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Abstract. Nuclear forensics (NF) is an analytical methodology that involves analysis of intercepted nuclear and radiological 
materials (NRM) so as to establish their nuclear attribution. The critical challenge in NF currently is the lack of suitable 
microanalytical methodologies for direct, rapid, minimally invasive detection and quantification of NF signatures. Laser-
induced breakdown spectroscopy (LIBS) has the potential to overcome these limitations with the aid of machine-learning 
(ML) techniques. In this paper, we report the development of ML-enabled LIBS methodology for rapid NF analysis and 
attribution in support of nuclear security. The atomic uranium lines at 385.464 nm, 385.957 nm, and 386.592 nm were 
identified as NF signatures of uranium for rapid qualitative detection of trace uranium concealed in organic binders and 
uranium-bearing mineral ores. The limit of detection of uranium using LIBS was determined to be 34 ppm. A multivariate 
calibration strategy for the quantification of trace uranium in cellulose and uranium-bearing mineral ores was developed using 
an artificial neural network (ANN, a feed forward back-propagation algorithm) and spectral feature selection: (1) uranium 
lines (348 nm to 455 nm), (2) uranium lines (380 nm to 388 nm), and (3) subtle uranium peaks (UV range). The model utilizing 
category 2 was able to predict the 48 ppm of uranium with a relative error prediction (REP) of 10%. The calibration model 
utilizing subtle uranium peaks, that is, category 3, could predict uranium in the pellets prepared from certified reference 
material (CRM) IAEA-RGU-1, with an REP of 6%. This demonstrates the power of ANN to model noisy LIBS spectra for 
trace quantitative analysis. The calibration model we developed predicted uranium concentrations in the uranium-bearing 
mineral ores in the range of 54–677 ppm. Principal component analysis (PCA) was performed on the LIBS spectra (200–980 
nm) utilizing feature selection of the uranium-bearing samples collected from different regions of Kenya clustered into groups 
related to their geographic origins. The PCA loading spectrum revealed that the groupings of these samples were mainly due 
to rare earth elements, namely, cerium, dysprosium, praseodymium, promethium, neodymium, and samarium. ML-enabled 
LIBS therefore has utility in field NF analysis and attribution of uranium in NRM under concealed conditions. 

INTRODUCTION 

The illicit trafficking of nuclear and radiological materials (NRM), which began in the 1990s, has led to the emergence 
of a new branch of science known as “nuclear forensics” (NF) [1, 2]. NF is an analytical methodology that involves 
analysis of intercepted NRM so as to establish their nuclear attribution [3, 4]. The critical challenge in NF currently is 
the lack of suitable microanalytical methodologies for direct, rapid, and minimally invasive detection and quantification 
of NF signatures. Traditional analytical NF techniques (gamma spectroscopy, alpha spectrometry, mass spectrometry, 
profilometry, and electron microscopy) have limitations in this regard [1]. Laser-induced breakdown spectroscopy 
(LIBS), an emission spectroscopic technique, has several advantages over current NF techniques, namely, small sample 
size, direct analysis of inhomogeneous samples, minimal sample preparation, rapidity, and in situ analysis [5–7]. 
However, LIBS analysis is difficult in air and at atmospheric pressure because of the matrix effects arising from the 
strongly coupled transient laser–matter interactions [8]. As a result, most LIBS analyte spectral peaks are masked and 
buried by the strong background continuum. This limits the practical utility of LIBS in air at atmospheric pressure, in 
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addition to the interpretative challenges of the multivariate data [6, 8]. ML techniques have the ability to reduce the data 
and spectral dimensionality and to extract and model the subtle NF signatures to aid NF attribution [9].  

METHODS AND MATREIALS 

Laser-Induced Breakdown Spectroscopy  

A Q-Switched Nd-YAG (Quantel Laser; Ocean Optics, Inc.) laser, delivering 50 mJ of maximum energy at a 
fundamental wavelength of 1064 nm and 10 Hz fixed-pulse repetition frequency, was optimized based on signal-to-
noise ratio for the analysis of uranium in uranium trioxide (UO3) and uranium-bearing mineral ores from different 
regions of Kenya pelletized in cellulose. When the 10-ns-wide laser is fired onto the sample, it ablates the sample 
surface and creates a microplasma. As the plasma decays or cools, the excited atoms in the plasma emit light of 
characteristic wavelengths specific to the elements present in the sample. The emission from the plasma plume was 
recorded by the seven HR2000+ high-resolution miniature fiber optic spectrometers placed at right angles to the 
direction of plasma expansion with a fused silica optical fiber (0.22 numerical aperture) of 101 mm focal length [9]. 
To ensure that all the information content of the pellet was absorbed, 50 spectra were collected from the different parts 
of the pellets and averaged to obtain a single LIBS spectrum.  

