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Abstract 

A farm survey was conducted within a 100 km2 sampling block to collect data on the spatial 

variation in unfertilized maize biovolume and grain yields in relation to soil organic carbon 

(SOC), total nitrogen, phosphorus and extractable cations. Key soil factors associated with crop 

performance were identified using stepwise multiple linear regression modelling. The spatial 

variation of key soil factors and crop performance indicators (CPIs) was described in terms of 

spatial dependency.  An analysis of variance indicated the variation explained by soil types, 

sampling units, and administrative units. Soil properties displayed high variability with 

coefficients of variation of in the range of 50% to 89% for extractable nutrients. Grain yield 

ranged widely from 0.1 to 11.3 t ha-1, with 31% of the variation being accounted for by measured 

soil properties. SOC was identified as key soil factor associated with variation in crop 

performance. SOC displayed moderate spatial dependency with a range of 523 m. Analysis of 

variation indicate that variation in SOC was sufficiently described by small spatial units (fields). 

These insights were used to provide a framework for determining an appropriate scale for 

developing digital soil maps or distance for soil sampling in heterogenous smallholder farming 

systems. Strategies aimed at refining fertilizer use recommendation can therefore use this 

guideline.  

Key words: farm survey; scale of variation; maize; fertilizer recommendations; digital soil 

mapping.
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1. Introduction 

Agricultural production in sub-Saharan Africa (SSA) can be characterized by smallholder 

farming and low productivity. The latter is caused by low inherent soil fertility (Bekunda et al., 

2010), soil nutrient depletion (Stoorvogel et al., 1993), limited nutrient inputs, and poor 

germplasm (Vanlauwe et al., 2011). Fertilizers are required to replenish soil nutrient stocks and 

provide nutrients to the crop to increase productivity. There is increasing interest from 

governments and fertilizer companies in developing specific fertilizer products and blends 

targeted to specific geographies. Smallholder farmers also face the basic question of what type 

and how much fertilizer to apply given the local conditions on their farm and available resources. 

They rely on their own experience from previous years and fertilizer use recommendations. 

Typically, the recommendations are spatially coarse and developed on the basis of soil surveys 

and agronomic experiments. The recommendations are valid for the area or a spatial unit, for 

which the experiment is considered representative, which could be an administrative unit such as 

country or an agro-ecological zone (AEZ). These, so-called, blanket fertilizer use 

recommendations are a single fertilizer use recommendation for a given area that do not account 

for the variation in conditions within that area.  

Currently, several countries still use blanket fertilizer use recommendations to guide 

decisions on nutrient management. In the past decades, many studies have focused on refining or 

improving fertilizer recommendations, with the aim of attaining higher crop yields (e.g., Mowo 

and Mlingano, 1993). In the 1980s, for example, countries such as Kenya provided blanket 

fertilizer use recommendations for the entire country to guide decisions by smallholder farmers 

on their fertilizer management options (AIC, 1981). Later, in the 1990s, fertilizer use 

recommendations were refined on the basis of agro-ecological zones in an attempt to deal with 
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 5 

within-country variation through the Fertilizer Use Recommendation Project (FURP) in Kenya 

(FURP, 1994). Agro-ecological zones were defined based on climate, soil, and topography 

(Geurts and Van den Berg, 1998). However, the variability in growing conditions within AEZs 

can limit the efficiency of fertilizer use recommendations developed at the AEZ-level (Giller et 

al., 2006). For example, Diarisso et al. (2015) reviewed soil spatial heterogeneity in smallholder 

landscapes and soil responsiveness to interventions; they concluded that a form of precision 

agriculture is required that recognizes fine scale spatial heterogeneity. 

Many recent studies focus on improving fertilizer management and include the use of 

decision support tools such as the Quantitative Evaluation of Fertility in Tropical Soils 

(QUEFTS) model (Janssen et al., 1990),  the derived Nutrient Expert (Pampolino et al., 2012), 

and crop growth simulation models like APSIM (Kisaka et al., 2016). These tools have to be re-

calibrated for every region of interest (Xu et al., 2013). Furthermore, Molefe et al., (2012) 

observed that such decision support tools fail to capture the complexity within smallholder 

farms. Matthews et al., (2002) reported poor quality of data limits the application of such 

nutrient management tools in smallholder farms.  

A further refinement of fertilizer recommendations is hampered by the lack of detailed 

soil data (Sanchez et al., 2009). New, more detailed soil surveys are rare, particularly in SSA. 

The available national soil survey maps are spatially course (e.g., 1:250,000 to 1:1 million), and 

are produced using different methods, resulting to varying levels of accuracy (regional or 

national)  and data incompleteness (Baruck et al., 2016).  Two new developments in the 

collection of soil data may create new options to refine fertilizer recommendations even further: 

i). Digital soil mapping (McBratney et al., 2003) has evolved into an operational tool that 

can provide detailed insight in soil variability in an efficient way. Examples include the 
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 6 

100 m resolution digital soil map of Machakos and Makueni district in Kenya (Mora-

Vallejo et al., 2008) but also various continental to global initiatives (e.g. Stoorvogel et 

al., 2017). 

ii). Fertilizer recommendations for a farm can be based on soil test values for that farm. 

Where traditional soil analysis is often too expensive and, therefore, out of reach for 

smallholder farmers, new proximal sensing techniques like infrared spectroscopy 

(Shepherd et al., 2015) can be used to provide soil analysis at a low cost. 

A better understanding of soil spatial variability may provide guidelines for refining fertilizer use 

recommendations to optimize crop productivity. Those guidelines should include at which scale 

fertilizer use recommendations need to be developed. 

This study seeks to develop an approach to assess, ex-ante, the optimal level of scale, that 

reflects the variability in local growing conditions in smallholder farms. The objectives of this 

study were: (i) to describe the spatial variability of soil properties and crop performance, (ii) to 

identify key soil factors associated with crop performance, and (iii) identify a scale in which soil 

spatial variability can be sufficiently described. Our hypothesis is that the scale of variability of 

key soil factors corresponds to that of fertilizer response across smallholder farming landscapes. 

We focused on smallholder farming systems and western Kenya region has been taken as a case 

study. Previous research conducted in western Kenya mainly focused on within farm variability 

(Tittonell et al., 2013) and, spatial and temporal variability in maize response (S. Njoroge et al., 

2017). In this region, blanket fertilizer recommendations are still being used.  

