CONTRACTORS' CAPACITY EVALUATION IN TENDER AWARD, PROCESS MONITORING AND PERFORMANCE OF ROAD CONSTRUCTION INFRASTRUCTURAL PROJECTS IN NAIROBI COUNTY, KENYA

JAMES MUSHORI

A Thesis Submitted in Partial Fulfillment of the Requirements for the Award of the Degree of Doctor of Philosophy in Project Planning and Management (Monitoring and Evaluation Option) of the University of Nairobi

DECLARATION

This thesis is my original work and has not been presented for any award in other University.

Sign:	••••••
-------	--------

Date:

JAMES MUSHORI L83/50457/2016

This thesis is submitted for Examination with our approval as the University supervisors.

Sign:

Date:

PROF. CHARLES MALLANS RAMBO, PhD Associate Professor Department of Open Learning School of Open and Distance Learning University of Nairobi

Sign:

Date:

DR. CHARLES MISIKO WAFULA, PhD

Lecturer Department of Open Learning School of Open and Distance Learning University of Nairobi

DEDICATION

This thesis is dedicated to my father Richard Mwugusi and my mother Margaret Ndayala for their moral support and understanding.

ACKNOWLEDGEMENT

My heartfelt gratitude goes to my research supervisors Prof. Charles Mallans Rambo and Dr. Charles Misiko Wafula for their time, guidance and dedication during the development of this thesis. I would also wish to sincerely thank all lecturers who delivered lectures during the coursework period. Special thanks go to Prof. Harriet Kidombo, Prof. Christopher Gakuu, Prof. Ganesh Pokhariyal, Prof. Dorothy Ndunge Kyalo, Dr. Lilian Otieno-Omutoko, Dr. Angeline Sabina Mulwa, Dr. John Mbugua, Dr. Stephen Wanyonyi Luketero, Dr. Chandi Rugendo and finally Dr. Lydia Wambugu for teaching me research methods and also more on the theory of change in Monitoring and Evaluation, my specialization. I would also wish to thank the University for giving me the opportunity to pursue a Ph.D in Project Planning and Management.

My heartfelt gratitudes similarly goes to the Ph.D in Project Planning and Management 2016 class for both the moral and academic support they accorded me to successfully complete this research thesis. In particular I wish to acknowledge colleagues Mercy Cherotich Byegon, Rebecca Kiai, Solomon Gikundi Koome and Nelly Gateri. But mostly I wish to thank Mercy Cherotich again for not letting me give up on this journey. I wish to extend my gratitude to the entire members of staff at the Department of Open Learning specially Erick Odundo, Evans Wepukhulu, Mary Mwaniki, Francis Nyaga, Gladys Khiha, Florence Mutua and Caren Awilly. They were very supportive. I also acknowledge Ms. Regina Mutonga and Ms. Grace Sitienei at the Jomo Kenyatta Memorial Library of the University of Nairobi for helping me look for journal articles when I was reviewing my literature.

I cannot afford to miss acknowledging my sisters Mary Vugutsa Mwugusi, Milka Eboyi, Everline Omondi for praying for me always during this journey. To my brother Sammy Eboyi who always wished me academic success from my undergraduate studies, I thank him for that. My lovely nieces Naomi Amaiza and Hellen Alivitsa Mushori may God remember them for trusting me that I could make it. I would wish to sincerely thank my parents Margaret and Richard Mwugusi for inculcating in me the value of hard work and perseverance right from a tender age. To all of them, I wish them success and God's blessings as they endeavour to make Kenya and the world as a whole a better place for humankind. Above all, I wish to thank God for the grace He accorded to me throughout the period I spent at the university pursuing my Ph.D.

	Page
DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENT	iv
LIST OF TABLES	xi
LIST OF FIGURES	xiv
ABBREVIATIONS AND ACRONYMS	XV
ABSTRACT	xvii
CHAPTER ONE	1
INTRODUCTION	1
1.1 Background of the Study	1
1.1.1 Performance of Road Construction Infrastructural Projects	5
1.1.2 Contractors' Capacity Evaluation in Tender Award	7
1.1.2.1 Financial Ability of Contractors	8
1.1.2.2 Technical Ability of Contractors	8
1.1.2.3 Management Ability of Contractors	9
1.1.2.4 Contractors' Safety Record	9
1.1.3 Process Monitoring	11
1.1.4 Infrastructural Construction Projects	14
1.1.5 Road Construction Infrastructural Projects in Kenya	
1.2 Statement of the Problem	
1.3 Purpose of the Study	
1.4 Objectives of the Study	
1.5 Research Questions	
1.6 Research Hypotheses	
1.7 Significance of the Study	
1.8 Limitations of the Study	
1.9 Delimitation of the Study	
1.10 Basic Assumptions of the Study	
1.11 Definition of Significant Terms Used in the Study	
1.12 Organization of the Study	

CHAPTER TWO
LITERATURE REVIEW
2.1 Introduction
2.2 Performance of Road Construction Infrastructural Projects
2.3 The Concept of Contractors Capacity Evaluation in Tender Award
2.3.1 Criteria for Prequalification Process
2.3.2 Criteria for Bid Evaluation40
2.4 Financial ability of Contractors and Performance of Road Construction
Infrastructural Projects42
2.5 Technical Ability of Contractors' and Performance of Road Construction
Infrastructural Projects47
2.6 Management Ability of Contractors and Performance of Road Construction
Infrastructural Projects
2.7 Contractor's Safety Record and Performance of Road Construction Infrastructural
Projects
2.8 Process Monitoring and Performance of Road Construction Infrastructural Projects 60
2.9 Contractors' Capacity Evaluation in Tender Award, Process Monitoring and
Performance of Road Construction Infrastructural Projects
2.10 Theoretical Framework
2.10.1 Theory of Construction Management
2.10.2 Domino Theory of Accident Causation72
2.10.3 Pecking Order Theory76
2.10.4 Resource Based Theory77
2.10.5 Human Capital Theory79
2.11 Conceptual Framework
2.12 Summary of Literature Reviewed
2.13 Knowledge Gaps
CHAPTER THREE
RESEARCH METHODOLOGY
3.1 Introduction
3.2 Research Paradigm
3.2.1 Research Design
3.3 Target Population

3.4 Sample Size and Sampling Procedures	109
3.4.1 Sample Size	109
3.4.2 Sampling Procedure	110
3.5 Research Instruments	112
3.5.1 Questionnaires	112
3.5.2 Structured Interview Schedules	114
3.5.3 Pilot Testing of Instruments	114
3.5.4 Validity of Instruments	115
3.5.5 Reliability of Instruments	116
3.6 Data Collection Procedure	117
3.7 Data Analysis Techniques	118
3.8 Ethical Considerations	129
3.9 Operationalization of the Variables	130
CHAPTER FOUR	135
DATA ANALYSIS, PRESENTATION, INTERPRETATION AND DISCUSSION	135
4.1 Introduction	135
4.2 Questionnaire Return Rate	135
4.3 Background Information of Respondents	136
4.3.1 Contractors' Demographic Information	136
4.3.2 PSVs Divers' Demographic Information	140
4.4 Basic Tests for Statistical Assumptions	143
4.4.1 Test for Normality of Research Data	143
4.4.2 Test for Multicollinearity for the Variables	144
4.4.3 Linearity Tests	147
4.4.4 Likert Scale as an Interval Measure	147
4.5 Performance of Road Construction Infrastructural Projects	148
4.5.1 Quantitative analysis of Performance of Road Construction Infrastructural	
Projects	148
4.6 Financial Ability of Contractors and Performance of Road Construction	
Infrastructural Project	158
4.6.1 Correlation Analysis of Financial Ability of Contractors and Performance	of
Road Construction Infrastructural Project	164

4.6.2 Regression Analysis of Financial Ability of Contractors and Performance of
Road Construction Infrastructural Projects164
4.7 Technical Ability of Contractors and Performance of Road Construction
Infrastructural Projects168
4.7.1 Correlation Analysis of Technical Ability of Contractors and Performance of
Road Construction Infrastructural Projects176
4.7.2 Regression Analysis of Technical Ability of Contractors and Performance of
Road Construction Infrastructural Projects177
4.8 Management Ability of Contractors and Performance of Road Construction
Infrastructural Projects
4.8.1 Correlation Analysis of Management Ability of Contractors and Performance of
Road Construction Infrastructural Projects187
4.8.2 Regression Analysis of Management Ability and Performance of Road
Construction Infrastructural Projects
4.9 Contractors' Safety Record and Performance of Road Construction Infrastructural
Projects193
4.9.1 Correlation Analysis of Contractors' Safety Record and Performance of Road
Construction Infrastructural Projects
4.9.2 Regression Analysis of Contractor's Safety Record of a Contractor and
Performance of Road Construction Infrastructural Projects
4.10 Combined Contractors' Capacity Evaluation in Tender Award andPerformance of
Road Construction Infrastructural Projects
4.10.1 Correlation Analysis of Combined Contractors' Capacity Evaluation in Tender
Award and Performance of Road Construction Infrastructural Projects207
4.10.2 Regression Analysis of Combined Contractors' Capacity Evaluation in
Tender Award and Performance of Road Construction Infrastructural Projects208
4.11 Moderating Influence of Process Monitoring on Relationship between Contractors'
Capacity Evaluation in Tender Award and Performance of Road Construction
Infrastructural Projects
4.11.1 Correlation Analysis of Moderating Influence of Process Monitoring on the
Relationship between Contractors' Capacity Evaluation in Tender Award and
Performance of Road Construction Infrastructural Projects

4.11.2 Regression Analysis of Moderating Influence of Process Monitorin	ig on
Relationship between Contractors' Capacity Evaluation in Performance	e of Road
Construction Infrastructural Projects	
CHAPTER FIVE	229
SUMMARY OF FINDINGS, CONCLUSIONS, AND RECOMMENDAT	TIONS229
5.1 Introduction	229
5.2 Summary of Findings	229
5.2.1 Financial Ability of Contractors and Performance of Road Construct	tion
Infrastructural Projects	229
5.2.2 Technical Ability of Contractors and Performance of Road Construc	tion
Infrastructural Projects	230
5.2.3 Management Ability of Contractors and Performance of Road Const	ruction
Infrastructural Projects	231
5.2.4 Contractor's Safety Record and Performance of Road Construction	
Infrastructural Projects	
5.2.5 Combined Contractors' Capacity Evaluation in Tender Award and	Performance
of Road Construction Infrastructural Projects	
5.2.6 Process Monitoring, Contractors' Capacity Evaluation in Tender Aw	vard, and
Performance of Road Construction Infrastructural Projects	232
5.3 Conclusions	233
5.4 Contribution of the Study to the Body of Knowledge	236
5.5 Recommendations	238
5.5.1 Recommendations for Policy	238
5.5.2 Recommendations for Practice	239
5.6 Suggestions for Further Research	241
REFERENCES	242
APPENDICES	
Appendix I: Letter of Request of Transmittal of Data to Respondents	
Appendix II: Student's Introductory Letter	
Appendix III: Questionnaire for Senior Engineers and Managing Directors in	
Construction Companies and Consulting Engineering Firms	
Appendix IV: Interview Schedule for Matatu Drivers	276

Appendix V: The County Director of Education Research Authorization
Appendix VI: NACOSTI Research Authorization Letter
Appendix VII: NACOSTI Research Permit
Appendix VIII: Krejcie and Morgan Table
Appendix IX: Normality Test Results for Contractors' Financial Ability and
Performance of Road Construction Infrastructural Projects
Appendix X: Normality Test Results for Contractors' Technical Ability and
Performance of Road Construction Infrastructural Projects
Appendix XI: Normality Test Results for Contractors' Management Ability and
Performance of Road Construction Infrastructural Projects. 301
Appendix XII: Normality Test Results for Contractors' Safety Record and Performance
of Road Construction Infrastructural Projects
Appendix XIII: Normality Test Results for Process Monitoring Record and Performance
of Road Czonstruction Infrastructural Projects
Appendix XIV: Normality Test Results for Combined Contractors' Capacity Evaluation
in Tender Award and Performance of Road Construction Infrastructural
Projects
Appendix XV: Sections B,C,D,E,F & G of Research Tool as Used in the Pilot Study321

LIST OF TABLES

Page
Table 1.1: Classified Road Network in Kenya 15
Table 2.1: Root Cause of Accidents
Table 2.2: Matrix Table for Literature Review: Summarizes the Knowledge Gaps
Established in Review of Related Literature
Table 3.1: Target Population
Table 3.2: Sampling of Procedures 112
Table 3.3: Reliability Test Summary 117
Table 3.4: Correlation and Regression Models
Table 3.5: Statistical Tests of Hypotheses 128
Table 3.6: Operationalization of the Variables 131
Table 4.1: Questionnaire Return Rate
Table 4.2: Contractors' Demographic Information
Table 4.3: PSV Drivers' Demographic Information
Table 4.4: Results of Kolmogorov Smirnov and Shapiro Wilk Tests
Table 4.5: Collinearity Statistics
Table 4.6: Correlation Matrix for Independent Variables 146
Table 4.7: Performance of Road Construction Infrastructural Projects
Table 4.8: Financial Ability of Contractors and Performance of Road Construction
Infrastructural Projects158
Table 4.9: Correlation Matrix for Financial Ability of Contractors andPerformance of
Road Construction Infrastructural Projects 164
Table 4.10: ANOVA for Financial Ability of Contractors and Performance of Road
Construction Infrastructural Projects165
Table 4.11: Model Summary for Financial Ability of Contractors and Performance of
Road Construction Infrastructural Projects165
Table 4.12: Model Coefficients of Financial Ability of Contractors and Performance of
Road Construction Infrastructural Projects166
Table 4.13: Technical Ability of Contractors and Performance of Road Construction
Infrastructural Projects169
Table 4.14: Correlation Matrix of Technical Ability of Contractors and Performance of
Road Construction Infrastructural Projects176

Table 4.15:	ANOVA for Technical Ability of Contractors and Performance of Road
	Construction Infrastructural Projects178
Table 4.16:	Model Summary for Technical Ability of Contractors and Performance of
	Road Construction Infrastructural Projects
Table 4.17:	Model Coefficients for Technical Ability of Contractors and Performance of
	Road Construction Infrastructural Projects
Table 4.18:	Management Ability of Contractors and Performance of Road Construction
	Infrastructural Projects
Table 4.18:	Correlation Matrix of Management Ability of Contractors and Performance
	of Road Construction Infrastructural Projects
Table 4.19:	ANOVA for Management Ability of Contractors and Performance of Road
	Construction Infrastructural Projects
Table 4.20:	Model Summary for Management Ability of Contractors and Performance of
	Road Construction Infrastructural Projects
Table 4.21:	Model Coefficients for Management Ability of Contractors and . Performance
	of Road Construction infrastructural projects
Table 4.22:	Contactors' Satety Record and Performance of Road Construction
	infrastructural projects
Table 4.23:	Correlation Matrix for Contractors' Safety Record and Performance of Road
	Construction Infrastructural Projects
Table 4.24:	ANOVA for Contractors' Safety Record and Performance of Road
	Construction Infrastructural Projects
Table 4.25:	Model Summary for Contractors' Safety Record and Performance of Road
	Construction Infrastructural Projects
Table 4.26:	Model Coefficients for Contractors' Safety Record and Performance of Road
	Construction Infrastructural Projects
Table 4.27:	Combined Contractors' Capacity Evaluation in Tender Award and
	Performance of Road Construction Infrastructural Projects205
Table 4.28:	Correlation Matrix of Combined Contractors' Capacity Evaluation in Tender
	Award and Performance of Road Construction Infrastructural Projects208
Table 4.29:	ANOVA for Combined Contractors' Capacity Evaluation in Tender Award
	and Performance of Road Construction Infrastructural Projects209
Table 4.30:	Model Summary for Combined Contractors' Capacity Evaluation in Tender
	Award and Performance of Road Construction Infrastructural Projects210

Table 4.31: Model Coefficients for Influence of Combined Contractors' Capacity
Evaluation in Tender Award210
Table 4.32: Moderating Influence of Process Monitoring on Relationship between
Contractors' Capacity Evaluation in Tender Award, and Performance of
Road Construction Infrastructural Projects
Table 4.33: Correlation Analysis of Moderating Influence of Process Monitoring on the
Relationship between Contractors' Capacity Evaluation in Tender Award
and Performance of Road Construction Infrastructural Projects220
Table 4.34: Model Summary for Moderating Influence of Process Monitoring on the
Relationship between Contractors' Capacity Evaluation in Tender Award and
Performance of Road Construction Infrastructural Projects
Table 4.35: Model Summary for Moderating Influence of Process Monitoring on the
Relationship between Contractors' Capacity Evaluation in Tender Award
and Performance of Road Construction Infrastructural Projects222
Table 4.36: Model Coefficients for Moderating Influence of Process Monitoring on the
Relationship between Contractors' Capacity Evaluation in Tender Award and
Performance of Road Construction Infrastructural Projects
Table 4.37: Summary of Results of Tests of Hypotheses 227
Table 5.1: Summary of Contribution of the Study to Body of Knowledge

LIST OF FIGURES

Figure 1: Goals of Various Stakeholders	59
Figure 2: Domino Theory Model	72
Figure 3: Conceptual Framework of Contractors' Capacity Evaluation in Tender Award,	,
Process Monitoring and Performance of road construction infrastructural	
Projects	31

ABBREVIATIONS AND ACRONYMS

ACEK	Association of Consulting Engineers of Kenya					
ADA	African Development Fund					
ANOVA	Analysis of Variance					
ATSB	Australian Transport Safety Bureau					
CDF	Constituency Development Fund					
CMAR	Construction Management At Risk					
CIDB	Construction Industry Development Board					
EBK	Engineers Board of Kenya					
EHS	Environmental Health and Safety					
EMPs	Environmental Management Plans					
EMR	Experience Modification Rating					
EFA	Explatory Factor Analysis					
EFQM	European Foundation for Quality Management					
ERS	Economic Recovery Strategy					
ESHS	Social, Health and Safety					
ESMS	Environmental and Social Management System					
FIDIC	International Federation of Consulting Engineers					
GDP	Gross Domestic Product					
GOK	Government of Kenya					
GSU	General Service Unit					
IFRC	International Federation of Red Cross					
KBV	Knowledge Based View					
KSh	Kenya Shilling					
KRB	Kenya Roads Board					
KURA	Kenya Urban Roads Authority					
KPI(s)	Key Performance Indicators					
KeNHA	Kenya National Highway Authority					
KeRRA	Kenya Rural Roads Authority					
KNBS	Kenya National Bureau of Statistics					
KURA	Kenya Urban Roads Authority					
M&E	Monitoring and Evaluation					
NACOSTI	National Council of Science Technology and Innovation					

NCA	National Construction Authority							
OECD	Organisation for Economic Co-operative and Development							
OSHA	Occupational Safety and Health Administration							
PSC	Public Sector Construction							
PSV	Public Service Vehicles							
PPE	Personal Protective Equipments							
PPOA	Public Procurement Oversight Authority							
PMI	Project Management Institute							
QBPR	Quality-Based Performance Rating							
RII	Relative Importance Index							
RBV	Resource Based View							
SACCO	Savings And Credit Co-operative							
SD	Standard Deviation							
SGR	Standard Gauge Railway							
SMC	Small and Medium Scale Contractors							
SMCE	Small and Medium Sized Contracting Enterprises							
SPSS	Statistical Package for Social Sciences							
SWAP	Scale-Up and Sector-Wide Approach							
VIF	Variance Inflation Factor							

ABSTRACT

Kenva has elaborate procedures for vetting contractors even though there is still questionable performance of most of road projects as seen in the cost overruns, delays in completion and compromised quality. In this regard, the selection of the right contractor for road construction infrastructural project is deemed a remedy for poor road infrastructure project performance. The purpose of the study was to establish how contractors' capacity evaluation in tender award, and process monitoring influences performance of road construction infrastructural projects in Nairobi County, Kenya. The first objective was to establish the influence of financial ability of contractors on performance of road construction infrastructural projects in Nairobi County, Kenya. The second objective was to establish the influence of technical ability of contractors on performance of road construction infrastructural projects in Nairobi County, Kenya. The third objective was to establish the influence of management ability of contractors on performance of road construction infrastructural projects in Nairobi, Kenya. The fourth objective was to determine the influence of contractors' safety record on performance of road construction infrastructural projects in Nairobi, Kenya. The fifth objective was to establish the influence of combined contractors' capacity evaluation in tender award on performance of road construction infrastructural projects in Nairobi, The sixth objective was to establish the moderating influence of process Kenva. monitoring on the relationship between contractors' capacity evaluation in tender award and performance of road construction infrastructural projects in Nairobi, Kenva. The study used descriptive survey research design and correlational research design, and a target population of 460 comprising all public service vehicle (matatu) drivers plying eastern bypass, and outer-ring roads in Nairobi, as well as the engineers from the construction firms in Nairobi County. A sample of 210 was drawn from both categories of respondents, from whom 153 respondents successfully participated in the study, representing 72.8% questionnaire return rate. Stratified sampling was used to divide respondents into homogeneous groups. Also, proportionate sampling and simple random techniques were employed. Pilot study was conducted to improve on the validity and reliability of the instruments. A Cronbach's Alpha coefficient was found to be above 0.7. Questionnaires and interview schedules were administered to contractors and drivers respectively to collect data. Quantitative data was presented using means and standard deviations. Simple, multiple, and hierarchical regression models were used to test null hypotheses at a significance level of 0.05, and the results for the six hypotheses indicated that apart from second and third hypotheses, the rest were all rejected. Results the first hypothesis, showed R=0.669, R^2 =0.447, β =0.373, t=11.056, were: F(1,151)=122.235, p=0.000<0.05; second hypothesis, R=0.157, R²=0.025, β =0.124, t=1.956, F(1,151)=3.827, p=0.052>0.05; third hypothesis, R^2 =0.003, β =0.049, t=0.701, F(1,151)=0.491, p=0.485>0.05; fourth hypothesis, R=0.657, R²=0.431, β =0.359, t=10.703, F (1,151)=114.558, p=0.000< 0.05, fifth hypothesis, in overall R=0.826, adjusted $R^2=0.673$, F(4,148)=79.226, p=0.000,0.05; and finally, the sixth hypothesis results presented showed that in step 1: R=0.826, adjusted R²=0.673, F(4,148)=79.226, p=0.000<0.05 hence F-value statistically significant and in step 2: R=0.837, adjusted $R^2=0.690$, F(5,147)=68.520, p=0.000<0.05 hence F-value statistically significant. It can be concluded that process monitoring significantly moderates the relationship between combined factors of contractors' capacity evaluation in tender award and performance of road construction infrastructural projects in Nairobi County, Kenya. The study is significant since it adds value to knowledge exposition in respect to project management especially during evalution process for selecting effective contractors intended to contribute to performance of road construction infrastructural projects. Hence, special attention should be paid to contractors' safety record to assess their ability to deliver roads that will not jeopardize the performance of the roads once they have been handed over for public use. Similarly, the Domino theory of accidents causation should now be incorporated in measuring performance in the post delivery stage and not only for utilization at the construction or project implementation stage. Further, the study is significant in that process monitoring as a moderating variable has been used here for the first time to show the strength and relationshion between the contractors' capacity evaluation and performance of road construction infrastructural projects. The study, however, recommends that further research should be done on building construction projects since that was not within the scope of the current study. It also recommends that further studies should focus on rural contexts since the current focus was on Nairobi County, which is an urban setting. The study further suggests on construction firm characteristics should also be examined by other researchers. It is evident that process monitoring is still weak within construction industry but its full institutionalizing can lead to an increase in performance of roads. Lastly, The study has laid sufficient empirical ground to exonerate the technical and management abilities of contractors and strongly adduced performance of roads in terms of contractors' financial and safety record abilities. There is therefore need to improve on these two crucial aspects to improve performance issues on our roads.

CHAPTER ONE INTRODUCTION

1.1 Background of the Study

The giant global economies have excelled through infrastructure. Many countries in African continent have realized this importance and hence huge budgetary allocation to infrastructural projects. According to Wasike (2001), physical infrastructure development as well as maintenance are fundamental to the rapid growth of economic development, investment and market access are dependent upon infrastructure quality, and more so transport. Chan, Scott and Chan (2004) explain that included within infrastructure are the requisite capital for the economic services' production from utilities, including telecommunication, water, as well as electricity. Another key element of infrastructure is transport entailing seaports, airports, bridges, and roads; all of which are central to the promotion of activities of economic nature. Islam (2006) however posits that the constructural development including sanitation, power supply, water supply and roads often considered critical drivers of quality of life.

The least developed and middle level developing countries, just like the developed counterparts, are doing their best to ensure they reach superior degree in terms of economic and infrastructural advancement. Some growth has been reported in these countries. As Rhodes (2015) notes, UK's construction industry in the year two thousand and four, had economic output contribution worth one hundred and three billion Sterling Pounds, represents 6.5% of the aggregate two point one million jobs. In addition, in the year two thousand and fifteen, six point two percent of the aggregate population of the United Kingdom (UK) was actively in the construction industry. According to statistics released by Deloitte East Africa entitled "Africa Construction Trends 2015", Kenya maintains the leading in the scale of construction projects sector in East African region, with Ethiopia following closely (Mwiti, 2016).

These statistics indicate that 20% of all construction projects in Africa are from the East African region, corresponding to 15% in dollar value at 57 billion US dollars in the year two thousand and fifteen; which represents marginal reduction from the sixty point seven billion US dollars in the previous year (Mwiti, 2016).

In Kenya, one of the construction projects is the Standard Gauge Railway (SGR) project has been ranked the fourth most expensive project in the region; consuming up to three point eight billion US dollars. Tanzania's Bagamoyo port project tops the rank at a cost of eleven billion US dollars (Mwiti, 2016). Atieno and Muturi (2016) argue that inappropriate infrastructure emerged under the Economic Recovery Strategy (ERS) for Wealth and Employment Creation of the period 2003-07; it was identified as a key limit to the ease of doing business. Moreover, Kenya Vision 2030 acknowledges infrastructure as a significant beacon for sustainable development as enshrined in the economic pillar. Zenabu and Getachew (2015) assert that the various stakeholders often consider construction project completion within budget as a major criterion for project success.

Rapid economic development coupled with an upsurge in the degree of motorization has lately shaped the dynamics of urban transport system in Kenya. An appraisal report by African Development Fund (2013) stated that the stock of transport infrastructure in Nairobi is lagging the prevailing demand as demonstrated by the 2006-2025 Master Plan for Urban Transport in the Nairobi Metropolitan Area. It was noted by Onyango, Bwisa and Orwa (2017) that in the process of releasing economic prosperity and wellbeing in a developing country such as Kenya, it is paramount that the focus should be on infrastructure projects. According to Kenyan Vision 2030, among the significant determinants of sustainable economic advancement is the infrastructure sector. It further articulates that this is particularly the case for six major sectors of the economy, namely: business process outsourcing, tourism, financial services, manufacturing, agriculture and livestock, as well as the wholesale and retail businesses (Republic of Kenya, 2010).

The said blue print, Kenya Vision 2030, acknowledges the vitality of infrastructural development to the social as well as economic transformation. Accordingly, the sector is a major inspiration to the country with international standard modern metropolitan cities, municipalities and towns. Contextually, the current study focuses on the Eastern Bypass and the Outer-Ring roads in Nairobi County in Kenya. Started in January 2011 and completed in May 2012, the Eastern Bypass project in Nairobi joins Mombasa road at the Cabanas interchange. It runs through Pipeline as well as Utawala Estates via Kangundo Road. It then proceeds to the Thika Super Highway which is equally recent. This part of

the road is 39km in length, made of Asphalt Concrete pavement and classified B class type of road (Kimani, 2015). The bypass has two lanes, it is a two-way single carriageway, each 9 m wide, with an open channel earth surface drain on either side. Its main objective was to assist ease the traffic congestion along Mombasa Road, via Uhuru Highway and into Waiyaki Way.

Approximately 13Km in length with a 2-lane carriageway, the Outer-Ring road is important for the urban transport system in Nairobi. The extent of transport service was originally low with average journey speed of between 12 and 15kmph. Majority of the port of Mombasa bound freight traffic from Thika Road as well as the Public Service Vehicles (PSVs) use the same road from the industrial set-ups within the area. The Government of Kenya, through Kenya Urban Roads Authority (KURA), improved the road to facilitate easy traffic flow as well as make traffic movement conflations with key corridors such as Nairobi - the Eastern Bypass, Thika Highway, and Nairobi -Mombasa Highway better. The Outer-Ring road links Mombasa Road (A109) and Thika Roadd (A2) trunk roads (African Development Fund, 2013). It commences at the junction off GSU along Thika road and terminates at the Eastern bypass road. It traverses the industrial set-ups from General Service Unit (GSU) to Mathare River Crossing, at Jogoo Road and Outering Junction up to Ngong River and after Tassia Estate. Commercial banks, fuel stations, retails outlets, residential estates as well as market centers are the major establishments along this road, with the highest density experienced at Donholm, Umoja, Kariobangi, Huruma, and Dandora estates.

These mega public sector construction (PSC) projects require competent contractors for effective and efficient performance. The ability to select the appropriate contractor is pivotal to the sector and can heal the problem of compromised project performance such as delayed completion, poor quality and cost overruns. Among the many causes of economic stagnation and bottlenecks to achievement of the aspirations of Kenya's Vision 2030 are the cost overruns (Nyandika & Ngugi, 2014). Others such as Rahman, Memon and Karim (2013) posit that in Malaysia, three most significant impactful contributors to cost overrun or material cost fluctuations are challenges regarding cash flow management, contractors' financial difficulties, as well as inappropriate supervision and site management. Performance of construction projects is faced with multiple

inconsistencies, and that the causes of mediocre performance are yet to be overtly ascertained (Obare, Kyalo, Mulwa & Mbugua, 2017).

Lack of professionalism, inexperienced personnel, corruption, and poor skill-sets are the major problems identified by Zuofa and Ochieng (2017) as determinants of project failures in the context of Nigeria. Others such as Seboru, Mulwa, Kyalo & Rambo (2016) argue that concerns dealing in road construction ought to have suitable policies in regard to the requisite material quantity determination in a bid to foster superior road construction project performance. Therefore, contractors' capacity evaluation in tender award plays a major and a significant role in construction industry. Rao, Kumar and Kumar (2016) assert that the construction industry has been ineffective in delivering outcomes such as cost as well as time overruns, substandard quality and productivity, and subsequent dissatisfaction of customer. According to Marti and O'Brien (2005) quality contract awarding should be observed in the sense that the contract award mechanism need to focus on and accounts for quality and ability, not just "least cost." However, Rao, *et.al* (2016) still insist that to adjust success chances in construction projects, choosing a suitable contractor is among the major assessments to be taken by the clients.

Further, Rao, *et al.* (2016) posit that a careful contractor selection considering set criteria such as experiences, attitudes and competences can lower cost as well as time overruns, simultaneously improving the work quality and as well as environment. According to these authors, contractor selection, normally done through tendering in construction industry, consumes longer time and there are a few standard procedures to be followed (Rao, *et.al.*, 2016). In view of observations by Palaneeswaran and Kumaraswamy (2001) the tendering process, which begins with prequalifying contractors, is vital in identifying qualified contractors based on a client's predetermined risk and failure minimization criteria as well as to boost selected contractors' levels of performance. In this regard, Ologunagba and Akinmusire (2016) conducted a study on the prequalification criteria for contractors to the project performance of civil engineering projects, with respect to time dimension. The study determined that contractors' prequalification criterion had no adequate capacity to yield anticipated outcome. This might mean that there is need to combine several criteria to reach a decision on who qualifies for road construction works.

1.1.1 Performance of Road Construction Infrastructural Projects

In practice the word "performance "is multidimensional (Haas, Felio, Lounis & Falls, 2009). First, it entails Key Performance Indicators (KPIs), whose origins are traceable to Australia, which imply the specified road network contracts' performance. Secondly, it refers to Measures of Performance, which are its conceptualization according to the Transport Association of Canada's (TAC) survey of Canadian Road Networks. Thirdly, Performance Indicators as they are utilized in the European Harmonization on Performance Indicators. The terminologies: performance indicators; key performance indicators; and performance measures have fondly as well as interchangeably been used in the road construction sector (Haas *et al.*, 2009).

There is wide literature onto what constitute project success. Some claim that attaining success in construction project is mainly determined by time-performance, budgetperformance, and quality standard-performance (Omran, Abdalrahman, & Pakir, 2012). Others have been substantive arguments on performance measurement as noted by Neely (1999) who describes the research into performance measurement as a revolution. He notes that 3,615 article have been published and a new book on the subject was published in 1996. Scholars such as Bassioni, Price and Hassan (2004) assert that construction companies have so far implemented some performance measurement frameworks, such as European Foundation for Quality Management (EFQM) excellence model, KPI, and the Balanced Scorecard. Each of these frameworks evaluates performance measurement from different perspective that either complement each other or even overlap with each other. These frameworks point out significant variables to consider in measurement of project performance. The project performance of road works can be measured on timely completion of the road within the scope, cost, and at the appropriate level of performance, as determined by the consumer, end-user consummation with the project and the project utility (Ogweno, Muturi & Rambo, 2016).

This is in tandem with the assertions by Shenhar (1997) that project success can be separated into four elements: customer impact, project efficiency, business accomplishment and preparation for future. However, Sadeh, Dvir and Shenhar (2000) outline five dimensions. These are user-advantage, developing firm benefits, meeting the design goals, benefit to the national infrastructure and defense. Obare et.al (2016) focused their study on the project control framework, diversity of the project team training and

the rural roads' construction project performance in Kenya. The specific dimensions in this regard included timely, budgetary and quality completion of projects. Other dimensions under focus in this regard were customer, and project team satisfaction. The fundamental criteria for performance of construction projects according to Thomas, Palaneeswarm and Kumaraswamy (2002) are: work progress; quality standards; health and safety; fiscal stability; asset utilization; as well as the quality of relationship with consultants, clients, and subcontractors. Other criteria according to the framework are claim and contractual disputes, as well as reputation and subcontracting levels.

The terminology "performance" is often used in economics, engineering, and other disciplines. However, it has both general and specific dimensions. From the latter perspective, and more so in the road construction context, the concept ought to be measurable. This is because it is very necessary for the assessment of prevailing and expected road infrastructure outlook, in addition to the institutional service efficiency as well as provision of safety to the ultimate users. It is also critical for cost-effectiveness, productivity, environmental conservation, investment preservation and related functions (Haas et al., 2009). Rao, Kumar and Kumar (2016), on the other hand, summarized fifteen performance assessment conditions that covered contracting company attributes; potential and past performances, experience record, fiscal stability as well as project-specific criteria, contractor evaluation considerations.

These main contractor selection or evaluation criteria are further broken down into subcriteria (Rao, Kumar & Kumar, 2016). The first is known as the attributes of the contracting concern that include age (imputing "experience") and contractor's firm registration. Others are experience, implying past record of undertaking projects of similar type and size; and contractor's past performance would be explanatory of the work quality in previously completed projects, time-performance (adherence to schedule in previous work). The other sub-criteria include cases of blacklisting in prior projects as well as the quality of service within the defect-liability window period. In addition, contractor' fiscal capacity assesses the contractor based on prevailing commitments as well as turnover. Moreover, the contractor's potential performance which seeks to assess him/her based on the requisite asset availability, and existing workload is also considered.

1.1.2 Contractors' Capacity Evaluation in Tender Award

Contractors' capacity evaluation in tender award for this study is limited to the prequalification and bidding processes. Rashvand, Majid, Baniahmadia and Ghavamirad (2015) point out that the choice of an appropriate service provider for a construction project is among the fundamental decisions confronting a client for the project development. This assertion is in tandem with Chiang, Yu and Luarn, (2016) who claim that project owners should select contractors with capability to meet quality expectations, cost, and time. Dwarika and Tiwari (2014) on the other hand observe that many countries currently use bid assessment and contractor pre-qualification techniques, and this whole process entails the development and broad assessment of requisite as well as suitable decision criteria to adjudge the overall contractors' suitability. This selection of a contractor is most relevant since, service providers might fail to fulfil contractual obligations; thus, pre-qualification of contractors is an important stage especially at the beginning of a project.

The selection of construction contractor in general contains two stages namely prequalification and bid evaluations (Trivedi, Pandey & Bhadoria, 2011). Bid evaluation as well as contractor pre-qualification decisions consist of the analysis of three main elements: (1) contractors' overall information (2) prequalification yardstick, and (3) bid evaluation benchmark (Hatush & Skitmore, 1997). Pre-qualification is a procedure to examine and gauge the competency and skills of contractors to successfully complete a project if it is given to them. During the pre-qualification stage, service providers are invited to apply for a project, and they are normally evaluated based on a pre-determined criterion that is utilized to short-list them.

Conversely, during the bid evaluation stage, the contractors who are shortlisted during the pre-qualification stage are, once again, invited for further scrutiny. The capacity of each applicant was compared with the predefined sets of minimum values. Researchers in earlier studies have shed more light on this process (Zedan & Skitmore, 1994; Russell & Skibniewski, 1988). Pre-qualification avails to a client, a number of contractors who are regularly invited to tender. This approach is the most popular among nations, and it is from the said list that variaus criterion types are used to assess the aggregate contractor suitability (Hatush & Skitmore, 1997).

Hatush and Skitmore (1997) posit that the procedure for the evaluation of tender bid submissions by prequalified contractors is called bid evaluation. Herbsman and Ellis (1992), for instance, suggested a multi-parameter system for the evaluation of bids. According to this framework, both primary and auxiliary criteria ought to be considered in the process, the primary factors are the bid quantity; execution time; as well as the quality of prior work. Over and above the foregoing basic parameters, secondary factors too ought to be considered.

1.1.2.1 Financial Ability of Contractors

Large-scale construction is likely to be affected by finances and hence poor performance. Berman and Bianchi (2005) found that banks could facilitate the acquisition of other loans because of contractor's quality image and good reputation in the financial markets. Awards of major construction contracts in developing countries are skewed in favor of foreign counterparts against local contractors since the foreign firms are considered more technically and managerially advanced and well-organized in funds mobilization including competence.

In comparison with this, local contractors have over the years had challenges related to inadequate working capital, mediocre project performance in light of adhering to the deadlines for completion, substandard quality of work as well as management of capital which has in many cases caused bankruptcy and even mid-term project abandonment. In other words, majority of local contractors usually do not complete construction contracts within initial contract sums and hardly within scheduled completion times. Ogbebor (2002) and Akintude (2003) in their studies in the Nigerian construction industry confirmed that indigenous construction companies have challenges of undercapitalization. Similarly, Asinza, Kanda, Muchelule and Mbithi (2016) wrote that inadequate funds have a relationship with other factors such as machinery, labour and material acquisition. Inadequate funds hinder the contractor from employing skilled labour and acquire materials of the right quality and quantity. Moreover, if funds are unavailable, contractors might not procure good quality machinery.

1.1.2.2 Technical Ability of Contractors

Delivery of a quality products in construction depends on many factors and one crucial element that contributes to that is the technical ability of the contractor. Omran, Abdalrahman and Pakir (2012) argue that project managers obtain diverse knowledge and

skill set through experiences throughout their working life. The authors note that limited knowledge and cognitive skills in numerous projects established within Nairobi County adversely impacts on the decision making and it is of imperative for the project organization as well as management to be properly organized and operated so as to limit the cost estimate risks. Adequate road drainage system should be incorporated in any road construction design to safeguard the road fabrics (Emeasoba & Ogbuefi, 2013).

1.1.2.3 Management Ability of Contractors

Management of construction works requires dedicated managers. Abiodun, Segbenu and Oluseye (2017) pointed out that to bolster the improvement of contractors' performance in light of construction projects, proper planning, suitable leadership as well as communication ought to be upped. Management is highly associated with contractor performance. Aje, Odusami and Ogunsemi (2009) state that management capacity is a primary criterion for assessing contractors at the prequalification as well as tender assessment stage. Hence, haphazard planning as well as scheduling have a potential for mediocre performance by a contractor. If, for instance, certain design associated issues occur, then fast decision ought to be taken by top management to adjust contractor performance. Also, miscalculated coordination issues leads suboptimal performance of the contractor. Finally, efficient, effective, and economical asset management by a contractor has a potential to impact his performance favorably.

1.1.2.4 Contractors' Safety Record

Safety in construction has been of focus so much during implementation stage ignoring the outcome in the post-delivery stage. According to Australian Transport Safety Bureau (ATSB) safety report, integrating systems for safety into the ordinary commercial operations has no indications of the ability for accident alleviation and risk management (Australian Government, 2012). The International Finance Corporation (IFC, 2017) notes that the contractors ought to be asked to give details including past Environmental, Health and Safety (EHS) performance; status of Environmental and Social Management System (ESMS); number and qualifications of Environmental, Social, Health and Safety (ESHS) personnel; and last but not least is the occupational safety and health procedures and controls.

Documentation quantity and level of information and detail that are requested to contractors shall be commensurate to the scope of work and other specific features that the contractor is being prequalified against. This is deemed important not only to ensure safety standards are adhered to during construction phase but also to contribute to future safety expected during operational phase. In most cases, safety is normally not keenly implemented. For example, Diugwu, Baba and Egila (2012) revealed that like in several developing economies, Nigerian statutory provisions, with capacity to ensure the assumption and operationalization of systems for safety and health management by concerns, appears to be deficient. This phenomenon leads to inadequate attentiveness to critical safety and health matters among construction workers in Nigeria. In addition, concerns appear incapable or unwilling to offer sufficient attentiveness to safety and health management. As a result, the sum total of safety and health standards, operational capacity and corporate reputation of the construction industry in Nigeria have been affected.

The continuous evaluation of project execution in regard to the design schedules, and the utilization of infrastructure, inputs, as well as services by the beneficiaries of project, is called "project monitoring". For example, Ogendi, Odero, Mitullah and Khayesi (2013) concluded that pedestrian safety ought to be of central attention in any road safety effort in Nairobi City County. Accordingly, planners of urban road safety should embrace prevailing cost-effective responses to assure the pedestrian safety, including area-wide calming of traffic to control the motor vehicle speeds 30 km/h, provision of pedestrian sidewalks, residential area traffic calming, as well as the strict operationalization of traffic rules.

Additionally, Greenfield and Morgan (2014) posited that prior to engaging a contractor in construction work, the contract manager would need to be fully satisfied, first and foremost, about their own competence - that is, knowledge and experience - to reach a sound judgement about the competence of a contractor and secondly, the contractor's competence to carry out the work safely. Arrangements will need to be put in place with a main contractor for the assessment and management of any sub-contractors and the principles set out in this guidance may be used. Austraulian Safety Transport Bureau therefore points out that having a safety management systems in place may produce the follwoing (Australian Government, 2012): alleviation of accidents and incidents; reduction in overt and covert costs; recognition of safety need by travelling pedestrian; reduction in insurance premiums; as well as evidence of due diligence in investigations relating to legal or regulatory safety.

1.1.3 Process Monitoring

The urgency of having a monitoring system in place for construction projects especially the infrastructural project involving road construction is to ensure quality in terms of performance. Monitoring is also necessary to improve on knowledge transfer and learning for future projects. Onatere, Nwagboso and Georgakis (2014) define monitoring as, "[a] stage [that] entails the data gathering to ascertain progress according to targets. Formal reporting of proof facilitates the matching of expenditure and outputs to measure successful delivery and the meeting of milestones. Quiroz (2005) asserts that a properly maintained paved road ought to stay for a period of 10 to 15 years preceding a resurface, even though inadequate maintenance can lead to deterioration within 5 years.

Quiroz, therefore, proposed five steps to aid in conducting monitoring in quality manner, these include (Quiroz, 2005): self-control framework by the contractor; interval inspections; both formal and informal inspections by supervisors and project managers; as well as the maintenance of a record book to trail the road users' comments or compliments. By so doing, maintenance work quality can be assured. In order to realize the desired outcome of projects, sufficient systems, processes and procedures guided by enabling laws, alongside proper enforcement and monitoring need to be put in place (Quiroz, 2005). Stufflebeam and Shinkfield (2007) and Chikati (2009) affirm that process monitoring should be regularly done through gathering and processing of vital project information to make sense on how the project is being run or implemented. In view of International Federation of Red Cross (IFRC), process monitoring involves tracking activities and it works in tandem with compliance monitoring (IFRC, 2011):

"Process (activity) monitoring tracks the use of inputs and resources, the progress of activities and the delivery of outputs. It examines how activities are delivered – the efficiency in time and resources.... It is often conducted in conjunction with compliance monitoring, [whereby it] ensures compliance with donor regulations and expected results, grant and contract requirements, local governmental regulations and laws, and ethical standards..."IFRC (2011)

Evaluation of a program entails measuring the process, the needs, inputs and outcomes (O'Sullivan, 2004). Program or project process monitoring involves methodical and

incessant documentation of key program's or project's aspects. According to Rossi, Lipsey and Freeman (2004), these key aspects assess whether program is performing according to appropriate standards or as intended.

There are indicators to whether a program is performing well or not and this is measured through a methodical and incessant monitoring of certain process' aspects related to a program. This allows for continuous assessment that gives way for frequent feedback on program's performance, which is requisite in facilitating effective management of the program. From management point of view, process monitoring aims to find out how the program is being implemented and also putting in place corrective actions or measures where it is deemed necessary. This is important at the piloting stage of the program because it offers an opportunity to deal with unexpected problems. This kind of monitoring can also be done in ongoing programs or projects such as road construction projects to get information about its performance, and to determine if the target population benefits from the project or not (Rossi, Lipsey & Freeman, 2004).

Monitoring and Evaluation (M&E) should be considered as a determinant in successful completion of the roads (Hassan, 2013). He goes further to state that Monitoring has a critical role in minimization and prevention of time and cost overruns hence required quality standards are attained during project implementation. Kamau and Mohamed (2015) on the other hand point out that M&E present a control action to reduce the variances from the set standards. Project monitoring has been defined as the continuous appraisal of project execution process in accordance to the pre-set schedules, including the application of infrastructure, services, and inputs by beneficiaries of projects. Hence, both contractors and clients view quality as a critical component in construction works. Mwangu and Iravo (2015) determined that project monitoring had a positive correlation to project performance.

These manifestation inline with the International Federation of Consulting Engineers (FIDIC), include mediocre or non-resilient workmanship, as well as unsafe structures, deferments, cost overruns and construction contract disputes (Ngosong, 2015). Accordingly, Ngosong asserts that the quality and worth of construction are of significant attention to public as well as private sector clientele alike. IFC (2017) suggest that frequent meetings are crucial to ensure the satisfactory performance of the contractor and to certify project requirements are met, moreover, and contractors also need to clarify and

understand the monitoring authority that controls contractor performance. Generally, the public sector as a responsibility of deliverying almost all public goods and services at all levels. Nsasira, Basheka and Oluka (2013) posit that an appropriate process of managing and monitoring contracts assists in the improvement of quality of commodities and causes a reduction in the cost of procurement, hence leading to achievement of three general goals, namely: product and service quality; on-time delivery; as well as budgetary effectiveness.

Davison and Sebastian (2009) determined the probability of contract issues for a certain category of contract; and of which is likely to face the challenges the most. For instance, for construction contracts, order alteration, stays, and cost statistically bear related chance of prevalence and significantly more probable as compared to the other categories, and that construction contracts are more susceptible to problems than other forms of contract. Salapatas (1985) concluded that performance of project could be measured using a system for monitoring and major indicators; as is the case with entire systems, a project monitoring ought to start with commitment from the management. The original methodologies for contracting are more susceptible to corruption due to the environment surrounding the processes of decision. The study by Ojok and Basheka (2016) on "Measuring the Effective Role of Public Sector and Evaluation in Promoting Good Governance in Uganda," concluded that M&E facilitated management decision-making, accountability, learning and growth as well as better governance standards. According to the study M&E ought to not only be associated with nominal compliance but also foster decision-making that is anchored on evidence.

Process monitoring as part of M&E ought to be financed and institutionalized in order to intervene in the policy planning, implementation, and delivery of service. Hassan (2013) is of the view that M&E in the context of road project execution is key to the determination of the overall project success. Accordingly, he developed a conjecture that improperly designed M&E framework relating to road construction projects could be part of the reasons for the pervasive delays in project completion and mediocre workmanships on such road projects, hence substandard road project performance.

1.1.4 Infrastructural Construction Projects

The origins of construction projects are traceable to the ancient Egyptian Pyramids, medieval Greek settlement along the Mediterranean, the construction of temples and structures by the Roman Empire in the olden age (Wambui, Ombui and Kagiri, 2015). Nowadays, construction projects are considered to be complex sets of activities with definite start and end dates that consume resources such as equipment, human resources, and money for the sake of achieving specific objectives (Kerzner, (2006). Its broad definition encompasses the establishment of physical infrastructure such as railways, roads, and harbors, civil-engineering works such as irrigation projects, power plants, and dams, building works in general, including housing, and also the existing structure maintenance and repair. Construction projects have been classified in several ways in order to distinguish amongst them. Shenhar (2001) argues that despite all projects having certain features such as a goal, budget and timeframe, they differ in several ways to the extent that "one size does not fit all".

Construction projects can, therefore, be classified based on size as mega, large, medium, or; small ownership as private or public; use as residential, commercial, industrial or utility; and scope as building or infrastructural projects. Among these categories of classification, project scope provides a better classification of public construction projects. Infrastructural projects make up a minor section of the entire construction sector albeit it is a critical component of the sector. Such projects are normally owned by large, commercial industrial concerns including manufacturing, medicine, petroleum, and power generation. Specialized Industrial Construction normally entails overly large-scale projects consisting of a high level complexity of technology like steel mills, nuclear power plants, chemical processing plants and oil refineries.

Construction of highway comprises the development, change and maintainance of highways, roads, streets, runways, alleys, paths, and parking areas. Also part of the highway construction are all other construction types relating to the actual highway construction project. Heavy construction projects normally relate to projects classified as neither "building" nor "highway." For instance, sewage treatment plants and facilities, flood control projects, dams, water and sewer line projects, dredging projects, as well as water treatment facilities and plants. Accordingly, Halpin and Woodhead (2006) availed a

typology under three forms: (1) institutional and commercial (2) nonresidential and residential; and (3) building and infrastructure.

1.1.5 Road Construction Infrastructural Projects in Kenya

Kenya had the best infrastructure in Africa during the 1970s but due to suspension of donor funds, it has resulted to a lack of regular repair and proper maintenance leading to a serious deterioration (GOK, 2003). In spite of this, road transport has over the years remained a key mode of transport in the country accounting for over 80% movement of people, goods, and services. Construction and maintenance of Kenyan roads has essentially been supported by the National Treasury through the annual budget allocations and also proceeds coming from Road Maintenance Levy Fund (Oirere, 2019). Despite the committment by government, it is estimated that out of the planned 61,936 KM of classified roads, it was only possible to construct or pave 8,869 KM by November 2016 equivalent to 15 percent (KeNHA, 2016). According to the budget policy statement for year 2018-2019, building onto what Kenya's Vision 2030 stands for, the government allocated a collosal amount worth 115.9 billion Kenya Shillings for classified roads (National Treasury, 2018).

According to KeNHA (2019), the classified road network in Kenya is 63,575 km from a total of 177,800 km. The classified road network has increased from 41,800 km at the time Kenya achieved her independence to 63,575 km today, which implies that development rate is gradual and less than 600 km per annum. In the same period, the length of the paved road grew significantly from 1,811 km to 9,273 km. As per the current estimates about 70% (44,100 km) of the classified road network is in good condition and is maintainable whereas the rest 30% (18,900 km) needs rehabilitation or reconstruction. Table 1.1 gives a summary of classified road network in Kenya.

Road class Premix	Length by Surface Type Surface dressing		(km) Gravel	Earth	Total
International Trunk Roads (A) 1,244.91	1,563.81	715.11	94.48	3,618.31
National Roads (B)	350.21	1,166.26	819.29	346.14	2,681.90
Primary Roads (C)	642.89	2,198.16	3,601.64	1,552.90	7,995.59
Secondary Roads (D)	76.63	1,183.10	5,701.93	4,087.73	11,049.39
Minor Roads (E)	165.81	542.04	8,215.89	17,982.57	26,906.31
Special Purpose Roads	24.88	114.63	4,929.69	6,253.78	11,322.98
All classes	2,505.33	6,768	23,983.55	30,317.60	63,574.4

Table 1.1:	Classified	Road	Network	in	Kenya

Source: KeNHA 2019

The government recognises that professional incompetence contributes to poor project supervision and implementation. The narrative is changing with the governement allocating huge amount in infrastructure. The World Bank report indicates that governments are the biggest "spenders" worldwide on public service (Nyandika *et al.*, 2014). Mthethwa (2016) noted that the construction industry in Kenya was contributing a significant per cent to the National Domestic Product (GDP).

Evidence indicates a clear relationship among economic development, economic growth and construction activities. A survey that was conducted a few years back indicated that the total world construction spending on infrastructural projects in 2007 was \$4.7 trillion, but it rose to \$7.2 trillion in 2010 thereby it is likely to rise to \$12 trillion in 2020 (Global construction 2020, 2009). Despite this prediction, the overall growth of the construction sector is reported by Kenya National Bureau of Statistics (KNBS), through the economic survey 2019, to have decelerated to 6.6 per cent in 2018 compared to 8.5 per cent in 2017; moreover, for the growth in lengths of roads constructed, figures indicate that construction decreased from to 9.5 per cent in 2018 compared to 30 per cent in 2017 (KNBS, 2019). Although acccording to the same economic survey it is hoped that the expenditure on the roads would rise by 23 per cent to KSh 195.1 billion in 2018/2019 from KSh 158.6 billion in the financial year 2017/2018. In terms of repair and maintenance of the road, it also hoped that there would be an increase from Ksh 53.8 billion in 2017/18 to KSh 66.6 billion in 2018/19.

Public road construction projects are on an upsurge in Kenya in the recent past. Nevertheless, cost overruns have also become common with such projects in Kenya. In this regard, analytical reports from the republic of Kenya demonstrate that KeNHA commonly faces cost overruns. For example, the Thika Super Highway construction cost went up from the originally budgeted 26.44 billion up to 34.45 billion (World Bank, 2014). Moreover, the originally planned deadline of the said project was July 2011 but was subsequently reviewed to July 2013. In addition, the initial sewerage system in Lot1-RD 0530 of the project was later altered after the completion of the project.

Roads and transport in Kenya's new system of governance is the responsibility owned by both the central and devolved government units. As such, the aggregate coordination role rests with the Kenya Roads Board (KRB) responsible for the overall oversight of the Kenyan Road network, hence coordinating the development of roads, rehabilitating and maintaining the roads, and is the authorized main adviser to the Government on all issues regarding roads (UKaid, 2015). The roads management is assigned to two roads agencies according to the Kenya Roads Act 2007, namely: KeNHA and KURA. The agencies are expected to facilitate the establishment, rehabilitation and maintenance of the network of roads in the city; according to the economy and standards in place. KeNHA is an autonomous road agency tasked with managing, developing, rehabilitating and maintaining international trunk roads connecting centers of international significance and extending beyond international boundaries, or ending at international ports; called class A roads, national trunk roads connecting provincially significant centers; called class B roads, as well as primary roads connecting provincially significant centers to one other or two higher-order roads; called class C roads. In the city of Nairobi, KeNHA is responsible for the development of the by-passes as well as the major highways. According to UKaid (2015) county government of Nairobi's department of roads is majorly focusing on drainage, residential roads, traffic signals, junctions, as well as the non-motorised transport (NMT) and improvements.

The setting up, rehabilitation as well as maintenance of public roads in urban locations in Kenya fall under the purview of KURA, a semi-autonomous government agency charged with the responsibility of managing roads, with exception to those that fall under the category of National Roads. Set up in 2010, the Authority is responsible for roads over 12,549 km, with 2,100 km paved while 10,400 km unpaved. However, the Kenya Rural Roads Authority (KeRRA), which is a national corporation that falls under the Ministry of Transport and Infrastructure, was developed as the Kenya Roads Act, 2007 proposed with a responsibility of managing, developing, rehabilitating, and maintaining rural roads.

However, all contractors are supposed to be registered in Kenya whether in building or road construction or civil. Locally the National Construction Authority, also known as NCA Kenya is a state agency under Act No. 41 of 2011 Laws of Kenya via which contractors in Kenya are enlisted. This is a body that was formed to replace Ministry of Works. Therefore, NCA is charged with the responsibility of clearing contractors and builders in Kenya as an overall strategy to eliminate indisciplined contractors and to deal with misconducts in the building and construction sector.

Still, performance of many contractors has not been effective or pleasant if anything to go by. Wambui, Ombui and Kagiri (2015) and Makori, Aduda and Ngacho (2013) observed that in Kenya institutional framework and construction policies need to be revised and that management approaches to construction [by contractors] are wanting and must be improved. According to Kimani (2017), the NCA has in the recent past embarked on the inspection of construction and building projects all over the country for work quality assurance and closure of high health-risk and potentially hazardous construction projects. In this regard, it is envisaged to avail the framework for the regulation and registration as well as constant update of contractors' roll.

1.2 Statement of the Problem

Kenya has elaborate procedures to vet contractors but there is still questionable performance of most of road projects as seen in the cost overruns, delays in completion and compromised quality. Statistics by the Engineers Board of Kenya (EBK) indicate that there are only 2,100 certified engineers in the country that has a population of 45 million people against a minimum of 6,000 which is supposed to serve the country based on its population (Wanzala, 2017). The right contractor is seen to be a remedy to elusive road infrastructure project performance (Seboru, 2017).

A contractor selection process should eliminate incompetent bidders and result in qualified individuals or institutions who can deliver the project within the set goals. Infrastructure being in the fore front of the government's vision 2030, road construction projects have received tremendous boost from the national government budget. This fact has led to mushrooming of many citizens who claim to be fit for construction work as contractors. Studies indicate that the main problem of the construction industry in the country has been inability of contractors to deliver infrastructure projects on required time, within budget and also meet product quality upon completion (Ogweno, Muturi & Rambo, 2016; World bank, 2014; Waithera, 2017; Mwakajo & Kidombo, 2017; Wambui, Ombui & Kagiri, 2015; Hassan & Guyo, 2017). Although this is the case, the post delivery performance of the road infrastructure has not been of interest to many scholars and even experts in the road construction industry. When studies are conducted in construction, the focus is on project implementation yet it would be stated as project performance; this becomes a conceptual issue that this study aimed also to investigate and spell out clearly indicators for measuring performance. Both outright project abandonment and poor project execution are largely attributed to lack of technical expertise on various projects (Abiodum, Segbenu & Oluseye, 2017).
Factors contributing to construction delays and post delivery performance as listed by Faridi and El-Sayegh (2006) include poor leadership, outdated equipments, poor supervision, shortage of equipments, poor site management and shortage of skilled manpower. In Kenya, two studies by Seboru et.al, (2016a) and Seboru, Mulwa, Kyalo and Rambo (2016b) on material acquisition and labour procurement and performance of road infrastructural performance attempted to demonstrate how these two variables influence performance in terms of quality bearing in mind of potholes and cracks that the roads develop a few months or barely a year after. The most affected roads are under management of Kenya Urban Roads Authority (KURA), which are constructed by local contractors awarded tenders by the government. However, this study is out to show the influence of contractors' capacity evaluation in terms of financial ability, technical ability, management ability and contractors' safety record on performance of road construction infrastructural projects in Nairobi County in Kenya.

Practically, properly designed as well as maintained roads are significant for the safety of roads. According to Manyara (2013), whenever the government communicates concerns relating to Road Traffic Accidents (RTAs), roads are infrequently cited as the cause. Instead, the government normally points an accusing finger at the driver, the vehicle's mechanical condition, the weather or even other set of factors. Improperly designed roads, such as steep slopes, narrow roads, uneven, as well as sharp turns/curves and poorly maintained roads with potholes and limited road signs make road users susceptible to accidents. Normally, dangerous overtaking is caused by the absence of warning signs or even centerline markers. In addition, the country has recorded an upsurge in the number of novel roads, particularly during President Kibaki's tenure (2002-2013). Some of the said roads are, unfortunately, already in deplorable state due to bad design and lack of maintenance. Such roads are, therefore, partial contributors to the road accident menace in Kenya. Due to improperly constructed and maintained roads, mobility is constrained, vehicle operating costs rise unnecessarily, accident rates go up, isolation is augmented, poverty rises, health is put at risk (Emeasoba and Ogbuefi, 2013); an experience that affects urban dwellers as well.

The Nairobi City County Government (NCCG) enumerated some of the issues and challenges regarding safety and security of roads and transport system in the city. For example, there is need for capacity building of motorized drivers due to lack of security

tolerance for pedestrians, this is according to the report by the said NCCG. Design of roads a lot of times does not take care of the needs of children and other vulnerable road users. People with disabilities find it difficult to negotiate the set infrastructure. No-functional street-lighting, improper and insecure location of the footbridges. Safety rules are weak as everyone tries to be alive on the road. The motor cyclists do not wear protective gears, with unsuitable bumps for the cyclists. Traffic snarl-ups occasionally make motorized drivers as well as cyclists to occupy the walkways.

Due to the haphazard crossing by the pedestrians and congestion by the motorcycle taxis, confusion abounds near markets, with unmarked bikeways occasionally occupied by motorbikes (NCCG, 2015). This raises doubts on effectiveness of contractors' capacity evaluation in tender award, hence, the need to study the contractors' capacity and road construction infrastructural project performance in Nairobi County. The need to award tenders to qualified bidders, therefore, continues to be the case although the same problems affecting project success (time, budget and quality) and not even project performance (hardly studied and measured in construction industry) are not adequately addressed. Accidents have been reported on our roads and the blame is heavily laid on poor marking of roads and lack or inefficient road signs. Most of the roads in Nairobi City are under the county government. This study therefore intends to research on how contractors' capacity evaluation in tender award affects performance of road construction projects in Nairobi County in Kenya.

On what appears to be a financial constraint to the local Kenyan contractors, international construction companies have dominated public infrastructure tenders. For example, the ability of Chinese firms to arrange financing for their projects and possession of superior machinery has seen many of them prequalified to build roads across the country (Juma, 2017). The inability of contractor to undertake road construction works lies in the financial ability status of the contractors (Mwakajo & Kidombo, 2017; Kithinji & Kamaara, 2017; Igochukwu & Onyekwena, 2012). Similarly, Densford, James and Ngugi (2018) have studied that local contractors in Kenya are facing challenge in financial ability of the contractors affect completion of infrastructure projects, the extent to which the same influences project performances creates a gap hence the need to empirically carry out a

study to evaluate the extent to which financial ability of contractors influence performance of road construction infrastructural projects.

Studies have also demonstrated that management capacity of contractors has been empirically shown to affect perojects. Some of the issues related to management capacity of contractors include poor planning and scheduling, management of personnel, lack of materials and equipment to meet schedule, poor job-site supervision, inadequate management knowledge and contractor experience, lack of team work and proper guidance by the supervisors (Naik, Sharma & Kashiyani, 2015;Omran, Abdalrahman & Pakir, 2012; Aje, Odusami & Ogunsemi, 2009).

The technical abilities of contractors has been cited as another source of inadequacy by contractors to undertake road infrastructural projects (Seboru, et.al, 2016a; Atieno & Muturi, 2016; Nyangwara & Datche, 2015). These studies have enumerated technical capacities lacks on the basis of quality of raw materials and equipments used, availability of skilled personnel, contractors competency and timely availability of construction of resources. The predictor variable technical ability in this study is used to test performance of the road construction as opposed to implementation as done in other studies. Contractors' safety record appears to influence both the implementations and road construction infrastructural project performance. The issues around safety include: inadequate regulations, limited resources (personnel or fianance) lack of management knowledge, lack of managment commitment, inadequate use of signage and barricades to minimize accidents, compliance behaviour and adequacy of standards in addressing safety outcome (Jannadi & Bu-Khasim, 2002); Diugwu, Baba & Egila, 2012; Weil, 2001). Although the indicators under this predictor variable have been used to explain performance in implementation phase of the road projects, the current study is out to investigate how this predictor variable purely influence performance of the road during post-delivery phase.

The outer ring road in Nairobi County, for instance, which was recently completed has now design variations which stand out to pose significant challenges not only to motorists but also to pedestrians. The drainage covers are broken due to heavy human traffic, cyclists and motorbike riders 'also known as boda boda' have few cycling lanes and walkways are not adequate. Although travel time has significantly reduced, the road does not provide adequate bus stops and road signage hence the PSVs or matatus have transformed the service lanes into parking and loading zones. The 13km stretch had 11 foot bridges planned for in the design (Achuka, 2017). Lack of footbridges is forcing pedestrians to dangerously cross the road by jumping over the guardrails and use trenches. The ministry of infrastructure has recently cited poor performance of roads due to incompetent contractors.

The Permanent Secretary (PS) for infrastructure in Kenya noted that majority of roads in Nairobi are used by careless contractors who have failed to ensure standards are met and that there was need to entrench a performance-based systems of contracts to weed out contractors who do shoddy work (Kinyanjui, 2018).This therefore begs the question as to whether contractors' capacity to undertake road construction works is thoroughly ascertained and hence poor performance of a road after construction. Despite having a performance based framework for evaluating suitable contractors for road works, the performance of road construction is overlooked and attention is only drawn on implementation stage of the projet. From empirical literature reviewed the influence of individual variables of contractors' capacity evaluation in tender award (finacial ability of contractors' safety record) has been established in most of construction infrastructural projects up to implementation stage.

However the combined influence of contractors' capacity evaluation in tender award has not been established neither on implementation nor performance of road construction infrstructural projects. This study therefore sought to establish how contractors' capacity evaluation in tender award, process monitoring, influence performance of road construction infrastructural in Nairobi County in Kenya. Also previous studies have methodologically relied on either qualitative or quantitative approaches in research. This study however sought to adopt a pragramatic approach to be able to collect data quantitatively and qualitatively. It is an alternative paradigm because philosophically it accepts that there exist singular and multiple realities.

1.3 Purpose of the Study

The study purposed at establishing how contractors' capacity evaluation in tender award, process monitoring influence performance of road construction infrastructural projects in Nairobi County in Kenya. The study also purposed at establishing the moderating influence of process monitoring on the relationship between contractors' capacity evaluation in tender award and performance of road construction infrastructural projects in Nairobi County, Kenya.

1.4 Objectives of the Study

The following objectives guided the study:

- To determine the extent to which financial ability of contractors influence performance of road construction infrastructural projects in Nairobi County, Kenya.
- To assess how technical ability of contractors influence performance of road construction infrastructural projects in Nairobi County, Kenya.
- iii). To establish how management ability of contractors influence performance of road construction infrastructural projects in Nairobi County, Kenya.
- iv). To examine how contractors' safety record influence performance of road construction infrastructural projects in Nairobi County, Kenya.
- v). To determine how the combined contractors' capacity evaluation in tender award influence performance of road construction infrastructural projects in Nairobi County, Kenya.
- vi). To assess the moderating influence of process monitoring on the relationship between contractors' capacity evaluation in tender award and performance of road construction infrastructural projects in the county of Nairobi, Kenya.

1.5 Research Questions

The questions that the study sought to answer are:

- i). To what extent does financial ability of contractors influence performance of road construction infrastructural projects in Nairobi County, Kenya?
- ii). How does technical ability of contractors influence performance of road construction infrastructural projects in Nairobi County, Kenya?
- iii). How does management ability of contractors influence performance of road construction infrastructural projects in Nairobi County, Kenya?
- iv). How does contractors' safety record influence performance of road construction infrastructural projects in Nairobi County, Kenya?

- v). How does combined contractors' capacity evaluation in tender award influence performance of road construction infrastructural projects in Nairobi County, Kenya?
- vi). In what is ways does process monitoring moderate the relationship between contractors' capacity evaluation in tender award and performance of road construction infrastructural projects in Nairobi County, Kenya?

1.6 Research Hypotheses

The study sought to test the following hypotheses:

- 1. H_0 : Financial ability of contractors does not significantly influence performance of road construction infrastructural projects in Nairobi County, Kenya.
- 2. $H_{0:}$ Technical ability of contractors does not significantly influence performance of road construction infrastructural projects in Nairobi County, Kenya.
- H₀: Management ability of contractors does not significantly influence performance of road construction infrastructural projects in Nairobi County, Kenya.
- 4. H_0 : Contractors' safety record does not significantly influence performance of road construction infrastructural projects in Nairobi County, Kenya.
- H₀: The combined contractors' capacity evaluation in tender award does not significantly influence performance of road construction infrastructural projects in Nairobi County, Kenya.
- H₀: Process Monitoring does not significantly moderate the relationship between contractors' capacity evaluation in tender award and performance of road construction infrastructural projects in Nairobi County, Kenya.

1.7 Significance of the Study

This research hoped to add value in terms of knowledge exposition to the project management especially in the evaluation process of selecting effective contractors who would contribute to the road construction infrastructural project performance. The study focused on how contractors' capacity evaluation in tender award influences performance of road construction infrastructural projects in Nairobi County in Kenya; thus it is hoped, it provided the unavailable knowledge on the subject. This would thereby enrich

the existing literature on the subject that readers and researchers can utilize for further analysis.

Successful performance of infrastructural projects has significant economic and social benefits. The GOK singled out infrastructure as a key pillar for the achievement of the vision 2030. Further, it set out to have 10000Km new roads through Public private Participation (PPP) and carry out maintenance of existing infrastructure to help ease access to rural areas to enhance economic growth of key sectors of economy. Therefore, the contribution of this study to the achievement of Vision 2030 is that it lays grounds to building quality roads that would last longer as a result of contracting competent contractors who would assure long lasting performance of these road projects in major towns in Kenya.