A highly concentrated uranium pellet was prepared by mixing UO3 in cellulose for qualitative analysis utilizing 
LIBS. The mixture was milled in a pestle using mortar for 30 min to achieve homogeneity and then pressed into 25-
mm-diameter pellets of under a pressure of 10 tons using a hydraulic pellet press. Uranium pellets with concentrations 
ranging from 25 ppm to 800 ppm were prepared by mixing UO3 with cellulose to develop a calibration strategy model 
for quantitative analysis of uranium. To validate the model, pellets with 280 ppm, 320 ppm, and 360 ppm of uranium 
were prepared by mixing CRM IAEA-RL-148 (400 ppm of uranium) with cellulose. Uranium-bearing mineral ores 
from different regions of Kenya were mixed with cellulose in the ratio 4:1 to prepare pellets for quantification of 
uranium levels and exploratory analysis. 

Machine-Learning Techniques 

ML is the study of techniques to automatically extract information from raw data [10, 11]. The goal of ML 
techniques is to solve a complex computational task by “letting the machine learn.”  

1. Principal component analysis (PCA). A central part in multivariate explorative data analysis, PCA is used to 
reduce data dimensionality while retaining the valuable information [12, 13]. In our study PCA executed using 
Unscrambler (Version 10.5) was utilized for data reduction and to find combinations of variables (principal 
components) to describe any significant patterns within the entire data set. The score of the individual principal 
components obtained from each PCA model described the variation in the samples in the data set, while 
loadings described the correlations among the variables [14].  

2. Artificial neural network (ANN). To overcome the enhanced background, matrix effects, and nonlinearity of 
the noisy LIBS spectra, a multivariate calibration strategy using ANN coded in Matlab version 7.12 (The 
MathWorks, Inc.) was developed for quantitative analysis of uranium. A back-propagation algorithm was 
used because it allows the network to determine the best-fit training set of input–output pairs after a number 
of iterations based on gradient descent. The model was internally validated using the simulate samples of 
known concentrations of uranium (simulates that were not exposed to the model). The prediction accuracy of 
the model was tested using the CRM IAEA-RL-148. The relative error prediction (REP) was computed by 
using the following formula to determine the prediction accuracy of the model [15]: 

REP(100%) = *++
,
∑ ./012/3/3

. ,,
56* REP(100%) = *++

,
∑ ./01-/3/3

. ,,
56*  

where N is the number of simulate samples in the dataset; 𝑐9 is the actual or reference concentration of the 
simulate samples; and c5c;< is the predicted concentration of the respective samples. 

RESULTS AND DISCUSSIONS 

The atomic uranium lines at 385.464 nm, 385.957 nm, and 386.592 nm were identified as NF signatures of uranium 
for preliminary investigations of trace uranium in concealed in organic binders and uranium-bearing mineral ores. The 
limit of detection of uranium using LIBS was determined to be 34 ppm. The uranium lines (atomic and singly ionized 
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uranium) identified in the pellet were categorized into weak, resonant, and interference lines. A multivariate calibra-
tion strategy for the quantification of trace uranium in cellulose was developed using ANN with spectral feature 
selection consisting of all the three categories of uranium lines and subtle uranium peaks. The model utilizing spectral 
feature selection was able to predict the concentration of uranium as low as 48 ppm with an REP of 10% and CRM 
concentration with an REP of 18%. However, the calibration model utilizing subtle uranium spectral features (category 
2) could predict trace uranium in the pellets prepared from CRM with an REP of 6%. This therefore demonstrates the 
power of ANN to model noisy LIBS spectra for trace quantitative analysis. PCA performed on the LIBS spectra and 
by feature selection of LIBS spectra of uranium-bearing mineral ores collected from different regions of Kenya (North 
Ruri, South Ruri, Coast, and Lake Magadi) clustered into four groups, which related to their origins. The PCA loading 
spectrum revealed that the source attribution of the HBRA soil samples is mainly due to rare earth elements, namely, 
cerium (Ce), dysprosium (Dy), praseodymium (Pr), promethium (Pm), neodymium (Nd), and samarium (Sm). ML-
enabled LIBS therefore has utility in field NF analysis and attribution of uranium in NRM.  

CONCLUSIONS 

LIBS has the potential to detect uranium in concealed condition. The unique NF signatures observed in the LIBS 
spectra can be used to detect the presence of uranium in unknown samples bound in a cellulose matrix. The calibration 
strategy model developed in ANN using LIBS spectra can quantify trace uranium concentrations in unknown samples, 
while PCA applied to LIBS spectra can establish patterns that relate to their attribution. Thus, ML-enabled LIBS can 
be developed to detect NRM under concealed conditions at stand-off distances. Such analysis will enable us to quantify 
trace concentrations of NRM and to retrace their origin, thereby strengthening the nuclear security of the country. 
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