 

2. Materials and methods 
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2.1. Site description  

The study area is a heterogeneous smallholder landscape in western Kenya (0°26′ - 0°18′ 

northern latitude; 33°58′ - 34°33′ eastern longitude) delimited by the administrative boundaries 

of Siaya and Kakamega counties (Fig. 1). The area is characterized by its (sub-) humid 

conditions and classified as the Lower Midland (LM1) (Jaetzold et al., 2007). FURP provided a 

blanket fertilizer recommendation for the LM1 AEZ of 60 kg N ha-1 yr-1 and 30 kg P ha-1 yr-1 for 

monocrop maize (FURP, 1994). The FURP experiment site is located 2 km away outside the 

current study area but within the LM1  AEZ (Fig. 1c).  

The smallholder landscape is characterized by a distinct bimodal rainfall pattern and a 

mean annual temperature of 20°C. Long rains (March–June) have a mean precipitation of 1350 

mm whereas short rains (September-December) have a mean precipitation of 850 mm (Jaetzold 

et al., 2007). The mean potential evapotranspiration is estimated at 1287 mm per maize growing 

season (Ademba et al., 2015). The altitudes vary in the gently undulating landscape (slopes <3 

%) between 1400 and 1500 m above sea level. The main soil types (IUSS Working Group WRB, 

2014) are presented in Figure 1b and include Rhodic Ferralsols (well drained, moderately to very 

deep, clay soils) and Ferralic Cambisols (well drained, moderately deep, loamy clay soils) on the 

hills, and Dystric Gleysol (poorly drained, shallow, sandy loam soils) in the plains (Waswa et al., 

2013). The fertility of the soils is limiting in N, P and K (Lijzenga, 1998).  

Farming systems are subsistent with dominantly rain-fed crops and low fertilizer input. 

The mixed crop-livestock system includes maize (Zea mays L.) as the dominant staple crop, 

usually intercropped with common bean (Phaseolus vulgaris L.). Average maize yield levels 

achieved with the current local conditions using conventional farming practices range from 400 

to 2000 kg ha-1 (Vanlauwe et al., 2014) for the long rainy season. Other crops cultivated include 
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 8 

bananas (Musa paradisiaca L.), sweet potatoes (Ipomoea batata L.) and groundnuts (Arachis 

hypogaea L). The smallholder farmers are supported by governmental agricultural extension 

services. 

                                                   

 Fig. 1 

 

2.2. Steps used to determine a relevant scale  

This study included five consecutive steps to: (i) conduct a farm survey, (ii) determine 

variability in soil properties and crop performance indicators (CPIs), (iii) relate soil properties to 

CPIs and identify main soil factors associated with the variation in CPIs, (iv) characterize the 

scale of spatial variability of key soil factors in order to describe a relevant scale of variability in 

inherent soil fertility, and (v) evaluate if there is any correspondence in the scale of variability of 

key soil factors with the scale of variability in fertilizer response.  

 

2.3 Step 1: Farm survey  

A farm survey was carried out within the Land Degradation Sampling Framework 

(LDSF) (Vågen et al., 2010). The LDSF is a stratified hierarchical sampling design that captures 

variability at different scale levels: block, tiles, sub-tiles fields and plots across a given landscape 

(Fig. 2). First, a 100 km2 block, chosen to typify a smallholder landscape, was allocated within 

the study area. The block was sub-divided into 16 (2.5 km2) tiles and each tile further sub-

divided into 10 (0.25 km2) sub-tiles. A total of 8 tiles and 32 sub-tiles (four from each tile) were 

randomly selected, within which three points were randomly located. Near each point maize 

fields for sampling were sought during the short and long rains maize cropping seasons of 2012 

and 2013. Different points were drawn for each of the two seasons. Unfertilized, well-managed 
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 9 

(e.g., free of weeds, pest, not affected with drought and diseases), mono-crop maize fields were 

selected for sampling that had a maize crop at the ear-leaf growth stage (silking stage i.e., 70 - 75 

days after plant emergence) at the time of sampling. The ear-leaf growth stage is considered 

optimum for diagnosis of nutrient constraints in maize. Per sub-tile two different locations were 

selected for sampling in every two of the consecutive seasons. At the locations, a maize field 

according to the above criteria was searched. A third point was selected for cases where no 

appropriate maize field was found near one of the two selected points. If the two selected points 

met the criteria, the third point was not sampled. During this farm survey, only unfertilized maize 

fields were sampled where the yield is taken to reflect the inherent soil fertility.  

The locations were found with a GPS and maize fields were identified nearby. In the 

selected maize fields, a Y frame layout was placed to locate four plots measuring 2.5 m2 (Fig 2 

d). The central plot was located first, by measuring 20 m from the main boundary, towards the 

centre of the maize field. The main boundary is defined as the boundary located from the 

direction of smallholder farmers’ homestead, towards the maize field. Subsequently, three plots 

were located 12.2 m from the central plot and distributed uniformly around it. In a first visit, the 

exact coordinates were recorded, soils were sampled and plant density (count number of maize 

plants), and plant biovolume, as a proxy of plant biomass determined. In a second visit, just 

before harvest by the farmer, the grain yield (yield) was measured. The biovolume (BV) was 

estimated using the basal diameter (BD) and height (H) of the maize plant following Chomba et 

al., (2013), Equation 1: 

  𝐵𝑉(𝑐𝑚3) = 𝐻(𝑐𝑚) × (
𝐵𝐷(𝑐𝑚)

2
)

2

𝜋                            1 

The BD was measured in duplicate, 2 cm above the soil surface for all maize plants in the plot. 

Mean biovolume was estimated using the BD and H measurements of all plants in the plot. Yield 
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 10 

was measured from dry maize that was hand-harvested and the kernels removed and weighed 

(kg) at plant maturity (between 50-60 days after the silking stage). Yield and biovolume are the 

CPIs and were used as proxies of crop response, which reflect variability in the inherent soil 

fertility across the maize fields. In the rest of this article, the term CPIs is used to refer to both 

yield or biovolume. 

To characterize soil properties, composite soil samples were taken per plot. Using a zig 

zag pattern, six topsoil (0-20 cm) samples were taken with an Edelman soil auger (600 cm3) 

within the 2.5 m2 plots to have a representative composite soil sample.  Subsamples from the 

composite soil samples, obtained using coning and quartering, were analysed at Crop Nutrition 

Laboratory Services and World Agroforestry Centre laboratories. These samples were air-dried, 

thoroughly mixed and ground to pass a 2 mm sieve prior to the analysis. Soil pH was measured 

with a pH meter with a 1:2 soil/water suspension (Okalebo et al., 2002). SOC and total N were 

analysed by dry combustion using a C/N analyser (Wright and Bailey, 2001), with an 

acidification pre-treatment to remove carbonates for SOC detemination. Extractable Ca, Mg, K, 

Na, and P were determined using the Mehlich-3 extract (Mehlich, 1984) and an inductive 

coupled plasma optical emission spectrometer (Sikora et al., 2005). 