The study is hoped to have provided information that may be of significance to performance of infrastructure project, which ultimately expected to improve the economic and social status of the Kenyan citizenry. The findings of the research may provide critical input for decision-making in light of the utilization of evaluation report of contractors and performance of infrastructure projects. Recommendations made can inform on policy formulation at both the county and national level and other organizations in general because they were developed through valid research data.

Industry stakeholders may immensely gain from the study findings that show that adequate safety procedures must be observed to maintain or enhance performance in terms of road safety. The research findings may also present considerable input in the academic field by putting forth the existing literature gaps in the road construction sector, enhancing discussion from the observations made in reference to the already undertaken studies, drawing conclusion from the study and pointing out salient recommendations for continued research.

1.8 Limitations of the Study

The use of structured questionnaires and the method of administering them may have had led to a delay in getting the feedback quickly to start data analysis process considering the broader geographical area where the study was conducted (Nairobi County 684 Square Kilometres). Due to this constraint, four research assistants were temporary contracted to assist in administering the questionnaires. Also, since most of the contractors are scattered and mobile, the study used a drop and pick later technique of collecting information from the respondents whereby contractors were allowed sufficient time to fill up the questionnaires and return them for analysis. On the other hand, the Public Service Vehicle drivers were guided through the interview schedules and hence a good response rate for the study.

Moreover, the research team used persuasion and frequented the contractors' offices until they got in touch with them to answer the research questions to yield reliability of the study. Moreover, the study purpose was explained to the respondents using authorization from National Council of Science Technology and Innovation, University clearance letter, transmittal letters and assurance on confidentiality issues with the hope they would be convinced to take part in the research exercise. This eventually increased respondents willingness and confidence to participate in the study after getting satisfied that the study was purely academic.

1.9 Delimitation of the Study

This study confined itself to contractors' capacity evaluation in tender award, Process Monitoring and road construction infrastructural project performance. There are various contractors' capacity evaluation in tender award variables found in the literature. However, this study categorizes most of these into four variables outlined in the conceptual framework and used the ones that are related as indicators of each variable. Since there are many evaluation frameworks and models suggested for carrying out evaluation process to ascertain the suitability of a contractor, the study was not based on any single framework but used the common elements in a number of them to formulate a conceptual framework that guided the study.

The study conceptually focused on the financial ability, and technical ability of a contractor. The other concepts were, the management ability of a contractor, the contractors' safety record and the moderating influence of process monitoring on the relationship between contractors' capacity evaluation in tender award and the level of performance of road construction infrastructural project through descriptive survey design in Nairobi County, Kenya. This study also focused exclusively on performance of road constructural projects and roads referred to as classified roads (A,B and C) that are found mostly interconnected within urban centres such as in Naiorbi City,

Mombasa City and Kisumu City Counties. These roads are normally constructed under the supervision of KURA and KeNHA and awarded tenders to contractors perceived to be highly qualified.

Although there could be other performance indicators for measuring road performance upon completion (also referred to as post-delivery stage), thes study focused on the following KPIs: Quality of completed road; mobility and speed; comfort and convenience; user benefits; safety. The study also delimited itself to human capital theory, top management theory, resource dependence theory, domino accident theory of accident causation, and pragmatism philosophical direction and a mixed mode approach to conduct the study so as to study the phenomenon in its entirety without bias to opinion and also enrich the study findings. This was done by sampling road contractors and consulting road engineers and also the Public Service Vehicle (PSV) drivers. Instead of the PSV owners, the drivers were considered as the main beneficiary and who could clearly explain the issue of road performance well. In addition, the study variables were limited to those in the conceptual framework. The National Construction Authority (NCA) in Kenya has categorized or classified contractors from NC1 to NCA7 as per their financial capabilities and subsequently the study uses only NCA1. Despite this initiative traffic jam still remains a nightmare on the outering road joining the Eastern Bypass especially by matatus plying the roads. It is on this basis that the study focused on these roads.

1.10 Basic Assumptions of the Study

The fundamental assumption was that the contractors' capacity evaluation in tender award, process monitoring have an influence on the performance of road construction infrastructural projects. The study assumed that the respondents would give accurate responses to the questionnaires without bias. It was also assumed that accessing the respondents would be easy since they were all based in Nairobi. It was assumed that the information gathered would demonstrate a relation exists between the contractors' tender evaluation results and performance of roads construction infrastructural projects. That further, the information provided would highlight the moderating influence of process monitoring on the relationship between contractors' capacity evaluation in tender award and performance of road construction infrastructural projects.

1.11 Definition of Significant Terms Used in the Study

The following concepts were defined as used in the study. It is acknowledged that they may be used elsewhere to mean different things.

Contractors' Capacity Evaluation in Tender Award–This is evaluation carried out during the tendering processes that is used to determine the suitability and abilities of an individual road construction contractor for award of the tender prior to commencing ground work and which may influence performance of the road during the life of the project (post-delivery performance of the project). It includes financial ability of the contractors, technical ability of contractors, management ability of contractors and contractors' health and safety record.

Process Monitoring– This is a continuous assessment of the contractor and construction and the extent to which all the construction processes comply with construction specification, comply with regulatory bodies' requirements, comply with County by-laws, resolution to complaints management, and finally adherence to allocation and utilization of resources for accomplishment of project's objectives.

Performance of Road Construction Infrastructural Projects–This refers to public projects that benefit the society and whose performance are measured in terms of: Quality of completed road (drainage and or water table, absence of potholes); Mobility and speed experienced due to delays, congestion, average speed; Comfort and convenience in terms of smoothness and roughness of the road; User benefits in terms of cost reduction, travel time reduction, vehicle operating cost reduction; Safety as evidenced by properly constructed footbridges, pedestrian walkways, cycling lanes, road properly marked, adequate road signs and bus stops.

Financial ability of contractors–Contactors' state of finance and financial management in terms of credit rating, bank's good will, flexibility of the loan agreements, turnover, profits obligations, amounts due and owned financial funds.

Technical ability of contractors–This is contractors' competency to undertake a road construction infrastructural project that is within their experience as determined by catchment of local and/or national projects, plant and equipment, quality of materials used, past experience from completed projects, and availability of technical manpower/personnel.

Management ability of Contractors–This is contractors' ability to undertake management tasks in road construction projects and normally judged by their performances in other projects, their quality control policies, management knowledge, project management system, and expertise of the management personnel assigned the construction and whose influence can be noticed in performance of a road during its life (post-delivery).

Contractors' Safety record –This is the capability within contractors' and their firms to manage and curb any and safety issues that may arise during the life of the project (post-delivery) as a result of contractors' past workmanships. The safety record includes having safety policy management system, insurance policy, compliance behavior, adequacy of standard in addressing safety outcome and finally certification in OSHA.

1.12 Organization of the Study

The study was organized into chapters. The first chapter entails the introduction, background of the study where all the variables are explained, the research problem, the study purpose, the objectives, the research questions and hypothesis, the significance of the study, the assumptions, the limitations, delimitation and the definition of key terminologies featured in the current study.

The second chapter entailed a synthesis on literature review related to the study using on themes from objectives. The thematic areas included: performance of road construction infrastructural projects, the concept of contractors' capacity evaluation in tender award, financial ability of contractors and performance of road construction infrastructural projects, technical ability of contractors and performance of road construction infrastructural projects, management ability of contractors and performance of road construction infrastructural projects, contractors' safety record and performance of road construction infrastructural projects, process monitoring and performance of road construction infrastructural projects, theoretical framework, conceptual framework and knowledge gaps.

The third chapter describes the research paradigm, the study design, the target population, sample size and sampling technique, instrumentation, procedures for data collection, data analysis techniques, considerations for ethics, as well as operationalization of the variables. The fourth chapter presents data analysis, presentation, interpretation and

discussion. Chapter five, is the last one and summarizes the study's findings, concludes the study, outlines recommendations, contribution to existing body of knowledge and areas for further research.

CHAPTER TWO LITERATURE REVIEW

2.1 Introduction

This chapter reviews theoretical and empirical literature related to the study based on themes drawn from the objectives. The thematic areas include: performance of road construction infrastructural projects, the concept of contractors capacity evaluation in tender award, financial ability of contractors and performance of road construction infrastructural projects, technical ability of contractors and performance of road construction infrastructural projects, management ability of contractors and performance of road construction infrastructural projects, contractors' safety record and performance of road construction infrastructural projects, contractors capacity evaluation in tender award, process monitoring and performance of road construction infrastructural projects, theoretical framework, conceptual framework, summary of literature and knowledge gaps.

2.2 Performance of Road Construction Infrastructural Projects

A project refers to a non-routine, complex, one-time endeavor that is limited by budget, time and assets as well as expected performance standards developed to gratify the needs of clientele. A construction project is normally accomplished via an aggregate of several interactions and events, premeditated or spontaneous, throughout the life of a facility, with dynamic players and procedures in an ever dynamic ecosystem (Babu & Sudhakar, 2015). According to Chitkara (2005), construction projects are viewed as high-worth, time-specific, as well as special-purpose construction missions with defined expected output. Kenya has massively invested in road infrastructure projects since the launch of the country's economic recovery plan 2003-2007.

The government of Kenya took cognizant of the fact that the country lacked professional competency or manpower; hence, the Engineers Registration Board was tasked with updating its register to get rid of errant engineers (GOK, 2003). According to Wanzala (2017), Kenya has a paltry 2,100 certified engineers serving 45 million persons, this being against the expected 6000 minimum. This is indeed a clear demonstration that the industry needs to build up its capacity in terms of increasing the number of professionals so that improvement is registered on performance of our roads.

Substandard performance of construction projects has degenerated into an economic condition in which the industry is incapable of managing, with major stakeholders in the industry having no idea of documenting the issues for posterity (Babalola, Oluwatuyi, Akinloye & Aiyewalehinmi, 2015). Pekuri, Haapasalo and Herrala (2011) posit that the terminology "performance" is often confused with "productivity". These authors put a distinction by arguing that productivity is a more specific concept regarding the output-input ratio. However, the authors have defined performance as a general concept covering both economic as well as industry-specific operational aspects. To them, performance imputes operational excellence; entailing profitability as well as productivity, among other qualitative attributes, including delivery and flexibility, quality, and speed.

Project performance presented by Baccarini (1999) is explained using two success concepts. Firstly, accomplishing a project successfully, remaining attentive to both quality and cost, which is measureable from budget perspective, schedule, as well as compliance with operational and technical standards respectively. Secondly, the impact of three-pronged project output, namley: to satisfy the project goal; purpose; and stakeholder expectations. Measurement of performance, if well undertaken through a review of the organizational performance and identification of the appropriate and relevant key performance indicators (KPIs) is capable of leading to great advantages as well as improvements (Onatere, Nwagboso & Georgakis, 2014). A performance framework by Atkinson (1999) differentiates success factors as follows: delivery and post-delivery activities; providing an avenue for the acknowledgement of success conditions: the iron triangle; information system; firm-level and community advantages.

Cost, time as well as quality criteria relate to the 'iron triangle'. Post-delivery levels consist of (Atkinson, 1999): (1) information system, whose conditions are: reliability; maintainability;validity; and information quality utilization (2) the conditions for firm-level benefits are: better efficiency; superior effectiveness; better bottomline; long-term goals; institutional learning as well as waste reduction(3) the benefits that accrue to the community are: consumer satisfaction;social and ecosystem impact; personal growth and development; knowledge acquisition; better profits to the contractor and suppliers of capital, as well as overall economic impact accruing to the general community. The model by Atkinson covers the whole project life cycle as well as the post-delivery component; thereby lending itself for continuous evaluation.

Measuring performance of transport system cannot and should not be assumed. Onatere, Nwagboso and Georgakis (2014), in a study on performance indicators for urban transport development in Nigeria listed a number of safety performance indicators, which include damaged roads with potholes, damaged or collapsed bridges, number of road signs and traffic measures, number of people killed or seriously injured in road traffic accidents, and inadequate headways. According to Onatere, Nwagboso and Georgakis customers' satisfaction is not really been put into consideration in the Nigerian transport system especially public transport. The authors therefore highlight some of the KPIs to show customer (road user) satisfaction: overall journey experience, comfort ride, satisfaction with road system, customer (road user) satisfaction with completed projects, percentage of complaints, cost of journey, complaint handling and effective complaint resolution.

The use of the traditional iron triangle to describe what constitute good or poor performance in project management has led to numerous poor performances in infrastructural projects. Khosravi, Afshari (2011) opine that this model recommends lagging indicators only thereby provides no room for unremitting assessment and monitoring of the construction projects. Project completion and performances cannot be the same thing, for the former suggests that a project has successfully been implemented if it is delivered on-schedule, within budget, has achieved initial set goals and clients show acceptance of it and also can use it (Mbaluka & Bwisa, 2013). Since 1980 other performance. Because of this, the measurement of project performance has become a multidimensional aspect evaluated from different approaches (Shenhar & Dvir, 2007).

The success of a project can only be measured after the completion of the project (Morris & Hough, 1987). Cooke-Davies (2002) assert that the use of project performance can only be done during the life cycle of a project which became area of focus in this study on performance of road construction of infrastructural projects. Many studies conducted in Kenya on project performance and more specifically construction projects have used indicators of project completion to explain or define what performance is whereas that would make sense if project success is used.

Scholars such as Githenya and Ngugi (2014) conclude that a good project implementation is essential and it must be formally defined in terms of its milestones. For example, a study by Kihoro and Waiganjo (2015) that evaluates the factors that affect project performance in Kenya with a special attention on construction projects shows that 63% of the respondents agreed that their projects performed well while 27% of the respondents indicated that the projects performed poorly. The study population comprised of property developers who had invested and completed projects in gated community development. A small sample population of 200 project managers in the study was calculated by normal approximation to the hyper-geometric distribution to obtain a sample size of 130. The study adopted a semi structured open and closed questionnaire as data collection instrument. A pilot study was conducted on 20 property developers in Kiambu area which is the second largest with gated community. Feedback from pilot study was used to refine the questionnaire to enhance its reliability, and Explatory Factor Analysis (EFA) was utilized to enhance construct validity by clustering factors that correlated with each other.

As concluded by Kihoro and Waiganjo (2015), performance as a dependent variable can be evaluated by different independent variables. Most of the property managers strongly agreed that planning as well as stakeholder management and project manager's competence were essential in the performance of projects. The study advocated for the use of multi criteria analysis during the planning process together with efficient management relationships among all stakeholders. Although the authors used project performance as a dependent variable, the performance indicators they used are meant for project success (Morris and Hough, 1987): completion time, cost management and quality. Quality can also be a performance indicator for a post delivery project if only the indicators are clearly stated to mean the same. To measure performance of the road upon its completion was dependent on a number of effective criteria or indicators designed. Seboru, Mulwa, Kyalo and Rambo (2016a) conducted a study on the materials' acquisition influence on road construction projects' performance in Kenya: a case of the Nairobi City County. The main deliverable of the research was to examine the degree to materials' acquisition influences road construction projects' performance in which Kenya. The following results emerged from the study: $R^2=0.246$, F(6,40)=2.173, p=0.066>0.05.

Accordingly, alternate hypothesus was rejected leading to a conclusion that materials' acquisition was statistically insignificant with respect to the influence on the road construction projects' performance. In spite of this, material quantity requirement was statistically significant; hence influenced road construction projects' performance. It appears the authors did not list substantive indicators to show how performance of roads construction was measured; though the indicators for roads performance were not outlined, it can be deduced from the statement of the problem that performance was measured in terms of potholes and traffic congestion.

This study was therefore complimented by this new study on contractors' capacity in tender and performance of road construction infrastructural projects. The study by Seboru *et al.* (2016a) supports Haas, *et.al* (2009) study which emphasizes that indicators of performance in road construction ought to be directly associated with the transport system expectations, in resepct to the values of transportation due to the derived-demand nature of transportation.

Majority of transportation values assume negative figures. For instance, users of road would wish to reduce the time taken to travel and the safety risks. According to Haas *et al.* (2009) the following is a case list of transportation values, with the most frequent measurement units that could be used to conceptualize performance: injuries and, or deaths per unit of transportation, such as per trip, per bridge crossing, or per 100 million vehicle km, for safety; delays, congestion, mean travel velocity for mobility and speed; standard deviation (SD) of unit transport time and link speed for reliability; green house gas levels in the atmosphere for ecosystem conservation for eco-protection; number of transportation per unit of cost for productivity; cost and acccident minimization for user advantages; depreciation rate for asset value; smoothness of the road for comfort/convenience; project stays; financing; traffic challenges due to on-going works for program delivery; and finally incident response time.

In the Gaza Strip, Palestine construction projects are highly affected mostly by myriad issues. To establish some of these issues Enshassi, Mohamed and Abushaban (2009) conducted a study on factors that affect the local construction projects' performance as well as the perceptions in light of their comparative significance. The study's population was 120, hence a similar number of questionnaires was distributed to three major cluster participants in a project. The distribution was as follows: 25 to project owners; 35 to

project consultants; and 60 to actual contractors. Only 88 questionnaires were filled and returned, representing 73% response rate, as follows: project owners,17%; project consultants, 25%; and contractors, 46%. The findings of the studydemonstrated that all the three groups concurred that the overriding factors to project performance are: delays occasioned bytheclosure of borders/roads resulting to the shortage of materials; asset defficiencies; and poor project leadership skills.

The other indicators include material price escalation; lack of experience by key personnel; as well as substandard equipment and raw material quality. It follows therefore, according to the study findings, that: 1) project owners and contractors ought to actively collaborate to enhance timely payments so as to overcome time-stays, and to reduce disputationsas well as claims; 2) project participants ought to be involved actively in making decisions; and 3) healthy relationship among project participants are necessary throughout all cycles of projects for better problem solving and superior project performance. The dependent variable in this study read 'project performance' though the authors focus was on project completion.

Further, Nyangwara and Datche (2015) did a research focusing on the factors that affect the performance of construction projects in the context of Coast region, Kenya. The key study objectives were: firstly, to assess the determinants of construction projects' performance for the assistance of key stakeholders to address performance challenges as well as to bolster performance of such projects; secondly, to examine the external environmental influence on the project performance; and thirdly, identify the most impactful project procedures on projects' performance. The study population entailed project managers' clientele, the contractors as well as consultants in construction organizations in the entire Coast region in Kenya. A sample was then drawn from the said population. The research assumed a mix of descriptive cross sectional survey design with correlational focus. The extent of concurrence between parties about the ranking of determinants was assessed with Kendall's Coefficient of Concordance.

In terms of tooling, the research utilized a mix of questionnaires, interview schedules, case studies as well as modeling for data collection. A questionnaire survey was undertaken with forty determinants identified, classified into eight classes, assessed and ranked accordingly: consultants, owners and constructors orientations. Finally, 180

questionnaires were delivered to all the categories, with 132 completed and returned. The extent of concurrence among parties about the determinant ranking was established by use of Kendall's Coefficient of Concordance (Nyangwara & Datche, 2015). For productivity, cost, clientele satisfaction, quality, time, learning, innovation and people determinants, and all groups collectively, a significant extent of concurrence among the key stakeholders was observed. Conversely, in the case of regular and community rate of satisfaction, as well as ecosystem determinants, discordance among the key stakeholder overtly emerged. The practices relating to project performance including time-factor, financial outlay, project owner gratifications were examined so as to identify the key practical challenges of such projects' performance in the Coastal Kenya context. Recommendations for performance improvement were then articulated accordingly.

A conclusion were drawn that projects tended to delay and cost overruns were experienced due to political dynamics with delayed payments resulting to material unavailability. Nonetheless, general safety factors had moderate implementation among the organizations included in the study. The dominant points of agreement among the three categories of stakeholder in the study were average delay due to closures and shortage of materials; resource availability as envisaged throughout the project period; project manager's leadership skills; material price inflation; availability of experienced personnel; as well as the equipment raw materials' quality in the project (Nyangwara & Datche, 2015).

The choice of correlation and regression analytical approaches justified since the conflation between the variables would properly be examined and the degree of predictorcriterion relationship determined Nyangwara & Datche, 2015). Therefore, this current study adopted the same methodology to investigate the variables within contractors' capacity evaluation in tender award, process monitoring and performance of road construction projects in Nairobi County. In addition, whereas in this study the characteristic of the sample population of interest were the main stakeholders in construction project, the current study on contractors' capacity evaluation in tender award, process monitoring and performance of road construction project, the current study on contractors' capacity evaluation in tender award, process monitoring and performance of road construction infrastructural in Nairobi County, Kenya, opted to replace Owners of construction projects with the PSV Matatu drivers. The current study may have used the owners of PSV Matatus but chooses to have the drivers sampled since they are the ones who are mostly using the roads as a daily activity and their experiences are necessary to gather the views on road-user satisfaction as a measure of performance of roads. The current study also used Karl Pearson's coefficient of correlation to discern the extent of conflation among the variables as opposed to Kendall's Coefficient of Concordance as adopted by Nyangwara and Datche (2015).

2.3 The Concept of Contractors Capacity Evaluation in Tender Award

In Kenya, tendering process begins with prequalification and normally conducted by Public Procurement Oversight Authority (PPOA). Prequalification is an elementary level in the process of tendering, and it is envisaged to generate a short-list of bidders capable of complying with the set technical criteria of the project, regardless of the quotation considerations at this point in time (PPOA, 2010). Normally the prequalification takes into account: prior performance and experience contracts of similar scope; technical capacity; as well as, financial capacity. The process is therefore narrowed down to those companies that have made it to the short-list.

Awarding a contract to the most deserving contractor in road construction and any other infrastructural project should be a top key priority. Dwarika and Tiwari (2014) point out that the foregoing process is typical of construction contractor tendering processes. They argue that tendering undoubtedly offers a customer the advantage to choose in the award of a contract to the lowest bidder, and a company with the shortest cycle time. However, it is also argued that such a system does not precision in the tendering process. In spite of this, cases of tender evaluation focusing primarily on the price are immense.

Recently, majority of clients have utilized the method widely. Conversely, the study findings demonstrate that the lowest tenderers commonly experience challenges in the completion of a project. It is therefore argued that going for the lowest tenderer exposes the project to poor quality since low prices suggest substandard material use. These problems may go way beyond completed projects (post-delivery), whereby road performance can be compromised during the life of the project. This is why it is imperative to evaluate contractors' capabilities. Globally various frameworks have been designed to measure performance in construction projects. Nguyen (2015) notes that it is important to use framworks created to evaluate contractors' bids to weigh the ability of a contractor so that construction projects can effectively be managed. A process of bid evaluation starts with categorizing the suitability of the canditate, subsequenly the authorities can then lock out the tenderers who meet the exclusion criteria (Muhwezi, 2013). In Kenya, for example, the Public Procurement Oversight Authority (PPOA) spells out the strictness to environment in construction that:

"Possible bidders ought to be cognisant that because Kenya is a signatory to the Kyoto Protocol, eco-factorsmay be integrated into the tender and assessment of bids. Instances of such determinants entail but are not limited to carbon footprint, extent of forest over-exploitation, spillage and emission of chemicals that are toxic, spillages of crude oil on land or in the waters, degree of non-biodegradable disposals, threats to biodiversity and degree of radioactive substances."(PPOA, 2010)

Three dominant issues are involved in the prequalification and bid analyses, namely: (1) contractors' general information, (2) prequalification conditions, and (3) bid evaluation conditions (Hatush & Skitmore, 1997).

2.3.1 Criteria for Prequalification Process

A criteria structure for contractor prequalification was introduced by Holt, Olomolaiye and Harris (1994). The criteria were founded upon the organization of the contractor, fiscal considerations, management asset, as well as past experience and performance of the contractor. In regard to the contractor's organization, the study singled out age of the organization, its size and reputation, policy for quality control, safety and health policy, as well as tendency for litigation.

Ratio analyses, reference from banks, references from credit bureaus, as well as history of turnover were identified for the fiscal aspect of the tenderer. Contractors' qualifications, key personnel's credentials, length of experience with the firm, as well as the regime for formal training were identified under management resource. Past experience condition comprises the scope of projects successfully completed, the magnitude of such projects, as well as the experience at national level. Others include contract failure, time-overrun, cost-overrun, as well as the past actual quality output.

The process of prequalification is employed to examine the contractors' capabilities to undertake a job, should it be awarded to them (Hatush & Skitmore, 1997). Previous empirical studies have advanced certain aspects of the process (Zedan & Skitmore 1994, Ng, 1992; Merna & Smith, 1990; Russell & Skibniewski, 1988). The process avails to a customer, a list of such contractors normally invited to tender as and when it occurs. This process also happens to be the most popular among various countries, with several and variegated types of conditions considered in the evaluation process (Hatush & Skitmore, 1997). To be shortlisted, a contractor initially applies; the application is evaluated against the standards such as fiscal capacity; managerial capacity; structure of the organization; technical capability; as well as experience in work of similar scope (Merna & Smith, 1990).

Simillarly, Hunt *et al.* (1966) argue that all the foregoing conditions are necessary for in the prequalification process. They consist of the applicant's permanent physical address, adequate technical capability to properly and expeditiously undertake the work, financial strength, experience in similar engagement, and prior undertaking of job of the same broad type and on a level equal to or exceeding 50% of the amount of the current/proposed contract. The others include failure and cost/time-over-run history, the present disposition for project delivery, as well as the contractor's association with other key stakeholder such as employees and subcontractors. Samelson and Levitt (1982) conducted a study focusing on the construction cost reduction through accidents, and control of costs via safety consideration during selection of contractors.

The conditions for prequalification are a requirement by many owners at both negotiated and even competitive bid contracts. Other common considerations include issues to do with experience modification rating (EMR) as well as Occupational Safety and Health Administration (OSHA) rate of incidence; and conditions for safety.

2.3.2 Criteria for Bid Evaluation

Hatush *et al.* (1997) have described "evaluation" to mean the procedure involving analysis of tender bids by prequalified tenderers. A multi-parameter system for bid appraisal was proposed by Herbsman and Ellis (1992). In this regard, they proposed consideration of primary and secondary parameters, the primary ones being: amount of bid; time to completion; and previous work quality. Apart from the said primary

parameters, some secondary parameters could also be under consideration. Some of them would include: weights proposed by the customer, and some of which would be precise to particular projects. The specific extra criteria are durability, safety, security as well as maintenance.

From these two words "prequalification" and "bid", it is practically possible to use the two in evaluation of the construction contractors for road construction infrastructural project performance. According to Kimani (2017), the NCA regulations stipulate that Kenyan contractors ought to register under several constructions work categories so as to determine their financial ability to undertake construction work. The NCA1 is applied for by those contractors who have the capability to construction roads classified as national or international. Below is a detailed classification in a self explanatory manner:

NCA1: Unlimited contract value: which has various classes: Unlimited contract value [Contractors – Building] Unlimited contract value [Specialist Contractors] Unlimited contract value [Roads and other Civil Works] NCA2: Up to 500, 000, 000 [Contractors – Building], Up to 250, 000, 000 [Specialist Contractors], Up to 750, 000, 000 [Roads and other Civil Works]. NCA3: Up to 300, 000, 000 [Contractors – Building] Up to 150, 000, 000 [Specialist Contractors] Up to 500, 000, 000 [Roads and other Civil Works] NCA4: Up to 200, 000, 000 [Contractors – Building] Up to 100, 000, 000 [Specialist Contractors] Up to 300, 000, 000 [Roads and other Civil Works] NCA5: Up to 100, 000, 000 [Contractors – Building] Up to 50, 000, 000 [Specialist Contractors] Up to 200, 000, 000 [Roads and other Civil Works] NCA5: Up to 100, 000, 000 [Contractors – Building] Up to 50, 000, 000 [Specialist Contractors] Up to 200, 000, 000 [Roads and other Civil Works] NCA6: Up to 50, 000, 000 [Contractors – Building] Up to 50, 000, 000 [Specialist Contractors] Up to 200, 000, 000 [Roads and other Civil Works] NCA6: Up to 50, 000, 000 [Contractors – Building] Up to 20, 000, 000 [Specialist Contractors] Up to 200, 000 [Roads and other Civil Works] NCA6: Up to 50, 000, 000 [Contractors – Building] Up to 20, 000, 000 [Specialist Contractors] Up to 100, 000, 000 [Roads and other Civil Works] NCA7: Up to 20, 000, 000 [Contractors – Building] Up to 10, 000, 000 [Specialist Contractors] Up to 50, 000, 000 [Roads and other Civil Works]

41

2.4 Financial ability of Contractors and Performance of Road Construction Infrastructural Projects

One of the factors of production is finance. Nwanyanwu (2015) pointed out that the cash flow of an organization establishes its capacity to execute projects and ability to acquire raw materials required for manufacturing activities. Olang'o (2018) noted that several road construction projects in Kenya have had time overruns in their completion due to poor cash flow management. Hence, Nwanyanwu (2015) warns that a low inflow (cash receipts) resulting to excess outflow (cash expenditures) over inflow lessens organizational operations. Igochukwu and Onyekwena (2014) evaluated the participation of the Nigerian indigenous contractors in public sector and their challenges of managing working capital. The study adopted a survey design.

Field survey of the activities of indigenous contractors were carried out and from review of existing literature, interviews and discussions with indigenous contractors and their accountants or financial managers on indigenous contracting and issues bothering on managing working capital. From this, it was possible to identify a number of factors that pose challenges to Nigerian contractors in managing their working capital requirements for construction projects.

The indigenous contractors, who were the target sample of the population selected through systematic random sampling for the survey, were all located in one location (Imo state) and had not less than five years practical experience (Igochukwu & Onyekwena, 2014). Furthermore, the construction firms selected for the survey met two specific criteria: experienced and qualified staff and professionals in their employ who had an adequate knowledge of what working capital entails and an annual turnover above twenty million naira. The respondents' selection was based on their experience and their unscattered geographical location can be considered key to enhancing reliability and therefore this study is out to also ensure the target population is selected on the same criteria whereby all the contractors were within Nairobi County, and meeting the NCA1 requirements. The consulting firms also had to be those currently dealing with road works.

From the findings of the study and with respect to issues that hinder proper working capital management, respondents ranked problems associated with one-man business ideology; inadequate manpower; poor technical skills, and absence of corporate

organization as the major factors (Igochukwu & Onyekwena, 2014). It thus calls for the indigenous contractor to engage competent people in management of their financial resources, preferably under the leadership of financial directors and or managers. In addition, enhacement of corporate image is also important, so as to enable the contractors be more preferred by both clients, who in turn will regard them in high esteem. According to Igochukwu and Onyekwena, other challenges facing these contractors in capital management as obtained from oral interviews ought to be traceable to the following factors which are by no means exhaustive: mostly a one man business and in most cases with poor technical skill, insufficient knowledge on working capital management, cash flow challenges, high cost of construction finance, inadequate manpower with no corporate organization, undercapitalization, diversion of contract funds by uses other than the project, poor funding, reckless spending and poor project planning and control. This therefore signifies that road construction companies or contractors need a strong financial backing to support their work in terms of producing good results that may be extended even in the future. The study by Igochukwu and Onyekena (2014), however, did not clearly test the relationship between variables. The survey design was adopted to the study of contractors' capacity evaluation in tender award, process monitoring and road construction infrastructural project performance in Nairobi County in Kenya.

On studying the effect of project resource mobilization on performance of road infrastructure projects constructed by local firms in Kenya, Densford, James and Ngugi (2018) posit that the local contractors or construction firms continue to experience challenges related to finance whereby they are unable to complete road projects within specified budget cost, time and inability to attain desired quality. This study was conducted in the Lake Basin Region of Kenya whereby a total of 41 roads infrastructural projects had been constructed by local construction firms. From the regression analysis, the result indicated that 21.1 per cent unit change in resource mobilization, while other factors held constant, explained performance of road infrastructure in the region. With a p value of 0.036 less than 0.05, it could be concluded that financial resource mobilization has significant influence on performance of roads. Due to uniqueness of geographical aspects and varying stakeholders' needs, the current study on contractors' capacity evaluation in tender award was conducted in Nairobi.

Further, the relationship and strength of the predictor variable, financial ability of contractors against the dependent was tested using correlation and inferential statistics. On the other hand, Mwakajo and Kidombo (2017) studied factors influencing projects performance in road infrastructural projects in Manyatta constituency in Embu County in Kenya. One of their study's objectives was to determine how project financing influence project performance in road infrastructural projects survey design and targeted a population 153 which included active road contractors, contracted staff, directors, engineers, technical staff and clerical and support staff.

The study by Mwakajo and Kidombo (2017) sampled only active road contractors using simple random sampling method, and Yamane formula to determine the size of the sample. The study involved 126 respondents as a total sample size including active road contractors. Data was gathered by use of a semi-structured questionnaire. Both percentages and frequencies were utilized for descriptive data whereas coded broad sheets were thereafter used to extract data from the returned questionnaires. The researchers analysed the data using SPSS after they completed variable view and utilized extracted data aptly on data view. Though the study used a simple random sampling as this current study did, the selection of contractors was focused on the active ones only whereas the current study drew its sample from all the road contractors who happen to have practiced even in the past.

The current study also used Morgan and Krejcie method for obtaining sample size as opposed to Yamane formula used by Mwakajo and Kidombo (2017), although both formulae are applicable in calculating the sample size. The study findings by Mwakajo and Kidombo (2017) established that all the 118 respondents jointly concurred that the level of financing was a basic factor of task execution. The way of subsidizing is additionally an urgent factor, with 73% respondents expressing that assets were discharged in stages while concurring that without any doubt the undertakings were financed, but in various behavior.

Budgetary arranging was found to be a vital factor of undertaking execution, as authenticated by 54% of the dominant part of respondents. The study concluded that availability of finances enable resource acquisition. This study, however, highlights aspects of financing up to completion and not beyond. Therefore, this current study on contractor' capacity evaluation in tender award and performance of road construction infrastructural projects filled the gap by studying how finance (financial ability of a contractor) influences project performance and not project completion only.

While finance is a requirement in ensuring road construction projects are successfully completed, there is also need to establish the influence of this variable on the quality of the project in terms of the road performance (during post-delivery stage) hence the need for this current study. The construction sector predominantly comprizes medium as well as small contractors faced with emerging and specific problems in the course of project execution. A study by Kulemeka, Kululanga and Morton (2015) focused on the examination of impeding elements that influence performance of the medium and small contractors in light of the "tender estimation," "quality of work," "timely completion of construction projects" and "tender preparation," in the context of Malawi.

A research questionnaire was issued to 370 participants in the construction sector; including clients in the public sector, consultants, contractors, as well as construction asset trainers so as to gather data from 118 variables, identified by way of a detailed review of literature. The inhibition elements predominantly were economic issues, which fell under the emerging trend in light of what had previously been reported in the sub-Saharan Africa. The highest ranking of the said factors included: high lending interest rates; prohibitive capital access conditions; forex instability; prohibitive conditions for access to bonds; and high rates of tax.

The study forms an underpinning for continued knowledge search about inhibitors to the performance of medium and small contractors against the backdrop of global dynamism. This study, however, left a gap to be studied in terms of the influence of contractor's finance on post delivery performance of the road construction projects. Kithinji and Kamaara (2017) carried out a study on the factors influencing completion of government road infrastructure in Kenya. One of their study's objectives was to determine how project finances and technology influenced completion of infrastructure projects of government. The scope of the study was infrastructure projects in Meru County. The study's research design was descriptive design whereas the target a census survey technique method was adopted and sample size was 80 respondents. A

questionnaire comprising of both open and closed ended questions was utilized to collect primary data. Both quantitative and qualitative approaches were used for data analysis.

The descriptive statistics were utilized to analyze quantitative data with the help of SPSS version 23. Qualitative data adopted content analysis while inferential statistics was applied to identify a relationship between variables using multiple regression analysis, which was utilized to determine the degree of statistical relationships between the study variables. The finding indicated that project finance, and project technology innovation largely influenced infrastructure project completion. The choice of the research design and the statistical tools employed in this study were sufficient and reliable. Though this study used a descriptive research design, it would have also been better for the authors to consider a correlational design which the current study incorporated to in its study to measure the independent variable as noted by Dooley (2007). That is, the descriptive analysis used was deemed appropriate to describe the population characteristics rather than meausure the relationship of the variables in the study as it is the case of correlational research design.

Sources of funding are critical in road construction and if performance issues have to be dealt with. Akali and Sakaja (2018) studied the influence of contractors' financial capacity on performance of road construction. The study used a descriptive survey design whereby it target a population of 203. A sample size of 135 (102 contractors and 33 supervising engineers) was obtained using Yamane formula. Futher stratified and simple random sampling was used in selection of respondents. Data was gathered by use of questionnaires and interview schedule and was analyzed using descriptive and inferential statistics and thematic were applied to analyze data. Descriptive statistics entailed calculating for mean and standard deviation. Content validity was employed to test validity and was subjected to scrutiny by the research supervisor and discussing with lecturers. Test-retest was done to establish reliability of the research tools through which Cronbach's Alpha coefficient of 0.754 was obtained. The study findings indicated that to a large extent 40% of the road contractors had access to capital sources and loans while 30% to moderate extent. Similarly, 60% (moderate extent) and 30% (large extent) of contractors said that they had capacity for accessing funding hence performance of road projects. The study recommended that contractors should establish banks that would

easily facilitate access to credit at fair interest rates so that they could improve their own operating working capital. This study would have adopted a correlational research design to measure strength and relationship among the predictor and the outcome variable but failed hence the current study.

A study by Rahman, Memon and Karim (2013) focused on significant factors causing cost overruns in large construction projects in Malaysia. A total of 262 responses were received out of the 400 questionnaires distributed to contractors, consultants and the clients directly involved in large construction. Analysis of data was performed using SPSS for determination of hierarchical factor of cost overruns. To rank factors, a value of Relative Importance Index (RII) was calculated indicating that with a value 0.78, the second major factor was cash flow and financial challenges or difficulties as agreed upon by most of the contractors and clients although consultants ranked it the sixth. While studying capital budgeting practices in developing countries, a case of Rwanda, Mbabazize (2014) noted that most firms in developing countries finance their projects using debt and equity. This an indication that cash flow is a global issue faced by contractors hence poor performance in construction. However, there is need to study it under financial capacity of the contractor and establish whether a link exists between it and performance in the post delivery of road projects.

2.5 Technical Ability of Contractors' and Performance of Road Construction Infrastructural Projects

It is fundamental not to ignore the importance of technical aspect in construction for this is core in ensuring that ground work is well done to meet the quality mark and hence improved road construction infrastructural project performance. According to Hatush and Skitmore (1997), the criteria for selection fall into a five-pronged typology, namely: financial stability; managerial capacity; technical capability; reputation and safety. Also, Holt, Olomolaiye and Harris (1994) posit that said typology ought to include the contractor's institution; financial factors; as well as management assets; prior experience; previous performance record; project particularities, among others. This demonstrates points of convergence among researchers in light of the selection criteria. Others such as Hatush and Skitmore (1996) propose that virtually all clients use similar set of criteria with minor contextual modifications, and more so the use of subjective measures. This is the case with construction projects, and especially because of the commonality of such

projects, and the subjective measures thereof, and it can be attributed to absence of a grounded framework.

Having a clear selection framework would assist in cutting off contractors who do not meet minimum requirement. Hence, Minchin and Smith (2005) as a possible grounded framework for selection process established Quality-Based Performance Rating (QBPR) model. Accordingly, the major input of the said model was founded on the information collected from the classical subjective indicators, and mainstreamed with the objective input data. The latter was found from the material test results and the quality of workmanship. Essentially, the model employs both forms of data input to individually score the projects.

An index-based scoring of contractors is then developed based on the technical quality dimension. There a number of previous empirical studies on this phenomenon. One aspect of measuring a contractor's technical ability would be through materials used in construction. A research by Seboru, *et.al.* (2016) focused on the degree to which material acquision influnces performance of Kenyan construction projects. The study employed pragmatism paradigm with mixed method. Hence, a hybrid of cross-sectional survey with correlational analysis was utilized in the study. The sample comprised of 74 senior engineers distributed as follows: 30 came from consulting engineering organizations; and 44 were senior engineers from construction concerns.

Also included in the sample were: 74 managing directors distributed as follows: 30 from consulting engineering concerns; and 44 from construction organizations. A 5-point Likert scale questionnaire was utilized to collect quantitative data whereas interview schedules were utilized to collect qualitative data. The descriptive data was analyzed and tabulated using standard deviation, arithmetic means, frequencies and percentages whereas inferential data analysis was conducted using linear regression and Pearson's Product Moment Correlation. Hypothesis testing was done using Fisher (F) test. The study findings were as follows: $R^2=0.246$; F(6,40)=2.173; and p=0.066>0.05. Therefore according to Seboru, *et.al.* (2016), hypothesis-H1 was rejected leading to a conclusion that material acquisition had no significant influence on construction project performance. The requisite amount of materials however had significant influence on project performance. Among these indicators, their indicator of quality of materials is an

indicator of the technical ability of contractors and performance of road construction infrastructural projects in the new study.

It is clear that the study by Seboru, *et.al.* (2016) measured performance vis a vis quantity of materials; the current study measured the extent to the which technical ability (particularly quality of materials used) of contractors' influence performance in terms of quality of completed road. The methodology used clearly demonstrated how the variables are related by use of Pearson's Moment Correlation and Linear Regression hence the need to incorporate the same in the current study. However the study did not clearly show the results for the descriptive statistics, such as the percentage of those respondents who agreed and those that did not agree that acquisition of materials influenced performance of road construction projects.

While designing a performance tool to gauge the suitability of a contractor, various results areas need to factored in. Atieno and Muturi (2016) while evaluating the factors that influence the performance of road construction projects in the Kenyan arid and semi-arid areas focused on the Isiolo – Moyale (A 2) and Garissa – Modogashe (C 81) road projects. The study sought to establish whether contractor's competency, construction parties' financial management, construction resources, and conflicts affect were the factors that influenced performance of projects in the areas. The authors utilized a descriptive research design with a small population of 77 and thus no sampling was done, a census was carried out. Regressions and ANOVA (Analysis of Variance) test were used to assess the factors affecting performance of road construction projects. The study's findings revealed a positive correlation between contractor's competency, construction parties' financial management, timely availability of construction resources and conflicts towards the realisation of increased performance of road construction projects in the Kenyan arid areas.

The study by Atieno and Muturi (2016) showed that independent variables explained 82.7% of variance of the dependant variable, which was the performance of road construction projects in the area. The study found that the contractor's competency variable would lead to the greatest change in performance followed by the conflict variable, construction parties' financial management variable and timely availability of construction resources. Though the study was not conducted in urban setting and that performance was not measured beyond completion of the project (post delivery), the

study demonstrated that competency is key in project performance. The choice of respondents was appropriate for the study. The current study however chose the urban setting where performance of road construction has been cited to be not doing well as well.

Performance of road construction projects appears to be marred with various challenges, especially around contractor's ability. Abiodum, Segbenu and Oluseye (2017) focused their study on the determinants of performance of contractors in the delivery of construction projects in the context of Akure, Ondo State. Among the key areas of focus in the study were the success criteria for project performance; non-performance causes among contractors; and factors affecting the improvement of the said contractors. To harness information from the respondents, Abiodum, Segbenu and Oluseye utilized a structured questionnaire for the study. Further, data analysis was conducted using mean item score as well as the single factor variance analysis. The top three criteria for performance among contractors according to the study were timely completion, budgetary efficiency and requisite quality. The study findings also demonstrated that factors related to quality, those that relate to project management and procurement had the highest impact on contractor performance. It was concluded that good planning, competent leadership and good communication ought to be enhanced to improve performance of contractors on construction projects. Although the findings are clearly informing us on how to improve performance in the construction projects, the research design is clearly stated. This could have been a descriptive research design. In addition, the study just mentions "stakeholders" as the main respondents for the study but does not define the characteristics of these respondents sampled for the study. Koppinen and Lahdenpera (2004) listed, by examples, the three types of construction stakeholders: road users, society and industry.

The study on contractors' capacity evaluation in tender award and performance of road construction infrastructural projects incorporated in its target population the construction firms and contractors registered by the Kenyan government to undertake road works, and public vehicles drivers (also known as matatu drivers in Kenya). Similarly in another study, Obare, Kyalo, Mulwa and Mbugua (2016) investigated further the extent to which diversity in project team training influenced the link between performance of road construction projects in rural areas and implementation of project

control systems. The study methodology adopted for this study was wrongly indicated as "cross-sectional correlational survey design." This may be restated as a descriptive cross-sectional survey design and correlational survey design. The research instruments, however, were interview guide, properly outlined as structured questionnaires and focused group discussion. The study sampled workers in rural roads construction projects and not road contractors. However the finding of the study are intended to inform the contractors on importance of hiring training manpower or personnel of quality performance of the road construction projects.

The study by Obare *et al.* (2016) utilized both inferential and descriptive statistics to analyze the data. Descriptive statistics from the study indicated that majority of the participants were of the idea that more training was required, and that both formal and informal training impacted their performance. Conversely, inferential statistics from the same study revealed that the diversity of project team training strongly and positively influenced the performance of construction of rural roads. With r = 0.804, F=0.647, p<0.05, a conclusion was drawn that project team training diversity positively influenced rural roads' construction performance in Kenya.

Based on the findings from Obare et al., (2016) study, the analysis were presented as follows; at F (1,193) = 142.975; p=0.144>0.05; r= 0.830; and R2 = 0.690, it was concluded that execution process and performance of rural roads construction projects were correlated and that such correlation had no reliance on the diversity of the project team training. Further, It was concluded that road contractors ought to employ diverse workforce in light of the qualification specialty, intensity of training, colleges attended, and training frequency because as such, it would overtly and positively impact the performance of such projects. Though the methodology was not clearly stated in the beginning, the study was able to show relationship between variables.

The current study was guided by the second objective, which is out to assess how technical ability of contractors influence road construction infrastructural project performance in Nairobi County, Kenya. Under this objective availability of technical manpower or personnel is selected to assess how it influences performance of road construction projects and hence the need to compare this study with current one. Like other parts of the world, Nairobi County has its unique challenges when it comes to

effective systems in road construction. Wambui, Ombui and Kagiri (2015) did a research on the determinants of road project completion in Nairobi City.

This was a case study of the KURA projects, and its specific object was to appraise competency of the project manager, project equipment, project funds, as well as information technology in light of its influence on the efficiency of the completion of such projects. The target population was majorly staff members in Finance, HR, IT, and Construction departments. It utilized descriptive research design, and a target population of two thousand members of staff in KURA, Nairobi City County. Stratified random sampling was utilized to pick a sample of a hundred and thirty eight respondents.

Data collection was done using research questionnaires, with a pilot study done to ascertain and enhance the validity and reliability of the said tool. Data analysis was done by the use of descriptive statistics, supported by SPSS version 20. It was finally revealed that the completion of a road construction project is significantly impacted by: equipment used; competency of the project manager; availability of project funds; as well as technology used in the project. This measurement framework was used in the current study, with the foregoing indicators used to measure the extent to which tender evaluation results influence the performance of roads even after completion (post-delivery stage).

2.6 Management Ability of Contractors and Performance of Road Construction Infrastructural Projects

Kenya appears to have made tremendous progress in terms of infrastructure, however, according to Wambui, Ombui and Kagiri (2015) construction industry within the country faces a lot of challenges and complex issues in their performance. Many realistic justifications account for this, namely: closures, amendment of drawings as well as design, and delays in the disbursement of requisite funds.

Other impeding factors in this regard are: mediocre leadership and management; inappropriacy of participants; bad coordination and inter-personal relations; lack of control, motivation, monitoring or systems to aid decision making; infrastructure inadequacy and political challenges; socio-economic challenges. It was observed by Watt, Kayis and Willey (2008) that appraisal is a demanding task characterized with diverse

uncertainties. They came up with the following evaluation criteria typology, namely: workload/capacity; organization ability; physical assets; as well as firm reputation, technical expertise, supplier-client engagement, and method/technical solutions.

It was suggested by Wambui, Ombui and Kagiri (2015) that there is need for continued research on the Key Performance Indicators (KPIs) so as to develop a framework for the causal relationships between the variables in question. In this regard, the current study further pursued the influence of those indicators on post-delivery of road construction infrastructural projects in Nairobi, Kenya. Factors relating to management have been identified by Naik, Sharma and Kashiyani (2015) as follows: inadequacy of relevant information; weak scheduling and planning; inadequate coordination among participants; and poor agility in decision making. The other factors include coordination with other primes; subcontractors' coordination and control; professional misconduct; human resource management; provision of enough workforce, as well as materials and equipment to meet the plan or schedule; on-site supervision quality; daily work log adequacy; conflict resoluton; minimization/avoidance of claims; as well as conformance with regulations, laws, inspections, permits, and testing.

Others such as Aje, Odusami and Ogunsemi (2009) evaluated the impact of contactors' management capacity on the time and cost of performance of construction projects in Nigeria. The statistical findings showed that contractors' management capability is a significant criterion in the appraisal of potential construction contractors' performance in the course of prequalification as well as tender assessment. Previous performance and quality thereof, experience of the contractor, management knowledge as well as programme for quality control were also identified as the major yardsticks for assessing contractors' management ability.

It was also discovered that contractors' management capacity significantly impacted cost performance and time, with a p-value of 0.039 and 0.042, respectively; thereby supporting earlier findings that management capacity is among the significant criteria for contractors' prequalification in the Nigeria context (Aje, Odusami & Ogunsemi, 2009). The study findings further revealed that the cost and time of a construction project and performance had a strong correlation with contractors' management ability. Hence,

models for prediction of the project completion cost as well as actual time-frame for building projects was validated.

According to Aje, Odusami and Ogunsemi (2009), the above study was intended to facilitate clientele and consultants to measure the time and cost of performance of construction projects in line with the prequalification apparisal of contractors on management capacity, the contract period as well as tender quotations. It therefore implies the possibility to project the actual cycle period and cost of projects from the very beginning based on the foregoing variables. In spite of this, the focus of the study was on building construction, even though the variables are the same as those of the current study on road construction infrastructural projects.

A case study by Omran, Abdalrahman and Pakir (2012) on project performance in the construction industry in Sudan comprised a total of 75 structured research questionnaires distributed randomly, from which 52 were completed and returned. The study utilized the relative importance index (RII) to rank the determinants of project performance. In addition, Spearman's Correlation Coefficient indicated the strength of relationship between the most significant determinants, with the Kruskal-Wallis test being an indication that there were comparison and opinion variations between the respondents. It was established that the most significant five determinants of project performance were: planning effort; experience of project team leader; design and specification adequacy; monitoring for cost progress; as well as the leadership skills.

The study further determined that project managers ought to put together an effective team, and develop a learning culture for better leadership, since good leadership skills can lead to improved productivity by the workers. A conclusion was then drawn that project manager sought to also be aware of the project characteristics, including missed or unclear aspects. Moreover, such managers ought to have adequate experience for the management of the project for problem-solving in the course of project implementation. The study hence avails positive information as to the relationship between management capacity of contractors and performance of road construction projects.

One main reason why quality in road construction is compromised is due to rogue contractors. Ntuli and Allopi (2014) also argue that regardless of the amount of resources dedicated to the contractors, it would add no much value if the tender awards are given to
those who do not qualify. Others such as Mwakajo and Kidombo (2017) also did a study of the determinants of project performance among county road infrastructural projects in Manyatta constituency, Embu county, Kenya. The said study revealed that project leadership requires the capacity to undertake tough decisions, deal with human resource issues, and to invoke authority as and when may be necessary in pursuit of a project in light of various constraints. The findings of the research demonstrated that 88% of the respondents concurred that the projects were professionally and accurately led albeit it was only confined to the project completion rather than in the post-delivery phase.

Management commitment is key if the planned design is to be implemented in construction. El-Maaty, Akal and El-Harawy (2016) focused their study on the management of highway projects in Egypt by examining determinants of quality performance. Accordingly, 39 such factors were singled out via a detailed review of literature. The factors were then tabulated in form of a questionnaire, and dispatched to thirteen owners of divided highways, twenty seven owners of regional roads, as well as fifteen consultants. Respondents' perspectives were then analysed through the use of fuzzy triangle.

The findings by El-Maaty, Akal and El-Harawy (2016) showed that the most critical parameters that positively impact quality are:owner's inspection team efficiency; owner's clarity of responsibilities for each key stakeholder; unstandardized pavements; experience of the staff involved in the entire project cycle; as well as quality and type of asphalt applied in process of construction. The research nevertheless failed to clearly articulate the data analysis method nor did it demonstrate a linkage among the key study variables. As a result, the intensity of monitoring as well as road construction performance, a conflation between variables was undertaken through inferential statistics.

In a study on the impact of experience and skill inadequacy in the construction sector in Kwazulu-Naatal, South Africa, Ntuli and Allopi (2014) investigated the challenges facing civil engineering contractors for enterprise sustainability. In effect, various challenges were identified, namely: inadequate understanding of the processes involved in tendering; capacity building; cash-flow challenges due to late payment; corruption; procurement policy ignorance; lack of business planning; ignorance of the role of the Construction Industry Development Board (CIDB); inadequate operational as well as managerial skills among contractors; poor pricing; misunderstanding of the general

contractual provisions; and challenges relating to sub-contracting. The said study results indicated that there were shortage of skills in the construction sector thereby informing the need for continuous capacity building of those contractors and their employees. The study further proposed that the government, in liaison with relevant stakeholders, ought to set up and execute contractor capacity building programs to cure the skill gap problem.

2.7 Contractor's Safety Record and Performance of Road Construction Infrastructural Projects

Another variable of concern regarding a construction contractor is safety performance. To adjust the safety performance of personnel, an array of activities is undertaken by safety practitioners as well as management. Some of those activities include safety communication; safety training; and safety rules and procedures. Griffin and Neal (2000) posit that safety performance is employees' personal conduct through which own safety as well as that of colleagues would be assured. Two dimensions of safety therefore emerge, namely: compliance with safety safeguards, including the use of personal protective equipment (PPE), adherence to safety rules and procedures, and safety participation, including voluntary participation in such activities, including meetings for safety strategy. Many studies have demonstrated that motivation and employees' knowledge positively impacts on safety performance. This argument has been emphasized by Hall and Holt (2003) in the below comment:

"Despite the notorious reputation of the construction industry for poor health and safety, project financiers almost never thought of it as their duty to facilitate the safety and health practices of suppliers where appropriate at the site. Therefore, upon occurrence of an incident, it could significantly impact budgetary as well as programmatic performance, despite all other parameters being in place. It was established that the procedures for the choice of suppliers were imperative for health and safety assurance, given that project sponsors never concerned themselves with the matter, as long as work was on course." (Hall & Holt, 2013, p. 266).

The circumstances are even worse in the developing country contexts such as Iran, being an outcome of numerous dynamics, including absence of rules and regulations, mediocre inspection by government machineries, unskilled labour, poor motivation of employees, time and economic pressures, as well as lack of an integrated system for accident recording and reporting (Koehn, Kothari & Pan, 1995). Others such as Kartam and Bouz (1998) discovered that weak systems for accident recording and reporting are a conduit for hiding the pervasive safety gaps.

The culture of keenness to safety issues has also been said to critically set the attitude and the significance of organizational safety (O'Toole, 2002). Several other factors affect injury rates over and above the OSHA regulatory activities (Weil, 2001). The factors determining OSHA performance can be analyzed by dissecting the process into three key elements, namely: compliance behavior, enforcement related aspects; and the sufficiency of standards to address safety output. The three components are further broken down into: safety practices and investments by the employer; on-site training of the worker on safety; integrated management of the site; the role played by the unions as well as off-site activities; technological effects; and practices related to the actual work. In addition, the negative economic as well as social outcomes of accidents are undeniable. Others such as De Saram and Tang (2005) examined the non-material accident costs, including pain and suffering, and loss of quality of life. Accordingly, they reported that the said costs comprised approximately thirty percent of direct costs of accident.

Consequently, the emergent key index has been "safety", alongside others such as the triangle of time, as well as quality, in the appraisal of construction project success; hence the undeniable need for its improvement (Ngacho & Das, 2014; Alzahrani & Emsley (2013). A research by Jannadi and Bu-Khamsin (2002) focused on safety determinants in the Saudi Arabian context. The research methodology was as follows: (1) literature review was undertaken for the identification of variables; (2) a list of variable dimensions and their respective indicators was developed; (3) expert interviews were then undertaken to enhance construct validity; (4) a research questionnaire based on variables and dimension indicators that were identified was developed; (5) data was the collected; (6) data analysis was undertaken; and (7) a summary of the results was developed (Jannadi & Bu-Khamsin, 2002). The said study subjected the industrial contractors to research questionnaires and a formal interview with each contractor's official in charge of construction safety in the Saudi Arabian Eastern Province. The survey intended to collect data relating to the key determinants of industrial contractors' safety performance.

A total of 28 concerns were surveyed because they met the criterion of involvement with large-scale industrial construction activities the said province (Jannadi & Bu-Khamsin, 2002). Twenty key factors as well as eighty-five minor-factors were identified as

determinants of construction contractors' safety performance. The major determinants in this regard were: housekeeping and site planning; signaling and barricades; disaster and emergency preparation and planning; welfare facilities; crane and lifting equipment; signage, concrete and related framework; and cutting and welding; chemical handling. The other factors included electrical equipment; transportation handling, and disposal of risky material as well as waste; equipment for personal protection; prevention of fire; excavation, scaffolding and ladders; transportation; trenching and shoring; hand and power tools; ionization radiation, mechanical equipment; and involvement of management.

From Jannadi and Bu-Khamsin (2002), the respondents concurred on the priority listing of the foregoing safety factors. The data were utilized for the identification of the key and sub-factors affecting the construction contractor's safety performance. The scale of significance attached to the major and sub-factors was arrived at based on their relative priority. Each item in the questionnaire comprised five options, via: 4 points for "very high impact"; 3 points for "high impact"; 2 points for "moderately high impact"; 1 point for "low impact"; and 0 (zero) points for "no impact". It was concluded that each of the variables under review were the most significant determinants of the safety performance of industrial construction contractor. In this regard, there was a total concurrence on three main factor, namely: engagement of management; protective equipment; and emergency/disaster preparation and planning (Jannadi & Bu-Khamsin, 2002). This conclusion was driven by the reported highest impact and weights (6.0) of each of the safety program; this is in addition to personal protective equipment as well as emergency or disaster preparation and planning.

Some contractors have not been keen on observing regulations in the construction industry. Diugwu, Baba and Egila (2012) conducted a study on level of awareness and effective regulation in the context of Nigerian construction industry. A random distribution of questionnaires was done, without regard to the enterprise size band. The objective here was to avoid a skewed analysis through acquisition of a representative view on each item. This being an economical sampling strategy without losing the desirable attributes of probability sampling. Out of the 495 questionnaires dispatched, a total of 312 were returned comprising 271 and 41 valid and invalid questionnaires,

respectively; representing 69% response rate. An analysis of the valid responses indicated that 91% were of the opinion that poor safety and health impacted operations of their businesses, the balance were of the contrary opinion. Specifically, 74% reported that poor safety and health standard impacted their corporate reputation, with the balance expressing the contrary opinion.

Overall, approximately 55.9% of the respondents reported that they had no safety and health policies in place. According Diugwu, Baba and Egila (2012), therefore, despite several construction concerns being probably aware of the safety and health impacts of their activities, they still had no safety and health policy in place. Summarily, the research concluded that health and safety management constraints, inadequate support, asset limitations, lack of knowledge of details as well as implications, and management non-commitment impacted the safety and health strategies.

In regard to compliance measurement, it has been asserted by Weil (2001) compliance with standards of OSHA by construction contractors is only observable by the time of actual OSHA inspection by an authorized OSHA personnel on-site. The inspector identifies non-compliant on-site activities and ranks them according to the degree of severity. This inspection procedure would provide an objective measure of the degree of compliance with health and safety safeguards.

The construction industry is said to rely on the contractors' effort to significantly reduce accidents on construction sites voluntrarily. Feng (2013) sought to study the effects of contractors' safety investments on safety performance and identify the factors influencing the effects of safety investments on safety performance. The researcher adopted a regression and correlation research design to be able to fill the gap. Data collection tools involved the use of structured interviews, archival data and questionnaires. The study targeted a total of 47 completed building projects. The main data analysis techniques were bivariate correlation and moderated regression techniques. The findings revealed that basic safety investments effect on safety performance did not hold constant considereing other prevailing project conditions. According to Feng's study, basic safety investments showed a stronger positive effect on accident prevention where a higher safety culture level was being exercised and also project hazard level had been put in place. This implies that despite a contractor's keeness to more protection and safet environment,

safety culture has a significant role to play in construction projects. Although this study was focused on building projects, the current study specifically focused on road construction infrastructural projects in Nairobi County in Kenya.

2.8 Process Monitoring and Performance of Road Construction Infrastructural Projects

The use of monitoring and evaluation as a discipline has widely been acknowledged and utilized among many organizations. M&E as well as other control mechanisms play very key management roles to ensure that project objects are fully pursued and maintains trajectory (Mwangu & Iravo, 2015). United Nation Development Programme (UNDP) defines monitoring and evaluationas: the continuous process through which stakeholders get upto date feedback on the progress of set goal and objective (monitoring) pursuit; includingan independent and rigorous appraisal of completed or continuing activities to establish the extent of their alignment with the objectives and contribution to key decision making (evaluation), (UNDP, 2009). According IFC (2017), when monitoring in construction is taking place, the following need to be checked: explicit commitment to compliance with the project code of conduct; adherence to the project security forces management plan, if applicable; monitoring of Environmental and Social (E&S) and other personnel, including training on HR policy provisions, grievance mechanisms, health and safety, material management among others.

Effective implementation of road construction infrastructural projects and future performance demands a strong M&E system observed throughout the process. Bulle and Makori (2015) focused their study on the strategic planning influence on urban road projects' performance in the Kenyan context. A key object of the study was to determine the influence of M&E in strategic planning on the urban road projects' performance. Descriptive survey design was adopted in the study, with a sample of 70 employees involved in the implementation of KURA projects in Nairobi City County. Data was collected by the use of research questionnaires.

Secondary data was also gathered from published sources, including magazines, journals, reports, and periodicals as a supplement to the primary data. To assure validity and

reliability of data collection tool, a pilot study was undertaken to pre-test the research questionnaire. Data analysis was performed using SPSS version 22 as well as Excel. It was established that M&E in strategic planning has a great influence on the performance of urban roads in KURA. The study by Bulle and Makori (2015) therefore failed to provide statistical tools of testing relationship between variables. This however would have been made possible by use of regression and correlational analysis.

Although the study concluded that M&E influences performance of roads, the current study is going to use the tools of analysis to establish the extent to which this variable influences road performance through its moderating effect (process monitoring). Nowadays, M&E has become a powerful tool for public sector transformation and service delivery (Hlatshwayo & Govender, 2015). A study entitled "contractor monitoring and road infrastructure projects performance in Uganda," undertaken by Byaruhanga and Basheka (2017), had one of the objectives that was out to evaluate the linkage between monitoring of contractors and national road infrastructure projects' performance in the context of Uganda.

Though the study by Byaruhanga and Basheka (2017) did not clearly point out the research design used, from the tools of analysis given, it can be concluded that the study used a descriptive survey and correlational designs. The study however clearly stated that non-probability sampling design was utilized in the selection of engineers and procurement professionals. Simple random sampling was used to select members of parliament, private consultants, and civil society organizations. A mix of both closed ended questionnaire and interview guide was used to collect data.

Further analysis was undertaken through the application of regression method to look out for association. A simple correlation between the key study variables was identified; with R2 value demonstrating the extent to which the focal criterion variable, performance could be explained by the focal predictor variable, contractor monitoring. Accordingly, 0.159 could be explained by the predictor variable, large enough. The recorded standard error was 0.1204 while the adjusted R square value was 0.841; implying that contractor monitoring is a predictor of road infrastructure projects' performance (Byaruhanga & Basheka, 2017).

Put differently, road infrastructure performance relies on contractor monitoring variable by 84.1%. It was also demonstrated that the regression model is an accurate predictor of the criterion. The statistical significance of the regression model was considered, with P <0.0005 was less than 0.05; indicating that there was a significant conflation in the prediction of the criterion variable. Critical F-value of 6.90 was less than the actual Fvalue of 31.223 at the 0.01 level of significance (Byaruhanga & Basheka, 2017).

From the foregoing, it can be concluded that there exists a positive linkage between contractor monitoring and road infrastructure projects' performance. The alternative hypothesis was therefore upheld. The findings of the research also revealed that 96.3% of the respondents concurred that there exists no overt mechanism for dispute resolution for road projects, with 80.5% further indicating that contractor performance appraisal was non-existent throughout the execution process. Further, the research established feeble procurement regulations leading to the award of contracts to non-deserving contractors, unqualified personnel handling the procurement process; non-existent contractor as well as contract supervisors' performance appraisal framework; weak internal project M&E system at the Uganda National Roads Agency (Byaruhanga & Basheka, 2017).

The findings by Byaruhanga and Basheka (2017) collaborates with the anecdotal findings of the UNDP (2009) that projects and programmes underpinned by firm M&E components seem to remain on track. Moreover, challenges are commonly detected in advance thereby reducing the probability cost as well as time overruns. With all these indications, monitoring of road construction projects cannot be overlooked if performance has to be realized. The methodological approach used in this study was appropriate such that the data the relationship between variables was tested. The current study measured the moderating influence of process monitoring and therefore the predictors in this study were used to compare the outcome.

Similarly, Mwangu and Iravo (2015) did a study on the effect of M&E on the success of CDF projects in Kenya. The main aim was to determine the impact of project supervisors and contractors on projects' outcomes. The study was inclined to the field survey design, sampling 45 respondents selected through stratified random sampling method. The process of collecting data was conducted using structured questionnaires while analysis was undertaken through SPSS Version 16.0. The study findings demonstrated that project supervisors and contractors utilise monitoring instruments to some extent in the

operations of their project, thereby generating satisfactory degree of success. It was also determined that majority of CDF projects in Gatanga Constituency in Kenya had minimal time and cost overruns, a characteristic that was considered key for success of those projects. Therefore, project monitoring affects positively project success. Although these findings are focused on project implementation, monitoring of a project is not limited to implementation only but also on performance after delivery of the same project (UNDP, 2009).

The current study therefore uses this indicator of monitoring (stated as process monitoring) to assess its moderating influence on the relationship between contractors' capacity evaluation in tender award and the performance of road construction infrastructural projects in Nairobi County in Kenya. Researching beyond project implementation would establish its usefulness and influence on post-delivery of road construction infrastructural projects and contribute further to the extant body of knowledge as far as M & E of road construction projects is concerned.

Monitoring of all infrastructural projects is significant to realize quality product. Umugwaneza and Kule (2016) evaluated the role played by M&E processes on projects sustainability in Rwanda. The research adopted a descriptive research design with a target population of 104 respondents comprising of 100 monitors of Rwanda Electricity Access Scale-Up and Sector-Wide Approach (SWAP) development project and four directors of REG in Karongi, Gatsibo, Bugesera and Kayonza. Slovin's formula was employed to come up with the sample of 83 respondents. Purposive sampling method was further utilized to come up with the four directors, while for selecting SWAP staff, simple random sampling method was utilised. The research made use of both secondary and primary data: a well-structured questionnaire was employed to gather primary data. Questionnaires were employed as the instrument of data collection. The SPSS version 23 was utilzed to analyze the data with a special attention to regression analysis, percentags, arithmentic means, an correlation. Findings were presented by use of frequency distribution tables. Findings of the research indicated that effective communication (r=0.466, p<0.01), supportive supervision (r=0.612, p<0.01), accountability (r=0.347, p<0.01) and partnership for planning (r=0.506, p<0.01) significantly correlate to the sustainability of projects in Rwanda.

The study therefore recommended that commitment by the management in overseeing the M&E exercise in the project will boost project sustainability in Rwanda (Umugwaneza and Kule, 2016). The study also recommended that firms should consider M&E as mandatory at all levels of the projects. Although the focus was on sustainability, it can be deduced that perfomance of road construction infrastructural still relies on a strong M&E system, more specifically process monitoring. Minyiri and Muchelule (2018) also found that the organization would be able to practice monitoring intensity so as to enhance performance in procurement and further recommended that contractors should be allocated with the right amount of resources for project completion.

Further, Ng'etich and Otieno (2017) pointed out that the fast worsening state of roads in Kenya calls for more M&E processes during road construction. The study focused on factors that influence monitoring and evaluation processes of county road projects in Turkana county government. The authors expressed concern that M & E has been underutilized by the relevant bodies such as ministries handling the projects via various funding bodies and stakeholder like the contractors. The study sought to evaluate the extent to which availability of funds, stakeholder participation and inntegration of technical persons affected performance of M & E processes of county road projects in Turkana County Government.

In a study undertaken by Ng'etich and Otieno (2017), the key limitation was identified as cost-time constraints and was delimited on road infrastructure construction projects in the Turkana County Government. A descriptive survey template was used to collect data using self-administered questionnaires and secondary sources. Research subject were focused on the 35 ongoing road projects per financial year within the region of the study unit. The 50 participants were chosen from workers who were active when the county government started building and maintaining roads.

This included the technical personnel in the Ministry of Roads, Transport and Public works within Turkana County, contractors team and the MnE Committee from Ministry of Finance and Planning. The study employed a stratified random sampling technique, being a probability sampling technique. Numerical data gathered using questionnaires was coded and entered and analyzed using Microsoft Excel package as opposed to SPPS that was utilized in the current study to measure relationships and strengths within variables.

Study employed a descriptive analysis where by findings were displayed in varying percentages and frequency tables. Analysis of data was also done by Excel 2013 data analysis: Anova tests was undertaken to establish if there exist any statistical differences between the means of the independent groups. The ANOVA tests gave Pgreater than the 0.05 level of significance indicating that there was no values significant relationship between availability of funds, stakeholder participation, involvement of technical personnel and the MnE processes. Hypothesis testing was analyzed by use of Excel 2013 data analysis; two sample t-test, assuming unequal variances. The study concluded that funds available for M&E of mojority of the county projects are unplanned, inadequate and that there is no timely allocation (Ng'etich & Otieno, 2017). It was also concluded that stakeholder participation is important in project management since they significantly influence the project deliverables and finally involvement of technical persons is vital in unertaking MnE activities.

