Podocarpus  indet 0.00 0.17 0.00 8.33 

Prunus  africana 0.35 0.17 25.00 16.67 

Psidium  guajava 3.84 2.62 50.00 33.33 

Rhus  natalensis 0.09 0.00 8.33 0.00 

Salvadora  persica 0.00 0.09 0.00 8.33 

Senna  siamea 0.52 0.17 16.67 16.67 

Sesbania  sesban 1.48 0.44 16.67 8.33 

Spathodea  nilotica 0.96 0.00 8.33 0.00 

Syzygium  cumini 0.26 0.35 16.67 16.67 

Syzygium  guineense 0.26 0.09 8.33 8.33 

Syzygium  incanum 0.17 0.17 8.33 8.33 
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Tamarindus  indica 0.17 0.26 16.67 16.67 

Thevetia  peruviana 0.61 0.61 8.33 16.67 

Tokoma terance 0.26 0.00 8.33 0.00 

Tremor  orientalis 0.26 0.00 16.67 0.00 

Turraea  robusta 0.00 0.09 0.00 8.33 

Vangueria  madagascarensis 0.09 0.00 8.33 0.00 

Xymalose  sp 0.09 0.00 8.33 0.00 

 