 

                                                          Fig. 2 

 

2.4 Step 2: Variability in soil properties and crop performance  

To assess the variability (distribution) in soil properties and CPIs, descriptive statistics 

(means, median, coefficient of variation (CV), minimum and maximum) were calculated. 

Density plots were used to check whether soil properties and CPIs followed a normal distribution 
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 11 

as a requirement for the subsequent steps of multivariate statistical analysis. Variables with a 

left-skewed distribution were log-transformed for the frequency to achieve near normality as a 

requirement for regressions and geostatistical analysis. Relationships among soil properties, and 

between soil properties and CPIs were examined by pair-wise correlation analysis to derive the 

Pearson correlation coefficients (r). Normally, problems with multi-collinearity occur when 

highly correlated variables are included in a regression model (Wold et al., 1984). Therefore, to 

assess the degree of variable interactions amongst soil properties and CPIs, highly correlated (r > 

0.80) variables were identified.   

 

2.5 Step 3: Key soil drivers of crop performance indicators 

Key soil properties that can be attributed to the variation in CPIs were identified by 

Stepwise Multiple Linear Regression (SMLR) modelling (Geladi et al., 1999). The regression 

method was used to analyse the linear relationship between single dependent variables (CPIs) 

with the independent variables (soil properties) based on Equation 2.  

𝑦 = 𝑎 + ∑ 𝑏𝑖 × 𝑥𝑖 ±  𝜀𝑛
𝑖=1                           2 

where “y” is the CPIs, “xi” are the soil properties, “n” is the number of soil properties, “a” is the 

intercept, “bi” are the regression coefficients and “ε” is the standard error of the estimate. The 

SMLR analysis was used because of; (i) the few numbers of independent variables included in 

the analysis, - eight soil properties (pH, SOC, TN, P, K, Ca, Mg, Na) and, (ii) to avoid the 

problem of overfitting by adding or deleting variable in SMLR analysis (Guan et al., 2013). The 

data were also evaluated for outliers which were expunged from the analysis to minimize this 

problem of overfitting. The relative importance of the predictors in the regression model were 

calculated and used to discern the key soil factors. The significance probability and coefficient of 
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determination r2 statistics were used as basis of evaluation. Hereafter, in the rest of the text, the 

r2 refer to the conventional coefficient of determination - the proportion of variance explained by 

soil factors. We used a bootstrap re-sampling strategy to assess the strength of evidence, that the 

identified soil predictors were truly independent and reproducible. Hence, the mean confidence 

intervals for each soil predictors were estimated using 1000 iterations.  The relative importance 

was calculated using the “relaimpo” R package (Grömping, 2006) 

To further discern which soil properties were key, the soil predictors were gradually 

eliminated using a stepwise, backward elimination and forward selection criterion, to build the 

best regression equations describing CPIs as a function of the soil properties. The predictors with 

the lowest significant contribution to the regression model were eliminated and then tested until 

the remaining ones had a significant contribution.  The key predictors of CPIs were then 

identified in the final regression equation. We calculated the Akaike’s Information Criteria (AIC) 

value, and used it to evaluate whether the identified soil predictors were similar to those obtained 

using the aforementioned relative importance (r2) statistic. The magnitude of AIC values formed 

the basis for interpretation, where the regression model with the lowest AIC was considered as 

the best, while the soil predictors with the highest AIC value were taken to be the key soil 

property. All the statistical regression modelling was done using the “lme4” R- package (Bates et 

al., 2015). 

 

2.6. Step 4: Scale of variability  

Discrete map units, such as AEZ, soil map units, and administrative boundaries, form a 

logical basis for the development of blanket fertilizer recommendations (Smaling and Van De 

Weg, 1990). The study area fell within a single AEZ. However, different soil map units and 
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administrative units were identified. These units are only useful for the refinement of the 

fertilizer use recommendations if they describe the variation in the key soil properties that 

influence the CPIs. Soil types are expected to describe the variation in soil properties and could 

form a logical basis for fertilizer recommendations. Administrative units are instrumental to 

agricultural extension officers for logistical purposes of disseminating fertilizer 

recommendations. However, the administrative units may include considerable variation in soil 

properties, making them less useful for fertilizer recommendations. The hierarchy of scales 

across the LDSF sampling framework (Fig. 2) was also considered since nutrient variability 

occurs at different scale levels across the smallholder landscape (Tittonell et al., 2013).  

 An ANOVA mixed-effect linear models were conducted to analyse the variation across 

the soil map units, administrative units, and different scales of the LDSF sampling frame using 

the identified key soil predictors and CPIs. The “nlme” R-package was used to conduct the 

unbalanced ANOVA, where the plots (2.5 m2) were fitted as random effects (Pinheiro et al., 

2019). The administrative units, soil types, tiles, sub-tiles and fields were considered as the fixed 

effects and provided a measure of explained variability (EV) by each of the mapping units. One 

mapping unit was modelled at a time with the response variable being the identified key soil 

properties or the CPIs. 

 To evaluate the proportion of EV between the mapping units, two pseudo R2 summary 

statistics for mixed-effects models were estimated as described by Nakagawa and Schielzeth, 

(2013). The “marginal” (𝑅𝑚
2 ), which considers the variance of the fixed effects, and 

“conditional” (𝑅𝑐)
2  that takes the variance of both the fixed and random effects into account 

(Nakagawa et al., 2017). These statistics were computed following Equations 3 and 4, 

respectively.  
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𝑅𝑚
2 =

𝑣𝑎𝑟𝑓

𝑣𝑎𝑟𝑓 +𝑣𝑎𝑟𝑟+𝑣𝑎𝑟𝑒
                                 3 

 

𝑅𝑐
2 =

𝑣𝑎𝑟𝑓 +𝑣𝑎𝑟𝑟

𝑣𝑎𝑟𝑓 +𝑣𝑎𝑟𝑟+𝑣𝑎𝑟𝑒
                                  4 

where 𝑣𝑎𝑟𝑓 is the variance of the fixed effects, 𝑣𝑎𝑟𝑟   is the variance of the random effect and 

𝑣𝑎𝑟𝑒 is the variance of the model residuals. High values of R2 indicates the mapping units (e.g., 

soil types/maize fields) may be appropriate for a blanket fertilizer recommendation. 