Therefore, results showed that there exist a great influence of funds availability, stakeholder participation and involvement of technical personnell on MnE processes of county road projects (Ng'etich & Otieno, 2017). However, the study did not demonstrate the extent to which monitoring is conducted hence the need to assessin the current study the extent to whicn process monitoring moderates contractors' capacity evaluation in tender award and performance of road construction infrastructural project in Nairobi County in Kenya.

A research on the influence of monitoring and financial capacity on quality of housing projects in Nakuru County, Kenya was conducted by Asinza, Kanda, Muchelule and Mbithi (2002). The study's objective was to investigate the effect of monitoring and financial capacity on quality of projects in Nakuru County, Kenya. The authors used questionnaires for data collection. The target population comprised of thirty-two construction companies in the county and completion of projects was utilized as the unit of analysis. The target population comprised of 147 members consisting of project engineers, managers and contractors in the 32 companies that were selected randomly using stratified sampling. A sample of 96 people was selected to participate in the study. The study's response rate was at 90.6% and both inferential and descriptive statistics were utilized to analyze the data. Monitoring factors considered for the study were extent of

monitoring and monitoring methods, which had a strong and significant positive relationship with, project quality (r = 0.893, p < 0.05).

Under financial capacity, availability of finance and budgetary allocation had a significant positive relationship (r = 0.475, p < 0.05) with project quality. The overall regression model gave R2 of 0.354. This showed that about 35.4% of variations in project quality can be associated with financial capacity and monitoring. According to Barczewski (2013), the national hurried pursuit for project development in the last decade highlights the need for efficient construction and operation of new projects together with approval from relevant environmental bodies such as NEMA.

A study by Nyatwang'a (2016) focused on the determinants of effective implementation of environmental management strategies by public organizations in road construction sector in Kenya. The study was guided by one of the objective that sought to determine the relationship between environmental legislation and implementation of Environmental Management strategies during road construction. A descriptive survey design was used whereby both quantitative and qualitative data was collected and analyzed.

The population of interest was therefore twenty (20) Project Engineers, twenty (20) Resident Engineers (RE) and twenty (20) Road project Site Agents (SA) (Nyatwang'a, 2016). In this study sampling was not done since the population of sixty (60) did not warrant sampling and therefore census was preferred. Primary data was obtained using questionnaires while secondary data was be obtained from journals, periodicals, textbooks, project and academic reports. In addition, strategic management publications, reports from governmental entities, internet and developmental plans were also used to provide secondary data. In this study, information was collected using drop and pick method where questionnaires were distributed to the respondents. Content Validity Index (C.V.I) determined the relevance of every item on the instrument on the basis on study's objectives.

From the findings of Nyatwang'a (2016) study, all the respondents (100%) were all male and no woman was involved in the management of the selected ongoing road projects. Majority of the respondents (36) indicated that environmental audit had been carried on the road projects (representing 85.7%) have carried out annual environmental Audit while the remaining percentage (14.7%) had not carried out the environmental audit. The reason for not having carried out environmental audit was because the road projects had just started and not finished one (1) year. Normally, Environmental Audit is done annually as per EMCA, 1999. The findings by Nyatwang'a's study further revealed that road projects are not adequately staffed with trained and experienced Environmental and Social Safeguards specialist. Finally, it was concluded that Environmental Management Plans (EMPs) are not adequately implemented during road construction. The reasons why implementation of EMPs has no effect include EMP is not billed item in the contract (47.6%), and EMP is not well articulated in the contract (42.9%).

The other factors are: no permanent staff responsible for environment on site (35.7%), contractors not taking EMP implementation seriously (26.2%), lack of funds (16.7%) and insufficient environmental skills and training for supervision staff (9.5%) among others (Nyatwang'a, 2016). This study could, therefore, be linked to compliance of contractors to monitoring activities. Wanjala, Iravo, Odhiambo and Shalle (2017) observed that over the years, there has been a challenge in monitoring practices implementation which have led to many organizations crumble as a result of failing to mastering the monitoring best practices in respect to performance of their own projects. The authors studied effect of monitoring techniques on project performance in state corporations in Kenya. Selected 65 state corporation to inform the sample size. They used Pearson correlation and and t-test to determine relationships between variables. The findings of the study indicated that monitoring techniques had significant influence on the project performance (techniques (β 3= 0.674, p<0.05). The study however empasises the importance of monitoring but it does not explain how monitoring particularly influences performance in road construction projects, hence the need for the current study.

2.9 Contractors' Capacity Evaluation in Tender Award, Process Monitoring and Performance of Road Construction Infrastructural Projects

Performance of engineering projects, such road infrastructure and building infrastructure, directly have a relationship with contractors' capacity in executing tasks. For instance, Mutoro, Asinza, Kanda and Malenya (2017) in their study titled, "Effect of Contractor Capacity and Monitoring and Evaluation on Completion of Water Services Boards in Kenya," found out that contractor capacity had a relatively strong significant positive relationship with completion of projects (r = 0.657, p<0.01). Mutoro et al., assessed contractor capacity in terms of adequacy of resources and experience. The findings

revealed that in all aspects, the respondents did not agree that contractors had; adequate financial resources, skilled personnel, equipment and tools, goodwill from suppliers with construction materials, adequate and relevant construction experience in tune with the similar nature of projects and complexity, site management skills, used current methods and techniques, control over sub-contractors, complied with Health, Safety and Environmental standards, understanding of labour laws. Despite the results from tender evaluation process, the need to ensure that monitoring is made part of it is vital. In view of Rigotti, Migliaccio and De Marco (2015) the process of evaluating performance via previous and personal preferences as opposed to exploiting systematic approaches can result to either misevaluation or ultimate failure. Chan and Chan (2004) argue that:

"In nature, the construction industry is dynamic, with the 'project success'concept remaining ambiguously defined in the said industry. The ultimate aim for any project is its success. Nevertheless, it implies variegated things to different people. Whereas some authors focus on cost, time, and quality as major criteria, others propose that success is a more complex concept" (Chan and Chan, 2004)

Measuring of project success sounds and appears ambiguous to many scholars. Mwakajo and Kidombo (2017) agree that projects' success means a lot of things because it is a multi-dimensional construct. Koppinen and Lahdenpera (2004) observed that construction and maintenance levels and values of road networks ought to be maintained at the least cost possible; thus, available money should be utilized effectively to meet the expectations of different stakeholders (See Figure 1). To begin with, is the road user safety which encompass stable speed, predictable time of traveling, ride comfort, good daily condition and aesthetic. Road project is also delivered with aim of meeting society goals. This is presented in terms of road availability, value for money, maintenance of roads and minimal environmental impact. Finally, roads are delivered purposely to meet industry's objectives. The industry aims to reap profits and seek continuity, productivity, development, competiveness and risk management.

Figure 1: Goals of Various Stakeholders Source: Adapted from Koppinen and Lahdenpera (2004)

The stakeholders' requirements are focused on performance of the road infrastructural projects. Wong, Nicholas and Holt (2003) indicated that adequacy of information, technical knowhow, control and monitoring procedures and contractors' ability to manage risks are among the key project performance indicators in construction industry. Asinza, Kanda, Muchelule and Mbithi (2016) noted that project quality is associated with monitoring. In the context of small contractors or tasks and services that do not pose significant environmental and social (E&S) risks, a general E&S plan describing controls and monitoring mechanisms, or the observance to a pertinent client's procedures, may be sufficient (IFC, 2017).

Besides having strong monitoring systems to oversee the specifics in the road construction and, or construction industry generally, there remains a need to understand how to measure performance. According to Wambui, Ombui and Kagiri (2015), the significance of performance identification in an organization is demonstrable globally, with key results being the attraction of investment in the future, upsurge in the share value as well as the attraction of the right and superior human expertise. Others such as Boyle (2014) revealed that performance evaluation framework for contractors escalate the sum total delivery of construction programs, current projects' performance, as well as the capacity to single out contractors of high quality. Objective scoring is typical of a good system, where numerical scores are rationale-based, and regular. Project-specific advantages exist, and learning curve is a salient attribute. A system revealing the complete performance record is fundamental. This evaluation criterion, drills into the justifications for the performance score, thereby identifying challenges on both the designer and the owner.

According to this proposition, late completion shown by the latest progress schedule may not necessarily be a justification for a low score for the particular contractor. This could also mean that the same contractor may have significantly dealt with the problems caused by others before. In fact, since problem solving of that nature by contractors remains fundamental to the project success, superior performance appraisal mechanism rests in its ability to identify such contractors.

2.10 Theoretical Framework

The current study on contractors' capacity evaluation in tender award, process monitoring and performance of road construction infrastructural projects was limited to theory of construction management, Domino theory of accident causation, resource-based theory and human capita theory.

2.10.1 Theory of Construction Management

The construction management theory was proposed by Radosavljevic and Bennett (2012). They posit that concentration on project management only has limitions in regard to the performance of construction project. The six inherent difficulty indicators were advanced by De Valence (2012) as the basic variables in CM theory; being the main determinants of the most suitable CM strategy. They include: derived linkages between pre-existing interacting teams way before project commencement; time differences in the course of the project with or without inter-team relationships, otherwise called relationship fluctuation; the amount of time taken by teams to work together in the past, otherwise called relationship quality; interaction patterns throughout project life, called relationship configuration; inconsistencies among team performance, called performance variability; and unavoidable factors otherwise referred to as external interference. Radosavljevic and Bennett (2012) further argue that the progress and development of the construction sector was dependent upon a hybrid of both project and corporate management understanding. The CM theory unveils the argument that construction management aims at efficient and effective completion of construction projects within the set objects. It all begins with the selection of competent project teams for the undetaking of the projects. The team here entails: managers, building team, designers, production specialists, manufacturers, as well as commissioning specialists.

The theory acknowledges the inherent and unavoidable challenges confronting construction teams. It is also founded on the perspective that the key objective of CM is to alleviate such inherent problems. Others such as Seboru *et al.* (2016) in a study on the linkage between materials' acquisition and road construction performance in Kenya utilised the theory and established that performance of such projects has a conflation to the theory in question. Hence the theory is use in the current study, more specifically to test its relevance on the predictor variable management ability of the contractor and performance of the road construction infrastructural projects. It is considered important

since it explains the reason why successful projects have a direct correlation with the contractor's management ability or capability to oversee selection of competent teams and execution of construction tasks as per the design specifications.

2.10.2 Domino Theory of Accident Causation

Advanced by H.W. Heinrich in 1931, Domino theory of accident, attempts to present a set of axioms, otherwise called "the industrial safety axioms". The first axiom deals with cause-effect of accidents, and it stipulates that 'accidents occur due to a complexity of determinants, with the accident itself being the last.' Accordingly, he developed the 'domino theory' model since the said sequence of factors was compared to chain of dominoes hitting and collapsing one another in series. According to Heinrich, Peterson and Roos (1980), the said sequence is injury, due to; accident, caused by; risky act and, or physical or mechanical hazard, as a result of the; person's fault, due to their; ancestry and social ecosystem (Figure 2).

Figure 2: Domino Theory Model Source: Adapted from Heinrich and Roos (1980)

Five sequential antecedents from the Domino theory have been identified by Hosseinian and Torghabeh (2012), namely: firstly, social ecosystem and ancestry which are among the process of knowledge acquisition at workplaces including culture, values, and attitudes; with lack of skills as well as technology for task performance, poor ecosystem and social conditions leading to human fault. Secondly, carelessness which mainly is a description of adverse personal attributes, acquired or otherwise. Such carelessness are antecedent to poor work conditions.

Thirdly, hazardous human acts, with risky conditions encompassing the faults as well as technical failures leading to accidents. Fourthly, accidents as a result of risky acts leading to injuries. Finally, injury is the ultimate result of accidents. Domino's theory was further updated by Bird and Loftus in 1974 to put it in the context of management system in the manner proposed by the Domino model. The following explains the series of events in this model (Hosseinian & Torghabeh, 2012): absence of management control system; primary causes including personal attributes, job related attributes, spontaneous causes; contact with energy as well as substance; property, human, and process loss.

Therefore Sabet *et al.* (2013) argue that majority of the construction accidents have their origins from human faults as well as functional sources including facilities and equpments used in the work processes. As a structural map, the domino theory has attracted considerable support and acceptance among the theories that attempt to explain the occurence of accidents. James Reason endeavored to develop a remedy version of domino theory. The former was of the opinion that there always exists a conflation between human conduct and subsequent outcomes.

According to Sabet *et al.* (2013), concerns have to hedge against the risks of accidents as a result of risky activities the persons involved. Others such as Mahat *et al.* (2015) concur with the complexity argument of accident causation, due to the multiplicity of factors antecedent to the on-site accident itself. Accordingly, there is need for an accident prevention strategy since it plays a role in the inter-relationship among the factors in question.

Literature on construction safety shows that many empirical investigative endeavors have been undertaken with a view to analyzing accident records for purposes of categorizing the most frequent forms of accidents and their root causes. Table 2.1 adopted from Mahat *et al.* (2015) entails a summary of literature sources highlighting the primary causes of accidents at the construction site. Therefore Table 2.1 is a summary of the key triggers of accidents in both building and civil engineering sectors. It has been adopted to illustrate the causes of avoidable accidents in road construction infrastructural projects during the life of the project and when the road is being used by the either motorists or pedestrians.

Author(s)	Root Cause of Accidents
Hinze and Parker (1978)	Work pressures as well as rivalry among crew members
McClay (1989a) and McClay (1989b) Raymond (1995)	Dangers, personal faults, as well as operational limitations Line managers' inadequate supervision: industry custom as well as practices; incoordination
Kartam and Bouz (1998)	High employee turnover and miscalculated actions; weak safety framework; poor cleaning; fate; poor maintainance of the tools; poor supervision; and object misplacement.
Abdelhamid and Everett (2000)	A two-pronged typology 1) Human error elements: failure to secure and give a warning; failure to adorn protective gear; unauthorized equipment operation; speeding; person specific factors; removal of safety devices; poor service of equipment; insecure posture; defective tool; among other insecure actions. 2) Physical factors, via: vicarious liability; ignorance of set procedures; accident source defects; apparel related dangers; ecosystem related hazards; fire risks; dangerous workshop arrangement; risky methods of work; housekeeping related risks; poor distribution of work; inadequate guard; public risks; as well as other risky conditions.
Suraji, Duff and Peckitt (2001)	Project nature, construction technology, restriction at the site, project length, systems of procurement, design related complications, sub-contracting related factors.
O'Toole (2002)	Improper capacity building, absence of safety equipment, weak safety enforcement system, unsafe tool and technology, hazardous work environment, bad safety attitude, as well as the failure to comply with prescriptions.
Tam, Zeng and Deng (2004)	Weak leadership in light of safety sensitization; improper capacity building; resource inadequacies; irresponsible operation; uncertified skill labor; inappropriate equipment; no measures for first aid; poor enforcement safety mechanism; non-committal organization; poor educational level; safety unconsciousness of workers; nonexistence of equipment for protection (PPE); poor operationalization of safety regulation; poor technical guidance; relaxed functional procedures; inexperienced staff; inadequate safety regulation; weak transportation safety; material storage exposure to risks; weak team work.
Hamid, Majid and Singh (2008)	Equipment related weaknesses, poor work environment, industry uniqueness, methodological weaknesses, human faults and lack of management engagement.

Table 2.1: Root Cause of Accidents

The Domino theory model is applicable to all accidents and is a possible remedy to the management of losses. The theory is linked to the fourth objective of this study which is the influence of contractors' safety record and performance of road construction infrastructural projects. Though the theory can be linked to accidents occurring during implementation of projects, the gap exist to further explain how accidents can occur as a result of past activities. In this case, the theory was borrowed to show the relationship of accidents happening as result of contractors' negligence in the road construction projects. This could also be referred to what Domino theory states as 'hazardous human acts', which would mean that some accidents such as pedestrians being knocked down by running vehicles maybe as a result of the contractor's poor workmanship to install adequate footbridges and placing bumps in designated places. Just like the theory has been used to explain how accidents when the road is put to use after construction hence another way to measure performance of the road.

2.10.3 Pecking Order Theory

The Pecking Order Theory, also referred to as the 'Pecking Order Model' (Myers and Majluf, 198)4, is related to the company's capital structure. It was modified and popularised by Stewart Myers and his colleague Nicolas Majluf. The theory postulates that companies managers should follow a hierarchichal method when considering various sources of financing.

The pecking order theory attempts to relate to the capital structure of an organization. This theory explains why an organization would opt to first finance its investment using its own internal financing, follwed by debt and lastly equity (Myers and Majluf, 1984). However, it is argued that, from information asymmety, equity financing remains to be the costliest and can only be relied upon as the last option for obtaining financing. Youssef and and El-ghonamie (2015) term capital structure as, " the combination of a firm's liabilities and owners' equity, which means that capital structure of a firm, is a specific mix of all the claims on the firm (debt and equity) that is used to fund its operationsand expansions." A study by Jae-Kyu, Seung-Kyu, Ju-Hyung and Jae-Jun (2014) focusing on the capital structure determinants among the construction Companies in South Korea, empirically analyzed a total of 43 listed construction companies covering a period between 2000 to 2010. The study used a multiple regression analysis. The main

focus of the study was on the changes in the coefficients of determinants as per the leverage ratio quantiles of the construction companies. The findings revealed that company and non-debt tax shield size positively related with leverage among comapnies dealing with construction. It was however revealed that a negative relationship existed with leverage in terms of profitability, growth of the company, company's asset tangibility, and liquidity. The major results noted in this study included: 1) construction companies were following static tradeoff theory in relationship to size; 2) non-debt tax shields seemingly had somehow limited effects on construction companies decisions on capital-structure; 3) in respect to profitability, construction companies were following the pecking order theory; and 4) asset tangibility had the opposite sign compared to earlier studies. In general, results were attributed to characteristics of construction business.

In this current study, the theory was borrowedand linked to the second objective to explain the relationship between finance ability of the contractors and performance of road constuction infrastructural projects. More specifically, the study was out to find out indicators such as credit rating, bank's good will flexibility of the loan agreements, turnover, profits obligations, amount due and owned funds influence performance of the road.

2.10.4 Resource Based Theory

According Rugman and Verbeke (2002) the Resource based theory was founded by Penrose in 1959 and originally captured in her book entitled "The Theory of the Growth of the Firm", the theory has gained popularity as demosntrated by wide application by array of scholars in the strategy thematic area. Rugman and Verbeke note that the theory availed the intellectual underpinning for the modern, resource-based view of an organization. Others such as Theriou, Aggelidis and Theriou (2009) examined the conflation between two dominant views of the concern, namely:Resource-Based View (RBV) as well as the Knowledge-Based View (KBV), by analyzing the comparative effect of concern-specific assets as well as knowledge endowments on the competitive advantage of the organization.

An intergrated framework was suggested elaborating on the causal effect of both views on the competitve advantage of a concern. When considering project success the words of Isaac Newton that "If I have seen a little further it is by standing on the shoulders of Giants," should not erode our minds (Müller & Jugdev, 2012). Theriou, Aggelidis and Theriou (2009) assert that knowledge capacity effects, overt and covert, affecting the performance of a concern in the same manner as the unique assets of such a concern would, as well as 'knowledge complementarity or its dynamism' subtle effects on a concern's unique assets as well as abilities, leading to the betterment of prevailing or novel marketing, organizational, as well as technical abilities. Theriou and colleagues therefore coined the term 'dynamic knowledge capabilities', a conflation that is imperative due to its emphasis on the significance sustainable competitive advantage. Penrose's theory is considered to have key lessons in management practice and as such, has become a canonical reference resource, capabilities, and knowledge-based theory literature (Pitelis, 2004).

The resource based view shifted attention from a market perspective to a firm perspective when trying to explain differences in firm performance. From the start, with Edith Penrose and The Growth of the Firm in 1959, an ongoing process of development lasted over 20 years until the idea of inter-firm differences in resources as a factor explaining firm success was presented (Hansson, 2015). This theory was further popularized by Barney (1991) who viewed a firm as sum of physical capital resources, human capital resources and organizations.

Resource base theory therefore beliefs that firms that can properly mix its resources and capabilities stand a better chance to gain competitive advantage over other firms. However, Hijzen, Gorg and Hine (2005) warn the negative impact of international outsourcing on the demand for unskilled labour. A similar article by Jaafar, Rashid and Aziz (2005) that focused on the same theory articulated factors antecedent to the SMCEs' performance in the Malaysian context; it was observed that the ability of the theory to explain the usefulness of a firm's resources in developing superior performance, is actually its key strength.

Through inferential statistics, the study proposed that SMCEs ought to place more emphasis on managerial capacity about financial, project, and marketing as well as supplier relationships to foster superior performance of a concern. Nevertheless, given the industry uniqueness, the study also established that the characteristics of the owner are insignificant in light of performance of an enterprise. The study results availed evidence to the effect that a firm's survival is a function of its key resources, including, appropriate managerial abilities to develop strategies for sustainable industry competitive advantage. Hence, the theory stood out to support the following predictor variables used in this study to measure performance of roads, these are; financial ability of the contractors, technical ability of the contractors and management ability of the contractors versus performance of road construction infrastructural projects in Nairobi County, Kenya.

2.10.5 Human Capital Theory

According to Fugar, Ashiboe-Mensah and Adinyira (2013), the above theory was founded by Schultz (1961) and refined by Gary S. Becker in his seminal work on "employerprovided training economics" of 1962 and 1964. The theory proposes that capacity building has the potential to instill critical knowledge assets to workers, thereby increasing the income and productivity of those workers. An attempt has been made by Becker to draw a distinction between specific and general human capital. Accordingly, specific human capital entails technology obtained via capacity building initiatives, and that which seeks to address specific skill needs.

Conversely, general human capital has been defined as is knowledge acquired through capacity building initiatives but whose value transcends contextual differences, such as literacy skills. Bohlander *et al.* (2001) have defined the concept of human capital as the skills, knowledge, as well as abilities of persons, and of which have economic worth to a concern. This definition has something in common with the definition given by the OECD, and which offers a description on human capital as bundles of knowledge, competencies, skills-sets, as well as characteristics contained in persons that enhance the development of personal, economic and social welfare (OECD, 2001).

Similarly, Dess and Pickens (1999) have defined the concept as the abilities, skills, knowledge, as well as experience, all domiciled in, and part and parcel of a person. These three definitions underline three key words, "knowledge", "Skills" and "Competencies (capabilities)". According to Becker, the concept of human capital is similar to the physical avenues for production, including machines and factories. This applies where one is capable of investing in human capital through capacity building programmes as well as medical treatment.

Hence, it is through human capital that production is tenable, and through which marginal investment is capable of yielding marginal output (Fugar, Ashiboe-Mensah & Adinyira, 2013). In a structural equation modeling based study of the determinants of mechanism of

construction development transformation in China, Wang, Li and Shi (2015) asserted that the role of the basic production factors for the transformation played in the construction could not be ignored. The authors compared the influence coefficient of seven factors, physical capital and human capital and found that they were still important, which they noted that the construction was still labor and capital intensive, so that human capital, mechanical equipment, and so forth still played an important role in construction currently. Human capital is considered key in construction industry in the sense that most of the production work requires a human hand.

This theory is linked to skills and competencies required by construction contractors to enhance their effectiveness and performance while undertaking special assignments in the construction works. The theory therefore supports the third objective of this study: to assess the influence of technical ability of contractors on road construction infrastructural project performance in Nairobi County, Kenya.

2.11 Conceptual Framework

The conceptual framework in figure 3 guides the study. A conceptual framework has been defined by Svinicki (2010) as an integrated set of notions about the functionality of a phenomenon, or of its components. Accordingly, the framework is the basis upon which causal relationships across events, notions, concepts, observations, interpretations, knowledge, as well as other aspects of experience can be visualized.

Independent Variable

Contractors Capacity Evaluation in Tender Award

Dependent variable

Figure 3: Conceptual Framework of Contractors' Capacity Evaluation in Tender Award, Process Monitoring and Performance of road construction infrastructural Projects.

Grant and Osanloo (2014) assert that in the absence of a conceptual framework, the vision and structure of a study would be unclear the same way a house would be if it would be constructed without a blueprint. The relationships among the variables in this study were conceptualized as shown in Figure 2.2 Contractors' capacity evaluation in tender award are the independent variables of this study and in this respect; the aim is to find out how each of these variables financial ability of contractors, contractors technical ability, contractors management ability, and finally contractors' safety record relate with road construction infrastructural project performance which is dependent variable. The influence of joint contractors' capacity evaluation in tender award and road construction infrastructural project performance was also established.

Process monitoring is purposed to improve contractors' capacity evaluation in tender award in general and for this reason, it is necessary to establish how this process monitoring moderate between contractors' capacity evaluation in tender award and road construction infrastructural project performance. Process Monitoring is in itself a variable that can be used to gauge the suitability of a contractor to assume monitoring processes but being the end result of the tender evaluation processes, it is isolated as a moderating variable and performance treated as a dependent variable.

The reviewed literature has presented adequate evidence that performance of road construction project is dependent on a number of factors or variables including those chosen for this study: financial ability of contractors, technical ability of contractors, management ability of contractors and contractors' safety record. Therefore, the interdependencies of these independent variables should not be ignored in construction of road projects for them, at a greater extent, influence project performance.

For example, while the financial ability of contractors ensures the required inputs in the project are sufficiently supplied, bearing in mind the contractors' good credit rating and bank's good will among other predictors, the technical ability and management ability of contractors forms the requisite human resources for construction of quality projects that survive test of time and offer maximum satisfaction, in this case road-user benefits.

On the other hand, the need to consider contractors' safety record is key to ensure that accidents are not only curbed or prevented during the construction phase but also, most importantly, after post-delivery. This means that contractors are able to adhere to safety

procedures that ensure that the road user is not susceptible or prone to any accidents that might be because of negligence to safety procedures. Similarly, the role of the moderating variable, specifically process monitoring is to provide oversight or the strategic guidance and control necessary between the contractors' capacity evaluation in tender award and performance of road construction infrastructural projects.

Subsequently, process monitoring is assumed to determine the interplay between the independent variables. In addition, process monitoring is assumed to speed up the achievement of high project performance designed and as intended to meet the road-user benefits or satisfaction. In general, the interrelationship between the independent variable and the moderating variable is assumed to lead to high-level performance in performance of road infrastructural projects.

2.12 Summary of Literature Reviewed

The literature review focused much of its attention on empirical literature and general theories relating to contractors' capacity evaluation in tender award, process monitoring and road construction infrastructural project performance in Nairobi County. This was with the focus on financial ability of contractors and performance of road construction infrastructural projects, technical ability of contractors and performance of road construction infrastructural projects, contractors management ability and road construction infrastructural project performance, contractors' safety record and performance of road construction infrastructural projects and finally a summary on the moderating variable, process monitoring.

From the literature reviewed, this study has picked out a number of concerns for each of the study variable. Firstly, it is revealed that project performance is a broader concept that is informed by the completion of a project (delivery) and the life of the project (post-delivery), with latter informing this study. For example, Artikinson (1999) has attempted to draw a distinction between the criteria for success into delivery as well as post-delivery phases. The framework avails a methodology for the understanding of success criteria, namely: the iron triangle; information system; firm-level and community advantages.

Cost, time as well as quality criteria relate to the 'iron triangle'. Post-delivery levels consist of: (1) information system, whose conditions are: reliability; maintainability; validity; and information quality utilization (2) the conditions for firm-level benefits are:

better efficiency; superior effectiveness; better bottomline; long-term goals; institutional learning as well as waste reduction (3) the benefits to the community are: consumer satisfaction; social and ecosystem impact; personal growth and development; knowledge acqusition; better profits to the contractor and suppliers of capital, as well as overall economic impact accruing to the general community. The model is relevant for both intra as well as the extra-project life cycle phases; hence ideal for continuous appraisal. Onatere, Nwagboso and Georgakis (2014) while studying on performance indicators for urban transport development in Nigeria listed a number of safety performance indicators, which include but not limited to damaged roads with potholes, damaged or collapsed bridges, number of road signs and traffic measures, number of people killed or seriously injured in road traffic accidents, and inadequate headways.

According to Pekuri, Haapasalo and Herrala (2011) performance is a much general concept covering both the economic as well as the functional components of an economic sector. The concept entails productivity as well as the bottom line, among key non-cost elements, such as quality, speed, delivery and flexibility. Baccarini (1999) defines project performance using two success concepts: firstly, successfully accomplishing a project on time, without cost overruns and with high quality, all of which are measurable in terms of budgetary, time, fucntional as well as technical conformance; and secondly, the final product's effects, including satisfaction of the project purpose and key stakeholders.

Similarly, Nyangwara and Datche (2015) did a research focusing on the factors affecting construction projects' performance in the context of Coast region, Kenya. The key study objectives were: firstly, to assess the determinants of construction projects' performance for the assistance of key stakeholders to address performance challenges as well as to bolster performance of such projects; secondly, to examine the external environmental influence on the project performance.

Thirdly, to identify the most impactful project procedures on the performance of projects; and finally, to assess project management actions' impact on project performance. Nguyen (2015) indicated that the use of frameworks to evaluate contractors' bids to weigh their abilities remains important to ensure that construction projects can effectively be managed. Prequalification, therefore, is used to assess the suitability of contractors. This process is also tied to bid evaluation. According to Herbsman and Ellis (1992) there must be a clear multi-parameter bidding system that assesses the bid amount, time of

execution, and quality of previous work. From the reviewed literature, it was also revealed that the financial stability of contractors had influence on performance of road construction.

The most affected by capital requirements are indigenous contractors undertaking public sector construction projects (Igochukwu and Onyekwena, 2012). In Mwakajo and Kidombo (2017) study it was established that the level of financing is a basic factor of task execution. Kithinji and Kamaara (2017) also found that project finance largely influenced infrastructure project completion. A study by Densford, James and Ngugi (2018) also demonstrated through the findings that there exists a strong relationship between financial resource mobilization and performance of road as far as quality is concerned. The study posited that financial resource mobilization as a strategy could be used to raise funds within a construction firm which in turn could contribute to road performance. Akali and Sakaja (2018) found that contractors had the capacity for accessing capital sources and loans. Rahman, Memon and Karim (2013) established that besides cash flow, financial challenges are significant factors causing cost overruns in large construction projects in Malaysia.

The technical abilities of contractors' and performance of road construction infrastructural projects are interdependent. The reviewed literature revealed that there can never be quality workmanship without proper project's materials. The study by Seboru *et.al* (2016a) listed indicators to be used to measure technical capacity of a given contractor. The indicators include material procurement, storage, inventory control, testing the quality of raw materials, quantifying materials required, and identifying materials to be used in a project. Out of these indicators, it was concluded that quantification of materials required has greater influence on construction projects.

Moreover, the study revealed that contractor's competency and timely availability of construction of resources. A similar study by Seboru *et.al* (20016b) recommended that training diversity could improve workers' abilities to share knowledge during project execution. Various studies have highlighted issues related to management capacity of contractors. Some of the related factors are listed by Naik, Sharma and Kashiyani (2015) as follows: some of the issues related to management capacity of contractors include poor planning and scheduling, management of personnel, lack of materials and equipment to

meet schedule, poor job-site supervision, inadequate management knowledge and contractor experience, lack of team work and proper guidance by the supervisors.

Aje, Odusami and Ogunsemi (2009) conducted a research on the impact of contactors' management capacity on the time and cost of performance of construction projects in Nigeria. The statistical findings revealed that contractors' management capability is a significant criterion in the appraisal of potential construction contractors' performance in the course of prequalification as well as tender assessment. Previous performance and quality thereof, experience of the contractor, management knowledge as well as programme for quality control were also identified as the major yardsticks for assessing contractors' management ability. Others such as Omran, Abdalrahman and Pakir (2012) state that project managers should work with an effective team.

The road construction infrastructural project performance is also influenced by the contractors' safety record. There are two aspects of safety performance: safety compliance that is following procedures and safety compliance meaning participating in safety related activities. Safety and health administration performance can be evaluated effectively by breaking regulatory processes into two elements: behavior compliance, and enforcement (Weil, 2001). Employer's practices and investments in safety by worker training and site management are key to overall performance. Jannadi and Bu-Khamsin (2002) agree that planning and preparation, the use of signage, signaling and barricades are useful in minimizing accidents occurrences. Others such as Diugwu, Baba and Egila (2012) concluded that constraints to safety management in construction industry are lack of adequate regulations, lack of resources (personal or financial) lack of knowledge of details and implications, lack of management commitment.

Process monitoring has been demonstrated to have a relationship between contractors' capacity evaluation in tender award and performance of road construction infrastructural projects. Bulle and Makori (2015) noted that to a great extent monitoring and evaluation in strategic planning influences performance of urban roads in organizations. Although Byaruhanga and Basheka (2017) argue that inadequate attention is given to project monitoring of road infrastructure. Similar study by Mango and Iravo (2015) demonstrated that contractors and project supervisors utilise monitoring instruments to some extent in the operations of their project, thereby generating

satisfactory degree of success. Wanjala, *et al.* (2017) found that monitoring techniques significantly influenced project performance in state corporations.

It was also determined that majority of CDF projects in Gatanga Constituency in Kenya had minimal time and cost overruns, a characteristic that was considered key for success of those projects. Therefore, project monitoring affects positively project success. Asinza, *et al.* (2002) found that the extent at which monitoring is happening and the monitoring methods being used have a strong and significant positive relationship with project quality.

2.13 Knowledge Gaps

From the literature reviewed, this study has picked out a number of concerns for each of the study variable; the first variable that this study considered is; contractors' capacity evaluation in tender award; the second is moderating variable process monitoring on relationship between performance of road construction infrastructural projects. The literature review has demonstrated that previous studies have focused on factors influencing road construction performance, although performance is to mean project implementation instead. These factors are majorly used during prequalification and bidding of road contractors.

Contractors' capacity evaluation in tender award is, therefore, based on these factors as reviewed. Although the factors are used to measure project implementation, this study used these factors to measure performance. Only two studies (Seboru, et. al, 2016a; Seboru, *et al.*, 2016b) from the review of the literature have shown the relationship between contractors' capacity evaluation in tender award and performance of the road construction infrastructural projects as indicated in the matrix Table 2.2:

Variable	Author	Title of the	Methodology Used	Findings	Knowledge Gap	Focus of the Current
	(Year)	study				Study
Performance	Kihoro	The determinants of	The study population	Performance is a dependent	The study only dealt with	Demonstrated the
of road	and	performance of	composed of property	variable that can be	factors affecting performance	moderating
construction	Waiganjo	projects in	developers who had	determined by	in construction industry. It did	influence of process
infrastructur	(2015)	construction sector,	invested and complete	several independent variables.	not address the interaction	monitoring on the
al projects		a survey of gated	d projects in gated	The study concluded	of contractors'	relationship between
		community in	community	stakeholder management and	capacity evaluation in	contractors' capacity
		Nairobi City County,	development. A small	competence of the project	tender award,	evaluation in tender
		Kenya	sample population of	manager was essential in	process monitoring and	award and performance
			200 project managers	the performance of a project.	performance of construction	of road construction
			in the study was	The study recommended	projects.	infrastructural projects in
			calculated by normal	the use of multi criteria		Nairobi County, Kenya.
			approximation to the	analysis during planning		
			hyper-geometric	as well proper relationship		
			distribution to arrive at	management among all the		
			a sample size of 130.	stakeholders in the project.		
			The study adopted a			
			semi structured open			
			and closed			
			questionnaire as data			
			collection instrument. A			
			pilot study was			
			conducted on 20			
			Viewby area which is			
			the second largest with			
			the second largest with			
			gated community.			

 Table 2.2: Matrix Table for Literature Review: Summarizes the Knowledge Gaps Established in Review of Related Literature

Variable	Author	Title of the	Methodology Used	Findings	Knowledge Gap	Focus of the Current
	(Year)	study				Study
	Seboru,	The acquisition of	Anchored on the	H1 was rejected since the	Though the study used	Theory of cons truction
	Mulwa,	materials' influence	controlling, stakeholder	statistical results yielded	acquisition of materials as the	management
	Kyalo and	on road	and construction	R ² =0.246, F (6, 40) =2.173,	independents variable, the	was employed to explain
	Rambo	construction projects	management theories.	p=0.066>0.05, leading to a	criteria used for measuring	the relation of the
	(2016a)	' performance	Philosophical paradigm	conclusion that the predictor	suitability of the contractors	independent and
		in Kenya, a case of	was pragmatism, while	variable was statistically	were not clearly stated and	dependent variable in the
		Nairobi County.	the research approach	insignificant in regard to the	therefore the gap exist that this	study of contractors'
			was mixed methods.	influence on the criterion	new study wishes to bridge by	capacity evaluation in
			Cross sectional	variable. In spite of this, the	looking at financial, technical,	tender award and
			descriptive surveys as	determination requisite material	management and safety and	performance
			well as correlational	quantities significantly	health record of the	of road construction
			research design were	influenced the road construction	contractors.	infrastructural projects.
			used. A sample size of	project performance. A		The methodology used
			74 senior engineers	recommendation was drawn that		maybe replicated in this
			comprising 30 from	concerns dealing in road		study.
			consulting engineering	construction ought to set up the		
			firms as well as 44	right policies that guide		
			senior engineers from	requisite quantity determination.		
			construction			
			companies, 74			
			acomprising 30			
			managing			
			directors from			
			consulting engineering			
			firms as well as 44			
			managing directors			
			from construction			
			concerns. A five point			
			Likert type scale			
			research questionnaire			
			was employed to gather			
			data of quantitative			
			nature, with interview			
			guides were utilized for			

Variable	Author	Title of the	Methodology Used	Findings	Knowledge Gap	Focus of the Current
	(Year)	study				Study
			qualitative data collection. Descriptive data was analyzed using percentages, frequencies, arithmetic mean as well as standard deviation. Inferential statistics were undertaken using Pearson's Product Moment Correlation as well as Linear Regression.			
	Enshassi, Mohamed and Abushaban (2009)	Determinants of local construction projects' performance: a case of Gaza Strip, Palestine	120 study questionnaires were disseminated to 3 majorcategories participants in the project: 25 project owners; 35 consultants; as well as 60 contractors. Accordingly, 88 research questionnaires, representing 73% were returned: 17 were from project owners; 25 from project consultants; while 46 were from contractors.	The survey resultsdemonstrated that each of the 3 categoriesconcurred thatthe most significantdeterminants of project performance were: time- overrunsoccasionedby the closure of roads, henceinadequacy of materials; resource unavailability; poor project management skills; material price fluctuations; personnel skill gaps; and equipment quality weaknesses.	The study captured some of the indicators of contractors' capacity evaluation in tender award (leadership skills, unavailability of resources, unavailability of highly expe rienced and qualified personnel and quality of equipment. These indicators plus the ones not mentioned here were not tested.	The study used the indicators of contactors' capacity evaluation in tender award and showed their linkage with the outcome variable, being performance of road construction infrastructural projects.
(Year) study Nyangwara Factors affecting D				<i>v</i>		
---	---	--	---	---		
Nyangwara Factors affecting D				Study		
and Datche (2015) and Datche (2015) projects' performance in the context of Coast region, Kenya li, ra th K C Q in as w w st context of Coast region, Kenya li, ra th K C Q in as w w st context of Coast region, Kenya li, st st st st st st st st st st	Descriptive cross sectional survey as well as correlational designs were employed. The extent of concurrence among respondents in light of the factor- ranking was established through the use of Kendall's Coefficient of Concordance. Questionnaire survey, interviews, case studies as well as modeling were employed for data collection. 40 aspects were established using survey questionnaire, classified into 8 categories, appraised as well as ranked whether project owners, consultants or constructors. 180 study questionnaires were disseminated to project owners, consultants as well as contractors, with 132 questionnaires successfully returned	The points of convergence among the three categories of respondents were: average time- overruns occasioned by material inadequacies as well as road closures; resource availability according to plan; project management leadership skill- sets; material price fluctuations; personnel skill-sets; as well as material and equipment quality.	Failure to include road users like PSV Matatu drivers to give their opinions and experiences about their satisfaction. Satisfaction among these sampled population may not have been adequately answered or addressed hence the current study.	Study The current study proposed to replace Owners of construction projects with the PSV Matatu drivers and not use the Owners of Matatu.		

Variable	Author	Title of the	Methodology Used	Findings	Knowledge Gap	Focus of the Current
	(Year)	study				Study
Financial	Mwakajo	Factors influencing	This styudy utilized a	The findings concluded that	The variable of availability of	The study show ed the
ability of	and	projects performance	descriptive survey	availability of finances enable	finance was only used to show	relationship of financial
Contractors	Kidombo	in road	design and targeted a	resource acquisition.	relationship as far as the	ability of contractors and
	(2017)	infrastructural	population 153 which	_	project implementation or	performance of
		projects in Manyatta	include active road		completion is concerned but	road construction infrastr
		constituency in	contractors, contracted		the performance during the	uctural projects (post
		Embu County in	engineers, directors,		life of the road projects was	delivery phase).
		Kenya.	staff, technical		not clearly stated.	
			staff and clerical and			
			support staff. The			
			researcher only sampled			
			Active road contractors			
			using simple random			
			sampling method. The			
			sample size was			
			determined by using			
			Yamane formula. The			
			study used 126			
			respondents as a total			
			sample size including			
			active road contractors.			
			Data was collected usi			
			ng semi structured			
			questionnaire.			
			Frequency			
			and percentages was			
			used for the descriptiv			
			e data. Coded broad			
			sheets thereafter were			
			employed			
			for extracting data fro			
			m the returned			
			questionnaires. The			
			researcher analyzed th			
			e data by SPSS			

Variable	Author	Title of the	Methodology Used	Findings	Knowledge Gap	Focus of the Current
	(Year)	study				Study
	Danford	Effect of Droject	having carefully completed the variable view and imputed the extracted data appropriately on the data view.	The study looked of financial	The study was feaused on the	The current study
	James and Ngugi (2018)	Resource Mobilization on Performance of Road Infrastructure Projects Constructed by Local Firms in Kenya.	1 roads constructed by local construction firms. Descriptive analysis was performed whereby results were presented using frquencies, percentages, means and standard deviation. To show strenth and relationships among variables, correlation and inferential statistics were run hence the results achieved were empirical.	resource mobilization as a strategy to enhance performance of the roads constructed by local construction firms.	Lake Basin region and therefore results could not be generalized hence the need to conduct a study in Nairobi and demonstrate how overally finacial ability of contractors influences performance of road, specifically during post delivery stage.	demonstrated there existed a strong relationship between financial ability of contractors and performance or roads in Nairobi County, Kenya.
	Kulemeka, Kululanga and Morton (2015)	Inhibiting determinants of performance of SMCs from the dimensions: "work quality," " estimation of tender," "preparation of tender," as well as "completion on time " of Malawian construction projects.	370 survey questionnaires disseminated to respondents in the construction sector, including clientele in the public sector, consultants, contractors, as well as resource trainers so as to collect data from 118 attributesarrived atvia a	The factors were largely economic in nature, concurrent with previous findings in the Sub-Saharan Africa. Top in the list of influencers was high lending interest rates; capital access challenges; forex fluctuations; bond obtainability challenges; as well asprohibitive tax regimes. The findings set the pace for continued research on the same phenomenon in such a	This study, however, left a gap to be studied in terms of the influence of contractor's finance on post delivery performance of the road construction projects.	The study established how financial ability of contractors influences performance of road construction infrastructural projects.

Variable	Author	Title of the	Methodology Used	Findings	Knowledge Gap	Focus of the Current
	(Year)	study				Study
			well thought out review	dynamic world, accelerated by		
			of literature.	global elements and punctuated		
				by spontaneous changes.		
	Kithinji	Determinants of	The research employed	The finding indicated that	There exist a gap on post-	The study established that
	and	Government road	descriptive design,	project finance, and project	delevery project performance	financial ability of
	kamaara	infrastructure	with the target	technology innovation largely	hence the need to test the	contractors influences
	(2017)	projects' completion	population being	influenced infrastructure project	same	performance of road
		in Meru County,	contractors and	completion.		construction
		Kenya.	construction project			infrastructural projects
			managers. A census			even during post delivery
			survey technique			of the project or when the
			method was adopted			road is being used. That is
			and sample size was 80			the quality could easily be
			respondents. A closed			ascertained.
			and open-ended			
			questionnaire was used			
			to collect primary data.			
			Both quantitative and			
			qualitative approaches			
			were used for data			
			analysis. Quantitative			
			data was summarized			
			and analyzed using			
			descriptive statistics			
			with the help of SPSS			
			deta adopted Content			
			ana adopted Content			
			informatical statistics			
			was applied to identify			
			a mathematical			
			relationship between			
			variables using			
			multiple regression			
			analysis, which was			

Variable	Author	Title of the	Methodology Used	Findings	Knowledge Gap	Focus of the Current
	(Year)	study				Study
			used to establish the			
			degree of statistical			
			relationships between			
			the study variables. A			
			response rate of 82.5%			
			was established with 66			
			respondents reached,			
			out of the 80 targeted			
	Akali and	Influence of	Desriptive survey	40% (a large extent) and 30% (a	The study did not measure	The study showed there is
	Sakaja	Contractors'	design, Stratified	moderate extent) of contractors	how the independent variable	a strong relationship
	(2018)	Financial	random sampling. Used	can access capital sources/loans;	and dependent variable	between contractors'
		Capacity on	Yamane formula (1967).	30% and 60% (to a large and	correlate and also the strength	financial ability and
		Performance of	Target Population was	moderate extents respectively)	of the variable through	performance of road
		Road Construction in	203 and sample size was	have capacity to access funds	regression analysis was not	projects.
		Kakamega County	135 which included		carried out.	
			contractors and			
			engineers charged with			
			supervisory tasks. Test			
			retest was done to			
			ascertain reliability by			
			use of Cronbach's Alpha			
			coefficient which was			
			established to 0.754.			
	Rahman,	Significant Factors	Used questionnaire	Cash flow and financial	The study did not measure	The current study showed
	Memon	Causing Cost	whereby 262 were	difficulties continue to face the	the strength and relationship	that financial capacity of
	and Karim	Overruns in Large	returned out of 400,	today's contractors in	of the predictor variable	the contractors
	(2013)	Construction Project	data analysis done by	construction industry.	(financial capacity). The study	significantly influences
		s in Malaysia	use of SPSS, to rank		focused on all construction	performance of roads and
			factors Relative		firms.	not only implementation.
			Importance Index (RII)			
	A.: .		was used.			
Technical	Atieno and	Determinants ofroad	A descriptive research	The researchestablished a	Though the relationship was	The study established how
Ability of	Muturi	construction projects	design was employed.	positive correlation between	established that contractors	a contractors' competency
Contractors	(2016)	performance in	This study had a	Contractor's Competency,	competency have a possible	or abilities can influence
		Kenyan arid and	small population of 77	Construction parties	influence on the performance	performance of road

Variable	Author	Title of the	Methodology Used	Findings	Knowledge Gap	Focus of the Current
	(Year)	study				Study
		semi-arid geographical contexts and focuses on the Isiolo – Moyale (A 2) and Garissa – Modogashe (C 81) road projects.	and thus no sampling was done, a census was carried out. Regressions and ANOVA (Analysis of Variance) test was used to assess the factors affecting performance of ro ad construction projects.	Financial Management, Timely availability of Construction Resources, and Conflicts towards the realisation of increased performance of road construction projects in arid areas in Kenya. The study also found that the predictor variables account for 82.7% of variance of the criterion variable. The study found that the contractor's competency variable will lead to the greatest change in performance followed by the conflict variable, construction parties' financial management variable and timely availability of construction resources. attle rustling meetings by national and county governments; and fair and equitable compensation and resettlement of Project affected persons	of the road construction projects, that was done only on project completion phase of the project but not during the life of the roads projects. Hence, the need to study post delivery performance.	project even after completion phase.
Management ability of Contractors	El-Maaty, Akal and El-Harawy (2016)	Egyptian highway projects' performance via identification of quality performance determinants	13 owners of highway projects, 27 owners of regional roads, as well as 15 consultants subjected to a study questionnaire.	Using fuzzy triangle approach to undertake an analysis of datademonstrating that the most significantdeterminantsof quality, the following were identified: staff experience in such projects; inspection efficiency; clearly defined terms of reference among key stakeholders; sub-standard	Though the study determined the most critical quality performance determinants, no relationship was done among these variables.	The study showed the relationship of the management ability variable and the dependent variable performance after completion of the road construction.

Variable	Author	Title of the	Methodology Used	Findings	Knowledge Gap	Focus of the Current
	(Year)	study				Study
				pavements due to physical		
				factor dynamcs ; as well as the		
				quality and type of asphalt		
				utilised in the process of		
				construction.		
	Aje,	The contractor	Data collection method	The study findings revealed that	Though the study presents	This new study on
	Odusami	management	not clearly articulated	the management acumen of	clearly the criteria of judging	contractors' capacity
	and	capacity's impact on		contractors is a key criterion for	contractors' management	evaluation in tender award
	Ogunsemi	time as well as cost		the appraisal of performance	capability, this is not clearly	used the same indicators
	(2009)	performance of		potential of construction	brought out to show how	but now to measure
		Nigerian construction		contractors at the pre-	performance is affected by the	performance after project
		projects.		qualification as well as tender	same throughout the project	completion but specifically
				assessment stages. It was also	life (post-delivery).	the life of the road
				determined that past quality		construction projects. A
				performance, experience of the		relationship was therefore
				contractor, knowledge portfolio		established.
				of the management as well as a		
				programme for quality control		
				were the key determinants of		
				contractors' management		
				capacity. It was also discovered		
				that contractors' management		
				capacity significantly impacted		
				time and cost performance,		
				with p-values being 0.042 and		
				0.039, respectively.		
	Omran,	A case study of the	A random distribution	The findings indicated that the	The indicators for contractors'	The current study
Contractors'	Abdalrahm	project performance	of 75 structured study	five priority factors influencing	capacity evaluation in tender	proposesd to examine the
Safety	an and	in Sudanese	questionnaires, out of	project performance were:	award are well stated only that	degree to which the
Record	Pakir	construction	which 52 were	experience and skill-sets level of	the authors have used these	variables listed can or does
	(2012)	industry.	successfully returned.	project leadership; planning	variables to show the	affect performance of
			KII system was	ievel; design as well as	relationship up to completion	roads construction
			employed to rank the	specification adequacy; and	of the project but not after	intrastructural projects
			determinants of project	progress of cost monitoring.	that; that is, throughout the	auring post delivery.
1	1		performance		project life.	

Variable	Author	Title of the	Methodology Used	Findings	Knowledge Gap	Focus of the Current
	(Year)	study				Study
	Ntuli and Allopi	The impact of experience as well as	accordingly. The Kruskal-Wallis test revealed the comparison and opinion variations in between the respondents. Focused group discussions	The challenges established included: capacity development;	The study revealed important factors that are likely to affect	The findings of this study are focused on project
	(2014)	skill-set inadequacies on the construction sector in Kwazulu- Naatal, South Africa.		tendering process knowledge gaps; cash flow issues due to delayed invoice settlement; high levels of corruption; insufficient understanding of the procurement processes by the contractors; poor business planning skills; ignorance of the CIDB's role in the sector; absence of functional as well as managerial abilities among contractors; poor pricing; ignorance of the overarching conditions of the contracts; sub- contracting problems; enhanced transparency in tender opportunities circulation; as well as the establishment of a forum for experience sharing.	a project success or performance but a relation was not established.	completion but this new study used, for instance, the personnel skills and show the relationship with the performance of road construction infrastructural projects in a post delivery stage of the same.
	Jannadi and Bu- Khamsin (2002)	Safety determinants in the Saudi Arabian construction context	A survey of 28 concerns involved in large industrial construction projects in the Eastern region. The research methodology involved the following steps: (1) literature review was	Engagement of the management, protective gear, planning as well as preparation for disasters, radiations, ladders and scaffolding, prevention of fires, electrical tools, excavators, trenching as well as shoring, and mechanical tools	This study was conducted in industrial set up. The variables appear to measure performance during implementation of the project.	The current study used some of the indicators to measure performance in road construction infrastructural projects during post delivery of the project.

Variable	Author	Title of the	Methodology Used	Findings	Knowledge Gap	Focus of the Current
	(Year)	study				Study
			undertaken for the identification of variables; (2) a list of variable dimensions and their respective indicators was developed; (3) expert interviews were then undertaken to enhance construct validity; (4) a research questionnaire was developed based on the identified variable dimensions and indicators; (5) data was the collected; (6) data analysis was undertaken; and (7) a summary of the results was developed	constitute the most significant determinants of the industrial construction safety performance. The respondents concurred on the significance of three key factors, via: the involvement of management; protective gear; as well as emergency planning, as the highest biggest influencers in this regard.		
	Diugwu, Baba and Egila (2012)	Regulative effectiveness and the degree of sinsitization in the context of Nigerian construction sector	Random dissemination of 495 research questionnaires, out of which 312 were successfully returned and comprising 271 and 41 valid and invalid questionnaires respectively. Being 69% response rate.	Despite several construction concerns being probably aware of the safety and health impacts of their activities, they still had no safety and health policy in place. Summarily, the research concluded that health and safety management constraints, inadequate support, asset limitations, lack of knowledge of details as well as implications, and management non-commitment impacted the safety and health strategies.	The research determined that the determinants of health as well as safety of contractors in the construction sector. However, a gap still prevails since these variables' indicators are relevant only up to till project completion; and not in the course of the project's life demonstrate real performance.	The study demonstrated how contractors' safety record influences performance of the road construction infrastructural projects.

Variable	Author	Title of the	Methodology Used	Findings	Knowledge Gap	Focus of the Current
	(Year)	study				Study
Process Monitoring	Mwangu and Iravo (2015	A case study on the effect of M&Eon the success of Constituency Development Fund Projects in Gatanga Constituency, Kenya.	The study was inclined to the field survey design, sampling 45 respondents selected through stratified random sampling method. Data collection was done using structured questionnaires while analysis was undertaken through Statistical Package for Social Sciences (SPSS), Version 16.0.	M&E instruments are employed by contractors as well as project supervisors to a someextentin their project functions, thereby realizing success of such projects. Majority of CDF projects in thes saidcontextexperienced neither cost nor time overruns, accounting for their success.	Instruments for monitoring are used in project operations but the gap exists whereby the extent to which monitoring happens is not clearly stated.	The study showed the extent to which the moderating variable, process monitoring, influences the relationship between the contractors' capacity evaluation in tender award (predictor) and performance of road construction infrastructural projects in Nairobi County.
	Byaruhang a and Basheka (2017)	Influence of contractor monitoring on road infrastructural projects' performance of in the Ugandan context.	Non-probability sampling design was utilized in the selection of engineers and procurement professionals. Simple random sampling was used to select members of parliament, private consultants, and civil society organizations. A mix of both closed ended questionnaire and interview guide was used to collect data.	Key study findings include: award of contracts to undeserving contractors due to weak systems of procurement; incompetence of staff involved in the procurement exercise; none existent contractor apparisal system; service delivery challenges due to delayed payments; weak internal M&E systems.	The study clearly outlined there is imperative need for monitoring but did not demonstrate to what extent. The weaknesses that are dragging effective monitoring are therefore subject of this study's gap.	The study showed the extent to which the moderating variable, process monitoring, influences the relationship between the contractors' capacity evaluation in tender award (predictor) and performance of road construction infrastructural projects in Nairobi County, Kenya (criterion).

Variable	Author	Title of the	Methodology Used	Findings	Knowledge Gap	Focus of the Current
	(Year)	study				Study
	Umugwan eza and Kule (2016)	Role of M&E on projects sustainability in Rwanda.	The study universe was 104 respondents. Slovin's formula was utilised to determine the sample of 83 respondents. Purposive sampling and simple random sampling methods were used. Secondary as well as primary data were bothemployedin the study. Primary data was collected using a well-structured questionnaire. Research questionnaires were utilised as an instrument for data collection. Data analysis was done by use of SPSS version 23. Data analysis entailed statistical computations for percentages, averages, and correlation and regression analysis.	The study findings indicated that accountability (r=0.347, p<0.01), effective communication (r=0.466, p<0.01), partnership for planning (r=0.506, p<0.01) and supportive supervision (r=0.612, p<0.01) significantly correlate to the resilience of projects in Rwanda. It was suggested by the study that management engagement in overseeing the M&E exercise in the project wouldfacilitate project resilience in the Rwandan context. The study also recommended that organizations should consider monitoring and evaluation as mandatory at all levels of the projects.	The role of monitoring though pointed out, that the management needs to be engaged in process monitoring, the gap exists in terms of what need to be monitored.	The study showed the extent to which the moderating variable, process monitoring, influences the relationship between the contractors' capacity evaluation in tender award (independent) and performance of road construction infrastructural projects. in Nairobi County, Kenya Dependent).
l	and Otieno	monitoring and	design where self-	indicated that there is a great	the extent to which monitoring	the extent to which the
	(2017)	evaluation processos	administered	influence of availability of	is conducted hance the need to	moderating variable
	(2017)	evaluation processes	administered	influence of availability of	is conducted hence the need to	moderating variable,

Variable	Author	Title of the	Methodology Used	Findings	Knowledge Gap	Focus of the Current
	(Year)	study				Study
		of county road projects in Turkana county government.	questionnaires and secondary sources facilitated data collection. 50 respondents were selected from employees who have worked in the construction and maintenance of roads since the county government came in place. Stratified random sampling design was utilised in the study. Numerical data collected using questionnaires was coded and entered and analyzed with the help Ms Office Package: Excel.	funds, stakeholder participation and involvement of technical persons on M&E processes of county road projects. However, the study did not demonstrate the extent to which monitoring is conducted hence the need to explore the monitoring intensity of the road construction infrastructural projects.	explore the process monitoring of the road construction infrastructural projects. The compliance of contactors' to key rules and regulations and other statutes were shown.	process monitoring, influences the relationship between the contractors' capacity evaluation in tender award (independent) and performance of road construction infrastructural projects. in Nairobi County, Kenya Dependent).
	Wanjala, Iravo, Odhiambo and Shalle (2017)	Effect of Monitoring Techniques on Project Performance of Kenyan State Corporations.	Descriptive and correlational research designs, Pearson Product Moment, the use beta coefficient and p value to explain influence of monitoring techniques (predictor variable) on performance (dependent variable).	Monitoring techniques significantly influence project performance in state corporation (β 3= 0.674, p<0.05).	The study was not specific to road projects. The study used monitoring techniques and therefore it might have missed the process involved	The current study demonstrated process monitoring significantly moderates the relationship between the predictor and outcome variables.
						1

CHAPTER THREE RESEARCH METHODOLOGY

3.1 Introduction

This chapter gives a description of the methodology used to conduct the research, including the research paradigm, study design and target population, sample size and sampling procedures, data collection tool and its pre-testing mechanism for validity and reliability, procedures for data collection and analysis techniques, ethical considerations, as well as operationalization of the variables.

3.2 Research Paradigm

The study employed pragmatism as a research paradigm. The choice of pragmatism as a philosophical direction to this study was preferred as opposed to the two well-known research paradigms such as positivism and constructivism. In view of positivists a single reality exist. Therefore to carry out a study based on positivism, positivists propose the significance of applying scientific technique involving organized observation as well as description of occurrencesput within contextual model or theory, including hypotheses presentation, the implementation of strictly controlled experiments, the application of inferential statistics for hypotheses testing, and the statistical interpretation of results in the light of the underpinning theory (Ponterotto, 2005).

However the constructivists are of the view that mental realities are constructed, as opposed to being an external condition (Hansen, 2004). Mertens (2005) argues that the said reality involves social aspects of nature. While studying situations, the constructivists tend to rely on the views or opinions of the participants in the study (Ponterotto, 2005). Subsequently, constructivists provide ground for qualitative research. As opposed to positivism and constructivism, pragmatism is chosen because of its appropriateness in terms of ontological, epistemological, methodological and axiological approaches. Furthermore, philosophically, pragmatism recognizes that there exists both singular and multiple realities. Hence, in this study phenomena were measured from engineers, contractos and matatu drivers' perspectives of the variables under the study. Finally pragmatism is preferred paradigm because it does not commit to any given system of reality of philosophy but instead it focuses on important reseach problems of what and how.

The use of the term paradigm and philosophy are used interchangeably in most of the research works. Newby (2010) states that research philosophy describes the principles governing research practice. He goes further to define paradigm as, "an idea that at any one point in time all those working in a particular area, field or subject adopt common ways of working and common ways of looking at issues." Similarly, Mugenda (2008) agrees that paradigms acts as axiomatic systems that are characterized by different sets of assumptions about the phenomenon they inquire.

Axioms in this case are the untestable assumptions or statements that are made about phenomena under investigation (Frankfort-Nachmias and Nachmias, 1996). Punch (2005) opines that philosophical paradigm entails complicated dynamics occurring quite often in the research methodology literature, and it implies assumptions relating to the world's social dimensions, and relating to what comprises suitable techniques and researchable topics. In the most precise terms, it would mean how science should be done. Science therefore is derived from the Latin *scientia*, which means knowledge (Pedhazur & Schemelkin, 1991). Mugenda (2008) explains that science is a set of logical procedures and methods, which provide for the systematic understanding of phenomena or reality. Mugenda correlates between research and knowledge, that:

"Human beings instinctively seek to understand the world around them. It is this understanding that makes them feel in control. People's knowledge of the world around them therefore gives them cognitive control that helps them interact with their social and physical environments freely and meaningfully. When people do not have knowledge of the world around them and therefore are not in control, they are unable to function or navigate through life. Human beings acquire knowledge of the world around them in different ways...."(Mugenda, 2008)

It is at this point that pragmatists hold the view that the world is not an absolute unity (Creswell, 2014; Wambugu, Kyalo, Mbii and Nyonje, 2015). According to Lincoln and Guba (2000), research is considered value laden in that the values we hold and the kind of socialization process we have undergone tend to shape our view about the world we all inhibit in and our experiences with various phenomenas. Although Creswell (2013) posits that even though many forms of this philosophical paradigm exist, many people argue that pragmatism as a worldview emanates out of what people do, their circumstances, and results as opposed to antecedent conditions, being the case in positivism.

Scholars such as Creswell (2014) add that in mixed methods, studies are concerned with many data collection as well as analysis as opposed to a one way subscription, as is normally the case with quantitative or qualitative approaches. That truth is instanteneous. It is regardless of the duality between truth free of the mind or within the mind. Mixed method is therefore a third pholosophical paradigm, albeit not as novel stand-alone methodology eliminating the classical quantitative as well as qualitative research methodologies, rather it is an extension of the two by incoporating both methods (Johnson & Onwuegbuzie, 2004).

According to Leech and Onwuegbuzie (2009) the concept of developing a hybrid of quantitative and qualitative study methods, referred to as mixed method, within the same study can be traced in early studies of 1960s. According to Tashakkori and Creswell (2007) a summary of comparative analysis of studies revealing the "mixed" methodology due to the fact that they employ both qualitative and quantitative methodologies in the following manner: two forms of study questions combining qualitative as well as quantitative dimensions; how the study questions are conjured, that is, either participatory or, pre-planned; bi-sampling typology, that is, for example, probability and non-probability sampling designs; two ways of data collection, such as, focus group discussions and surveys; two categories of data, that is, numerical and textual; two methods of data analysis, that is, statistical and thematic techniques; as well as, two categories of study conclusions, that is, emic and etic representations - also called "objective" and "subjective," conclusions.

The argument held by Cameron (2011) is that mixed method researchers ought to be flexible and innovative with a portfolio of research skills exceeding those that their single-mode approach may need. In this regard, they ought to categorically mention their philosophical underpinnings as well as paradigmatic position prior to the rigorous defense of their methodological preferences, and show they have sound knowledge base of mixed method study designs as well as their methodological considerations. Hence, for instance, the current study adopted structured questionnaires, while interview schedules were used to collect both quantitative and qualitative data.

3.2.1 Research Design

The study adopted descriptive cross-sectional survey research design and correlational design. The choice of cross-sectional over longitudinal survey is that the study was out to collect data at one point in time and the findings are to to be generalized to the sampled population only at the time of the survey. Longitudinal is preferred in studies that traces trends and may need triangulation which is not the case for the current study. Also, a survey is preferred in this study because it is out to help in describing data and characteristics of the phenomena under the study.

Moreover, the use of survey is to help answer the questions of who, what, where, when and how. On the other hand, correlation design is going to help measure the extent to which two or more variables are related. In addition, since the study is looking at the causal influence of relationships as well as the degree to which an integration of predictor variables (under contractors' tender evaluation results) influence the outcome of the dependent variables (road construction infrastructural project performance), the choice of correlation design is deemed benefting.

Therefore, combining both descriptive and corrlation research designs is for the former to help in describing the phenomena and the latter to provide an opportunity to identify predictor relationship by use of correlations, multiple regression and hierachical regression models designed under this study. The research design consists of four components (Frankfort-Nachmias & Nachmias, 1996): generalization, control, manipulation and comparison. The last three are important in identifying the causal relationship between dependent and independent variables.

Comparison enables us to depict covariation (two or more phenomena vary together), manipulation facilitates the establishment of the time order of events, while control enhances the determination that the observed covariation is not as a result of spurious correlation, that is, a conflation between two variables explainable by a third variable. Generalization, the fourth component, relates to the degree to which the study results are applicable to bigger universe and varied conditions. Study designs are a scientific inquiry typopogy within qualitative, quantitative, as well as mixed method approaches providing unique procedural direction in a study (Creswell, 2014). Kumar (2011) defines research design as the structure, strategy, and plan used to investigate a phenomenon with an aim of obtaining answers to research questions.

Research design may be regarded as the blueprint used to collect and analyze data (Pandey & Pandey, 2015). The use of a descriptive survey is to describe characteristics of a population to be studied. Sekaran (2006) affirms that it is undertaken to ascertain and describe variables' characteristics. Williams (2007) observes that descriptive research design examines a situation the way it is in its natural state; thus, it identifies phenomon's attributes of interest on observational basis. Dooley (2007) notes that correlational design is one which measures the independent variable rather than setting it. Normally variables are left to take their natural values rather than fixing them as would appear in experiments. The mixed method used helped in analyzing the descriptive, inferential and qualitative data. Sekaran (2006) indicated that the use of correlational analysis is "to trace the mutual influence of variables on one another." The data from this study was analyzed by showing the mutual relationship between the contractors' capacity evaluation in tender award (predictor variable) and road construction infrastructural project performance (criterion variable).

In a scientific enquiry that would include a number of research attributes, over and above the sheer knowledge of the arithmetic means as well as standard deviations of the key study variables, it is valuable to establish the manner in which the such variables relate to each other. This is to enable one to understand the direction, nature as well as significance of the bivariate linkages of the key study variables or simply put, the conflation between any pair of attributes among all the study variables. In this case the use of pearson correlation matrix provided the information required (Sekaran, 2006).

In multivariate statistics whereby the study is concerned with association of more than 1 predictor variable with an outcome variable, the regression analysis would be useful (Dooley, 2007). Dooley states that multivariate analyses can apply to data of any measurement level. For example, we can study nominal or ordinal variables in multiway contingency tables with as many dimensions as there are variables.

3.3 Target Population

The study's target population comprises: 48 consulting senior engineers and a similar number of 48 managing directors in consulting engineering firms;68 senior engineers and 68 managing directors in construction companies (as per NCA records); 95 matatu drivers on Outer-Ring Road and 133 matatu drivers on Eastern bypass. This gives a total target population of 460. The figure for the total number of matatus operating on Outer-Ring Road and Eastern Bypass are obtained from officials of the matatu owners association. Matatus refers to public vehicles service vehicles used in Kenya. The target population is therefore presented in Table 3.1.

No.	Category of respondents	Number of Population to be Sampled (N)
1	Consulting Senior Engineers	48
2	Consulting Managing Directors	48
3	Senior Engineers Construction Companies	68
4	Managing Directors Construction Companies	68
5	Eastern By-Pass Road Matatu Drivers	133
6	Outer-Ring Road Matatu Drivers	95
	Total	460

Table 3.1:	: Target P	opulation
------------	------------	------------------

Singh (2006) notes that the term 'population', also called "universe" imputes a digression from its classical conceptualization. In a census survey, for instance, the exclusive enumeration of all individuals, that is, men, women and children, entails a universe. However, in study methodology, population implies the elements of a given group. In choosing a sample of study subjects, it is quite important that a researcher clearly defines his universe and highlights its attributes (Singh, 2006).

When a study comprises of all the target elements of a real or hypothetical set of persons, objects or events for which an investigation is to draw generalizations from the results of the study that is referred to as target population (Borg & Gall, 1989). It is that population to be studied in a survey and for which the basic inferences from the survey were made (Levy & Lameshow, 2008).

3.4 Sample Size and Sampling Procedures

This section describes the sample size as well as the sampling procedure employed in the current study. These are further discussed in the following subsequent sub-themes:

3.4.1 Sample Size

The sample size for this scientific enquiry was 210 individuals drawn from a target population of 460 using Krejcie and Morgan (1970) table of sampling theory. Most of the social science related researches employ a sampling theory. "Sampling theory requires that all possible elements or units in the target population be identified so that the probability for selecting a random combination of units, which constituted the sample, was calculated in advance," (Mugenda, 2008). Krejcie and Morgan (1970) developed a framework for sampling by postulating that for population sizes of 60, 65, 100, and 250, the corresponding sample sizes ought to be 52, 56, 80 and 152 respectively, all calculated at 5% level of significance. The formula provided below is used in calculating the sample size:

$$n = \frac{X^2 * N * P * (1 - P)}{(ME^2 * (N - 1) + (X^2 * P * (1 - P)))}$$

For:

n refers to the Size of the sample

 X^2 refers to the Chi-Square for the specified confidence level at 1 degree of freedom

N refers to the "Size of the universe

P refers to the Proportion of the universe

And ME refers to the expected Margin of Error (expressed as a proportion)

According to Berg (2009), the rationale for utilising a sample from the universe is to facilitate the drawal of inferences regarding the entire universe. Bernard (2000) acknowledges that, "the sheer ease and economic convenience of sampling would defeat its very purpose. A study based on probability sampling design, nevertheless, is normally better than that which includes the entire universe." Pedhazur and Schmelkin (1991) argue that evaluation of samples is far much better than evaluation of populations beause sample offer greater accuracy, economy and feasibility.

