INFLUENCE OF STAKEHOLDER PARTICIPATION ON PERFORMANCE OF MILK COOLING PROJECTS: A CASE OF CO-OPERATIVE SOCIETIES IN BOMET COUNTY, KENYA

BY

RICHARD KIPKORIR BELLION

A Research Project report submitted in partial fulfilment for the requirement of Master of Project Planning and Management Degree of the University of Nairobi

2020
DECLARATION

This research project report is my original work and has not been presented for the award of any degree in any other university.

Signature ______________________ Date __________________
RICHARD KIPKORIR BELLION
L50/16317/2018

This research project report has been submitted for examination with my approval as the University supervisor.

Signature ______________________ Date __________________

Dr. Joash A. Migosi
Lecturer
Department of open distance education, & Learning
University of Nairobi
DEDICATION

This research project report is dedicated to my beloved wife Julie Bellion and my children Sharon Rono, Gerald Korir and Danold Korir for their support and belief that I had the capability to make it.
ACKNOWLEDGEMENT

I foremost appreciate the invaluable guidance throughout this study from my supervisor Dr. Joash Migosi. I accord him renewed and respectful compliments. I cherish the great support and knowledge I gained from my Lecturers who took me through the units of my course work. They include, Dr. Yabs, Dr. Ochieng, Dr. Cheben, Dr. Oduor, Mr. Sakaja, Mr. Murei and Mr. Mutwol. They dedicated and sacrificed their time to generously pass their knowledge through the tutorials throughout my course duration. I acknowledge the help and inspirations from my colleagues during our group discussions, their thoughts and experiences which significantly helped me develop confidence in my research and in the writing of this research report. It is also dedicated to the following very special friends, Hon. Joe Nyagah, EGH, Noah Kibett Limo, David Rere, Joseah Kiprono Langat, Philip Kipyegon Chepkwony, Robert Kipngenoh Koech, Joseah Kibet Korir, Julius Kipsigei Kirui, Samwel Kiplangat Koech, Dennis Bii, John Sigei and Benard Rono for their Moral Support and prayers.
TABLE OF CONTENTS

DECLARATION ii
DEDICATION iii
ACKNOWLEDGEMENT iv
TABLE OF CONTENTS v
LIST OF TABLES ix
LIST OF FIGURES xi
ACRONYMS AND ABBREVIATIONS xii
ABSTRACT xiii

CHAPTER ONE 1
INTRODUCTION 1

1.1 Background to the Study 1
1.2 Problem Statement 3
1.3 Purpose of the Study 4
1.4 Objective of the Study 4
1.5 Research Questions 4
1.6 Research hypothesis 5
1.7 Significance of the Study 5
1.8 Delimitation of the study. 6
1.9 Limitations of the study. 6
1.10 Basic Assumption of the study. 6
1.11 Definition of significant Terms 7
1.12 Organization of the study. 7

CHAPTER TWO 9
LITERATURE REVIEW 9

2.1 Introduction 9
2.2 The concept of stakeholder participation 9
2.2.1 Stakeholder Theory 11
2.3 Project life-cycle 13
2.3 Stakeholder Involvement in project performance 14
2.3.1 Stakeholder participation in Project Identification at initiation Phase 14
2.3.2. Stakeholders’ participation on Project planning and design 18
2.3.3 Stakeholders’ participation on Project Implementation 20
2.3.4 Stakeholders’ participation on Monitoring and Evaluation 21
2.4. Conceptual Framework 23
2.5 Theoretical Framework 25
2.6 Summary of Literature 25

CHAPTER THREE 27
RESEARCH METHODOLOGY 27
3.1 Introduction 27
3.2 Research Design 27
3.3 Target Population 28
 Table 3.1:- Cooperative Societies with active milk cooling plants 28
3.4 Sampling Size and Sampling Procedure 28
 3.4.1 Sampling Procedure 29
 3.4.2 Sampling Size 29
 Table 3.4.3: Sampling Frame 30
3.5 Methods of Data Collection 30
 3.5.1 Pilot testing of Questionnaires 30
 3.5.2 Validity of the instrument 31
 3.5.3 Reliability of the Instruments 32
3.6 Data Analysis Techniques 32
3.7 Operational Definition of Variables 34
3.8. Ethical Consideration 35

CHAPTER FOUR 36
DATA ANALYSIS, PRESENTATION, DISCUSSION AND INTERPRETATION 36
4.0. Introduction 36
4.1. Response rate 36
4.2. Background information 36
4.2.1. Period involved with milk cooling plant project 38
4.3. Performance of the milk cooling plant project 39
4.4. Stakeholder participation in project identification and performance of milk cooling plant project. 41
4.4.1. Project identification participation and performance of milk cooling plant project 42
4.4.2. Influence of stakeholder participation in identification and performance of milk cooling plant project 42
4.4.3. Relationship between stakeholder participation in identification and performance of milk cooling plant project
4.4.4. Regression analysis between stakeholder participation in project identification and performance of milk cooling plant project.
4.5. Stakeholder participation in project planning and design and performance of milk cooling plant project.
4.5.1. Participation in project planning and design on project performance
4.5.2. Influence of stakeholder participation in project planning and design on performance of the milk cooling plant project
4.5.3. Relationship between stakeholder participation in planning and design and performance of milk cooling plant project
4.5.4. Regression analysis between stakeholder participation in planning and design and performance of milk cooling plant project
4.6. Stakeholder participation in project implementation and performance of milk cooling plant project
4.6.1. Participation in project implementation and performance of milk cooling plant project
4.6.2. Influence of stakeholder participation in project implementation on performance of milk cooling plant project.
4.6.3. Relationship between stakeholder participation in project implementation and performance of milk cooling plant project
4.6.4. Regression analysis between stakeholder participation in project implementation and performance of milk cooling plant project
4.7. Stakeholder participation in monitoring and evaluation and performance of milk cooling project performance
4.7.1. Participation in monitoring and evaluation and project performance
4.7.2. Influence of stakeholder participation in monitoring and evaluation on performance of milk cooling plant project
4.7.3. Relationship between stakeholder participation in monitoring and evaluation on project performance
4.6.4. Regression analysis between stakeholder participation in monitoring and evaluation and performance of milk cooling plant project
4.7. Multiple regression combined model

CHAPTER FIVE
SUMMARY OF FINDINGS, CONCLUSION AND RECOMMENDATIONS
5.0. Introduction
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1. Summary of the findings</td>
<td>725</td>
</tr>
<tr>
<td>5.1.1. Background information</td>
<td>72</td>
</tr>
<tr>
<td>5.1.2. Stakeholder participation in identification and project performance</td>
<td>725</td>
</tr>
<tr>
<td>5.1.3. Stakeholder participation in design and planning and project performance</td>
<td>736</td>
</tr>
<tr>
<td>5.1.4. Stakeholder participation in implementation and project performance</td>
<td>747</td>
</tr>
<tr>
<td>5.1.5. Stakeholder participation in implementation and project performance</td>
<td>747</td>
</tr>
<tr>
<td>5.2. Conclusion</td>
<td>758</td>
</tr>
<tr>
<td>5.3. Contribution to the body of knowledge</td>
<td>79</td>
</tr>
<tr>
<td>5.4. Recommendations</td>
<td>770</td>
</tr>
<tr>
<td>5.5. Suggestions for future studies</td>
<td>770</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>781</td>
</tr>
<tr>
<td>APPENDIX I: LETTER OF TRANSMITALL</td>
<td>87</td>
</tr>
<tr>
<td>APPENDIX II: QUESTIONNAIRE</td>
<td>84</td>
</tr>
<tr>
<td>APPENDIX III: KEY INFORMANT INTERVIEW GUIDE</td>
<td>89</td>
</tr>
<tr>
<td>APPENDIX IV: RESEARCH PERMIT</td>
<td>90</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table 2.1: Summary of Project Initiation Stages (Westland 2006) ... 16

Table 3.1: Cooperative Societies with active milk cooling plants ... 28

Table 3.2: Sampling Frame .. 30

Table 4.1 Background information ... 37

Table 4.2 Number of years involved with the project ... 39

Table 4.3 Performance of the milk cooling plant project .. 40

Table 4.4 Project identification participation and project performance .. 42

Table 4.5 Influence of stakeholder participation in identification and performance of milk cooling plant project ... 43

Table 4.6 Relationship between stakeholder participation in identification and project performance .. 46

Table 4.7 Regression analysis between stakeholder participation in project identification and performance of milk cooling plant project ... 47

Table 4.8 Participation in project planning and design on project performance 49

Table 4.9 Influence of stakeholder participation in project planning and design on project performance .. 49

Table 4.10 Correlation analysis between participation in planning and design and project performance .. 53

Table 4.11 Regression analysis between stakeholder participation in project planning and design and performance of milk cooling plant project ... 54

Table 4.12 Participation in project implementation and performance of milk cooling plant project 56

Table 4.13 Influence of stakeholder participation in project implementation on project performance .. 56

Table 4.14 Relationship between stakeholder participation in project implementation and project performance .. 60

Table 4.15 Regression analysis between stakeholder participation in implementation and performance of milk cooling plant project ... 61

Table 4.16 Participation in monitoring and evaluation and project performance 62
Table 4.17 Influence of stakeholder participation in monitoring and evaluation on project performance ..63

Table 4.18 Relationship between stakeholder participation in monitoring and evaluation on project performance ..67

Table 4.19 Regression analysis between stakeholder participation in monitoring and evaluation and performance of milk cooling plant project..68

Table 4.20 multiple regression coefficients ..69
LIST OF FIGURES

Figure 2.1 Conceptual framework .. 24
<table>
<thead>
<tr>
<th>ACRONYMS AND ABBREVIATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADB</td>
</tr>
<tr>
<td>GDP</td>
</tr>
<tr>
<td>M & E</td>
</tr>
<tr>
<td>NGO</td>
</tr>
<tr>
<td>SACCO</td>
</tr>
<tr>
<td>SD</td>
</tr>
<tr>
<td>SPSS</td>
</tr>
<tr>
<td>WBS</td>
</tr>
</tbody>
</table>
ABSTRACT

Project stakeholders always anticipate projects which they have participated in to perform well. Stakeholder participation has been identified as one effective solution to sustainability of projects. Stakeholder participation is a re-known instrumental input towards effectiveness and efficiency in development of projects. This study aimed at assessment of the extent of the stakeholders’ participation and their influence on the success of the dairy development programmes with focus on operational projects of milk cooling plants initiated by cooperative societies in Bomet County.

The study sought to determine: the influence of stakeholders’ participation in project selection, planning, implementation and project monitoring and evaluation on these dairy projects in Bomet County; a case of milk cooling plants in Bomet County. The study was guided by the following objectives; the influence of stakeholders’ participation in milk cooling projects in project identification; to establish the influence of stakeholders’ participation in the project’s planning and design process; To determine the influence of stakeholders’ participation in project implementation process; To establish the influence of stakeholders’ participation in the project’s monitoring and evaluation. The study adopted a descriptive research design. Stratification and simple random sampling technique was used to select a sample of 150 of the total 1,250 active members of cooperatives with operational milk cooling plants. A further 50 stakeholders representing the sponsors, facilitators and milk processors was selected using the criteria of the stakeholders who are directly involved in these projects and have reliable and useful information. This did make a total of 200 stakeholders. Data was collected using questionnaires and interviews schedules and quantitative data was coded. The data was analysed using descriptive and inferential statistics. The finding did have theoretical and practical implications on future. The significance of the study is that it will be used as a basis for discussions on major roles of stakeholders on performance of projects not only in Bomet County but anywhere else. The study established that stakeholder participation on identification, planning, design, implementation and monitoring and evaluation does significantly contribute to project performance of the milk cooling plant project. This study did also act as a guide to setting up proper strategies in improving the stakeholders’ inputs towards manifestations of better project’s performance.
CHAPTER ONE
INTRODUCTION

1.1 Background to the Study

Projects which are deficient of dedication by its stakeholders rarely succeed. For this study, a stakeholder is a group, individual or organizations that is affected or affect the project activities. Active participation by stakeholders in planning and implementation of projects as a way of making sure that projects succeed is a development subject upon deliberation by project sponsors, managers and scholars are in agreement that it is of dire need. In addition, Boon, B., Bawole, J.N., & Ahenkan, A. (2013) asserted that participation of stakeholders is clearly linked to sustainable development would hardly be realized without many actors and approaches. He further strengthened stakeholder-participation in development by terming it as human right which are essentially basic and has capability to build confidence and increase self-esteem; while the participation by the stakeholders enhances effectiveness within their expansive society the foregoing are evidence of the reasons why there are wide aspirations globally to strengthen participation of stakeholders in projects. Infact this is equivalent to proclaimed normative justifications that meaningful participation in projects are known to nurture fundamental human values and rights such as equity, social justice, democratic practices, and equality.

According to Tseng & Penning-Rowsell (2012) approaches which are participatory have also been recommended continually in order for projects to be successfully implemented. This practice resonates with the important (pragmatic) proclamation of participation by stakeholders that supports the advantages which engagement by stakeholders would bring by enabling implementation and strengthening performance by project which can be manifested by integrating local ideas and skills among other material resources. By adopting local conditions and policy, project performance would be improved the results of the project endeavour would be enhanced.
It is widely proclaimed that success of project is pegged on the instrumental inputs of cost, time and deliverables and this is more effective when it is founded on proper plan, manageable and clearly drawn deliverables. According to Munns & Bjeirmi, (1996) a project need to perform with regards to time, budget and the project processes quality and outputs and this would enable a fulfilment of the planned objectives of satisfaction of the needs of the stakeholders. This can only be achieved when appropriate Stakeholder management strategy which is instrumental to the achievement of project objectives is put in place.

Agricultural sector still remains the backbone activity to the economy of Kenya contributing the leading Gross Domestic Product (GDP). Agricultural activity is also an invaluable sector to the social welfare of the Kenya citizen as it is adjudged with the critical food security. Its for this reason that in Bomet County, this sector which encompass the dairy sub-sector, has been given priority attention and substantial budgetary allocation to manifest sustainable supplies of foods. Public participation in Project initiatives have been fully embraced and integrated into development policy as effective way of stakeholder participation. Just as Golicha(2010) emphasized that any project to be sustainable, participation by stakeholders need to be adopted as an instrumental input.

However, it’s widely accepted that decisions which are minor and situations which are emergencies are inappropriate generally for stakeholder participation, as situation which are complex and with extensive impacts requires engagement of stakeholder and when done proactively, not in response to a problem, would assist in avoidance of problems in the future (Maina, 2013).

It has been established that a stakeholder can utilize his strength and power in influencing the implementation of a project towards the achievement of his interest. Stakeholders must therefore dispense the instrumental role to set up prioritized objectives that would ensure appropriateness and relevance. However, the stakeholders’ composition may be different from one project to another, depending on the organizational structure, the area its operating in and the donors that facilitate the
project. Every stakeholder even though, wields some amount of strengths which could impact in turn on the project in different ways. As rightly proposed by Bryson (2004: 23), by failing to attend to the information and stakeholders concerns amounts to some deficiency thoughts and inactions that more often lead predictably to performance which is poor, total failure or even disaster at times.

The major role which the Stakeholders participation in project are anticipated to achieve are identification of project initiation, planning, implementation, monitoring and evaluation of deliverables. In order for the stakeholder participation to be productive towards a project, they need to be readily willing to contribute enormously towards the project. This encompass mobilization of not only the material recourses of the stakeholders but extends to pooling of knowledge, skills experiences and, where necessary, labor towards development of a workable plan for successful project implementation and sustainability of project.

Effective participation should start off with identification and categorizations of stakeholders to make sure that those engaged in the activities of the project have a bearing which directly affect the outcome of the project are dealt with regularly and effectively. This did ensure that there is optimum utilization of the power and degree of the stakeholder to influence the deliverables of the project. This prioritization would also enable project team to use more efficient strategies to engage the stakeholders thus reducing cost and making the interactions more productive. This study therefore looked at relationship between stakeholder’s participation and their inputs at every life-cycle stage of the milk projects. The main stages in the milk cooling plants projects being Initiation, Planning, Implementation and Monitoring and Evaluation.