Often discrete mapping units do not properly describe the relevant spatial variability, 

specifically the local variation on smallholder farms (e.g., where the administrative boundaries 

are used). An alternative approach to describe the spatial variation in the key soil properties is to 

carry out a geostatistical analysis to determine the spatial dependency of the key soil factors and 

CPIs. We derived the semi-variograms for key soil factors and CPIs following Kerry et al., 

(2010) using the “gstat” R-package (Pebesma, 2004). The range was interpreted  as the basis to 

define the relevant scale of variability following Kerry and Oliver, (2004). This interpretation 

depends on the strength of spatial dependencies that was determined by the nugget/sill ratio 

following Cambardella et al., (1994) with ratios < 0.25 depict strong, 0.25 – 0.75 moderate and > 

0.75 weak spatial dependencies. Weak spatial dependence implied that there was considerable 

short distance variation and no logical patterns (Costa et al., 2015).  

  

2.7 Step 5: Validation  

In steps 1-4, we made use of a relatively quick farm survey to analyse the spatial 

variability in soils and crop performance. However, to properly derive fertilizer use 

recommendations, it is necessary to look at fertilizer response. However, under normal 

conditions it would be very resource intensive to carry out a large number of fertilizer response 
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trials. Therefore, we hypothesized that the scale of variability of key soil factors associated with 

CPIs corresponds to the scale of variability in fertilizer response across smallholder farms. In the 

study area trials were carried out n forty two, 100 m2 plots by the African Soil Information 

Service (http://afsis-dt.ciat.cgiar.org) and the International Institute of Plant Nutrition (IPNI) 

(Huising et al., 2013; Zingore et al., 2014). This allowed us to test the above hypothesis. Data of 

fertilized maize trials were obtained in the short and long rain season of 2010 and 2013. These 

trials consisted of N, P and K fertilizer treatments. Maize yields of the fertilized and control plots 

were used to calculate the Fertilizer Response (FR), computed as a response ratio following 

Hedges et al., (1999):  

𝑙𝑛 FR  = 𝑙𝑛 (
𝑦𝑐  

𝑦𝑡
),  

where yc is yield from the control plot and yt is the yield from the treatment plots all reported in 

Mg ha-1. The FR was transformed into the ln FR to achieve near normality. Geographical 

coordinates, corresponding to the centroid of each fertilized plot were used to determine the 

spatial dependency of lnFR as described in section 2.6. The spatial dependency in FR was 

compared to the spatial dependency in soil properties and CPI’s.  

 

3 Results and discussion 

3.1 Step 1: Farm survey 

A total of 64 maize fields on smallholder farms were sampled within 32 sub-tiles that 

were randomly distributed within 8 tiles across the 100 km2 block. An average of 7 maize fields 

within each tile was sampled. Out of 256 plots sampled, 203 had complete observations on soil 

properties, yield and biovolume. Yield was not observed in 20% of the fields as farmers 

harvested the field prior to the planned sampling date. Seven observation were identified as 
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outliers. Incomplete records and extreme values were excluded from the statistical analysis. The 

total number of maize plants at silking stage per plot ranged from 7 to 25. At harvest, a 10% 

reduction in total number of maize plants was observed for all fields sampled during biovolume 

estimates. 

 

3.1 Step 2: Variability in soil properties and crop performance indicators 

Table 1 presents the descriptive statistics for soil properties and CPIs. Soil properties in 

the topsoil indicate considerable variation in soil fertility. SOC concentrations ranged from 0.56 

to 5.23%. The highest SOC concentrations were found in fields that had been recently converted 

to maize cultivation and those that displayed intensive soil management (14% of the 

observations). Low SOC concentrations were observed in maize fields that were intensively 

cultivated. Soil pH varied from slight acidity to near neutrality (4.8 to 7.4) and within the 

optimum range for maize growth. Mehlich-3 extractable P was below the critical concentration 

of 15 mg kg-1 in 55% of the sampled plots. Yield ranged widely from 0.8 Mg ha-1 to 11.8 Mg ha-

1. 

Coefficients of variation indicated different degrees of variation of the soil properties and 

CPIs (Table 1). Mehlich-3 extractable P and K were highly variable with CVs of 74% and, 89% 

respectively; Extractable Ca and Mg had CVs of 60% and 52%, respectively, while SOC and 

total N has lower CVs of 32% and, 26% respectively. Yield and biovolume exhibited a moderate 

variation as indicated by their CVs of 57% and, 43% respectively. We used the coefficient of 

variation to assess variability since it allowed comparison among variables with different units of 

measurement (soil properties and CPIs). However, the CV statistics could not allow us to 

explicitly evaluate the spatial variation in soil properties (Haileslassie et al., 2005). 
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                                                   Table 1 

 

Density plots for Mehlich-3 extractable P, K, Ca, Mg and Na displayed a negatively 

skewed distribution, indicating a high prevalence of low values in the dataset, which signifies 

low nutrient levels in the study area. Results of the natural log-transformed soil properties, prior 

to correlation analysis are presented in Supplementary Material 1 (S1, Fig. 1). Soil pH, total N, 

yield and biovolume displayed a near normal distribution.  

Significant correlations between soil properties and CPIs was evident, as shown by r 

values (Table 2). SOC was positively correlated with yield (r = 0.55, p < 0.001) and biovolume 

(r=0.88, p < 0.0001). Relationships between P and yield (r = 0.01, p = 0.02), Na and yield (r = 

0.01, p = 0.101) were weak and insignificant, and so was the relation between P and biovolume 

(Table 2; see Supplementary Material 1, S1 Fig. 2).  

Results of pairwise correlation also revealed a high correlation among soil properties (r > 

0.8). SOC and total N were highly correlated (r= 0.95, p < 0.001), and so were Ca and Mg (r= 

0.89, p < 0.001). Correlation coefficients between pH, SOC, P, Ca, K and Na were relatively 

low. Having known the association between soil properties, all the eight soil properties were 

included in the regression analysis.  The next step of analysis was to identify key factors which 

influence underlying variation in CPIs for the study area.  

 

          Table 2 

 

3.4 Step 3: Key soil drivers of crop performance. 
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Regression results indicate soil predictors explained 32% and 79% of the variability in 

maize yield and biovolume, respectively (Table 3). SOC was the main factor that significantly (p 

< 0.001) contributed to the variability in CPIs. The explained variance by the soil predictors 

indicate that each individual soil property played a role in influencing the underlying variation. 