However Singh and Masuku (2014) emphasize that the choice of sampling techniques as well as the determination of sample size are very valuable in applied statistics research problem so as draw conclusions that are free of errors. The authors state that a too small sample size may lead to failure to detect significant effects or associations even if the study is really organized, or may lead to imprecise measurement of such associations and effects. Equally, a too large sample size would lead to complexities with a potential to yield inaccurate study findings.

They warn that large samples have the potential of escalating study's cost; therefore, small samples are essential factors in scientific research. Bartlett, Kotrlik and Higgins (2001) noted that researchers ought to take note of both the right sample sizes and match it with those used in the actual study, the justification for applying insufficient sample sizes may have in the results of the study, and they further state that "despite the tendency by researchers to hold diverse opinions about the determination of the right sample size, such procedures ought to always be clearly reported alongside the findings to allow the reader to make informed judgments as to the plausibility of those results, underpinning assumptions and procedures." In this study, for example, the selection of construction companies is based on the official data by NCA in Kenya.

3.4.2 Sampling Procedure

The study adopted a stratified sampling and proportionate sampling to ensure that all categories of the population were represented according to their sizes (Bryman, 2008). These techniques were used on consulting engineering involved in civil works, and those that belong to the Consulting Engineers' Association, road contractors or construction companies categorized or classified as NCA1, with National Construction Authority. The same sampling techniques were aslo adopted for all matatu drivers plying theEastern By-Pass road in Nairobi and Outer-Ring road. Structured questionnaires were distributed to the senior engineers and managing directors working in the consulting engineering firms and construction companies.

Interviews were conducted with the mattatu drivers plying the Outer-Ring Road and Eastern Bypass. Stratified sampling was used in the study whereby the sampling frame or unit of analysis is divided into homogenous groups also referred to as strata. In this case, the strata include the consulting engineers, consulting managing directors, senior

engineers of construction companies, managing directors of construction companies, Eastern By-Pass matatu drivers and Outer-Ring matatu drivers. The proportionate sampling technique or method was used to calculate a sample from the six strata whereas a simple random sampling was used to draw samples within same strata.

The choice of simple random sampling was also to ensure that each element in each stratum had an equal chance to be selected. For consulting senior engineers and managing directors a list of members registered with Association of Consulting Engineers of Kenya (ACEK) was provided by ACEK secretariat. On the other hand, a list of construction companies was obtained from the NCA where managing directors as well as senior engineers of concerns in the construction sector are drawn.

To be able to reach out to these respondents, either physical or telephone contacts or both were provided for ease of access. The list of contractors or construction companies was long and included all categories or classes of contractors by NCA. Therefore, this was narrowed down to NCA1 specifically those dealing with road works and were allowed to undertake any amount of work, with the intention to bolster validity of the findings. The ACEK secretariat had the members officially informed about the study. The NCA contractors were contacted first and an appointment booked to ensure their cooperation.

There may be need for a census survey whenever the study universe is small and heterogeneuos (Cooper & Schindler, 2006). Hence, Sekaran (2003) suggests that having a sample greater than thirty would be most suitable for a study. Surveying all cases in a population is called undertaking a census which was not the case in this current study (Burton, 2000a). The simple random sampling technique is chosen because the numbers of senior engineers, managing directors and matatu drivers on the Outer-Ring and Eastern Bypass routes are above 30 for census as stipulated by Sekaran (2003). According to Fowler (1993), Kothari (2004) and Bell (2005), when census is conducted every individual in the study population is expected to form part of the study (Bell, 2005; Fowler, 1993; Kothari, 2004). However in this study census did not apply.

In this study, a sample size was obtained by employing a proportionate sampling procedure or method. In this case, after obtaining a sample size of 210, based on Morgan and Krejcie table (Appendix VII), drawn from the entire target population of 460, the

totals for each category was multiplied by 210 and divided by 460, hence the sample size in the Table 3.2.

Category of Respondents	Target	Sample Size (n)
	Population (N)	
Consulting Senior Engineers	48	22
Consulting Managing Directors	48	22
Senior Engineers Construction Companies	68	31
Managing Directors Construction Companies	68	31
Eastern By-pass Road Matatu Drivers	133	61
Outer-Ring Road Matatu Drivers	95	43
Total	460	210

Table 3.2: Sampling of Procedures

3.5 Research Instruments

The study used questionnaires and structured interview schedules as the primary data collection instruments. These instruments are further explained in the following subsections:

3.5.1 Questionnaires

The said research questionnaire comprised both open and closed ended questions. The questionnaire for each of the categories of respondents was divided into seven sections. The initial segment collected data on demographic information or general information of the respondent (Section A). The second section (Section B) data was collected on performance of road construction infrastructural projects and the third section (Section C) data was enumerated on financial ability of contractors and performance of road constructural projects.

In the fourth section (Section D), data was collected on technical ability of contractors and performance of road construction infrastructural projects and whereas the fifth section (Section E) data collected focused on managment ability of the contractors and performance of road construction infrastructural projects. The sixth section (Section F), data was collected on contractors' safety record and the key criterion variable. Lastly, the seventh section (Section G) data was collected on process monitoring and performance of road construction infrastructural projects. Research questionnaires are suitable for the collection of data about the universe (Mugenda & Mugenda, 2003; Bhattacherjee, 2012; Kothari, 2004; Kombo & Tromp, 2006). The structured questionnaires also referred to as standardized questionnaires by Berg (2009) had the following features: no item order variation, properly structured, proper wording of the questionnaire items, level language none adjustment, no clarification/answering of questions relating to the interview, no extra questions are permissible and finally highly stnadardized in the flow. Berg notes that this type of interview is intentionally meant to bring out the thoughts of the respondents, their attitudes, and opinions about matters relating to the research.

When using self-adminstered questionnaires, a researcher usually mails them to the respondents, although the researcher may choose to drop-and-pick or even administer to a group (Bernard, 2000). This study therefore employed both techniques and use one at a time where necessary to speed up the data collection process. Bernard (2000) shares advantage and disadvantage of using self-adminstered questionnaires which the researcher need to be aware about. The advantage is, self-adminstered questionnaire allows for the investigation of complex issues as opposed to a personal interview.

In addition, items involving a highly categorized set of responses, or those that need rigorous background data may experience hiccups in an oral investigation, but are often challenging to respondents if worded right. The main undoing of a research questionnaire is that it leaves the researcher with no control as to the interpretation of the questions by the repondents. Despite attempts to develop culturally correct items in the questionnaire, there is an impending risk that respondents could be forced into choosing culturally unsuitable options in a closed-ended questionnaire. To avoid this anomaly, the study therefore ensured validity and reliability is well done. However, Boynton and Greenhalgh (2004) observed that questionnaires offer an objective means of data collection whereby people's knowledge, beliefs, attitude and behaviour are captured. This study therefore used likert scales developed by Rensis Likert.

The Likert scale is the widely used variation of the summated rating scale, which means it contains statements that express the degree to which a person agrees or disagrees with a statement expressed in either favor or opposition of a view of object of interest (Cooper & Schindler, 2006). The questionnaires in this study were designed in statement using a

Likert scale of 1 to 5, where 1=Strongly disagree, 2=Disagree, 3=Neutral, 4=Agree and 5=Strongly agree. Bell (2005) states that Likert scales are used in questionnaires to discover strength of feeling or attitudes towards series of statements.

3.5.2 Structured Interview Schedules

The structured interview schedule for this study was used to collect data from all the matatu drivers plying on Eastern By-Pass and Outer-Ring roads. The choice of interview schedule for the study is assumed that not all matatu drivers may have the proficiency to read, understand and answer the items in the questionnaire on their own. Interviews schedules are regarded as part of the major quantitative and qualitative data collection tools.

According to Punch (2005), interviews avail a avenue for the access of respondents' feelings, conceptualization of issues, definitions of conditions, as well as interpretation of reality. The technique also remains a powerful tool for understanding other persons. The interview schedule for the matatu drivers had seven sections. The first section (Section A) collected data on demographic information or general information of the matatu drivers in both routes. The second section (Section B) data was collected on performance of road construction infrastructural project and the third section (Section C) data was collected on financial ability of contractors.

In the fourth section (Section D), data was collected on technical ability of contractors and performance of road construction infrastructural projects and whereas the fifth section (Section E) data focused on management ability of the contractors and performance of road construction infrastructural projects. The sixth section (Section F), data was collected on contractors' safety record and performance of road construction infrastructural projects. Lastly, the seventh section (Section G) data was collected on process monitoring and performance of road construction infrastructural projects.

3.5.3 Pilot Testing of Instruments

Before the real study took place, the completed questionnaires and interview schedules were tried out in the field. The aim was to be sure that all the study participants comprehended the items in the instruments; and whether or not the very items maintained the same meaning across all the participants (Kelly, Clark, Brown, & Sitzia, 2003). The pilot study was conducted in Kiambu County. A pilot study is a mock-version of the

actual full scale study, or trial conducted to prepare for the actual research later (Galitz, 2005; Mugenda, 1999; Connelly, 2008). Mugenda and Mugenda (2009) maintains that a sample between a range of one percent and 10 percent is sufficient for piloting. While Sekaran (2006) supports this view by stating that one percent of sample size is enough for piloting study. Hill (1998) proposed that for a pilot study 10 to 30 respondents are allowed in the survey research. Based on these three views, the current study sampled 17 respondents equivalent to eight percent. Kiambu County in Kenya was considered ideal for piloting since the respondents had homogeneous characteristics as of those in Nairobi County. Questionnaire was adminstered to nine contractors from consulting engineers firms and construction companies. Whereas eight interview schedules was used on PSV matatu drivers.

In small scale trials, a few examinees comment on the test instructions and point out any unclear questions or statements in the tools used (MacMillan and Schumacher, 2010). From the pilot study done, it was apparent that the research tools used lacked some clarity to the respondents who took part in the mock survey. It was established that most of the staements or items in sections B,C,D,E, F and G of both the questionnaires and interview schedules were not clearly stated to bring out desired information from the respondents. In consultation with the two experts who in this case were the University of Nairobi supervisors who guided in the study, the research tools were relooked at again after the pre-test to ensure they capture the required data. The initial instruments had a total of 109 items or statements as shown in appendix XV and after reviewing, 89 items or statements were retained as displayed in appendix III and appendix IV. A retest was was therefore carried out to check if any ambiguities could still existed. Through this pilot study, it was easy to determine reliability. A method of pre-test retest requires a sample of ten respondents and above (Mulusa, 1988). A consistent number of 17 respondents was maintained during a retest.

3.5.4 Validity of Instruments

This study considered content validity to ensure that questions in the questionnaire accurately achieved the research objectives or measured the validity of the complex concepts or constructs. Bernard (2000) defines validity as the capability of a research instrument to measure that which it is intended to measure. In research, there are three ways of testing validity: construct validity, content validity and criterion validity. The

research instruments were presented to research experts, the researcher's academic supervisors, and engineers in the road construction to evaluate the clarity, relevance and interpretation of the items in the instruments as outlined for each objective of the study. The following scale was used: A scale of '4' for very relevant, '3' quite relevant, '2' somewhat relevant, and '1' to represent not relevant. The Content Validity Index (C.V.I) was used. The C.V.I items rated 3 or 4 by both judges and divided by the sum of items in the questionnaire were used in the study. This formula was given as follows:

n₃₄/N

A measure of the extent to which the collected data by an instrument represents a particular domain of indicators or content of a specific construct is called content validity (Oso & Onen, 2005). The study also used construct validity whereby the focus was on establishing the way questions in the questionnaire are constructed in terms of simplicity in language that can be easily understood by the respondents. In addition, the use of construct validity was to check on vagueness to instructions given to the respondents when answering questions. Construct validity as defined by Frankfort-Nachmias and Nachmias (1996) is the process involving the linkage of an instrument to an overall theoretical framework so as to establish if the said tool is anchored on the construct as well as the underpinning conjectural assumptions.

3.5.5 Reliability of Instruments

Reliability refers to instrument's ability to deliver consistent results in a study (Bernard, 2000). A pilot testing was conducted in Kiambu County involving eight public service vehicle (matatu) drivers, as well as 9 road contractors and engineers. Questionnaire of likert scale were the main instrument of data collection and hence, it was important to test the internal consistency. This helped to know how well the items on a tool fit together conceptually. The Cronbach alpha test was used to assess the research items to ascertain whether they are within 0-1 acceptable range. Founded by Cronbach (1951), the Cronbach alpha coefficient of internal consistency is capable of measuring the internal consistency of a scale or test. A reliability that gives a value of 0.6 (Kothari, 2004) and 0.80 (Oluwatayo, 2012) is considered good for descriptive type of research. However, it is argued by Drost (2012) and Orodho (2009) that values ranging between 0.7 and 1.00 are still appropriate to deduce that a reliability exists.

The study therefore used the Cronbach's values that ranged between 0.7 and 0.8 to determine reliability. As Cooper and Schindler (2006) put it, a reliability is "an element of measurement that relate to the precision, accuracy, as well as consistency; a requisite yet inadequate condition for validity; that is, unreliable measure cannot be valid. Zinbarg, Revelle, Yovel and Li (2005) conclude by saying that Cronbach alpha is a coefficient of reliability that provided an objective estimate as to the generalizability of data. For this study, these tests are presented in Table 3.3.

Section of Questionnaire	Variable	No. of Items	Cronbach's
		Retained in	Alpha
		the scale	
Section B	Performance of road		
	construction Infrastructural	21	0.778
	Projects		
Section C	Financial Ability	11	0.753
Section D	Technical Ability	15	0.716
Section E	Management Ability	12	0.763
Section F	Safety Record	14	0.788
Section G	Process Monitoring	13	0.705
Composite Cronbach's Alpha Reliability Coefficient 0.7505			

Table 3.3: Reliability Test Summary

Table 3.3 shows that all the variables met the reliability criteria measured by the internal consistency coefficients. This is because all the variables had Chronbalch's Alpha coefficients above 0.7. Hence, this was considered acceptable level to measure internal reliability (Bryman, 2012).

3.6 Data Collection Procedure

The process of acquiring subjects and collecting the data for one's study is called data collection (Burns & Grove, 2010). Prior to collection of data from the respondents, the researcher sought permission from the relevant Kenyan government authority, the National Commission for Science, Technology and Innovation (NACOSTI). The self-adminstered structured questionnaire as well as structured interview schedules were delivered to the respondents with the help of the research assistants with aim of collecting primary data. Structured interview schedule was used to collect data from matatu drivers plying Outer-Ring Road and Eastern Bypass in Nairobi. The structured questionnaires

were used on managing directors as well as consulting engineering and senior engineers in construction companies concerns.

There was a prior meeting planned prior with the various contractors and their teams or staff to help schedule for data collection. In some instances, appointments were booked via a phone call. Some participants were reached through emails. This played key role in ensuring that the data collection process did not interfere or distract the respondents' own schedules. The off-peak hours identified for PSV drivers were mostly between 11.00am to 12noon and 2.00 pm and 3.30 during weekdays. Weekends it was abit flexible and data collection would commence at 9.00am to 5.00pm. It should be noted that most of PSVs they line up in their respective drop and pick areas and therefore this offered humble time for data collection. The four research assistants were also pre-trained before embarking on data collection to enhance understanding of the main objective of the scientific enquiry and ethical issues for consideration. The whole exercise of data collection from pilot study to main study happened between the month of October 2018 to the beginning of January 2019.

3.7 Data Analysis Techniques

The use of mixed methods calls for data analysis techniques that promote the same. In this study the data analysis techniques was descriptive and inferential statistics in conformomity with pragmatism paradigm since qualitative as well as quantitative data were both collected. The process of editing was conducted to ascertain any irregularities in the data, then coded followed by entry into the SPSS system. According to Kothari (2004) coding refers to the process of allocating numbers or other signs to responses in order to aid in the classification of the data into limited groups. It is important for the efficiency of data analysis as well as the reduction of several responses to a reasonable number of classes containing the key information needed to helpwith the analysis. The qualitative data collected as per the six objectives of the study was analyzed by use of thematic approach as suggested by Burton (2000b). According to Leech and Onwuegbuzie (2007) the use of constant comparison analysis helps in identifying the underlying themes as presented through the qualitative data collected.

Quantitative descriptive data was analyzed by using frequencies and percentages. Both the arithmetic mean and standard deviation were used as statistical tools to measure central tendency and dispersion respectively. These statistical tools are, according to Gakuu, Kidombo and Keiyoro (2018) ideal for the interval data. The position about where items tend to cluster is indicated by the measures of central tendency (or statistical averages), and it was considered the most representative statistic for the whole set of data. The measure of central tendency is also called statistical average and it entails the mode, median, and mean, being the most popular averages. The purpose of using mean in this study was largely dependent on the nature of anlyses that purely required interval measurement (Wambugu, et.al., 2015). That is, the mean is determined by the algebraic treatment thereby considered useful in this study to help in carrying further statistical calculations. An average can reveal a series the same way a single figure can, however, it no doubt is incapable of revealing the whole characteristics of a phenomenon under investigation (Kothari, 2004). Spefically, it is not capable of revealing how the values about a variable are scattered around the mean. Statistical devices referred to as measures of dispersion are normally worked out so as to reveal the scatter.

Some of the key dispersion statistics are (a) mean deviation, (b) range, and (c) standard deviation (Kothari, 2004). Along with many related statistics such as coefficient of variation and variance, the standard deviation is applied predominantly in empirical studies and it is normally considered as a very effective dispersion statistic in a series. In the current study, standard deviation was used due to its amenability to mathematical manipulation since the algebraic signs are considered in its calculation, as is never the case in mean deviation. Moreover, it is never vulnerable to sampling dynamics. The merits therefore make standard deviation as well as its coefficient an important statistic of the scatteredness of a series in the current study.

Standard deviation was also used in the current study owing to its popular use in inferential statistics. Finally, data was subjected to further analysis to measure relationship between variables. The analysis was therefore based on linear regression, multiple regression, hierarchical Regression and pearson's product moment correlation. Multivariate and hierachical regression analyses were used for hypotheses testing at 95 percent level of confidence, with linear regression applied to determine the effect of each predictor variable on the criterion variable.

According to Bernard (2000) multiple regression also qualifies as a PRE measure. That is, it also reveals the extent to which you could predict characteristics of an outcome variable than you could if you with an arbitrary mean – but incorporating all the information available in a series of criterion variables. Regression analysis, according to Faraway (2002), is applicable for purposes of explaining or modeling the association between one or more *input*, *predictor*, *explanatory*, or *independent* or variables, $X_1...X_p$ and a single variable Y, referred to as the *output*, *response*, or *dependent* variable. The method is referred to as simple regression when p=1, but when p>1 it is referred to as multiple regression and at other times as multivariate regression. It is called multivariate multiple regressions whenever there is more than one Y.

According to O'Brien and Scott (2012), the criterion variable Y is explained by only one predictor variable in a simple regression model. In this regard, *Karl Pearson's coefficient of correlation* (or simple correlation) is the most predominantly applied technique for measuring the extent of association between a pair of variables. The following assumptions underpin the coefficient: (i) linear correlation between the two variables; (ii) causal relationship between the two variables; and (iii) normal distribution of data.

The conflation between key study variables can be analysed using various methods, even though no technique can certianly demosntrate existence of a causal linkage between such variables. Therefore, the preoccupation of any multivariate analysis is to attempt to answer the questions:what is the association between the variables in question?Then to what extent are the variables correlated? Is there any causal linkage between the variables? If yes, of what degree and in which direction, and what is the direction of that causal relationship?

The foregoing questions are answerable using correlational and regressional analyses, respectively. The key among several methods to undertake correlational and regression analyses are: *In case of bivariate population:* Correlation analysis can be done by(a) Karl Pearson's coefficient of correlation; (b) Charles Spearman's coefficient of correlation; and (c) cross tabulation; while inferential analyses can be doneby simple regression equations. *In case of multivariate population:* Correlation analyses are doable by (a) computing coefficient of multiple correlation; (b) computation of coefficient of partial

correlation; whileinferential analyses are doneby the use of multiple regression equations (Kothari, 2004).

According to Kothari (2004), Karl Pearson's coefficient of correlation, otherwise called the product moment correlation coefficient is denoted by 'r', where the value of 'r' lies between ± 1 . '+r 'denotes positive correlation between the concerned variables, while '-r' denotes negative correlation. 'r=0' denotes none existence of association between the concerned variables. A unit variation in predictor variable, under a constant variation in the criterion variable in the same direction, implies a perfect positive. Otherwise, the correlation is perfectly negative.

Values of 'r' tending to +1 or -1 imputes a high level of correlation between the concerned variables. The measuring scale in this study was interval scales. According to Cooper and Schindler (2006), interval scales have one additional strength over and above the capability of both ordinal and nominal scales. In this regard, the interval scale incoporates the notion of interval equality, that is, the distance between 1 and 2, equals the distance between 3 and 4, which also equals the distance between 4 and 5. Under conditions of interval scale, unimodal and relatively symmetric data, it is possible to measure central tendency using arithmetric mean. The indicators of the variables for contractors' capacity in tender award, process monitoring as well as performance of road construction infrastructural projects are as shown in Table 3.4. The analytical models have been adapated from Seboru (2017) and Kinyanjui (2014).

Table 3.4: Correlation and Regression Models

Val	riables	Indicators	Sub-Indicators
Dependent Variable	Performance of road construction Infrastructural Projects. Contractors' Capacity Evaluation in Tender Award $(X_{1}, X_{2}, X_{3}, X_{4})$	 Quality of completed road in terms of condition of drainage and water table, absence of potholes Mobility and speed – delays, congestion, average speed Comfort and convenience in terms of smoothness and roughness of the road Road User benefits in terms of cost reduction, travel time reduction, vehicle operating cost reduction Safety - properly constructed footbridges, pedestrian walkways, cycling lanes, road properly marked, adequate road signs, bus stops Financial ability of Contractors (X1) 	 Credit rating (X_{1a}); Bank's good will (X_{1b}) Flexibility of the loan agreements (X_{1c}) Turnover, profits obligations,
			 Owned financial funds (X_{1e}).
		Technical ability of contractors (X ₂)	 Experience in terms of catchment of National or Local projects (X_{2a}) Plant and equipment (X_{2b}) Quality of materials used (X_{2c}) Experience in terms of size of projects completed(X_{2d}) Availability of tactical

			manpower/personnel (X _{2e}).
		• Management ability of contractors (X ₃)	 Past performance & quality (X_{3a}) Quality control policy (X_{3b}) Management knowledge (X_{3c}) Project management system (X_{3d}) Experience of management personnel (X_{3e}).
		Contractors' Safety Record (X ₄)	 Safety policy Management system(X_{4a}) Insurance policy (X_{4b}) Compliance behavior(X_{4c}) Adequacy of standard in addressing safety outcomes (X_{4d}) Certification in OSHA (X_{4e}).
Moderating Variable	Process Monitoring (X ₁₀)	 Compliance with construction specification (X₅) Compliance with Regulatory bodies' requirements (X₆) Compliance with County by-laws (X₇) Resolution to complaints Management (X₈) Adherence to allocation and utilization of resources for accomplishment of project's objectives (X₉). 	

Data analysis was guided by following correlation and regression models:

Where

y-Dependent Variable

a-Constant Term

B₁, B₂, B₃, B_n – Regression Coefficients (Note: the symbols B is for unstandardized beta values in simple linear regressions for model 1, 2, 3 & 4; and symbol β is used for standardized beta values in multivariate and hierarchical regressions for model 5 and model 6 respectively).

 $X_1, X_2, X_3 \dots n$ – Predictor Variables

e – Error Term.

For the first study objective, the following hypothesis is developed and the corresponding analytical model is set up.

Model 1

H₀: Financial ability of contractors does not significantly influence performance of road construction infrastructural projects.

Performance of road construction infrastructural projects = f (Financial ability of contractors)

 $y = a + B_1 X_1 + e$

Where:

- y Performance of road construction infrastructural projects
- X_1 Financial ability of contractors
- B_1 Regression coefficient
- a Regression constant
- e Error term

For the second study objective, the following hypothesis is developed and the corresponding analytical model is set up.

Model 2

 $\mathbf{H}_{0:}$ Technical ability of contractors does not have significantly influence performance of road construction infrastructural projects.

Performance of road construction infrastructural projects = f (Technical ability of contractors)

 $y=a+B_2X_2+e$

Where:

- y Performance of road construction infrastructural projects
- X_2 Technical ability of contractors
- B_2 Regression coefficient
- a Regression constant
- e Error term

For the third study objective, the following hypothesis was developed and the corresponding analytical model set up.

Model 3

H₀: Management ability of contractors does not significantly influence performance of road construction infrastructural projects.

Performance of road construction infrastructural projects = f (Management ability of contractors)

 $y=a+B_3X_3+e$

Where:

- y Performance of road construction infrastructural projects
- X_3 Management ability of contractors
- B_3 Regression coefficient
- a Regression constant
- e Error term

For the fourth study objective, the following hypothesis is developed and the corresponding analytical model is set up.

Model 4

H₀: Contractors' safety record does not significantly influence performance of road construction infrastructural projects.

Performance of road construction infrastructural projects = f (Contractors' safety record)

 $y=a+B_4X_4+e$

Where:

- y Performance of road construction infrastructural projects
- *X*₄- Contractors' safety record

 B_4 – Regression coefficient

- a Regression constant
- e Error term

For the fifth study objective, the following hypothesis is developed and the corresponding analytical model is set up.

Model 5

 H_0 : The combined contractors' capacity evaluation in tender award does not significantly influence performance of road construction infrastructural projects.

Performance of road construction infrastructural projects = f (Combined contractors capacity evaluation in tender award)

 $y=a+\beta_1X_1+\beta_2X_2+\beta_3X_3+\beta_4X_4+e$

Where:

- y Performance of road construction infrastructural projects
- X_I Financial ability of Contractors
- X_2 Technical ability of Contractors
- X_3 Management ability Contractors
- X_4 Contractors' safety record
- $\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}$ Regression coefficients
- a Regression constant
e – Error term

For the sixth study objective, the following hypothesis was developed and the corresponding analytical model was set up.

Model 6

 H_0 : Process Monitoring does not significantly moderate the relationship between contractors' capacity evaluation in tender award and performance of road construction infrastructural projects.

performance of road construction infrastructural projects = f (Process Monitoring) $y=a + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \beta_5 X_{10} + \beta_6 X_1 X_{10} + \beta_7 X_2 X_{10} + \beta_8 X_3 X_{10} + \beta_9 X_4 X_{10} + e$ Where:

y= performance of road construction infrastructural projects

- a= Regression constant
- X₁= Financial ability of Contractors
- X₂= Technical Ability of Contractors
- X₃= Management Ability of Contractors
- X₄= Contractors' Safety Record
- X₁₄= Process Monitoring

 β_1 , β_2 , β_3 , β_4 , β_5 , β_6 , β_7 , β_8 , and β_9 = Regression coefficients

e=Error term

The study used various types of analysis to test hypotheses so that empirical conclusions are arrived at. Table 3.5 indicates all the study objectives, study hypotheses and the respective type of analysis.

Table 3.5: Statistical Tests of Hypotheses

	Research Objective	Hypothesis	Tools of Analysis	Level of
i.	To determine the extent to which financial ability of contractors influence performance of road construction infrastructural projects in Nairobi County, Kenya.	1. H ₀ : Financial ability of contractors does not significantly influence performance of road construction infrastructural projects.	 Pearson's Correlation Linear Regression 	 P > 0.05 Fail to reject P < 0.05 Reject
ii.	To assess how technical ability of contractors influence performance of road construction infrastructural projects in Nairobi County, Kenya.	2. H ₀ : Technical ability of contractors does not significantly influence performance of road construction infrastructural projects.	Pearson's CorrelationLinear Regression	 P > 0.05 Fail to reject P < 0.05 Reject
iii.	To establish how management ability of contractors influence performance of road construction infrastructural projects in Nairobi County, Kenya.	3. H ₀ : Management ability of contractors does not significantly influence performance of road construction infrastructural project.	Pearson's CorrelationLinear Regression	 P > 0.05 Fail to reject P < 0.05 Reject
iv.	To examine how contractors' safety record influence performance of road construction infrastructural projects in Nairobi County, Kenya.	4. H ₀ : Contractors' safety record does not significantly influence performance of road construction infrastructural projects.	Pearson's CorrelationLinear Regression	 P > 0.05 Fail to reject P < 0.05 Reject
v.	To determine how the combined contractors' capacity evaluation in tender award influence performance of road construction infrastructural projects in Nairobi County, Kenya.	5. H ₀ : The combined contractors' capacity evaluation in tender award does not significantly influence performance of road construction infrastructural projects.	Multiple Regression	 P > 0.05 Fail to reject P < 0.05 Reject
vi.	To assess the moderating influence of process monitoring on the relationship between contractors' capacity evaluation in tender award and performance of road construction infrastructural projects in Nairobi County, Kenya.	6. H ₀ : Process monitoring does not significantly moderate the relationship between contractors' capacity evaluation in tender award and performance of road construction infrastructural projects.	 Multiple Regression Hierarchical Regression 	 P > 0.05 Fail to reject P < 0.05 Reject

3.8 Ethical Considerations

The study is going to use permit from NACOSTI, university clearance letter, transmittal letters prior to undertaking field research. The challenge of many researchers lies mainly in the manner in which they relate to their external environment, and as Berg puts it:

"PERHAPS TO a greater degree compared to the average citizen, SOCIAL SCIENTISTS do have an ethical obligation to their study universe, their colleagues, as well as the larger society. This isbecause social scientists delve into the social lives of other human beings. From such delving into private social lives, policies, practices, and laws may emanate. Accordingly, social researchers ought toassure the protection of privacy, rights, as well as welfare of the communities and persons forming the focus of their research." (Berg, 2009)

Various strategies have been put in place to ensure ethical standards in the current study. For example, transmittal letters were written to the respondents seeking authority to collect data, in which case they (respondents) non-disclosure and confidentiality commitments were made. In light of this, annonimity was encouraged in the filling of questionnaires by the respondents. The respondents were informed that that the findings of the research would be available to them on request. The respondents were also informed of the following: the direct benefits of the study to their situation so as to avoid mid-stream withdrwal from the process as well as non-response to some aspects of the questionnaire; the guarantee of no harm as a result of participation in the study; as well as the guarantee of non-traceability, confidentiality and anonymity in the study.

According to Mugenda (2008) the need for protection of the welfare and rights of the participants, being the overriding ethical obligation of all personsinvolved in a study. Ethics refer to the standards or norms of conductconsidered important by the society and that guide moral judgement about study behavior (Cooper & Schindler, 2006). Mugenda (2008) notes that ethical standards also entail virtues of compassion, empathy and honesty when handling subjects or other living beings in a study. Just like Mugenda empasises on honesty, this studies ensures that all in-text citations are acknowledged by including them in the reference list. The Turnitin software was used in order to check for plagiarism and hence corrections were done accordingly and any detected anomalies rectified.

3.9 Operationalization of the Variables

Operationalization refers to the process of denoting numbers or numerals and any other symbols to the study. It explicitly specifies variables in a manner that facilitates measurement of variables (Sekaran, 2006). Table 3.6 shows a summary of the operationalization of the variables.

Table 3.0. Operationalization of the variable	Table 3.6:	Operationalization	of the	Variables
---	-------------------	---------------------------	--------	-----------

Objective	Variables	Indicators	Measurement	Measuring Scale	Research Approach	Type of Statistical Data	Tool of Analysis
i. To determine the extent to which financial ability of contractors influence performance of road construction infrastructural projects in Nairobi County, Kenya.	Dependent Variable: Performance of Road Construction Infrastructural Projects	 Quality of completed road in terms of condition of drainage and water table, absence of potholes Speed and mobility – average speed, congestion, and delays. Comfort and convenience in terms of smoothness and roughness of the road Road User benefits in light of cost reduction, travel time reduction, vehicle operational cost reduction Safety - properly constructed footbridges, pedestrian walkways, cycling lanes, road properly marked, adequate road signs, bus stops 	Calculation of an average of the sum of the responses of each respondent over the twelve scales in the third column for each variable, leading to a composite index.	Interval	Quantitative	Analysis Parametric	Descriptive Analysis tools (Standard deviation, Means, frequencies and percentages)
		Performance of Rroad construction infrastructural projects.	Open-ended questions		Qualitative	Non- Parametric	Descriptive Analysis(thematic)
	Independent Variable:Financial ability of Contractors	 Credit rating Bank's good will Flexibility of the loan agreements Turnover, profits obligations, amounts due Owned financial funds 	Calculation of an average of the sum of the responses of each respondent over the twelve scales in the third column for each variable, leading to a composite index.	Interval	Quantitative	Parametric	Descriptive Analysis tools (Standard deviation, Means, frequencies, percentages, Pearson's Correlation and

Objective	Variables	Indicators	Measurement	Measuring Scale	Research Approach	Type of Statistical Data Analysis	Tool of Analysis
							Linear Regression)
		Financial ability of Contractors and performance of road construction infrastructural projects.	Open-ended questions		Qualitative	Non- Parametric	Descriptive Analysis tools (thematic)
 To assess how technical ability of contractors influence performance of road constru ction infrastructural projects in Nairobi County, Kenya. 	Independent Variable: Technical Ability of Contractors	 Experience indicated by catchment of national or international projects Plant and equipment Quality of materials used Experience demonstrated by size of projects completed Availability of tactical manpower/personnel 	Calculation of an average of the sum of the responses of each respondent over the twelve scales in the third column for each variable, leading to a composite index.	Interval	Quantitative	Parametric	Descriptive Analysis tools (Standard deviation, Means, frequencies, percentages, Pearson's Correlation and Linear Regression)
		Technical Ability of Contractors and performance of road construction infrastructural projects.	Open-ended questions		Qualitative	Non- Parametric	Descriptive Analysis tools (thematic)
 To establish how management ability of contractors influence performance of road construction infrastructural projects in Nairobi County, Kenya. 	Independent Variable: Management ability of Contractors	 Past performance & quality Quality control policy Management knowledge Project management system Experience of managemet personnel 	Calculation of an average of the sum of the responses of each respondent over the twelve scales in the third column for each variable, leading to a composite index.	Interval	Quantitative	Parametric	Descriptive Analysis tools (Standard deviation, Means, frequencies, percentages, Pearson's Correlation and Linear Regression)
		Management ability of Contractors and performance of road construction infrastructural projects.	Open-ended questions		Qualitative	Non- Parametric	Descriptive Analysis tools (thematic)

Objective	Variables	Indicators	Measurement	Measuring Scale	Research Approach	Type of Statistical Data Analysis	Tool of Analysis
 To examine how contractors' safety record influence performance of road construction infrastructural projects in Nairobi County, Kenya. 	Independent Variable: Contractors' Safety Record	 Safety policy Management system Insurance policy Compliance behavior Adequacy of standard in addressing safety outcome like proper use of road signage Certification in OSHA 	Calculation of an average of the sum of the responses of each respondent over the twelve scales in the third column for each variable, leading to a composite index.	Interval	Quantitative	Parametric	Descriptive Analysis tools (Standard deviation, Means, frequencies, percentages, Pearson's Correlation and Linear Regression)
		Contractors' Safety Record and performance of road construction infrastructural projects.	Open-ended questions		Qualitative	Non- Parametric	Descriptive Analysis tools (thematic)
 To determine how the combined contractors' capacity evaluation in tender award influence performance of road constru ction infrastructural projects in Nairobi County, Kenya. 	Independent Variable: Combined Contractors' Capacity Evaluation in Tender Award.	 Financial ability of Contractors Technical ability of Contractors Management ability of Contractors Contractors' \Safety record 	Calculation of an average of the sum of the responses of each respondent over the twelve scales in the third column for each variable, leading to a composite index.	Interval	Quantitative	Parametric	Descriptive Analysis tools (Standard deviation, Means, frequencies, percentages, Pearson's Correlation, Multiple Regression and Hierarchical Regression)
		Combined contractors' capacity evaluation in tender award influence performance of road construction infrastructural projects	Open-ended questions		Qualitative	Non- parametric	Descriptive Analysis tools (thematic)

Objective	Variables	Indicators	Measurement	Measuring Scale	Research Approach	Type of Statistical Data Analysis	Tool of Analysis
vi. To assess the moderating influence of process monitoring on the relationship between contractors' capacity evaluation in tender award and performance of road constru ction infrastructural projects in Nairobi County, Kenya.	Moderating Variable: Process Monitoring	 Compliance with construction specification Compliance with Regulatory bodies' requirements Compliance with County by-laws Resolution to complaints Management Adherence to allocation and utilization of resources for accomplishment of project's objectives 	Calculation of an average of the sum of the responses of each respondent over the twelve scales in the third column for each variable, leading to a composite index.	Interval	Quantitative	Parametric	Descriptive Analysis tools (Standard deviation, Means, frequencies, percentages, Pearson's Correlation, Multiple Regression and Hierarchical Regression)
		Process Monitoring and performance of road construction infrastructural projects.	Open-ended questions		Qualitative	Non- Parametric	Descriptive Analysis tools (thematic)

CHAPTER FOUR

DATA ANALYSIS, PRESENTATION, INTERPRETATION AND DISCUSSION

4.1 Introduction

This chapter presents the study results, which have been analyzed based on themes drawn from the study objectives. The thematic areas include: Questionnaires return rate, Background information of the respondents, Basic statistical assumptions, performance of road construction infrastructural Financial ability of projects. contractors and performance of road construction infrastructural projects, Technical ability of contractors and performance of road construction infrastructural projects, Management ability of contractors and performance of road construction infrastructural projects, Contractors' safety record and performance of road construction infrastructural projects, Combined contractors capacity evaluation in tender award and performance of road construction infrastructural projects, Moderating influence of process monitoring on the relationship between contractors capacity evaluation in tender award and performance of road construction infrastructural projects.

4.2 Questionnaire Return Rate

Questionnaires were administered to 210 respondents, comprising 106 contractors and 104 PSV matatu drivers. Out of these, 153 were filled and returned, representing questionnaire return rate of 72.8%. It was established that 57 questionnaires, as shown in table 4.1, were not returned despite elaborate effort by the researcher to have them completed and returned. Saunders, Lewis, and Thornhill (2009) argue that 50% questionnaire return rate is reasonable to facilitate meaningful inferential analysis. According to Mugenda and Mugenda (2003), response rate of 70% and above is considered excellent for purposes of inferential analysis. In respect to the reviewed literature on construction projects for this study, Enshassi, Mohamed and Abushaban (2009) recorded a response rate of 73% whereas Nyangwara and Datche (2015) recorded 73.3%. The response rate of 72.8% in the current study, therefore, met the criteria set by both Saunders, Lewis and Thornhill (2009) and Mugenda and Mugenda (2003). The researcher, thus, proceeded to data analysis, including inferential analyses.

Category of	Sample Size	Returned	Average Return
Respondents			Rate (%)
Contractors	106	82	77.36
PSVs Drivers	104	71	68.27
Total	210	153	72.815

Table 4.1: Questionnaire Return Rate

4.3 Background Information of Respondents

Background information about the respondents are an important part in social research since it informs the nature of responses obtained. Age of the respondents, for instance, is deemed important in attempt to understand their views about a phenomenon. Gender is also a major consideration in understanding the dynamics about the respondents since construction of reality about a phenomenon would also take cue from the gender biases. The level of education of the respondents also plays a critical role in determining the nature of responses obtained from a study since it determines the manner in which the educationally diverse respondents express opinions about a research problem. Level of experience is equally deemed important since it determines the quality of responses, in terms of the validity of the responses obtained. The background information about the respondents was as shown in the sub-sequent sub-themes:

4.3.1 Contractors' Demographic Information

This section presents demographic information of the respondents, specifically consulting engineers and contractors in road construction projects; both are referred to here as contractors. The results are presented in Table 4.2.

Categories of Demographics	Values	Frequency	Percent	Valid Percent	Cumulative Percent
Gender	Male	62	75.6	75.6	75.6
Gender	Female	20	24.4	24.4	100.0
	Total	82	100	100	
Age	21-30 years	6	7.3	7.3	7.3
C	31-40 years	19	23.2	23.2	30.5
	41-50 years	25	30.5	30.5	61.0
	51-60 years	22	26.8	26.8	87.8
	61 and above	10	12.2	12.2	100
	Total	82	100	100	
Highest Level of	College Diploma	9	11.0	11.0	11.0
Education	Bachelor's	46	56.1	56.1	67.1
	Degree	27	32.9	32.9	100
	Master's Degree		100	100	
	Total	82	100	100	10.2
Status in Organization	Managing Director	15	18.3	18.3	18.3
	Director	22	26.8	26.8	45.1
	Manager	13	15.9	15.9	61.0
	Senior Staff	20	24.4	24.4	85.4
	Supervisor	12	14.6	14.6	100.0
	Total	82	100	100	
Work Experience of	6-10 years	20	24.4	24.4	24.4
Contractors	11-15 years	17	20.7	20.7	45.1
				12.4	58.5
	16-20 years	11	13.4	15.4	100
	21 and above Years	34	41.5	41.5	
	Total	82	100	100	
Years of Operation	6-10 years	2	2.4	2.4	2.4
in Road	11-15 years	18	22.0	22.0	24.4
Construction					42.7
	16-20 years	15	18.3	18.3	100
	21 and above	47	57.3	57.3	
	Years				
	Total	82	100	100	
Category of Road	National	60 22	73.2	73.2	73.2
Construction	International	22	26.8	20.8	100.0
	Total	82	100	100	

Table 4.2: Contractors' Demographic Information

From Table 4.2, the study was interested in understanding the gender dynamics given that the Kenyan constitution of 2010 requires that there should be at least a third (1/3) of either gender in every aspects of work situation. The results revealed that 62 (75.6%) of the respondents were male contractors and 20(24.4%) represented the female counterparts. This still shows that road construction industry is male-dominant. Similarly, the African traditional patriarchal system gives support to male children in education especially when it comes to science and engineering subjects.

In terms of age, Table 4.2 shows that 6(7.3%) of contractors ranged between 21-30 years, 19(23.2%) fell under a bracket of 31-40 years, 25(30.5%) were between 41-50 years, 22(26.8%) had senior age who ranged between 51-60 years, and the most senior were 10(12.2%) at 61 years and above. The results demonstrates that road construction is mainly run by mature citizens. The fewer number of youth in the industry could be due to lack of capacity, for example, financial and machinery aspects, to undertake large scale projects. However in this study, it implies that majority of contractors are largely aware of issues in road construction and performance. It also implies that contractors were mature and could responsibly respond to the questions on the research problem.

Results in Table 4.2 further reveal that only a few of the contractors nine(11.0%) held college diploma, those with Bachelor's degree were 46(56.1%) and finally those who have gone a step further to attain a Master's degree were 27(32.9%). This implies that majority of the contractors who participated in the study 73(89.0%) were well educated and therefore their level of education is high and are capable providing good road infrastructure and put it in proper use. This also means that if road is poorly performing then something else is influencing that and not education levels of the contractors.

The study was also interested in knowing the status of the contractors in construction firms. This was viewed as important in validating the responses. Therefore, Table 4.2 shows that 15(18.3%) were managing directors of their organizations, 22(26.8%) were directors, 13(15.9%) were managers, 20(24.4%) were senior staff, 12(14.6%) were serving as supervisors. This implies that in road construction industry, duties and responsibilities are shared or delegated according to one's ability hence professionalism. It also suggests that roles played by individual contractors could be pursued to understand who fails or failed in

his or her mandate during construction and even upon completion of road construction for enhanced performance.

Work experience of contractors was deemed important because it could help the respondents (contractors) state their personal opinion and experiences about the phenomenon. The results in table 4.2 demonstrates that 20(24.4%) had been in the construction for between 6-10 years, 17(20.7%) had been in the industry for between 11-15 years, 11(13.4%) had been in the industry for between 16-20 years, while the rest 34(41.5%) had served for over 21 years. This implies that they could all provide quality responses to the questionnaire due to vast experience in road construction.

The study also sought from the respondents about their firms' years of operation in construction industry. The number of years a construction a firm has existed in the industry is equated with quality of output it is likely to give in the event a tender is awarded to construct the road. In this regard, table 4.2 shows that 2(2.4%) of firms had been operated for between 6-10 years, 18(22.0%) had operated for between 11-15 years, 15(18.3%) had operated for between 16-20 years, while majority 47(57.3%) had operated for the longest duration for 21 years and above. This implies that majority of construction firms had amassed the required capacity over time and would stand a better chance to provide good road performance based on experience. It also means that respondents would adequately respond to a question on road performance and give valid and quality data.

Roads in Kenya are classified differently depending either with the type of the road or the geographical location of the road. On this note, respondents were asked to share their opinions on particular road they have taken part in its construction. In table 4.2, the findings shows that majority of contractors 60(73.2%) had participated in construction of national roads (as classified by NCA), while the remaining 22(26.8%) had experience with construction of international roads. This implies that a good number of contractors have a better idea of what is ailing performance of roads locally and therefore their responses on road performance were well put. However, their inability to take part in construction of international roads could be associated with the stringent requirements for engineers to deal in international roads, hence, majority have focused mainly on the national roads.

4.3.2 PSVs Divers' Demographic Information

This section presents demographic information of the respondents, specifically drivers plying Outer ring road and Eastern Bypass. The results are presented in Table 4.3.

Categories of Demographics	Values	Frequency	Percent	Valid Percent	Cumulative Percent
Gender	Male	69	97.2	97.2	97.2
	Female	2	2.8	2.8	100.0
	Total	71	100	100	
Age	21-30 years	21	29.6	29.6	29.6
	31-40 years	20	28.2	28.2	57.7
	41-50 years	19	26.8	26.8	84.5
	51-60 years	5	7.0	7.0	91.5
	61 and above years	6	8.5	8.5	100
	Total	71	100	100	
Highest Level of	KCSE	9	12.7	12.7	12.7
Education	College Certificate	34	47.9	47.9	60.6
	College Diploma	25	35.2	35.2	95.8
	Bachelor's Degree	3	4.2	4.2	100
	Total	71	100	100	
Status in Organization	Driver	49	69.0	69.0	69.0
	Driver/Conductor	22	31.0	31.0	100.0
	Total	71	100	100	
Work Experience of	6-10 years	20	24.4	24.4	24.4
Drivers	11-15 years	17	20.7	20.7	45.1
					58.5
	16-20 years	11	13.4	13.4	100
	21 and above	34	41.5	41.5	
	Years				
	Total	71	100	100	
PSV Years of Opetration	5 and below years	5	7.0	7.0	7.0
in Transport Industry	6-10 years	28	39.4	39.4	46.5
	11-15 years	8	11.3	11.3	57.7
					73.2
	16-20 years	11	15.5	15.5	100
	21 and above Years	34	26.8	26.8	
	Total	71	100	100	
Name of the Road PSV	Outer Ring	40	56.3	56.3	56.3
Plying	Eastern Bypass	31	43.7	43.7	100.0
	Total	71	100	100	

Table 4.3: PSV Drivers' Demographic Information

From Table 4.3, the study was interested in understanding the gender dynamics in road transport given that the majority of youth are in informal sector, for self employment or informal employment; and therefore, it was necessary knowing how many of those are

female working within transport industry. The results indicated that 69(97.2%) of the respondents were male and 2(2.8%) represented the female counterparts. This still shows that PSV transport system is dominated by male. This could be due to harsh working condition that are experienced in this form of road transport. Women are unlikely to survive such conditions hence less interest in joining this sector.

Age-wise, the results in Table 4.3 demonstrates that 21(29.6%) ranged between 21-30 years, 20(28.2%) fell under a bracket of 31-40 years, 19(26.8%) were between 41-50 years, 5(7.0%) had senior age who ranged between 51-60 years, and the most senior were 6(8.5%) at 61 years and above. The results demonstrates that road transport is mainly operated by qualified mature citizens. A large number of youth in road transport sector could be due to lack formal jobs because most of them start work early after high school and a lot of experience is not required to get employment in this kind of employment. Matatu industry does not favour the senior citizens very much because matatu owners tend to associate efficiency with the younger generation. However, this implies that matatu drivers were mature and could more responsibly answer the questions on the research problem.

Basic education is made mandatory by the government of Kenya, although most the current drivers did not get the chance to get free primary and secondary education. Similarly, road performance has been blamed on rogue drivers who perhaps would be lacking some training. In this study, it was important to establish the level of education of all drivers to deduce something on road performance. Results in table 4.3 revealed that only a few of the drivers nine(12.7%) had sat for KCSE, quite a significant number had college certificates and college diplomas at 34(47.9%) and 25(35.2%) respectively, while only those with a Bachelor's degree were 3(4.2%). This implies that majority of the drivers who participated in the study had acquired some form of tertiary education hence capable of providing good responses regarding performance roads they ply on everyday.

The study was interested in establishing the status of respondents in transport sector, or simply their organizations. It was considered as important to assist in validation of the responses. In Table 4.3 it can be observed that 49(69.0%) were drivers , while those who assumed the role of the driver and at the sometimes conductor were 22(31.%). The higher number of drivers over the conductors explains the reason why most of the time conductors

operating are not certified hence frequent arrests of the same. It could also mean some of the factors or reasons to poor performance of the road, such as road accidents whereby vehicles rum into each other or pedestrians are knocked down, could be because of this group of drivers acting as conductors as well.

Work experience of PSV matatu drivers was deemed important because it could easily assist the drivers state their opinions and experiences about the phenomenon. The foregoing results in table 4.3 demonstrates that 20(24.4%) had been in the transport sector for between 6-10 years, 17(20.7%) had been in the sector for between 11-15 years, 11(13.4%) had been in the transport sector for between 16-20 years, while the rest 34(41.5%) had served for over 21 years. This implies that they could all provide quality responses to the questionnaire due to vast experience on how they perceive road performance considering the two roads under the study were constructed in the recent years within which these years of experience brackets are drawn.

The government of Kenya (GOK) regulates importation of used vehicle not only to promote user satisfaction but also minimize old vehicle that might be a reason for road accidents hence poor road performance. In this respect, the study was interested to seek from the respondents how long their vehicles have operated on the roads. from the respondents about their firms' years of operation in construction industry. The number of years a construction a firm has existed in the industry is equated with quality of output it is likely to give in the event a tender is awarded to construct the road. In this regard, table 4.3 shows that 5(7.0%) of firms PSV had operated for five years and below, a great number 28(39.4%) had operated for between 6-10 years, 8(11.3%) had operated for between 11-15 years, 11(15.5%) had operated for between 16-20 years, while 19(26.8%) had operated for quite sometime for 21 years and above. This implies that many of PSVs have been driven for sometimes and could firmly attest to the performance.

The PSVs in Nairobi County are registered in SACCOs which ply on specific routes or roads. For example, Outer ring road and Eastern Bypass road have PSVs registered under Citi Hopa, Eastern Bypass SACCOs among others. In respect to this, respondents were asked to state their opinions on particular road they ply. In Table 4.3, the findings reveals that 40(56.3%) ply along Outer ring road, while the rest 31(43.7%) ply Eastern Bypass road. This implies that a good number of matatu drivers would share their opinion on the performance of these two roads that were recently constructed after independence and during devolved government system.

4.4 Basic Tests for Statistical Assumptions

The study carried out several statistical tests to ascertain normal distribution of data before analysis is undertaken, These include: Test for normality of research data (Kolmogrov and Shapiro Wilk tests), Test for Multicollinearity for the variables and linearity tests. These are further discussed in the sub-sequent sub-themes:

4.4.1 Test for Normality of Research Data

The study used Shapiro-Wilk test (SW-test) as opposed to Kolmogorov-Smirnov (KS-test) to ascertain that data was normally distributed since this is one of the assumptions of linear regression analysis. This test for normality was introduced and used by Shapiro and Wilk (1965) for a complete sample. Razali and Wah (2011) posit that normal distribution of data is a key assumption of many statistical procedures including t-tests, and linear regression analysis, discriminant analysis, as well as the analysis of variance. They further argue that validity and reliability of statistical inferences are greatly compromised when normality assumption is violated.

The most commonly used tests for normality include graphical methods (histograms, box plots, quartile-quartile); numerical methods (skewness and kurtosis indices); and the formal normality tests. There are four formal tests for normality, namely: Shapiro-Wilk test, Kolmogorov Smirnov test, Lillierfors test, and Anderson Darling test. The Shapiro-Wilk test is the most powerful, followed by Anderson-Darling test, Lillierfors test, and Kolmogorov-Smirnov test (Razali & Wah, 2011). Nevertheless, all the four formal tests for normal distribution of data are not the best choice for small samples. For example, Tabachnick and Fidell (1996) opines that Skewness and Kurtosis are not appropriate for establishing normality when the sample size is above 150 because no much difference would be expected or revealed. The concept of normality has been argued to be important when applying most statistical techniques. In this regard, many statistical operations such as correlation, regression, analysis of variance, and other parametric tests assume that the population from which the sample was drawn displays normal distribution of characteristics.

The normality assumption should be taken seriously; otherwise, it would be difficult to draw an accurate and reliable conclusion about reality. Shapiro –Wilk test gives values referred to as W statistic. It is recommended that Shapiro Wilks to be used for small sample where n=3but not above 2000, whereas KolmogorovSmirnov should only be deemed appropriate when n > 2000. This current study qualified for Shapiro Wilks since n=153. According to Bonini, Hausman and Bierman (1997), this is to mean that when W statistic is near to or is equal to one (1) then it is assumed that data presented is perfectly normal. Therefore, the values of W statistics for the variables in this study ranged between 0.923 and 0.985. As a result, this implies that the data used in this study was closer to normal as the values were not far from one (1). At this point, it could be noted in normal circumstances and real life situations data may not be perfectly normally distributed. The results of Kolmogorov-Smirnov and Shapiro-Wilk tests are shown in Table 4.4.

	Kolmogorov-Smirnov ^a			Shapiro-Wilk			
	Statistic	Df	Sig.	Statistic	Df	Sig.	
Performance of road constru ction Infrastructural Projects	0.134	153	0.000	0.964	153	0.001	
Financial Ability of Contractors	0.113	153	0.000	0.960	153	0.000	
Technical Ability of Contractors	0.146	153	0.000	0.923	153	0.000	
Management Ability of Contractors	0.186	153	0.000	0.924	153	0.000	
Contractors' Safety Record	0.087	153	0.006	0.985	153	0.104	
Process Monitoring	0.171	153	0.000	0.957	153	0.000	

 Table 4.4:
 Results of Kolmogorov Smirnov and Shapiro Wilk Tests

a. Lilliefors Significance Correction

The results in Table 4.4 show that performance of road construction infrastructural projects, financial ability, technical ability, management knowledge, contractor's safety record, and process monitoring were normally distributed. This is because all the W Statistics values were closer to 1.

4.4.2 Test for Multicollinearity for the Variables

The variables in this study were subjected to the multicollineraity tests. According to Asteriou and Hall (2007), multicollinearity is caused by inter-correlation among the explanatory variables. They also argue that the most logical way to test for multicollinearity problem is to obtain correlation coefficients between pairs of explanatory variables. Alin

(2010) states that multicolllinearity exists when two or more predictors are linearly related in a statistical model whereby R (correlation coefficient) is greater or sometimes less than zero. He further states that "Multicollinearity creates difficulties when one builds a regression model between response variable y and explanatory variable X." In this study, both correlation coefficients (through correlation matrix), and Variance Inflation Factors (VIFs) were examined for significant multicollinearity problem. Any VIF values exceeding 10 are usually indicator of significant multicollinearity (Field, 2013; Somekh & Lewin, 2015). Otherwise, multicollinearity problem is insignificant. The results were as shown in Table 4.5.

Model	Unstand Coeffi	lardized icients	Standardize d	Т	Sig.	Collineari ty		
	В	Std. Error	Coefficients Beta			Statistics Tolerance	VIF	
(Constant)	3.007	0.185		16.270	0.000			
Financial Abilityof Contractors	0.212	0.033	0.380	6.482	0.000	0.595	1.680	
Technical Ability of Contractors	-0.218	0.065	-0.277	-3.376	0.001	0.304	3.287	
Management Ability of Contractors	-0.209	0.062	-0.243	-3.339	0.001	0.385	2.597	
Contractors' Safety Record	0.579	0.075	1.060	7.681	0.000	0.107	9.320	
Process Monitoring	-0.210	0.071	-0.357	-2.977	0.003	0.142	7.053	

Table 4.5: Collinearity Statistics

Dependent Variable: performance of road construction Infrastructural Projects

From Table 4.5, all the variance inflation factor (VIF) values were below 10. This implies that there was no significant multicollibearity problem among the variables in the study. The results were checked against the results from correlation matrix in Table 4.6.

Variable		Financial Ability of Contractors	Technical Ability of Contractors	Management Ability of Contractors	Contractors' Safety Record	Process Monitoring
Financial	Pearson Correlation	1	0.376	0.322	0.617	0.510
Ability of Contractors	Sig. (2-tailed)		0.000	0.000	0.000	0.000
	n	153	153	153	153	153
Technical	Pearson Correlation	0.376	1	0.779	0.656	0.600
Contractors	Sig. (2-tailed)	0.000		0.000	0.000	0.000
	n	153	153	153	153	153
Management	Pearson Correlation	0.322	0.779	1	0.520	0.440
Contractors	Sig. (2-tailed)	0.000	0.000		0.000	0.000
Contractors	n	153	153	153	153	152
Contractors'	Pearson Correlation	0.617	0.656	0.520	1	0.922
Salety	Sig. (2-tailed)	0.000	0.000	0.000		0.000
Recolu	n	153	153	153	153	153
Process	Pearson Correlation	0.510	0.600	0.440	0.922	1
Monitoring	Sig. (2-tailed)	0.000	0.000	0.000	0.000	
	n	153	153	153	153	153

Table 4.6: Correlation Matrix for Independent Variables

**. Correlation is significant at the 0.05 level (2-tailed).

If the value of correlation coefficient is large, then multicollinearity is a significant problem, with 0.9 usually considered the threshold of significant inter-correlation. Table 4.10 demonstrates that most of the correlation coefficient values were below 0.9, which implies that there was no significant multicollinearity among the variables; however, correlation coefficient value of contractors safety record (predictor variable) and process moinitoring (moderating variable) was 0.922 which is not far from the threshold. Although 0.9 is acceptable, it is not uncommon to encounter such a scenario as in this case hence, 0.922 was still acceptable in this study since to begin with, the value is not extreme. Secondly, the model is used for prediction only and thirdly, the variables being querried are not of particular interest to study question.

4.4.3 Linearity Tests

To ascertain the linear relationship of variables under the study, scatter plots were used. A linear relationship must exist between two or more variables before linear regression is carried out (Tabachnick & Fidell, 2013). The dependent variable, performance of road construction infrastructural projects, was used to test the relationship it had with independent variables and moderating variable; financial ability of contractors, technical ability of contractors, management ability of contractors, contractors safety record and process monitoring. It was revealed that the variables had linear relationship hence it was possible to conduct inferential analysis. The output of these tests are presented in appendice section (appendix IX - appendix XIV).

4.4.4 Likert Scale as an Interval Measure

The Likert scale types of questions were adopted in this study. Brown (2011) states that in the Likert scale, either an item or a group of items, also referred to in this study as statements or questions, are arranged in group with intention of measuring a single variable. Boone and Boone (2012) argue that data in Likert scale can also be analyzed as interval measurement scales. Normally, a composite score, either sum or mean, is calculated from four or so Likert-type items. This study chose the mean (to measure central tendency) and the standard deviation (to measure variability) as the main descriptive statistics for use as interval scale items.

However, Wambugu *et al.* (2015) note that data in the Likert-scale is categorized as ordinal data. In view of Field (2013), even though this data happens to have a ranking as a property, it is still deficient since it lacks the exact distance between two adjacent data-points. Hence, to be able to perform parametric tests using Pearson Product Moment Coefficient, Likert data was converted to interval measurement level. This was made possible by taking composite mean score pertaining to each variable (Boone & Boone, 2012), which assisted in further statistical tests (correlation and regression).

4.5 Performance of Road Construction Infrastructural Projects

Data collected on the dependent variable about road performance was descriptively analyzed in both quantitative and qualitative forms.

4.5.1 Quantitative analysis of Performance of Road Construction Infrastructural Projects

The study found it necessary to ascertain repondents' opinions on performance of roads. Perceptions of respondents on each of the following dimensions of performance of road construction infrastructural projects: quality of completed road in terms of condition of drainage and water table; mobility and speed – delays, congestion, average travel speed; comfort/convenience in terms of smoothness and roughness of the road; road user benefits in terms of cost reduction, travel time reduction, vehicle operating cost reduction; and road safety were each measured within the scale. The Likert scale of 1 to 5, where 1=Strongly disagree, 2=Disagree, 3=Neutral, 4=Agree and 5=Stongly agree. The results are in Table 4.7.

No.	Statements	5(SA)	4(A)	3(N)	2(D)	1(SD)	Mean	SDV
		F	F	F	F	F		
		(%)	(%)	(%)	(%)	(%)		
	(a) Quality of Completed							
	Road in terms of							
	condition of drainage and							
	water table							
1.	The road is built with a							
	functional drainage	23	32	44	24	30	2.06	1 207
	systems to provide long-	(15.0%)	(20.9%)	(28.8%)	(15.7%)	(19.6%)	2.96	1.327
	term road performance							
2.	The road is well							
	constructed with water	0	16	47	61	29	0.00	0.000
	table that does not permit	(0.0%)	(10.5%)	(30.7%)	(39.9%)	(18.9%)	2.33	0.902
	flooding							
3.	Road constructed with							
	adequate drainage systems	25		40	20	1		
	depends entirely on	33	44	43	30 (10, cm/)	$\frac{1}{(0, cov)}$	3.54	0.070
	contractor capacity to do	(22.9%)	(28.8%)	(28.1%)	(19.6%)	(0.6%)		
	the job							
4.	Drainage system is	~	28	27 (17.7%)	60 (39.2%)	22		
	operative and allows	5 (3.2%)				55 (21 (0/)	2.42	1.116
	passage of residual		(18.3%)			(21.6%)		

 Table 4.7: Performance of Road Construction Infrastructural Projects

No.	Statements	5(SA) F (%)	4(A) F (%)	3(N) F (%)	2(D) F (%)	1(SD) F (%)	Mean	SDV
5.	Proper workmanship is evidenced by lack of potholes (b) Mobility and Speed – delays, congestion, average travel speed	42 (27.5%)	75 (49.0%)	33 (21.6%)	3 (1.9%)	0 (0.0%)	4.02	0.756
6.	Congestion has significantly reduced	30 (19.6%)	117 (76.5%)	6 (3.9%)	0 (0.0%)	0 (0.0%)	4.16	0.460
7.	Delays are reduced	25 (16.3%)	115 (75.2%)	13 (8.5%)	0 (0.0%)	0 (0.0%)	4.08	0.494
8.	Average travel speed has generally improved (c) Comfort/Convenience in terms of smoothness and roughness of the	58 (37.9%)	74 (48.4%)	21 (13.7%)	0 (0.0%)	0 (0.0%)	4.24	0.679
9.	The texture of the road is good	67 (43.8%)	55 (35.9%)	30 (19.6%)	0 (.0%)	1 (0.7%)	4.22	0.805
10.	The skid resistance of the road surface is good	45 (29.4%)	64 (41.8%)	33 (21.6%)	10 (6.5%)	1 (0.7%)	3.93	0.911
11.	Flooding of the road is not experienced during heavy downpours (rainy season) (d) Road User benefits in	6 (3.9%)	3 (2.0%)	36 (23.5%)	51 (33.3%)	57 (37.3%)	2.09	1.023
	terms of cost reduction, travel time reduction, vehicle operationg cost reduction							
12.	The vehicles take longer to depreciate	12 (7.8%)	84 (54.9%)	34 (22.2%)	3 (2.0%)	20 (13.1%)	3.42	1.110
13.	The vehicle breakdowns on the roads has reduced due to good road constructed	24 (15.7%)	85 (55.6%)	44 (28.7%)	0 (.0%)	0 (.0%)	3.87	0.656
14.	Due to properly constructed road the road user costs has tremendously reduced	18 (11.8%)	83 (54.2%)	16 (10.5%)	15 (9.8%)	21 (13.7%)	3.41	1.227
15.	(e) Road Safety Reported cases of accidents have reduced	38 (24.8%)	72 (47.1%)	28 (18.3%)	2 (1.3%)	13 (8 5%)	3.78	1.100
16.	Roads are having enough signage	(5.9%)	(17.170) 81 (52.9%)	(10.570) 45 (29.4%)	(1.5%) 15 (9.8%)	3 (2.0%)	3.51	0.828

No.	Statements	5(SA)	4 (A)	3(N)	2(D)	1(SD)	Mean	SDV
		F	F	F	F	F		
		(%)	(%)	(%)	(%)	(%)		
17.	Bumps are provided in the	14	55	24	57	3	2.12	1 090
	designated places	(9.1%)	(35.9%)	(15.7%)	(37.3%)	(2.0%)	5.15	1.080
18.	Road users do know the meaning of most of the signage language	54 (35.3%)	70 (45.8%)	28 (18.3%)	0 (.0%)	1 (0.6%)	4.15	0.759
19.	Pedestrians' walkways adequately provided	16 (10.5%)	43 (28.0%)	34 (22.2%)	44 (28.8%)	16 (10.5%)	2.99	1.189
20.	Footbridges are sufficiently provided	8 (5.2%)	0 (0.0%)	32 (20.9%)	54 (35.3%)	59 (38.6%)	2.05	1.035
21.	Bus stops are well and placed in the right designated areas	8 (5.2%)	18 (11.7%)	15 (9.8%)	70 (45.8%)	42 (27.5%)	2.22	1.129
Composite mean and standard deviation								

In Table 4.7, the means of 21 items used to generate data on performance of road construction infrastructural projects were summed up and used to compute the composite mean and standard deviation (SD) that resulted to 3.36 and 0.297 respectively.

Statement one, road is built with a functional drainage systems to provide long-term road performance, out of 153 respondents, 23(15.0%) strongly agreed, 32(20.9%) agreed, 30(19.6%) strong disagreed, 24(15.7%) and 44(28.8%) stated a neutral opinion. Arising from this line item was a mean of 2.96 against a composite mean of 3.36. This implies the drainage system is not properly functioning. A higher SD of 1.327 against a composite SD of 0.297 indicated that this item elicited inconsistency in terms of responses received. Therefore, factors inhibiting functional draianage systems, besides technical aspects, need thourogh checkup and a solution provided to enhance road performance.

Statement two, the road is constructed with water table that does not permit flooding, out of 153 respondents, 16(10.5%) were in agreement with the statement, 29(18.9%) strongly disagreed, 61(39.9%) disagreed, followed by those with neutral opinions 47(30.7%). A mean of 2.33 obtained was below the composite mean of 3.36 which refuted the claim that water table is well contructed. With a standard deviation 0.902 against 0.297 the composite standard deviation, the opinions received were divergent among the respondents. It is

therefore important for the road construction engineers to pay keen attention to water table in terms of design specifications to avoid flooding during heavy downpours.

Statement three, road constructed with adequate drainage systems would depend entirely on contractors' capacity to do the contruction job. Out of 153 respondents, 35(22.9%) strongly agreed, 35(22.9%), 44(28.8%) agreed, 1(0.6%) stongly disagreed, 30(19.6%) disagreed and 43(28.1%) shared a neutral opinion. The statement had a mean of 3.54, slightly higher than the composite mean of 3.36 indicating that contractors with capacity are capable of constructing adequate drainage systems. There was consistency in responses based on the lower SD of 0.070 compared to the composite SD of 0.297. This line item was influencing performance of road construction infrastructural projects positively.

Statement four, drainage systems is operative and allows passage of residual. Out of 153 respondents, 5(3.2%) strongly agreed, 28(18.3%) agreed, 33(21.6%) strongly disagreed, 60(39.2%) disagreed. This demonstrates that majority of respondents were in disagreement with the statement. The rest of respondents 27(17.7%) chose to remain neutral. With a mean of 2.42 below the composite mean of 3.36, this suggested that the drainage systems does not allow passage of residual hence influencing performance negatively. Emerging from this statement was also a SD of 1.116 higher than the composite SD of 0.297 which proved that opinions were inconsistent. This could be because of lack regular maintenance or contractors not being able to adhere to design specifications during construction. Moreso, monitoring of human activities such as excessive littering is necessary to avoid blockage of the drainage systems.

Statement five, proper workmanship is evidenced by lack of potholes. Out of 153 respondents, 42(27.5%) stongly agreed, 75(49.0%) agreed, 3(1.9%) disagreed and 33 (21.6%) remained neutral. A highest mean of 4.02 recorded compared to the composite mean of 3.36 implied that good workmanship by the contractors would definitely result to quality outputs or roads that are well performing. The line item therefore influenced performance positively. A higher SD of 0.756 on this statement compared to the composite SD of 0.297 indicated that there was divergence in respondents' opinions. This could be due to the neutral opinions recorded.

Statement six, congestion has significantly reduced. Out of 153 respondents, 30(19.6%) stongly agreed, 117(76.5%) agreed, 3(1.9%) disagreed and 6(3.9%) remained neutral. A highest mean of 4.16 was recorded on this statement compared to the composite mean of 3.36 which implied that congestion had to a great extent significantly reduced on the roads. This results indicate that the item influenced performance positively. A higher standard deviation(SD) of 0.460 on this statement compared to the composite SD of 0.297 indicated divergence in respondents' opinions that road performance in terms of reduced delays had positively improved.