1.2 Problem Statement

Many firms and project organizations have not paid close attention to stakeholder engagement and participation (Muller and Jugdev, 2012). Many organizations have been faced with challenges on how to productively manage their stakeholders so as to achieve the laid down goals and objectives. The existence
of high tendency not to give adequate and appropriate attention to the stakeholders have often caused imminent challenges in implementation and running of projects, and in some occasions leading to their total failures. In acknowledgment of such challenges, organizations need to develop a strategy which would engineer appropriate designs to integrate the stakeholder’s demands while adhering to the laid down scope, available funds and set timelines for successful implementation of projects. Therefore this research tried to fill the gap that arises in stakeholder’s participation on implementations and running of milk cooling projects in Bomet County and how they influence their performance.

1.3 Purpose of the Study

The purpose of the study was to establish the influence of stakeholder participation on performance of milk cooling projects: a case of co-operative societies in Bomet county

1.4 Objective of the Study

The study objectives included the following -

i. To establish influence of stakeholders’ participation in project identification on performance of milk cooling plants;

ii. To establish influence of stakeholders’ involvement in project planning and design on performance of milk cooling plants;

iii. To determine influence of stakeholders’ participation in project implementation on performance of milk cooling plants;

iv. To determine influence of stakeholders participation in monitoring and evaluation on performance of milk cooling plants;

1.5. Research Questions

The research questions for the study were:

i. What is the influence of stakeholders’ participation in project identification on performance of milk cooling plants in Bomet?
ii. What is the influence of stakeholders’ participation in project planning and design on performance of milk cooling plants in Bomet?

iii. What is the influence of stakeholders’ participation in implementation on performance of milk cooling plants in Bomet?

iv. What is the influence of stakeholders’ participation in monitoring and evaluation on performance of milk cooling plants in Bomet?

1.6. Research hypothesis
The study was guided by the following research hypothesis:

i. There is no significant influence of stakeholders’ participation in project identification on performance of milk cooling projects;

ii. There is no significant influence of stakeholders’ involvement in project planning and design on performance of milk cooling projects;

iii. There is no significant influence of stakeholders’ participation in project implementation on performance of milk cooling projects;

iv. There is no significant influence of stakeholders participation in monitoring and evaluation on performance of milk cooling projects;

1.7 Significance of the Study
The findings of the study would be beneficial to the following stakeholders:

The information of the study is hoped to be useful to scholars and researchers for utilization in formulation basis for extended research. The researcher would also utilize this study to formulate a basis for discussions on major roles of stakeholders on projects performance not only in Bomet county but in Kenya and globally.

The Project teams have an instrumental role to play so as to ensure high performance of their organization even in an environment which is highly competitive just similar to the one being
experienced by co-operatives in Kenya. This study would also acts as a guide for proper strategies formulation towards improving the stakeholders’ inputs towards successful manifestations of projects. The co-operatives were anticipated to benefit from the study in that it would enlighten them on the importance of stakeholders in their projects performance so as to best mobilize and manage their resources for enhanced performance of the projects initiated through them.

1.8. Delimitation of the study.

The study focused on the stakeholders of milk cooling projects of co-operatives societies in Bomet County who are the society members, government representatives(both National and County), and the project management teams. This scope was considered to be adequate for collection of data and to enable meaningful inferences to be made about influence of stakeholders’ participation.

1.9. Limitations of the study.

There are other two areas of limitations namely and finance and time. The researcher experienced financial resource handicap for adequate funds to finance the project through personal savings but did apply for a loan from one SACCO. The researcher also had time constraints as he tried to fit applied work into his officials work schedule. To overcome this constraint, he took the advantage of lunch breaks and weekend to collect data and write the report. The researcher also expected a lot of interruptions from members coming to the co-operatives for various reason while data was being collected from the societies officials but attempted to overcome them by making visits during the afternoons when majority of the members had been served.

1.10. Basic Assumption of the study.

The study’s assumption is that stakeholders’ participation have substantial influence in the performance of milk cooling projects in Bomet County. Further, the chosen methods and tools did serve the purpose of the study in terms of data that was collected. It was also assumed that the chosen
sample population was representative enough so as to yield data valid and reliable when generated to other projects.

1.11. Definition of Terms

The following terms are defined in accordance with the context which they are used in the study:

Stakeholder: - members of a community who have interests which incline with the objectives of a particular project and the outcomes affect them.

Stakeholder Participation- This is a process by which parties which are interested participate and influence the implementation, management, decisions and resources of a project.

Co-operative: This is a formally registered organization whose membership is composed of people with a common interest and willing to participate together in an identified income generating venture.

Project: This is an execution of scheduled activities, a venture with planned undertakings to be carried-out followed by the implementations which normally have a beginning and an end.

Project team: is a group whose memberships generally fit to different groups, roles and is allocated to activities for the same plan. A group can be distributed into sub-teams according to necessity. Usually venture teams are merely used for a definite period of time.

1.12. Organization of the study.

The study was composed of five chapters; chapter one was basically give the introduction and background description of the study, the statement of problem, the purpose of the study, the objective of the study, research questions, the significance of the study, basic assumption of the study, Limitations of the study, delimitations of the study, significant terms definitions as will be used in the research and its organization. Chapter two provided a literature review which has relation to the research thematically as provided by the objectives of the research, the theoretical frame work, the
conceptual framework and also the summary of literature reviewed and Research gap. Chapter three focused on other methodologies of research discussed under the following heading; research design, target population, sample size, sample selection, research instruments, pilot testing of instruments, validity of research instruments, reliability of research instruments, data collection procedures, data analysis techniques, and ethical issues in research. Chapter four dealt with data analysis, presentations and interpretation, while Chapter five presents the discussions, summary and recommendations.
CHAPTER TWO
LITERATURE REVIEW

2.1 Introduction

This chapter was deeply analysed empirical and related theoretical literature on influence of stakeholders’ participation on successfully implemented and operational projects. To get highlights and understanding of influence of stakeholders’ participation on projects, a theoretical base was developed throughout the chapter. The first part provided a theoretical background on stakeholder theory which provides the base of the study. The second section focused on Literature regarding stakeholder theory, stakeholder concept. The third section provided an overview of project life-cycle and stakeholders involvement in its phases of project identification, planning, implementation and monitoring and evaluation. The chapter did also entail a theoretical foundation, conceptual framework and a knowledge gap.

2.2. The concept of stakeholder participation

For any project to succeed the stakeholders should be involved in the articulation of the development problem and the proposed development solution and therefore the stakeholder involvement is paramount. Many researchers subscribed to the approach of stakeholders as a strong means which helps to better understand a firm within its environment.

Many research findings have revealed the importance of involving the stakeholders in every stage of Project developments. The study conducted in Rwanda by Kobusigye (2017) to determine the impact of involving stakeholders on the outcome of water, sanitation and hygiene (WASH) project revealed that a relationship which is positive exist between the involvement of stakeholders and outputs of a project. According to Hart, (2002) engagement of stakeholders in every stage of the project life-cycle as much as possible can lead to effective project implementation. Stakeholder participation also facilitates the creation and development of new ideas.
For purposes of this study Project stakeholders did encompass all project team members and all organizations interested that may be internal or external to project. According to Williams, (2008), the duty of identification of the internal and external stakeholders, negative and positive, and advising and performing stakeholders need be vested on the project team so as to make a determination on the requirements of the project and the anticipations of all the involved parties.

There is a need for identification of valid and legitimate stakeholders and their power and influence require to be understood so as to easily manage their potential project impact. There are several strategies which have been developed for classification of stakeholders which have been developed so as to identify and clarify the importance of every project stakeholders. This would assist in formulation of appropriate stakeholder management and their relationship. Some of these techniques, tools and designs that help in determination of the stakeholder’s position also help in analysing the degree of influence of stakeholders on project. They include the power/predictability matrix (Newcombe, 2003), power, legitimacy, urgency framework (Mitchell et al., 1997), the vested interest-impact index (Bourne & Walker, 2005), the power matrix (Johnson et al., 2005), and the stakeholder impact index (Olander, 2007) as well as the stakeholder-commitment matrix (McElroy & Mills, 2003).
For the purpose of this study, stakeholders will be seen as important individuals and organizations that have interest in the establishment of Milk cooling projects and can influence the projects’ performance.

2.2.1 Stakeholder Theory

The theory of stakeholders has been subjected to wide interpretation by different researchers and scholars. Oakley (2011) described the approach of stakeholders as a strong means of getting to understand the firm in its environment. Further, according to Mansuri & Rao, (2004), the intention of this approach is to expand the vision of the management, its roles and obligations apart from the maximization of profit as a core function.

The stakeholder definition traditionally is “any group or individual who can affect or is affected by the achievement of the objectives of the organization” (Freeman 1984). Turner (2003) on his part describes stakeholders as people who have “a vested interest in the success of a project as well as the environment within which the project operates and can significantly influence the success of a project”. A wider perspective is given to the Stakeholder Theory by Muthaura and Omwenga, (2017) by stating that stakeholder theory significantly contributes to stakeholders such as staff, managers and shareholders as same with sponsors, clients, contractors, governments, public and special interest groups.

African Development Bank (ADB 2001) has categorized the stakeholders into primary as well as secondary. Primary stakeholders are beneficiaries who will be affected directly development of a project intervention or those directly affected by it (negatively or positively). While on the other hand, secondary stakeholders are those who are indirectly influenced by an intervention of development or are affected by it indirectly. Gibson (2000) classifies them into “internal and external, internal stakeholders being those who are connected formally with the project whereas external stakeholders are those affected in other ways by the project”.
Donaldson and Preston, (2005) asserts that theory of stakeholder “insist that every legitimate person or group participating in the activities of a firm or organization, are doing so as to obtain benefits, and that the priority of the interest of all legitimate stakeholders is not clearly evident”.

Management of the stakeholders is critical in achieving the project’s set objectives. As Freeman and Phillips (1984) states the theory of stakeholder “puts as a primary managerial task the charge to influence, or manage, or balance the set of relationships that can affect the achievement of an organization's or institution’s purpose”. In addition, Donaldson and Preston, 1995 adds that theory of stakeholders is a concept of managing the strategy of an organization and its ethics. This therefore implies that projects success is depended on how the project team manages stakeholder’s relationships with all such facilitators, financiers, suppliers, communities, customers, employees and any other who can be affected by the manifestation of the project objectives and goals. As Patton (2008) puts it, the central and original aim of theory of stakeholders, was over ally to enable managers to get an understanding of stakeholders so as to manage them strategically. Stakeholder participation is meant to enhance the involvement of stakeholders in the different stages in the management of a project cycle through contributions in form of material and opinion inputs. Public participation’s objective is to share information with stakeholders and members of the public to gather useful inputs from those who have interests in the project.

Basically, stakeholders’ theory strongly emphasizes the importance of relationship between the staff in top management with the stakeholders. The project team and managers should be able to understand that the success of a project can substantially be influenced by different stakeholders’ participation. This stakeholder participation will be depended on the amount of relationship they have with the senior management. Stakeholders may also demand and can influence a project program, its envisioned outputs, and establishment of a project team which will be capable of achievement of a set of objectives towards manifestation of a drawn strategic business plan.
The theory of stakeholders gives equal importance to both internal and external stakeholders and it is upon this theory that research question inquiring the stakeholder relationship can influence the performance at each stage of the projects have been formulated. In this study of milk cooling plants, the theory will assist to highlight the stakeholders’ importance relationship in the performance of milk cooling projects.

2.3. Project life-cycle

The ‘project life cycle’ concept is management practice and theory that has long been established in projects. The concept of a life cycle is a unique point which differentiates between projects and non-projects. According to Patel and Morris (1999), “a project possesses identifiable start and end points that are associated with a time scale”. Project life cycle is a series of stages that pointedly impact the way projects are organised (Patel and Morris (1999). Projects have a process which they undergo through which has a series of stages during its lifetime. Westland (2007) describes four critical stages in a project cycle namely Project commencement, Project preparation, Project performance and Project termination. Every phases of the project life cycle assist in the organization’s provision of information which is relevant for making decisions. It has also been argued that the life cycle of a project assist to define clearly the concerned stakeholder’s roles.

Every project has a life cycle which refers to a clearly stipulated sequence of activities to be executed so as to achieve the project’s objectives. The importance a project’s life-cycle is that it gives clear definition of the start and the end of a project. Every project cycle project is realized by completion of one or more deliverables. Deliverables have been defined as “a tangible, verifiable work product such as feasibility study, a detailed design or a working prototype and the project life cycle phases model is progressive thus each successive phase can only be tackled with success if the preceding phase is completed” (AIDCO, 2004).
Typically, the sequence of phases in a life-cycle of a project as depicted below gives an insight of the critical stages where the stakeholder participates in the project development.

![PROJECT LIFE CYCLE Diagram](image)

2.3 Stakeholder Involvement in project performance

For every Project to succeed in manifesting the intended objectives and goals, the stakeholders’ inputs in every phase of the project in the course of its life-cycle is of dire need. The following are the highlights on how participation of stakeholders contributed to the success of milk cooling projects in Bomet County.

2.3.1 Stakeholder participation in Project Identification at initiation Phase

Every project begins with an idea. Chikati (2010) defines the project identification as that stage at which a project is defined as an idea or possibility worthy of further study. Project Initiation within which the component of identification is enshrined is a very crucial stage in any project sustainability. The project will not successfully meet the community needs if this stage is not performed well. It’s at this stage that diverse skills, knowledge and experiences of the stakeholders need to be mobilized towards successful formulation of worthwhile project. It’s at this stage that cautious decision must be made for the intended project.
Project initiation process starts with an identification of a deficiency or a common challenge faced by a society or community which requires innovative measures to curb. It is a common problem which every member of a community realizes and appreciates that call for strategic action to combat. With regards to dairy farmers in Bomet County, the major challenge has for several years been reliable marketing of milk produce, taking into consideration that it is a perishable produce.

Martinez and Olander (2015), conference report titles stakeholder participation in sustainable property development do outline the need to have stakeholders participate in project idea generation and feasibility studies. The report mentions the need to have stakeholders generate their own project ideas or come up with needs assessments because they are the ones who understand their own problems and requirements. The benefit of engaging the stakeholders in need identification and project generation is sustainability and ownership of such projects is enhanced.

Upon identification and appreciation of the problem by stakeholders, a feasibility study requires to be conducted so as to assess the viability of the proposed project. For the milk cooling projects, the inputs of both primary and secondary stakeholders, the technical experts of project feasibility studies were sought. Initiation stage can be claimed concluded when a charter of the project has been drawn, preliminary scope statements have been prepared and a project manager has been assigned tasks to the project. A project charter, according to Nyabera(2015) is an outline of what the sponsors of the project expect the project to achieve. The decisions made during the initiation phase makes a connection to prevailing approaches and determine the overall structure within which a project will ultimately evolve (Williams 2008). Involving stakeholders at the initiation phase leads to identification of project design weaknesses and developing more effective implementation strategies.