But the contribution of pH, Total N, P, Ca, Mg, K and Na was not statistically significant (p > 

0.001). The problem of multicollinearity could have had an influence on the performance of the 

model, since SOC and Total N, as well as Mg and Ca were highly correlated (see Supplementary 

Material 1, S1 Fig. 2). To test the aforementioned influence, total N and Mg were removed from 

the model. This reduced the explained variance to 31% and 78% for yield and biovolume, 

respectively. Although the intercept become significant (p < 0.1), meaning the model accuracy 

was not affected.  Hence, the result indicates no significant influence of multicollinearity when 

all eight soil properties were included in the regression models. Multicollinearity creates high 

coefficient estimators that inflates variances and may lead to selecting the wrong soil predictors 

(Kroll and Song, 2013).  The problem is magnified when the samples size is small contrary to 

ours, which had 196 observations (Kroll and Song, 2013). Thus, the multiple linear regression 

models predicted variability of CPIs fairly well as shown by the explained variance for the study 

area.  

 

                                                  Table 3 

The relative importance results for the eight predictor of yield and biovolume are shown 

Fig. 3. The predictor with highest r2 was SOC with values of 0.41 for yield and 0.43 for 

biovolume. SOC was identified as the key factor that influence variation in CPIs for the study 

area.  Bootstrapping stimulations, employing different statistical method, confirmed SOC as key 
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factor (See Supplementary Material 1, S1 Fig. 3).  The lowest observed r2 values were 0.12 (pH) 

for yield and 0.12 (lnNa) for biovolume. The negative influence of low acidity and high sodicity 

explain why pH and sodium were the least important soil predictors (Mbakaya et al., 2008).  The 

regression models represent part of variation in CPIs as explained by the soil properties, and was 

useful for differentiating the contribution of each soil factor. We used SMLR modelling as a 

strategy of reducing the number of candidates to be considered for evaluation of spatial structure. 

This also simplifies the proposed approach. Our results suggest that SOC was the key soil factor 

that influenced spatial variation in CPIs. 

 

                                                   Fig. 3 

 

To further discern which of these soil properties are key soil factors, AIC values were 

evaluated from the stepwise regression models (Fig. 4). The best regression model included SOC 

and Na as the main soil predictors for CPIs. SOC was the only significant (p < 0.0001) predictor 

in the models with the highest AIC value of 257 for yield and 2113 for biovolume (Fig. 4).  Even 

though Na was included in this regression equation, its contribution was not significant (p = 

0.7635) and the AIC values for CPIs were the lowest (187).  Thus, the results confirmed that 

indeed SOC was key soil factors that influence variation in crop performance of the study area.  

 

                                                   Fig.  4 

 

3.5 Step 4: Spatial variability of key soil drivers and crop performance indicators 

The ANOVA models showed that the large soil units (soil types and administrative 

boundaries) describe less than 10% of the variation in the SOC (Fig. 5). The mixed-effect models 
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resulted in a low marginal R2 (Fig 5. a c) but high conditional R2 (Fig 5 b d). This meant that the 

fixed effects (administrative boundaries, soil types, LDSF scales (tile, sub-tile and field)) explain 

low variability (< 5 %) in SOC.  Most of the spatial variability in SOC was attributed to 

differences in fields, and between sampling the plots, indicated by high marginal R2 values (Fig 

5a c). This implied that most of the local variability was capture at field level (within variation), 

which make them good basis for the development of a fertilizer use recommendation. A similar 

trend was observed for the CPIs (Fig. 6). The high conditional R2 is attributed to the inclusion of 

variance for both the larger mapping units (fixed effects) and plots (the random effects). 

Although the mean SOC, yield and biovolume were significantly different between the three soil 

types, there is considerable variation within these soil units.  Here, it also becomes apparent that 

the smaller mapping units (fields) are describing considerable variation in SOC, yield and 

biovolume compared to all the other stratifications of the landscape that were applied, even 

despite the fact that they are just randomly located squared in the landscape.  

 

Fig. 5 

 

Fig. 6 

 

Table 4 shows the semi-variogram parameters with the best-fitted model for the SOC, FR 

and CPIs. SOC and CPIs showed moderate to strong spatial dependencies based on the definition 

of Cambardella et al. (1994). However, semi-variograms showed considerable short distance 

variability, confirming the results in the literature that these systems present considerable short 

distance variability. Although SOC showed considerable spatial dependency, the patterns were 
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found to occur at relatively short distances with a range of 523 m. Despite the relations between 

the soil properties and the CPIs, the short distance spatial dependency shown for the soil 

properties is not found for the CPIs. The CPIs show a stronger spatial dependency and also a 

longer range. The value of the range can be considered as the scale of distance beyond which 

SOC do not show any spatial correlation. This implied that the range could be interpreted further 

to provide guidance on optimum scale for developing digital nutrient maps for this study area.  

The results of the geostatistical analysis are in line with the analysis of variance. The 

short distance variability found for SOC explain that the very general soil units and large tiles 

that both cover areas of > 5 km2 do not describe the variation. Smaller areas like the sub-tiles and 

the administrative units are roughly the size of the range of the semi-variograms and describe 

more variation in SOC as shown by the analysis of variance. The results imply that the sampling 

distance for representative soil test results should be smaller for SOC (523m) in this area. 

The results confirm that blanket fertilizer use recommendations on the basis of coarse 

digital soil map are not likely to be efficient in increasing of food production. The development 

of fertilizer use recommendations will require intensive sampling to describe the variation in soil 

conditions. Following Kerry and Oliver (2004), the results can be re-interpreted towards optimal 

sampling densities. The optimum sampling distance should be less than half the range of a fitted 

semi-variogram model. Given the relatively short range of 523 m for SOC, it is necessary to 

sample at distances of less than 250 m. Although this would describe the large trends, it should 

be recognized the results would still not be very effective due to short distance variability as 

indicated by the nugget. Thus, local variability within smallholder farms may be captured at 250 

m resolution. Given the 250 m resolution, two options for improving fertilizer recommendations 

can be explored for this area; (i) predict soil test values through interpolation, using suitable 
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environmental covariates e.g. detailed satellite imagery (digital elevation models) through 

regression kriging, or  (ii) farmers to rely on soil testing on their fields.  

The two CPIs showed different levels of spatial variation with different spatial 

dependencies. This is not surprising given the relatively low correlation coefficient between 

them (r2 = 0.56).  