Statement seven, delays reduced. Out of 153 respondents, 25(16.3%) stongly agreed, 115(75.2%) agreed, none disagreed, however, 33(21.6%) were neutral in their opinions. A higher mean of 4.08 was recorded compared to the composite mean of 3.36 implying that the delays experienced by the PSV had significantly gone down hence a positive influence on the performance of the roads. A higher SD of 0.494 on this statement compared to the composite SD of 0.297 indicated divergence in respondents' opinions.

Statement eight, average travel speed has generally improved. Out of 153 respondents, 58(37.9%) strongly agreed, 74(48.4%) agreed. Meanwhile, none of the respondent disagreed although only a few 21(13.7%) gave a neutral opinion. With a mean of 4.24 higher that the composite mean of 3.36, and a standard deviation of 0.679 higher than the composite standard deviation oof 0.297, the results suggests that the opinions were convergent and that average speed had significantly improved and this influences performance of road construction infrastructural positively. This could be due to construction of a dual carriage for a road like Outer-Ring. The line item therefore positively influenced performance of road.

Statement nine, texture of the road is good. Out of 153 respondents, 67(43.8%) strongly agreed, 55(35.9%) agreed, 1(0.7%) strongly disagreed and 30(19.6%) expressed a contrary neutral opinion. A mean of 4.22 higher than the composite mean of 3.36 suggested that road texture had been improved. The line item had a positive influence on performance of the road. The SD of 0.805 obtained was higher than the composite SD of 0.297 indicating respondents' opinions were divergent due to the high score in neutral opinions.

Statement 10, the skid resistance of the road surface is good. Out of 153 respondents, 45(29.4%) strongly agreed, 64(41.8%) agreed, 1(0.7%) strongly disagreed, 10(6.5%) disagreed and 33(21.6%) neutral. Based on these responses a corresponding line item mean of 3.93 higher than the composite mean of 3.36 indicated that skid resistance was good. The statement therefore had a positive influence on performance of road. Emerging from this statement was a standard of 0.911 higher than composite SD of 0.297 that showed opinions were divergent due high score in the neutral opinions.

Statement 11, flooding of the road is not experienced during heavy downpours (rainy season). Out of 153 respondents, 6(3.9%) strongly agreed, 3(2.0%) agreed, 57(37.3%) strongly disagreed, 51(33.3%) disagreed whilest 36(23.5%) chose to remain neutral on this statement. A line mean of 2.09 recorded was lower than 3.36 which indicated that motorists experienced flooding during heavy rainy seasons on the roads. This could be due to some reasons already highlighted such as littering by the public or citizens, narrow or fewer drainage systems and improper water table. These issues need to be sorted out at the beginning of road construction to avoid affecting the overall performance of the roads. This statement attracted a SD of 0.911 higher than 0.297 the composite SD hence this implied a lot of inconsistencies or neutrality in responses.

Statement 12, vehicles take longer time to depreciate. Out of 153 respondents, 12(7.8%) strongly agreed, 84(54.9%) agreed with the statement, 20(13.1%) strongly disagreed, 3(2.0%) disagreed and 34(22.2%) remained neutral. The mean was 3.42 higher than 3.36 the composite mean. This therefore implied that the matatu drivers were deriving maximum benefits because their vehicles were taking longer time to depreciate, a sign of road performance. The line item influenced performance of road positively. The respondents' views were diverse given the SD was 1.110 above the composite SD of 0.297 implying neutrality in opinions.

Statement 13, the vehicle breakdowns on the roads has reduced due to good road constructed. Out of 153 respondents, 24(15.7%) strongly agreed, 85(55.6%) agreed, none disagreed and the rest 44(28.7%) remained neutral. A higher mean of 3.87 compared to composite mean of 3.36 was obtained. This therefore implies that road performance has significantly improved due to reduced vehicle breakdowns as this was not the case in the past. The statement showed a positive influence on performance of road. The standard deviation of 0.656 above composite standard deviation of 0.297 indicated opinions lied in one direction or remained consistent. This was due to higher neutral opinions.

Statement 14, due to properly constructed road user costs has tremendously reduced. Out of 153 respondents, 18(11.8%) strongly agreed, 83(54.2%) agreed, 21(13.7%) strongly disagreed, 15(9.8%) disagreed, while the rest 16(10.5%) had a neutral opinion. A mean of 3.41 was obtained higher than the composite mean of 3.36 which suggested that indeed a road user costs have reduced. A SD of 1.227 on the statement was higher than the composite SD of 0.297 which clearly indicated that the respondents openly gave diverse views. This was due to high score in neutral opinions.

Statement 15, reported cases of accidents have reduced. Out of 153 respondents, 38(24.8%) strongly agreed, 72(47.1%) agreed, 13(8.5%) strongly disagreed, 2(1.3%) disagreed and 28(18.3%) were neutral. A corresponding higher mean of 3.78 derived from this statement against a composite mean of 3.36 explains that cases of road accidents on both roads, Eastern ByPass and Outerring have significantly reduced. Inconsistency in opinions was evident by a higher SD of 1.100 compared to a composite SD of 0.297. This was due to high score in neutral opinions. Although accidents have reduced, there could still be a few cases that need public awareness and campaigns to ensure road safety is observed by both the motorists and the contractors during construction.

Statement 16, roads are having enough signage. Out of 153 respondents, 9(5.9%) strongly agreed, 81(52.9%) agreed, 3(2.0%) strongly disagreed, 15(9.8%) disagreed and 45(29.4%) gave a neutral opinion. Analysis revealed a higher mean of 3.51 on this line item compared to a composite mean of of 3.36 implied that the roads had enough signage. The opinions shared by the respondents also showed that there was inconsistency in reporting given a higher SD of 0.828 and composite SD of 0.297. This was due to high score on neutral opinions. Indeed, provision of road safety signage is vital to eradicate some of the road carnages we witness on some of the roads. Subsequently, there should be no road commissioned prior to ensuring it is well marked and sufficient signages are provided for both the motorists and pedestrians.

Statement 17, bumbs are provided in the designated places. Out of 153 respondents, 14(9.1%) strongly agreed with the statement, 55(35.9%) agreed, 3(2.0%) strongly disagreed, 57(37.3%) disagreed and 24(15.7%) were neutral. This statement yielded a slightly lower mean of 3.13 compared to the composite mean of 3.36. This implies that the line item influences the performance of road construction infrastructural project negatively. With a standard deviation(SD) of 1.080 compared to the composite SD of 0.297, the views of the respondents were inconsistent. Generally, based on this opinions, the study discovered that bumps are not constructed in the right areas on the roads.

Statement 18, road users do know the meaning of most signage language. Out of 153 respondents, 54(35.3%) strongly agreed, 70(45.8%) agreed, 1(0.6%) strongly disagreed and 28(18.3%) remained neural. Arising from this statement was a corresponding mean 4.15 higher than the composite mean 3.36. This influences performance of road construction infrastructural positively. A higher SD 0.759 compared to the composite of 0.297 indicated opinions were divergent due to high score of neutral opinions. This implied despite most the road users knowing the meaning of road signs, there could still be ignorance and breaking of traffic rules or laws and lack of commitment to enforce the laws that would see improvement in road performance either by Nairobi county or NCA or KeNHA.

Statement 19, pedestrians' walkways are adequately provided. Out of 153 respondents, 16(10.5%) strongly agreed, 43(28.0%) agreed, 16(10.5%) strongly disagreed, 44(28.8%) disagreed and 34(22.2%) were neutral. The line item mean of 2.99 lower than the 3.36 the composite mean indicating it had a negative influence on the performance of road construction infrastructural projects. Also obtained was a SD of 1.189 higher than 0.297 the composite SD indicating divergence. This was due to high score in the neutral opinions. Based on this analysis, it was clear that pedestrians' walkaways were insufficient and impacted negatively on road performance. Therefore, it is highly advisable for the contractors to ensure pedestrians walkways are constructed to promote safety, hence road performance.

Statement 20, footbridges are sufficiently provided. Out of 153 respondents, 8(5.2%) strongly agreed that the foot bridges were adequate, 59(38.6%) strongly disagreed,

54(35.3%) disagreed and 32(20.9%) were of neutral opinion. A lower mean of 2.05 compared to composite mean of 3.36 obtained. This influences the performance of the road construction infrastructural negatively. This implied that pedestrians were not provided with adequate footbridges a factor that would be attributed to the accidents occurring on both Eastern ByPass and Outerring roads. To improve this aspect of road safety, it is imperative that the government agencies in charge of road construction sector put in place measures that would oversee that footbridges are mandatory where highways pass. A standard deviation (SD) of 1.035 on this statement was higher compared to composite SD of 0.297 signaling divergence of opinions. This was to the fact that there was a high score on the neutral opinions.

Statement 21, bus stops are well placed in the right designated areas. Out of 153 respondents, 8(5.2%) strongly agreed, 18(11.7%) agreed, 42(27.5%) strongly disagreed, 70(45.8%) disagreed and 15(9.8%) remained neutral. With a much lower line mean of 2.22 compared to a composite of mean of 3.36, implying that bus stops were not placed in the right areas. This means the line item has a negative influence on performance of road construction infrastructural projects. This is to mean that when bus stops are not in designated ares, this puts pressure on other motorists hence compromised road performance. Construction of roads in future should consider this aspect seriously if performance road had to be improved. A higher SD of 1.129 compared to composite SD of 0.297 was due to high score in neutral opinions.

Results of interviews with road construction engineers indicated that there was concurrence among them about the state of performance of road construction infrastructural projects. The results of the interviews were, therefore, consistent with the quantitative data. The following are key responses obtained from the road construction engineers:

"Rain is the main concern; we tend to do our best in terms of constructing better roads for our citizens but excessive rains sweep away the tarmac; a contractor is also limited by the variation of project design; one of the reasons why we experience poor performing roads it is because road projects are faced by public interference; inadequate drainage for storm water; disposal of wastewater overburdens drains and un-hygienically recommended; poor Social life of road users mainly causing traffic congestion; there is need therefore to encourage public systems of transport than private vehicles (poor social lifestyle); encroachment by road hawkers, limit performance around road reserves; ignorance on the part of public service vehicle to fully observe road marks; large volumes of personal vehicles; a trend on over relying on personal vehicles exceeding traffic designed stream density resulting to snarl-ups or congestion hence poor road performance." Road Construction Engineers' Opinions (2019)

Results of interviews with public service vehicles (PSVs) drivers indicated that there was concurrence among them about the state of performance of road construction infrastructural projects. The results of the interviews were, therefore, consistent with the quantitative data. The following are key responses obtained from the PSVs drivers:

"A day never ends without at least one accident happening; in some instances, when it rains heavily flooding occurs and this really stress us as drivers because we cannot move our vehicles although this has quite improved compared to when the road was dilapidated; this outer ring road some good work was done however the road safety signs are lacking and hence some accidents happen; when it there's heavy downpour of rain our vehicles get stuck and we count it as a loss to our businesses; the bus stops are not adequate and therefore we are forced to pick and drop passengers in the middle of the road which is not only dangerous to our clients but also to us; it is criminal offence to pick and drop passengers along the road but what do we do when the bus stops are not provided? We are sometimes forced to bribe police to allow us to pick passengers where clearly it is not designated for us to do so, especially around Allsops stage; there are no footbridges in common areas that would enable pedestrians or public cross the road. For example, at Mutindwa market, pedestrians are a cause of traffic congestion; corruption is eating our country because when a contractor is awarded tender is forced to share with the one who awards then the contractor is left with no other option other than construct a road that does not minimum quality requirements; I am just being assertive that our government systems have condoned corruption hence poor services including construction of quality roads; around Taj Mall coming down towards the quarry there is a drainage problem. Sometimes when it rains there is an overflow to the main road making it impassible for PSVs and even private vehicles; some parts along outer ring road have no service lanes and this imply that all vehicles must use the main road which cannot happen with us drivers of PSVs,"

The drivers opinions were further stated as follows:

"bus stops are the main problem we are experiencing on our roads especially this Eastern by pass. The government should do something about this; we have witnessed recently the government coming in late to erect footbridges after the loss of innocent lives due to speeding vehicles; if I am asked, I would allow bumps constructed along the main road or the highway. It is not only dangerous but it encourages pedestrians to cross anywhere carelessly and this works against the mobility of vehicles; the challenge we keep on experiencing on daily basis is where to pick and drop our passengers, for there are no sufficient bus stops; you find that areas with bus stops are not even properly done; this is totally annoying; the road is good yes but it is sometimes a nightmare when you have to stop the vehicle to allow the pedestrians to cross the road in areas not even permitted; during rush hours we tend to experience heavy traffic jams; the congestions and delays experienced contribute high fuel costs because the vehicles take longer to reach their destinations like town. "PSVs Drivers" Opinions (2019)

4.6 Financial Ability of Contractors and Performance of Road Construction Infrastructural Project

This section presents both the descriptive and the correlational analyses of financial ability of contractors. The study determined the extent to which financial ability of contractors would influence performance of roads. The views of respondents on dimensions of financial ability under which the indicators were drawn were: credit rating; bank goodwill; flexibility of loan agreements; turnover, profits, obligations, and amounts due; as well as the level of owned funds used by the contractor. The respondents were asked to give their opinions, in a scale of 1-5, using various statements relating to specific indicators of financial ability of contractors. The likert scale of 1 to 5, where 1=Strongly disagree, 2=Disagree, 3=Neutral, 4=Agree and 5=Stongly agree. The results are shown in Table 4.8.

Table 4.8: Financial Ability of Contractors and Performance of Road C	construction
Infrastructural Projects	

No.	Statements	5(SA) F (%)	4(A) F (%)	3(N) F (%)	2(D) F (%)	1(SD) F (%)	Mean	SDV
	(a) Credit Rating	. ,			. /	. /		
22.	All construction firms undertaking road construction have a good credit record	39 (25.5%)	30 (19.6%)	40 (26.1%)	41 (26.8%)	3 (2.0%)	3.40	1.188
23.	Credit rating does affect contractors' accessibility to bank's facility/loan	31 (20.3%)	88 (57.5%)	18 (11.7%)	2 (1.3%)	14 (9.2%)	3.78	1.076
24.	Credit rating does affect contractors' accessing other sources of finance for construction work	43 (28.1%)	63 (41.2%)	26 (17.0%)	3 (2.0%)	18 (11.7%)	3.72	1.233
	(b) Bank's Good Will							
25.	Contractors with bank's good will tend get their construction financial requests fully funded by the bank	47 (30.7%)	58 (37.9%)	20 (13.1%)	20 (13.1%)	8 (5.2%)	3.76	1.176

No.	Statements	5(SA) F	4(A) F	3(N) F	2(D) F	1(SD) F	Mean	SDV
		(%)	r (%)	(%)	r (%)	(%)		
26.	Contractors' need bank's		<u>`</u>	· /	~ /	/		
	good will to access loan	68	49	31	5	0	1 18	0.867
	facility to complete their construction work	(44.4%)	(32.0%)	(20.3%)	(3.3%)	(0.0%)	4.10	0.807
	(c) Flexibility of aloan							
	agreements							
27.	Contractors get flexible loan							
	agreements with their	50	51	33	19	0	3.86	1.013
	respective banks for	(32.7%)	(33.3%)	(21.6%)	(12.4%)	(0.0%)		
20	construction works							
28.	Contractors can operate with	5	27	26	4.4	21		
	even stringent loan	5 (2.20%)	$\frac{3}{(24,20\%)}$	30 (22.5%)	44 (2 8 80/)	(20, 20%)	2.61	1.154
	agreements and deriver	(3.3%)	(24.2%)	(23.3%)	(20.0%)	(20.2%)		
	(d) Turnovon Drofit a							
	(u) furnover, froms							
20	obligations, amounts due							
29.	Firms with good turnover	32	82	29	2	8	2.04	0.040
	have good financial health	(20.9%)	(53.6%)	(19.0%)	(1.3%)	(5.2%)	3.84	0.949
•								
30.	Level of cash flow affects a	32	95	26	0	0	4.04	0.616
	construction firms operations	(20.9%)	(62.1%)	(17.0%)	(0.0%)	(0.0%)		
21	(e) Owned Funds							
51.	tand to contribute positive	57	57	39	0	0	1 1 2	0 786
	road performance	(37.3%)	(37.3%)	(25.4%)	(0.0%)	(0.0%)	4.12	0.780
32	Owned funds plus other							
52.	sources of capital contribute	76	64	13	0	0		
	to constructing a road that	(49.7%)	(41.8%)	(8.5%)	(0.0%)	(0.0%)	4.41	0.644
	leads to good performance			()		····/		
	Composite mean and standar	d deviatio	n				3.79	0.533

In Table 4.8, the means of 11 items or statements used to generate data on financial ability of contractors were summed up and used to compute the composite mean and standard deviation (SD) that resulted to 3.79 and 0.533 respectively.

Statement 22, all construction firms undertaking road construction have a good credit record. Out of 153 respondents, 39(25.5%) strongly agreed, 30(19.6%) agreed, 3(2.0%) strongly disagreed and 41(26.8%) disagreed and 40(26.1%) expressed neutral opinions. A line item mean of 3.40 recorded was below the composite mean of 3.79. This line item influences performance of road construction infrastructural projects negatively. Based on this analysis, not all construction firms have a good credit rating. This implies that the failing reputations of most contractors for not being awarded tenders in national road construction could be due to their credit rating that adversely affects their activities. A higher SD of 1.188 compared to composite SD of 0.533 indicated that the opinions from the respondents were divergent. This is also evidence in neutral score opinions.

Statement 23, credit rating does affect contractors; accessibility to bank's facility/loans. Out of 153 respondents, 31(20.3%) strongly agreed, 88(57.5%) agreed, 14(9.2%) strongly disagreed, 2(1.3%) disagreed, whereas the rest 18(11.7%) held a neutral position. A mean of 3.78 was generated closeby to a composite mean of 3.79. This implied that credit rating does not affect contractors accessing loans from the banks. Although this might be true, a closeby line mean of 3.78 against the composite mean of 3.79 still shows credit rating can affect to some degree accessing bank loans. However, this would also mean that contractors might still be financed by their banks as long as they are servicing their loans. A SD of 1.076 obtained was above the composite SD of 0.533 of 0.533 implying divergence of opinions.

Statement 24, credit rate does affect contractors accessing other sources of finance for work. Out of 153 respondents, 43(28.1%) strongly agreed, 63(41.2%) agreed, 18(11.7%) strongly disagreed, 3(2.0%) disagreed and 26(17.0%) remained neutral. A lower mean of 3.72 obtained on this statement compared to a composite mean of 3.79 implied that credit rating does not hinder the contractors from accessing other sources of finance. According to respondents' views, given a higher SD of 1.233 compared to a composite SD of 0.533, it was evident there were inconsistences. This could be as a result of high score in neutral opinions.

Statement 25, contractors with banks' good will tend to get their construction financial requests fully funded by the bank. Out of 153 respondents, 47(30.7%) strongly agreed, 58(37.9%) agreed, 8(5.2%) strongly disagreed, 20(13.1%) disagreed, whereas 20(13.1%) were neutral. A lower mean of 3.76 compared to a composite mean of 3.79 was obtained. This implied that bank's good will is not the main factor that would influence the bank to fully fund contractors. Comparing a line item SD of 1.176 and a composite SD of 0.533, it can be concluded that the respondents had divergent opinions. This line item influences the performance of road construction infrastructure projects negatively.

Statement 26, contractors need banks good will to access loan facility to complete their construction work. Out of 153 respondents, 68(44.4%) strongly agreed, 49(32.0%) agreed, 5(3.3%) disagreed and 31(20.3%) remained neutral. A line item mean of 4.18 obtained on

this statement compared to 3.79 affirmed that indeed contractors need bank's good will to access loan facilities. Contractors may not be lucky for fully funding by their banks due to the bank's good will standing, however, they still need that good will to access loan facility to complete their construction work. This influences performance of road construction infrastructural projects positively. A higher standard deviation (SD) of 0.867 and a composite SD of 0.533 implied that the respondents' opinions tended to be influenced by high neutral opinions.

Statement 27, contractors get flexible loan agreements with their respective banks for construction works. Out of 153 respondents, 50(32.7%) strongly agreed, 51(33.3%) agreed, 19(12.4%) disagreed, whereas 33(21.6%) gave a neutral view. A mean score of 3.86 above the composite mean of 3.79 was obtained from the analysis, which implied that contractors get flexible loan agreements awarded by their banks. This influences performance of road construction infrastructural positively because contractors are able to complete work in good time. This statement elicited divergent views represented by a SD of 1.013 compared to the composite SD of 0.533. This was due to high score of neutral opinions. To grow local and regionanal capacity in road construction, banks should be willing to support local contractors.

Statement 28, contractors can operate with stringent loan agreements and still deliver quality roads. Out of 153 respondents, 5(3.3%) strongly agreed, 37(24.2%) agreed, 31(20.2%) strongly disagreed and the rest 36(23.5%) neutral. A mean of 2.61 compared to composite mean of 3.79 implied that stringent loan agreements are a detterent for contractors accessing bank loans and that majority of contractors would never survive with that, hence poorly done infrastructural projects. The opinions were diverging as revealed by a SD of 1.154 higher than the composite SD of 0.533. This is evidenced by high neutral opinion score. This may make it difficult for contractors to access funding from banks hence delay in delivering of quality road infrastructure on the agreed time frame and eventually compromising future performance of the road.

Statement 29, firms with good turnover have good financial health. Out of 153 respondents, 32(20.9%) strongly agreed, 82(53.6%) agreed, 8(5.2%) strongly disagreed, 2(1.3%) disagreed while the rest 29(19.0%) remained neutral. A mean of 3.84 greater than the composite mean of 3.79 was obtained. This findings implied that contractors financial health

is determined with a good turnover hence good road performance. A standard deviation (SD) of 0.949 higher than the composite SD of 0.533 was derived indicating that the opinions as per the results were inconsistent due to high score of neutral opinion which basically increases the standard deviation.

Statement 30, level of cash flow affects a construction firms's operations. Out of 153, 32(20.9%) strongly agreed, 95(62.1%) agreed and none of the respondents disagreed with the statement. Only 26(17.0%) had a neutral opinion. On this statement, analysis revealed a higher mean of 4.04 than the composite mean of 3.79 which implied that indeed level of cash flow is important to ease contruction firms' operations. This influences performance of road construction infrastructure projects positively. A derived standard deviation of 0.616 compared to a composite standard deviation of 0.533 indicated that respondents held inconsistent opinion due to high neutral opinions.

Statement 31, firms with their own funds tend to contribute to positive road performance. Out of 153 respondents, 57(37.3%) strongly agreed, 57(37.3%) agreed, 39(25.4%) had a neutral opinion and yet none disagreed. This line item was supported by a mean of 4.12 compared to a composite mean of 3.79 and a standard deviation of 0.786 against 0.533. This implied that owned funds can positively contribute towards constructing quality roads that would lead to good road performance. The standard deviation showed divergence in respondents' views. This was due to high score on neutral opinions. Therefore, contractors and construction firms must aim to increase level of owned funds to be able to actively participate in road construction infrastructural projects and also improve on performance.

Statement 32, owned funds plus other sources of capital contribute to constructing a road that leads to good road performance. Out of 153 respondents, 76(49.7%) strongly agreed and 64(41.8%) agreed, demonstrating that majority agreed with the statement. On the other hand, only 13(8.5%) held neutral view and zero disagreed. A higher mean of 4.41 compared to the composite mean of 3.79 implied that a contractor working with owned funds and other sources of capital is highly likely to construct a road with good performance. The opinions shared by the respondents were divergent given that a standard deviation of 0.644 was higher
than the composite standard deviation of 0.533. This was due to slightly high score in neutral opinion.

Results of interviews with road construction engineers indicated that financial ability influenced to a great extent the performance of road construction infrastructural projects. The results of the interviews were, therefore, consistent with the quantitative data. The following are key responses obtained from the road construction engineers:

"Insufficient financial capacity can lead to substandard work thus lead to poor performance; diversion of projects funds to other entities of business affects smooth flow of project construction and even affect the quality upon completion; overreliance on projects' certificates (IPCs); the financial ability will enable a contractor hire not only the right personnel but skilled personnel; contractors with adequate funds will tend to produce the maximum satisfaction as far as good road is concerned; if a contractor wishes to get quality equipment, quality materials for the best outcome in road construction then it is important for that contractor to have sufficient funds." Road Construction Engineers' Opinions (2019)

Results of interviews with public service vehicles (PSVs) drivers indicated that financial ability influenced to a great extent the performance of road construction infrastructural projects. The results of the interviews were, therefore, consistent with the quantitative data. The following are key responses obtained from the PSVs drivers:

"Some contractors we have heard on TVs, radios and even daily newspaper that their work is affected due to lack of funds; this is serious because we end up with low quality job done; Materials can never be bought if there are inadequate funds; it is true without funds a contractor will end up doing a substandard work; sometimes finance is not the only thing that acts as a barrier to quality performance of a contractor and hence poor road performance but also corruption which is eating our country; it is obvious that we have witnessed that poorly performing roads are constructed by those contractors with a weaker pool of financial resources; I believe with proper financial capacity then and only then a contractor can hire the right skilled personnel; poor financial status means hiring technical expertise of less skilled personnel or workforce; it is likely impossible to produce a road with good quality if for sure you do not have funds of your own or you can easily access loans from the banks. "PSVs Drivers' Opinions (2019)

4.6.1 **Correlation Analysis of Financial Ability of Contractors and Performance of Road Construction Infrastructural Project**

Correlation analysis using Pearson's Product Moment technique was done to establish the relationship between the various dimensions of financial ability of contractors and performance of road construction infrastructural projects. The values obtained from the correlational analysis ranged between +1 and -1. In this regard, +1 implied perfect positive correlation, while -1 implied perfect negative correlation. 0.000 implied no correlation; the modular values 0.001 to 0.250 implied weak correlation; 0.251 to 0.500 implied semi-strong correlation; 0.501 to 0.750 implied strong correlation; and 0.751 to 1.000 implied very strong correlation. The findings were as shown in Table 4.9.

		r mancial Ability	of Contractors	a
Perfor	rmance of Road Const	ruction Infrastructu	ral Projects	
Variables		Financial Ability of	Performance of	
		Contractors	road construction	
			Infrastructural Project	
Einancial Ability of	Pearson Correlation	1	0.669**	
Contractors	Sig. (2-tailed)		0.000	
Contractors	n	153	153	
Performance of road	Pearson Correlation	0.669^{**}	1	
construction	Sig. (2-tailed)	0.000		
Infrastructural Project	n	153	153	

Table 4.9. Correlation Matrix for Financial Ability of Contractors and

**. Correlation is significant at the 0.05 level (2-tailed).

Table 4.9 shows that at 0.05 level of significance, there was significant correlation between financial ability and performance of road construction infrastructural project (Pvalue<0.01). The correlation between the two variables was 0.669, which according to the continuum earlier unveiled, implied a strong correlation.

4.6.2 **Regression Analysis of Financial Ability of Contractors and Performance of Road Construction Infrastructural Projects**

The following hypothesis was tested using linear regression model to satisfy the requirements of the first objective of the study:

Test of Hypothesis 1

1.H₀: Financial ability of contractors does not significantly influence performance of road construction infrastructural projects.

 H_1 : Financial ability of contractors significantly influence performance of road construction infrastructural projects.

The null hypothesis (1H₀) was tested using the following linear regression model:

 $y = a + B_1 X_1 + e$

Where:

- y performance of road construction infrastructural projects
- X_1 Financial ability of contractors

 B_1 – Regression coefficient

- a Regression constant
- e Error term

ANOUAa

The results were as shown in Table 4.10, 4.11 and 4.12

Table 4.10:ANOVA for Financial Ability of Contractors and PerformanceofRoad Construction Infrastructural Projects

ANOVA						
Model		Sum of Squares	df	Mean	F	Sig.
				Square		
	Regression	6.006	1	6.006	122.235	0.000^{b}
1	Residual	7.419	151	0.049		
	Total	13.424	152			

a. Dependent Variable: Performance of Road

b. Predictors: (Constant), Fiancial Ability of Contractors

From Table 4.10, ANOVA was used to establish the goodness of fit of the regression model. Established from the model was the f-significance value of p=0.000 was less than 0.05 (p=0.00 < 0.05). The calculated F (122.235) was significantly larger than the critical value of F= 3.905 This implied that the model was significant.

Table 4.11: ModelSummary forFinancialAbilityofContractorsandPerformanceofRoadConstructionInfrastructuralProjects

Model	R	R Square	Adjusted R Square	Std. Error of the						
				Estimate						
1	0.669^{a}	0.447	0.444	0.22166						
a. Predic	a. Predictors: (Constant), Financial Ability of Contractors									

Table 4.11 shows that R=0.669, and R^2 =0.447. The correlation between financial ability of a contractors and performance of road construction infrastructural project was indicated by "R". This implies that financial ability of contractors has a strong influence in performance of road construction infrastructural project. The R-square=0.447 explains 44.7% of performance of road construction infrastructural projects. This means that the other 55.3% of variation in performance of road construction infrastructural projects maybe explained by other factors not covered under this model.

 Table 4.12: Model Coefficients of Financial Ability of Contractors and Performance of Road Construction Infrastructural Projects

Model	Unstandardi Coefficients	zed	Standardize d Coefficients	t	Sig.
	В	Std. Error	Beta		
(Constant)	1.945	0.129		15.062	0.000
Financial					
Ability of	0.373	0.034	0.669	11.056	0.000
Contractors					

Model: {B=0.373, t=11.056, F(1,151)=122.235, p=0.000<0.05}

a. Predictor Variable: Financial Ability of Contractors

b. Dependent Variable: performance of road construction Infrastructural Projects

The results in the Table show that financial ability of contractors has statistical significant influence on performance of road construction infrastructural projects {B=0.373, t=11.056, F(1,151)=122.235, p=0.000 < 0.05}. The unstandardized beta (B) coefficient for financial ability of contractors is 0.373. The beta value imply that a unit increase in performance of road construction infrastructural projects corresponds to 37.3% increase in financial ability of contractors.

Using the statistical findings, the regression model can be substituted as follows:

 $y = 1.945 + 0.373X_1$

Where

y - performance of road construction infrastructural projects

X_1 - Financial ability of contractors

As shown in table 4.12, for the predictor variable financial ability of the contractor, the probality of the t statistic (11.056) for the b coefficient is 0.000 < 0.001 which is less than the level of significance 0.05. From these findings the null hypothesis was rejected that the slope associated with financial ability is equal to zero (b=0) and hence in this connection, it was concluded that financial ability of contractors had a significant influence on performance of road construction infrastructural projects. Moreover, the b coefficient associated with financial ability of the contractor (0.373) is positive, indicating a direct relationship.

The study findings indicate a statistical significance correlation between financial ability of a contractors and performance of road construction infrastructural project. This findings are in line with a study by Kithinji and kamaara (2017) who established that project finance, and project technology had statistically significant influence on performance of road construction infrastructural projects. Similarly, the current study also support a study by Mwakajo and Kidombo (2017) that financial ability of a contractor has statistical significant positive relationship with performance of road construction infrastructural projects. Further, the current study found that the level of cash flow can affect the operations of the construction firm. In addition, the findings of the current study show that firms with good turnover are likely to experience good financial health given a line item mean of 3.84 against a composite mean of 3.79. This is in line with Mwakajo and Kidombo noted that availability of finance would enable a contractor acquire other resources. The current study has also established that the level of cash flow affects a construction firms. This findings supports Nwanyanwu (2015) who found that financial ability, indicated by outright cash payment for assets, has statistically significant moderate positive relationship with net profit of an entity. This implies that financial ability of contractors is a backborne not only for the survival construction firms but also for delivering quality roads that meet beneficiary satisfaction.

A study by Kulemeka, Kululanga and Morton (2015) found that economic factors significantly influenced performance of road cosntruction infrastructural projects. The economic factors included prohibitive conditions attached to accessing capital, highly charged lending interest rates, high rates of tax. The current study has confirmed that contractors do get flexible loan agreements from their respective banks (a line item mean of

167

3.86 and composite mean of 3.79). The findings supports Akali and Sakaja (2018) who found that contractors had the capacity for accessing capital sources and loans. In addition, the current study has found that contractors may not be able to operate with stringent loan agreements and expected to deliver quality roads. The findings therefore agrees with the recommendation of Akali and Sakaja that contractors should be able to establish banks that are willing to facilitate credit access. This implies that banks should be flexible in drafting loan agreements to support local contractors to enhance road performance.

The findings of the current study indicate that constructions firms or contractors with owned funds in addition to to other sources of capital can build roads with good road of performance (a higher mean of 4.41 against a composite mean of 3.79). Densford, James and Ngugi (2018) revealed that, locally, construction firms' ability in resource mobilization was a challenge, however, financial resource mobilization influenced performance of roads in terms quality. The finfings also support Rahman, Memon and Karim (2013) study that contractors are highly challenged financially something that affects construction performance.

It is therefore important to note that the significant relationship between financial ability of contractors and performance of road construction infrastructural projects is because such projects are normally finance-intensive. This study has therefore shown that there is need to establish strong financial base by the contractors for effective completion of projects which can lead to excellent performance.

4.7 Technical Ability of Contractors and Performance of Road Construction Infrastructural Projects

This section presents the descriptive and correlational analyses of the technical ability of contractors. The study found it critical to assess technical ability of contractors and how it influences performance of roads. The respondents were asked to, in a scale of 1-5, score various statements relating to specific indicators of technical ability of a contractor. The dimensions of technical ability under which the indicators were drawn were experience in terms of catchment national or international projects; plant and equipment; quality of materials used; experience in terms of size of projects completed; and availability of

technical manpower or personnel. The respondents were asked to, in a scale of 1-5; score various statements relating to specific indicators of technical ability of a contractor. The likert scale of 1 to 5, where 1=Strongly disagree, 2=Disagree, 3=Neutral, 4=Agree and 5=Stongly agree. The results are shown in Table 4.13.

No.	Statements	5(SA) F (%)	4(A) F (%)	3(N) F (%)	2(D) F (%)	1(SD) F (%)	Mean	SDV
33	(a) Experience in terms of catchment of national or international projects Contractors project catchment	(/0)			(70)			
	experience (/national/international) are factored in during contractor evaluation	86 (56.2%)	51 (33.3%)	0 (0.0%)	11 (7.2%)	5 (3.3%)	4.32	1.024
34.	Project performance does depend on the previous catchment experience	9 (5.9%)	83 (54.2%)	61 (39.9%)	0 (.0%)	0 (0.0%)	3.66	0.587
35.	(b) Plant and Equipment The quality of plant and equipment used determines the quality of the project	78 (51.0%)	58 (37.9%)	10 (6.5%)	7 (4.6%)	0 (0.0%)	4.35	0.799
36.	Adequate supply of plant and equipment in road construction has a significant effect on project performance during the life of the project	51 (33.3%)	77 (50.3%)	20 (13.1%)	0 (0.0%)	5 (3.3%)	4.10	0.867
37.	The use of current technology determines the final product and its performance in road construction	56 (36.6%)	85 (55.6%)	12 (7.8%)	0 (0.0%)	0 (.0%)	4.29	0.603
38.	The use of own plant and equipment influences project performance	62 (40.5%)	74 (48.4%)	17 (11.1%)	0 (0.0%)	0 (0.0%)	4.29	0.658
39. 40	(c) Quality of materials used The right use of materials during construction has significant effect on project performance Correct mixing of materials	78 (51.0%)	72 (47.0%)	3 (2.0%)	0 (0.0%)	0 (0.0%)	4.49	0.539
40.	does contribute to quality roads that meet road user satisfaction i.e. road free from potholes	88 (57.5%)	62 (40.5%)	3 (2.0%)	0 (0.0%)	0 (0.0%)	4.56	0.537

Table 4.13:	Technical	Ability	of	Contractors	and	Performance	of	Road
	Construction	on Infrast	ructu	iral Projects				

(d) Experience in terms of size of projects

No.	Statements	5(SA) F	4(A) F	3(N) F	2(D) F	1(SD) F	Mean	SDV
		(%)	(%)	(%)	(%)	(%)		
41.	The size of the road(s)							
	completed in the past can determine the contractors' ability to deliver on project	60 (39.2%)	81 (53.0%)	12 (7.8%)	0 (0.0%)	0 (0.0%)	4.31	0.612
40	performance							
42.	in undertaking large scale road construction to assure project performance	8 (5.2%)	24 (15.7%)	48 (31.4%)	54 (35.3%)	19 (12.4%)	2.66	1.052
43.	Only contractors with							
	experience in undertaking big size of road construction works can assure project performance	41 (26.8%)	25 (16.3%)	33 (21.6%)	40 (26.1%)	14 (9.2%)	3.25	1.345
	(e) Availability of technical							
	manpower/personnel							
44.	Majority of the road construction personnel are professional and skilled	0 (0.0%)	24 (15.7%)	49 (32.0%)	55 (36.0%)	25 (16.3%)	2.47	0.946
45.	Engagement of professional project leader contributes to a successful project performance	80 (52.3%)	73 (47.7%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	4.52	0.501
46.	The type of personnel working							
	on road construction cannot influence project performance as long the project leader is trained	17 (11.1%)	6 (3.9%)	32 (20.9%)	78 (51.0%)	20 (13.1%)	2.49	1.125
47.	All casual laborers in road construction are trained hence project performance	0 (0.0%)	0 (0.0%)	13 (8.5%)	56 (36.6%)	84 (54.9%)	1.54	0.649
	Composite mean and standrd de	eviation					3.69	0.377

In Table 4.13, the means of 15 items used to generate data on technical ability of contractors were summed up and used to compute the composite mean and standard deviation (SD) that resulted to 3.69 and 0.377 respectively.

Statement 33, contractors project catchment experience, locally or internationally, are factored in during the contractor evaluation process. Out of 153 respondents, 86(56.2%) strongly agreed, 51(33.3%) agreed, 5(3.3.%) strongly disagreed, 11(7.2%) disagreed. Respondents were not neutral in answering this line item. A mean of 4.32 compared to composite mean of 3.69 was generated. This showed that project catchment experience is considered when a contractor is being evaluated. This influences the performance of road construction infrastructural projects positively. A standard deviation of 1.024 versus a composite standard deviation of 0.377 indicated opinions shared by the respondents had inconsistencies.

Statement 34, project performance does depend on the previous catchment experience, Out of 153 respondents, 9(5.9%) strongly agreed, 83(54.2%) agreed, and 61(39.9%) expressed neutral opinion. Arising from the line item was a lower mean of 3.66 compared to the composite mean of 3.69 which indicated that contractors' technical ability would not be influenced by the previous catchment experience, whether national or international. The opinions from the respondents, however, were divergent given a standard deviation of 0.377 against line item standard deviation of 0.587 which was due to high neutral opinions.

Statement 35, the quality of plant and equipment used determines the quality of project. Out of 153 respondents, 78(51.0%) strongly agreed, 58(37.9%) agreed, 7(4.6%) disagreed and 10(6.5%) were neutral. A generated mean line item of 4.35 against a composite mean of 3.69 suggested that to determine the technical ability of a contractor for good road performance, quality of plant and equipments is vital. With a higher standard deviation of 0.799 above a composite standard deviation of 0.377, it could be deduced that the views of the respondents were diverse.

Statement 36, adequate supply of plant and equipment in road construction has a significant effect on project performance during the life of the project. Out of 153 respondents, 51(33.3%) strongly agreed, 77(50.3%) agreed to this statement, while 5(3.3%) decided to disagree and 20(13.1%) chose to remain neutral. A mean of 4.10 generated was higher compared to the composite mean of 3.69 indicating that besides quality, the need to have adequate plant and equipments on the construction is fundamentally important. This line item influences performance of road construction infrastructural projects positively. It could also mean that less equipment would derail either the work of the contractor or work maybe done in a hurry compromising quality of project. A lower standard deviation of 0.867 compared to 0.377 composite standard deviation showed that opinions shared by the respondents were inconsistent.

Statement 37, the use of the current technology to determine the final product and its performance in road construction. Out of 153 respondents, 56(36.6%) strongly agreed, 85(55.6%) agreed, none disagreed and 12(7.8%) held neutral opinion. With a higher mean of 4.29 compared to 3.69 composite mean, it implies that the use of current technology could lead to a quality final product in terms of long lasting roads. In this regard, assessing the

contractors on their level of technology adapatability is vital to enhance road performance. Given a standard deviation of 0.603 compared to the composite standard deviation of 0.377, the line item had inconsistent of opinions.

Statement 38, the use of own plant and equipment influence project performance. Out of 153 respondents, 62(40.5%) strongly agreed, 74(48.4%) agreed, none disagreed and 17(11.1%) maintained on neutral opinion. A mean of 4.29 obtained on this statement was higher than the composite mean of 3.69. This implies that the use of own equipment is not only a factor to gauge the ability of the contractor but also it has a high correlation with project performance. Own equipments gives the contractor ample time to commit to doing quality job. A higher standard deviation of 0.658 on this statement compared to the composite standard deviation of 0.377 is an indication that opinions tended to be divergent.

Statement 39, the right use of materials during construction has significant effect on project performance. Out of 153 respondents, 78(51.0%) strongly agreed, 72(47.0%) agreed, and 3(2.0%) expressed neutral opinion indicating that none of the respondents disagreed. A mean of 4.49 higher than a composite mean 3.69 proved the importance of and the need for utilizing quality materials during construction for enhancement of quality roads which can lead to long term performance of road construction projects. A standard deviation of 0.539 compared to a lower composite mean of 0.377 is an indication that the views were divergent. This explains the reason why we have some roads that develop potholes after short period from the time of completion, hence poor road performance.

Statement 40, correct mixing of materials does contribute to quality roads that meet road user satisfaction such as roads free from potholes. Out of 153 respondents, 88(57.5%) strongly agreed, 62(40.5%) agreed that correct mixing of materials contribute quality roads, 3(2.0%) had a neutral opinion whereas none disagreed. With a higher mean of 4.56 and composite mean of 3.69, this implied that the ability of a contractor to do proper mixing of materials has a significant influence of quality road output. A standard deviation of 0.537 and a composite standard deviation of 0.377 showed that respondents' opinions were diverging.

Statement 41, the size of he road(s) completed in the past can determine the contractors' ability to deliver on project performance. Out of 153 respondents, 60(39.2%) strongly agreed,

81(53.0%) agreed, none of the respondents disagreed and 12(7.8%) remained neutral. A mean of 4.31 higher than the composite mean of 3.69 was generated which implied that the size of a road(s) completed in the past could demonstrate the contractors' ability to undertake any amount of work. This fact insinuates that giving a highway job to a contractor who is used to constructing feeder-roads may fail to meet the demands that come with huge construction assignment, hence poorly constructed road. According to a standard deviation obtained of 0.612 higher than the composite standard deviation of 0.377, the responses were divergent.

Statement 42, all contractors have experience in undertaking large scale road construction to assure project performance. Out of 153 respondents, 8(5.2%) strongly agreed, 24(15.7%) agreed, 19(12.4%) strongly disagreed, 54(35.3%) of respondents disagreed. On the other hand, 48(31.4%) were neutral in giving opinions. The views of the majority respondents who disagreed were supported by a mean of 2.66, which was below the composite mean 3.69. With this findings, it implies that the construction regulatory agencies should be able to streamline the road construction industry by uprooting those contractors masquerading as professional while hurting the reputation of those committed to quality work. However, the learners should be provided with the opportunity to work along with the experienced contractors so that a pool of talented young professionals is created. In respect to a high standard deviation of 1.052 on this line item compared to a composite standard deviation of 0.377, the views of the respondents greatly took a divergent direction. This line item influences performance of road construction infrastructural projects negatively.

Statement 43, only contractors with experience in undertaking big size of road construction works can assure project performance. Out of 153 respondents, 41(26.8%) strongly agreed, 25(16.3%) agreed, 14(9.2%) strongly disagreed and 33(21.6%) of the respondents held neutral opinion. Arising from this statement was a mean a lower mean of 3.25 compared to the composite mean of 3.69 which implied that not only contractors who have had experience in undertaking big size of projects can assure project performance. Other factors like use of current technology, adequate resources among others must be factored in or could play a major role. Meanwhile a standard deviation of 1.345 was higher compared to the composite

standard deviation of 0.377 which suggests that the respondents' views on this statement were diverse.

Statement 44, majority of road construction personnel are professional and skilled. Out of 153 respondents, 24(15.7%) agreed. On the other hand 25(16.3%) strongly disagreed, 55(36.0%) disagreed with this statement, followed by the neutral views at 49(32.0%). A corresponding line item mean of 2.47 lower than a composite mean of 3.69 was generated which indicated that majority of road construction workers are not professional and skilled. A standard deviation of 0.946 higher than the composite standard deviation of 0.377 signified divergent opinions. It therefore implies that working with none qualified staff in road construction has been partly a reason why most roads cannot last longer before they deteriorate. Proper management and close supervision is therefore required where personell with fewer skills need support. Lately, middle level colleges are there to offer equally affordable quality trainings like any other advanced colleges and universities, whereby those with desire in road construction can take advantage of enrolling in them.

Statement 45, engagement of professional project leader contributes to a successful project performance. Out of 153 respondents, 80(52.3%) strongly agreed and 73(47.7%) agreed. On this line item none disagreed or had neutral opinion. A mean of 4.52 compared to composite standard deviation of 3.69 implied that working with a professional project leader would greatly contribute to positive project performance. A higher standard deviation of 0.501 compared to the composite standard deviation of 0.377 showed that opinions were divergent. It is therefore important for every road construction project to hire a professionally trained project manager on the site if project performance is to be realized upon completion of construction. This means that road projects that are mostly completed with designs errors or defects, like no footbridges or pedestrians' walkways, no bus stops are likely to have not engaged a project project manager.

Statement 46, the type of personnel working on road construction cannot influence project performance as long as the project leader is trained. Out of 153 respondents, 17(11.1%) strongly agreed, 6(3.9%) agreed, 20(13.1%) strongly disagreed, 78(51.0%) disagreed and 32(20.9%) were of neutral view. The analysis further refuted the claim by a lower mean of 2.49 compared to composite mean of 3.69 that showed that there was no way a road

construction project would work with just anybody as long as the project has a trained leader. Hence, more emphasis to hire properly trained team of personell to contribute to project performance. A higher standard deviation of 1.125 to that of a composite standard deviation of 0.377 showed that opinions were inconsistent. This was evidenced by higher neutral opinions.

Statement 47, all casual labourers in road construction are trained. Out of 153 respondents, 84(54.9%) strongly disagreed, 56(36.6%) disagreed and only 13(8.5%) were not sure or neutral. A mean of 1.54 for this line item was below the composite mean of 3.69. A standard deviation of 0.649 and composite standard deviation of 0.377 showed that the opinions from the respondents did not converget. Therefore, the findings implies that majority of casual labourers are not trained because their work does not require training and therefore they are picked by contractors without providing academic background. However, it is important for freshly graduated engineering starters to embrace casual labour to enhance their skills as they anticipate growing in the road construction industry.

Results of interviews with road construction engineers indicated that technical ability influenced to a great extent the performance of road construction infrastructural projects. The results of the interviews were, therefore, consistent with the quantitative data. The following are key responses obtained from the road construction engineers:

"Highly trained or qualified personnel can lead to high performance of project for example efficient work program and plan; ground's on hands ability of technical, technicians; great determiners, of project performance; trained and field experience boosts end product; untrained, semi-skilled manpower are hard to manage and also are poor decision makers hence poor performance; if working by a technical team that is competent is a must then that is what is required in the road construction; this will not only contribute to effective implementation of the road but most importantly good roads in the future; road construction must work with competent team."Road Construction Engineers' Opinions (2019)

Results of interviews with public service vehicles (PSVs) drivers indicated technical ability influenced to a great extent the performance of road construction infrastructural projects. The results of the interviews were, therefore, consistent with the quantitative data. The following are key responses obtained from the PSVs drivers:

"When a contract is being awarded to the contractor it is important and crucial for the government or whoever it awarding that tended to consider technical ability aspect since poor workmanship can result due to lack of or insufficient technical expertise or ability; hiring persons who have hands on experience in road construction will contribute to good road performance; if you get people who not or less skilled then it means your work output is going to be compromised; shoddy work will be done and you have no one to blame; although we all know that technical ability can highly influence performance of a road, the challenge that remains is of a contractor committing to hiring skilled labour; in most cases the people we have seen doing the road construction work are some old mothers and some are even breastfeeding; Imagine giving a job to such a person as much as you are trying to offer a helping hand; this is unacceptable and should not be encouraged at all; a good road is definitely a sign of a competent team that a contractor used to do the job; if you employ people with skills then the outcome will match the same. "PSVs Drivers' Opinions (2019)

4.7.1 Correlation Analysis of Technical Ability of Contractors and Performance of **Road Construction Infrastructural Projects**

Correlation analysis using Pearson's Product Moment technique was done to establish the relationship between the various dimensions of technical ability of contractors and performance of road construction infrastructural projects. The values obtained from the correlational analysis ranged between +1 and -1. In this regard, +1 implied perfect positive correlation, while -1 implied perfect negative correlation. 0.000 implied no correlation; the modular values 0.001 to 0.250 implied weak correlation; 0.251 to 0.500 implied semi-strong correlation; 0.501 to 0.750 implied strong correlation; and 0.751 to 1.000 implied very strong correlation. The findings were as shown 4.14.

Performance of Road Construction Infrastructural Projects								
Variables		Technical Ability of Performance of road						
		Contractors	construction Projects					
Technical Ability of	Pearson Correlation	1	0.157					
Contractors	Sig. (2-tailed)		0.052					
contractors	n	153	153					
Derformance of road	Pearson Correlation	0.157	1					
construction Project	Sig. (2-tailed)	0.052						
construction Project	n	153	153					

Table 4.14: Correlation Matrix of Technical Ability of Contractors and

Table 4.14 shows that at 0.05 level of significance, there was statistically insignificant correlation between technical ability of contractors and performance of road construction infrastructural projects since the p value of 0.052 was greater than the alpha 0.05 (p-value>0.05). According to the foregoing continuum of correlation strength, there was a weak correlation between technical ability of contractors and performance of road construction infrastructural projects since the correlation coefficient was 0.157.

4.7.2 Regression Analysis of Technical Ability of Contractors and Performance of Road Construction Infrastructural Projects

The following hypothesis was tested using linear regression model to satisfy the requirements of the second objective of the study:

Test of Hypothesis 2

2. H₀: Technical ability of contractors does not significantly influence on the performance of road construction infrastructural projects.

H₁: Technical ability of contractors significantly influence the performance of road construction infrastructural projects.

The null hypothesis was tested using the following linear regression model:

 $y = a + B_2 X_2 + e$

Where:

y - performance of road construction infrastructural projects

 X_2 - Technical ability of contractors

 B_2 – Regression coefficient

a – Regression constant

e - Error term

The results were as shown in Table 4.15, 4.16 and 4.17.

Model		Sum of Squares	df	Mean Square	F	Sig.
	Regression	0.332	1	0.332	3.827	0.052 ^b
1	Residual	13.093	151	0.087		
	Total	13.424	152			

 Table 4.15: ANOVA for Technical Ability of Contractors and Performance of Road

 Construction Infrastructural Projects

a. Dependent Variable: Performance of Road

b. Predictors: (Constant), Technical Ability of Contractors

From Table 4.15, the ANOVA established the goodness of fit of the regression model. Established from the model was the f-significance value of p=0.052 was greter than 0.05 (p=0.052>0.05). The calculated F (3.827) was less than the critical value of F= 3.904. Therefore, the model was deemed insignificant.

Table 4.16:	Model Summary for Technical Ability of Contractors and Performance of
	Road Construction Infrastructural Projects

Model	R	R Square	Adjusted R Square	Std. Error of the
				Estimate
1	0.157 ^a	0.025	0.018	0.29446

a. Predictors: (Constant), Technical Ability of Contractors

From Table 4.16, R=0.157, and $R^2 = 0.025$. The degree and nature of relationship between the two variables, technical ability of contractors and performance of road construction infrastructural projects, was measured using "R". The correlation between the two variables was 0.157. This implies that technical ability of the contractors got a semi strong positive influence on the performance of road construction infrastructural projects. The R-square 0.025 in this respect stand to explain 2.5% variation in the performance of road construction infrastructural projects. The remaining 97.5% explains other factors causing variation but not addressed under the technical ability model.

Model	Unstanda Coefficier	rdized nts	Standardize d	t	Sig.
			Coefficients		
	В	Std. Error	Beta		
(Constant)	2.902	0.235		12.364	0.000
Technical					
Ability of	0.124	0.063	0.157	1.956	0.052
Contractors					

Table 4.17:	Model	Coefficients	for	Technical	Ability	of	Contractors	and
	Performance of Road Construction Infrastructural Projects							

Model: {B=0.124, t=1.956, F(1,151)=3.827, p=0.052>0.05}

a. Predictor Variable: Technical Ability of Contractors

b. Dependent Variable: performance of road construction Infrastructural Projects

The results in Table 4.17 reveal that technical ability of contractors had no statistically significant influence with performance of road construction infrastructural projects $\{B=0.124, t=1.956, F(1,151)=3.827, p=0.052>0.05\}$. The unstandardized beta (B) coefficient for technical ability of contractors is 0.124. The beta value imply that a unit increase in performance of road construction infrastructural projects corresponds to 12.4% increase in technical ability of contractors.

Using the statistical findings, the regression model can be substituted as follows:

 $y = 2.902 + 0.124X_2$

Where:

y - performance of road construction infrastructural projects

 X_2 - Technical ability of contractors

From table 4.17 for the predictor variable technical ability of contractors, the probality of the t statistic (1.956) for the b coefficient is 0.052>0.001 indicating that it is greater than the level of significance 0.05. These findings demonstrate that the null hypothesis failed to be rejected that the slope associated with technical ability is equal to zero (b=0). This concludes that technical ability of contractors has no significant influence on performance of road construction infrastructural projects, even though the the b coefficient associated with technical ability of contractors (0.124) is positive, which suggests there exits a direct relationship.

The findings of the current study shows that technical ability (R squared=0.025) explains only 2.5% variation in the performance of road construction infrastructural projects. The model is also deemed insignificant. The findings contradicts a study by Atieno and Muturi (2016) whose model accounted for 87.7% variation in the performance of road. It should be noted that Atieno and Muturi were studying performance of road up to the implementation stage whereas the current stage focused on the post delivery stage; how the road is performing upon its completion.

The current study also, through a line item mean of 4.35 versus a composite mean of 3.69, established that quality project is determined by quality of plant and equipment which agrees with Seboru et.al (2016) who established that requisite amount of materials had significant influence on project performance. This implies the texture of the road, as measured under performance of road (dependent variable) in the current study, requires proper machinery to provide quality ouput of a road which is smooth and long lasting without potholes. The current findings further support Abiodum, Segbenu and Oluseye (2017) who determined that the factors related to quality, and those that relate to project management and procurement had the highest impact on contractor performance. It is worth to note that these indicators shared by Abiodum and colleagues are bound to explain successful implementation of the road project but not for project performance during post delivery.

Further, the current study from the descriptive analysis has demonstrated that majority of the contruction personnel are not professional and skilled (line item mean of 2.47 against a composite mean of 3.69) and that engagement of professional project leader would contribute to project performance (a line item mean of 4.52 against a composite mean of 3.69). This findings speak otherwise when compared with a study by Obare, Kyalo, Mulwa and Mbugua (2016) found that execution process and performance of rural roads construction projects were correlated and that such correlation had no reliance on the diversity of the project team training, which is contrary to the findings of the current study.

The current findings revealed that the use of current technology would determine the final product and its performance (line item mean of 4.29 against a composite mean of 3.69). Thus the findings support Wambui, Ombui and Kagiri (2015) whose study determined that completion of a road construction project is significantly impacted by equipment used;

competency of the project manager; availability of project funds; as well as technology used in the project.

The second hypothesis was, thus, supported by data since technical ability of contractors was found to insignificantly influence performance of road construction infrastructural projects. In relation to the foregoing comparable studies, the current study has adduced empirical evidence to refute some of the earlier findings hence concluding that technical ability does not, under current model, explain much about performance of roads in post delivery stages; that is when the project beneficiaries begin to use the roads. This implies that there could be other variables that need to be studied to explain road performance after completion.

4.8 Management Ability of Contractors and Performance of Road Construction Infrastructural Projects

This section presents the results of descriptive and correlational analyses of technical ability of contractors.

Management of road construction is key to ensure deviations are minimized. In this respect, the study sought to establish how management ability of contractors would influence or enhance road performance. The respondents were therefore asked to, in a scale of 1-5, score various statements relating to specific indicators of management ability of a contractor. The dimensions of management ability under which the indicators were drawn were past performance and quality; quality control policy; management knowledge; project management system; and experience of management personnel. likert scale of 1 to 5, where 1=Strongly disagree, 2=Disagree, 3=Neutral, 4=Agree and 5=Stongly agree. The results were as shown in Table 4.18.

No.	Statements	5(SA)	4(A)	3(N)	2(D)	1(SD)	Mean	SDV
		F	F	F	F	F		
	(a) Past nerformance and	(%)	(%)	(%)	(%)	(%)		
	Quality							
48.	Contractors current performance	68	58	6	16	5		
	is influenced by past performance	(44.4%)	(37.9%)	(3.9%)	(10.5%)	(3.3%)	4.10	1.093
40	significantly	(,.)	(2,13,14)	(0.00)	()	(212,2)		
49.	commitment can easily be	56	92	5	0	0		
	repeated in the current road	(36.6%)	(60.1%)	(3.3%)	(0.0%)	(0.0%)	4.33	0.538
	performance	· · · ·	· /	· /	· · /			
50.	Road performance depends on the	71	74	8	0	0	4 4 1	0 591
	leadership guidance	(46.4%)	(48.4%)	(5.2%)	(0.0%)	(0.0%)	1.11	0.571
51	(b) Quality control policy							
51.	A firm's quality control policy has	87	63	3	0	0	4 55	0 537
	significance on road performance	(56.9%)	(41.1%)	(2.0%)	(0.0%)	(0.0%)	1.55	0.557
52.	Construction contractors are	50	86	8	0	0		
	obligated to have a quality control	(38.6%)	(56.2%)	o (5.2%)	(0.0%)	(0.0%)	4.33	0.574
	policy to ensure road performance	(30.070)	(30.270)	(3.270)	(0.070)	(0.070)		
53	(c) Management Knowledge							
55.	knowledge hence road	75	40	16	12	10	4 03	1 227
	performance	(49.0%)	(26.2%)	(10.5%)	(7.8%)	(6.5%)	1.05	1.227
54.	Management knowledge in	113	37	3	0	0		
	construction is necessary to ensure	(73.9%)	(24.1%)	(2.0%)	(0.0%)	(0.0%)	4.72	0.493
	road performance	((()))	(, ., ,	(,	(000,0)	(01070)		
	(d) Project Management system							
55.	A proper management system will	07	52	2	0	0		
	provide proper oversight in	97 (63.4%)	33 (34.6%)	3 (2.0%)	(0%)	(0.0%)	4.61	0.527
	construction	(05.170)	(31.070)	(2.070)	(.070)	(0.070)		
56.	Most contractors have the	70	80	3	0	0	4 4 4	0 536
	system	(45.8%)	(52.2%)	(2.0%)	(0.0%)	(0.0%)	4.44	0.550
	(e) Experience of management							
	personnel							
57.	The number of years of the							
	management personnel in road	34	76	20	13	10	3.73	1.102
	construction guarantee road	(22.2%)	(49.7%)	(13.1%)	(8.5%)	(6.5%)		
58	Most of the construction							
50.	contractors operate with				•			
	magement teams that meet	24	52	47	29	1	3.45	0.993
	minimum requirement in terms of	(15.7%)	(34.0%)	(30.7%)	(19.0%)	(0.6%)		
	experience							
59.	Experience of management	5	19	17	48	64	a 6 6	
	personnel in construction does	(3.3%)	(12.4%)	(11.1%)	(31.4%)	(41.8%	2.04	1.152
	Composite standard mean and sta	ndord do	viotion		· · · · · ·)	1.06	0 346
	Composite standard mean and sta	muaru de	viauon				4.00	0.340

 Table 4.18: Management Ability of Contractors and Performance of Road

 Construction Infrastructural Projects

In Table 4.17, the means of 12 items used to generate data on management ability of contractors were summed up and used to compute the composite mean and standard deviation (SD) that resulted to 4.06 and 0.346 respectively.

Statement 48, contractors current performance is influenced by past performance significantly. Out of 153 respondents, 68(44.4%) strongly agreed, 58(37.9%) agreed, 5(3.3%) strongly disagreed, 16(10.5%) disagreed and 6(3.9%) were neutral. A rising from this line item was a highest mean of 4.10 against the composite mean of 4.06, which supported the notion that current performance of a contractor(s) is influenced by past performance. With a SD of 1.093 and a composite SD of 0.346, the respondents' views were divergent. This line item influences performance of road construction infrastructural projects positively.

Statement 49, previous management commitment could easily be reapeated in the current road performance. Out of 153 respondents, 56(36.6%) strongly agreed and 92(60.1%) agreed. Whereas none disagreed, only 5(3.3%) held neutral views. A mean of 4.33 compared to composite mean of 4.06 indicated that current road project performance could be due to contractor's previous management commitment. The respondents' opinions were inconsistent, given a higher SD of 0.538 compared to the composite SD of 0.346. The high SD is due to neutral opinions.

Statement 50, road performance depends on the leadership guidance. Out of 153 respondents, 71(46.4%) strongly agreed, 74(48.4%) agreed demonstrating that respondents were in absolute agreement that good road performance depends on leadership guidance by the project manager. Although a few 8(5.2%) remained neutral, none of the respondents disagreed. A higher mean of 4.41 generated on this line item compared to the composite mean of 4.06 implied that project performance depends or is associated with leadership guidance. Respondents' views were divergent considering the SD of 0.591 was higher than the composite SD of 0.346. The high line item SD is due to neutral opinions.

Statement 51, a firm's quality control policy has significance on road performance. Out of 153 respondents, 87(56.9%) strongly agreed, 63(41.1%) agreed, none of the respondents disagreed and only 3(2.0%) remained neutral. A higher mean of 4.55 compared to the composite mean of 4.06 which implied that quality control policy significantly influences

road performance and hence the need to use it during contractors' evaluation process to get rid of incompetent contractors. A higher standard deviation (SD) of 0.537 compared to 0.346 the composite SD is an indicator that opinions diverged. The line item mean score shows that it influences the performance of road construction infrastructural projects positively.

Statement 52, construction contractors are obligated to have a quality control policy to ensure road performance. In this respect, the line item had 59(38.6%) of respondents who strongly agreed, 86(56.2%) agreed, none disagreed and 8(5.2%) neutral. A mean of 4.33 compared to the composite mean of 4.06 implying that contractors have an obligation to obtain a quality control policy to ensure project performance. A SD of 0.574 compared to the composite SD of 0.346 indicating that the expressed opinions were collectively inconsistent.

Statement 53, Contractors have management knowledge hence road performance. Out of 153 respondents, 75(49.0%) strongly agreed with the statement, 40(26.2%) agreed, 10(6.5%) strongly disagreed, 12(7.8%) disagreed and 16(10.5%) were neutral. A mean of 4.03, closer to the composite mean of 4.06 was realized implied that, although some contractors may have have some little management knowledge, there is critical need for contractors in road construction to hire professionals trained in project management, or undertake project management courses to enhance their management skills, hence road performance. The opinions were rather divergent, given a higher SD of 1.227 against a composite SD of 0.346. Meaning the line item does not influence the performance of road construction projects positively even though majority agree. This is due to high score in neutral opinion.

Statement 54, management knowledge in road construction is necessary to ensure road performance. Out of 153 respondents, 13(73.9%) strongly agreed and 37(24.1%) agreed. None of the respondent had a descenting opinion, but rather 3(2.0%) remained neutral. A mean of 4.72 greater than the composite mean of 4.06 implied that management knowledge is very necessary in road construction infrastructural projects. A standard deviation of 0.493 comapred to a standard deviation of 0.346 proved that respondents' opinions were inconsistent with one another. The line item influence performance of road construction infrastructural projects positively.

Statement 55, a proper management system will provide proper oversight in construction. Out of 153 respondents, 97(63.4%) of respondents strongly agreed it would, 53(34.6%) agreed, none disagreed and the rest 3(2.0%) were neutral. The mean was 4.61 higher than 4.06 implied that a proper management system would ensure onsite construction operations. It also means that if road contractors are keen on having a functional management system then cases of deviation in road designs or planned would highly be avoided. A standard deviation (SD) of 0.527 was higher than the composite SD of 0.346 indicating that opinions were diverging. This is due to neutral score of opinion.

Statement 56, most contractors have the necessary project management system. Out of 153 respondents, 70(45.8%) strongly agreed, 80(52.2%) agreed, none disagreed and 3(2.0%) held a neutral position on the same. A mean of 4.44 with was higher than the composite mean of 4.06. This implies that construction firms have necessary project management system but they need to effectively use it; if road performance has to be realized. A higher SD of 0.536 was obtained on this line item compared to the composite SD of 0.346, hence divergence of opinions due to neutral opinions.

Statement 57, the number of years of the management personnel in road construction guarantee road performance. Out of 153 respondents, 34(22.2%) strongly agreed, 76(49.7%) agreed, 10(6.5%) strongly disagreed, 13(8.5%) disagreed and 20(13.1%) did not assume any side. A lower mean of 3.73 compared to a composite mean of 4.06 obtained implied that the number of years a management personel has had in road construction can not guarantee performance. A standard deviation of 1.102 was higher than the composite standard deviation of 0.346 demonstrating a sharp inconsistency in opinions among the respondents. This indicates that the line item influence performance of road construction infrastructural projects negatively.

Statement 58, most of the road construction contractors operate with management teams that meet minimum requirements in terms of experience. Out of 153 respondents, 24(15.7%) strongly agreed, 52(34.0%) agreed, 1(0.6%) strongly disagreed, 29(19.0%) disagreed and 47(30.7%) remained neutral. A lower mean of 3.45 against a composite mean of 4.06 was obtained. This implies that not all (most) constractors are able to hire management teams that meet minimum requirement and this could be due to the cost of hiring of these professionals

in the market. A higher standard deviation of 0.993 obtained was higher than the composite standard deviation of 0.346 which implied that opinions were divergent. This means the line item influence on road construction project is negative.

Statement 59, experience of the management personnel in construction does guarantee highly done road. Out of 153 respondents, 5(3.3%) strongly agreed, 19(12.4%) agreed, 64(41.8%) strongly disagree, 48(31.4%) disagreed. On the other hand a few of the respondents 17(11.1%) remained neutral. A line mean of 2.04 below the composite mean of 4.06 indicated that a well done road or a quality road would not be guaranteed by the mere experience of the management personel in construction. Thefore, this implied that there is need to support the management team with proper team and resources to contribute to a better final product. Furthermore, a standard deviation of 1.152 compared to a composite standard deviation suggested that the opinions were divergent.

Results of interviews with road construction engineers indicated that management ability influenced largely the performance of road construction infrastructural projects. The results of the interviews were, therefore, consistent with the quantitative data. The following are key responses obtained from the road construction engineers:

"Good management skills will always lead to proper co-ordination of duties hence quality output; poor management leads to intermitted work, unrests or strikes, demonstration among work team; lack of morale due to delayed payments or salaries and this derail the effort of the team to work towards a good product; management can not entirely influence road performance because managers need adequate financial support to build quality roads; good management ensures discipline among workers, easy to lead, direct, supervise hence good performance; it also means the work done is being thoroughly supervised and given the needed attention; management of road projects is highly required during implementation of the project but performance is determined by other factors expecially by the road user. "Road Construction Engineers' Opinions (2019)

Results of interviews with public service vehicles (PSVs) drivers indicated management ability influenced largely the performance of road construction infrastructural projects. The results of the interviews were, therefore, consistent with the quantitative data. The following are key responses obtained from the PSVs drivers:

"If contractors and their subcontractors can provide the required management on the site, then definitely we are likely to witness quality products of our own roads; proper management will provide oversight during construction and this means that, for example, materials are mixed properly and no wastage minimized; if a contractor is committed to providing necessary oversight during construction, then definitely the technical team on the ground will tend to produce a good road as per the expectation of the client who is in most cases the government and us as the citizens are that government; management also needs to communicate a clear system otherwise things will be done in a hurry and without following due diligence to ensure conformity to road specifications as planned or designed in the work plan; sometimes it is not proper to lay blame on contractors management capability because we as the drivers what we witness on these roads like heavy trucks are putting pressure on the road leading to early deterioration; contractors management ability has got nothing to do with the performance of the road; management of projects requires highly skilled personell but that is only applied when building the projects but performance needs our own disclipline like stop overlapping "PSVs Drivers' Opinions (2019).

4.8.1 Correlation Analysis of Management Ability of Contractors and Performance of Road Construction Infrastructural Projects

Correlation analysis using Pearson's Product Moment technique was done to establish the relationship between the various dimensions of management ability of contractors and performance of road construction infrastructural projects. The values obtained from the correlational analysis ranged between +1 and -1. In this regard, +1 implied perfect positive correlation, while -1 implied perfect negative correlation.

Having 0.000 implied no correlation; the modular values 0.001 to 0.250 implied weak correlation; 0.251 to 0.500 implied semi-strong correlation; 0.501 to 0.750 implied strong correlation; and 0.751 to 1.000 implied very strong correlation. The findings were shown in table 4.18.