Several public participation meetings were convened by the management committee in collaboration with the County government. This was meant to assemble useful ideas towards implementation of the proposed projects. Successful completion of this phase would in itself become a Justifiable reason
to design a way forward for the subsequent phases of the project. The following schedule gives a summary of what project initiation phase entails:

Table 2.1: Summary of Project Initiation Stages (Westland 2006)

<table>
<thead>
<tr>
<th>Identification and Selection phase</th>
<th>Description</th>
<th>Activities</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Develop Business Case/Project Brief.</td>
<td>It is created to give a definition of the detailed challenge or opportunity in to enable identification which are preferred for implementation.</td>
<td>A description which is detailed of the problem opportunity; - List of available alternative solutions; - An analysis of Business benefits, cost, risk and issues; A preferred solution description; - an implementation plan which is summarized.</td>
<td>Approval of the Business case by identified project sponsors, and the funding required to proceed with feasibility study is allocated.</td>
</tr>
<tr>
<td>Carry-out a feasibility study.</td>
<td>The aim of feasibility study is to analyze the possibility of each solution’s alternative to achieve the outlined</td>
<td>Find out whether the cost of forecast is reasonable, the solution can be achieved, if the risk is acceptable and if</td>
<td>Feasibility study confirms: - reasonable costs; - achievable solutions.</td>
</tr>
<tr>
<td>Set the Terms of Reference</td>
<td>A new project is formed after the Business case and feasibility study have been approved.</td>
<td>Created Terms of References.</td>
<td>Terms of Reference: - Definition the vision, objectives, scope and deliverables for the new project. - Description of the organizational structure, activities, resources and funding required to undertake the project; - Any risk, issues, planning assumptions and constraints are also identified.</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Appoint the Project Team</td>
<td>A project Manager may be appointed at any stage during the life of the project prior to recruiting of the project team.</td>
<td>Project Manager appointed prior to recruiting the project team.</td>
<td>The Project Manager: - Creation of a job description detailing each role in the project team; - Recruitment of people into each role basing on skills and experience which are relevant.</td>
</tr>
<tr>
<td>Set-up a Project Office</td>
<td>The Project office is a physical environment within which the team is based</td>
<td>A virtual office is viable option</td>
<td>A project environment should include: - Equipment, such as office furniture, computer, stationery and materials; - Communication Infrastructure such as telephones, computer, network, e-mail, internet access, file storage, database storage and backup facilities;</td>
</tr>
</tbody>
</table>
Perform a Phase review | Done at the end of initiation phase | A check point to ensure that the project achieve its objectives as planned. | Objectives achieved.

<table>
<thead>
<tr>
<th>2.3.2. Stakeholders’ participation on Project planning and design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project planning according to Nyandemo and Kongere (2010), means an endeavour to organize human, financial and material resources and utilization within the given scope of work of a given activities within constraints of cost, time and quality to enable achievement of some intended objectives. Gitonga (2010) also describes project planning as a process of developing and maintaining a project plan that provides supporting details to the project definitions in terms of resources, cost, time and scope and quality plan schedules. He further indicates that reasons for project planning includes developing a strategy that would deliver the project goals and that the critical dimensions of time, cost, quality and scope would be difficult to achieve if a plan of the project has not been drawn. Turner (2009) carried out a research that sought to highlight the role of stakeholder in the process of planning and managing of project activities. The author established through a survey methodology that stakeholders take a lead in implementing action and implementation plans. At early stages of the project the stakeholders through several consultative meetings are able to sit and develop strategies that would be useful in executing the project. The participation of stakeholders at early stages enables the project to be sustainable as every stakeholder becomes responsible to the goals and project’s objectives.</td>
</tr>
</tbody>
</table>
The major objective of project planning is to plan within the limits of available resources satisfactorily by estimating the activities to be undertaken and how risks would be managed effectively during the process of project implementation. Planning is actually breaking down the impending activities into manageable units or as Rao (2001) puts it systematic planning benefits is to break down activities which are complex into manageable chunks, to determine sequences which are logical of activities, to offer a rational for decision-making, to show effects on other systems, to provide framework for programme assessment, to allow trainings to be done from practice and to facilitate communication of thoughts in a rational form to its use. He further defines planning as a thread that is common and that links all the actions from beginning to commissioning and handing over the windup to customer.

As stated by Kerzner, (1989), planning includes the essential activities such as scheduling, organization chart to ensure a clear definition of responsibilities as well as organization structure which would ensure a clear understanding of individual responsibilities and relationships, Work Breakdown Structures (WBS), time estimates and statement of work. Project planning forms a critical part of project management that incorporate use of schedules like Gantt charts to strategies and report progress of the project.

Planning entails a number of activities and according to Rosario (2000), some of which are: determination of how to plan, development of the scope statement; selection of the planning team; identification of deliverables and creation of the work breakdown structure. Rosario stated that “the identification of the activities needed to complete those deliverables and networking the activities in their logical sequence; estimating the resource requirements for the activities; estimating time and cost; developing the schedules and budget; risk management; and gaining formal approval to begin work”. Williams M, (2008) asserted that the primary purpose of developing a project plan is to put in place a set of directions which are adequately detailed to inform the project team clearly what need to be done, when to be done, what resources are needed to achieve the objectives of the project effectively, and when each resource are required. When the plan has been established and agreed
Upon, it becomes the project baseline upon which the progress is gauged against throughout the life of the project. Shah and Naqvi (2014) contend that “at this level, the project officials prepare the project budget, work plan and open a bank account for the project funds to be channelled through”.

Wamugu and Ogollah (2017) cited the benefits which can be realized with stakeholders’ participation in the process of planning which includes: reduction of distrust in the outcomes of project, improvement of commitment on objectives of project and credibility performance improvement, logical networking of activities, project budget estimation and formalizing the process of approval.

Throughout the project life-cycle, Stakeholders need to be made informed of the project objectives. This can be made possible through clearly planned structure of communication. Communicating effectively with the project stakeholders is important to achieving a successful outcome. This communication need to be bi-directional so as to be effective. Vehicles which are appropriate for communication include project meetings of the project, plans and reports, formal presentation and informal discussions., Planning would sure to be misguided or inadequate if all the planning process parties do not have an understanding which is clear on what the project is anticipated to deliver. This is why the project teams coordinating milk cooling projects in Bomet County have always strived to ensure that the stakeholders are fully informed and engaged specifically in formulation of the projects strategic and implementation plan.

2.3.3 Stakeholders’ participation on Project Implementation

For any project to succeed, it is always important to have a workable implementation plan. According to Wayne and Wittig, (2002), project implementation typically establishes the most important stage in project development. The implementation phase essentially entails the activities undertaken to accomplish the defined work in the project’s’ management plan so as to manifest the projects’s objectives. Gitonga (2010) notes that “project implementation phase is that stage in the project life cycle process when the project management plan is translated into action, i.e. actual work is dispensed
on the ground”. At this stage, outcomes of project planning and design are essentially converted into activities depending on the type of a project implementation plan and the capacity and efficiency of the project management team. Nyandemo & Kongere (2010) define project implementation as “the whole process of translating broad policy goals or objectives into visible results in the form of specific projects of action”. This phase is also known to ensure project’s activities are implemented and monitored (Rosario, 2000).

The implementation process encompasses coordinating stakeholders and available resources to dispense the activities of the project in line with the project management plan. According to Falkowski et al. (1998), project implementation should be disciplined with coordinated and active human resource involvement. For the plan to be workable, the project deliverables must be properly defined based on its indicators (Holland et al., 1999). In additional, there is a need to integrate in the plan well-defined activities and accurate cost estimation of required work. There is also a need to determine the critical paths of the project to guide in the implementation process. According to Rosario (2000), project timeliness and forcing of timely decisions should also be managed. As suggested by Wee, (2000), “deadlines should be met to help stay within the schedule and budget and to maintain credibility”.

Involvement of stakeholders is among the central soft skills areas that have been outlined as being essential for commitment inspiration to the project so as to achieve desired outcomes as asserted by Crawford (2005) and Morris et al., (2006). It is in this perspective that the project teams coordinating the milk cooling projects in Bomet County mobilized the inputs of all stakeholders and the projects succeeded.

2.3.4 Stakeholders’ participation on Monitoring and Evaluation

Nyonje, Ndunge and Mulwa (2012), define monitoring as the periodic and continuous overseeing and project review to make sure that work schedules, input deliveries, target outputs and other actions
that may be required proceed in accordance to the plan of the project. On the other hand evaluation is the use of a systematic and objective assessment of activities of a project which is undergoing implementation or completed aimed at determination of the achievement level of objectives of project, project relevance, effectiveness of development, efficiency, impact and sustainability. Nyonje, Ndunge and Mulwa (2012), define evaluation as “a process that involves organized collection, examination and clarification of venture related data that can be used to understand how the project is functioning in relation to the project objectives”.

Maalim (2017) conducted a study titled ‘Influence of Monitoring and Evaluation Practices on Project Performance in Counties’. The study found that if stakeholders participating in collection and disseminating information to the immediate users or sponsors then it translates to positive results. The study further found a positive relationship between monitoring and evaluation practices and performance of institutions. It is then worthy that institutions and organizations engage the stakeholders in the process of monitoring and evaluation activities in different stages of the project establishment.

Monitoring and Evaluation is an on-going process of collecting information at regularly intervals which assists to depict the kind and level of their performance. This process assist in comparing a project’s progress and the planned activities to make sure that the implementation process are as planned and moving at the anticipated speed towards achievement of its set objectives. The main purpose is to specify at the earliest occurrence any inadequacies with regards to attaining anticipated objectives so that alternative measures can be invoked at the right time. This would enhance the efficiency and effectiveness in the performance in the project implementation procedures. Monitoring and Evaluation assist also in controlling risks which are possible upcoming events that can adversely distress a venture's cost, agenda, scope or quality.
Ogula (2002) opined the importance of monitoring and evaluation in educational projects. The author outlines that compliance, consistency and accountability is enhanced when the project is monitored and evaluated continuously. Other advantages of participation in monitoring and evaluation include enhanced common understanding, accountability, better decision, performance improvement and more information inflow. This illustrates that monitoring and evaluation contributes to several merits to projects and therefore it should be executed and integrated in all activities.

Some of the methodologies often applied are site-visits observation, project progress documents, perusal, photographic recording and interviews. Areas of focus while conducting Monitoring and Evaluation should be Project Work plan, Activity Progress Report, Project financials, Procurement and overall project management. According to Wayne and Witting (2002), “monitoring and evaluation includes measuring the on-going activities, monitoring the project variables against the project plan and the project performance baseline, identify corrective actions to address issues and risks properly and influencing the factors that could circumvent integrated change control so that only approved are implemented”.

Participatory Monitoring and Evaluation of activities of projects assist stakeholders to highlight the strengths and weaknesses of those activities, identify the project procedures which are beneficial and those that are disruptive and obsolete. Therefore, it is through a purely participative monitoring and evaluation process that the stakeholder empowerment can be achieved as well as stakeholder’s ownership of their projects.

2.4. Conceptual Framework

This section presents the conceptual framework which identifies the concepts included in the study and shows their relationships in a schematic representation.

Independent Variables

- Project Identification
- Problem analysis
- Decision making
- Feasibility Study
- Appointment of Project Team
Figure 2.1 Conceptual framework
2.5 Theoretical Framework

This study was grounded on the theory of stakeholders postulated by Freeman (1984). This theory suggests that all individuals or groups engaged in a project do so with intentions of safeguarding their interests. It emphasizes critical role stakeholder participation plays in project success, the underlying emphasis being that there is a correlation between participation and success. Freeman opted for the word ‘stakeholder’ because the traditional term-stockholder focused on the economic status of an organization. The refined view of stakeholder here includes other parties such as financiers, suppliers, NGOs, political class, government bodies, employees and customers.

According to Sternberg (1997), “stakeholder’s theory has, nonetheless, been criticized for being ambiguous and undermining the rights of the owners of the company and property, compromising strategies of the free market and affecting the operations of legal department”. Nevertheless, Freeman (2004) proposes that the notion is better agreed not as a monumental theory, but fairly as a field of stakeholder "concepts. The theory’s suggestion that there is need to ensure that all stakeholders interest are gathered for along the project implementation process and their relationship is safeguarded for the long-term sustainability of the project forms a strong foundational basis for this study.

2.6 Summary of Literature

Critical review examination into the existing findings in the field of participation by stakeholders and their relation to projects performance was made. It is evident that individuals and organizations actively participate and have a great command on the successful implementation of a project and its future fate. It emerges from this review that there is substantial findings that participation of stakeholders is important at every phase of project development. This did improve the effectiveness, quality and sustainability of projects and strengthen the commitment of facilitators and beneficiaries amongst other stakeholders.
Stakeholders’ information of most the project objectives are also very important in project development and this can be made possible through communication. Prudent stakeholder management is instrumental to the successful development of projects and therefore an approach which is strategic to controlling influence of stakeholders must be put in place. The literature review helps to exhibit the exist stance of various techniques and tools which are in use mostly in sectors and organizations helping in identification, assessment and analysis of the influence of stakeholders and impacts.

2.7 Research Gap

A number of Researches have been carried out on participation of stakeholder in management of projects and their performance. However, the methodologies used to arrive at conclusions were varied and have not critically assessed the amounts of stakeholders’ inputs in projects’ performance. This research seeks to fill a gap in both theory and practice by focusing at the influence of stakeholders’ participation in every stage of the life-cycle of projects and came up with the strengths of relationships between involvement of stakeholder in project initiation, project planning, project execution and project evaluation and project implementation. In addition, it explored stakeholder management approaches which are proactive and formal for the cooperative projects in general and milk cooling projects in particular.
CHAPTER THREE

RESEARCH METHODOLOGY

3.1 Introduction

The main objective of this chapter was to show how the study was to be carried out and how data would be collected and analysed into useful information using scientific methods. The chapter focuses on applied research techniques and methods that were used to validate the study objectives. It focuses on: research design, target population, sample size and sampling procedure, data collection instruments, pilot testing of the instruments, validity and reliability of the instruments, data collection procedures, data analysis techniques, ethical consideration operational definition of variables and finally the ethical consideration that were followed during the study had been detailed.

3.2 Research Design

The research constituted the blueprint for the collecting, measuring and analysing of data. To manifest that, the study did adopt a descriptive survey research design with both qualitative and quantitative characteristics. Kothari (2004) defines a descriptive research as one that is “concerned with describing the characteristics of a particular individual or of a group”. In a descriptive survey, research objectives are predetermined which allows data collection to be relevant and sufficient to the study problem. According to Orodho (2003), descriptive research design is a method of collection of information through interviews or administering questionnaires to a sample of individuals. This is considered appropriate because as Kothari (2005) stated that, “descriptive design describes the present status of a phenomenon, determining the nature of the prevailing conditions, practices, attitudes and seeking accurate descriptions”. A descriptive survey design allows researchers to collect information, do a summary, do presentation and interpretation for the purpose of clarification.
3.3 Target Population

According to Borg & Gall (1989), “target population is specific population or hypothetical set of people, events or objects to which a researcher wishes to generalize the results of the research study”. The target population for this study was drawn from the stakeholders in the five active dairy cooperatives with milk cooling projects in Bomet County. These societies in collaboration with the national and county government managed to mobilize resources from diverse stakeholders and successfully established operational milk cooling projects. The stakeholders included Non-governmental organizations (NGO), National government, County government of Bomet, financial institutions, suppliers, milk processors and the members of the cooperatives. In total the stakeholders in the five societies were three hundred and fifty (350).

Table 3.1: Cooperative Societies with active milk cooling plants

<table>
<thead>
<tr>
<th>Society</th>
<th>Total Membership</th>
<th>Active</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siongiroi Farmers C. S. Ltd</td>
<td>957</td>
<td>417</td>
</tr>
<tr>
<td>Balek Farmers C. S. Ltd</td>
<td>438</td>
<td>272</td>
</tr>
<tr>
<td>Ndarawetta Farmers C. S. Ltd</td>
<td>471</td>
<td>301</td>
</tr>
<tr>
<td>Kokiche Farmers C. S. Ltd</td>
<td>232</td>
<td>152</td>
</tr>
<tr>
<td>Kipsonoi Farmers C. S. Ltd</td>
<td>356</td>
<td>208</td>
</tr>
<tr>
<td>Total</td>
<td>3,554</td>
<td>1,350</td>
</tr>
</tbody>
</table>

Source: (Bomet County, 2019)

3.4 Sampling Size and Sampling Procedure

This process of sampling entails selection of certain number of individuals affected by the project who represented the whole population. The sample size and sampling procedure were determined as follows.
3.4.1 Sampling Procedure

The study applied simple random sampling approach to select the sample. This procedure, according to Mugenda and Mugenda, (2003) would ensure that “the target group did have equal and independent chance of being selected into the sample”. Purposive sampling was used to choose the key informant who influenced substantially the projects. The selection criteria prioritized active members supplying milk to the cooling plants. Statistical Package for Social Science (SPSS) was used to randomize the names and pick 150 names that were approached for administration of the questionnaire. Other stakeholders apart from the members included the Management Committee, National and County Government Staff, NGOs amongst other sponsors and Milk processors.