Table 4 

 

3.6 Step 5: Validation  

The results showed that there is considerable soil variation at local scale (< 523 m). The 

best semi-variogram model fitted for FR was spherical, which corresponded to the least root 

mean square error. The nugget/sill ratio suggest FR exhibited moderate of spatial dependencies 

across fertilized plots for the study area (Table 4). We observed a high nugget effect (Table 4) 

suggesting that in fertilizer response there was small-scale variation among fertilized maize 

plots. Moderate spatial dependencies implied that we could interpret the range. The range of FR 

was 426 m and of a similar order of magnitude as that of SOC (523 m) (Table 5). Hence our 

hypothesis, that the scale of fertilizer response corresponds to the scale of variability of key soil 

properties is not rejected. 

 

4. General discussion 

This study aimed at establishing an ex-ante approach to determine a rough scale that 

reflects local spatial variability in smallholder farming landscapes. We envisaged that the study 

will inform decisions for refining fertilizer use recommendations. This would be accomplished 

by providing guidance on a rough scale for using digital soil maps or help inform sampling 
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distance for soil testing in heterogenous smallholder fields. The knowledge will aid farmers and 

policy makers resolve problems related to in-situ soil testing, by making better nutrient 

management decisions. A generalized workflow is provided in Fig. 7. Empirical rules were 

derived, to describe the observed variability of key soil factors (SOC) and CPIs, which are then 

used to determine a directional flow of decisions that would help refine the recommendation. 

Although, we consider this study site as a good representation of smallholder farming 

landscapes, our approach is only applicable to this site and other regions (rain-fed) with similar 

topography, climate and soils conditions.  

 

Fig. 7 

 

The relevant scale at which we can properly describe inherent soil spatial variation has 

rarely been explicitly considered when developing digital soil maps for heterogeneous 

smallholder farming systems. Variability in soil properties and CPIs provided a framework for 

estimating a rough scale for developing digital nutrient maps.  Our results provide evidence of 

existence of variability as indicated by soil properties, that displayed high variation, as shown by 

high CV values (Table 1). Anthropic influence affects spatial structure of soil properties in maize 

fields. Variability in soil properties can be attributed to natural intrinsic variation, parent material 

(Deckers, 2002) and difference in management across maize fields (Zingore et al., 2007). The 

high variability in yield were within ranges of maize yield reported by Kihara et al., (2016). 

Variability of maize yield has also been reported in other studies conducted in western Kenya at 

landscape level (Burke and Lobell, 2017; Tittonell et al., 2013). Studies have shown the impact 

of high soil variability on nutrient requirement for maize crop in smallholder farms of Nigeria 
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(Shehu et al., 2018). 

High variation in soil properties, has consequently led to  variable fertilizer use efficiency 

and fertilizer response, within these smallholder farms (R. Njoroge et al., 2017; Tittonell et al., 

2007). Maps displaying spatial patterns of soil properties may capture the variability at specific 

locations and provide  information for the local inherent soil variability (Antwi et al., 2016). The 

use of auxiliary information in digital soil maps would further allow integration of covariate 

information such as digital elevation (as raster maps) in creation of the digital soil maps. As a 

result, improve on the accuracy of predicting soil test values for nutrient management. This study 

provides a sequential framework that can aid in capturing local variation in soil properties (Fig. 

7)   

Our study showed robust relationships between CPIs and soil properties, which were 

evaluated further (Table 2). Pair-wise correlations results between soil properties and CPIs were 

statistically significant and provide evidence of the existence of a relation between inherent soil 

fertility and CPIs (Table 2). The most striking correlations were between SOC and biovolume (r 

= 0.88, p < 0.0001) and between SOC and yield (r = 0.55, p < 0.001). This confirms that SOC is 

an important soil factor, and proper management of SOC would result to high CPIs in the region. 

These findings also agree with those reported by Chomba et al. (2013). It is difficult to give a 

reason why there were good correlation between SOC with biovolume and not yield (Table 2). A 

similar correlation between SOC and maize yield (r = 0.59, p < 0.001) has been observed in 

other studies conducted in Uganda on Ferrosols (Musinguzi et al., 2016). Correlations between 

soil properties and CPIs, agree with those reported by (Mtangadura et al., 2017) who found 

positive relations between maize yield and Ca in Zimbabwe.  
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The SMLR revealed SOC as key factors associated with the variation of crop 

performance for the study area (Fig. 5 and 6). This can be explained by the fact that SOC has a 

dominant influence on N supply, nutrient retention and sulphur supply, soil structure and soil 

responsiveness to fertilizer application (Lal, 2016; Six et al., 2002). These results are consistent 

with other studies that reported SOC as key soil factor that influence maize yield as well as 

fertilizer response (Musinguzi et al., 2016). The knowledge of the spatial variability of SOC may 

be important for understanding the variance structure of CPIs and how they can be related. The 

SMLR statistical methodology implemented in analysing soil data has wider applicability and 

can be applied to other similar sites and crops. Climatic and management factors that influence 

crop performance (Tittonell et al., 2008; Waithaka et al., 2007) and could also be included, but 

would require a larger sample size to increase confidence level of the results (Maas and Hox, 

2005). In this case when we ran a regression model, and reduced or including additional soil 

factors did not explain more of the variation in CPIs than SOC and Na alone.  

We evaluated the variation of key soil factors and CPIs using ANOVA and their spatial 

structure. ANOVA model results displayed significant (p < 0.001) variation between 

administration boundaries, tile and sub-tiles. Low EV for SOC suggests that not much variation 

(< 25%) was captured by the large discrete mapping units (administration boundaries, tile and 

sub-tiles) for this region (Fig. 5a). Broad discrete mapping unit such as administrative boundaries 

are likely to be inappropriate for delineating fertilizer recommendations, as indicated by the fixed 

-effects, and marginal R2 values (Fig 5b & 6b d). The EV was considerable (> 25%) for the small 

spatial units (e.g., field). This was also evident based on the high conditional R2 values (> 50 %), 

which accounted for both the random and fixed effect in the ANOVA analysis.  High EV for 
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maize fields implied that fertilizer recommendations should be provided at field level for the 

study area. This may require each smallholder farmer to conduct soil testing of their fields.  

Variation of key soil factors was described by very small spatial units and confirmed by 

low nugget values obtained from the semi-variogram models, indicating short distance variability 

(Table 4). This further confirmed that fertilizer use recommendations will need to rely on digital 

soil maps and/or local sampling at a defined distance. Short distance variability has been 

reported by Diarisso et al., (2015) in the small villages of west Africa. However, short distance 

variability may limit application of digital soil mapping. For such a scenario, soil testing would 

be an alternative. However, researchers have argued that, the use of soil testing can be more 

effective, when it is combined with plant tissue analysis (Webb et al., 2011) or when cheaper and 

rapid soil characterisation methods such as infrared spectroscopy (IR) are employed, especially 

as IR predicts SOC well (Shepherd et al., 2015).   