Variables		Performance of road construction Infrastructural Projects	Management Ability of Contractors
Performance of road	Pearson Correlation	1	0.057
construction Infrastructural Projects	Sig. (2-tailed)	153	0.485 153
Management Ability of	Pearson Correlation	0.057	1
Contractors	Sig. (2-tailed)	0.485	
	n	153	153

Table 4.18:Correlation Matrix of Management Ability of Contractors and
Performance of Road Construction Infrastructural Projects

As shown in Table 4.18, at 0.05 level of significance, there was statistically insignificant correlation between management ability of contractors and performance of road construction infrastructural projects (p-value<0.05). The correlation, according to the foregoing measurement framework was weak since the correlation coefficient was 0.057.

4.8.2 Regression Analysis of Management Ability and Performance of Road Construction Infrastructural Projects

The following hypothesis was tested using linear regression model to meet the requirements of the third objective:

Test of Hypothesis 3

- **3.** H₀: Management ability of contractors does not significantly influence performance of road construction infrastructural projects.
 - **H**₁: Management ability of contractors significantly influences performance of road construction infrastructural projects.

The null hypothesis was tested using the below linear regression model:

 $y = a + B_3 X_3 + e$

Where:

- y performance of road construction infrastructural projects
- X_3 Management ability of contractors

B_3 – Regression coefficient

- a Regression constant
- e Error term

The results were as shown in Table 4.19, 4.20 and 4.21.

Table 4.19: ANOVA for Management Ability of Contractors and Performance of Road Construction Infrastructural Projects ANOVA⁴ AnovA⁴

Model		Sum of Squares	df	Mean Square	F	Sig.
	Regression	0.043	1	0.043	0.491	0.485 ^b
1	Residual	13.381	151	0.089		
	Total	13.424	152			

a. Dependent Variable: Performance of Road

b. Predictors: (Constant), Management Ability of Contractors

From Table 4.19, the use of ANOVA revealed the regression model's goodness of fit. It was established from the model that the f-significance value of p=0.485 was greter than 0.05 (p=0.00 > 0.05). The calculated F (0.491) was insignificantly less than the critical value of F= 3.904. Therefore, the model was insignificant.

Table 4.20:	Model	Summary	for	Management	Ability	of	Contractors	and				
	Perform	Performance of Road Construction Infrastructural Projects										

Model	R	R Square	Adjusted R	Std. Error of the	
			Square	Estimate	
	0.057^{a}	0.003	-0.033	0.29768	

a. Predictors: (Constant), Management Ability of Contractors

From Table 4.20, the degree and nature of correlation between management ability of contractors and performance road construction infrastructural projects was determined by the "R" at 0.057. This demonstrates that despite a weak correlation, management ability would still to a smaller extent influence performance of road construction infrastructural projects. A coefficient of determination R^2 =0.003 implies that 0.3% change in performance of road would be explained by the management ability. At this juncture, 99.7% change in performance of road construction infrastructural projects is explained by other factors outside the management ability of contractor model. This means that management ability can

not be used to explain performance of roads being used, after completion. The value obtained here is almost insignificant.

remoniance of Road Construction infrastructural projects										
Model	Unstandardize	Unstandardized Coefficients		t	Sig.					
	В	Std. Error	Beta							
(Constant)	3.160	0.284		11.117	0.000					
Managemen	nt									
Ability of	0.049	0.070	0.057	0.701	0.485					
Contractors										

 Table 4.21: Model Coefficients for Management Ability of Contractors and Performance of Road Construction infrastructural projects

Model: {B=0.049, t=0.701, F(1,151)= 0.491,p=0.485>0.05}

a. Predictor Variable: Management Ability of Construction

b. Dependent Variable: performance of road construction Infrastructural Projects

The results in Table 4.21 indicate that management ability had statistically significant influence on performance of road construction infrastructural projects $\{B=0.049, t=0.701, F(1,151)=0.491, p=0.485>0.05\}$. The unstandardized beta (B) coefficient for management ability of contractors is 0.049. The beta value imply that a unit increase in performance of road construction infrastructural projects corresponds to 4.9% increase in management ability of contractors.

Using the statistical findings, the regression model can be substituted as follows:

 $y = 3.160 + 0.049 X_3$

Where:

y - performance of road construction infrastructural projects

 X_3 - Management ability of contractors

From table 4.21, the predictor variable management ability of the contractors, the probability of the t statistic (0.701) for the b coefficient is 0.485>0.001 which is greater than the level of significance 0.05. Based on this results, we fail to reject the null hypothesis that the slope associated with management ability is equal to zero (b=0). Hence, it was concluded that management ability of contractors had insignificant influence on performance of road construction infrastructural projects. Even though, the b coefficient associated with management ability of contractors (0.049) is positive, indicating a direct relationship.

The findings of the current study shows that management ability of the contractors (0.3%) can not be used to explain the performance of the road in the post delivery stage. The findings, therefore, contradicts a study by Aje *et al.* (2009) who evaluated the impact of contactors' management capacity on the time and cost of performance of construction projects. The statistical findings showed that contractors' management capability was a significant criterion in the appraisal of potential construction contractors' performance in the course of prequalification as well as tender assessment. It should, however, be noted that time and cost indicators are tied to the traditional iron triangle which explain mostly the implementation of a project.

The current findings also show the number of years of the management personnel in road construction does not guarantee road performance (line item mean of 3.73 against a composite mean of 4.06); most of construction contractors do not operate with management teams that meet minimum requirements in terms of experience (3.45 line item mean as opposed to 4.06 composite mean); and finally, experience of management personnel in construction does guarantee highly well done road was refuted by a line item mean of 2.04 against 4.06 the composite mean implying that experience of management personnel in construction does not guarantee well done road projects. The findings does not support a study by Omran, et al. (2012) who established that the most significant five determinants of project performance are: planning effort; experience of project team leader; design and specification adequacy; monitoring for cost progress; as well as the leadership skills. This implies that the indicators used by Omran et al., are basically suitable in explaining performance up to the implementation stage of the project and not in post-delivery stage. The findings further contradict Ntuli et al. (2014) study which determined that regardless of the amount of resources dedicated to the contractors, it would add no much value if the tender awards are given to those who do not have management capacity. Implying that management capacity is largely tied to implementation stage of road infrastructural projects.

The findings of the current study allude that previous management commitment can easily be repeated in the current road performance (line item mean of 4.10 against composite mean of 4.06) and that road performance depends on the leadership guidance (line item mean of 4.33 against 4.06 the composite mean) which is in support of Mwakajo and Kidombo (2017) who

revealed that project leadership requires the capacity to undertake tough decisions, deal with human resource issues, and to invoke authority as and when may be necessary in pursuit of a project in light of various constraints. The findings of the research demonstrated that 88% of the respondents concurred that the projects were professionally and accurately led albeit it was only confined to the project completion rather than in the post delivery phase. Hence the findings of the current study shows that performance during post-delivery of the project can not be blamed on the contractors' ability to manage projects.

The current findings also fails to resonate with El-Maaty, Akal and El-Haraway (2016) study that showed that the most critical parameters that positively impact quality are: owner's inspection team efficiency; owner's clarity of responsibilities for each key stakeholder; unstandardized pavements; experience of the staff involved in the entire project cycle; as well as quality and type of asphalt applied in process of construction. Accordingly, Naik, Sharma and Kashiyani (2015) noted that contractors' inadequacies revolved around issues to do with weak planning and scheduling, lack of adequate relevant information, poor agility in making of decisions and inadequacy in coordination among the participants. To this point, the current study has revealed that having a proper management system would provide proper oversight in construction to completion only (line item mean of 4.61 against a composite mean of 4.06). However, this findings can only be linked to initial stages of road construction indicating that during the life of the project or in the post-delivery stage, management factors can not be used to gauge road performance.

The third objective is therefore supported by data since management ability of a contractor was found to insignificantly influence performance of road construction infrastructural projects in the post-delivery stage. In relation to the foregoing comparable studies, the current study has adduced empirical evidence in support of their earlier findings. Thus concluding, management ability does not influence performance of road construction infrastructural projects. As a result, the null hypothesis is considered valid.

4.9 Contractors' Safety Record and Performance of Road Construction Infrastructural Projects

This section presents descriptive and correlation analyses on contractors' safety record.

Safety in construction is a key aspect that need to be factored when measuring road performance. The study therefore examined the influence contractors' safety record on performance of roads. The respondents were asked to, in a scale of 1-5; score various statements relating to specific indicators of safety record of a contractor. The dimensions of safety record under which the indicators were drawn were safety policy management system; insurance policy; compliance behavior; adequacy of standards in addressing safety outcome; and certification in OSHA. The Likert scale ranged from 5-Strongly Agree (SA), 4-Agree (A), 3-Neutral (N), 2-Disagree (D), and 1-Strongly Disagree (SD). The results were as shown in Table 4.22.

No.	Statements	5(SA) F	4(A) F	3(N) F	2(SD) F	1(D) F	Mean	SDV
		(%)	(%)	(%)	(%)	(%)		
	(a) Safety Policy Management system							
60.	Most contractors have a safety policy management system	7 (4.6%)	76 (49.7%)	50 (32.7%)	20 (13.0%)	0 (0.0%)	3.33	1.050
61.	Safety for most contractors is a priority to road perfromance after completion	19 (12.4%)	63 (41.2%)	60 (39.2%)	8 (5.2%)	3 (2.0%)	3.54	0.925
62.	Safety is taken into account for future road performance	23 (15.0%)	42 (27.5%)	30 (19.6%)	15 (9.8%)	43 (28.1%)	3.10	1.245
63.	Road contractors find it necessary to have a policy management system to ensure road performance because the	24	46	63	0	20	3.48	0.911
	projects they undertake are one- time	(15.7%)	(30.1%)	(41.2%)	(0.0%)	(13.0%)		
64.	(b) Insurance Policy Construction personnel under insurance policy can also feel obligated to provide and enforce safety measures which can contribute to road performance and particularly road user satisfaction	23 (15.0%)	97 (63.4%)	27 (17.6%)	0 (0.0%)	6 (4.0%)	3.90	0.690

 Table 4.22: Contactors' Satety Record and Performance of Road Construction

 infrastructural projects

No.	Statements	5(SA)	4 (A)	3(N)	2(SD)	1(D)	Mean	SDV
		F	F	F	F	F		
		(%)	(%)	(%)	(%)	(%)		
65.	Most construction companies do	23	29	43	21	37	2.07	1 262
	have insurance policy	(15.0%)	(19.0%)	(28.1%)	(13.7%)	(24.2%)	2.97	1.202
	(c) Compliance behaviour							
66.	Contractors level of compliance	7	29	65	20	32	2.01	1 027
	to safety administration is clear	(4.6%)	(19.0%)	(42.5%)	(13.0%)	(20.9%)	2.01	1.057
67.	Contractors fully comply to	17	42	29	27	38	2.00	1 204
	safety requirements	(11.1%)	(27.5%)	(19.0%)	(17.6%)	(24.8%)	2.90	1.294
68.	The environment in which							
	contractors operate does	12	11	40	22	67		
	appraise compliance to safety	(9.5%)	(7, 20%)	(26.1%)	(14, 40%)	(12.80%)	2.52	1.095
	procedures	(8.3%)	(7.2%)	(20.1%)	(14.4%)	(43.6%)		
	(d) Adequacy of standards in							
	addressing safety outcome							
69.	Construction contractors have	31 (20.2%)	52	56 (36.6%)	3 (2.0%)	11		0.951
	adequate standards to address		(34.0%)			(7.2%)	3.63	
	issues of road performance	(20.270)	(34.070)	(30.070)	(2.070)	(7.270)		
70.	Adequate safety standards	23	86	29	15	0	3 67	1.058
	guarantee road performance	(15.0%)	(56.2%)	(19.0%)	(9.8%)	(0.0%)	5.07	1.050
71.	Construction safety standards	66	47 (30.7%)	36	2 (1.3%)	2		0.908
	are reviewed and conform to	(43.2%)		(23.5%)		(1.3%)	4.13	
	international standards	(+3.270)		(23.370)		(1.370)		
	(e) Certification in OSHA							
72.	Construction firms/contractors							
	certified in OSHA tend to have	71	49	31	2	0	1 22	0.860
	good record in road	(46.4%)	(32.0%)	(20.3%)	(1.3%)	(0.0%)	7.22	0.000
	performance							
73.	Certification in OSHA is a must	24	24	56	12	37		
	to ensure road performance in	(15,70%)	(15,70%)	(36.6%)	(7.8%)	(24, 20%)	3.07	1.159
	construction is adhered to	(13.770)	(13.770)	(30.0%)	(7.8%)	(24.270)		
	Composite mean and standard	deviation					3.38	0.544

In Table 4.22, the means of 14 items used to generate data on contractors' safety record were summed up and used to compute the composite mean and standard deviation (SD) that resulted to 3.38 and 0.544 respectively.

Statement 60, most contractors have a safety policy management system. Out of 153 respondents, 7(4.6%) strongly agreed, 76(49.7%) agreed, 20(13.0%) strongly disagreed, and those with neutral opinions were 50(32.7%). The results returned a mean score of 3.33, which was slightly lower than the composite mean of 3.38, and a SD of 1.050, which went slightly above the composite SD of 0.544, which indicated clearly divergent opinions from the respondents. Therefore, this shows that majority of firms and contractors remain noncommittal to ensuring strong safety policy management systems are in place to guarantee road performance. The national construction agencies like NCA and EBK should be firm on

contractors and construction firms to instutionalize strong safety policy management that will enhance learning and transfer of best practices.

Statement 61, safety for most of the constractors is a priority to road performance after road completion. Out of 153 respondents, 19(12.4%) strongly agreed, 63(41.2%) agreed, 8(5.2%) strongly disagreed, 3(2.0%) disagreed and 60(41.2%) expressed a contrary opinion by remaining neutral. Arising from this result was a mean of 3.54 compared to a lower composite mean of 3.38. Also obtained was a standard deviation of 0.925 higher than the composite standard deviation of 0.544 which indicated that opinions were divergent. This implies that for most contractors safety is treated as a priority for future road performance.

Statement 62, safety is taken into account for future road performance. Out of 153 respondents, 23(15.0%) strongly agreed, 42(27.5%) agreed, 15(9.8%) strongly disagreed, 43(28.1%) disagreed and 30(19.6%) chose to remain neutral. The mean recorded was 3.10 below the composite mean of 3.38. However, the the standard deviation was 1.245 above the composite standard deviation of 0.544 hence inconsistent in opinions. This is a clear indication that construction firms are not keen on considering safety for future road performance, therefore there is imperative need for engineering bodies and authorities to put more empasisis on the fact that contractors must observe safety to enhance road performance. Contractors and their firms should also be willing to invest in current technology when constructing roads.

Statement 63, contractors find it necessary to have a policy management system to ensure road performance because the projects they undertake are sometimes one-time. Out of 153 respondents, 24(15.7%) strongly agreed, 46(30.1%) agreed, 20(13.0%) disagreed and 63(41.2%) remained neutral. Arising from this statement was a mean of 3.48 above the composite mean of 3.38. This implies that construction firms appreciates the need to necessarily have a safety policy management system in place to be able to contribute to well performing roads in terms of safety aspects. A higher standard deviation of 0.911 compared to a composite standard deviation of 0.544 demonstrates that opinions were diverging. This line item had a high score on neutral opinions.

Statement 64, construction personnel under insurance policy can also feel obligated to provide and enforce safety measures, which can contribute to road performance and particularly road user satisfaction. Out of 153 respondents, 23(15.0%) strongly agreed, 97(63.4%) agreed, 6(4.0%) disagreed and 27(17.6%) expressed neutral opinion. The statement a mean of 3.90 higher than the composite mean of 3.38. This statement implies that having an insurance policy within a construction firm is important to cater not only for the operations of the firm but also the personnel therein hence road performance. The standard deviation was 0.690 slightly higher compared to the composite standard deviation of 0.544, hence divergence in opinions.

Statement 65, most construction firms do have insurance policy. Out of 153 respondents, 23(15.0%) strongly agreed, 29(19.0%) agreed, 21(13.7%) strongly disagreed, 37(24.2%) disagreed, and the rest 43(28.1%) neutral. The mean score for this line item was 2.97 lower than 3.38 the composite mean. The implication is that majority of firms do not have insurance policy which significantly influences contractors' safety record and performance of road construction infrastructural projects. However, it is imperative for the concerned agencies and authorities in road construction industry oversee enforcement of the policy and keep it reviewed where necessary to catch up with the changing trends. Obtained was a standard deviation of 1.262 higher compared to the composite of 0.544 meaning that opinions were inconsistent.

Statement 66, contractors level of compliance to safety administration is clear. Out of 153 respondents, 7(4.6%) strongly agreed, 29(19.0%) agreed, 20(13.0%) strongly disagreed, 32(20.9%) disagreed and those with neutral to this line item were 65(42.5%). A recorded mean of 2.81 was dismally below the composite mean of 3.38. The standard deviation for this line item was 1.037 higher than 0.544 the composite standard deviation which indicated that the respondents' views were not consistent. It is therefore evident that compliance to safety administration is not clear and that this could be as a result of either contractors not being aware of what is required of them or total ignorance despite the earlier results suggesting that construction firms and contractors at large have safety policy management system. Most importantly, periodic seminars and refresher courses should be encouraged among the contractors to enhance learning. This will eventually improve and positively

contribute towards a strong safety record of the contractor hence road performance in the country.

Statement 67, contractors fully comply with safety requirements. Out of 153 respondents, 17(11.1%) strongly agreed, 42(27.5%) agreed, 27(17.6%) strongly disagreed, 38(24.8%) disagreed and 29(19.0%) gave a neutral opinion. The mean was 2.90 below the composite mean of 3.38. This implies that contractors are not fully complying with safety requirements which is adversely affecting performance of the roads to some extent. The statement had a standard deviation of 1.294 higher than the composite standard deviation of 0.544 indicating that the opinions were divergent. This statement influences performance of road construction infrastructural project negatively.

Statement 68, the environment in which contractors operate does appraise compliance to safety procedures. Out of 153 respondents, 13(8.5%) strongly agreed, 11(7.2%) agreed, 22(14.4%) strongly disagreed, 67(43.8%) disagreed and 40(26.1%) neautral. Based on a lower mean recorded of 2.52 compared to a composite mean of 3.38, the results imply that the construction environment in which contractors work in does not support compliance behavior to satey by contractors. This could be due to corruption that needs and must be eradicated for construction firms to operate freely to be able to deliver quality roads hence road performance. This also explains failure of strictness to follow stipulated safety guidelines in road construction. There is therefore need to lay down penalties of not demonstrating compliance and in most of the cirscumstances certificate of practice should be re-called from those not ready or willing to comply. This will bring back professionalism in the industry. A standard deviation of 1.095 higher than the composite composite standard deviation of 0.544 signaled divergence in opinions.

Statement 69, construction contractors have adequate standards to address issues of road performance. Out of 153 respondents, 31(20.2%) strongly agreed, 52(34.0%) agreed, 3(2.0%) strongly disagreed, 11(2.2%) disagreed, whilest a significant number of respondents 56(36.6%) remained neutral. A mean of 3.63 higher than the composite mean of 3.38 implied that contrctors have adequate standards in road construction to realize road performance. There is however need for enforcement of the same standards to realize maximum

197

performance on our roads. A standard deviation of 0.951 higher than the composite standard deviation of 0.544 signified opinions were diivergent.

Statement 70, adequate safety standards guaranteed road performance. Out of 153 respondents, 23(15.0%) strongly agreed, 86(56.2%) agreed, 15(9.8%) strongly disagreed and 29(19.0%) chose to be neutral. The analysis further revealed that the line item mean was 3.67 above 3.38 the composite mean. This implied that contractors having adequate standards in road construction can highly guarantee road performance. A standard deviation of 1.058 below 0.544 the composite standard deviation demonstrated that the opinions were not consistent. It therefore points out the need for the contractors and their firms to enforce the safety standards within their mandate to avoid some of the accidents happening on our roads, hence performance.

Statement 71, construction safety standards are reviewed and conform to international standards. Out of 153 respondents, 66(43.2%) of the respondents strongly agreed, 47(30.7%) agreed, 2(1.3%) strongly disagreed, 2(1.3%) disagreed, and the remaining 36(23.5%) gave neutral opinions. A mean of 4.13 higher than the composite mean of 3.38 was derived from the statement. This implied that national safety standards are not only conforming to the international standards but also regularly reviewed. This the construction industry in Kenya is abrest with the changing trends globally resulting to better performance. A derived line standard deviation of 0.908 above the composite standard deviation of 0.544 implied that the opinions were consistent.

Statement 72, Opinions whether on the constructions or contractors certified in OSHA tend to have good record in road performance was positively upheld by 71(46.4%) of respondents who strongly agreed, 49(32.0%) agreed, 2(1.3%) strongly disagreed, none disagreed and 31(20.3%) tended to remain neutral. A mean of 4.22 higher than a composite mean of 3.38 was realized which implied that certification in OSHA does positively build contractors' safety record profiles and also has a significant influence on the overall road performance. Obtained on this statement was a standard deviation of 0.860 higher than the composite standard deviation of 0.544 an indication that respondents' opinions diverged.
Statement 73, certification in OSHA is a must to ensure road performance in construction is strictly adhered to. Out of 153 respondents, 24(15.7%) strongly agreed, 24(315.7%) agreed, 12(7.8%) strongly disagreed, 37(24.2%) disagreed and 56(36.6%) elicited neutral opinions. A lower mean of 3.07 compared to the composite mean of 3.38 was derived on this statement. This implied that being certified as a constructor or a construction firm would not significantly influence performance of road in terms of safety. This is to mean that there are other critical factors that may need to be considered to ensure performance of the road. A standard deviation of 1.159 obtained was above the composite standard deviation of 0.544 which showed divergence in the opinions.

Results of interviews with road construction engineers indicated that contractors' safety record influenced largely the performance of road construction infrastructural projects. The results of the interviews were, therefore, consistent with the quantitative data. The following are key responses obtained from the road construction engineers:

"Safety and healthy environment promote morale of employee thus lead to better performance of the person and which can easily translate to overall good performance of the road; a compliant contractor ensures a health and safe construction environment even after project completion. A case in point is the pollution from dust if controlled and managed well the end road will be safe to use; quarry or borrow pits when backfilled after project completion ensures security of the environment; a safe and a healthy policy among employees is a continued support even after the project completion; a safety record of any contractor that is focused on adhering to safety procedures put in place ensures an anticipated highly performing road that is properly marked, has enough road signs; contractors who peg their work on safety are likely to have roads constructed with clearly marked roads and even the issue bumps will be addressed in such a way that they will not be a reason for frequent accidents happening on our roads; if all contractors engaged or contracted to undertake road construction work have a clear policy on how to incorporate safety, then performance in terms of safety of pedestrians and even the motorists will be assured." Road Construction Engineers' Opinions (2019)

Results of interviews with public service vehicle (PSVs) drivers indicated contractors' health and safety record influenced largely the performance of road construction infrastructural projects. The results of the interviews were, therefore, consistent with the quantitative data. The following are key responses obtained from the PSVs drivers: "A contractor with a clean record of observing safety procedures in his or her previous work will definitely work towards repeating the same in the current assignment; if the safety record of a contractor says that he or she has done well in the past then even with another project, a contractor will work to ensure the same or more results are achieved with another road project given to her; contracts that observe the previous work of a contractor with a keen interest to safety record will tend to produce roads that are performing good in terms of less accidents reported; Safety record should also look at the policy put in place by the contractor or the construction firm because this will provide the proof that the contract being awarded will produce good results in terms of a road that is well performing even after its completion."PSVs Drivers' Opinions (2019).

4.9.1 Correlation Analysis of Contractors' Safety Record and Performance of Road Construction Infrastructural Projects

Correlation analysis using Pearson's Product Moment technique was done to establish the relationship between the various dimensions of safety record and performance of road construction infrastructural projects. The values obtained from the correlational analysis ranged between +1 and -1. In this regard, +1 implied perfect positive correlation, while -1 implied perfect negative correlation. 0.000 implied no correlation; the modular values 0.001 to 0.250 implied weak correlation; 0.251 to 0.500 implied semi-strong correlation; 0.501 to 0.750 implied strong correlation; and 0.751 to 1.000 implied very strong correlation. The findings were as shown in Table 4.23.

Variables		Performance of road construction Projects	Contractor's Safety Record
Performance of road	Pearson Correlation Sig. (2-tailed)	1	0.657^{**} 0.000
construction Projects		153	153
Contractor's Safety	Pearson Correlation	0.657^{**}	1
Pecord	Sig. (2-tailed)	0.000	
KCCOIU	n	153	153

 Table 4.23:
 Correlation Matrix for Contractors' Safety Record and Performance of Road Construction Infrastructural Projects

**. Correlation is significant at the 0.05 level (2-tailed).

From Table 4.23, at 0.05 level of significance, there was statistically significant correlation between contractor's safety record and performance of road construction infrastructural projects (p-value<0.05). The correlation was strong since it had a coefficient of 0.657.

4.9.2 Regression Analysis of Contractor's Safety Record of a Contractor and Performance of Road Construction Infrastructural Projects

The following hypothesis was tested using linear regression model to meet the requirements of the fourth objective:

Test of Hypothesis 4

- **4.** H₀: Contractors safety record does not significantly influence the performance of road construction infrastructural projects in Nairobi County, Kenya.
 - **H**₁: Contractors safety record significantly influence the performance of road construction infrastructural projects in Nairobi County, Kenya.

The null hypothesis was tested using the below linear regression model:

 $y = a + B_4 X_4 + e$

Where:

- y performance of road construction infrastructural projects
- *X*₄- Contractors' safety record
- B_4 Regression coefficient
- a Regression constant
- e Error term

 $ANOVA^{a}$

The results are shown in 4.24, 4.25 and 4.26.

Table 4.24: ANOVA for Contractors' Safety Record and Performance of Road Construction Infrastructural Projects

Model		Sum of Squares	df	Mean Square	F	Sig.
	Regression	5.791	1	5.791	114.558	0.000^{b}
1	Residual	7.633	151	0.051		
	Total	13.424	152			

a. Dependent Variable: Performance of Road

b. Predictors: (Constant), Contractors' Safety Record

From Table 4.24, it was important to establish the goodness of fit of the regression model. The ANOVA established that the model's f-significance value of p=0.000 was less than 0.05 (p=0.00 < 0.05). The calculated F (114.556) was significantly larger than the critical value of F= 3.904. The implication of this result is that the model was considered significant.

 Table 4.25:
 Model Summary for Contractors' Safety Record and Performance of Road Construction Infrastructural Projects

Model	R	R Square	Adjusted R	Std. Error of the
			Square	Estimate
1	0.657^{a}	0.431	0.428	0.22484
- D			Derent	

a. Predictors: (Constant), Contractors' Safety Record

From Table 4.25, the degree and nature of correlation between contractors' safety record and performance road construction infrastructural projects was determined by the "R" which resulted to 0.657. This shows that contractors' safety record has strong or big influence to road performance in Nairobi County. Arising from R-squared is 0.431 which means that 43.1% variation is explained by contractors' safety record. On the other hand, it also meant that there could be other factors accounting to 56.9% that would explain variations in performance of road construction infrastructural projects but are not covered in this model.

Koau Construction infrastructural Projects										
Model	Unstandar	dized	Standardized	t	Sig.					
	Coefficient	S	Coefficients							
	В	Std. Error	Beta							
(Constant)	2.145	0.115		18.692	0.000					
Contractors' Safety Record	0.359	0.034	0.657	10.703	0.000					

 Table 4.26: Model Coefficients for Contractors' Safety Record and Performance of Road Construction Infrastructural Projects

a. Dependent Variable: performance of road construction Infrastructural Projects Model: {B=0.359, t=10.703, F (1,151)= 114.558, p=0.000<0.05}

The results in Table 4.26 indicate that contractors safety record had statistically significant influence on performance of road construction infrastructural projects {B=0.359, t=10.703, F (1,151)= 114.558, p=0.000<0.05}. The unstandardized beta (B) coefficient for contractors' safety record is 0.359. The beta value imply that a unit increase in performance of road

construction infrastructural projects corresponds to 35.9% increase in contractors' safety record.

Using the statistical findings, the regression model can be substituted as follows:

 $y = 2.145 + 0.359X_4$

Where:

y - performance of road construction infrastructural projects

 X_4 – Contractors' safety record

From Table 4.26, for the predictor variable contractors safety record, the probality of the t statistic (10.703) for the b coefficient is 0.000 < 0.001 which is less than the level of significance 0.05. The findings suggests that the null hypothesis was rejected that the slope associated with contractors' safety record is equal to zero (b=0). Furthermore, the b coefficient associated with financial ability of the contractor (0.359) is positive, which is an indication that a direct relationship exists. These findings warranted rejection of the null hypothesis (H₀) which stated that contractors' safety record does not significantly influence performance of road construction infrastructural projects. Hence, we conclude that contractors' safety record influence performance of road constructural projects and accept the alternate hypothesis.

The findings of the study indicate that contractors' safety record influences performance of the road. The findings therefore support a study by Kartam and Bouz (1998) who discovered that weak systems for accident recording and reporting were a conduit for hiding the pervasive safety gaps. The culture of keenness to safety issues has also been said to critically set the attitude the significance of organizational safety.

The current findings from descriptive analysis of the outcome variable, performance of road construction infrastructural projects, on road safety as a dimension, found that although reported cases of accidents have reduced (line item mean of 3.78 against 3.35 the composite mean), bumps are not provided in the right designated places (line item mean of 3.13 against a composite mean of 3.35), pedestrians' walkways are not adequately provided (line item mean of 2.99 against a composite mean of 3.35), foot bridges are not sufficiently provided

(line item mean of 1.98 against a composite mean of 3.35) and bus stops are not well placed in the right designated areas (line item mean of 2.22 against a composite mean of 3.35). The findings supports De Saram *et al.*, (2005) who examined the non-material accident costs, including pain and suffering, and loss of quality of life and reported that the said costs comprised approximately thirty percent of direct costs of accident. There is critical need to re-focus our energy in improving road safety to enhance performance of road construction infrastructural projects.

This finally confirms the Domino theory of accident causation borrowed in the current study and as advanced H.W. Heinrich in 1931. The first three of the five sequential antecedents from the Domino theory explains the scenario here (Hosseinian & Torghabeh, 2012). In the first antecedent, the social ecosystem and ancestry which are among the process of knowledge acquisition at workplaces encompassing culture, values, and attitudes; lacking of skills as well as technology for task performance, poor ecosystem and social conditions leads to human fault. The second antecedent shows that carelessness which mainly is a description of adverse personal attributes, acquired or otherwise. Such carelessness are antecedent to poor work conditions. And from the third antecedent, hazardous human acts, with risky conditions encompassing the faults as well as technical failures leading to accidents (Such as poor or lack of installation of foot bridges and clear marking of the road). The theory has overly been used during assessment of a contractor for award of the tender to undertake construction works without factoring in the aspect of performance during post-delivery of the project hence the need for its adoption in this regard.

The current study has established that contractors compliance behavior is not good. The study has also revealed that compliance to safety administration is not clear, contractors do not fully comply to safety requirements and the environment in which contractors operate do not care to appraise compliance to safety issues or procedures. The findings therefore point out the need for basic safety investment in construction industry (as found by Feng (2013). Further, the findings set a call for disaster preparation, planning, use of protective equipment (in this case, accident prevention mechanisms such as foot bridges) and management engagement as found by Jannadi and Bu-Khamsin (2002) while studying on safety determinants in the Saudi Arabian context.

The current study found that most of the contractors do not have safety policy management system (a lower line item mean of 3.33 compared to the composite mean of 3.38). This results are in support of Diugwu, Baba and Egila (2012) study whose findings indicated that 55.9% of construction firms have no safety and health policies in their organizations. This implies that there is need to strengthen the OSHA aspects within construction industry to avoid the massive accidents occurring in the post-delivery stage of the road projects, upon completion.

The fourth objective was, therefore, supported by data since contractor's safety record was found to significantly influence performance of road construction infrastructural projects. In relation to the foregoing comparable studies, the current study has adduced empirical evidence in support of their earlier findings.

4.10 Combined Contractors' Capacity Evaluation in Tender Award and Performance of Road Construction Infrastructural Projects

This section presents the descriptive analysis and correlation analysis of the combined contractors' capacity evaluation in tender award.

Financial ability, technical ability, management knowledge, and contractors' safety record combined, were referred to as contractor's capacity evaluation in tender award. The combined influence of these factors on performance of road construction infrastructural projects was tested using inferential statistics in this section as the fifth objective as shown in Table 4.27.

Table 4.27: Combined Contractors' Capacity Evaluation in Tender Award and Performance of Road Construction Infrastructural Projects

Variables	n	Mean	Std.
			Deviation
Financial Ability of Contractors	153	3.79	0.533
Technical Ability of Contractors	153	3.69	0.377
Management Ability of Contractors	153	4.06	0.346
Contractor's Safety Record	153	3.38	0.544
Composite Mean and Standard Deviation		3.73	0.45

The highest aggregate mean score, as shown in Table 4.27, was on the management ability dimension, with a score of 4.06; followed by financial ability, with mean score 3.79; technical ability, with mean score of 3.69; and contractors' safety record, with mean score of 3.38. The most consistent scores were on the management ability, with the least standard deviation of 0.346.

The influence of combined contractors' capacity evaluation in tender award was established by computing the composite mean. At this juncture it is clear that the combined mean is 3.73 and the standard deviation is 0.45. This shows that overall contractors' capacity evaluation in tender award was executed above average. Measured on a 5-point scale, this is average result which entails that combined contractors' capacity is immensely significantly needed for improved performance of road construction infrastructural projects. However, there is need for more effort in selection of contractors especially based on safety record so that safety measures can be adhered to by contractors to avoid unnecessary pedestrians and motorized accidents.

Results of interviews with road construction engineers indicated that the overall contractors' capacity evaluation in tender award influence to a great extent performance of road construction infrastructural projects. The results of the interviews were, therefore, consistent with the quantitative data. The following are key responses obtained from the road construction engineers:

"The financial capacity, political, management and education background all these can lead to or slow down the performance of the road by misappropriation of the resources; can improve performance if proper evaluation is followed for example financial and capacity of contractor owned; corruption will still venture into the process in a competitive evaluation; in Kenya tribalism, nepotism and corruption have never allowed a properly designed system to function; unfortunately, construction and infrastructural industries are worth it; by ensuring all the key factors of contractor evaluation work together, this will inform delivery of quality roads and that this will also promote the name of those in construction industry. With no doubt it is important to note that good performance can be achieved in wholesome; this means that none of these factors can work independently to produce good results. Road construction that is expected to perform well should and must not leave out either financial, technical, safety and management aspects; I have seen in some instances where some contractors ignore the technical ability and end up hiring cheap labour; this is

detrimental to the road performance in the future. Therefore, all these factors: technical, financial, management and safety of the contractor must be factored in during construction; combining all the factors will enhance quality in road construction hence good road performance; if contractors could be keen by observing all these factors (financial, safety, management and technical) there could be no complaints about road performance." Road Construction Engineers' Opinions (2019)

Results of interviews with public service vehicle (PSVs) drivers indicated that the overall contractors' capacity evaluation in tender award influenced to a great extent performance of road construction infrastructural projects. The results of the interviews were, therefore, consistent with the quantitative data. The following are key responses obtained from the PSVs drivers:

"The financial capacity, political, management and education background all these can lead to or slow down the performance of the road by misappropriation of the resources; I think if all factors held together there will be improvement in road construction project; performance will be enhanced; our roads will be safe in that the following will be there to measure performance: properly marked roads, adequate signs, well done bumps, foot bridges located in the right areas; there will be little deviations for example materials used will be of good quality and adequate enough to produce good roads; combining all aspects of contractors' capacity evaluation in tender award will mean our contractors are forced to do good job and ensure minimal mistakes are recorded; there will be a great improvement in our roads performance; quality roads will be produced; our roads will not have potholes; contractors will be focused on producing excellent roads with high performing rate; as it stands the potholes show up few years after completion of the road or even within the year in which a road is launched but if all the factors combined, then we are likely to see quality roads. "PSVs Drivers' Opinions (2019)

4.10.1 Correlation Analysis of Combined Contractors' Capacity Evaluation in Tender Award and Performance of Road Construction Infrastructural Projects

Correlation analysis using Pearson's Product Moment technique was done to determine the relationship between contractors' capacity evaluation in tender award and performance of road construction infrastructural projects. The intention of this operation was to determine the strength and direction of relationship between the independent and dependent variables. The results are presented in Table 4.28.

	Projects					
Variables		Combined Contractors' Capacity evaluation in tender award	Financial Ability of Contractors	Technical Ability of Contractors	Management Ability of Contractors	Contractor' Safety Record
Performance of road	Pearson Correlation	0.542**	0.669**	0.157	0.057	0.657**
Infrastructural Projects	tailed)	0.000	0.000	0.052	0.485	0.000

Table 4.28:Correlation Matrix of Combined Contractors' Capacity Evaluation in
Tender Award and Performance of Road Construction Infrastructural
Projects

**. Correlation is significant at the 0.05 level (2-tailed).

The correlation matrix in Table 4.28 shows that the combined contractors' capacity evaluation in tender award, that not all the four indicators, namely: financial ability of contractors; technical ability of contractors; management ability of contractors; and contractors' safety record, had statistically significant relationship with performance of road construction infrastructural projects. This is because financial ability of contractors and contractors' safety record had p<0.05 and a strong strong positive correlation with performance of road construction infrastructural projects (R=0.669, and R=0.657 respectively).

On the other hand, technical ability of contractors and management ability of contractors had weak positive correlation with performance of road construction infrastructural projects (R=0.157 and R=0.057, respectively). Combined contractors' capacity evaluation in tender award had statistically significant and strong positive relationship with performance of road construction infrastructural projects (R=0.542, p<0.05).

4.10.2 Regression Analysis of Combined Contractors' Capacity Evaluation in Tender Award and Performance of Road Construction Infrastructural Projects

The following hypothesis was tested using simple linear regression model to satisfy the requirements of the fifth objective:

Test of Hypothesis 5

- **5.** H₀: The combined contractors' capacity in evaluation tender award does not significantly influence performance of road construction infrastructural projects.
 - **H**₁: The combined contractors' capacity in evaluation tender award significantly influence performance of road construction infrastructural projects.

The null hypothesis was tested using the following multiple regression model:

 $y=a+\beta_1X_1+\beta_2X_2+\beta_3X_3+\beta_4X_4+e$

Where:

y - performance of road construction infrastructural projects

 β_1 , β_2 , β_3 and β_4 = Regression coefficients

 X_1 – Financial ability of Contractors

 X_2 - Technical ability of Contractors

 X_3 – Management ability Contractors

 X_4 - Contractors' safety record

a – Regression constant

e – Error term

The results were as shown in the Table 4.29, 4.30 and 4.31:

Table 4.29:	ANOVA for Combined Contractors' Capacity Evaluation in Tender
	Award and Performance of Road Construction Infrastructural Projects
$A N O V A^{a}$	

Model		Sum of Squares	df	Mean Squar	F	Sig.
	Regression	9.151	4	2.288	79.226	0.000^{b}
1	Residual	4.274	148	0.029		
	Total	13.424	152			

a. Dependent Variable: performance of road construction Infrastructural Projects b. Predictors: (Constant), Contractors' Safety Record, Management Ability of

Contractors, Financial Ability of Contractors, Technical Ability of Contractors

From Table 4.30, ANOVA was used to establish the goodness of fit of the regression model. Established from the model was the f-significance value of p is less than 0.05 (p=0.00 < 0.05). The calculated F (79.226) was significantly larger than the critical value of F= 2.433, hence the model was considered significant.

Table 4.50: Model Summary for Combined Contractors' Capacity Evaluation in Tender Award and Performance of Road Construction Infrastructural Projects							in tural		
Model	R	R	Adjusted	Std. Error		Change Statistics			
		Square	R Square	of the	R Square	F	df1	df2	Sig. F
				Estimate	Change	Change			Change
1	0.826 ^a	0.682	0.673	0.16993	0.682	79.226	4	148	0.000

T 11 **4 2**0 1.1.10 $\mathbf{\alpha}$. . • ~ •

a. Predictors: (Constant), Safety Record, Management, Finance, Technical

b. Dependent Variable: performance of road construction Infrastructural Projects

Table 4.29 shows that there is a very strong positive relationship between contractors' capacity evaluation in tender award and performance of road construction infrastructural projects (R=0.826). This implies that combination of contractors' capacity evaluation in tender award has a strong influence on road performance. Also obtained from Table 4.26 is a coefficient of determination, adjusted R-square which is equal to 0.682. This implies that 68.2% of changes in performance of road construction infrastructural projects are attributed to contractors' capacity evaluation in tender award. However, there are other factors accounting to 31.8% and not covered under the model hence the need for further research.

Table 4.31: Model Coefficients for Influence of Combined Contractors' Capacity **Evaluation in Tender Award**

С	efficients ^a								
Model		Unstand Coeffi	lardized cients	Standardize d Coefficients	t	Sig.	Со	relation	8
		В	Std. Error	Beta			Zero- order	Partia l	Part
	(Constant)	2.782	0.173		16.073	0.000			
	Finance	0.230	0.033	0.413	6.990	0.000	0.669	0.498	0.324
1	Technical	-0.233	0.066	-0.295	-3.524	0.001	0.157	-0.278	-0.163
1	Management	-0.183	0.064	-0.213	-2.879	0.005	0.057	-0.230	-0.134
	Safety Record	0.386	0.040	0.707	9.766	0.000	0.657	0.626	0.453

a. Dependent Variable: performance of road construction Infrastructural Projects

Table 4.31 shows that the standardized beta (β) coefficients for the indicators were as follows: financial ability of contractors, 0.413; technical ability of contractors, -0.295; management ability of contractors, -0.213; and contractors' safety record, 0.707. The beta values imply that a unit increase in performance of road construction infrastructural

projects was corresponded to 41.3% increase in financial ability of contractors; 29.5% decrease in technical ability of contractors; 21.3% decrease in management ability of contractors; and 70.7% increase in contractors' safety record respectively.

Using the statistical findings, the regression model for the fifth hypothesis was substituted in the following manner:

 $y=2.782+0.414X_1-0.295X_2-0.213X_3+0.707X_4$

Where:

- y performance of road construction infrastructural projects
- X_1 Financial Ability of Contractors
- X_2 Technical Ability of Contractors
- X_3 Management Ability of Contractors
- X_4 Contractors' safety record

The null hypothesis (H_0) which stated that the combined contractors' capacity evaluation in tender award does not significantly influence performance of road construction infrastructural projects was rejected since all the p-values were less than 0.05. Thus, an alternative hypothesis (H_1) stated, the combined contractors' capacity evaluation in tender award significantly influence performance of road construction infrastructural projects, was accepted.

The findings of this current study, from the model coefficients table, reveal that the two predictors of the outcome variable within the model of contractors' capacity evaluation in tender award are financial ability of contractors and contractors' safety record. The findings therefore support a study by Nwanyanwu (2015) who pointed out that the cash flow of an organization establishes its capacity to execute projects and ability to acquire raw materials required for manufacturing activities. The findings point out the need to strengthen the contractors' financial ability as Olang'o (2018) noted that several road construction projects in Kenya have had time overruns in their completion due to poor cash flow management. The findings further support Nyangwara and Datche (2015) that delayed payments could result to material unavailability.

The current findings show that the contractors' technical and management ability are not good predictors of performance of road construction infrastructural projects. This is line with Igochukwu and Onyekwena (2014) who determined that the other challenges facing these contractors in capital management as obtained from oral interviews could be traceable to the following factors which are by no means exhaustive: lack of sufficient knowledge on working capital management, usually a one man business and in most cases with poor technical skill, inadequate manpower with no corporate organization, cash flow challenges, high cost of construction finance, reckless spending, poor funding, undercapitalization, diversion of contract funds by uses other than the project and poor project planning and control.

The current study has demonstrated that several criteria or indicators of assessing the contractors are important to improve the model of assessment and thus arrive at the right competent contractor for future performance of the road projects. This findings resonate with the findings of the study by Atieno and Muturi (2016) who evaluated the factors that influence the performance of road construction projects. They established a positive correlation between contractor's competency, construction parties' financial management, timely availability of construction resources, and conflicts towards the realisation of increased performance of road construction projects. The findings further support Abiodum, Segbenu and Oluseye (2017) focused their study on the determinants of performance of contractors in the delivery of construction projects and concluded that good planning, competent leadership and good communication ought to be enhanced to improve performance of contractors on construction projects.

Hypothesis 5 was, therefore, supported by data since combined contractors' capacity evaluation in tender award was found to significantly influence performance of road construction infrastructural projects. The current study, thus, adduced empirical evidence in support of the findings of the above studies. The findings indicate that having a strong model of assessment with multiple predictors would increase contractors' performance and hence contribute to road performance in post-delivery stage.

212

4.11 Moderating Influence of Process Monitoring on Relationship between Contractors' Capacity Evaluation in Tender Award and Performance of Road Construction Infrastructural Projects

This section presents the descriptive and correlation analyses of process monitoring as a moderator on the independent and the dependent.

To assess the moderating influence of process monitoring on the relationship between contractors' capacity evaluation in tender award and road performance, the respondents were asked to, in a scale of 1-5, score various statements relating to specific indicators of process monitoring. The dimensions of process monitoring under which the indicators were drawn were compliance with construction specification; compliance with regulatory bodies' requirements; compliance with county by-laws; and adherence to allocation and utilization of resources for accomplishment of project's objectives. The Likert scale ranged from 1-Strongly Disagree (SD), 2-Disagree (D), 3-Neutral (N), 4-Agree (A), and 5-Strongly Agree (SA). The results are shown in Table 4.32.

Table 4.32: Moderating Influence of Process Monitoring on Relationship between
Contractors' Capacity Evaluation in Tender Award, and Performance of
Road Construction Infrastructural Projects

N	Statements	5(SA)	$\frac{1}{4(\Lambda)}$)	1(CD)	Maan	CDV
INO.	Statements	5(5A) E	4(A) E	3(IN) E	2(D) E	I(9D)	wiean	5D V
		г (%)	г (%)	F (%)	г (%)	г (%)		
74.	(a) Compliance with construction specification Firms/contractors who comply							
	with construction specification to tend produce highly quality roads whose performance meet road user satisfaction	93 (60.8%)	45 (29.4%)	15 (9.8%)	0 (0.0%)	0 (0.0%)	4.51	0.670
75.	Contractors are keen on complying with road construction specifications	17 (11.2%)	53 (34.6%)	53 (34.6%)	15 (9.8%)	15 (9.8%)	3.27	1.102
76.	Construction specifications are met by most of the road construction contractors	19 (12.4%)	43 (28.1%)	43 (28.1%)	31 (20.3%)	17 (11.1%)	3.10	1.193
77.	Contractors who meet minimum requirement, try to make improvements after completing their tasks.	7 (4.6%)	41 (26.8%)	59 (38.6%)	44 (28.8%)	2 (1.2%)	3.05	0.891
	(b) Compliance with regulatory bodies' requirements							

No.	Statements	5(SA)	4 (A)	3(N)	2(D)	1(SD)	Mean	SDV
		F	F	F	F	F		
		(%)	(%)	(%)	(%)	(%)		
78.	Construction regulatory bodies'							
	requirements are adequate to	63	89	0	0	1	4 39	0 565
	address and contribute to road	(41.2%)	(58.2%)	(0.0%)	(0.0%)	(0.6%)	1.57	0.505
	performance							
79.	Compliance with regulatory	42	80	31	0	0		
	bodies like NCA does guarantee	(27.5%)	(52.3%)	(20.2%)	(0.0%)	(0.0%)	4.07	0.689
0.0	road performance	40	50		0	_		
80.	All contractors comply with	40	50	55	3	5	3.76	0.972
	regulatory bodies' requirements	(26.1%)	(32.7%)	(35.9%)	(2.0%)	(3.3%)		
	(c) Compliance with County							
01	by-laws							
81.	The county by-laws are	9	60	76	8	0	2 16	0 600
	issues of road performance	(5.9%)	(39.2%)	(49.7%)	(5.2%)	(0.0%)	5.40	0.000
82	Contractors/construction adhere	30	65	28	10	20		
62.	to County by Jaws	(10.6%)	(12.5%)	20 (18.3%)	(6.5%)	(13.1%)	3.49	1.252
83	Contractors/firms that adhere to	(19.070)	(42.370)	(10.370)	(0.5 / 0)	(13.170)		
05.	County by-laws tend do well in	34	65	51	3	0	3 85	0 784
	terms of road performance	(22.2%)	(42.5%)	(33.3%)	(2.0%)	(0.0%)	5.05	0.701
	(d) Adherence to allocation							
	and utilization of resources for							
	accomplishment of project's							
	objectives							
84.	All contractors allocate enough	10	20	24	12	10		
	resources to construction works	19 (12, 40/)	(25.50)	(22.20)	43	18 (11.80/)	2.99	1.230
	hence good road performance	(12.4%)	(25.5%)	(22.2%)	(28.1%)	(11.8%)		
85.	Contractors utilize the right	26	52	26	22	16		
	materials and equipment to	(17.0%)	32 (34.0%)	(17.0%)	(21.5%)	(10, 5%)	3.25	1.265
	ensure quality work done	(17.0%)	(34.0%)	(17.0%)	(21.3%)	(10.5%)		
86.	Allocation and utilization of							
	right materials and equipment	61	35	22	5	30	3 60	1 5 1 5
	does always lead to road	(39.9%)	(22.9%)	(14.3%)	(3.3%)	(19.6%)	5.00	1.515
	performance							
	Composite mean and standard	deviation					3.60	0.505

In Table 4.32, the means of 13 items used to generate data on process monitoring were summed up and used to compute the composite mean and standard deviation that resulted to 3.60 and 0.505 respectively.

Statement 74, firms or contractors who comply with construction specification tend to produce highly quality roads whose performance meet road user satisfaction. Out of 153 respondents, 93(60.8%) strongly agreed, 45(29.4%) agreed and 15(9.8%) gave neutral responses. The mean realized was 4.51, which was above the composite mean 3.60. With a higher standard deviation of 0.670 compared to composite mean of 0.505, the responses received were convergent. The overall results suggests that most contractors complying or

following the stipulated construction specifications are bound to yield better results in terms of road performance. This is considered a positive thing to influence individual contractor's ethical behavior.

Statement 75, contractors are keen on complying with road construction specifications. Out of 153 respondents, 17(11.2%) strongly agreed, 53(34.6%) agreed, 15(9.8%) strongly disagreed, 15(9.8%) disagreed and 53(34.6%) gave undecided or neutral responses. The mean 3.27 was slightly lower than the composite mean of 3.60 whereas the standard deviation of 1.102 was above the composite or overall standard deviation of 0.505 suggesting that the respondents' opinions took a divergent direction. This implies that contractors are not keen on complying with given specifications as far as construction of road is concerned. By being keen, it could also mean that contractors should pay special attention to the right composition of materials before and during construction.

Statemement 76, construction specifications are met by most of the road construction contractors. Out of 153 respondents, 19(12.4%) strongly agreed, 43(28.1%) agreed, 17(11.1%) strongly disagreed, 31(20.3%) disagreed and 43(28.1%) remained neutral. The mean based on this findings was 3.10 below the composite mean of 3.60. This implied that not all contractors are keen with their work hence they do not meet construction specifications. There is need, for instance, for the contractors to work with all trained personnel on the construction to avoid cases of deviation. This will also contribute to the life of the roads whereby roads will take time before they develop potholes and other defects. A standard deviation of 1.193 which was higher than the composite standard deviation of 0.505 proved that opinions were divergent.

Statement 77, contractors who meet minimum requirement, try to make some improvements after completing their tasks. Out of 153 respondents, 7(4.6%) strongly agreed, 41(26.8%) agreed, 2(1.2%) strongly disagreed, 44(28.8%) disagreed and 59(38.6%) were held neutral views on this statement. A much lower mean of 3.05 compared to 3.60 composite mean implied that contractors are not ready to make an extra effort to do better beyond their limit. This is a wake up call for all institutions working with contractors and construction firms to put more emphasis on quality of completed road projects. The statement had a standard deviation of 0.891 above the composite of 0.505 hence divergence of opinions.

Statement 78, construction regulatory bodies' requirements are adequate to address and contribute to road performance. Out of 153 respondents, 63(41.2%) strongly agreed, 89(58.2%) agreed and 1(0.06%) showed disagreement. The corresponding mean as per this item was 4.39 above the composite mean of 3.60. This implied that there are adequate regulatory requirements in the road construction industry. This therefore signify that technical drawbacks to road performance could be arising from elsewhere. Something that need to be checked thoroughly. A higher standard deviation of 0.689 compared to the composite which was 0.505 signalled divergence in opinions collected.

Statement 79, compliance with regulatory bodies like NCA does guarantee road performance. Out of 153 respondents, 42(27.5%) strongly agreed, 80(52.3%) agreed and 31(20.2%) were neutral while none disagreed. The mean of 4.07 above the composite mean of 3.60 implies that complying with the authorized agencies such as NCA positively influences performance. It is therefore important for all contractors to abide by the regulatory requirements if quality and performance must realized. A standard deviation of 0.689 compared to a lower composite standard deviation of 0.505 is an indication the gathered opinions tended to diverge.

Statement 80, all contractors comply with regulatory bodies' requirements. Out of 153 respondents, 40(26.1%) strongly agreed, 50(32.7%) agreed, 5(3.3%) strongly disagreed. 3(2.0%) disagreed and 55(35.9%) were of neutral views. The mean 3.76 was slightly above the composite mean of 3.60 indicating that all contractors comply with regulatory bodies requires. Although this maybe true, enforcement is still an issue among some contractors when it comes to groundwork. This area needs keen supervision. The derived standard deviation of 0.972 was below the composite standard deviation of 0.505 implying that the views were divergent.

Statement 81, the county by-laws are adequate in addressing the issues of road performance. Out of 153 respondents, 9(5.9%) strongly agreed, 60(39.2%) agreed, 8(5.2%) disagreed while 76(49.7%) were neutral. A mean of 3.46 below the composite mean of 3.60 showed that county by-laws were not adequate. There is therefore need for the County government to collaborate with construction authorities and road construction engineering firms to draft more workable laws that would see sanity restored in road construction within the urban

centres for realization of improved road performance, especially now that governance powers have been decentralized. With a standard deviation of 0.688 above the composite of 0.505, the findings revealed that the opinions varied among the respondents.

Statement 82, contractors or construction firms adhere to County by-laws. Out of 153 respondents, 30(19.%) strongly agree, 65(42.5%) agree, 20(13.1%) strongly disagree, 10(6.5%) disagree and 28(18.3%) neutral. A mean of 3.49 higher than the composite mean on this statement implied that contractors are not adhering to the county by-laws. Despite majority agreeing, the recorded standard deviation 1.252 compared to the composite standard deviation of 0.505 also meant that opinions were divergent.

Statement 83, contractors or firms that adhere to County by-laws tend to produce good results in terms of road performance. Out of 153 respondents, 34(22.2%) strongly agreed, 65(42.5%) agreed, a dismall fraction of 3(2.0%) disagreed and others 51(33.3%) gave a neutral response. On this statement, the derived mean was 3.85 higher than the composite of 3.60. This therefore implies that it is true that besides adhering to other regulations in construction, observing County by-laws would also significantly enhance road performance. The standard deviation was 0.784 below the composite standard deviation which was 0.505 indicating that opinions gathered were diverging.

Statement 84, all contractors allocate enough resources to road construction works hence good road performance. Out of 153 respondents, 19(12.4%) strongly agreed, 39(25.5%)agreed, 18(11.8%) strongly disagreed, 43(28.1%) disagreed and 34(22.2%) remained neutral. The line item mean of 2.99 was less than the composite mean of 3.60 indicating a critical need for contractors to allocate and use enough resources during construction for this in turn is highly likely to affect or influence road performance in terms of quality Repondents opinions diverged given a standard deviation of 1.230 for the line item compared to the composite standard deviation of 0.505.

Statement 85, contractors utilize the right materials and equipments to ensure quality work done. Out of 153 respondents, 26(17.0%) strongly agreed, 52(34.0%) agreed, 16(10.5%) strongly disagreed, 33(21.5%) disagreed and 26(17.0%) maintained a neutral stand. The line item mean was 3.25 and the composite mean 3.60. This implies that most contractors do not

utilize the right materials for construction and equipments to contribute to quality work in road construction. It also means that those that have could be obsolescent and need replacement to realize quality in completed projects, hence road performance. A standard deviation of 1.265 was obtained which tended to higher than the composite standard deviation of 0.505 hence inconsistency in opinions gathered.

Statement 86, allocation and utilization of the right materials and equipment does always lead to road performance. Out of 153 respondents, 61(39.9%) strongly agreed, 35(22.9%) agreed, 30(19.6%) strongly disagreed, 5(3.3%) disagreed and the remaining 22(14.3%) gave a neutral opinion. The mean and the composite mean were the same at 3.60. This shows that on average, those contractors allocating and utilizing the right materials and equipments in road construction can lead to good road performance. There is still need to improve this to realize full impact in road performance even though sources of funds remain a constraint in road construction. Generated from this statement was a standard deviation of 1.515 higher than the composite which is 0.505 indicating the respondents' opininions were divergent.

Results of interviews with road construction engineers indicated that process monitoring influenced largely the relationship between contractors' capacity evaluation in tender award and performance of road construction infrastructural projects. The results of the interviews were, therefore, consistent with the quantitative data. The following are key responses obtained from the road construction engineers:

"The role of process monitoring is to ensure that the contractor meet the required capacity in order to secure a sound performance at right time of contract termination; If process monitoring is enforced through adherence to regulations, then the final output will be good. Performance of roads will only be of highly quality if only compliance with construction specification is observed; Process monitoring will help in ensuring that contractor capacity is evidenced in the final product that is a road that is well performing after its completion; Process monitoring will not curb or eliminate rogue contractors but will ensure the road constructed meets at least minimum mark of quality; With strict adherence and enforcement of process monitoring in construction, we are likely to see roads constructed are of high quality and deviations that lead to roads with potholes and accidents are avoided." Road Construction Engineers' Opinions (2019)

Results of interviews with public service vehicles (PSVs) drivers indicated that process monitoring influenced to a great extent the relationship between contractors' capacity evaluation in tender award and performance of road construction infrastructural projects. The results of the interviews were, therefore, consistent with the quantitative data. The following are key responses obtained from the PSVs drivers:

"Adequacy of a contractor in terms of financial ability will be early detected to ensure enough funds are put in place to help produce quality roads; Sometimes we can see the road is not performing because of poor workmanship but if process monitoring is made part and parcel of road construction then we are likely to see highly performing roads; I read a newspaper sometime this year (2018) and it noted that the number of footbridges that had been planned for Outer Ring road were at least 10 but a driver we are not to see them anywhere; In short, if road specifications are duly followed to the later then issues of changes in design will not be expected or experienced; With process monitoring being there, you will likely see a road that has properly done signage, zebra crossing for pedestrians and general quality will be something for us citizen to be. "PSVs Drivers" Opinions (2019)

4.11.1 Correlation Analysis of Moderating Influence of Process Monitoring on the Relationship between Contractors' Capacity Evaluation in Tender Award and Performance of Road Construction Infrastructural Projects

Correlation analysis using Pearson's Product Moment technique was done to establish the relationship between the various dimensions of process monitoring and performance of road construction infrastructural projects. The values obtained from the correlational analysis ranged between +1 and -1. In this regard, +1 implied perfect positive correlation, while -1 implied perfect negative correlation. 0.000 implied no correlation; the modular values 0.001 to 0.250 implied weak correlation; 0.251 to 0.500 implied semi-strong correlation; 0.501 to 0.750 implied strong correlation; and 0.751 to 1.000 implied very strong correlation. The findings were as shown Table 4.33.

Table 4.33: Correlation Analysis of Moderating Influence of Process Monitoring on the Relationship between Contractors' Capacity Evaluation in Tender Award and Performance of Road Construction Infrastructural Projects

Variables		Performance of	Process
		Road	Monitoring
Performance of road	Pearson Correlation	1	0.540^{**}
construction Infrastructural	Sig. (2-tailed)		0.000
Projects	n	153	153
	Pearson Correlation	0.540^{**}	1
Process Monitoring	Sig. (2-tailed)	0.000	
	n	153	153

**. Correlation is significant at the 0.05 level (2-tailed).

According to Table 4.33, at 0.05 level of significance, there was statistically significant correlation between process monitoring and performance of road construction infrastructural projects (p-value<0.05). The correlation was strong since it had a coefficient of 0.540.

4.11.2 Regression Analysis of Moderating Influence of Process Monitoring on Relationship between Contractors' Capacity Evaluation in Performance of Road Construction Infrastructural Projects

The following hypothesis was tested using multiple regression model to satisfy the requirements of the sixth objective:

Test of Hypothesis 6

Correlations

- **6.** H₀: Process monitoring does not significantly moderate the relationship between contractors' capacity evaluation in tender award and performance of road construction infrastructural projects.
 - **H**₁: Process monitoring significantly moderate the relationship between contractors' capacity evaluation in tender award and performance of road construction infrastructural projects.

The null hypothesis was tested using the below regression equation:

 $y=a+\beta_1X_1+\beta_2X_2+\beta_3X_3+\beta_4X_4+\beta_5X_{10}+\beta_6X_1X_{10}+\beta_7X_2X_{10}+\beta_8X_3X_{10}+\beta_9X_4X_{10}+e$ Where

y= performance of road construction infrastructural projects

a= Regression constant

 β_1 , β_2 , β_3 , β_4 , β_5 , β_6 , β_7 , β_8 , and β_9 = Regression coefficients

X₁= Financial ability of Contractors

X₂= Technical Ability of Contractors

X₃= Management Ability of Contractors

 X_4 = Contractors' Safety Record

X₁₄= Process Monitoring

e=Error term

The results are presented in Tables 4.34, 4.35 and 4.36.

Hypothesis 6 was tested using hierarchical regression model recommended by Holmbeck (1997). In this operation, the influence of contractors' capacity evaluation in tender award (financial ability, technical ability, management knowledge, and process monitoring) on performance of road construction infrastructural projects was tested in step one, after which the moderating variable (process monitoring) was introduced in step two. Moderation is assumed to take place if the influence of the interaction between the focal independent variable and moderator on dependent variable is significant. According to Baron and Kenny (1986), a moderator is any qualitative or quantitative variable which affects the strength and direction of relationship between the focal independent variable and the dependent variable. According to Holmbeck (1997), a moderator is one that affects the relationship between two variables, so that the nature and impact of the focal independent variable on the dependent

variable varies according to the values of the moderator.

Step 1: Influence of contractors' capacity evaluation in tender award on performance of road construction infrastructural projects.

In step one, contractors' capacity evaluation in tender award was regressed on performance of road construction infrastructural projects. The results are presented in Table 4.34.

Step 2: Influence of contractors' capacity evaluation in tender award, process monitoring on performance of road construction infrastructural projects

In step two, the influence of the moderator (process monitoring) was introduced on the relationship between contractors' capacity evaluation in tender award and performance of road construction infrastructural projects. The results are presented in Table 4.34.

Table 4.34:Model Summary for Moderating Influence of Process Monitoring on the
Relationship between Contractors' Capacity Evaluation in Tender
Award and Performance of Road Construction Infrastructural Projects

Model	R	R	Adjusted	Std. Error					
		Squar	R	of the	R Square	F	df1	df2	Sig. F
		e	Square	Estimate	Change	Change			Change
1	0.826^{a}	0.682	0.673	0.16993	0.682	79.226	4	148	0.000
2	0.837^{b}	0.700	0.690	0.16559	0.018	8.863	1	147	0.003
N <i>I</i> 1 1	$(T_{1}) = (T_{1})$	CO 500	0.000.00	~)					

Model: {F(5,147)=68.520, p=0.000<0.05}

a. Predictors: (Constant), Contractors' Safety Record, Technical Ability of Contractors, Financial Ability of Contractors, Management Ability of Contractors

b. Predictors: (Constant), Contractors' Safety Record, Technical Ability of Contractors, Financial Ability of Contractors, Management Ability of Contractors, Process Monitoring

The results in Table 4.34 show that in step one, the adjusted R-Squared is 0.673. This is to mean that contractors' capacity evaluation in tender award explained 67.3% of performance of road construction infrastructural projects. The F value was statistically significant $\{F(4,148)=79.226, p=0.000<0.05\}$; implying that contractors' capacity evaluation in tender award influences performance of road construction infrastructural projects.

Table 4.35:	Model Summary for Moderating Influence of Process Monitoring on					
	the Relationship between Contractors' Capacity Evaluation in Tender					
	Award and Performance of Road Construction Infrastructural					
	Projects					
ANOVA ^a						

Model		Sum of Squares	df	Mean Square	F	Sig.
	Regression	9.151	4	2.288	79.226	0.000 ^b
1	Residual	4.274	148	0.029		
	Total	13.424	152			
	Regression	9.394	5	1.879	68.520	0.000°
2	Residual	4.031	147	0.027		
	Total	13.424	152			

a. Dependent Variable: performance of road construction Infrastructural Projects

c. Predictors: (Constant), Finacial Ability of Contractors, Technical Ability of Contractors, Contractors' Safety Record, Process Monitoring

From Table 4.35, the ANOVA was used in the study for establishing the model's significance or the model's goodness of fit from which an f-significance value of p less than

b. Predictors: (Constant), Finacial Ability of Contractors, Technical Ability of Contractors, Contractors' Safety Record

0.05 was established (p= 0.00 < 0.05). The results showed that in both step one and step two, the calculated F were 79.226 and 68.520 significantly larger compared to the critical value of F= 2.433 and F=2.276 respectively. This implied that the model was significant.

Table 4.36: Model Coefficients for Moderating Influence of Process Monitoring on the
Relationship between Contractors' Capacity Evaluation in Tender Award
and Performance of Road Construction Infrastructural Projects

	<i>Coefficients</i> ^a										
Model		Unstandardized Coefficients		Standardized Coefficients	t	Sig.	Correlations			Collinearity Statistics	
		В	Std. Error	Beta			Zero- order	Partial	Part	Tolerance	VIF
	(Constant)	2.782	0.173		16.073	0.000					
	Finance	0.230	0.033	0.413	6.990	0.000	0.669	0.498	0.324	0.617	1.620
1	Technical	-0.233	0.066	-0.295	-3.524	0.001	0.157	-0.278	-0.163	0.306	3.267
	Management	-0.183	0.064	-0.213	-2.879	0.005	0.057	-0.230	-0.134	0.393	2.547
	SafetyRecord (Constant)	0.386 3.007	0.040 0.185	0.707	9.766 16.270	$0.000 \\ 0.000$	0.657	0.626	0.453	0.411	2.435
	Finance	.212	.033	0.380	6.482	0.000	0.669	0.471	0.293	0.595	1.680
	Technical	-0.218	0.065	-0.277	-3.376	0.001	0.157	-0.268	-0.153	0.304	3.287
2	Management	-0.209	0.062	-0.243	-3.339	0.001	00.057	-0.266	-0.151	0.385	2.597
	SafetyRecord	0.579	0.075	1.060	7.681	0.000	0.657	0.535	0.347	0.107	9.320
_	ProcessMonitor ing	-0.210	0.071	-0.357	-2.977	.003	0.540	-0.238	-0.135	0.142	7.053

a. Dependent Variable: performance of road construction Infrastructural Projects

Using the statistical findings presented in Table 4.36, the regression model in step one can be substituted as follows:

Y=2.782+0.413X1-0.295X2-0.213X3+0.707X4

Where y= performance of road construction Infrastructural Projects.

X₁= Financial ability of Contractors

X₂= Technical Ability of Contractors

X₃= Management Ability of Contractors

X₄= Contractors' Safety Record

In step two, the influence of moderating variable (process monitoring) was introduced on the relationship between contractors' capacity evaluation in tender award and performance of road construction infrastructural projects. The results in the Table 4.34 demonstrate that upon introduction of the moderating variable (process monitoring) and the interaction term to

the model 2, the value of adjusted R-square increased by 0.690 This implies that contractors' capacity evaluation in tender award and process monitoring (together) explain 69.0% of performance of road construction infrastructural projects. The F-value was statistically significant {F(5,147)=68.520, p=0.000<0.05}.

Using the statistical findings in model 2 in Table 4.36, the following regression equation was obtained:

 $Y = 3.007 + 0.380X_1 - 0.777X_2 - 0.243X_3 + 1.060X_4 + 0.357X_5$

Where y= performance of road construction Infrastructural Projects.

X₁= Financial Ability of Contractors

X₂= Technical Ability of Contractors

X₃= Management Ability of Contractors

X₄= Contractors' Safety Record

X₅= Process Monitoring

From the foregoing, it can be concluded that process monitoring significantly moderates the relationship between contractors' capacity evaluation in tender award and performance of road construction infrastructural projects. Accordingly, we reject the null hypothesis (H_0), which stated that process monitoring does not significantly moderate the relationship between contractors' capacity evaluation in tender award and performance of road construction infrastructural projects. We conclude that the strength of relationship between contractors' capacity evaluation in tender award and performance of road construction infrastructural projects. We conclude that the strength of relationship between contractors' capacity evaluation in tender award and performance of road construction infrastructural projects depends on process monitoring. Thus, we use the alternative hypothesis (H_1) to state: process monitoring significantly moderate the relationship between contractors' capacity evaluation in tender award and performance of road construction infrastructural projects.