3.4.2 Sampling Size

According to Dooley (2007), “a sample size of between 10% and 40% is considered adequate for detailed or in-depth studies”. There are a number of factors to be considered when deciding on the sample size of the target population. The most important one is to make sure that it is manageable. Taking into considerations the constraining inputs of resources and time, Gay (as cited in Mugenda and Mugenda, 2003) argued that ten percent of the accessible population for descriptive studies is enough. The sampling technique used was Stratified proportionate random which was used to select the sample from the project representatives. Hence, this study sampled 30% of the members of the cooperative societies with milk cooling projects to determine the influence stakeholders participation in the projects. Further, the study did use a census approach in picking all twenty (20) management committee and five (5) National and Five(5) County governments representatives making a total population of 200 respondents.
Table 3.4.3: Sampling Frame

<table>
<thead>
<tr>
<th>Stakeholder Details</th>
<th>No.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 co-operatives representative</td>
<td>150</td>
<td>75</td>
</tr>
<tr>
<td>NGOs Representatives (sponsors)</td>
<td>3</td>
<td>2.5</td>
</tr>
<tr>
<td>National Government</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>County Government</td>
<td>15</td>
<td>7.5</td>
</tr>
<tr>
<td>Milk Processors</td>
<td>2</td>
<td>2.5</td>
</tr>
<tr>
<td>10 Ordinary members shareholders (10 x5 Cooperatives)</td>
<td>50</td>
<td>7.5</td>
</tr>
<tr>
<td>Total</td>
<td>200</td>
<td>100</td>
</tr>
</tbody>
</table>

3.5 Methods of Data Collection

The researcher collected primary data through self-administered questionnaire. A questionnaire which is self administered is a reliable procedure to extract individual opinion, values, attitudes, and beliefs. The questionnaires used structured and unstructured questions. A drop and pick techniques was used to administer the questionnaire. The closed ended questions assisted the researcher to collect quantitative data while open-ended questions enabled the researcher to collect qualitative data. The questions was formulated as guided by the collections and experiences learnt in the literature review on influence of stakeholder participation in performance of projects. Selection of the tool was based on the nature of the data to be collected, data availability and the study objectives. The questionnaire was used since the study is concerned mainly with variables which could not be directly observable such as opinions and views and given that the population is literate and there was no difficulty in responding to the questions.

3.5.1 Pilot testing of Questionnaires

Piloting is a preliminary study which was undertaken to establish the appropriateness and effectiveness of the research instruments which were used in the study. Pre-test a sample should be between 1% and 10% of the study sample size (Mugenda & Mugenda, 2003). 20 Respondents during
the pilot testing was picked from all the five cooperative societies, the national government, county government and NGO and these representatives constituted 10% of the sample size.

3.5.2 Validity of the instrument

Validity is the exactness and significance of meaningfulness of inferences, which depend on the examination, comes about or how much outcomes acquired from investigation of the information really speaks to the wonder under investigation (Mugenda and Mugenda, 2003). The questionnaires were evaluated for content validity, for clarity and suitability. The researchers’ supervisor did help the researcher to assess whether the perception of the instruments measuring and if correctly and accurately represented. The researcher did guarantee that the respondents secured the broadness of the substance territory and render in an arrangement suitable for the individuals will's identity in utilizing the instruments.

Interviews are more reliable as they give outcomes which are fairer than several other commonly used tools of selection including psychometric tests of capacity and insight. Good eye to eye connection, positive non-verbal communication and physical engaging quality can prompt higher scores in interviews yet by and large just for competitors who give smart responses to the inquiries being made. The researcher utilized these two instruments to accomplish both qualitative and quantitative outcomes.

The instruments that were used for this study, the questionnaire and an interview guide were also given to the supervisor to validate. The anticipation was that the in the questionnaires’ content validity of the items was confirmed as a result of continued consultation by the researcher with the supervisor, pilot study and reference books were used in the study. These efforts which were collaborative definitely yielded instruments which qualified validity test.
3.5.3 Reliability of the Instruments

Reliability is the level of constancy/dependability in task of comparable words, of diverse kind of information to a similar subject by diverse scientists. Mugenda and Mugenda (2003) contend steady quality is a measure of how much an investigation device and strategies give steady outcomes or information after several trials. Legitimacy and unwavering quality issues fill in as certifications of the after effects of the members' exhibitions. A pre-test was done to get to the clarity and effectiveness of the instruments of research. The pre-test method of evaluating unwavering quality of an examination instrument was done by administering a similar instrument to comparative or similar gathering of respondents before the genuine respondents. Spearman rank correlation relationship was utilized to process computation of correlation coefficient in order to enable establishment of the extent to which the content of the instrument were consistent in generating the right responses every time the instrument was administered. A correlation coefficient greater than 0.75 was considered high enough in judging the reliability of the information.

3.6 Data Analysis Techniques

The researcher coded particular reactions according to the examination instruments used. To minimize space for errors the researcher ensured that returned polls are checked for mistakes and errors before coding. Quantitative information received was feed to the Statistical Package for Social Sciences (SPSS) to derive the desired output on the adopted Likert scales, SPSS was used because it is considered accurate, fast, flexible and provided more analysis resulting in dependable conclusions to determine the coveted yield on the embraced Likert scales, the data collected was then analyzed with the help of descriptive statistics (frequency distribution, percentages, mean scores and standard deviations) as well as inferential statistics (multiple regression analysis and correlations). Qualitative data was then analyzed using content analysis. To test hypothesis the data analysis multi linear regression model was applied.
Multiple regression model was used to establish the extent to which the independent variables predicts depended variable. Tests for normality, independence of errors, homoscedacity, and linearity were conducted before the results of the regression model were accepted. The regression model was as follows:

\[Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \varepsilon \]

equation (i)

Where; \(Y \) = the dependent variable (performance of milk plant project)

\(\beta_0 \) = Constant Term

\(\beta_1, \beta_2, \beta_3, \) and \(\beta_4 \) = Beta coefficients

\(X_1 \) = Stakeholder participation in project identification

\(X_2 \) = Stakeholder participation in project design and planning

\(X_3 \) = Stakeholder participation in project implementation

\(X_4 \) = Stakeholder participation in monitoring and evaluation

\(\varepsilon \) = Error-term

3.7 Operational Definition of Variables

<table>
<thead>
<tr>
<th>Objectives</th>
<th>Variables</th>
<th>Indicators</th>
<th>Measurement Instruments</th>
<th>Scale off measurement</th>
<th>Types of Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>To establish the extent which stakeholders’ participation in project identification influence performance of milk cooling plant projects</td>
<td>Participatory Project Identification</td>
<td>Project Identification is done by: - Primary stakeholders; - Representatives of County Government; Representatives of National Government.</td>
<td>-Number of Stakeholders participating; -Nature of participation.</td>
<td>Interval</td>
<td>Descriptive and Inferential Analysis</td>
</tr>
<tr>
<td>To establish the extent which stakeholders’ involvement in planning and design influences performance of</td>
<td>Participatory Project Planning and design</td>
<td>Stakeholders Participation in: - Formulation of Strategic Plan;</td>
<td>-Number of Stakeholders participating; -Nature of participation</td>
<td>Interval</td>
<td>Descriptive and Inferential Analysis</td>
</tr>
<tr>
<td>Establishment of Project Team</td>
<td>Implementation Plan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>To establish the extent which stakeholders’ participation in the implementation influences the performance of milk cooling plant projects</td>
<td>Participatory Project Implementation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stakeholders participation on: -</td>
<td>-Number of Stakeholders participating; -Nature of participation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-Procurement Process; -Supervision Process; -Communication Process.</td>
<td>Interval</td>
<td>Descriptive and Inferential Analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To establish the extent which stakeholders participation in monitoring and evaluation influences performance of milk cooling plants projects	Participatory Project Monitoring and Evaluation	
Stakeholders Participation on: -	-Number of Stakeholders participating; -Nature of participation	
-Measuring Performance; Identification of Performance Gaps; Making of Reports.	Interval	Descriptive and Inferential Analysis
3.8. Ethical Consideration

In the course of planning and while of conducting the research, and also while reporting research findings, some contemplations and requirements were fulfilled. While collecting data collection, the stakeholders of the studied project were approached and informed concerning the nature of the research, through a formal letter, seeking their permission to collect data in their organizations, clearly stating the purpose of the study and any risks to the business that the study could create by involving its employees. The researcher sought consent form respondents before administering the questionnaire. The confidentiality of the respondents was maintained and the collected data were used for the purpose of this study only. This study adhered to the principles of research and the research findings were reported objectively.
CHAPTER FOUR

DATA ANALYSIS, PRESENTATION, DISCUSSION AND INTERPRETATION

4.0. Introduction
The chapter presents findings that describe the influence of stakeholder participation on performance of Milk cooling projects. Descriptive and inferential statistics was used to analyse quantitative data while content analysis was used to analyse qualitative data obtained from interviews conducted. Presentation of data was done using frequency distribution tables and logical statements categorized according to the specific themes of the study.

4.1. Response rate
The study sought to conduct interviews and issue questionnaire as per the sampling frame. Careful follow ups and keenness of the researcher enabled the study to obtain a 100% response rate in both interviews conducted and questionnaires issued. A total of 200 questionnaires from 150 co-operative representatives and 50 ordinary shareholders were correctly filled and returned while interviews were conducted to 10 National government representatives, 5 county government representatives, 3 sponsors, and 2 milk processors management representatives. A response of 100% is sufficient enough to conduct the study.

4.2. Background information
The study sought to establish information relating to gender, age, occupation and education levels of the respondents. Background information of the study helps to ascertain representation and entry behaviours of the respondents to the study. Table 4.1 summarizes findings on gender, age, occupation and education levels of the respondents.
Findings as per Table 4.1 showed that 62% of the respondents were male while 38% of the respondents were female. This finding indicated that there was more male respondents’ representation than the female.
In respect to age about 1.3% and 14.5% of the respondents stated that they were aged between 20 to 25 years and 26 to 30 years respectively, 28% and 43.5% of the respondents were aged between 31 to 35 years and 36 to 40 years respectively, and 12.5% of the respondents were aged 41 years and over. This finding established that majority of the respondents (71.5%) were aged between 31 to 40 years of age. In terms of occupation the study established that 68.5% of the respondents were farmers, 14.5% of the respondents were civil servants, 13.5% of the respondents were entrepreneurs, 1.5% was financiers and 1.5% of the respondents mentioned other occupations. These finding shows that majority of the respondents were practicing farming as their occupation. Lastly the respondents were asked to state their highest education levels, and the study established that; 29.5% and 26.5% of the respondents had primary and secondary level of education, 21.5% and 11.5% of the respondents had certificate and diploma levels of education respectively. Additionally, 10% and 1% of the respondents mentioned that undergraduate and post graduate is their highest level of education. This finding shows a significant more number of respondents (56%) had basic (secondary and primary) level of education.

4.2.1. Period involved with milk cooling plant project

The respondents were asked to indicate the number of years they have been involved in the milk cooling plant project. This particular college was important in assessing the knowledge and experience regarding their participation in the project. Findings to the question were then presented in table 4.2.
Table 4.2 Number of years involved with the project

<table>
<thead>
<tr>
<th>Years category</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 years & below</td>
<td>7</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>3 - 4 years</td>
<td>36</td>
<td>18.0</td>
<td>18.0</td>
<td>21.5</td>
</tr>
<tr>
<td>5 - 6 years</td>
<td>68</td>
<td>34.0</td>
<td>34.0</td>
<td>55.5</td>
</tr>
<tr>
<td>7 - 8 years</td>
<td>49</td>
<td>24.5</td>
<td>24.5</td>
<td>80.0</td>
</tr>
<tr>
<td>Over 9 years</td>
<td>40</td>
<td>20.0</td>
<td>20.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>200</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

Findings presented in table 4.2 showed that 3.5% and 18% of the respondents had been with the milk cooling plant project for a period of years ranging between 2 years and below and 3 to 4 years respectively. About 34% and 24.5% of the respondents have been with the project for a period ranging between 5 to 6 years and 7 to 8 years respectively, and lastly, about 20% of the respondents have been with the project for a period ranging between 9 years and above. This finding particularly shows a significant majority (78.5%) have been with the project for more than 5 years which is a good indicator that they are knowledgeable and understand its activities.

4.3. Performance of the milk cooling plant project
The study sought to establish the level of agreement among the respondents on the general performance of milk cooling plant project. Table 4.3 shows findings on the levels of agreement on performance of the milk cooling plant project.
Table 4.3 Performance of the milk cooling plant project

<table>
<thead>
<tr>
<th>Statements</th>
<th>1 (F, %)</th>
<th>2 (F, %)</th>
<th>3 (F, %)</th>
<th>4 (F, %)</th>
<th>5 (F, %)</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stakeholder participation in project has improved the sales volume of the milk cooling plant.</td>
<td>24(12)</td>
<td>27(13.5)</td>
<td>43(21.5)</td>
<td>49(24.5)</td>
<td>57(28.5)</td>
<td>3.441</td>
<td>1.347</td>
</tr>
<tr>
<td>Stakeholders’ involvement in project has translated to profitability in the milk cooling plant</td>
<td>15(7.5)</td>
<td>23(11.5)</td>
<td>29(14.5)</td>
<td>61(30.5)</td>
<td>72(36)</td>
<td>3.762</td>
<td>1.261</td>
</tr>
<tr>
<td>Stakeholders’ participation in the project has contributed to increased growth in milk capacity processing in the milk cooling plant.</td>
<td>19(9.5)</td>
<td>26(13)</td>
<td>35(17.5)</td>
<td>54(27)</td>
<td>66(33)</td>
<td>3.613</td>
<td>1.318</td>
</tr>
</tbody>
</table>

Composite mean 3.705 1.309

Table 4.3 shows that 12% and 13.5% of the respondents did strongly disagree and disagree respectively that stakeholder participation in the milk cooling project has improved the sales volume of the project, 21.5% of them were neutral while 24.5% and 28.5% of the respondents agreed and strongly agreed respectively that stakeholder participation has improved the sales volume of the milk cooling plant. The general mean of 3.741(SD=1.347) is an agreement that stakeholder participation has improved the sales volume of the project.

The key informants from qualitative assessments via interviews stated that:

Since inception the milk cooling plant has been able to improve its sales volume consequently every month. There has been an increase in number of customers buying the projects from the plant [Interview: Milk processors].
What's more, 7.5% and 11.5% of the respondents strongly disagreed and disagreed respectively that stakeholder involvement in the project has translated to profitability in the milk cooling plant, a few of respondents 14.5% were neutral with the statement while 30.5% and 36% of the respondents agreed and strongly agreed respectively that stakeholder participation in the project has translated to in the milk cooling plant. The generalized mean of 3.762(1.261) shows an agreement that stakeholder participation in the project has translated to profitability in the milk cooling plant.

Lastly, the study established that 9.5% and 13% of the respondents strongly disagreed and disagreed respectively that stakeholder participation in the project has contributed to increased growth in milk capacity processing in the project, 17.5 % of the respondents were neutral while 27% and 33% of the respondents agreed and strongly agreed respectively that stakeholder participation in the project has contributed to increased growth in milk capacity processing in the project. A general mean of 3.613 (SD=1.318) shows an agreement that stakeholder participation in the project has contributed to increased growth in milk capacity processing in the milk cooling plant project. The finding on performance of milk cooling plant project shows that has been enhanced by stakeholder participation this is according to a combined mean of 3.705 (SD=1.309).

The key informants on the general performance of the milk cooling plants stated that:

There has been notable improvement in the performance of milk cooling plant project in the locality or region. This is witnessed by sustainability of these cooling plants which have increased their sales volume, number of collections and the number of members supplying milk joining in [Interview schedule: Milk processors].

4.4. Stakeholder participation in project identification and performance of milk cooling plant project.

The first objective of the study sought to establish the influence in which stakeholder participation in project identification would influence performance of milk cooling plant projects. Descriptive statistics was used to summarize and organize findings while inferential statistics was employed to provide meaningful relationship between the variables in the objectives. Key informants qualitative data would further provide supportive evidence of the study objective.
4.4.1. Project identification participation and performance of milk cooling plant project

The study sought to find out from the respondents if stakeholder participation in project identification generally influences performance of the milk cooling plant project. Results for the question were then presented in table 4.4.