Our ex-ante approach demonstrates local spatial variability can be captured for the 

heterogenous smallholder landscape. While estimating spatial variability of soil properties and 

crop response, the unit of measurement is an important consideration, as it influences the range 

(Bhati 2005). Findings reported in other studies indicate plots size did not affect the crop yields 

(Bhati 2005). However, it recommended to use smaller sampling units, as they could increase the 

precision of estimating variance. Therefore, the small plots (2.5m2) captured spatial variation on 

the maize fields, since small units of measurement lead to spatial variance close to the true value, 

while large units may introduce biases (Western and Blöschl, 1999).  

Optimization of a relevant scale has been a major bottleneck for nutrient management in 

smallholder farms (Vasu et al., 2017). The spatial structure of SOC with a strong relation with 

the CPIs and moderate dependencies was a proper basis. Moderate spatial dependencies for SOC 
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have previously been reported elsewhere in western Kenya (Okeyo et al., 2009). Occurrence of 

moderated spatial dependencies can be explained by influence of extrinsic management factors 

such as ploughing and other local management practices that weaken spatial dependencies after 

long history of cultivation (Mzuku et al., 2005).  For this study area, we propose 250 m as 

optimum resolution for digital soil maps, given the effective range of 543 m for SOC. This 

distance can serve as threshold scale below which maps would capture the local growing 

conditions of the study area. Other studies have proposed a similar distance of 323 m for rain-fed 

conditions (Vasu et al., 2017). The reliability of these digital nutrient maps will also depend on 

the sampling protocol and accuracy of the semi-variogram model (Liu et al., 2014). However, at 

250 m sampling distance may have impact on the cost of soil analysis. 

We assumed that crop response and fertilizer response will display similar spatial 

patterns. Based on this assumption, a comparison was made between ranges of SOC and FR. The 

range of SOC (523 m) was similar to that of FR (423 m) (Table 4). Even though the ranges were 

not exact in their magnitude, our hypothesis was accepted. The minor discrepancies in terms of 

lack of exact correspondence of range between SOC and fertilizer response for trial data can be 

attributed the difference in sampling density between the two approaches. The sampling density 

for farm survey across the landscape was higher (2.3 samples per 100 km2) compared to that of 

fertilizer trials was (0.42 samples per 100 km2). Many studies report that high density sampling 

is required for better results where soil pattern is complex due to the topography (Cobo et al., 

2010; Tesfahunegn et al., 2011). Difference in factors such as weather, and germplasm can also 

explain the discrepancy, since data collection was conducted in the same study area, but during 

different seasons and, sampled different maize varieties among farms.  
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The findings of a correspondence between the range of FR to that of SOC provides useful 

insights for strategies aimed at refining fertilizer recommendation in western Kenya. This 

justifies the need for adjusting the fertilizer application rate based on the observed local spatial 

variation in these maize fields. In this region, fertilizer use for maize varies with the available 

fertilizer type in the local agro-dealers, soil properties and rainfall (Ichami et al., 2018; 

N.Sanginga et al., 2009). The current fertilizer application rates of 31 kg per ha have been 

projected to increase to 50 kg per ha (Bezu and Holden, 2014), and could be realized if 

appropriate fertilizer management strategies are put in place.  As a result, fertilizer use efficiency 

could be improved from the small amounts applied by farmers. Therefore, DSM, provided at a 

relevant scale (fine resolution) would play a critical role as a nutrient management tool for this 

study. 

 

5. Conclusions 

This study demonstrates an ex-ante, approach for establishing a relevant scale for making 

fertiliser recommendations that captures spatial variation of soil properties and CPIs based on 

local conditions (Fig. 7). We conclude the following: 

 SOC was the key soil factors that determined variability in unfertilized maize grain yield 

and plant biovolume of this region.  

 Discrete mapping units based on soil classification units and administrative boundaries, 

may not be suitable for delineating fertilizer recommendations for smallholder farms in 

the study area. 

 Only SOC show moderate spatial dependencies and was used for interpretation of a 

suitable scale that could provide the relevant spatial detail of maps for nutrient 
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management for this study area. 

 Based on the spatial correlation distance of SOC, which displayed an effective range of 

523 m, it implies that, within this distance, local variability within smallholder farms may 

be captured. However, based on previous research (Kerry and Oliver, 2004), we propose 

a resolution/distance of 273 m as a threshold scale for developing digital nutrient maps or 

sampling intervals for soil testing. This can be complemented by the already existing  

map of 250 m resolution digital soil properties available for SSA through Hengl et al., 

(2015). This finding provide approximation of scale as a basis for guiding fertiliser 

recommendations and future efforts should be directed at improving its accuracy. 

The results of this study provide a rough estimate of scale that can be used for digital soil 

mapping, that would capture local variation in smallholder farms. Alternatively, the soil 

sampling distances can be based on 250 m, which would be the appropriate distance for 

capturing local variation. This can be implemented in a refined soil-based fertilizer management 

strategy for rainfed smallholder systems where digital soil mapping and soil testing would be 

important techniques. Additionally, 250 m sampling distance (interval) would certainly result to 

high number of soil samples. Thus, proximal sensing techniques such as infrared spectroscopy 

for can be utilized alongside DSM to reduce the costs for soil analysis.  
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Highlights of the paper 

 

 An ex-ante approach for estimating scale of for capturing soil spatial variability at 

farm level is presented. 

 Soil organic carbon is a key soil property that influence crop response in 

unfertilized maize fields. 

 Soil organic carbon display short distance variability in unfertilized smallholder 

maize fields of the region. 

 Fine resolution digital soil maps can be considered in strategies for refining 

fertilizer recommendation in the region. 
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List of figures. 

Fig. 1:  Location of the study area in Siaya and Kakamega counties of western Kenya within , a) 

administrative boundaries , b) soil types , and c) the 100 km
2
 block with the 6.25 km

2
 tiles in the agro-

ecological zone - LM1 (c). (FURP trial site in (a), Haplic Nitisol in (b), and UM1 in (c) fall outside the 

sampling100 km
2
 block and the sampling points. 

 

Fig. 2: The hierarchical sampling strategy following the Land Degradation Sampling Framework (LDSF) 

with the 100 km
2
 block with eight randomly selected tiles measuring 6.25 km

2
 with four randomly selected 

sub-tiles measure 0.25 km
2
 with randomly selected maize fields and the plots within the maize field.  

 

Fig. 3: The relative importance (percentage) of the contribution of the eight soil predictors to the 

explained variance for (a) maize yield and (b) plant biomass from regression analysis across the study 

area.  