The study has found that even though majority of firms or contractors agree that complying with construction specifications would lead to construction of quality roads, the level of compliance is still weak and demands regular process monitoring. The findings echoes findings by Mwangu and Iravo (2015) who determined that M&E instruments are not fully employed by contractors as well as project supervisors in their project functions. The

findings of the current study has established contractors do not strive to make improvement beyond the tasks allocated even after completing construction. It was also revealed that not all contractors are committed to allocating adequate resources hence poor performance of roads in the post-delivery stage. This colloborates with the findings of Byaruhanga and Basheka (2017) who established that project performance was affected by award of contracts to undeserving contractors due to weak systems of procurement; incompetence of staff involved in the procurement exercise; none existent contractor apparisal system; service delivery challenges due to delayed payments; weak internal M&E systems.

It has also been found that neither county by-laws on road construction are adequate nor contractors are keen to adhere and follow the existing ones. By introducing the interaction term (moderator) in the second model, the influence of combined contractors' capacity improved significantly. This findings point out the need for effective monitoring as Hassan (2013) emphasized that monitoring has a critical influence in ensuring required quality standards are attained in the course of project implementation; which in turn has a significant on overall project performance. Similarly, the findings resonates with Umugwaneza and Kule (2016) who argued that organizations should consider monitoring and evaluation as mandatory at all levels of the projects. However, the findings are supported are supported by Ng'etich and Otieno (2017) who agree that to strengthen process monitoring in the road construction projects, there is need to to engage stakeholders, involve the right technical team and fundamentally avail funds.

Further, the findings of the current study show that R was 0.837 and adjusted R squared (R^{2}) was 0.690 indicating that 69% of performance was as a result of the second model (combined contractors' capacity and process monitoring). This is a slight increase compared with the findings of Asinza, *et al.*, (2002) who investigated on the effect of monitoring and financial capacity on quality of projects. Monitoring factors considered for the study were extent of monitoring and monitoring methods, which had a strong and significant positive relationship with project quality (r = 0.893, p <0.05) followed by finacial capacity (r=0.475.p<0.05). The overall regression model gave R^2 of 0.354. This showed that about 35% of variations in project performance was as a result of monitoring and financial capacity. The current findigs shows therefore the need of combining various factors alongside project monitoring to yield better results in project performance. The findings further supports the Wanjala, *et al.* (2017)

observed that monitoring techniques applied in an organization within state corporations have significant effect on the project performance (β 3= 0.674, p<0.05).

The study objective was supported by data, hence the strength of relationship between contractors' capacity evaluation in tender award and performance of road construction infrastructural projects depends on process monitoring.

The study used regression analysis to determine the influence of contractors' capacity evaluation in tender award and process monitoring on performance of road construction infrastructural projects. Coefficient of determination was used to explain the amount of change in dependent variable being explained by the independent variable while F-ratio was used to determine the statistical significance of the model. The hypotheses that were tested in this study are in Table 4.37.

Objective	Hypothesis	Regression Model	Results	Decision as a Result of Empirical Evidence
1. To determine the extent to which financial ability of contractors influence performance of road construction infrastructural projects in Nairobi County, Kenya.	1. H ₀ : Financial ability of contractors does not significantly influence performance of road construction infrastructural projects.	y=a+b ₁ X ₁ +e	{R=0.669, R- ² =0.447, B=0.373, t=11.056, F(1,151)=122.2 35, p=0.000<0.05}	Reject null hypothesis
2. To assess how technical ability of contractors influence performance of road construction infrastructural projects in Nairobi County, Kenya.	2. H ₀ : Technical ability of contractors does not significantly influence performance of road construction infrastructural projects.	y=a+b ₂ X ₂ +e	{R=0.157,R ² =0. 025, B=0.124, t=1.956, F(1,151)=3.827, p=0.052>0.05}	Fail to reject null hypothesis
3. To establish how management ability of contractors influence performance of road construction infrastructural projects in Nairobi County, Kenya.	3. H ₀ : Management ability of contractors does not significantly influence performance of road construction infrastructural project.	y=a+b ₃ X ₃ +e	{R=0.057, R^2 =0.003, B=0.049, t=0.701, F(1,151)= 0.491,p=0.485> 0.05}	Fail to reject null hypothesis
4. To examine how contractors' safety record influence performance of road construction infrastructural projects in Nairobi County, Kenya.	4. H ₀ : Contractors' safety record does not significantly influence performance of road construction infrastructural projects.	y=a+b ₄ X ₄ +e	$\{ R=0.657, R^2=0.431 \\ B=0.359, t=10.703, F \\ (1,151)= 114.558, p=0.000< 0.05 \}$	Reject null hypothesis
5. To determine how the combined contractors' capacity evaluation in tender award influence performance of road construction infrastructural projects in Nairobi County, Kenya.	5. H_0 : The combined contractors' capacity evaluation in tender award does not significantly influence performance of road construction infrastructural projects.	$y=a + \beta_1 X_1$ $+ \beta_2 X_2 +$ $\beta_3 X_3 + \beta_4 X_4$ $+ e$	Overall, the model had R=0.826, adjusted $R^2=0.673$, F(4,148)=79.22 6, $p=0.000,0.05$ Based on the model coefficient	Reject null hypothesis

Table 4.37: Summary of Results of Tests of Hypotheses

Objective	Hypothesis	Regression Model	Results	Decision as a Result of Empirical Evidence
6. To assess the moderating influence of process monitoring on the relationship between contractors' capacity evaluation in tender award and performance of road construction infrastructural projects in Nairobi County, Kenya.	6. H ₀ : Process monitoring does not significantly moderate the relationship between contractors' capacity evaluation in ten der award and performance of road construction infrastructural projects.	$y = a + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \beta_5 X_{10} + \beta_6 X_1 X_{10} + \beta_7 X_2 X_{10} + \beta_8 X_3 X_{10} + \beta_9 X_4 X_{10} + e$	table, all the p- values for predictor variables (financial ability of contactors, technical ability of contractors, management ability of contractors and contractors' safety record) were less than 0.05. Step 1: R=0.826, adjusted $R^2=0.673$, F(4,148)=79.22 6, p=0.000<0.05 hence F-value statistically significant Step 2: R=0.837, adjusted $R^2=0.690$, F(5,147)=68.52 0, p=0.000<0.05 hence F-value statifically significant	Reject null hypothesis

CHAPTER FIVE

SUMMARY OF FINDINGS, CONCLUSIONS, AND RECOMMENDATIONS 5.1 Introduction

This chapter presents summary of findings, conclusions, recommendations, contribution of the study to the body of knowledge and suggestions for further research.

5.2 Summary of Findings

The broad objective of the study was to establish how contractors' capacity evaluation in tender award, process monitoring influence performance of road construction infrastructural projects in Nairobi County, Kenya. Six specific objectives were pursued by testing six hypotheses. The population of the study entailed 210 respondents: 104 public service vehicles (PSVs) drivers and 106 road construction engineers (simply referred to as road contractors). 61 drivers were sampled from the eastern by-pass, and 43 from the outer-ring roads respectively. 22 consulting engineers, 22 consulting managing directors, 31 senior engineers, and 31 managing directors in construction companies. Data was collected using semi-structured questionnaire, and interview schedule.

Hypotheses were tested using simple, multiple, and hierarchical regressions. Simple regression model was used to determine the influence of each independent variable, namely: financial ability; technical ability; management ability; and contractors' safety record on performance of road construction infrastructural projects, which was the dependent variable of the study.

Multiple and hierarchical regression was used to test the moderating influence of process monitoring on the relationship between contractors' capacity evaluation in tender award and performance of road construction infrastructural projects.

5.2.1 Financial Ability of Contractors and Performance of Road Construction Infrastructural Projects

The first objective of the study was to determine the extent to which financial ability of a contractors influences performance of road construction infrastructural projects in Nairobi County, Kenya. The composite mean and composite standard deviations were 3.79 and 0.533 respectively. This implied that financial ability of contractors was perceived by respondents

to be above average in influencing performance of road projects positively. For example, an interview with the respondents revealed that "Insufficient financial capacity can lead to substandard work thus lead to poor performance." The null hypothesis in this regard was that financial ability of contractors' does not significantly influence performance of road construction infrastructural projects. The foregoing null hypothesis was tested and the following were determined: R=0.669, R²=0.447, B=0.373, t=11.056, F(1,151)=122.235, p=0.000<0.05. The null hypothesis was rejected and it was concluded that financial ability of contractors significantly influences performance of road construction infrastructural projects. It was also established that the financial ability of contractors explained up to 44.7% of performance of road construction infrastructural projects.

5.2.2 Technical Ability of Contractors and Performance of Road Construction Infrastructural Projects

The second objective of the study was to assess how technical ability of contractors influence performance of road construction infrastructural projects in Nairobi County, Kenya. Recorded on this objective was a composite mean of 3.69 and a standard deviation of 0.377 immlying that although technical ability of contractors can influence positive road performance, its role is not very much critical as far as road performance is concerned. The qualitative results revealed that most of the respondents agreed that technical ability is crucial in solving both implementation and performance issues. The hypothesis that was tested under this objective is that technical ability of contractors' does not significantly influence performance of road construction infrastructural projects. The results were: R=0.157, R²=0.025, B=0.124, t=1.956, F(1,151)=3.827, p=0.052>0.05. At this juncture we failed to reject the null hypothesis and based on the results, and it was concluded that technical ability of contractors does not significantly influence performance of road construction infrastructural projects. The results also showed that technical ability of contractors explained 2.5% of performance of road construction infrastructural projects.

5.2.3 Management Ability of Contractors and Performance of Road Construction Infrastructural Projects

The third objective was to establish how management ability of a contractors influence performance of road construction infrastructural projects in Nairobi County, Kenya. The composite mean and composite standard deviation were recorded as 4.06 and 0.346 respectively. It was clear that management ability is highly needed but with the sharp contrast obtained on the inferential analysis, it emerged that this variable can only explain well the issue of project implementation and not performance. There was thus concurrence of opinion by both road construction engineers and PSV drivers in terms of qualitative results. The null hypothesis that was tested is that management ability of contrctors does not significantly influence performance of road construction infrastructural projects. The results were: R=0.057, R^2 =0.003, B=0.049, t=0.701, F(1,151)= 0.491, p=0.485>0.05. At this point, we failed to reject the null hypothesis, and it was maintained that management ability of contractors does not significantly influence performance of road construction infrastructural projects. The results also showed that management ability of contractors explained 0.3% of performance of road construction infrastructural projects. This percentage clearly explains why management can not be a pointer to performance of roads during the post delivery stage.

5.2.4 Contractor's Safety Record and Performance of Road Construction Infrastructural Projects

The fourth objective was to examine how contractors' safety record influence performance of road construction infrastructural projects in Nairobi County, Kenya. The The composite mean obtained was 3.38 and composite standard deviation was 0.544. This implied that elements that inform proper road safety to improve safety record of contractor are not observed during construction. Thus, it is possible to note that safety record of contractor is highly required if at all performance of road is to be achieved. The qualitative opinions gathered from both divide of the respondents revealed that safety record plays a crucial role in road performance. The null hypothesis that was tested in this regard was that contractors' safety record does not significantly influence performance of road construction infrastructural projects. The results were: R=0.657, $R^2=0.431$, B=0.359, t=10.703, F(1,151)= 114.558, p=0.000<0.05. The null hypothesis was rejected based on the results, and it was concluded that contractors' safety record significantly influence performance of road construction infrastructural projects. The results showed that contractors' safety record explained 43.1% of performance of road construction infrastructural projects.

5.2.5 Combined Contractors' Capacity Evaluation in Tender Award and Performance of Road Construction Infrastructural Projects

The fifth objective was to determine how the combined contractors' capacity evaluation in tender award influence performance of road construction infrastructural projects in Nairobi County, Kenya. The composite mean and composite standard deviations recorded were 3.73 and 0.450 respectively. Therefore, the descriptive results showed that there is some level of influence when several criteria are used versus performance of road. The qualitative opinions of both the road construction engineers and PSV drivers were consistent. The null hypothesis that was tested in this regard was that combined contractors' capacity evaluation in tender award does not significantly influence performance of road construction infrastructural projects. The results showed that in overall, the model had R=0.826, adjusted R²=0.673, F(4,148)=79.226, p=0.000<0.05.

Results from the model coefficient table indicated that all the p-values for predictor variables {financial ability of contactors (p=0.000<0.05), technical ability of contractors (p=0.001<0.05), management ability of contractors (p=0.005<0.05) and contractors' safety record (p=0.000<0.05)} were less than 0.05. The null hypothesis was rejected based on the results, and it was concluded that combined contractors' capacity evaluation in tender award significantly influence performance of road construction infrastructural projects. The results showed that combined contractors' capacity in tender award explained 67.3% of performance of road construction infrastructural projects.

5.2.6 Process Monitoring, Contractors' Capacity Evaluation in Tender Award, and Performance of Road Construction Infrastructural Projects

The sixth objective was to assess the moderating influence of process monitoring on the relationship between contractors' capacity evaluation in tender award and performance of road construction infrastructural projects in Nairobi County, Kenya. A composite mean of

3.60 and a composite standard deviation 0.505 implying that process monitoring does influence road performance. However, there was sharp contrast in respondents' opinions given qualitatively indicating there is need to improve on aspects of process monitoring. The null hypothesis tested in this regard was that process monitoring does not significantly moderate the relationship between contractors' capacity evaluation in tender award and performance of road construction infrastructural projects.

The results were presented in two steps. That is, in step 1: R=0.826, adjusted R²=0.673, F(4,148)=79.226, p=0.000<0.05 hence F-value was considered statistically significant and in step 2: R=0.837, adjusted R²=0.690, F(5,147)=68.520, p=0.000<0.05 hence F-value was statistically significant; the null hypothesis was thus reject, and it was concluded that process monitoring has significant influence on the relationship between contractors' capacity evaluation in tender award and performance of road construction infrastructural projects at the 0.05 level of significance. Moreover the results revealed that upon introduction of process monitoring as a moderator, the percentage rose by 1.7% resulting to 69.0% of performance of road constructural projects.

5.3 Conclusions

This section comprises the conclusion made in light of the study objectives and hypotheses:

The first objective was to determine the extent to which financial ability of contractors influence performance of road construction infrastructural projects in Nairobi, Kenya. The indicators for financial ability were credit rating; bank goodwill; flexibility of loan agreements; turnover; and owned funds. The most dominant indicator was owned funds, followed by bank goodwill, turnover, credit rating, and flexibility of loan agreement, in that order. It was revealed that not all construction firms have a good credit rating; this could be an impediment to most of these contractors thus poorly constructed roads. In addiation, as a matter of fact, the respondents indicated that contractors may find it difficult to operate with the stringent loan agreements given by the banks. Neverthelss, all the indicators of financial ability influenced performance of road construction infrastructural projects. Overall, financial ability had statistically significant influence on performance of road construction infrastructural projects.

The second objective was to assess how technical ability of contractors influence performance of road construction infrastructural projects in Nairobi, Kenya. The indicators for technical ability were experience in terms of catchment national and international; plant equipment; material quality; project size experience; and manpower availability. The most dominant indicator was material quality, followed by plant equipment, project size experience, catchment experience, and manpower availability, in that order. All the indicators of technical ability influenced performance of road construction infrastructural projects. The study, however, revealed that most of the contractors lack experience in undertaking large scale road construction projects. Moreover, majority of those who are contracted in road construction are not professionally trained and that they lack requisite skilss. These two aspects are crucial and they maybe the ones affecting the construction of quality roads that promote long term performance. Overall, technical ability had no statistical significant influence on performance of road constructural projects.

The third objective was to establish how management ability of contractors influence performance of road construction infrastructural projects in Nairobi, Kenya. The indicators for management ability were past performance; quality control; management knowledge; project management system; and experience of management personnel. The most dominant indicator of management ability was project management system, followed by management knowledge, past performance, quality control, and experienced personnel respectively. Although the study findings showed that experience of the management personnel does not guarantee roads that are well construction, it was evident that a few of contractors lack proper management knowledge during construction of the roads which can compromise road performance in terms of low quality roads being constructed. Or sometimes, roads are completed with missing essentials that would guarantee performance such as proper marking of the roads and installation of roads signs. Overall, management ability had no statistical significant influence on performance of road construction infrastructural projects.

The fourth objective was to examine how contrctors' safety record influence performance of road construction infrastructural projects in Nairobi, Kenya. The indicators for safety record of a contractor were safety policy; insurance; compliance; standards' adequacy; and OSHA certification. The most dominant indicator of safety record of a contractor was
insurance, followed by OSHA certification, safety policy, compliance, and standards adequacy respectively. All the indicators of safety record of a contractor influenced performance of road construction infrastructural projects. Although it is clear road performance is directly influenced by these listed indicators, there is worrying trend whereby the study revealed that most construction firms do not have a clear insurance policy. It was clear that the level of compliance to safety administration is still weak thus not all contractors comply with safety requirements. Interestingly, the environment in which the contractors operate in does not care to appraise or embrace compliance to the required safety procedures. This was explained clearly by the level of road performance whereby the roads lacked footbridges and pedestrians' walkways. In overall, safety record of a contractor had statistically significant influence on performance of road construction infrastructural projects.

The fifth objective was to determine how combined contractors' capacity evaluation in tender award influence performance of road construction infrastructural projects in Nairobi, Kenya. The dimensions for contractors' capacity evaluation in tender award were financial ability; technical ability; management ability; and contractor's safety record. The most dominant dimension of contractors' capacity evaluation in tender award was management ability, followed by technical ability, financial ability, and contractor's safety record respectively. Apart from financial ability of contractors and contractors' safety record, the rest of the dimensions of contractors' capacity evaluation in tender award had no statistical significant influence on performance of road construction infrastructural projects. This could mean that for a unit decrease in the performance of road performance it is as a result of decrease in the technical and management abilities of the contractors. However, the argument is that if the contractor is not supported financially then aspects of performance that come with technical and management will remain compromised. These could explained in terms of hiring cheap labour (technical aspect) and proper adequate supervision (management). Overall, contractors' capacity evaluation in tender award had statistically significant influence on performance of road construction infrastructural projects. This signifies the important of having a robust multi-dimensional evaluation model for selection of competent contractors in road construction industry.

The sixth objective was to assess the moderating influence of process monitoring on the relationship between contractors' capacity evaluation in tender award and performance of road construction infrastructural projects in Nairobi, Kenya. The indicators for process monitoring were compliance specification; regulatory compliance; compliance with county by-laws; and adherence to allocation of resources. The most dominant indicator of process monitoring was regulatory compliance, followed by compliance with county by-laws, compliance specification, and adherence to allocation of resources respectively. All the variables of contractors' capacity evaluation in tender award influenced the relationship between contractors' capacity evaluation in tender award and performance of road construction infrastructural projects. Overall, process monitoring had statistically significant moderating influence on the relationship between contractors' capacity evaluation in tender award and performance of road construction infrastructural projects.

5.4 Contribution of the Study to the Body of Knowledge

The contribution of the study is derived from the objective of the study which have significantly contributed to the body of knowledge. This is summarized in Table 5.1.

Objective	Contribution
To determine the extent to which financial ability of contractors influence performance of road construction infrastructural projects in Nairobi County, Kenya	Despite technical and management abilitied of the contractors, adequate sources of finances is the guarantee for building quality roads and meet most of the user or beneficiaries requirements.
To examine how contractors' safety record influence performance of road construction infrastructural projects in Nairobi County, Kenya	Weil (2001), Jannadi and Khamsin (2002) and Diugwu, Baba and Egila (2012) pointed out myriad issues that affected construction industry in terms of health and safety which included use of signage, planning and preparation, lack of adequate regulations and constrained safetyness and health of construction during implementation (construction stage). This study narrowed down to safety aspect to establish its influence on performance of the road during its life. In this case, it is assumed that the study was the first to apply safety part of OSHA to establish its influence on already completed road projects and currently are in use. It was established that the Domino theory of accident causation, by H.W. Heinrich, used mostly during construction phase or associated in most cases with the implementation of various projects could equally be used in explaining performance of road whereby the current study found that some of the accidents, if not all, are as a result of human acts and riskier conditions such as technical failures as explained by this theory in its five antecedents. The study findings provides sufficient evidence to state categorically that performance of roads is highly influenced by contractors' safety record which must be put to scrutiny prior to awarding tenders to interested road contractors. This will significantly reduce causes of accidents as a result of lack of foot bridges forpedestirans, poorly marked roads, insufficient and unclear road signs, inadequate pedestrians' walkways and placing of bumps into designated areas.
To assess the moderating influence of process monitoring on the relationship between contractors' capacity evaluation in tender aw ard and performance of road construction infrastructural projects in Nairobi County, Kenya	This study assessed the level of modearation process monitoring had on the relationship between using an interaction term. It was evident that process monitoring is a conditional factor that whose level of existence influence the relationship between contractors' capacity evaluation in tender award and performance of road construction infrastructural projects. Thus, the study has found that despite the importance of assessing or evaluating a particular contractor based on the normal criteria, the use of process monitoring as a moderator would significantly influence performance of the road once entrenched in the contractor capacity evaluation in tender award and performance of road construction infrastructural projects. Bulle and Makori (2015), Byaruhanga and Basheka (2017) and Mwangu and Iravo (2015) confirmed through their studies M&E is inadequately utilized in projects.

Table 5.1: Summary of Contribution of the Study to Body of Knowledge

5.5 Recommendations

This section comprises recommendations of the study based on the findings. The recommendations are in light of policy and practice.

5.5.1 Recommendations for Policy

The recommendations for policy are as follows:

- 1. The study has established that contractors' capacity evaluation in tender award significantly influences performance of road construction infrastructural projects. This implies that more stringent policies guiding selection of road construction contractors should be put in place by the Nairobi County Government, the National Construction Authority (NCA), the Kenya National Highways Authority (KeNHA) and the Ministry of Roads and Public Works in Kenya. The policies should specifically address the financial ability, technical ability, management ability, and contractor's safety record.
- 2. The study revealed that process monitoring significantly influences the relationship between contractors' capacity evaluation in tender award and performance of road construction infrastructural projects. This means that not only should the above policy institutions (for example, NCA and KeNHA) prioritize standards relating to contractors' capacity evaluation in tender award, but they should also put premium on monitoring and evaluation of the projects. The policy interventions should specifically focus on compliance with construction specification, compliance with regulatory bodies' requirements, compliance with county by-laws, and adherence to allocation and utilization of resources for accomplishment of the objectives of the projects.
- 3. A policy on maintenance of the roads should be drafted and enforced to ensure that the road users also do not contribute to poor performance of roads in terms of blocking of drainange systems. Blocked drainage systems becomes a problem during heavy rainy seasons because roads end up flooded with water that make them impassable. The policy should aim to outlaw some human activities that result to littering into the drainage hence blockage being experienced.

- 4. The pedestrians need to be sensitized on the importance of learning important road sighns to guarantee their safety when using or crossing the roads. It is apparent that most the public do not understand some basic road safety measures something that eventually lead to road fatalities. This should be a collaborative effort spearheaded by the road construction agencies, KeNHA and KURA, to ensure safety on the urban roads is highly observed and followed to the latter by the public or pedestrians.
- 5. It emerged that most of the road engineers and contractors are well trained in technical aspects and also posses the needed project management system. However, there is need for the government to come up with a policy for all engineers and contractors to hire trained personnel with a background in project planning and management and monitoring and evaluation. This will help to track the road project's input and outputs for achievement of the set objectives and outcomes. From the results of the study, it was evident that process monitoring (input and output monitoring) is still weak and needs to be streangthened. This should be a requirement during prequalification and bidding processes in for tender award.
- 6. OSHA policy framework for all road contractors applying for road construction works should be checked and enforced. The guiding principles on level of compliance must be spelt out clearly to ensure roads that are completed meet satisfactory OSHA requirements for enhanced road performance in the post delivery stage or during the life of the project.

5.5.2 Recommendations for Practice

The recommendations for practice are as follows:

- 1. The road construction firms in Kenya should continuously configure their resource, system, and process capabilities in order to gain competitive. This is because such capabilities are likely to inform the award of a tender by the tenderers. The key areas that the firms should specifically address are the financial ability, technical ability, management ability, and safety record.
- 2. The study revealed that process monitoring significantly moderates the relationship between contractors' capacity evaluation in tender award and performance of road construction infrastructural projects. This means that the relevant regulatory

bodies and other institutions charged with project oversight responsibilities should commit significant time and resources in monitoring the progress of various road construction infrastructural projects. The individual construction firms should also invest in process monitoring as an overall strategy to enhance the ultimate performance of the projects. The process monitoring interventions by the organizations ought to particularly focus on compliance with construction specification, compliance with regulatory bodies' requirements, compliance with county by-laws, and adherence to allocation and utilization of resources for accomplishment of the objectives of the projects.

- 3. For maximum performance of the roads, there is need for the construction agencies and contractors to ensure the roads are provided with sufficient bus stops for public service vehicles (PSV), this will ensure the vehicles will not be stopped on the main road and thus resulting to unnecessary traffic during peak hours.
- 4. It was also revealed that accidents happen on the roads built under the supervision of KURA, this implies that during design phase there is imperative need to ensure the roads have adequate footbridges to enable the pedestrians to crossover the roads to avert this menace. In addition, the bumps also need to be placed in the right designated areas and also must be the design requirements; not forgetting the need to have clearly marked pedestrians walkways. This responsibility should be assumed by both the engineers and contractors to ensure this is implemented before the roads are launched for use by the public hence contributing to beneficiary satisfaction.
- 5. Road contractors should also aim to invest in trained personnel to boost their technical ability in carrying out construction works. This will help, for instance, the teams on the construction adhere to recommended utilization of construction materials, such as mixing the right proportions to guarantee road performance in terms of its texture.

5.6 Suggestions for Further Research

Suggestions for further research are as follows:

- The current study focused on road construction infrastructural projects. Other researchers may consider investigating contractors' capacity evaluation in tender award, process monitoring, and performance of building construction projects. This is because the findings of the current study are limited to the road construction infrastructural projects.
- 2. The current study focused on Nairobi County, Kenya. Other researchers may consider focusing on the examining the same phenomenon in other counties, more so the rural counties, including Meru, Vihiga, Nyamira, and Kilifi. This is because Nairobi County is the most urban in Kenya, hence the findings of the study may not apply to rural contexts.
- 3. The current study modelled process monitoring as the moderating variable. Other researchers may consider modelling company characteristics such as age, and size, as the moderating variables. This is because it is still unknown whether older construction firms could perform better than their younger counter-parts. It is also not known whether larger construction firms could significantly outperform the smaller ones.

REFERENCES

Achuka, V. (2017). Why Outer Ring Road's Design is Causing Challenges Ahead of Commissioning. Retrieved from: <u>https://www.standardmedia.co.ke/business/article/2001263265/design-flaws-on-outer-ring-road-put-pedestrians-at-risk</u> Accessed 4/07/2018

- African Development Fund. (2013). Project Appraisal Report on Nairobi's Outering Road Improvement. African Development Fund - OITC Department.
- Abdelhamid, T.S. & Everett, J.G. (2000). Identifying Root Causes of Construction Accidents. *ASCE Journal of Construction Engineering and Management*, 126(1): 52-60.
- Abiodun, O.E., Segbenu, N.S. & Oluseye, O. (2017). Measurement for Projects and Project Management. *Project Management Journal*, 16(3): 29-33.
- Aje, O. I., Odusami, K. T. & Ogunsemi, D. R. (2009). The Impact of Contractors' Management Capability on Cost and Time Performance of Construction Projects in Nigeria. *Journal of Financial Management of Property and Construction*, 14(2): 171-187.
- Akali, T. & Sakaja, Y. (2018). Influence of Contractors' Financial Capacity on Performance of Road Construction in Kakamega County, American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS), 46 (1): 34-50.
- Akintude, I. (2003). *Nigeria Construction Industry: Past, Present Problems and Prospects*. Ibadan University Preintery.
- Alin, A. (2010). Multicollinearity. Wileys Interdisciplinary Reviews: Computational Statistics, 2(3): 370-374.
- Alotaibi, M. (2011). Evaluation of Contractor Performance for Pre-selection in the Kingdom of Saudi, Doctoral Dissertation. Loughborough University, Leicestershire, UK.
- Alzahrani, J.I. & Emsley, M.W. (2013). The impact of contractors' attributes on construction project success: a post construction evaluation. *International Journal of Project Management*, 31:313-322.
- Atieno, S.O. & Muturi, W.C. (2016). Factors Affecting Performance of Road Construction Projects in Arid and Semi-Arid Areas in Kenya. *International Journal of Social Sciences and Information Technology*, 2(8): 908-929.

- Asinza, K., Kanda, E.K., Muchelule, Y. & Mbithi, S. (2016). Influence of Financial Capacity and Monitoring on Project Quality of Housing Construction in Nakuru County, Kenya. *International Journal of Research in Management, Science & Technology*, 4(3): 38-43.
- Atkinson, R. (1999). Project Management: Cost, Time and Quality, two best guesses and a phenomenon, its time to accept other success criteria. *International Journal of Project Management*, 17(6): 337-342.
- Australian Government. (2012). A Systematic Review of the Effectiveness of Safety Management Systems. Commonwealth of Australia.
- Babalola, I.H., Oluwatuyi, O.E., Akinloye, L. & Aiyewalehinmi, E. (2015). Factors influencing the performance of Construction Projects in Akure, Nigeria. *International Journal of Civil Engineering, Construction and Estate Management*, 3(4): 57-67.
- Babu, S.S. & Sudhakar, D. (2015). Critical Success Factors Influencing Performance of Construction Projects. *International Journal of Innovative Research in Science*, *Engineering and Technology*, 4(5): 3285-3292.
- Baccarini, D. (1999). The Logical Framework Method for Defining Project Success. *Project Management Journal*, 30(4): 25-32.
- Barczewski, B. (2013). *How Well Do Environmental Regulations Work in Kenya? A Case Study of the Thika Highway Improvement Project*. University of Nairobi/ Center for Sustainable Urban Development.
- Barney, J.B. (1991). Firm Resources and Sustained Competitive Advantage. *Journal of Management*, 17(1): 99-120.
- Baron, R.M. & Kenny, D.A. (1986). The moderator-mediator variable distinction in social Psychological research: Conceptual, Strategic, and Statistical Considerations. *Journal of Personality and Social Psychology*, 51(6): 1173-1182.
- Bartlett, J.E., Kotrlik, J.W. & Higgins, C.C. (2001). Organizational Research: Determining Appropriate Sample Size in Survey Research. Information Technology, Learning, and Performance Journal, 19(1): 43-50.
- Basheka, N.R. & Oluka, B.C. (2013). Public Private Partnerships (PPP) and Enhanced Service Delivery in Uganda: Implications from the Energy Sector. *International Journal of Business Administration*, 4(3):48-60.
- Bassioni, H.A., Price, A.D.F & Hassan, T.M. (2004). Performance Measurement in Construction. Journal of Management in Engineering, American Society of Civil Engineers (ASCE), 20(2).

- Bell, J. (2005). Doing Your Research Project: A guide for First-Time Researchers in Education, Health and Social Sciences (4th Edition). London: Open University Press.
- Berg, B.L. (2009). *Qualitative Research Methods for the Social Sciences* (7th Edition). Boston: Pearson Education.
- Berman, G. & Bianchi, M. (2005). *Evaluation of EIB Financing of Railway Projects in the European Union*. Evaluation Report, European Investment Bank.
- Bernard, H.R. (2000). Social Research Methods: Qualitative and Quantitative Approaches. Thousand Oaks, California: Sage Publications.
- Bertram, D. (2007). *Likert Scales are the meaning of life*: CPSC 681–Topic Report
- Bhattacherjee, A. (2012). Social Science Research: Principles, Methods, and Practices. NonCommercial-ShareAlike.
- Bierman, H., Bonini, C. & Hausman, W. (1997). *Quantitative Analysis for Management*. New York: Irwin McGraw-Hill.
- Boone Jr, H. N., & Boone, D. A. (2012). Analyzing Likert Data. *Journal of Extension*, 50(2): 1-5.
- Bohlander, G., Snell, S.A., & Sherman, A. (2001). *Managing human resource*. (12th Ed). Cincinnati, OH: South-Western College Publishing.
- Borg, W.G. & Gall, M.D. (1989). *Educational Research*. New York: Longman Publishers.
- Boyle, J.G. (2014). A Performance-Based Solution to Avoid Schedule Failure on Construction Projects. *Revay and Associates Limited*, 31 (1).
- Boynton, P.M. & Greenhalgh, T. (2004). Hands-on Guide to Questionnaire Research: Selecting, Designing and Developing Your Questionnaire. BMJ, 328, 1312-1315.
- Brown J. D. (2011) Likert items and scales of measurement; *SHIKEN: JALT Testing* & *Evaluation SIG Newsletter*. March 2011.15(1) P. 10-14
- Bryman, A. (2008). *Introduction to Social Research Methods*. London: Sage Publications.
- Bryman, A. (2012). Social Research Methods (4th ed.) Oxford University Press.
- Bulle, H. & Makori, M. (2015). Influence of Strategic Planning on Performance of Urban Road Projects in Kenya: A Case of Kenya Urban Roads Authority. *The Strategic Journal of Business & Change Management*, 2(91): 1285-1313.

- Burns, N. & Grove, S.K. (2010). Understanding Nursing Research: Building an Evidence-Based Practice. Elsevier Health Sciences.
- Burton, D. (2000a). Sampling *Strategies in Survey Research*. In D. Burton (ed), Research Training for Social Scientists. London: Sage Publications Ltd.
- Burton, D. (2000b). *Research training for social scientists*. London: SAGE Publications Ltd.
- Byaruhanga, A. & Basheka, B. (2017). Contractors Monitoring and Performance of Road Infrastructure Projects in Uganda: A Management Model: *Journal of Building Construction and Planning Research*, 5:30-44.
- Cameron, R. (2011). Mixed Methods Research: The Five Ps Framework. *The Electronic Journal of Business Research Methods*, 9(2): 96-108.
- Chan, A.P.C. & Chan, A.P.L. (2004). Key Performance Indicators for Measuring Construction Success. *Benchmarking: An International Journal*, 11(2): 2013-221.
- Chan, M., Scott, D. & Chan, L. (2004). Factors Affecting the Success of a Construction Project. *Journal of Construction Engineering and Management*, 130:155.
- Cheung, S.O., Suen, H.C.H. & Cheung, K.K.W. (2004). PPMS: a Webbased construction Project Performance Monitoring System. *Autom. Constr.* 13 (3): 361–366.
- Chiang, F., Yu, V.F. & Luarn, P. (2016). Construction Contractor Selection in Taiwan Using AHP. *International Journal of Engineering and Technology*, 9(3): 211-215.
- Chikati, J. (2009). *Monitoring and Evaluation Handbook*. Nairobi: Regional Partnership for Resource Development.
- Chitkara, K.K. (2005). Construction Project Management, Planning, Scheduling and Controlling. Tata McGraw Hill Publishing Company Limited.
- Connely, L.M. (2008). Pilot Studies. *Medsurg Nursing*, 17(6): 411-412.
- Cooke-Davies, T. (2002). The 'real' Success Factor on Projects. *International Journal of Project* Management, 17(3): 139-145.
- Cooper, D.R. & Schindler, P.S. (2006). *Business Research Methods*. Business Research Methods (9th Edition). New York: McGraw-Hill.
- Creswell, J.W & Plano, C.V.L. (2011). *Designing and Conducting Mixed methods Research* (2nd Edition). Thousand Oaks, California: Sage

- Creswell, J. W. (2013). *Research design: Qualitative, quantitative, and mixed methods approaches*. Thousand Oaks, CA: Sage Publications.
- Creswell, J.W. (2014). *Research Design: Qualitative, Quantitative, and Mixed Methods Approaches.* (4th Edition). Thousand Oaks, CA: Sage Publications.
- Davidson, B. & Sebastian, R.J. (2009). The Relationship between Contract Administration Problems and Contract Type. *Journal of Public Procurement*, 9(2): 262-286.
- Densford, M. O., James, R. & Ngugi, L. (2018). Effect of Project Resource Mobilization on Performance of Road Infrastructure Projects Constructed by Local Firms in Kenya. *International Journal of Econo,ics, Business Management Research*, 2(1): 2456-7760.
- Dess, G.G., & Pickens, J.C. (1999). *Beyond productivity: How leading companies achieve superior by leveraging their human capital*. New York: American Management Association.
- De Saram, D.D & Tang, S.L. (2005). Pain and suffering costs of persons in construction Accidents: Hong Kong experience. *Construction Management Econ*, 23:645-658.
- De Valence, G. (2012). A theory of construction management? Australasian Journal of Construction Economics and Building, 12 (3): 95-100.
- Diugwu, I.A., Baba, D.L. & Egila, A.E. (2012). Effective Regulation and Level of Awareness: An Expose of the Nigerian's Construction Industry. Open Journal of Safety and Technology, 2:140-146.
- Dooley, D. (2007). Social Research Methods. (4th Edition). New Delhi, India: Prentice-Hall.
- Drost, E.A. (2012). Validity and Reliability in Social Science Research. *Education Research Perspective*, 38(1): 105-123.
- Dwarika, P. & Tiwari, S. (2014). Evaluating the Criteria for Contractors' Selection and B id Evaluation. *International Journal of Engineering Science Invention*, 3(7): 44-48.
- El-Maaty, A.E., Akal, A.Y & El-Harawy, S. (2016). Management of Highway Projects in Egypt Through Identifying Factors Influencing Quality Performance. *Journal of Construction Engineering*,
- Emeasoba, U. R., & Ogbuefi, J. U. (2013). Sustainable socio-economic development in Nigeria: a case for road infrastructure maintenance. *Journal of Environment and Earth Science*, 3(5): 129–137.

- Enshassi, A. Mohamed, S. & Abushaban, S. (2009). Factors Affecting the Performance of Construction Projects in the Gaza Strip. *Journal of Civil Engineering and Management*, 15(3): 269-280.
- Faraway, J. (2002). Practical Regression and Anova Using R. Retrieved on 15/03/2018 from: <u>https://cran.r-project.org/doc/contrib/Faraway-PRA.pdf</u>.
- Faridi, A.S. & El-Sayegh, S.M. (2006). Significant Factors Causing Delay in the UAE Construction Industry. *Construction Management and Economics*, 24 (11): 1167-1176. doi:10.1080/01446190600827033
- Feng, Y. (2013). Effects of Safety Investments on Safety Performance of Building Projects. *Safety Science*, 59: 28-45. <u>https://doi.org/10.1016/j.ssci.2013.04.004</u>
- Field, A. (2013). Discovering statistics using ibm spss statistics (4th ed.). London: Sage.
- Fowler, F.J. (1993). Survey Research Methods (2nd Edition). San Diego: Elsevier Science (USA).
- Frankfort-Nachmias, C. & Nachmias, D. (1996). *Research Methods in the Social Sciences* (5th Edition). Great Britain: St. Martin's Press.
- Fugar, F.D.K., Ashiboe-Mensah, N.A. & Adinyira, E. (2013). Human Capital Theory: Implications for the Ghanaian Construction Industry Development. *Journal of Construction Project Management and Innovation*, 3(1): 464-479.
- Gakuu, C.M., Kidombo, J.H. & Keiyoro, P.N. (2018). Fundamentals of Research Methods: Concepts, Practice & Applications. Aura Publishers: Nairobi.
- Galitz, M.G. (2009). A Cultural Sensitive Therapeutic Approach to Enhance Emotional Intelligence in Primary School Children. University of South Africa. Retrieved on 20/03/2018 from <u>http://hdl.handle.net/10500/1648</u>
- Githenya, M.S. & Ngugi, K. (2014). Assessment of the Determinants of Implementation of Housing Projects in Kenya. European Journal of Business Management, 1(11): 230-253.
- Global Construction 2020. (2009). A Global Forecast for the Construction Over the Next Decade to 2020. Global Construction Perspectives and Oxford Economics: United Kingdom.
- GOK. (2003). Economic *Recovery Strategy for Wealth and Employment Creation*, 2003-2010, Government of Kenya.
- Grant, C. & Osanloo, A. (2014). Understanding, Selecting, and Integrating a Theoretical Framework in Dissertation Research: Creating the Blueprint for Your "House". *Adminstration Issues Journal*, 4(2): 12-26. DOI:10.5929/2014.4.2.9

- Greenfield, R. & Morgan, M.J.W. (2014). Management of Health and Safety Performance of Facilities Management (BIFM).
- Griffin, M.A & Neal, A. (2000). Perceptions of safety at work: a framework for linking safety climate to safety performance, knowledge, and motivation. *Journal of Occupational Health Psychology*, 5:347-358.

Gujarati, D.N. (2004). *Basic Econometrics* (4th Edition). The McGraw-Hill Companies.

- Haas, R., Felio, G., Lounis, Z. & Falls, L.C. (2009). Measurable Performance Indicators for Roads: Canadian and International Practice. Paper Presented at the "Best Practices in Urban Transportation Planning: Measuring Change" Session, at the 2009 Annual Conference of the Transportation Association of Canada Vancouver, British Columbia.
- Halpin, D.W. & Woodhead, R.W. (2006). Construction management. (3rd Ed). New York, Chichester: Wiley.
- Hamid, A.R., Majid, M.Z.A. & Singh, B. (2008). Causes of Accidents at Construction Sites. *Malaysia Journal of Civil Engineering*, 20(2): 242-259.
- Hansson, P. (2015) Resource based theory and the family business. In: Mattias Nordqvist, Leif Melin, Matthias Waldkirch and Gershon Kumeto (ed.), *Theoretical* perspectives on family businesses (pp. 253-272). Cheltenham: Edward Elgar Publishing <u>https://doi.org/10.4337/9781783479665.00021</u>
- Hassan, A. I. (2013). An Investigation of Structural Capacity as a Component of Monitoring and Evaluation in Project Success of Road Construction Projects in Kenya. *International Journal of Academic Research in Businesses and Social Sciences*, 3(8): 443-452.
- Hassan, H.I. & Guyo, W. (2017). Determinants of Completion of Government Funded Urban Construction Projects in Nairobi City County, Kenya. International Journal of Innovative Development & Policy Studies, 5(1): 20-42.
- Hatush, Z. & Skitmore, M. (1996). Criteria for contractor selection. *Construction Management and Economics*, 15(1):19-38.
- Hall, M. & Holt, R. (2003). Developing a Culture of Performance Learning in U.K. Public Sector Project Management. *Public Performance & Management Review*. 26(3): 263-275.
- Hatush, Z. & Skitmore, M. (1997). Assessment and evaluation of contractor data against client goals using PERT approach. *Construction Management and Economics*, 15: 327-340.

- Han, W.S., Yusof, A.M., Ismail, S. & Aun, N.C. (2012). Reviewing the Notions of Construction Project Success. *International Journal of Business and Management*, 7(1): 90-101.
- Hansen, J.T. (2004). Thoughts on Knowing: Epistemic Implications of Counseling Practice. *Journal of Counseling & Development*, 82(2): 131-138.
- Heinrich, H.W., Peterson, D. & Roos, N. (1980). *Industrial Accident Prevention* (5th Edition). McGraw Hill: New York.
- Herbsman, Z. & Ellis, R. (1992). Multiparameter bidding system-innovation in contract administration, Journal of Construction Engineering and Management, 118(1): 142-50
- HSE. (2014). Health and safety in construction in Great Britain. Retrieved from: <u>http://www.hse.gov.uk/statistics/industry/construction/index.htm</u>, 12/12/2016.
- Hijzen, A., Gorg, H. & Hine, R.C. (2005). International Outsourcing and the Skill Structure of Labour Demand in the United Kingdom. *The Economic Journal*, 115(5060: 860-878.
- Hill, R. (1998). What Sample Size is Enough for Internet Survey Research? *Interpersonal Computer and Technology: An Electronic Journal for the 21st Century*, 6(3-6)
- Hinze, H. & Parker, H. (1978). Safety: Productivity and Job Pressures. *Journal of Construction Division, ASCE*, 104(2): 241-249.
- Hlatshwayo, N.Z. & Govender, K.K. (2015). Monitoring and Evaluation in the Public Sector: A Case Study of the Department of Rural Development and Land Reform in South Africa. *Asian Journal of Economics and Empirical Research*, 2(2): 91-95.
- Hosseinian, S.S. & Torghabeh, Z. J. (2012). Major Theories of Construction Accident Causation Models: A Literature Review. *International Journal of Advances in Engineering & Technology*.
- Holmebeck, G.N. (1997). Toward Terminological, Conceptual, and Statistical Clarity in the Study of Mediators and Moderators: Examples from the Child-Clinical and Paediatric Psychology Literatures. *Journal of Consulting and Clinical Psychology*, 65:599-610.
- Holt, G., Olomolaiye, P. & Harris, F. (1994) Evaluating performance potential in the selection of construction contractors. *Engineering Construction and Architectural Managemnt*, 1:29-50.
- Hunt, H.W., Logan, D.H., Corbetta, R.H., Crimmins, A.H., Bayard, R.P., Lore, H.E. & Bogen, S.A. (1966) Contract award practices, *Journal of the Construction Div*, 92:1-16.

- IFC. (2017). Managing Contractors' Environmental and Social Performance. World Bank.
- IFRC. (2011). *Project/Programme Monitoring and Evaluation (M&E) Guide*. <u>https://www.ifrc.org/Global/Publications/monitoring/IFRC-ME-Guide-8-2011.pdf</u>
- Igochukwu, S.C. & Onyekwena, T. (2014). Participation of Indigenous Contractors in Nigerian Public Sector Construction Projects and their Challenges in Managing Working Capital. *International Journal of Civil Engineering and Estate Management*, 1(1):1-21.
- Islam, M.M. (2006). WTO and Pakistan's Construction Sector. *Policy Perspectives*, 3(1): 81-99.
- Jaafar, M., Rashid, A. & Aziz, A. (2005). Resource-Based View and Critical Success Factors: A Study on Small and Medium Sized Contracting Enterprises (SMCEs) in Malaysia. *International Journal of Construction Management*, 5(2).
- Jannadi, O. & Bu-Khamsin, M. (2002). Satety factors considered by industrial contractors in Saudi Arabia. Building and Environment, 37: 539-547.
- Jae-Kyu, C., Seung-Kyu, Y., Ju-Hyung, K., & Jae-Jun, K. (2014). Capital Structure Determinants among Construction Companies in South Korea: A Quantile Regression Approach. *Journal of Asian Architecture and Building Engineering*, 13(1), 93-100.
- Juma, V. (2017). How China Contractors Drove Kenyan Firms Out of Mega Projects. Retrieved from: <u>https://www.businessdailyafrica.com/news/how-china-contractors-drove-kenyan-firms-out-of--mega-projects/539546-3787626-48b2jy/index.html</u>. Accessed on 11/6/2018.
- Johnson, R.B. & Onwuegbuzie, A J. (2004). Mixed methods Research: A Research paradigm Who Time has Come. *Educational Researcher*, 3397): 14-26.
- Kamau, C. G. & Mohamed, H.M. (2015). Efficacy of Monitoring and Evaluation in Achieving Project Success in Kenya: A Conceptual Framework. *Science Journal of Business and Management*, 3(3): 82-94.
- Kartam, N.A. & Bouz, R.G. (1998). Fatalities and Injuries in the Kuwaiti Construction Industry. *Accident, Analysis and Prevention*, 30(6): 805-814.
- Kelley, K., Clark, B., Brown, V. & Sitzia, J. (2003). Good practice in the conduct and reporting of survey research. *International Journal for Quality in Health Care*, 15(3), 261–266.
- Kerzner H., (2006). Project Management; A Systems Approach to Planning, Scheduling, and Controlling, Ninth ed. John Wiley & Sons, Inc., Hoboken, New Jersey.

- KeNHA (2016). Project information memorandum for the Nairobi- Nakuru- Mau Highway Summit: Kenya National Highways Authority.
- KeNHA.(2019).KenyaRoadClassifiedNetwork. <u>http://www.kenha.co.ke/index.php/road-network</u>
- Khosravi, S. & Afshari, H. (2011). A Success Measurement Model for Construction Projects. International Conference on Financial Management and Economics, 11: 186-190.
- Kimani, M. E. (2015). *Performance Analysis of Nairobi Eastern ByPass*. Department of Civil and Construction Engineering, University of Nairobi.
- Kimani, E. (2017). NCA Kenya: Registration of contractors with the National Construction Authority. Retrieved on 27/02/2018 from: <u>https://constructionreviewonline.com/2015/06/nca-kenya-registration-of contractors-requirements/</u>
- Kim, D.Y., Han, S.H., Kim, H. & Park, H. (2009). Structuring the prediction model of project performance for international construction projects: A comparative analysis. *Expert Systems Appl*, 36 (2): 1961–1971.
- Kinyanjui, J.N. (2014). Influence of Contextual and Cognitive Factors on the Relationship between Performance Contracting System and Organizational Performance in Government Ministries in Kenya (PhD Thesis). Graduate Library: University of Nairobi.
- Kinyanjui, M. (2018). Weed Out Incompetent Contractors, PS Korir Tells Sonko on Poor Roads. Retrieved from: <u>https://www.the-star.co.ke/news/2018/05/10/weed-out-incompetent-contractors-ps-korir-tells-sonko-on-poor-roads_c1756529</u>Accesed 11/6/2018.
- Kihoro, M.W. & Waiganjo, E.(2015). Factors Affecting Performance of Projects in the Construction Industry in Nairobi County. *The Strategic Journal of Business & Change*, 2(50): 3866.
- Kithinji, R.G. & Kamaara, M. (2017). Factors Influencing Completion of Government Road Infrastructure Projects in Kenya: A Case of Meru County. *The Strategic Journal of Business & Change Management*, 4(42): 787-802.
- KNBS. (2019). Economic *Survey 2019*. Retrievedfrom: <u>file:///C:/Users/Administrator/Downloads/Final%20Economic%20Survey%20%2</u> <u>02019.pdf</u>, date retrieved 30/05/2019.
- Kombo, D.K. & Tromp, D. L.A. (2006). *Proposal and Thesis Writing: An Introduction* (1st ed.). Nairobi: Paulines Publications Africa.

- Koppinen, T. & Lahdenpera, P. (2004). The Current and Future Performance of Road Project Delivery Methods. *Espoo2004..VTT Publications*, 549:115.
- Koehn, E., Kothari, R.K. & Pan, C-S. (1995). Safety in developing countries: professional and bureaucratic problems. *Journal of Construction Engineering Management*, 121:261-265.
- Kothari, C.R. (2004). *Research Methodology: Methods & Techniques*. (2nd Edition). New Delhi: New Age International (P) Ltd.
- Krejcie, R. V. & Morgan, D.W. (1970). Determining Sample Size for Research Activities. *Educational & Psychological Measurement*, 30: 607-610. <u>https://home.kku.ac.th/sompong/guest_speaker/KrejcieandMorgan_article.pdf</u>
- Kulemeka, P.J., Kululanga, G. & Morton, D. (2015). Critical Factors Inhibiting Performance of Small-and Medium-Scale Contractors in Sub-Saharan Region: A Case for Malawi. *Journal of Construction Engineering*.
- Kumar, R. (2011). *Research Methodology: A Step-by-Step Guide for Beginners*. (3rd Edition). London: Sage Publications Ltd.
- Leech, N. & Onwuegbuzie A. J. (2009). A typology of mixed methods research designs', Quality and Quantity. *International Journal of Methodology*, 43: 265-275.
- Leech, N. L. & Onwuegbuzie, A. J. (2007). An array of qualitative data analysis tools: A call for data analysis triangulation. *School Psychology Quarterly*, 22(4): 557.
- Levy, P. S. & Lameshow, S. (2008). *Sampling of Populations: Methods and Applications* (4th ed.). New Jersey: John Wiley & Sons, Inc.
- Lincoln, Y. S. & Guba, E.G. (2000). Paradigmatic Controversies, Contradictions and Emerging Confluence. In N.K. and Y.S. Lincoln (Eds). *Handbook of Qualitative Research* (pp. 163-188). Thousand Oaks, CA: Sage.
- MacMillan, J.H. & Schumacher, S. (2010). *Research in Education: Evidence-Based Inquiry* (7th ed). Pearson.
- Makori, R.J., Aduda, J. & Ngacho, C. (2013). A performance Evaluation Framework for Constituency Development Fund Construction Projects in Kenya. *Africa Journal of Project Planning and Management*.
- Marti, M.M. & O'Brien, K.L. (2005). *Best Practices for Project Construction Streamlining*. Minnesota Department of Transportation: Research Services Section.
- Mahat, N.A.A., Ismail, F. & Alwee, S.N.A.S. (2015). Integration of Quality Management and Construction Accident Causation: Development of Accident Causation Theories. *Australian Journal of Accident Basic and Applied Sciences*, 9(22): 123-129.

- Manyara, C.G. (2013). Combating road Traffic in Kenya: A challenge for Emerging Economy. KESSA Proceedings 2013.
- Mbabazize, P. M. (2014). Capital Budgeting Practices in Developing Countries: A Case of Rwanda. *Researchjournali's Journal of Finance*, 2(4): 1-19.
- Mbaluka, H. & Bwisa, H. (2013). Delay Factors in Construction Projects Implementation in the Public Sector: A Case of the Kenya Agriculture Research Institute Construction Projects.
- McClay, R.E. (1989a). Toward a More Universal Model of Loss Incident Causation Part 1. *Proft*, 35(1): 15-20.
- McClay, R.E. (1989b). Toward a More Universal Model of Loss Incident Causation Part 11. *Proft*, 35(2): 34-35
- Merna, A., & Smith, N.J. (1990). Bid evaluation for UK public sector construction contracts. *Proc Inst Civ Engrs*, 1:91-105.
- Mertens, D.M. (2005). *Research Methods in Education and Philosophy: Integrating Diversity with Quantitative and Qualitative Approaches*. (2nd ed.). Thousand Oaks: Sage.
- Morris, P.W.G. & Hough, G.H. (1987). *The Anatomy of Major Projects*. New York: John-Wiley and Sons.
- Minchin, R. & Smith, G. (2005) Quality-based contractor rating framework for qualification and bidding purpose. *Journal of Management in Engineering*, ASCE, 1: 38-43.
- Minyiri, A.C & Muchelule, Y. (2018). Monitoring Intensity and Procurement Performance. Empirical Evidence from Elgeyo Marakwet County, Kenya. Africa International Journal of Multidisciplinary Research, 2 (6): 1-12.
- Mthethwa, T. (2016). *Kenya's Construction Challenges*. Retrieved from: http://recruitlink.co.za/articles/kenya-construction-industry-challenges on 11/12/2016.
- Mulusa, T. (1988). Evaluative Education and Community Program. Nairobi: University of Nairobi.
- Muller, R. & Jugdeve, K. (2012). Critical Success Factors in Projects: Pinto, Slevin, Prescott – the elucidation of Project Success. *International Journal of Projects in* Business, 5(4): 757-775.
- Muhwezi, M. (2013). Public Procurement Reform in Africa: A Tool for Effective Governance of the Public Sector and Poverty Reduction. Unpublished.

- Mugenda, A.G. (2008). *Social Science Research: Theory and Principles*. Nairobi, Kenya: Applied Research & Training Services.
- Mugenda, A. G. & Mugenda, O. (2003). *Research methods: Quantitative and Qualitative Approach. Nairobi:* ACTS Press.
- Mugenda, O.M. & Mugenda, A. G. (2009). *Research Methods: Quantitative and Qualitative Approaches*. Nairobi: ACTS.
- Mutoro, C., Asinza, K., Kanda, E.K. & Malenya, A. (2017). Effect of Contractor Capacity and Monitoring and Evaluation on Completion of Water Projects among Water Services Boards in Kenya. *International Journal of Research in Management*, *Science & Technology*, 5(1): 163-167.
- Myers, S. C. & Majluf, N. (1984). Corporate financing and investment decisions when firms have information that investors do not have. *Journal of Financial Economics*, 13: 187-22.
- Mwakajo, I.S. & Kidombo, H. (2017). Factors Influencing Project Performance: A Case of County Road Infrastructural Projects in Manyatta Constituency, Embu County, Kenya. International Academic Journal of Information Sciences and Project Management, 2(2): 111-123.
- Mwangu, A.W. & Iravo, M.A. (2015). How Monitoring and Evaluation Affects the Outcome of Constituency Development Fund Projects in Kenya: A Case Study of Projects in Gatanga Constituency. *International Journal of Academic Research in Business and Social Sciences*, 5(3): 13-31.
- Mwiti, L. (Thursday, February 18, 2016). *Kenya Leads Region in Construction Projects*. StandardDigital, Retrieved from: <u>www.standardmedia.coke/business</u> on 16/12/2016.
- Nairobi City County Government (NCCG). (2015). Non Motorized Transport Policy: Towards NMT as the Mode of Choice. Nairobi City County Government. Nairobi City County.
- Naik, M.B., Sharma, N.D. & Kashiyani, B.K. (2015). A Review of Factors Affecting Contractor Performance in Construction Work. *International Journal of Advanced Research in Engineering, Science & Management.*
- Neely, A. (1999). The Performance Revolution: Why Now and What Next? *International Journal of Operations & Production Management*, 12(1): 69-81.
- Newby, P. (2010). *Research Methods for Education*. England, Edinburgh Gate: Pearson Education Limited.

- Ngacho, C. & Das, D. (2014). A performance evaluation framework of development projects: an empirical study of Constituency Development Fund (CDF) construction Projects in Kenya. *International Journal of Project Management*, 32:492-507.
- Ng'etich, K.V. & Otieno, M.M. (2017). Facttors Influencing Monitoring and Evaluation Processes of County Road Projects in Turkana County Government, Kenya: *International Journal of latest Research in Engineering and Technology (IJLRET)*, 3(9): 30-41.
- Ng., S.T.T. (1992) *Decision support system for contractor prequalification*, MSc dissertation, University of Salford, Department of Surveying, UK.
- Ngosong, F. T. (2015). Investigation of Problems or Challenges Faced by the Procurement and Delivery of Quality Construction in Africa and Cameroon. School of the Build Environment, College of Science and Technology, University of Salford, Manchester, the Crescent, Salford, M5 4WT, United Kingdom.
- Nguyen, B. (2015). Purchasing and Supply Chain Management. Pearson Education Limited.
- Nsasira, R., Basheka, B.C. & Oluka, P.N. (2013). Public Private Partnerships (PPPs) and Enhanced Service Delivery in Uganda: Implications from the Energy Sector. *International Journal of Business Administration*, 4(3): 48-60.
- Ntuli, B. & Allopi, D. (2014). Impact of Inadequate Experience and Skill on the Construction Sector in KwaZulu-Natal, South Africa. *Engineering, Technology & Applied Science Research.* 4(1): 570-575.
- Nwanyanwu, L.A. (2015). Cashflow and Organizational Performance in Nigeria: Hospitality and Print Media Industries Perspectives. *European Journal of Business, Economics and Accountancy*, 3(4): 66-72.
- Nyangwara, P.O. & Datche, E. (2015). Factors Affecting the Performance of Construction Projects: A Survey of Construction Projects in the Coastal Region of Kenya. *International Journal of Scientific and Research Publications*, 5(10): 1-43.
- Nyandika, F.O. & Ngugi, K. (2014). Influence of Stakeholders' Participation on Performance of Road Projects at Kenya National Highways Authority. *European Journal of Business Management*, 1(11): 384-404.
- Nyatwang'a, W.B. (2016). Effective Implementation of Environmental Management Strategies during Road Construction in Kenya. What are the Determinants? A Paper Presented at International Conference on Transport and Road Research, 16th – 18th March 2016, Whitesands Hotel, Mombasa, Kenya.
- O'Brien, D. & Scott, P.S. (2012). *Correlation and Regression*, in Chen, H. (Ed). A Guide for Dissertation Students. Oak tree Press.

- O'Toole, M. (2002). The Relationship between Employees' Perceptions of Safety and Organizational Culture. *Journal of Safety Research*, 33(2002): 231-243.
- Obare, J.O., Kyalo, D.N., Mulwa, S.A. & Mbugua, J. (2016). Implementation Process of Project Control Systems, Project Team Training Diversity and Performance of Rural Roads Construction Projects in Kenya. *International Journal of Innovative Research* & Development, 5(12): 12-22.
- OECD. (2001). The Well-Being of Nations: The Role of Human and Social Capital. Paris: OECD.
- Ogendi, J., Odero, W., Mitullah, W. & Khayesi, M. (2013). Pattern of Pedestrian Injuries in the City of Nairobi: Implications for Urban Safety Planning. *Journal of Urban Health*, 90(5): 849-856.
- Ogunlana, S., Promkuntog, K. & Jearkjirm, V. (1996). Construction delays in a fast-growing economy: comparing Thailand with other economics. *International Journal of Project Management*, 14 (1): 37–45.
- Ogutu, B.O. & Muturi, W. (2017). Factors Influencing Successful Completion of Road Construction Projects in Kenya: The Case of Kisumu County. *International Journal* of Economics, Commerce and Management, 5(6): 728-771.
- Ogbebor, P.O. (2002). Enhancing Indigeneous Construction Industry as a National Goal on Nigerian Development.
- Ogweno, B., Muturi, W. & Rambo, C. (2016). Determinants of Timely Completion of Road Construction Projects Financed By Kenya Roads Board in Kisumu County. *International Journal of Economic Governance and Management*, 4(11): 360-402.
- Oirere, S. (2018). 'Kenya develops annuity road funding model' (World Highways, April 2015) <u>http://www.worldhighways.com/categories/auctions-equipment-supply-servicing-finance/features/kenya-develops-annuity-road-funding-model/;</u> Kenya Roads Board Annual Report 2016-2017.
- Ojok, J. & Basheka, B.C. (2016). Measuring the Effective Role of Public Sector Monitoring and Evaluation in Promoting Good Governance in Uganda: Implications from the Ministry of Local Government. *Africa's Public Service Delivery & Performance Review*, 4(3).
- Okuwoga, A.A. (1998). Cost-time performance of public sector housing project in Nigeria. *Habitat International*, 22 (4): 389–395.
- Olang'o, A.J. (2018). Cash Flow, Supply Chain Performance and Lead Time of Road Construction Projects in Kenya. *African Journal of Business & Industry*, 2(4): 292-312.

- Olugunagba, M.M. & Akinmusire, A.O. (2016). Relevance of Contractors' Prequalification Criteria to Time Performance of Civil Engineering Project, *American Journal of Civil Engineering*, 4(5): 225-232.
- Oluwatayo, J. A. (2012). Validity and Reliability Issues in Educational Research. *Journal of Educational and Social Research*, 2(2).
- Orodho, A. (2009). *Elements of Education and Social Science Research Methods*. Maseno Kenya: Kanezja.
- O'Sullivan, R.G. (2004). *Practicing Evaluation: A Collaborative Approach*. London: Sage Publications.
- Oso, W.Y & Onen, D. (2005). A General Guide to Writing Research Proposal and Reports. A Hand Book for Beginning Researchers, (2nd ed.). Kampala: Makerere University press.
- Omran, A., Abdalrahman, S. & Pakir, A.H.K. (2012). Project performance in Sudan Construction Industry. A Case Study. Academic Research Journals (India), 1(1): 55-78.
- Onatere, J.O. Nwagboso, C. & Georgakis, P. (2014). Performance Indicators for Urban Transport Development in Nigeria. WIT Transactions on the Built Environment, 138: ISSN 1743-3509 (on-line). Doi: 10.2495/UT140461.
- Onyango, L.B., Bwisa, H. & Orwa, G. (2017). Critical Factors Influencing the Implementation of Public Infrastructure Projects in Kenya: A Case of Thika Sub-County, Kiambu County Kenya. *International Journal of Scientific and Research Publications*, 7(5): 2250-3153.
- Palaneeswaran, E., and Kumaraswamy, M. (2001). Recent advances and proposed improvements in contractor prequalification methodologies. *Building and Environment*, 36(1): 73-87.
- Pandey, P. & Pandey, M.M. (2015). *Research Methodology: Tools and Techniques*. Romania.
- Pedhazur, E. J. & Schmelkin, L. P. (1991). *Measurement, Design, and Analysis: An Integrated Approach.* Hove, East Sussex: Taylor & Francis Group.
- Pekuri, A. Haapasalo, H. & Herrala, M. (2011). Productivity and Performance Management – Managerial Practices in the Construction Industry. *International Journal of Performance Measurement*, 1(1): 39-58.
- Pitelis, C.N. (2004). Edith Penrose and the Resource-Based View of (International) Business Strategy. *International Business Review*, 13(4): 523-532.

- Ponterotto, J.G. (2005). Qualitative Research in Counseling Psychology: A Primer on Research Paradigms and Philosophy of Scheme. *Journal of Counseling Psychology*, 52(2): 126.
- PMI, (2008). Guide to Project Management Body of Knowledge. *Project Management Institute*, New Square, PA, USA.
- PPOA. (2010). *Guidelines for Potential Bidders*. (2nd edition).
- Punch, K. F. (2005). *Introduction to Social Research*. (2nd Edition). London: SAGE Publications Ltd.
- Quiroz, C. (2005). *Options for Implementing Performance-Based Contracts*'. Transport Forum, Washington DC, March 7-11, 2005.
- Radosaljivic, M. and Bennett, J. (2012). *Construction Management Strategies: A theory of Construction* Management. London: Wiley-Blakwell.
- Rahman, I.A., Memon, A.H. & Karim, A.T.A. (2013). Significant Factors Causing Cost Overruns in Large Construction Projects in Malaysia. *Journal of Applied Sciences*, 13(2): 286-293.
- Rao, M.V.K., Kumar, V.S.S. & Kumar, P.R. (2016). Prequalification of Contractor in the Construction Industry Using Multi-Attribute Utility Theory: A Multiplicative Approach. *Malaysian Journal of Civil Engineering*, 28(3): 467-480.
- Rashvand, P., Majid, M.Z.A., Baniahmadia, M. and Ghavamirad, F. (2015). Contractor Selection at Prequalification Stage: Current Evaluation and Shortcomings. *Jurnal Teknologi (Sciences & Engineering)*, 77(16): 81-89.
- Razali, N.M. & Wah, Y.B. (2011). Power Comparisons of Shapiro-Wilk, Kolmogrov-Smirnov, Lillierfors and Anderson-Darling Tests. *Journal of Statistical Modeling and Analytics*, 2: 21-33.
- Republic of Kenya. (2010). Physical Infrastructure Sector MTEF REPORT, 2010/11-2012/13, Nairobi.
- Rhodes, C. (2015). Construction Industry: Statistics and Policy. Briefing Paper Number 01432.
- Rigotti, E., Migliaccio, G.C. 7 De Marco, A. (2015). Comparing Performance of Construction Projects Delivered through Different Methods. In: 5th International/11th Construction Speciality Conference, Vancouver, 7-11 June 2015. Pp. 1582-1591.
- Rossi, P.H., Lipsey, M. W & Freeman, H.E. (2004). *Evaluation: A Systematic Approach* (7th ed.). London: Sage Publications.

- Rugman, A. & Verbeke, A. (2002). EDITH Penrose's Contribution To The Resource-Based View of Strategic Management. *Strategic Management Journal*, 23:769-780.
- Russell, J.S. & Skibniewski, M.J. (1988). Decision criteria in contractor prequalification, *Journal of Management in Engineering*, ASCE, 4(2): 148-64.
- Sabet, P.G.P., Aadal, H., Jamshidi, M.H.M & Rad, K.G. (2013). Application of Domino Theory to Justify and Prevent Accident Occurrence in Construction Sites. *Journal of Mechanical and Civil Engineering (IOSR-JMCE)*, 6(2): 72-76.
- Sadeh, A., Dvir, D. & Shenhar, A. (2000). The Role of Contract Type in the Success of R&D Defense Projects under Increasing Uncertainty. *Project Management Journal*, 31(3): 14-21.
- Salapatas, J.N. (1985). Performance Measurement for Projects and Project Management. Project *Management Journal*, 16(3): 29-33.
- Samelson, N.M. & Levitt, R.E. (1982). Owner's guidelines for selecting safe contractors, *Journal of Construction Div*, ASCE, 108: 617-23.
- Saunders, M., Lewis, P. & Thornhill, A. (2009). *Research Methods for Business Students*. New York: Pearson.
- Seboru, M.A., Mulwa, A.S., Kyalo, D.N. & Rambo, C.M. (2016a). Acquisition of Materials and Performance of Road Construction Projects in Kenya: A Case of Nairobi County. *European Scientific Journal*, 12(32): 221-250.
- Seboru, M.A., Mulwa, A.S., Kyalo, D.N. & Rambo, C.M. (2016b). Procurement of Labour and Performance of Road Construction Projects in Kenya: A Case of Nairobi County. *International Journal of Innovative Research & Development*, 5(12): 150-161.
- Seboru, M.A. (2017). Resource Management, Project Scheduling, Project Manager's Characteristics, and Performance of Road Construction Projects in Kenya: A Case of Nairobi County (PhD Thesis). Graduate Library: University of Nairobi.
- Sekaran, U. (2003). *Research methods for Business: A Skill Building Approach*. New York: John Wiley & Sons.
- Sekaran, U. (2006). *Research methods for Business: A Skill Building Approach*. (4th Edition). New Delhi: John & Sons.
- Shapiro, S.S. & Wilk, M.B. (1965). An Analysis of Variance Test for Normality (Complete Samples). *Biometrika*, 52(3/4): 591-611.
- Shenhar, A.J., Levy, O. & Dvir, D. (1997). Mapping the Dimensions of Project Success. *Project Management Journal*, 8(2): 5-13.