<table>
<thead>
<tr>
<th>Response</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid Yes</td>
<td>187</td>
<td>93.5</td>
<td>93.5</td>
<td>93.5</td>
</tr>
<tr>
<td>No</td>
<td>13</td>
<td>6.5</td>
<td>6.5</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>200</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.4 shows that 93.5% of the respondents agreed that stakeholder participation in project identification influences performance of milk cooling plant while 6.5% of the respondents disagreed that it does not influence its performance. The large number of respondents is a descriptive indicator that stakeholder participation in project identification influences performance of the milk cooling plant project. Martinez and Olander (2015), affirms this finding by stating that participation of stakeholders in property development projects enhances sustainability and thus performance in the long run.

The key informants of the study from the interview schedule stated that:

Projects that were initiated or the idea was brought by the stakeholders have performed better in terms of growth and membership. Majority of the milk suppliers and customers trust their own projects. In the long run the projects are sustainable business wise.

[Interview schedule: Milk processor representatives, National and County government].

4.4.2. Influence of stakeholder participation in identification and performance of milk cooling plant project

Respondents were asked to provide their level of agreements with statements that seeks to establish the influence of stakeholder participation in identification on performance of milk cooling plant projects. These findings were presented in table 4.5.
Table 4.5 Influence of stakeholder participation in identification and performance of milk cooling plant project

<table>
<thead>
<tr>
<th>Statements</th>
<th>1 (F, %)</th>
<th>2 (F, %)</th>
<th>3 (F, %)</th>
<th>4 (F, %)</th>
<th>5 (F, %)</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participation in the problem analysis facing dairy farmers.</td>
<td>4(2)</td>
<td>10(5)</td>
<td>48(24)</td>
<td>92(46)</td>
<td>46(23)</td>
<td>3.831</td>
<td>0.908</td>
</tr>
<tr>
<td>Participation in giving opinion on identification and selection of milk cooling plant project</td>
<td>6(3)</td>
<td>18(9)</td>
<td>39(19.5)</td>
<td>86(43)</td>
<td>51(25.5)</td>
<td>3.792</td>
<td>1.021</td>
</tr>
<tr>
<td>Familiarity with the objectives of milk project initiative.</td>
<td>3(1.5)</td>
<td>15(7.5)</td>
<td>29(14.5)</td>
<td>91(45.5)</td>
<td>62(31)</td>
<td>3.973</td>
<td>0.945</td>
</tr>
<tr>
<td>Participation in feasibility study conducted for cooling plant project.</td>
<td>43(21.5)</td>
<td>49(24.5)</td>
<td>65(32.5)</td>
<td>35(17.5)</td>
<td>8(4)</td>
<td>2.581</td>
<td>1.127</td>
</tr>
<tr>
<td>Participation in the appointment of the project team.</td>
<td>51(25.5)</td>
<td>43(21.5)</td>
<td>79(39.5)</td>
<td>18(9)</td>
<td>9(4.5)</td>
<td>2.463</td>
<td>1.102</td>
</tr>
</tbody>
</table>

Composite mean 3.328 1.021

Table 4.5 shows that 2% and 5% of the respondents strongly disagreed and disagreed respectively that participation in the problem analysis among dairy farmers influences performance of the project, 24% of the respondents were neutral while 46% and 23% of the respondents agreed and strongly agreed that participation in the problem analysis influences performance of the milk cooling plant project. A generalized mean of 3.831(SD=0.908) provides agreement that participation in the problem analysis influences performance of the milk cooling plant project. Lewis, (2007) agrees with the statement stating that new ideas and knowledge are brought forward once stakeholder participates during inception of the project.

On the problem analysis the key informants of the study from interview schedule stated that;

Intensive focus and stakeholder meetings were conducted intensively before the milk project was instituted. Discussions during this groups enabled participants to intensively
discuss various components of the project setup. Project analysis has been useful in identifying opportunities and threats to the project [Interview schedule: National & County government, Milk sponsors].

Findings further showed that 3% and 9% of the respondents strongly disagreed and disagreed respectively that participation in giving opinion on identification and selection of milk cooling plant project enhances its performance., 19.5% of them were neutral while 43% and 25.5% of the respondents agreed and strongly agreed respectively that participation in giving opinion on identification and selection of milk cooling plant project have enhanced performance. The generalized mean of 3.792 (SD=1.021) outlines agreement that participation in giving opinion on identification and selection of milk cooling plant project enhances its performance. Nijkamp et al., (2002) affirms the finding by stating that it’s at this stage that diverse skills, knowledge and experiences of the stakeholders need to be mobilized towards successful formulation of worthwhile project.

The key informant’s findings regarding stakeholder giving opinions were as follows:

The project ideas and opinions are highly considered during the planning process and during project initiation. The local communities through consultative meetings were allowed to discuss and give their opinions in which they are factored in by the project managements [Interview: milk sponsors, Milk processors].

The study established that 1.5% and 7.5% of the respondents strongly disagreed and disagreed respectively that familiarity with the objectives of milk project initiative influences its performance, 14.5% of the respondent provided neutral response to the statement while 45.5% and 31% of the respondents agreed and strongly agreed respectively that familiarity with the objectives of milk project initiative influences its performance. A general mean of 3.973 (SD=0.945) shows agreement that familiarity with the objectives of milk project initiative influences its performance. Nyabera(2015) upholds the findings by stating that it is important for the stakeholder to fully understand the vision and objectives of the projects.
Findings table 4.5 further showed that 21.5% and 24.5% of the respondents strongly disagreed and disagreed that participation in feasibility study conducted for cooling plant project influences its performance, 32.5% of the respondents gave neutral response to the statement while 17.5% and 4% of the respondents agreed and strongly agreed respectively that participation in feasibility study conducted for cooling plant project influences its performance. A generalized mean of 2.581 (SD=1.127) showed disagreement that participation in feasibility study conducted for cooling plant project influences its performance.

The study key informants findings regarding participation in feasibility study and performance of the project were as follows:

Part of the project milestones and requirements for approval was to conduct a feasibility study that is conducted in the region. The feasibility should clearly indicate the need of conducting the project and the intended benefits to the stakeholders. Feasibility studies are important in addressing the direct needs of the stakeholders [Interview schedule: National and county staff, Project sponsors]

Lastly, the study established that 25.5% and 21.5% of the respondents strongly disagreed and disagreed respectively that participation in the appointment of the project team influences the performance of the milk cooling plant project, 39.5% of the respondents provided a neutral response to the statement while 9% and 4.5% of the respondents did agree and strongly agree that participation in the appointment of the project team influences the performance of the milk cooling plant project. The general mean of 2.463 (SD=1.102) established disagreement that participation in the appointment of the project team influences the performance of the milk cooling plant project. The composite mean of 3.328 (SD=1.021) provided a neutral response that stakeholder participation in identification of project influences performance of the milk cooling plant project. Lewis, (2007) confirms the finding by stating that stakeholder’s needs assessment conducted before project commencement is important in enhancing project sustainability.

The general views of the key informants on the influence of stakeholder participation in identification on milk cooling plant project were as follows:
Projects can be successful if only it was generated by the communities during its inceptions. Participation of stakeholders in generating the project idea enhances its ownership which translates to long run profits to the projects. This participation enables reduction of conflicts and provide suitable directions for the project ready for the planning process. [Interview schedule: National & County government, project sponsors].

4.4.3. Relationship between stakeholder participation in identification and performance of milk cooling plant project

The study sought to find out the extent of relationship which exists between stakeholder participation in identification and performance of milk cooling plant project. Correlation analysis was used to test this form of relationship, and its finding was reported in table 4.6.

Table 4.6 Relationship between stakeholder participation in identification and project performance

<table>
<thead>
<tr>
<th>Correlations</th>
<th>Project identification and</th>
<th>Project performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project identification</td>
<td>Pearson Correlation</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>.656**</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>200</td>
</tr>
<tr>
<td>Project performance</td>
<td>Pearson Correlation</td>
<td>.656**</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>200</td>
</tr>
</tbody>
</table>

**. Correlation is significant at the 0.01 level (2-tailed).

Table 4.6 shows that the r=0.656 which indicates at 99% significant level there exists a close positive relationship between stakeholder participation in identification and performance of the milk cooling plant project. This finding shows that there is a close relationship in allowing stakeholder to participate in identification of projects and performance of the projects.
4.4.4. Regression analysis between stakeholder participation in project identification and performance of milk cooling plant project.

Multiple regression analysis was used to establish whether participation in project identification predicts the performance of the milk cooling project. Finding of the regression analysis was illustrated in table 4.7

Table 4.7 Regression analysis between stakeholder participation in project identification and performance of milk cooling plant project

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.288a</td>
<td>.083</td>
<td>.578</td>
<td>.23727</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>Df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Regression</td>
<td>1</td>
<td>1.008</td>
<td>17.910</td>
<td>.000b</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>198</td>
<td>.056</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>199</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Constant)</td>
<td>.766</td>
<td>.073</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stakeholder participation in identification</td>
<td>.075</td>
<td>.018</td>
<td>.288</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.232</td>
</tr>
</tbody>
</table>

Findings from table 4.7 shows that the regression model R² value=0.578 with a significant value of p=0.00. The finding indicates that stakeholder participation identification contributes to 57.8% the regression model coefficients. To justify the significance value of the regression model value, F-test findings were as follows; F value statistical computed value=17.910 which is greater than the p-value=0.00 this means that the R-square value is significant. The coefficient of the constant term was 0.075, p=4.232 which means that 7.5% of the stakeholder participation in identification contributes to performance of the project. The regression model is summarized linearly as follows:

\[Y = \beta_0 + \beta_1 X_1 + \epsilon \]
Where; \(\beta_0 \) is coefficient of the constant term=0.766 \\
\(\beta_1 \) is coefficient of the predictor= 0.075 \\
\(\varepsilon \) is the error term=0.073 \\

Thus replacing the coefficients the equation becomes:

\[
Y = 0.766 + 0.075X_1 + 0.073
\]

The model states that for any unit change in performance \((Y)\) of the milk cooling project is a result of 7.5% change in unit coefficient of predictor stakeholder participation in identification, with a tolerance error value of 0.073.

H0 Hypothesis testing

The F-test which involved analysis of variance was used to test the null hypothesis that; \(H_{01} \): There is no significant influence of stakeholder participation in project identification on performance of milk cooling plant project. The F-value \((1, 198) = 17.910\) was tested at 95% significance value.

Findings showed that the p value \((0.000) < 0.05\), which states that the null hypothesis was rejected and thus alternative hypothesis \(H_A \) was accepted that states that there is significant influence of stakeholder participation in identification on performance of milk cooling plant project.

The finding is similar to a study that was conducted by Nyabera(2015), in which the study was able to establish that identification of projects have a significant relationship with performance of projects.

4.5. Stakeholder participation in project planning and design and performance of milk cooling plant project.

The second objective of the study was to find out the influence of stakeholder participation in project planning and design has on performance of milk cooling plant project. Descriptive and inferential statistics were used to provide quantitative findings to explain the association while qualitative findings provided supportive evidence to the objective.

4.5.1. Participation in project planning and design on project performance

The respondents were generally asked to provide their response if stakeholder participation in project planning and design does influence performance of milk cooling plant project. Finding to the question was reported in table 4.8
Table 4.8 Participation in project planning and design on project performance

<table>
<thead>
<tr>
<th>Response</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid</td>
<td>Yes</td>
<td>97</td>
<td>48.5</td>
<td>48.5</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>103</td>
<td>51.5</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>200</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Table 4.8 showed that 48.5% of the respondents agreed that stakeholder participation in project planning and design influences project performance of milk cooling plant project while 51.5% of the respondents disagreed that it does not. The finding shows that a slightly more of the respondents refused that stakeholder participation in project planning and design influences project performance of milk cooling plant project. The study is clarified by Gitonga (2010) who describes project planning as a process of developing and maintaining a project plan that provides supporting details to the project definitions in terms of resources, time, cost, and scope and quality plan schedules and need to be conducted consultatively to enhance its performance.

4.5.2. Influence of stakeholder participation in project planning and design on performance of the milk cooling plant project

The respondents were provided with statements seeking to explain the influence of stakeholder participation in project planning and design on performance of the milk cooling plant project. They were required to provide their level of agreement with the statements. Findings on their level of agreement to the outlined statements was summarized and presented in table 4.9.

Table 4.9 Influence of stakeholder participation in project planning and design on project performance

<table>
<thead>
<tr>
<th>Statements</th>
<th>1 (F, %)</th>
<th>2 (F, %)</th>
<th>3 (F, %)</th>
<th>4 (F, %)</th>
<th>5 (F, %)</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participation in planning and design of milk cooling plant project.</td>
<td>35 (17.5)</td>
<td>63 (31.5)</td>
<td>41 (20.5)</td>
<td>39 (19.5)</td>
<td>22 (11)</td>
<td>2.751</td>
<td>1.263</td>
</tr>
<tr>
<td>Participation in the formulation of the milk</td>
<td>42 (21)</td>
<td>40 (20)</td>
<td>33 (16.5)</td>
<td>64 (32)</td>
<td>21 (10.5)</td>
<td>2.910</td>
<td>1.334</td>
</tr>
</tbody>
</table>
cooling plant strategic plan.

Participation in the process of setting up the quality standard plan.

<table>
<thead>
<tr>
<th></th>
<th>41(20.5)</th>
<th>48(24)</th>
<th>61(30.5)</th>
<th>32(16)</th>
<th>18(9)</th>
<th>2.691</th>
<th>1.221</th>
</tr>
</thead>
</table>

Participation in the formulation of implementation plan.

<table>
<thead>
<tr>
<th></th>
<th>49(24.5)</th>
<th>43(21.5)</th>
<th>58(29)</th>
<th>27(13.5)</th>
<th>23(11.5)</th>
<th>2.660</th>
<th>1.297</th>
</tr>
</thead>
</table>

Participated in drawing up the work breakdown structure.

<table>
<thead>
<tr>
<th></th>
<th>39(19.5)</th>
<th>43(21.5)</th>
<th>67(33.5)</th>
<th>31(15.5)</th>
<th>20(10)</th>
<th>2.750</th>
<th>1.223</th>
</tr>
</thead>
</table>

Composite mean

<table>
<thead>
<tr>
<th></th>
<th>2.752</th>
<th>1.268</th>
</tr>
</thead>
</table>

Table 4.8 showed that 17.5% and 31.5% of the respondents strongly disagreed and disagreed respectively that participation in planning and design of milk cooling plant project influences its performance, 20.5% of the respondents provided a neutral response to the statement while 19.5% and 11% of the respondents did agree and strongly agree that participation in planning and design of milk cooling plant project influences its performance. The general mean of 2.751 (SD=1.263) shows that neutrally participation in planning and design of milk cooling plant project influences its performance. Rao (2001) points out the need to have stakeholders being part of the planners in projects to enhance its productivity.

Findings further showed that 21% and 20% of the respondents strongly disagreed and disagreed respectively that participation in the formulation of the milk cooling plant strategic plan influences its performance, 16.5% of the respondents responded neutrally to the statement while 32% and 10.5% of the respondents agreed and strongly agreed respectively that participation in the formulation of the milk cooling plant strategic plan influence its performance. A mean of 2.810 (SD=1.334) shows that neutrally participation in the formulation of the milk cooling plant strategic plan influences its performance. The finding shows that majority of the respondents do not participate in strategic planning. The finding contradicts Turner (2009) alterations of stakeholders participating in planning.
of projects, the author states that it is important for stakeholders to participate in planning of projects activities because it leads to responsibility and sustainability of the projects.

The key informants finding on stakeholder participation on strategic planning influence on performance of milk cooling plant project was stated as follows;

The strategic planning process that involves stakeholder to participate is one of the requirements of the finance and public act that outlines the need of public participation in public projects. Stakeholders are involved in strategic planning process through public participation meetings which have enabled more ideas and suggestions to be generated.

[Interview: National and County staff, project sponsors].