 

Fig. 4: Graph with the ranking of the soil predictor based on the magnitude of the Akaike Information 

Criteria (AIC) values for the best regression model from the step-wise multivariate analysis. These values 

were used to identity the key soil driver that explain variability in maize grain yield or plant biomass. 

Fig. 5: The percentage of explained variance for soil organic carbon (SOC), across the mapping units 

following the hierarchical Land Sampling Degradation Framework - Tile, Sub-tile and Field..  

 

Fig. 6: The percentage of explained variance for crop performance indicators - maize grain yield and 

plant biomass across the mapping units following the hierarchical Land Sampling Degradation Framework 

- Tile, sub-tile and field.  

 

Fig. 7: Decision tree to determine options for providing fertilizer recommendations based on spatial 

variability in crop response or key soil drivers.   
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Fig. 1 
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Fig. 2 
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Fig. 3 

 
pH = soil pH, SOC = Soil Organic Carbon, TN = Total Nitrogen, P = Phosphorus, K = Potassium, Ca = Calcium, Mg = Magnesium and Na = Sodium . P, K Ca, Mg 
and Na were transformed to natural logs             
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Fig. 4 
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pH = soil pH, SOC = Soil Organic Carbon, TN = Total Nitrogen, P = Phosphorus, K = Potassium, Ca = Calcium, Mg = Magnesium and Na = Sodium . P, K Ca, Mg 
and Na were transformed to natural logs for stepwise multiple linear regression.  

Fig. 

5 

 

 

SOC = Soil Organic Carbon, AdimB= Administrative boundaries 
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Fig. 6  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 
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Is there relevant variation (spatial) in Crop Performance Indicators(CPIs)? 

Can soil properties explain part of the variation CPIs and 
what are the key soil factors? 

Are there spatial dependencies in the key soil factors? 

What is the range of the 
variation? 

noyes

yes no

noyes

Blanket fertilizer recommendation for 
nutrient management 

Determine which other factors explain variation 
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each field 

Short range variability

Long range variability

Digital Nutrient Maps/
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recommendations
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Table 1: Descriptive statistics of soil properties and crop performance on 203 unfertilized maize plots 

across a smallholder landscape in Western Kenya. 

 Mean Median CV (%) Minimum Maximum 

Soil properties      

Soil pHwater 5.7 5.6 8.8 4.8 7.4 

Total C (%) 1.6 1.6 31.6 0.6 5.2 

Total N (%) 0.15 0.14 26.2 0.06 0.3 

Mehlich-3 extractable P 

(mg kg
-1

) 
23.0 17.6 74.6 3.7 89.9 

Ca (cmol kg
-1

) 5.8 5.0 59.9 0.9 24.5 

Mg (cmol kg
-1

) 2.0 1.8 52.1 0.3 6.6 

K (cmol kg
-1

) 0.4 0.3 89.3 0.08 2.7 

Na (cmol kg
-1

) 0.18 0.16 62.0 0.01 0.77 

Crop performance indicators 

Grain yield (Mg ha
-1

) 3.6 3.20 56.8 0.1 11.3 

Plant biovolume (cm
3
) 170.4 163.6 43.0 31.0 392.9 
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Table 2: Pearson pairwise correlation coefficients between soil properties, maize plant bio-volume and 

grain yield from 197 maize fields across a smallholder landscape in Western Kenya (correlation 

is significant * at 0.05 and ** at 0.01 level, 2-tailed). P, K Ca, Mg and Na were transformed to natural 

logs.   

 

 

 

 

 

 

 

 

 

 

 

Abbreviations: N = Nitrogen, P = phosphorus, K = potassium, Ca = Calcium, Mg = magnesium and Na = Sodium.  

 Grain yield Plant bio-volume 

Soil property   

 Soil pH 0.08* 0.16* 

 Total N 0.53** 0.87** 

 SOC 0.55** 0.89** 

 P -0.01 0.02 

 Ca 0.32* 0.51* 

 Mg 0.33 0.55 

 K  0.19 0.25 

 Na 0.001 0.08 

Crop performance indicators 

 Plant biovolume 0.55** 1 
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Table 3: Multivariate regression results of the two models, showing the explained variance r
2
 values are 

the coefficient of determination of the maize yield and plant biovolume for the study area  

 

Crop 
performance 

indicator 

Variable Coefficient 
estimate 

Standard 
error 

t-value p-value   

Yield Intercept 2.429 3.763 0.646 0.5194   

 

pH -0.288 0.396 -0.727 0.4681 

 

 

SOC 3.824 1.367 2.798 0.0057 ** 

 
Total TN -0.688 1.615 -0.426 0.6704 

 

 

P -0.319 0.257 -1.244 0.2150 
 

 

K 0.272 0.264 1.031 0.3036 

 

 

Ca 0.586 0.525 1.116 0.2657 
 

 

Mg -0.545 0.541 -1.008 0.3149 
   Na -0.216 0.159 -1.354 0.1773   

  r
2
 value 0.324         

  Adjusted r
2
 value  0.295         

Biovolume Intercept 76.671 69.785 1.0990 0.273   

 
pH 8.641 7.741 1.1160 0.266 

 

 

SOC 211.355 25.229 8.3780 0.000 *** 

 
Total N 12.672 29.282 0.4330 0.666 

 

 

P -6.593 5.002 -1.3180 0.189 

 

 

K 0.684 4.966 0.1380 0.891 
 

 

Ca -1.174 10.022 -0.1170 0.907 
 

 

Mg -8.432 10.043 -0.8400 0.402 

   Na -5.602 3.107 -1.8030 0.073 . 

  r
2
 value 0.789         

  Adjusted r
2
 value  0.781         

level of significance *** = 0.001, ** = 0.01, *= 0.05 and . =0.1 

pH = soil pH, N = Nitrogen, P = phosphorus, K = potassium, Ca = Calcium, Mg = magnesium and Na = Sodium . P, K 

Ca, Mg and Na were transformed to natural log.  Jo
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Table 4: Spatial dependency of key soil properties, crop performance indicators, and fertilizer response 

 for maize fields in a smallholder Western Kenya in terms of the semi-variogram. 

 

 
Semi-variogram model Nugget: Sill ratio Range (m) Spatial dependency 

SOC Exponential 0.60 523 Moderate 

Grain yield Linear 0.24 3291 Strong 

Bio-volume Exponential 0.49 968 Moderate 

FR Spherical 0.50 426 Moderate 

     

SOC = soil organic carbon, FR = fertilizer response 
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