- Shenhar, A.J. (2001). One size does not fit all projects: Exploring classical contingency domains. *Management Science*, 47 (3):394-414.
- Shenhar, A.J. & Dvir, D. (2007). Reinventing Project Management. Bost: Havard Business School Press.
- Singh, A.S. & Masuku, M.B. (2014). Sampling Techniques & Determination of Sample Size in Applied Statistics Research: An Overview. *International Journal of Economics, Commerce and Management*, 2(11): ISSN 2348 0386.
- Singh, Y.K. (2006). *Fundamental of Research methodology and Statistics*. New Delhi: New Age International (P) Ltd.
- Somekh, B. & Lewin, C. (Eds.). (2015). *Research methods in the social sciences*. London: Sage.
- Stewart, R. (1967). Manager and their Job. London: Macmillan.
- Stufflebeam, D. & Shinkfield, A. (2007). *Evaluation Theory, Models and Application*. San Francisco: Jossey-Bass.
- Suraji, A. Duff, A. R. & Peckitt, S.J. (2001). Development of Causal Model of Construction Accident Causation. *Journal of Construction Engineering and Management*, 127(4): 337-344.
- Svinicki, M.D. (2010). A Guide on Conceptual Frameworks for Research in Engineering Education. Rigorous Research in Engineering Education NSF DUE-0341127, due-0817461.
- Tabachnick, B.G. & Fidell, L.S. (1996). Using Multivariate Statistics (3rd ed.). New York.
- Tam, C.M., Zeng, S.X. & Deng, Z.M. (2004). Identifying Elements of Poor Construction Safety Management in China. Safety Science, 42: 569-586.
- Tashakkori, A. & Creswell, J.W. (2007). The New Era of Mixed Methods. *Journal of Mixed Methods Research*, 191): 1-5.
- Theriou, N.G. Aggelidis, V. & Theriou, G. (2009). A Theoretical Framework Contrasting the Resource-Based Perspective and Knoledge-Based View. *European Research Studies*, 7(3): 177-190.
- Thomas, S.N., Palaneeswaran, E. and Kumaraswamy, M.M. (2002). A dynamic e-reporting system for contractor's performance appraisal, *Journal Adv. Eng.* Software, 33(6): 339–349.
- Trivedi, M. K., Pandey, M. K. & Bhadoria, S. S. (2011). Prequalification of Construction Contractor using a FAHP. *International Journal of Computer Applications*. 28(10).

- UKaid. (2015). Uraban Infrastructure in Sub-Saharan Africa Harnessing Land Values, Housing and Transport. Report on Nairobi Case Study, Report No 1.8, 31 July, 2015.
- Umugwaneza, A. & Kule, J.W. (2016). Role of Monitoring and Evaluation on Project Sustainability in Rwanda. A Case Study of Electricity Access Scale-Up and Sector-Wide Approach Development Project (EASSDP). Europe Journal of Business and Social Sciences, 597): 159-177.
- UNDP. (2009). Handbook on Planning, Monitoring and Evaluation for Development Results. New York.
- Waithera, A. (2017). We'll Award Foreign Firms If You Delay Work, CS Macharia Warns Contractors. Retrieved on 10 January, 2018, from: <u>https://www.thestar.co.ke/news/2017/01/18/we-award-foreign-firms-if-delay-work-cs-machariawarns_c148041</u>
- Wambui, D. N., Ombui, K. & Kagiri, A. (2015). Factors Affecting Completion of Road Construction Projects in Nairobi City County: Case Study of Kenya Urban Roads Authority (KURA). *International Journal of Scientific and Research Publications*, 5 (11): 525-547.
- Wambugu, L.N., Kyalo, N. D., Mbii, M. & Nyonje, R. O. (2015). *Research Methods: Theory and Practice*. Nairobi: Aura Publishers.
- Wanjala, M.Y., Iravo, M.A., Odhiambo, R. & Shalle, N.I. (2017). Effect of Monitoring Techniques on Project Performance of Kenyan State Corporations. *European Scientific Journal*, 13(19): 264-280.
- Wanzala, O. (2017). Kenya Faces Shortages of Certified Engineers, Daily Nation, Thursday June 8 2017, retrieved from: <u>https://www.nation.co.ke/news/Kenya-faces-shortageof-engineers/1056-3960396-18gss0z/index.html</u>
- Wasike, W.S.K. (2001). Road Infrastructure Policies in Kenya: Historical Trends and Current Challenges. KIPPRA Working Paper No. 1.
- Wang, Y., Li, Z. & Shi, F. (2015). Factors Influencing mechanism of Construction Development Transformation in China Based on SEM. *Discrete Dynamics in Nature* and Society, Volume 2015, Article ID 219865.
- Watt, D., Kayis, B. & Willey, K. (2008) Identifying key factors in the evaluation of tenders for projects and services. *International Journal of Project Management*, 27:250-260.
- Weil, D. (2001). Assessing OSHA Performance: New Evidence from the Construction Industry. *Journal of Policy Analysis and Management*, 20(4): 651-674.

- Williams, C. (2007). Research Methods. Journal of Business & Economic Research, 5(3): 65-72.
- Wong, C. H., Nicholas, J. & Holt, G. D. (2003). Using Multivariate Techniques for Developing Contractor Classification Models. Engineering. *Construction and Architectural Management*, 10: 99-116.
- World Bank. (2014). Implementation Status and Results Kenya: Kenya Transport Sector Support Project (P12409). Report No: ISR13712.
- Youssef, A., & El-ghonamie, A. (2015) Factors That Determine Capital Structure in Building Material and Construction Listed Firms: Egypt Case. *International Journal of Financial Research*, 6 (4): 46-59.
- Zenabu, T.Z. & Getachew, T.A. (2015). Causes of Contractor Cost Overrun in Construction Projects: The Case of Ethiopian Construction Sector. *International Journal* of *Business and Economics Research*, 4(4):180-191.
- Zedan, H. & Skitmore, R.M. (1994). *Contractors' prequalification and bids evaluation* (unpublished).
- Zikmund, W.G. (2003). Business Research Methods. Mason, Ohio: Thomson.
- Zinbarg, R.E., Revelle, W., Yovel, I. & Li, W. (2005). Cronbach's Alpha, Revelle's Beta, McDonald's Omega: Their Relations with Each other and Two Alternative Conceptualizations of Reliability. *Psychometika*, 70: 123-133.
- Zuofa, T. & Ochieng, E.G. (2014). Project Failure: The Way Forward and Panacea for Development. *International Journal of Business and Management*, 9(11): 1833-3850.

APPENDICES

Appendix I: Letter of Request of Transmittal of Data to Respondents

James Mushori P.O. Box 7144 – 00300, Nairobi Mobile Phone: 0721397073 Email: jameskenya23@yahoo.com

.....

•		• •	•	•	• •	• •		• •	•	•	•	•	•		•	•	•	•	•	•	•	•		•	•	•	•	•		 •	•	•	•	•		•	•	•	•				•	
P		C).	E	3	0))	ĸ	•	•	•	•	•			•	•	•		•	•	•		•	•	•	•	•			•	•	•	•			•	•	•		•	•••	•••	
N	J	A	Ι	F	l	C)	F	3]	[

Dear Respondent,

RE: SURVEY DATA COLLECTION

I am a doctoral candidate at the University of Nairobi undertaking studies leading to award of the Doctor of Philosophy degree in Project Planning and Management. According to the academic policy requirements for graduation, I am expected to present a thesis. In this regard, I am undertaking a study entitled: "Contractors' Capacity Evaluation in Tender Award, Process Monitoring and Performance of Road Construction Infrastructural Projects in Nairobi City County, Kenya."

The study has identified you as a respondent based on the criteria set. By this letter, therefore, I hereby request for your assistance in data collection through response to the set of questions in the attached questionnaire. Your responses shall be used strictly for the purposes here-stated and shall remain as confidential as possible. Should you express interest in reviewing the final study report, a copy will be availed accordingly. I will highly appreciate your assistance.

Kind regards,

Drus I fory .

James Mushori

Appendix II: Student's Introductory Letter

UNIVERSITY OF NAIROBI OPEN, DISTANCE e-LEARNING CAMPUS SCHOOL OF OPEN AND DISTANCE LEARNING DEPARTMENT OF OPEN LEARNING <u>NAIROBI LEARNING CENTRE</u>

Your Ref:

Our Ref:

Telephone: 318262 Ext. 120

REF: UON/ODeL /NLC/29/241

12th September, 2018

Gandhi Wing, Ground Floor

Main Campus

P.O. Box 30197

NAIROBI

TO WHOM IT MAY CONCERN

RE: JAMES MUSHORI - REG NO - L83/50457/2016

This is to confirm that the above named is a student at the University of Nairobi, Open Distance and e_Learning (ODeL)Campus, School of Open and Distance learning, Department of Open Learning pursuing Doctor of Philosophy in Project Planning and Management.

He has successfully completed the coursework and fully registered as PhD candidate in Project Planning and Management. He is expected to conduct his final research in the same programme. Thesis titled "Contractors' Capacity Evaluation in Tender Award, Process Monitoring and Performance of Road Construction Infrastructural Projects in Nairobi County, Kenya."

Any assistance accorded to him will be highly appreciated.

DR. ANGELINE MULWA COORDINATOR NAIROBI REGION

Appendix III: Questionnaire for Senior Engineers and Managing Directors in Construction Companies and Consulting Engineering Firms

I hereby acknowledge your cooperation and time dedicated to the completion of the attached questionnaire. The exercise will take you about 30 minutes to complete. The objective of the questionnaire is to collect data on "Contractors' Capacity Evaluation in Tender Award, Process Monitoring and road construction infrastructural project performance in Nairobi County, Kenya." The scope of the study is Eastern Bypass and Oute-Ring roads in Nairobi County.

The data will be used exclusively for academic purposes, being a fulfillment of requirements for the award of the Doctor of Philosophy degree in Project Planning and Management, University of Nairobi. At no point, therefore, will the results be traceable to you or any other individual. I hence request you to freely and honestly answer the below questions. The questionnaire comprises seven sections, with a total of 34 sub-sections. Kindly seek guidance from the instructions provided at the introduction of every sub-section.

Section A: Demographic Information

Kindly answer the following questions by ticking (\checkmark) in the appropriate box or writing your answer in the space provided.

1. What is your age bracket? (Please tick one)

- i. 20 and below years ()
- ii. 21 30 years ()
- iii. 31 40 years ()
- iv. 41 50 years ()
- v. 51 60 years ()
- vi. 61 and above years ()
- 2. Please select your gender. (Please tick one)
 - i. Male ()
 - ii. Female ()

	3.	What is	your	highest	level	of	education?	
--	----	---------	------	---------	-------	----	------------	--

i College Certi)		
I. College Ceru	ifica	ite	(
ii. College Diple	oma	l	()		
iii. Bachelor's D	egre	ee	()		
iv. Master's Deg	gree		()		
v. PhD			()		
vi. If other pleas	e sp	ecif	y			
4. What is your statu	s in	you	r oi	rgar	nization?	
i. MD	()				
ii. Director	()				
iii. Manager	()				
iv. Senior Staff	()				
		``				
v. Supervisor	()				
v. Supervisor5. In terms of years of	(of ex) kper	ienc	ce, v	which one below do you fit in	1?
v. Supervisor5. In terms of years ofi. Less than 5 y) of ex rears) xper	ienc (ce, v)	which one below do you fit in	1?
 v. Supervisor 5. In terms of years of i. Less than 5 y ii. 5 - 10 years 	(of ex vears) kper	iena ((ce, v))	which one below do you fit in	1?
 v. Supervisor 5. In terms of years of i. Less than 5 y ii. 5 - 10 years iii. 11 - 15 years 	(of ex rears) kper	iend ((ce, v)))	which one below do you fit in	1?
 v. Supervisor 5. In terms of years of i. Less than 5 y ii. 5 - 10 years iii. 11 - 15 years iv. 16 - 20 years 	(of ex rears) xper	iend (((ce, v)))	which one below do you fit in	1?
 v. Supervisor 5. In terms of years of i. Less than 5 y ii. 5 - 10 years iii. 11 - 15 years iv. 16 - 20 years v. Above 21 	(of ex rears) kper	iend ((((ce, v))))	which one below do you fit in	1?
 v. Supervisor 5. In terms of years of i. Less than 5 y ii. 5 - 10 years iii. 11 - 15 years iv. 16 - 20 years v. Above 21 6. How long has you 	(of ex rears) kper	iend ((((zati	ce, v)))) ion	which one below do you fit in been operating in years?	1?
 v. Supervisor 5. In terms of years of i. Less than 5 y ii. 5 - 10 years iii. 11 - 15 years iv. 16 - 20 years v. Above 21 6. How long has you i. 5 and below y 	(of ex rears r or year) kper s gani	iend ((((zati	cce, v)))) ion	which one below do you fit in been operating in years?	1?
 v. Supervisor 5. In terms of years of i. Less than 5 y ii. 5 - 10 years iii. 11 - 15 years iv. 16 - 20 years v. Above 21 6. How long has you i. 5 and below y ii. 6 - 10 years 	(of execution rears) kper 3 gani	iend ((((zati ((cce, v)))) ion))	which one below do you fit in been operating in years?	1?
 v. Supervisor 5. In terms of years of i. Less than 5 y ii. 5 - 10 years iii. 11 - 15 years iv. 16 - 20 years v. Above 21 6. How long has you i. 5 and below y ii. 6 - 10 years iii. 11 - 15 years 	(of execution rears) kper S gani	iend ((((zati ((cce, v)))) ion)))	which one below do you fit in been operating in years?	1?
 v. Supervisor 5. In terms of years of i. Less than 5 y ii. 5 - 10 years iii. 11 - 15 years iv. 16 - 20 years v. Above 21 6. How long has you i. 5 and below y ii. 6 - 10 years iii. 11 - 15 years iv. 16 - 20 years iv. 16 - 20 years 	(of e» ears r or year) kper S	iend ((((zati ((((cce, v)))) ion))))	which one below do you fit in been operating in years?	1?
 v. Supervisor 5. In terms of years of i. Less than 5 y ii. 5 - 10 years iii. 11 - 15 years iv. 16 - 20 years v. Above 21 6. How long has you i. 5 and below y ii. 6 - 10 years iii. 11 - 15 years iv. 16 - 20 years v. 21 and above 	(of execution rears) kper s gani s	iend ((((zati (((((cce, v)))) ion)))))	which one below do you fit in been operating in years?	1?

Section B: Performance of Road Construction Infrastructural Projects

8. This section wants to establish the road construction infrastructural project performance in Nairobi County. In your own opinion show your agreement or disagreement on the following statements using a Likert scale where 5-Strongly Agree (SA), 4-Agree (A), 3-Neutral (N), 2-Disagree (D), and 1-Strongly Disagree (SD). Please tick (\checkmark) the most appropriate response from the list provided.

Item	Statement	Strongly Agree	Agree	Neutral	Disagree	Strongly Disagree
		5	4	3	2	1
	(a) Quality of Completed Road in terms of					
	condition of drainage/water table					
1	The road is built with a functional drainage systems to provide long-term road performance					
2	The road is well constructed with water table that does not permit flooding					
3	Road constructed with adequate drainage systems depends entirely on contractor capacity to do the job					
4	Drainage system is operative and allows passage of residual					
5	Proper workmanship is evidenced by lack of potholes					
	(b) Mobility and Speed – delays, congestion, average travel speed			•		
6	Congestion has significantly reduced					
7	Delays are reduced					
8	Average travel speed has generally improved					
	(c) Comfort/convenience in terms of smoothness and roughness of the road					
9	The texture of the road is good					
10	The skid resistance of the road surface is good					
11	Flooding of the road is not experienced during heavy downpours (rainy season)					
	(e) Road User benefits in terms of cost reduction		I	1		
	travel time reduction, vehicle operating cost					
10	reduction					1
12	The vehicles take longer to depreciates					

13	The vehicle breakdowns on the roads has reduced due			
	to good road constructed			
14	Due to properly constructed road the road user costs			
	has tremendously reduced			
	(I) Road Safety			
15	Reported cases of accidents have reduced			
16	Roads are having enough signage			
17	Bumps are provided in the designated places			
18	Road users do know the meaning of most of the			
	signage language			
19	Pedestrians' walkways adequately provided			
20	Footbridges are sufficiently provided			
21	Bus stops are well and placed in the right designated			
	areas			

What are the challenges you have experienced as far as performance of road is concerned?

Section C: Financial Ability of Contractors

9. This section seeks to elicit data on the state of Financial Ability of Contractors in Nairobi County. In your own opinion show your agreement or disagreement on the following statements using a Likert scale where 5-Strongly Agree (SA), 4-Agree (A), 3-Neutral (N), 2-Disagree (D), and 1-Strongly Disagree (SD). Please tick (\checkmark) the most appropriate response from the list provided.

Item	Statement	Strongly Agree	Agree	Neutral	Disagree	Strongly Disagree
		5	4	3	2	1
	(a) Credit Rating					
22	All construction firms undertaking road construction have a good credit record					
23	Credit rating does affect contractors' accessibility to bank's facility/loan					
24	Credit rating does affect contractors' accessing other sources of finance for construction work					
	(b) Bank's Good Will					

25	Contractors with bank's good will tend get their construction financial requests fully funded by the bank			
26	Contractors' need bank's good will to access loan facility to complete their construction work			
	(c) Flexibility of loan agreements			
27	Contractors get flexible loan agreements with their respective banks for construction works			
28	Contractors can operate with even stringent loan agreements and deliver quality projects			
	(d) Turnover, profits obligations, amounts due			
29	Firms with good turnover have good financial health			
30	Level of cash flow affects a construction firms operations			
	(e) Owned Funds			
31	Firms with their own funds tend to contribute positive road performance			
32	Owned funds plus other sources of capital contribute to constructing a road that leads to good performance			

In your view, how else would contractors' financial ability influence performance of the road construction infrastructural projects?

Section D: Technical Ability of Contractors

10. This section seeks to elicit data on the state of Technical Ability of Contractors in Nairobi County. In your own opinion show your agreement or disagreement on the following statements using a Likert scale where 5-Strongly Agree (SA), 4-Agree (A), 3-Neutral (N), 2-Disagree (D), and 1-Strongly Disagree (SD). Please tick (\checkmark) the most appropriate response from the list provided.

Item	Statement	Strongly Agree	Agree	Neutral	Disagree	Strongly	Disagree
		5	4	3	2	1	
	(a) Experience in terms of catchment						
	national or local projects						
33	Contractors project catchment experience (local/national/international) are factored in during contractor evaluation						
34	Project performance does depend on the previous catchment experience						
	(b) Plant and Equipment						
35	The quality of plant and equipment used determines the quality of the project						
36	Adequate supply of plant and equipment in road construction has a significant effect on project performance during the life of the project						
37	The use of current technology determines the final product and its performance in road construction						
38	The use of own plant and equipment influences project performance						
	(c) Quality of materials used						
39	The right use of materials during construction has significant effect on project performance						
40	Correct mixing of materials does contribute to quality roads that meet road user satisfaction i.e. road free from potholes						
	(d) Experience in terms of size of projects completed						
41	The size of the road(s) completed in the past can determine the contractors' ability to deliver on project performance						
42	All contactors have experience in undertaking large scale road construction to assure project performance						
43	Only contractors with experience in undertaking big size of road construction works can assure project performance						
	(e) Availability of technical manpower/personnel						
44	Majority of the road construction personnel are						
----	--	--	--	--			
	professional and skilled						
45	Engagement of professional project leader contributes to a successful project performance						
46	The type of personnel working on road construction cannot influence project performance as long the project leader is trained						
47	All casual laborers in road construction are trained hence project performance						

State how significantly the technical ability of the contractors would influence the performance of the road.

Section E: Management Ability of Contractors

11. This section seeks to elicit data on the state of Management Ability of Contractors in Nairobi County. In your own opinion show your agreement or disagreement on the following statements using a Likert scale where 5-Strongly Agree (SA), 4-Agree (A), 3-Neutral (N), 2-Disagree (D), and 1-Strongly Disagree (SD). Please tick (\checkmark) the most appropriate response from the list provided.

Item	Statement	Strongly Agree	Agree	Neutral	Disagree	Strongly Disagree
		5	4	3	2	1
	(a) Past performance & quality					
48	Contractors current performance is influenced by past performance significantly					
49	Previous management commitment can easily be repeated in the current road performance					
50	Road performance depends on the leadership guidance					

	(b) Quality control policy			
51	A firm's quality control policy has significance on road performance			
52	Construction contractors are obligated to have a quality control policy to ensure road performance			
	(c) Management Knowledge			
53	Contractors have management knowledge hence road performance			
54	Management knowledge in construction is necessary to ensure road performance			
	(d) Project management system			
55	A proper management system will provide proper oversight in construction			
56	Most contractors have the necessary project management system			
	(e) Experience of management personnel			
57	The number of years of the management personnel in road construction guarantee road performance			
58	Most of the construction contractors operate with management teams that meet minimum requirement in terms of experience			
59	Experience of managment personnel in construction does guarantee highly well done road			

By listing examples, how is the management ability of the contractors stand to influence performance of the road.

Section F: Contractors' Safety Record

12. This section seeks to elicit data on the state of contractors' safety record in Nairobi City County. In your own opinion show your agreement or disagreement on the following statements using a Likert scale where 5-Strongly Agree (SA), 4-Agree (A), 3-Neutral (N), 2-Disagree (D), and 1-Strongly Disagree (SD). Please tick (\checkmark) the most appropriate response from the list provided.

Item	Statement	u Strongly Aoree	aaree 4	2 Neutral	2 Disagree	1 Strongly Disagree
	(a) Safety Policy Management system					
60	Most contractors have a safety policy management system					
61	Safety for most contractors is a priority to road performance after completion					
62	Safety is taken into account future road performance					
63	Road contractors find it necessary to have a policy management system to ensure road performance because the projects they undertake are one-time					
	(b) Insurance policy					
64	Construction personnel under insurance policy can also feel obligated to provide and enforce safety measures which can contribute to road performance and particularly road user satisfaction					
65	Most construction companies do have insurance policy					
	(c) Compliance behavior					
66	Contractors level of compliance to safety administration is clear					
67	Contractors fully comply with safety requirements					
68	The environment in which contractors operate does appraise compliance to safety procedures					
	(d) Adequacy of standards in addressing safety outcome				·	
69	Construction contractors have adequate standards to address issues of road performance					
70	Adequate safety standards guarantee road performance					
71	Construction safety standards are reviewed and conform to international standards					
	(e) Certification in OSHA					
72	Construction firms/contractors certified in OSHA tend to have good record in road performance					
73	Certification in OSHA is a must to ensure road performance in construction is adhered to					

In what ways do you think contractors' health and safety record are likely to influence the performance of road?

.....

.....

.....

Section G: Process Monitoring

13. This section seeks to elicit data on the state of contractors' health and safety record in Nairobi County. In your own opinion show your agreement or disagreement on the following statements using a Likert scale where 5-Strongly Agree (SA), 4-Agree (A), 3-Neutral (N), 2-Disagree (D), and 1-Strongly Disagree (SD). Please tick (\checkmark) the most appropriate response from the list provided.

Item	Statement	Strongly Agree	Agree	Neutral	Disagree	Strongly Disagree
		5	4	3	2	1
	(a) Compliance with construction specification					
74	Firms/contractors who comply with construction specification tend to produce highly quality roads whose performance meet road user satisfaction					
75	Contractors are keen on complying with road construction specifications					
76	Construction specifications are met by most of the road construction contractors					
77	Contractors who meet minimum requirement, try to make improvements after completing their tasks.					
	(b) Compliance with regulatory bodies'					
78	Construction regulatory bodies' requirements are adequate to address and contribute to road performance					
79	Compliance with regulatory bodies like NCA does guarantee road performance					
80	All contractors comply with regulatory bodies' requirements					
	(c) Compliance with County by-laws					
81	The county by-laws are adequate in addressing the issues of road performance					
82	Contractors/construction adhere to County by-laws					
83	Contractors/firms that adhere to County by-laws tend do well in terms of road performance					
	(d) Adherence to allocation and utilization of					

	resources for accomplishment of project's objectives			
84	All contractors allocate enough resources to construction works hence good road performance			
85	Contractors utilize the right materials and equipment to ensure quality work done			
86	Allocation and utilization of right materials and equipment does always lead road performance			

In your view, how do you see the role of process monitoring in moderating the relationship between contractors' capacity evaluation in tender award and road construction infrastructural project performance?

What influence, by listing examples, do you think would happen or have when the contractors' capacity evaluation in tender award (all variables held together) are combined on the performance of the road construction infrastructural projects.

Thank you

Appendix IV: Interview Schedule for Matatu Drivers

I hereby acknowledge your cooperation and time dedicated to the completion of the attached questionnaire. The exercise will take you about 30 minutes to complete. The objective of the questionnaire is to collect data on "Contractors' Capacity Evaluation in Tender Award, Process Monitoring and road construction infrastructural project performance in Nairobi County, Kenya."

The data will be used exclusively for academic purposes, being a fulfillment of requirements for the award of the Doctor of Philosophy degree in Project Planning and Management, University of Nairobi. At no point, therefore, will the results be traceable to you or any other individual. I hence request you to freely and honestly answer the below questions. The questionnaire comprises seven sections, with a total of 34 sub-sections. Kindly seek guidance from the instructions provided at the introduction of every sub-section.

Section A: Demographic Information

Please respond to the following questions by ticking (\checkmark) appropriate box or writing your answer in the space provided.

1. What is your age bracket? (Please tick one)

i.	Below 20 years	()
ii.	21 - 30 years	()
iii.	31 - 40 years	()

- iv. 41 50 years ()
- v. 51 60 years ()
- vi. Above 60 years ()
- 2. Please specify your gender. (Please tick one)
 - i. Male ()
 - ii. Female ()
- 3. What is your highest level of education?
 - i. College Certificate ()
 - ii. College Diploma ()
 - iii. Bachelor's Degree ()

iv. Master's Degree () v. PhD () vi. If other please specify..... 4. What is your status in your organization? i. Driver () ii. Driver/Conductor () 5. In terms of years of experience, which one below do you fit in? () i. 5 and below years ii. 6 - 10 years ()iii. 11 - 15 years ()iv. 16 - 20 years () v. 21 and above years () How long has your vehicle been operating on the road in years? 6. i. 5 and below years () () ii. 6 and 10 years iii. 11 and 15 years () iv. 16 and 20 years ()v. 21 and above years ()7. State the name of the road you ply

Section B: Performance of Road Construction Infrastructural Projects

8. This section wants to establish the road construction infrastructural project performance in Nairobi County. In your own opinion show your agreement or disagreement on the following statements using a Likert scale where 5-Strongly Agree (SA), 4-Agree (A), 3-Neutral (N), 2-Disagree (D), and 1-Strongly Disagree (SD). Please tick (✓) the most appropriate response from the list provided.

Item	Statement	Strongly Agree	Agree	Neutral	Disagree	Strongly Disagree
		5	4	3	2	1
	(a) Quality of Completed Road in terms of condition of drainage/water table					1
1	The road is built with a functional drainage systems to provide long-term road performance					
2	The road is well constructed with water table that does not permit flooding					
3	Road constructed with adequate drainage systems depends entirely on contractor capacity to do the job					
4	Drainage system is operative and allows passage of residual					
5	Proper workmanship is evidenced by lack of potholes					
	(b) Mobility and Speed – delays, congestion, average travel speed					
6	Congestion has significantly reduced					
7	Delays are reduced					
8	Average travel speed has generally improved					
	(c) Comfort/convenience in terms of smoothness and roughness of the road					
9	The texture of the road is good					
10	The skid resistance of the road surface is good					
11	Flooding of the road is not experienced during heavy downpours (rainy season)					
	(e) Road User benefits in terms of cost reduction, travel time reduction, vehicle operating cost reduction		I	<u> </u>	<u> </u>	
12	The vehicles take longer to depreciates					
13	The vehicle breakdowns on the roads has reduced due					

	to good road constructed			
14	Due to properly constructed road the road user costs			
	has tremendously reduced			
	(1) Road Safety			
15	Reported cases of accidents have reduced			
16	Roads are having enough signage			
17	Bumps are provided in the designated places			
18	Road users do know the meaning of most of the			
	signage language			
19	Pedestrians' walkways adequately provided			
20	Footbridges are sufficiently provided			
21	Bus stops are well and placed in the right designated			
	areas			

What are the challenges you have experienced as far as performance of road is concerned?

Section C: Financial Ability of Contractors

9. This section seeks to elicit data on the state of Financial Ability of Contractors in Nairobi County. In your own opinion show your agreement or disagreement on the following statements using a Likert scale where 5-Strongly Agree (SA), 4-Agree (A), 3-Neutral (N), 2-Disagree (D), and 1-Strongly Disagree (SD). Please tick (\checkmark) the most appropriate response from the list provided.

Item	Statement	Strongly Agree	Agree	Neutral	Disagree	Strongly Disagree
		5	4	3	2	1
	(a) Credit Rating					
22	All construction firms undertaking road construction have a good credit record					
23	Credit rating does affect contractors' accessibility to bank's facility/loan					
24	Credit rating does affect contractors' accessing other sources of finance for construction work					
	(b) Bank's Good Will					
25	Contractors with bank's good will tend get their					

	and the stimulation of the second state of the found of the state of t			
	construction financial requests fully funded by the bank			
26	Contractors' need bank's good will to access loan facility			
	to complete their construction work			
	(c) Flexibility of loan agreements			
27	Contractors get flexible loan agreements with their respective banks for construction works			
28	Contractors can operate with even stringent loan agreements and deliver quality projects			
	(d) Turnover, profits obligations, amounts due			
29	Firms with good turnover have good financial health			
30	Level of cash flow affects a construction firms operations			
	(e) Owned Funds			
31	Firms with their own funds tend to contribute positive			
	road performance			
32	Owned funds plus other sources of capital contribute to			
	constructing a road that leads to good performance			

In your view, how else would contractors' financial ability influence performance of the road construction infrastructural projects?

Section D: Technical Ability of Contractors

10. This section seeks to elicit data on the state of Technical Ability of Contractors in Nairobi County. In your own opinion show your agreement or disagreement on the following statements using a Likert scale where 5-Strongly Agree (SA), 4-Agree (A), 3-Neutral (N), 2-Disagree (D), and 1-Strongly Disagree (SD). Please tick (\checkmark) the most appropriate response from the list provided.

Item	Statement	Strongly Agree	Agree	Neutral	Disagree	Strongly	Disagree
		5	4	3	2	1	
	(a) Experience in terms of catchment						
	national or local projects						
33	Contractors project catchment experience (local/national/international) are factored in during contractor evaluation						
34	Project performance does depend on the previous catchment experience						
	(b) Plant and Equipment						
35	The quality of plant and equipment used determines the quality of the project						
36	Adequate supply of plant and equipment in road construction has a significant effect on project performance during the life of the project						
37	The use of current technology determines the final product and its performance in road construction						
38	The use of own plant and equipment influences project performance						
	(c) Quality of materials used						
39	The right use of materials during construction has significant effect on project performance						
40	Correct mixing of materials does contribute to quality roads that meet road user satisfaction i.e. road free from potholes						
	(d) Experience in terms of size of projects completed						
41	The size of the road(s) completed in the past can determine the contractors' ability to deliver on project performance						
42	All contactors have experience in undertaking large scale road construction to assure project performance						
43	Only contractors with experience in undertaking big size of road construction works can assure project performance						
	(e) Availability of technical manpower/personnel						

44	Majority of the road construction personnel are			
	professional and skilled			
45	Engagement of professional project leader contributes to a successful project performance			
46	The type of personnel working on road construction cannot influence project performance as long the project leader is trained			
47	All casual laborers in road construction are trained hence project performance			

State how significantly the technical ability of the contractors would influence the performance of the road.

Section E: Management Ability of Contractors

11. This section seeks to elicit data on the state of Management Ability of Contractors in Nairobi County. In your own opinion show your agreement or disagreement on the following statements using a Likert scale where 5-Strongly Agree (SA), 4-Agree (A), 3-Neutral (N), 2-Disagree (D), and 1-Strongly Disagree (SD). Please tick (\checkmark) the most appropriate response from the list provided.

Item	Statement	Strongly Agree	Agree	Neutral	Disagree	Strongly Disagree
		5	4	3	2	1
	(a) Past performance & quality					
48	Contractors current performance is influenced by past performance significantly					
49	Previous management commitment can easily be repeated in the current road performance					
50	Road performance depends on the leadership guidance					

	(b) Quality control policy			
51	A firm's quality control policy has significance on road performance			
52	Construction contractors are obligated to have a quality control policy to ensure road performance			
	(c) Management Knowledge			
53	Contractors have management knowledge hence road performance			
54	Management knowledge in construction is necessary to ensure road performance			
	(d) Project management system			
55	A proper management system will provide proper oversight in construction			
56	Most contractors have the necessary project management system			
	(e) Experience of management personnel			
57	The number of years of the management personnel in road construction guarantee road performance			
58	Most of the construction contractors operate with management teams that meet minimum requirement in terms of experience			
59	Experience of managment personnel in construction does guarantee highly well done road			

By listing examples, how is the management ability of the contractors stand to influence performance of the road.

Section F: Contractors' Safety Record

12. This section seeks to elicit data on the state of contractors' safety record in Nairobi City County. In your own opinion show your agreement or disagreement on the following statements using a Likert scale where 5-Strongly Agree (SA), 4-Agree (A), 3-Neutral (N), 2-Disagree (D), and 1-Strongly Disagree (SD). Please tick (\checkmark) the most appropriate response from the list provided.

Item	Statement	Strongly Agree	Agree	Neutral	Disagee	Strongly Disagree
		5	4	3	2	1
	(a) Safety Policy Management system				<u>. </u>	
60	Most contractors have a safety policy management system					
61	Safety for most contractors is a priority to road performance after completion					
62	Safety is taken into account future road performance					
63	Road contractors find it necessary to have a policy management system to ensure road performance because the projects they undertake are one-time					
	(b) Insurance policy					
64	Construction personnel under insurance policy can also feel obligated to provide and enforce safety measures which can contribute to road performance and particularly road user satisfaction					
65	Most construction companies do have insurance policy					
	(c) Compliance behavior					
66	Contractors level of compliance to safety administration is clear					
67	Contractors fully comply with safety requirements					
68	The environment in which contractors operate does appraise compliance to safety procedures					
	(d) Adequacy of standards in addressing safety					
	outcome					
69	Construction contractors have adequate standards to address issues of road performance					
70	Adequate safety standards guarantee road performance					
71	Construction safety standards are reviewed and conform to international standards					
	(e) Certification in OSHA					
72	Construction firms/contractors certified in OSHA tend to have good record in road performance					

73	Certification	in	OSHA	is	a	must	to	ensure	road			
	performance i	n co	onstructio	on is	s ac	lhered	to					

In what ways do you think contractors' health and safety record are likely to influence the performance of road?

.....

Section G: Process Monitoring

13. This section seeks to elicit data on the state of contractors' health and safety record in Nairobi County. In your own opinion show your agreement or disagreement on the following statements using a Likert scale where 5-Strongly Agree (SA), 4-Agree (A), 3-Neutral (N), 2-Disagree (D), and 1-Strongly Disagree (SD). Please tick (\checkmark) the most appropriate response from the list provided.

Item	Statement	Strongly Agree	Agree	Neutral	Disagree	Strongly Disagree
		5	4	3	2	1
	(a) Compliance with construction specification					
74	Firms/contractors who comply with construction specification tend to produce highly quality roads whose performance meet road user satisfaction					
75	Contractors are keen on complying with road construction specifications					
76	Construction specifications are met by most of the road construction contractors					
77	Contractors who meet minimum requirement, try to make improvements after completing their tasks.					
	(b) Compliance with regulatory bodies'					
	requirements					
78	Construction regulatory bodies' requirements are					
	adequate to address and contribute to road performance					
79	Compliance with regulatory bodies like NCA does guarantee road performance					
80	All contractors comply with regulatory bodies'					

	requirements			
	(c) Compliance with County by-laws			
81	The county by-laws are adequate in addressing the issues of road performance			
82	Contractors/construction firms adhere to County by- laws			
83	Contractors/firms that adhere to County by-laws tend do well in terms of road performance			
	(d) Adherence to allocation and utilization of			
	resources for accomplishment of project's			
	objectives			
84	All contractors allocate enough resources to construction works hence good road performance			
85	Contractors utilize the right materials and equipment to ensure quality work done			
86	Allocation and utilization of right materials and equipment does always lead road performance			

In your view, how do you see the role of process monitoring in moderating the relationship between contractors' capacity evaluation in tender award and road construction infrastructural project performance?

.....

What influence, by listing examples, do you think would happen or have when the contractors' capacity evaluation in tender award (all variables held together) are combined on the performance of the road construction infrastructural projects.

.....

Thank you

Appendix V: The County Director of Education Research Authorization

Republic of Kenya MINISTRY OF EDUCATION STATE DEPARTMENT OF EARLY LEARNING & BASIC EDUCATION

Telegrams: "SCHOOLING", Nairobi Telephone: Nairobi 020 2453699 Email: <u>rcenairobi@gmail.com</u> <u>cdenairobi@gmail.com</u> REGIONAL COORDINATOR OF EDUCATION NAIROBI REGION NYAYO HOUSE P.O. Box 74629 – 00200 NAIROBI

When replying please quote

Ref: RCE/NRB/RESEARCH/1 VOL. I

DATE: 15th October, 2018

James Mushori University of Nairobi P O Box 30197-00100 NAIROBI

RE: RESEARCH AUTHORIZATION

We are in receipt of a letter from the National Commission for Science, Technology and Innovation regarding research authorization in Nairobi County on "Contractors capacity evaluation in tender award, process monitoring and performance of road construction infrastructural projects in Nairobi County, Kenya".

This office has no objection and authority is hereby granted for a period ending 4th October, 2019 as indicated in the request letter.

Kindly inform the Sub County Director of Education of the Sub County you intend to visit.

5 000 2018 JAMES KIMOTHO 7462

FOR: REGIONAL COORDINATOR OF EDUCATION NAIROBI

C.C

Director General/CEO Nation Commission for Science, Technology and Innovation NAIROBI

Appendix VI: NACOSTI Research Authorization Letter

NATIONAL COMMISSION FOR SCIENCE, TECHNOLOGY AND INNOVATION

Telephone:+254-20-2213471. 2241349,3310571,2219420 Fax:+254-20-318245.318249 Email: dg@nacosti.go.ke Website : www.nacosti.go.ke When replying please quote

NACOSTE Unner Kabete Off Waiyaki Way P.O. Box 30623-00100 NAIROBI-KENYA

Ref. No. NACOSTI/P/18/50240/25965

Date: 4th October, 2018

James Mushori University of Nairobi P.O. Box 30197-00100 NAIROBI.

RE: RESEARCH AUTHORIZATION

Following your application for authority to carry out research on "Contractors' capacity evaluation in tender award, process monitoring and performance of road construction infrastructural projects in Nairobi County, Kenya" I am pleased to inform you that you have been authorized to undertake research in Nairobi County for the period ending 4th October, 2019.

You are advised to report to the County Commissioner and the County Director of Education, Nairobi County before embarking on the research project.

Kindly note that, as an applicant who has been licensed under the Science, Technology and Innovation Act, 2013 to conduct research in Kenya, you shall deposit a copy of the final research report to the Commission within one year of completion. The soft copy of the same should be submitted through the Online Research Information System.

mm

BONIFACE WANYAMA FOR: DIRECTOR-GENERAL/CEO

Copy to:

The County Commissioner Nairobi County.

The County Director of Education Nairobi County.

COUNTY COMMISSIONER NAIROBI COUNTY P. O. Box 30124-00100, NDI

TEL: 341856

Appendix VII: NACOSTI Research Permit

Appendix VIII: Krejcie and Morgan Table

Ν	S	N	S	N	S
10	10	220	140	1200	291
15	14	230	144	1300	297
20	19	240	148	1400	302
25	24	250	152	1500	306
30	28	260	155	1600	310
35	32	270	159	1700	313
40	36	280	162	1800	317
45	40	290	165	1900	320
50	44	300	169	2000	322
55	48	320	175	2200	327
60	52	340	181	2400	331
65	56	360	186	2600	335
70	59	380	191	2800	338
75	63	400	196	3000	341
80	66	420	201	3500	346
85	70	440	205	4000	351
90	73	460	210	4500	354
95	76	480	214	5000	357
100	80	500	217	6000	361
110	86	550	226	7000	364
120	92	600	234	8000	367
130	97	650	242	9000	368
140	103	700	248	10000	370
150	108	750	254	15000	375
160	113	800	260	20000	377
170	118	850	265	30000	379
180	123	900	269	40000	380
190	127	950	274	50000	381
200	132	1000	278	75000	382
210	136	1100	285	1000000	384

 TABLE 1

 Table for Determining Sample Size from a Given Population

Note.—*N* is population size.

S is sample size.

Source: Krejcie and Morgan (1970)

Appendix IX: Normality Test Results for Contractors' Financial Ability and Performance of Road Construction Infrastructural Projects

	Cases					
	Valid		Miss	sing	Total	
	N	Percent	Ν	Percent	N	Percent
Perform	153	100.0%	0	0.0%	153	100.0%
Finance	153	100.0%	0	0.0%	153	100.0%
Descripti	ves					
					Statistic	Std. Error
	Mean				3.3582	.02403
	95% (Confidence	Lowe	r Bound	3.3108	
	Interv	al for Mean	Uppe	r Bound	3.4057	
	5% T1	immed Mea	n		3.3544	
	Media	n			3.2857	
Perform	Variar	ice			.088	
	Std. D	eviation			.29718	
	Minin	num			2.71	
	Maxin	num			4.00	
	Range		1.29			
	Interq	uartile Rang	.50			
	Skewi	iess			.274	.196
	Kurto	sis			783	.390
	Mean				3.7920	.04311
	95% 0	Confidence	Lowe	r Bound	3.7068	
	Interv	al for Mean	Uppe	r Bound	3.8771	
	5% T1	immed Mea	n		3.7902	
	Media	n			3.9091	
	Variar	nce			.284	
Finance	Std. D	eviation			.53320	
	Minin	num		2.82		
	Maxin	num			4.90	
	Range				2.08	
	Interq	uartile Rang	e		.64	
	Skewn	ness			.098	.196
	Kurto	sis			- 721	390

	Kolmog	orov-Smir	Shapiro-Wilk			
	Statistic	df	Sig.	Statistic	df	Sig.
Perform	.134	153	.000	.964	153	.001
Finance	.113	153	.000	.960	153	.000

a. Lilliefors Significance Correction

Perform Stem-and-Leaf Plot

Frequency	Stem &	Leaf
2.00 2.00 8.00 26.00 25.00 16.00 7.00 15.00 13.00 15.00 2.00 16.00 3.00	27 . 28 . 29 . 30 . 31 . 32 . 33 . 34 . 35 . 36 . 37 . 38 . 39 .	11 05 05555555 000000444499999999999999999 4449999999999
3.00	40.	000

Stem	width:	.10
Each	leaf:	1 case(s)

Perform

Finance Stem-and-Leaf Plot

Frequency	Stem &	Leaf
10.00	2.	8888899999
17.00	з.	0000000000011111
16.00	з.	22222233333333
9.00	з.	44445555
17.00	з.	6666666666666677
18.00	з.	888888899999999999
35.00	4.	000000000000000000000000000000000000000
7.00	4.	2222222
2.00	4.	44
17.00	4.	6666666666666666
5.00	4.	88889
Stem width:	1.00	D
Each leaf:	1 ca	ase(s)

GRAPH

/SCATTERPLOT(BIVAR)=Finance WITH Perform
/MISSING=LISTWISE.

Appendix X: Normality Test Results for Contractors' Technical Ability and Performance of Road Construction Infrastructural Projects

			С	ases			
	Valid		M	issing		Total	
	Ν	Percent	Ν	Percen	t N	Percent	
Perform	153	100.0%	ó 0	0.0	% 153	100.0%	
Technical	153	100.0%	ó 0	0.0	% 153	100.0%	
Descriptive	2.5						
					Statistic	Std. Error	
	Mean				3.3582	.02403	
	95% Coi	nfidence	Lower B	ound	3.3108		
	Interval	for Mean	Upper B	ound	3.4057		
	5% Trim	med Mear	1		3.3544		
	Median				3.2857		
	Variance	•			.088		
Perform	Std. Dev	iation			.29718		
	Minimu	n		2.71			
	Maximu	m		4.00			
	Range			1.29			
	Interquartile Range				.50		
	Skewness				.274	.196	
	Kurtosis				783	.390	
	Mean				3.6876	.03050	
	95% Confidence		Lower B	ound	3.6273		
	Interval	for Mean	Upper B	ound	3.7478		
	5% Trim	nned Mear	1		3.6812		
	Median				3.6000		
	Variance	•			.142		
Technical	Std. Dev	iation			.37724		
N	Minimu	n		3.07			
Maximum		m			4.47		
	Range				1.40		
	Interqua	rtile Range	;		.47		
	Skewnes	ss			.497	.196	
	Kurtosis				894	.390	

Tests of Normality

	Kolr	nogorov	-Smirnov ^a	Shaj	piro-W	ilk
	Statistic	df	Sig.	Statistic	df	Sig.
Perform	.134	153	.000	.964	153	.001
Technical	.146	153	.000	.923	153	.000

a. Lilliefors Significance Correction

Perform Stem-and-Leaf Plot

Frequency	Stem	&	Leaf
2.00	27		11
2.00	28		05
8.00	29		05555555
26.00	30		0000004444499999999999999999
25.00	31		444499999999999999999999999999
16.00	32		333333333888888
7.00	33		3333388
15.00	34		222222222277777
13.00	35		222222227777
15.00	36		11111111166666
2.00	37		11
16.00	38		000000000000055
3.00	39		000
3.00	40		000

Stem	width:	.10
Each	leaf:	1 case(s)

Perform

Technical Stem-and-Leaf Plot

Frequency	Stem	&	Leaf
4 0 0	20		6666
4.00	50	•	0000
1.00	31	•	3
14.00	32	•	0000006666666
15.00	33	•	33333333333333
31.00	34	•	000000000066666666666666666666666666666
8.00	35		3333333
10.00	36	•	0000666666
18.00	37	•	333333333333333333
15.00	38	•	0000000666666
.00	39	•	
2.00	40	•	06
8.00	41	•	3333333
10.00	42	•	0066666666
15.00	43		333333333333333
2.00	44	•	66

Stem	width:	.10
Each	leaf:	1 case(s)

299

l Technical

GRAPH

/SCATTERPLOT(BIVAR)=Technical WITH Perform
/MISSING=LISTWISE.

				С	ases			
	v		Missing			1	Total	
	Ν	Percent	N	I	Perce	ent	Ν	Percent
Perform	153	100.04	%	0	0.	0%	153	100.0%
Management	153	100.04	%	0	0.	0%	153	100.0%
Descriptives								
						Sta	tistic	Std. Error
	Mean					3	.3582	.02403
	95% Con	fidence	Lowe	er Bo	ound	3	.3108	
	Interval f	for Mean	Uppe	r Bo	ound	3	.4057	
	5% Trim	med Mea	n			3	.3544	
	Median					3	.2857	
	Variance			.088				
Perform	Std. Dev	iation	.29718					
	Minimum	n		2.71				
	Maximu	n		4.00				
	Range			1.29				
	Interquar	tile Rang		.50				
	Skewness						.274	.196
	Kurtosis					783	.390	
	Mean	Mean				4	.0621	.02800
	95% Con	fidence	Lowe	er Bo	ound	4	.0068	
	Interval f	for Mean	Uppe	er Bo	ound	4	.1174	
	5% Trimmed Mean						.0587	
	Median						.0000	
	Variance						.120	
Management	Std. Dev	iation					34631	
	Minimum						3.33	
	Maximu	n			4.67			
	Range						1.33	
	Interquar	tile Rang	e				.58	
	Skewnes	s					.355	.196
	Kurtosis						1.047	.390

Appendix XI: Normality Test Results for Contractors' Management Ability and Performance of Road Construction Infrastructural Projects.

Tests of Normality

	Kolmog	orov-Smi	Shap	iro-Wil	k	
	Statistic	df	Sig.	Statistic	df	Sig.
Perform	.134	153	.000	.964	153	.001
Management	.186	153	.000	.924	153	.000

a. Lilliefors Significance Correction

Perform Stem-and-Leaf Plot

Frequency	Stem &	Leaf
2.00 2.00 8.00	27 . 28 . 29 .	11 05 05555555
26.00	30 .	00000044444999999999999999999
25.00	31 .	44449999999999999999999999999
16.00	32 .	333333333888888
7.00	33.	3333388
15.00	34 . 25	222222222211111
13.00	35.	2222222221111
2.00	36. 37.	11
16.00	38 .	00000000000055
3.00	39 .	000
3.00	40.	000
a	1	0

Stem	width:	.10
Each	leaf:	1 case(s)

Management Stem-and-Leaf Plot

Frequency	Stem &	Leaf
1.00	33.	3
.00	34 .	
11.00	35 .	00088888888
6.00	36 .	666666
22.00	37 .	555555555555555555555555555555555555555
19.00	38 .	33333333333333333333
9.00	39.	111111111
30.00	40.	00000000000000000000000000008888
3.00	41 .	666
1.00	42 .	5
15.00	43.	333333333333333
2.00	44.	11
19.00	45 .	000000000000000000000000000000000000000
15.00	46.	66666666666666
	1	0

stem	wiath:	.10
Each	leaf:	1 case(s)

GRAPH

/SCATTERPLOT(BIVAR)=Management WITH Perform /MISSING=LISTWISE.

Management

Appendix XII: No	rmality Test R	esults for	· Contractors'	Safety Record	and
	Performance	of Road	Construction	Infrastructural	Projects

Case Processi	ng Summai	ry						
				C	ases			
	Valid			Missing			Total	
	N	Percen	t	Ν	Perce	ent	Ν	Percent
Perform	153	100.0	%	0	0.	.0%	153	100.0%
SafetyRecord	153	153 100.0% 0 0		0.).0% 153		100.0%	
Descriptives								
						Sta	tistic	Std. Error
	Mean					3.3582		.02403
	95% Confidence		Lower Bound		3.3108			
	Interval for Mean		Upper Bound		3.4057			
	5% Trim	med Mea	n			3.3544		
	Median					3.2857		
	Variance					.088		
Perform	Std. Deviation					.29718		
	Minimum					2.71		
	Maximum					4.00		
	Range					1.29		
	Interquartile Range					.50		
	Skewness					.274		.196
	Kurtosis					783		.390
	Mean				3.3824		.04401	
	95% Con	fidence	L	ower Bo	und	3	.2955	
	Interval	for Mean	U	pper Bo	und	3	.4693	
	5% Trimmed Mean					3.3831		
	Median					3.3571		
	Variance					.296		
SafetyRecord	Std. Deviation				.54432			
	Minimum				2.01			
	Maximum				4.71			
	Range				2.70			
	Interquartile Range					.86		
	Skewness						.078	.196
	Kurtosis						391	.390
Tests of Normality

	Kolmog	Shapiro-Wilk				
	Statistic	df	Sig.	Statistic	df	Sig.
Perform	.134	153	.000	.964	153	.001
SafetyRecord	.087	153	.006	.985	153	.104

a. Lilliefors Significance Correction

Perform Stem-and-Leaf Plot

Frequency	Stem &	Leaf
2.00	27	11
2.00	28	05
8.00	29	0555555
26.00	30	00000044444999999999999999999
25.00	31	444499999999999999999999999999
16.00	32	333333333888888
7.00	33	3333388
15.00	34	222222222277777
13.00	35	2222222227777
15.00	36	11111111166666
2.00	37	11
16.00	38	00000000000055
3.00	39	000
3.00	40	000

Safety Record Stem-and-Leaf Plot

Frequency	Stem &	Leaf
3.00	2.	011
5.00	2.	44444
16.00	2.	7777777777777777
9.00	2.	88888899
20.00	з.	0000000000000001111
28.00	з.	2222222222222223333333333333
25.00	3.	444444444444555555555555555555555555555
5.00	3.	77777
15.00	3.	888888888888888888888888888888888888888
14.00	4.	0000000000011
7.00	4.	222222
5.00	4.	44445
1.00	4.	7
Stem width:	1.00	0
Each leaf:	1 ca	ase(s)

Saletyive

GRAPH

/SCATTERPLOT(BIVAR)=SafetyRecord WITH Perform
/MISSING=LISTWISE.

Appendix XIII: Normality Test Results for Process Monitoring Record and Performance of Road Czonstruction Infrastructural Projects

				С	ases			
Valid Missing						1	5	Fotal
	N	Percent	N	1	Perce	nt	Ν	Percent
Perform	153	100.04	%	0	0.	0%	153	100.0%
ProcessMonitoring	153	100.00	%	0	0.	0%	153	100.0%
Descriptives				0.01.80				
						Sta	tistic	Std. Error
	Mean					3	.3582	.02403
	95% Conf	idence	Lowe	r Bo	und	3	.3108	
	Interval fo	r Mean	Uppe	r Bo	und	3	.4057	
	5% Trimm	ned Mean	ı			3	.3544	
	Median					3	.2857	
	Variance						.088	
Perform	Std. Deviation						29718	
	Minimum						2.71	
	Maximum						4.00	
	Range						1.29	
	Interquartile Range						.50	
	Skewness						.274	.196
	Kurtosis						783	.390
	Mean					3.6003		.04084
	95% Conf	idence	Lowe	r Bo	und	3	.5196	
	Interval fo	r Mean	Uppe	r Bo	und	3	.6810	
	5% Trimmed Mean						.5986	
	Median					3	.4615	151020001510200
	Variance						.255	
ProcessMonitoring	Std. Devia	ition				.:	50519	
	Minimum					1	2.23	
	Maximum						4.69	
	Range						2.46	
	Interquarti	ile Range	•			1	.85	
Perform ProcessMonitoring Descriptives Perform ProcessMonitoring	Skewness						006	.196
		Kurtosis						- 814

Case Processing Summary

Tests of Normality

	Kolmogo	orov-Smi	Shapiro-Wilk				
	Statistic	df	Sig.	Statistic	df	Sig.	
Perform	.134	153	.000	.964	153	.001	
ProcessMonitoring	.171	153	.000	.957	153	.000	

a. Lilliefors Significance Correction

Perform Stem-and-Leaf Plot

Frequency	Stem &	Leaf
2.00	27.	11
2.00	28.	05
8.00	29.	05555555
26.00	30 .	00000044444999999999999999999
25.00	31 .	444499999999999999999999999999
16.00	32 .	333333333888888
7.00	33 .	3333388
15.00	34 .	222222222277777
13.00	35 .	2222222227777
15.00	36 .	11111111166666
2.00	37 .	11
16.00	38 .	00000000000055
3.00	39 .	000
3.00	40 .	000
Stem width:	.10)
Each leaf:	1 ca	ase(s)

ProcessMonitoring Stem-and-Leaf Plot

Frequency	Stem &	Leaf
1.00	2.	2
1.00	2.	5
.00	2.	
12.00	2.	88888888888
27.00	з.	000000000000001111111111
19.00	з.	2222222233333333
17.00	з.	4 4 4 4 4 4 4 4 4 4
13.00	з.	666666677777
4.00	з.	8888
42.00	4.	000000000000000000000000000000000000000
13.00	4.	233333333333
2.00	4.	55
2.00	4.	66
Stem width:	1.	00
Each leaf:	1 (case(s)

I ProcessMonitoring

GRAPH

/SCATTERPLOT(BIVAR)=ProcessMonitoring WITH Perform
/MISSING=LISTWISE.

Appendix XIV: Normality Test Results for Combined Contractors' Capacity Evaluation in Tender Award and Performance of Road Construction Infrastructural Projects

Case Pro	cessing S	Summary	,					
	Cases							
	Valid Missing					Tot	al	
	N	Percent	Ν	Per	cent	Ν	Р	ercent
Perform	153	100.0%	0	0.0	%	153	1	00.0%
Descripti	ves							
					S	tatist	ic St	d. Erroi
	Mean				3	.3582	.0	2403
	95% Coi	nfidence	Lower	Lower Bound 3.3108				
	Interval	for Mean	Upper Bound 3			3.4057		
	5% Trimmed Mean				3	3.3544		
	Median				3	3.2857		
	Variance				.(088		
Perform	Std. Deviation					29718		
	Minimum				2	.71	-	
	Maximum				4	.00		
	Range				1	1.29		
	Interqua	rtile Rang	e			.50		
	Skewnes	s				.274		96
	Kurtosis				-	783		90
Tests of	Normali	ty						
	Kolmo	gorov-Sn	nirnov ^a		Shap	iro-W	Vilk	
	Statisti	c df	Sig		Statis	stic	df	Sig.
Perform	.134	153	.00	0	.964		153	.001

Perform

Residudis Sidiis	nics				
	Minimu	Maximu	Mean	Std.	Ν
	m	m		Deviation	
Predicted Value	2.8445	3.8056	3.3582	.24536	153
Std. Predicted Value	-2.094	1.823	.000	1.000	153
Standard Error of Predicted Value	.016	.049	.030	.007	153
Adjusted Predicted Value	2.8335	3.8127	3.3581	.24626	153
Residual	33609	.46076	.00000	.16768	153
Std. Residual	-1.978	2.712	.000	.987	153
Stud. Residual	-2.005	2.781	.000	1.004	153
Deleted Residual	34544	.48453	.00010	.17365	153
Stud. Deleted Residual	-2.026	2.847	.002	1.010	153
Mahal. Distance	.380	11.864	3.974	2.362	153
Cook's Distance	.000	.080	.007	.012	153
Centered Leverage Value	.003	.078	.026	.016	153

Residuals Statistics^a

a. Dependent Variable: Perform

Charts

Scatterplot

Appendix XV: Sections B,C,D,E,F & G of Research Tool as Used in the Pilot Study

Section B: Performance of Road Construction Infrastructural Projects

8. This section wants to establish the performance of road construction infrastructural projects in Nairobi City County. In your own opinion show your agreement or disagreement on the following statements using a likert scale of 1 to 5, where 1=Strongly disagree, 2=Disagree, 3=Neutral, 4=Agree and 5=Stongly agree. Please tick (\checkmark) the most appropriate response from the list provided.

	Statement	Strongly Disagree	Disagree	Neutral	Agree	Strongly Agree
		1	2	3	4	5
	(a) Road User satisfaction					
1.	Road user are not given opportunity to provide their					
	satisfaction					
2.	Returns/Profits from the project are satisfactory					
3.	Less improvement is visible since the road project was					
	completed					
4.	Fuel consumption by road users has significantly reduced					
	(b) Mobility and Speed – delays, congestion, average travel speed					
_			[1	[
5.	10 measure road performance, congestion must be					
6	Deleve are a measure of a poorly performing road					
0.	Delays are a measure of a poorty performing foad					
7.	Average travel speed has to improve to indicate to					
	(a) Quality of Completed Dead in terms of condition					
	of drainage/water table					
8.	Most of the roads built have functional drainage systems					
	to provide longterm road performance					
9.	Most of the roads are poorly constructed with water table that permits flooding					
10.	Roads have been constructed with adequate drainage			1		
	systems					
	(d) Operational effectiveness/efficiency of road					
	construction in terms of response time to incidents,					
	claims due to potholes or guardrail damage, response					
	time to public complaints/inquiries					
11.	Contractors are quick to repair potholes or damaged					
	guardrails					

12.	Roads have well maintained guardrails				
13.	Roads take longer before they develop potholes				
	(e) Social and Environmental Impact Performance			I	I
14.	The pedestrian have their own pathways				
15.	The communities within enjoy easy accessibility due to				
	the new roads built				
16.	The road does contribute to environmental pollution				
17.	The general livelihoods of the communities within has				
	significantly improved after completion of the road				
	(f) Comfort/convenience in terms of smoothness and				
	roughness of the road	1	1	1	
18.	The texture of the road is good				
19.	The skid resistance of the road surface is good				
	(g) Prompt in repair, servicing and maintenance of the road				
20.	Construction companies have the capacity to carry out				
	propmpt repair on the road				
21.	Routine repair and maintenance has always been happening				
22.	Roads take longer to be repaired and maintained				
	(h) Drainage systems operative				
	(ii) Dramage systems operative	1	1	I	1
23.	The drainage system allows passage of residual				
24.	Flooding of the is not experienced during heavy				
	downpours (rainy season)				
	(1) Traffic reduction				
25.	Traffic has reduced significantly				
26.	Traffic is occasional				
27.	Traffic is caused by the road users and not the design of				
	the road				
	(j) Fitness for purpose				
28.	Only designated users are allowed to use the road				
	(k) User benefits in terms of cost reduction, travel				
	time reduction, vehicle operating cost reduction				
29.	The vehicles take longer to depreciates				
30.	The vehicle breakdowns on the roads has reduced due to				
	(1) Accidents due noor signage				
-	() Accidents due poor Signage				
31.	Accidents are happening due to poorly done signage, not visible				

32.	Roads are not having enough signage			
33.	Bumps are not provided in the designated places			
34.	Road users do not know the meaning of most of the			
	signage language			

What are other challenges you have experienced as far performance of road is concerned?

Section C: Financial Stability of Contractors'

This section wants to determine the extent to which financial stability of contractors' influence performance of road construction infrastructural projects in Nairobi City County. In your own opinion show your agreement or disagreement on the following statements using a likert scale of 1 to 5, where 1=Strongly disagree, 2=Disagree, 3=Neutral, 4=Agree and 5=Stongly agree. Please tick (\checkmark) the most appropriate response from the list provided.

Item	Statement	Strongly Disagree	Disagree	Neutral	Agree	Strongly Agree
		1	2	3	4	5
	(a) Credit Rating					
35	All construction firms undertaking road construction have a good credit record					
37	Credit rating does affect contractors' accessibility to bank's facility/loan					
38	Credit rating does not affect contractors' accessing other sources of finance for construction work					
	(b) Bank's Good Will					
39	Contractors with bank's good will tend get their construction financial requests fully funded by the bank					
40	Contractors' do not need bank's good will to access loan facility to complete their construction work					

	(c) Flexibility of loan agreements			
41	Contractors get flexible loan agreemants with their respective banks for construction works			
42	Contractors can operate with even stringent loan agreements and deliver quality projects			
	(d) Turnover, profits obligations, amounts due			
43	Firms with good turnover have good financial health			
44	Level of cash flow affects a construction firms negatively			
	(e) Owned Funds			
45	Firms with their own funds tend to contribute positive road performance			
46	Owned funds can not lead to road performance			
47	Owned funds plus other sources of capital contribute to constructing a road that leads to good performance			

In your view, how else would financial stability of contractors' influence performance of the road construction infrastructural projects?

·····

Section D: Technical Ability of Contractors'

This section wants to assess how technical ability of contractors' influence performance of road construction infrastructural projects in Nairobi City County. In your own opinion show your agreement or disagreement on the following statements using a likert scale of 1 to 5, where 1=Strongly disagree, 2=Disagree, 3=Neutral, 4=Agree and 5=Stongly agree. Please tick (\checkmark) the most appropriate response from the list provided.

Item	Statement	 Strongly Disagree 	Disagree	Neutral	Agree	ⁿ Strongly Agree
		1	2	3	4	5
	(a) Experience in terms of catchment national or local projects					
48	Contractors with local catchment project experience always have good project performance record					
49	Contractors with national catchment project experience always have good project performance record					

50	Project performance does depend on the previous catchment experience			
	(b) Plant and Equipment			<u> </u>
51	The quality of plant and equipment used determines the the quality of the project			
52	Adequate supply of plant and equipment in road construction has a significant effect on project performance during the life of the project			
53	The use of current technology determines the final product and its performance in road construction			
54	The use of own plant and equipments influences project performance			
	(c) Quality of materials used			
55	The right use of materials during construction has significant effect on peroject performance			
56	Correct mixing of materials does contribute to quality roads that meet road user satisfaction i.e road free from potholes			
	(d) Experience in terms of size of projects completed			
57	The size of the road(s) completed in the past can determine the contractors' ability to deliver on project performance			
58	Not all contactors have experience in undertaking large scale road construction to assure project performance			
59	Only contractors with experience in undertaking big size of road construction works can assure project performance			
	(e) Availability of tactical manpower/personnel			
60	Majority of the road construction personnel are			
	professional and skilled			
61	Engagement of professional project leader contributes to a successful project performance			
62	The type of personnel working on road construction can not influence project performance as long the project leader is trained			
63	All casual labourers in road construction are trained hence project performance			

State how significantly the technical capacity of the contractors would influence the performance of the road.

Section E: Management Capacity of Contractors'

This section wants to establish how management capacity of contractors' influence performance of road construction infrastructural projects in Nairobi City County. In your own opinion show your agreement or disagreement on the following statements using a likert scale of 1 to 5, where 1=Strongly disagree, 2=Disagree, 3=Neutral, 4=Agree and 5=Stongly agree. Please tick (\checkmark) the most appropriate response from the list provided.

Item	Statement	trongly Disagree	lisagree	Veutral	gree	trongly vgree
			2	3	4	V S S 5
	(a) Past performance & quality					
64	Contractors current performance is influenced by past performance significantly					
65	Lak of previous management commitment can easily be repeated in the current road perfroamance					
66	Road performance depership on the leardership guidance					
	(b) Quality control policy					
67	A firm's quality control policy has significance on road performance					
68	Quality control policy does not determine road performance					
69	Construction contractors are obligated to have a quality contol policy to ensure road performance					
	(c) Management Knowledge					
70	Some contractors lack management knowledge hence					
	poor road performance					
71	Construction management knowledge is not necessary to					

	ensure road performance			
72	Management knowledge in construction is necessary to ensure road performance			
	(d) Project management system			
73	A proper management system will provide proper oversight in construction hence improvement in road performance			
74	Most contractors lack the necessary project management system hence poor road performance			
75	Project management system is not required to realize road performance			
	(e) Experience of technical personnel			
76	Highly experienced technical personnel contribute to road performance			
77	The number of years of the technical personnel in road construction guarantee road performance			
78	Most of the construction contractors operate with teams that do not meet minimum requirement in terms of experience hence poor road performance			
79	Experience of technical personnel in construction does not guarantee highly well road performance			

By listing examples, how is the management capacity of the contractors' stand to influence performance of the road.

Section F: Contractors' Safety Record

This section wants to examine how contractors' safety record influence performance of road construction infrastructural projects in Nairobi City County. In your own opinion show your agreement or disagreement on the following statements using a likert scale of 1 to 5, where 1=Strongly disagree, 2=Disagree, 3=Neutral, 4=Agree and 5=Stongly agree. Please tick (\checkmark) the most appropriate response from the list provided.

Item	Statement	L Strongly Disagree	7 Disagree	Neutral	Agree	a Strongly Agree
		-		U	•	ð
90	(a) Accidents due to poor signage				r	
80	Proper use of signage is adhered to avoid road user accidents					
81	and availability of materials					
	(b) Health & Safety Policy Management system		•	•	•	
82	Most contractors have a health and safety policy management system					
83	Health and safety for most contractors is not a priority to road performance after completion					
84	Health and safety is does not take into account future road performance					
85	Road contractors find it unnecessary to have a policy management system to ensure road performance because the projects they undertake are one-time					
	(c) Insurance policy					
86	Construction personnel under insurancy policy can also feel obligated to provide and enforce safety measures which can contribute to road performance and particulary road user satisfaction					
87	Most construction companies do not have insurancy policy					
07	(d) Compliance behavior					
88	Contractors level of compliance to safety and health administration is not clear					
89	Contractors do not fully comply to health and safety requirements					
90	The environment in which contractors operate does not appraise compliance to safety and health procedures					
	(e) Adequacy of standard in addressing safety outcome like					
	proper use of road signage					
91	Construction contractors do not have adequate standards to					
02	Adagusta health and sofaty standards does not guarantee road					
92	Adequate nearin and safety standards does not guarantee road					
93	Most construction firms/contractors do not have safety and					
	health standards to address road performance issues					
	(f) Certification in OSHA			·	-	
94	Construction firms/contractors certified in OSHA tend to have					
0.5	good record in road performance					
95	Certification in OSHA is not a must to ensure road performance in construction is adhered to					
96	Firms without certification in OSHA sometimes have strong					
	road performance road their counterparts who are certified					

In what ways do you think contractors' contractors' safety record are likely to influence the performance of road?

.....

Section G: Process Monitoring

This section wants to assess the moderating influence of process monitoring on the relationship between contractors' tender evaluation results and performance of road construction infrastructural projects in Nairobi City County, Kenya. In your own opinion show your agreement or disagreement on the following statements using a likert scale of 1 to 5, where 1=Strongly disagree, 2=Disagree, 3=Neutral, 4=Agree and 5=Stongly agree. Please tick (\checkmark) the most appropriate response from the list provided.

Item	Statement	Strongly Disagree	Disagree	Neutral	Agree	Strongly Agree
		1	2	3	4	5
	(a) Compliance with construction specification					
97	Firms/contractors who comply with construction specification to tend produce highly quality roads whose performance meet road user satisfaction					
98	Contractors are not keen on complying with road construction specifications hence poor road performance during the life of the project(s)					
99	Construction specifications can not be met by most of the road construction contractors					
100	As long as the contractor meets minimum requirement, the contractor avoids trying to make improvements					
	(b) Compliance with regulatory bodies'					
	requirements					
101	Construction regulatory bodies' requirements are not adequate to address and contribute to road performance					
102	Compliance with regulatory bodies like NCA does not guarantee road performance					
103	Not all contractors comply with regulatory bodies' requirements					
	(c) Compliance with County by-laws					

104	The county by-laws are adequate in addressing the			
	issues of road performance			
105	Not all contractors/construction adhere to County by-			
	laws			
106	Contractors/firms that adhere to County by-laws tend			
	do well in terms of road performance			
	(d) Adherence to allocation and utilization of			
	resources for accomplishment of project's			
	objectives			
107	All contractors allocate enough resources to			
	construction works hence good road performance			
108	Contractors utilize the right materials and equipment to			
	ensure quality work done			
109	Allocation and utilization of right materaials and			
	equipment does not always lead road performance			

In your view, how do you see the role of process monitoring in moderating the relationship between contractors' capacity evaluation in tender award and performance of road construction infrastructural projects?

.....

What influence, by listing examples, do you think would happen or have when the contractors' capacity evaluation in tender award (all variables held together) are combined on the performance of the road construction infrastructural projects.

Thank you