Table 4.9 further show that 20.5% and 24% of the respondents strongly disagreed and disagreed respectively that participation in the process of setting –up the quality standard plan influences performance of milk cooling plant project, 30.5% of the respondents provided a neutral response, while 16% and 9% of the respondents agreed and strongly agreed respectively that participation in the process of setting –up the quality standard plan influences performance of milk cooling plant project. The general mean of 2.691 (SD=1.221) shows that neutrally does participation in the process of setting –up the quality standard plan influences performance of milk cooling plant project.

Wamugu and Ogollah (2017) affirm the finding by stating that standards and specifications formulated by stakeholders are important in enhancing project performance which translated to quality products and services.

The study established furthermore that 24.5% and 21.5% of the respondents strongly disagreed and disagreed respectively that participation in the formulation of implementation plan influences performance of milk cooling plant project, 13.5% of the respondents provided neutral response to the statement while 13.5% and 11.5% of the respondents agreed and strongly agreed respectively that participation in the formulation of implementation plan influences performance of milk cooling plant project. A general mean of 2.660 (SD=1.297) shows that neutrally participation in the formulation of implementation plan influences performance of milk cooling plant project. Duncan (1994) affirms
the findings shows that implementation plan formulation is critical if all stakeholders are engaged in it.

The key informants of the study stated the following regarding stakeholder participation in implementation plan formulation and performance of the project:

The project implementation framework is the responsibility and role of all stakeholders.

They are required to participate fully in an accountable in execution of the activities and therefore it is reasonable they are part of its formulation. All stakeholders have a sitting together to formulate, assess clarify and correct the implementation plan. Since the project stakeholder has been involved in participated in implementation there have been success in its execution [Interview schedule: Staff and County Government representatives, Milk sponsors].

Lastly, the study established that 19.5% and 21.5% of the respondents strongly disagreed and disagreed respectively that participation in drawing up the work breakdown structure influences performance of the milk cooling plant project, 33.5% provided a neutral response to the statement while 15.5% and 10% of the respondents agreed and strongly agreed respectively that participation in drawing up the work breakdown structure influences performance of the milk cooling plant project. The general mean of 2.750 (SD=1.223) shows that neutrally participation in drawing up the work breakdown structure influences performance of the milk cooling plant project. The composite mean of 2.750 (SD=1.223) shows that neutrally stakeholder participation in project planning and design influences performance of milk cooling plant project. Kerzner, (1989) states that stakeholder participation in planning and in the process of designing the project becomes important in executing the project.

The key informants of the study on stakeholder participation in planning and design on performance stated that;
The project process of planning and designing need to be carried out at early stages of the project by all secondary and primary secondary stakeholders. The process involved formulation of strategic plans, action plans, performance standards and implementation plans through consultative meetings. This participation by the stakeholders have enabled project activities to be conducted smoothly and thus increasing the project’s performance in the long run [Interviews: National and County government representatives, project sponsors, milk processors representatives].

4.5.3. Relationship between stakeholder participation in planning and design and performance of milk cooling plant project

Correlation analysis was conducted to establish the significant association that exists between stakeholder participation in planning and design and performance of milk cooling plant project. The finding for this correlation analysis was presented in table 4.10.

Table 4.10 Correlation analysis between participation in planning and design and project performance

<table>
<thead>
<tr>
<th></th>
<th>Participation in design and planning</th>
<th>Project performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participation in design and planning Pearson Correlation</td>
<td>1</td>
<td>.769**</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>200</td>
</tr>
<tr>
<td>Project performance</td>
<td>Pearson Correlation</td>
<td>.769**</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>200</td>
</tr>
</tbody>
</table>

**. Correlation is significant at the 0.01 level (2-tailed).

Table 4.10 findings shows that r=769 at 99% significant level which statistically illustrates a close positive relationship existing between stakeholder participation in project planning and design with performance of milk cooling plant project. Rao (2001) conducted a study and found a positive close relationship between strategic planning and productivity in organizations.
4.5.4. Regression analysis between stakeholder participation in planning and design and performance of milk cooling plant project

Multiple regression analysis was used to establish whether stakeholder participation in project planning and design predicts the performance of the milk cooling project. Finding of the regression analysis was illustrated in table 4.

Table 4.11 Regression analysis between stakeholder participation in project planning and design and performance of milk cooling plant project

<table>
<thead>
<tr>
<th>Model</th>
<th>Model Summary</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R Square</td>
<td>R Square</td>
<td>Std. Error of the Estimate</td>
</tr>
<tr>
<td>.856a</td>
<td>.732</td>
<td>.731</td>
<td>.65555</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ANOVA a</th>
<th>Sum of Squares</th>
<th>Df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>Regression</td>
<td>1</td>
<td>232.410</td>
<td>540.810</td>
<td>.000b</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>198</td>
<td>.430</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>199</td>
<td>317.500</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>T</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
<td>Beta</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>(Constant)</td>
<td>-.518</td>
<td>.148</td>
<td>-3.499</td>
</tr>
<tr>
<td></td>
<td>Participation in design and planning</td>
<td>0.157</td>
<td>.093</td>
<td>23.255</td>
</tr>
</tbody>
</table>

a. Dependent Variable: Performance of milk cooling plant project

b. Predictor: Stakeholder participation in project design and planning

Findings from table 4.11 shows that the regression model R^2 value=0.731 with a significant value of $p=0.00$. The finding indicates that stakeholder participation in project design and planning contributes to 73.1% the regression model coefficients. To justify the significance value of the regression model value, F-test findings were as follows; F value statistical computed value=540.810 which is greater than the p-value=0.00 this means that the R-square value is significant. The coefficient of the constant term was 0.157, $p=23.255$ which means that 15.7% of the stakeholder participation in project design
and planning contributes to performance of milk cooling plant project. The regression model is summarized linearly as follows:

\[Y = \beta_0 + \beta_1 X_1 + \epsilon \]

Where; \(\beta_0 \) is coefficient of the constant term = -0.518

\(\beta_1 \) is coefficient of the predictor = 0.157

\(\epsilon \) is the error term = 0.093

Thus replacing the coefficients the equation becomes:

\[Y = 0.518 + 0.157X_1 + 0.093 \]

The model states that for unit change in performance (\(Y \)) of the milk cooling plant project is result of 15.7% change in unit coefficient of the predictor stakeholder participation in design and planning with an error tolerance of 0.093.

H0 _Hypothesis testing_

The F-test which involved analysis of variance was used to test the null hypothesis that; \(H_{01} \): There is no significant influence of stakeholder participation in project design and planning on performance of milk cooling plant project. The F-value (1, 198) = 540.810 was tested at 95% significance value. Findings showed that the p-value (0.000) < 0.05, which states that the null hypothesis was rejected and thus alternative hypothesis \(H_A \) was accepted that states that there is significant influence of stakeholder participation in design and planning on performance of milk cooling plant project.

4.6. Stakeholder participation in project implementation and performance of milk cooling plant project

The third objective of the study was aimed at establishing the influence of stakeholder participation in project implementation on performance of milk cooling plant project. Descriptive and inferential findings were used to establish this link between variables in the objectives while qualitative findings from key informants provided more support and meaning to the objective.

4.6.1. Participation in project implementation and performance of milk cooling plant project

The study sought to establish whether the stakeholder participation in project implementation influences performance of milk cooling plant project. The finding to the question was presented in table 4.12.
Table 4.12 Participation in project implementation and performance of milk cooling plant project

<table>
<thead>
<tr>
<th>Response</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid</td>
<td>Yes</td>
<td>163</td>
<td>81.5</td>
<td>81.5</td>
</tr>
<tr>
<td>No</td>
<td>37</td>
<td>18.5</td>
<td>18.5</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>200</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

The findings as illustrated in table 4.12 that 81.5% of the respondents agreed that stakeholder participation in project implementation has influence performance of milk cooling plant project while 18.5% of the respondents disagreed that it does not influence. From majority of responses it shows that participation in project implementation influences performance of milk cooling plant project.

Nyandemo and Kongere (2010) clarifies the importance of project implementation by define it to mean “the whole process of translating broad policy goals or objectives into visible results in the form of specific projects of action”.

4.6.2. Influence of stakeholder participation in project implementation on performance of milk cooling plant project.

Different statements that define the association between stakeholder participation in project implementation and performance of milk cooling plant project were provided to the respondents to state their level of agreements. Findings showing these levels of agreements were summarized and presented in table 4.13.

Table 4.13 Influence of stakeholder participation in project implementation on project performance

<table>
<thead>
<tr>
<th>Statements</th>
<th>1 (F, %)</th>
<th>2 (F, %)</th>
<th>3 (F, %)</th>
<th>4 (F, %)</th>
<th>5 (F, %)</th>
<th>mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participation in share contributions towards milk cooling plant implementation</td>
<td>29(14.5)</td>
<td>28(14)</td>
<td>49(24.5)</td>
<td>48(24)</td>
<td>46(23)</td>
<td>3.271</td>
<td>1.348</td>
</tr>
<tr>
<td>Participation in skills, knowledge and experience inputs in implementation of the milk cooling plant project</td>
<td>21(10.5)</td>
<td>25(12.5)</td>
<td>39(19.5)</td>
<td>59(29.5)</td>
<td>56(28)</td>
<td>3.524</td>
<td>1.303</td>
</tr>
</tbody>
</table>
Table 4.13 findings shows that 14.5% and 14% of the respondents strongly disagreed and disagreed that participation in share contribution towards milk cooling plant implementation influences its performance of the project, 24.5% of the respondents provided a neutral response to the statement while 24% and 23% of the respondents agreed and strongly agreed that participation in share contribution towards milk cooling plant implementation influences its performance of the project.

The general mean of 3.271(SD=1.348) shows that in a neutral manner that participation in share contribution towards milk cooling plant implementation influences its performance of the project.

The key informants of the study regarding participation in share contribution and project performance stated that;

The first activity of rolling the milk cooling plant involves registration in which shareholders start purchasing shares and conduct registrations. Shares membership is critical in the process of implementation of the project because it forms stakeholder ownership of the project and pools the necessary capital to execute the project. It is important that enough shares are bought by the stakeholders to enable the project to take off [Interview schedule: Project sponsors and milk processors].

Furthermore, the study established that 10.5% and 12.5% of the respondents strongly disagreed and disagreed respectively that participation in skills, knowledge and experience inputs in implementation...
of the milk cooling plant project influences performance of the project, 19.5% of the respondents
gave neutral response to the statement while 29.5% and 28% of the respondents agreed and strongly
agreed respectively that participation in skills, knowledge and experience inputs in implementation
of the milk cooling plant project influences project performance. The general mean of 3.524
(SD=1.303) shows agreement that participation in skills, knowledge and experience inputs in
implementation of the milk cooling plant project influences project performance. Wee, (2000),
confirms the findings by stating that deadlines should be met to help stay within the schedule and
budget and to maintain credibility.

The findings of the skills, knowledge and experience provided by stakeholder during implementation
process were affirmed by the key informants as follows:

*Stakeholders are valuable components in project execution process. They provide
valuable inputs in terms of administrative, operative and technical support towards the
project. The theoretical support is positive enough to cushion the project from failing in
its implementation process [Milk processors and sponsors].*

The study additionally established that 21.5% and 23.5% of the respondents strongly disagreed and
disagreed respectively that participation in the building material procurement process of the milk
cooling plant project influences performance of the project, 18% of the respondents provided a neutral
response while 19.5% and 17.5% of the respondents agreed and strongly agreed respectively that
Participation in the building material procurement process of the milk cooling plant project influences
performance. A general mean of 2.882(SD=1.409) shows in a neutral manner participation in the
building material procurement process of the milk cooling plant project influences performance of
the project. Crawford (2005) and Morris *et al.,* (2006) supports the finding by stating that it is in this
perspective that the project teams coordinating the milk cooling projects in Bomet County mobilized
the inputs of all stakeholders and the projects succeeded.
The study what's more, found out that 16.5% and 18% of the respondents strongly disagreed and disagreed respectively that participation in labour inputs in the construction of the milk cooling plant influences its performance, 16% of the respondents gave neutral responses, 24% and 25.5% of the respondents agreed and strongly agreed respectively that participation in labour inputs in the construction of the milk cooling plant influences its performance. The general mean of 3.243 (SD=1.433) shows that in a neutral manner participation in labour inputs in the construction of the milk cooling plant influences its performance. Nyandemo and Kongere (2010) define project implementation by provision of labour it mean “the whole process of translating broad policy goals or objectives into visible results in the form of specific projects of action”.

Last but not least, the study established that 21% and 22.5% of the respondents strongly disagreed and disagreed respectively that participation in the supervision of construction process of the milk cooling plant influences its performance, 14.5% of the respondents provided neutral response to the statement while 21.5% and 20.5% of the respondents agreed and strongly agreed respectively that participation in the supervision of construction process of the milk cooling plant influences its performance. The general mean of 2.984(SD=1.453) showed that in a neutral manner participation in the supervision of construction process of the milk cooling plant influences its performance. The study is affirmed by Gitonga (2010) who notes that project implementation phase is “that stage in the project life cycle process when the project management plan is translated into action, i.e. actual work is dispensed on the ground”.

The general findings from the key informants of the study were reported as follows:

If the stakeholders are not involved during the implementation process the project fails drastically. Shareholders are critical components in mobilizing resources that are required by the projects for example though membership and share contributions. Stakeholders further provide technical and operative advisory roles that help the project
4.6.3. Relationship between stakeholder participation in project implementation and performance of milk cooling plant project

The study conducted a study to correlate between stakeholder participation in project implementation and performance of milk cooling plant project. The correlation finding of the variables in the objective were presented in table 4.14.

Table 4.14 Relationship between stakeholder participation in project implementation and project performance

<table>
<thead>
<tr>
<th>Correlations</th>
<th>Project performance</th>
<th>Participation in implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project performance</td>
<td>Pearson Correlation</td>
<td>1</td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td></td>
<td>.704**</td>
</tr>
<tr>
<td>N</td>
<td></td>
<td>200</td>
</tr>
<tr>
<td>Participation in implementation</td>
<td>Pearson Correlation</td>
<td>.704**</td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td></td>
<td>.000</td>
</tr>
<tr>
<td>N</td>
<td></td>
<td>200</td>
</tr>
</tbody>
</table>

**. Correlation is significant at the 0.01 level (2-tailed).

Table 4.14 shows that the r=704 at 99% significance level shows a close positive relationship between stakeholder participation in project implementation and performance of milk cooling plant project. The finding statistically shows a positive close relationship that exists when stakeholders participate in the process of implementation and performance of the project.

4.6.4. Regression analysis between stakeholder participation in project implementation and performance of milk cooling plant project

Multiple regression analysis was used to establish whether stakeholder participation in project implementation predicts the performance of the milk cooling project. The relationship between the variables was tested at 95% significance level. Finding of the regression analysis was illustrated in table 4.15.
Table 4.15 Regression analysis between stakeholder participation in implementation and performance of milk cooling plant project

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.470a</td>
<td>.221</td>
<td>.217</td>
<td>1.11617</td>
</tr>
</tbody>
</table>

ANOVA

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>Df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>69.805</td>
<td>1</td>
<td>69.805</td>
<td>56.031</td>
<td>.000b</td>
</tr>
<tr>
<td></td>
<td>246.675</td>
<td>198</td>
<td>1.246</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>316.480</td>
<td>199</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Coefficients

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>T</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
<td>Beta</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>(Constant)</td>
<td>1.957</td>
<td>.253</td>
<td>7.721</td>
</tr>
<tr>
<td></td>
<td>Participation in implementation</td>
<td>0.521</td>
<td>.203</td>
<td>.470</td>
</tr>
</tbody>
</table>

- Dependent Variable: performance of milk cooling plant project
- Independent variable: Stakeholder participation in implementation

Findings from table 4.15 shows that the regression model R^2 value=0.217 with a significant value of $p=0.00$. The finding indicates that stakeholder participation in project in implementation contributes to 21.7% the regression model coefficients. To justify the significance value of the regression model value, F-test findings were as follows; F value statistical computed value=56.031 which is greater than the p-value=0.00 this means that the R-square value is significant. The coefficient of the constant term was 0.521, $p=0.470$ which means that 52.1% of the stakeholder participation in project implementation contributes to performance of milk cooling plant project. The regression model is summarized linearly as follows:

$$Y = \beta_0 + \beta_1 X_1 + \varepsilon$$

Where; β_0 is coefficient of the constant term=-1.957

β_1 is coefficient of the predictor= 0.521

ε is the error term=0.253
Thus replacing the coefficients the equation becomes:

\[Y = 1.957 + 0.521X1 + 0.253 \]

The model states that for unit change in performance (Y) of the milk cooling plant project is a result of 52.1% of the coefficient of the predictor stakeholder participation in project implementation with an error tolerance of 0.253.

H0 Hypothesis testing

The F-test which involved analysis of variance was used to test the null hypothesis that; \(H0_1 \): There is no significant influence of stakeholder participation in project implementation on performance of milk cooling plant project. The F-value \((1, 198) = 56.031 \) was tested at 95% significance value. Findings showed that the p value \((0.000) < 0.05 \), which states that the null hypothesis was rejected and thus alternative hypothesis \(H_A \) was accepted that states that there is significant influence of stakeholder participation in design and planning on performance of milk cooling plant project.

4.7. Stakeholder participation in monitoring and evaluation and performance of milk cooling project performance

The fourth objective of the study was to establish the influence of stakeholder participation in monitoring and evaluation on performance of milk cooling project performance. Descriptive and inferential statistics was used to provide quantitative findings to the variable association in the objective while content analysis provided qualitative findings to support the association of the variables of the objectives.

4.7.1. Participation in monitoring and evaluation and project performance

The respondents were asked to provide their opinion on whether stakeholder participation in monitoring and evaluation influences performance of milk cooling project. The finding to this question was summarized and presented in table 4.16.

<table>
<thead>
<tr>
<th>Response</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid Yes</td>
<td>155</td>
<td>77.5</td>
<td>77.5</td>
<td>77.5</td>
</tr>
</tbody>
</table>
Table 4.16 shows that 77.5% of the respondents agreed that stakeholder participation in monitoring and evaluation influences performance of the milk cooling plant project while 22.5% of the respondents stated that it does not influence performance of the project. This findings shows that dominantly participation of stakeholder in monitoring and evaluation influences performance of milk cooling plant project. Gitonga (2010) asserts the finding by stating that monitoring and evaluation becomes valuable in projects if only stakeholders who are relevant are involved in the process.

4.7.2. Influence of stakeholder participation in monitoring and evaluation on performance of milk cooling plant project

The study sought to establish the agreement levels among the responses to define the influence that stakeholder participation in monitoring and evaluation on performance of milk cooling plant project. Finding showing this level of agreements was presented in table 4.17.

<table>
<thead>
<tr>
<th>Statements</th>
<th>1 (F, %)</th>
<th>2 (F, %)</th>
<th>3 (F, %)</th>
<th>4 (F, %)</th>
<th>5 (F, %)</th>
<th>mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participation in Monitoring and Evaluation of milk cooling plant project</td>
<td>41(20.5)</td>
<td>34(17)</td>
<td>32(16)</td>
<td>42(21)</td>
<td>51(25.5)</td>
<td>3.141</td>
<td>1.487</td>
</tr>
<tr>
<td>Participation in measuring performance levels of the milk cooling plants</td>
<td>33(16.5)</td>
<td>42(21)</td>
<td>52(26)</td>
<td>35(17.5)</td>
<td>38(19)</td>
<td>3.015</td>
<td>1.347</td>
</tr>
</tbody>
</table>
Table 4.14 shows that 20.5% and 17% of the respondents strongly disagreed and disagreed respectively that participation in monitoring and evaluation of milk cooling plant project enhances its performance, 16% of the respondents provided neutral response to the statement while 21% and 25.5% of the respondents agreed and strongly agreed that participation in monitoring and evaluation of milk cooling plant project enhances its performance. The general mean of 3.141 (SD=1.487) shows neutrally that participation in monitoring and evaluation of milk cooling plant project influence the project performance. Maalim (2017) supports the finding by stating that a positive association exists between monitoring and evaluation activities and performance of projects in organizations.

The key informants finding on participation in monitoring and evaluation and performance was reported as follows:

Performance of projects can be enhanced if the project is conducted in an accountable and transparent manner. Participation of the stakeholders becomes a key component in which they are expected to collect and process information that is related to oversight of the project activities [National and county government representatives].
Furthermore, the study established that 16.5% and 21% of the respondents strongly disagreed and disagreed respectively that participation in measuring performance levels of the milk cooling plants influences the performance of the project, 26% of the respondents did neutrally respond to the statement while 17.5% and 19% of the respondents agreed and strongly agreed respectively that participation in measuring performance levels of the milk cooling plants influences the performance of the project. The general mean of 3.015 (SD=1.347) shows neutrally that participation in measuring performance levels of the milk cooling plants influences the performance of the project.

Wayne and Witting (2002), support the finding by stating that measuring performance against performance indicators is the major aspect that ensures project activities are conducted in a transparent and meaningful manner.

Additionally, the study established that 15.5% and 19% of the respondents strongly disagreed and disagreed respectively that participation in identification of performance gaps in the milk cooling plant project enhances its performance, 17% of the respondents neutrally responded to the statement while 22% and 26.5% of the respondents agreed and strongly agreed that participation in identification of performance gaps in the milk cooling plant project enhances its performance. A general mean of 3.254 (SD=1.428) shows neutrally that participation in identification of performance gaps in the milk cooling plant project enhances its performance.

Nyonje, Ndunge and Mulwa (2012), define evaluation as a process that involves organized collection, examination and clarification of venture related data that can be used to understand how the project is functioning in relation to the project objectives. This is important in identifying gaps created during planning and implementation process and need to be inclusive process.

What's more, 27.5% and 21.5% of the respondents strongly disagreed and disagreed respectively that participation in compilation of Monitoring and Evaluation report for the milk cooling plant project influences its performance, 16.5% of the respondents neutrally responded to the statement while 18.5% and 16% of the respondents agreed and strongly agreed respectively that participation in compilation of Monitoring and Evaluation report for the milk cooling plant project influences its performance.
performance. The general mean of 2.743 (SD=1.443) shows that neutrally participation in compilation of Monitoring and Evaluation report for the milk cooling plant project influences its performance. Maalim (2017) affirms the study by mentioning that stakeholder participation in disseminating information to the users or sponsors contributes positively to performance.

The key informants of the study mentioned the following which was related to monitoring and evaluation report and performance of the project.

The management of the milk cooling plant project have the responsibility to provide periodic reports that are used in document the performance of the projects. Reports have been useful in enhancing performance of the project [Milk processing representatives].

Lastly, the study established that 16% and 14.5% of the respondents strongly disagreed and disagreed respectively that participation in meetings to assess and review reports on the milk cooling plant project influences the project performance, 19% of the respondents provided a neutral response to the statement, 22.5% and 28% of the respondents agreed and strongly agreed that participation in meetings to assess and review reports on the milk cooling plant project influences the project performance. The general mean of 3.324 (SD=1.428) shows neutrally that participation in meetings to assess and review reports on the milk cooling plant project influences the project performance. The composite mean of 3.095 (SD=1.427) shows that neutrally stakeholder participation in monitoring and evaluation influences the performance of milk cooling plant project. Ogula (2002) supports the finding by stating that monitoring and evaluation positively contributes to the performance of the projects through several advantages of performing it.

The findings by the key informants of the study regarding stakeholder participation in monitoring and evaluation and project performance were reported as follows:

Project performance is enhanced if the stakeholders are engaged in monitoring and evaluation activities. They need to participate in developing of standards, indicators, collecting data through monitoring process, and process information obtained from the
activity to make informed decisions relating to the project. Monitoring and evaluation provides a useful learning experience for the projects performance [Interviews: County and National government and milk processors representatives, project sponsors].

4.7.3. Relationship between stakeholder participation in monitoring and evaluation on project performance

The study conducted correlation analysis to establish the relationship between stakeholder participation in monitoring and evaluation and performance of milk cooling plant project. Findings were shown in table 4.18.

Table 4.18 Relationship between stakeholder participation in monitoring and evaluation on project performance

<table>
<thead>
<tr>
<th>Correlations</th>
<th>Performance of the project</th>
<th>Participation in M&E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance of the project</td>
<td>Pearson Correlation</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>200</td>
</tr>
<tr>
<td>Participation in M&E</td>
<td>Pearson Correlation</td>
<td>.665**</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>200</td>
</tr>
</tbody>
</table>

**. Correlation is significant at the 0.01 level (2-tailed).

Table 4.18 shows that correlation value r=0.665 at 99% significant level shows a positive close relationship existing between participation in monitoring and evaluation and performance of milk plant projects. The finding was supported by the study by Wayne and Witting (2002), who established a close positive relationship existing between monitoring and evaluation of activities and performance of milk cooling plant projects.

4.6.4. Regression analysis between stakeholder participation in monitoring and evaluation and performance of milk cooling plant project

Multiple regression analysis was used to establish whether stakeholder participation in project monitoring and evaluation predicts the performance of the milk cooling project. Finding of the regression analysis was illustrated in table 4.19.
Table 4.19 Regression analysis between stakeholder participation in monitoring and evaluation and performance of milk cooling plant project

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.570(^a)</td>
<td>.325</td>
<td>.321</td>
<td>1.08570</td>
</tr>
</tbody>
</table>

ANOVA\(^a\)

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>Df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Regression</td>
<td>112.186</td>
<td>1</td>
<td>112.186</td>
<td>95.174</td>
<td>.000(^b)</td>
</tr>
<tr>
<td>Residual</td>
<td>233.394</td>
<td>198</td>
<td>1.179</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Coefficients

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
</tr>
<tr>
<td>(Constant)</td>
<td>1.413</td>
<td>.238</td>
</tr>
<tr>
<td>Participation in M&E</td>
<td>0.794</td>
<td>.184</td>
</tr>
</tbody>
</table>

Findings from table 4.19 shows that the regression model R\(^2\) value=0.312 with a significant value of p=0.00. The finding indicates that stakeholder participation in project in monitoring and evaluation contributes to 31.2 % the regression model coefficients. To justify the significance value of the regression model value, F-test findings were as follows; F value statistical computed value= 95.174 which is greater than the p-value=0.00 this means that the R-square value is significant. The coefficient of the constant term was 0.794, p=0.756 which means that 75.6 % of the stakeholder participation in project monitoring and evaluation contributes to performance of milk cooling plant project. The regression model is summarized linearly as follows:

\[Y = \beta_0 + \beta_1 X_1 + \varepsilon \]

Where; \(\beta_0 \) is coefficient of the constant term= -1.413
\(\beta_1 \) is coefficient of the predictor= 0.794
\(\varepsilon \) is the error term=0.184

Thus replacing the coefficients the equation becomes:
The model states that for a unit change in performance (Y) of milk cooling plant project is a result of 78.4% coefficient change in predictor stakeholder participation in monitoring and evaluation with an error tolerance of 0.184.

H0 Hypothesis testing

The F-test which involved analysis of variance was used to test the null hypothesis that; H₀₁: There is no significant influence of stakeholder participation in project monitoring and evaluation on performance of milk cooling plant project. The F-value (1, 198) = 95.174 was tested at 95% significance value. Findings showed that the p value (0.000)<0.05, which states that the null hypothesis was rejected and thus alternative hypothesis Hₐ was accepted that states that there is significant influence of stakeholder participation in monitoring and evaluation on performance of milk cooling plant project.

4.7. Multiple regression combined model

The contribution of regression model coefficients of each predictor to dependent variable was documented to illustrate the summarized model. The predictors include; stakeholder participation in project identification, project design and planning, implementation and monitoring and evaluation. The dependent variable is performance of milk cooling plant project. Table 4.20 shows the summarized findings of the multiple regression analysis.

Table 4.20 multiple regression coefficients

<table>
<thead>
<tr>
<th>Model Summary</th>
<th>Model Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model R</td>
<td>R Square</td>
</tr>
<tr>
<td>1 .879</td>
<td>.773</td>
</tr>
</tbody>
</table>
ANOVA

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>Df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>279.206</td>
<td>4</td>
<td>69.802</td>
<td>165.842</td>
<td>.000b</td>
</tr>
<tr>
<td>Residual</td>
<td>82.074</td>
<td>195</td>
<td>.421</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>361.280</td>
<td>199</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Coefficients

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
</tr>
<tr>
<td>(Constant)</td>
<td>-.485</td>
<td>.223</td>
</tr>
<tr>
<td>Participation in design and planning</td>
<td>.449</td>
<td>.108</td>
</tr>
<tr>
<td>Participation in implementation</td>
<td>.236</td>
<td>.265</td>
</tr>
<tr>
<td>Participation in M&E system</td>
<td>.793</td>
<td>.245</td>
</tr>
<tr>
<td>Project identification</td>
<td>.231</td>
<td>.223</td>
</tr>
</tbody>
</table>

a. Dependent Variable: performance of milk cooling plant project
b. Predictors: (Constant), Project identification, Participation in design and planning, Participation in M&E and, Participation in implementation

Findings from table 4.20 shows that the regression model R2 value=0.768 with a significant value of p=0.031. The finding indicates that stakeholder participation in projects contributes to 76.8% the regression model coefficients. To justify the significance value of the regression model value, F-test findings were as follows; F value statistical computed value=165.842 which is greater than the p-value=0.00 this means that the R-square value is significant. The coefficient of the constant terms were; stakeholder participation in project identification, β1=0.231, p=0.00, participation in design and planning, β2 =0.449, p=0.00, participation in implementation, β3 =0.236, p=0.00, and participation in M&E system, β4 =0.793, p=0.01). These findings can then been summarized into a regression linear model as follows:

\[Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \varepsilon \]

equation (i)

Where; Y = the dependent variable (performance)

\[\beta_0 = \text{Constant Term} \]

\[\beta_1, \beta_2, \beta_3, \text{ and } \beta_4 = \text{Beta coefficients} \]

\[X_1 = \text{Stakeholder participation in implementation} \]
$X_2 = \text{Stakeholder participation in design and planning}$

$X_3 = \text{Stakeholder participation in implementation}$

$X_4 = \text{Stakeholder participation in M&E}$

$\varepsilon = \text{Error-term}$

$$Y = -449 + 0.231X_1 + 0.449X_2 + 0.236X_3 + 0.793X_4 + 0.223$$

The model stated for any unit change in performance of milk cooling plat project is results of combine changes in predictors; 23.1% unit change in stakeholder participation in project identification, 23.5% participation in design and planning, 23.6% participation in implementation, and 79.3% participation in monitoring and evaluation.
CHAPTER FIVE

SUMMARY OF FINDINGS, CONCLUSION AND RECOMMENDATIONS

5.0. Introduction
This section provides summarized findings categorized according to the study themes. The study conclusion is documented based on the main findings resulting from linking the findings with those of other empirical studies. Furthermore, the study outlines contribution to the body of knowledge and recommendations to various theoretical and policy making institutions.

5.1. Summary of the findings
The summarized findings are presented based on the objectives of the study. The findings are based on a response rate of more than 75% which was ideal for the study to be conducted.

5.1.1. Background information
The background information shows generalized findings on the gender, age, occupation and level of education of the respondents. The study established that there were more male respondents than the female, and 71.5% of the respondents were found to be aged between 31 to 40 years of age. A large number of the respondents were farmers and had primary or secondary level of education. A notable finding is that about 78.5% of the respondents had been in the milk cooling plant project for a period more than 5 years. A significant number of respondents agreed that there have been improved sales volume, increased profitability and growth in milk capacity in respect to performance.

5.1.2. Stakeholder participation in identification and project performance
The first objective of the study was to establish the influence of stakeholder participation in project identification on performance of milk cooling plant project. The study found that respondents agreed that participation of stakeholders in project analysis, giving opinions and familiarity with project objectives does influence performance of milk cooling project. The study further found that in a neutral manner participation in feasibility study and appointment of project staff influence performance of the project. The key informants mentioned that stakeholder consultative meeting are
conducted during the project initiation and feasibility studies is conducted by the management team during project which are important in allowing stakeholder to participate in the project.

The study further established a close positive relationship existing between stakeholder participation in identification and performance of the milk cooling plant project. It was established statistically that stakeholder participation in identification does contribute to 7.5% of the performance of the milk cooling plant project at 96% significance level. Hypothesis testing resulted to the alternative hypothesis being accepted which indicate that there is significant influence of stakeholder participation in project identification on performance of milk cooling plant project.

5.1.3. Stakeholder participation in design and planning and project performance

The second objective of the study was to establish the influence of stakeholder involvement in project planning and design on performance of milk cooling project. The study establish that neutrally stakeholder participation in formulation of strategic plan, setting up quality standard plan, formulation of implementation plan and drawing up work breakdown structure influences performance of milk cooling plant project. The key informants further mentioned that public participation is the key process that is conducted to gather information used for planning process. The process of designing and planning plans is the role and responsibility of all stakeholders and should be conducted at early stages to obtain desired results. Inferential findings of the study objective showed that; a close positive relationship exists between stakeholder participation in design and planning and performance of milk cooling plant project. Additionally, stakeholder participation in project design and planning contributes to 15.7% to performance of milk cooling plant project. The alternative hypothesis that states that there is significant influence of stakeholder participation in project design and planning on performance of milk cooling plant project at 96% significance level.
5.1.4. Stakeholder participation in implementation and project performance
The third objective of the study was to determine the influence of stakeholder participation in project implementation on performance of milk cooling plant projects. About 81.5% of the respondents agreed that stakeholder participation in project implementation influences performance of the project. The study established neutrally that participation in share contribution, skills, knowledge and experience, provision of building materials, labour inputs and supervision of construction process influence performance of project performance. The key informants stated that registration and membership through share contributions is critical in implementation of the project. The stakeholders are useful in providing technical and administrative advisory support to the implementation process of the project.

Inferential finding related to the objective showed that a close positive relationship exists between stakeholder participation in projects and performance of milk cooling plant projects. At 95% significance level the study established that stakeholder participation in implementation contributes to 51.5% to performance of milk cooling plant project. The alternative hypothesis which states that there is significant influence of stakeholder participation in project implementation on performance of milk cooling plant project was adopted.

5.1.5. Stakeholder participation in implementation and project performance
The second objective of the study was to determine influence of stakeholder’s participation in monitoring and evaluation on performance of milk cooling plants. The study found that 77.5% of the respondents agreed that participation in monitoring and evaluation influences performance of milk cooling project plan. The study established that neutrally stakeholder participation in measuring performance, identifying performance gaps, compiling M&E reports and participation in meetings influences performance of the project. The key informants stated that stakeholders have an oversight role that ensures that project is transparent and accountable. The stakeholders and management staff need to conduct timely monitoring and evaluation reports to outline performance status of the projects.
The study inferentially established that a positive close relationship exists between stakeholder participation in monitoring and evaluation on performance of milk cooling plant project. Furthermore, the study established that stakeholder participation contributes to 75.6% of the project performance at 95% significance level. The alternative hypothesis that states that there is significant influence of stakeholder participation in project monitoring and evaluation on performance of milk cooling plant project was adopted.

5.2. Conclusion

The study notably concludes that stakeholder participation influences performance of milk cooling plant projects. Stakeholder participation in project identification does contribute to performance of the project where they need to participate in problem analysis, giving opinions and familiarizing themselves with the objectives of the study.

This participation enhances more opportunities to be created and reduces conflicts among the stakeholders themselves. Furthermore, stakeholder participation in design and planning contributes to the project performance where they need to be engaged in formulating strategic and implementation plans, drawing work breakdown structures and setting up quality standard plans. Stakeholders can engage themselves in design and planning process through public consultative meetings. Performance is enhanced through this type of participation through useful opinions and inputs brought by the stakeholders.

The study further concludes that stakeholder participation in project implementation influences performance of milk cooling plant projects. Stakeholders need to participate in share contributions, providing skills, knowledge and experience, provision of building material and labour inputs and supervision of construction process. This form of participation increases sustainability and ownership of the project where it helps in mobilizing resources of the project. The study further concludes that stakeholder participation in monitoring and evaluation influences performance of milk cooling plant projects. The participation of stakeholders should be through measuring performance, identification
of performance gaps, compiling M&E reports and participation in meetings. Project can benefit from accountability and transparency in project performance.

5.3. Contribution to the body of knowledge

Table 5.1 shows a summary of the contributions to the body of knowledge categorized according to the study objectives.

Table 5.1 Contribution to the body of knowledge

<table>
<thead>
<tr>
<th>Objectives</th>
<th>Main contributions</th>
</tr>
</thead>
<tbody>
<tr>
<td>To establish influence of stakeholders’ participation in project identification on performance of milk cooling plants</td>
<td>A significant influence that exists between stakeholder participation in identification and project performance. Stakeholder participation in problem analysis, giving opinions and familiarization of the objectives are important contributor to performance.</td>
</tr>
<tr>
<td>To establish influence of stakeholders’ involvement in project planning and design on performance of milk cooling plants</td>
<td>There is a significant influence between stakeholder participation in design and planning and project performance. Stakeholder participation in formulating plans and work breakdown structure influences project performance.</td>
</tr>
<tr>
<td>To determine influence of stakeholders’ participation in project implementation on performance of milk cooling plants</td>
<td>There is a significant influence between stakeholder participation in project implementation on project performance. Stakeholders should participate in share contribution, provision of skills and knowledge, labour provision and supervision of construction process because they influence performance.</td>
</tr>
<tr>
<td>To determine influence of stakeholders participation in monitoring and evaluation on performance of milk cooling plants</td>
<td>There is significant influence between stakeholder’s participation in monitoring and evaluation and performance of projects. Stakeholders they need to participate in measuring performance, identifying gaps, compiling M&E</td>
</tr>
</tbody>
</table>
5.4. Recommendations

The study findings are useful in providing thematic and scientific contributions for policy and decision making to various secondary and primary users.

i. National and County governments-the findings provide insightful contributions that management and policy makers in the government can relook and design their management policies to integrate stakeholders in identification, designing, planning, implementation and monitoring and evaluation on various projects under their sponsorship.

ii. Milk industry and other processing industries- the findings are hoped to help their management framework and policies. They can use the positive contribution of stakeholders to ensure their participation in different activities under their management. They need to allow stakeholders participate in monitoring and evaluation, project identification, planning and design and implementation process.

iii. Project managers-the findings add more knowledge on practical methodologies that can be utilized to manage projects. It adds scientific prove and value in their project management skills. They can embrace stakeholder participation in their respective projects.

5.5. Suggestions for future studies

The study suggests that future studies need to be conducted in other types of projects and different stakeholders to ascertain the study outcomes or results. Different methodologies can be applied to obtain different results.
REFERENCES

Kobusingye, B. (2017); Influence of Stakeholders’ involvement on project outcomes: A case of Water, Sanitation and Hygiene (WASH) project in Rwanda. European Journal of Business and Social Sciences, 6(6), 195-206;

Nyabera T. M. (2015). *Influence of stakeholder participation on implementation of projects in kenya: a case of compassion international assisted projects in mwingi sub-county UON*;

Wamugu J.W. & OgollahK, (2017); *Role of stakeholders participation in performance of sub-county development fund, projects in Mathira sub-county, Kenya*;

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Select Research Topic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consultation with course lecturer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Develop 1st Draft proposal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Correct proposal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Defence of proposal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collection of data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data analysis and interpretation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Writing thesis and submission</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graduation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix B: BUDGET

<table>
<thead>
<tr>
<th>S/NO.</th>
<th>Items description</th>
<th>Subtotal</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Proposal writing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Desk research –from various libraries</td>
<td>55,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stationary, photocopy, printing, binding</td>
<td>55,000</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Research instruments</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Questionnaire and interview schedule</td>
<td>10,000</td>
<td>10,000</td>
</tr>
<tr>
<td></td>
<td>Typing and copies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Data collection</td>
<td>15,000</td>
<td>15,000</td>
</tr>
<tr>
<td>4.</td>
<td>Data analysis (SPSS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Data analysis fee</td>
<td>10,000</td>
<td>10,000</td>
</tr>
<tr>
<td>5.</td>
<td>Final draft printing and binding</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Typing, photocopy</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Binding</td>
<td>5,000</td>
<td>5,000</td>
</tr>
<tr>
<td>6.</td>
<td>Transport /Miscellaneous</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transport</td>
<td>10,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Telephone</td>
<td>1,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stationary</td>
<td>2,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Computer service /internet services</td>
<td>5,000</td>
<td>18,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grand Total</td>
<td>113,000</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX I : LETTER OF TRANSMITAL

UNIVERSITY OF NAIROBI
ODeL CAMPUS
SCHOOL OF OPEN AND DISTANCE LEARNING
ELDORET LEARNING CENTRE

P.O. Box 594 - 30100
ELDORET
KENYA

Telephone: +254-773215904
Our Ref: Uon/Ode/Eld/2/5/(57)

3rd June, 2020

TO WHOM IT MAY CONCERN

REF: BELLION RICHARD KIPKORIR – L50/16317/2018

The above-named person is a bonafide student at the University of Nairobi, ODeL Campus, School of Open and Distance Learning, Department of Open Learning, Eldoret Learning Centre, pursuing Postgraduate Studies leading to the award of Master of Arts in Project Planning Management (MAPPM). He has completed his course work and now working on his Project Paper entitled “INFLUENCE OF STAKEHOLDER PARTICIPATION ON PERFORMANCE OF MILK COOLING PROJECTS- A CASE OF CO-OPERATIVE SOCIETIES IN BOMET COUNTY”.

Any assistance accorded to him will be appreciated.

Yours faithfully,

Dr. Migosi Joash
Regional Coordinator (Leamer Support)
NORTH RIFT REGION

Page 1 of 1.
APPENDIX II: QUESTIONNAIRE

Appendix 1: Questionnaire for Co-operative members, Management Committee

My name is Richard K. Bellion. Currently I am undertaking a study entitled *Influence of stakeholders participation in performance of milk cooling plant projects: A case of Co-operative societies in Bomet county* as partial fulfilment in the award of Master of Arts degree in Project Planning and Management of University of Nairobi. I kindly request you to assist me in filling this questionnaire. The information provided will be treated with utmost confidentiality and will only be used for the purpose of this study. Thank you in advance.

Instructions:-

This questionnaire consists of two sections; section A and B-E. Section A is demographic information while section B- F is project information. Please answer both sections truthfully.

Tick where appropriate

Part A: Background information

1. Kindly indicate your gender
 - Male { } Female { }

2. State your Age category:
 - 20-25 years { }
 - 26-30 years { }
 - 31-35 years { }
 - 36-40 years { }
 - Over 40 years { }

3. State your occupation :-
 - Farmer { }
 - Civil Servant { }
 - Entrepreneur { }
 - Financiers { }
 - If others kindly state………………………………………………

4. State your highest level of Education
 - Primary (CPE/KCPE) { } Secondary (KCSE) { }

85
Certificate Level { } Diploma { } Undergraduate Level { } Post Graduate Level { }

5. Please indicate the number of years you have been involved in the milk cooling plant project.

<table>
<thead>
<tr>
<th>Years</th>
<th>0 to 2 years</th>
<th>2 to 4 years</th>
<th>4 to 6 years</th>
<th>6 to 8 years</th>
<th>8 to 10 years</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>{ }</td>
<td>{ }</td>
<td>{ }</td>
<td>{ }</td>
<td>{ }</td>
</tr>
</tbody>
</table>

PART B: Stakeholders’ participation on project identification performance

Does stakeholder involvement influence the performance on the identification of the milk plant projects?

Yes { } No { }

1. Please rate by how much you agree with the following statements on the influence of stakeholder participation on the identification of the milk cooling plant project by putting a tick appropriately in the table below (Key; SD - Strongly Disagree (1), D - Disagree (2), N - Neutral (3), A - Agree (4), SA - Strongly Agree(5))

<table>
<thead>
<tr>
<th>Statement</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participation in the problem analysis facing dairy farmers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participation in giving opinion on identification and selection of milk cooling plant project</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Familiarity with the objectives of milk project initiative.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participation in feasibility study conducted for cooling plant project</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participation in the appointment of the project team</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PART C: Stakeholders’ participation on Project planning and design performance

1. Does stakeholder participation influence performance on milk cooling plants project planning and design?

Yes { } No { }

2. Please rate by how much you agree with the following statements on the influence of stakeholders participation in the process of milk project planning and design by putting a tick appropriately in the table below (Key; SD - Strongly Disagree (1), D - Disagree (2), N - Neutral (3), A - Agree (4), SA - Strongly Agree(5))
PART D: stakeholders’ participation in Project Implementation performance

1. Does a stakeholders’ participation influence implementation of the milk cooling plant project?

 Yes { } No { }

2. Please rate by how much you agree with the following statements on the influence of stakeholders resource inputs on project implementation by putting a tick appropriately in the table below (Key; SD- Strongly Disagree (1), D- Disagree (2), N- Neutral (3), A-Agree (4), SA- Strongly Agree(5))

<table>
<thead>
<tr>
<th>Statement</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participation in planning and design of milk cooling plant project</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participation in the formulation of the milk cooling plant strategic plan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participation in the process of setting up the quality standard plan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participation in the formulation of implementation plan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participated in drawing up the work breakdown structure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PART E: Stakeholders’ participation on Monitoring and Evaluation influence performance

1. Does a stakeholders’ participation on monitoring and evaluation influence performance of the milk cooling plants?

 Yes { } No { }

2. Please rate by how much you agree with the following statements on the influence monitoring and evaluation of milk cooling plant project by putting a tick appropriately in the table below
(Key; SD- Strongly Disagree (1), D- Disagree (2), N- Neutral (3), A-Agree (4), SA- Strongly Agree(5)

<table>
<thead>
<tr>
<th>Statement</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participation in Monitoring and Evaluation of milk cooling plant project</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participation in measuring performance levels of the milk cooling plants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participation in identification of performance Gaps in the milk cooling plant project</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participation in compilation of Monitoring and Evaluation report for the milk cooling plant project</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participation in meetings to assess and review reports on the milk cooling plant project</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SECTION F: Performance of the Milk cooling plant projects

1. Please rate by how much you agree with the following statements on the performance of the milk cooling plant project by putting a tick appropriately in the table below (Key; SD- Strongly Disagree (1), D- Disagree (2), N- Neutral (3), A-Agree (4), SA- Strongly Agree(5)

<table>
<thead>
<tr>
<th>Statement</th>
<th>SA</th>
<th>A</th>
<th>N</th>
<th>D</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stakeholder participation in project has improved the sales volume of the milk cooling plant.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stakeholders’ involvement in project has translated to profitability in the milk cooling plant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stakeholders’ participation in the project has contributed to increased growth in milk capacity processing in the milk cooling plant.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

I thank you for your Cooperation
Richard K. Bellion
MPPM Student, University of Nairobi
APPENDIX III: KEY INFORMANT INTERVIEW GUIDE

1. What is the influence of stakeholders’ participation in project identification on performance of milk cooling plants in Bomet?

2. What is the influence of stakeholders’ participation in project planning and design on performance of milk cooling plants in Bomet?

3. What is the influence of stakeholders’ participation in implementation on performance of milk cooling plants in Bomet?

4. What is the influence of stakeholders’ participation in monitoring and evaluation on performance of milk cooling plants in Bomet?
APPENDIX IV: RESEARCH PERMIT

Ref No: 945817
Date of Issue: 26/June/2020

RESEARCH LICENSE

This is to certify that Mr. RICHARD KIPKORR BELLION of University of Nairobi, has been licensed to conduct research in Bomet on the topic: INFLUENCE OF STAKEHOLDER PARTICIPATION ON PERFORMANCE OF MILK COOLING PROJECTS: A CASE OF CO-OPERATIVE SOCIETIES IN BOMET COUNTY, KENYA for the period ending: 26/June/2021.

License No: NACOSTI/P/20/5504
Applicant Identification Number: 945817

Director General
NATIONAL COMMISSION FOR SCIENCE, TECHNOLOGY & INNOVATION

NOTE. This is a computer generated License. To verify the authenticity of this document, Scan the QR Code using QR scanner application.