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Abstract

Optimal control is an important branch in mathematics that has been widely applied in

a number of �elds including engineering, science and economics. We aimed at �nding

the performance indicator in optimal control problem for the best control by solving a

nonlinear partial di�erential equation known as Hamilton Jacobi Bellman. In this project

we established the e�ciency, value addition and advantages of using Haar Wavelets in

solving optimal control problem by looking at the fundamental of the optimal control

theory then Hamilton Jacobi Bellman and �nally application of Haar Wavelet method by

solving some problems. Finally, we found out that with the Haar Wavelet function, we

obtained very satisfactory exactness of the results even for a lower number of collocation

points and that it was in deed of value addition in the computation of optimal control

problems.

Master Thesis in Mathematics at the University of Nairobi, Kenya.
ISSN 2410-1397: Research Report in Mathematics
©Edwin Murithi Njeru, 2020
DISTRIBUTOR: School of Mathematics, University of Nairobi, Kenya





iv

Declaration and Approval

I the undersigned declare that this dissertation is my original work and to the best of my

knowledge, it has not been submitted in support of an award of a degree in any other

university or institution of learning.

Signature Date

edwin murithi njeru

Reg No. I56/11046/2018

In my capacity as a supervisor of the candidate’s dissertation, I certify that this dissertation

has my approval for submission.

Signature Date

DR. JAMES OKWOYO

School of Mathematics,

University of Nairobi,

Box 30197, 00100 Nairobi, Kenya.

E-mail: jmkwoyo@uonbi.ac.ke







vii

Dedication

I dedicate this project to my daughters Shiphrah Mwende and Praise Mukeni for the

overwhelming support and encouragement that they gave me.



viii

Contents

Abstract ................................................................................................................................ ii

Declaration and Approval..................................................................................................... iv

Dedication .......................................................................................................................... vii

Acknowledgments ................................................................................................................ x

Introduction ......................................................................................................................... 1

1 Chapter one.................................................................................................................... 2

1.1 Background for the Optimal Control.................................................................................... 2
1.1.1 Performance Index:...................................................................................................... 2
1.1.2 State Variables ............................................................................................................ 2
1.1.3 Adjoint Variables......................................................................................................... 2
1.1.4 Admissible Controls..................................................................................................... 2
1.1.5 Boundary Conditions .................................................................................................. 3
1.1.6 Free Final Time .......................................................................................................... 3
1.1.7 Integral Constraint .................................................................................................... 3
1.1.8 State Inequality Constraints .......................................................................................... 3

1.2 Control Theory ................................................................................................................... 4
1.2.1 Control Theory Objective ............................................................................................. 4

1.3 Haar Wavelets .................................................................................................................... 5
1.4 Value Function.................................................................................................................... 6
1.5 Dynamic Programming Principle (DPP) ............................................................................... 6
1.6 Pontryasin’s Minimum Principle.......................................................................................... 6
1.7 Calculus of Variations ......................................................................................................... 7
1.8 Performance Measures for Optimal Control Problems .......................................................... 9

1.8.1 Minimum Time Problems ............................................................................................. 9
1.8.2 Terminal Control Problem ............................................................................................. 9
1.8.3 Minimum-Control-E�ort Problems ................................................................................. 9
1.8.4 Trading Problems ...................................................................................................... 10
1.8.5 Regulator Problems ................................................................................................... 11

1.9 Selecting Performance Measure ......................................................................................... 11
1.10 Statement of the Problem.................................................................................................. 12
1.11 Objective of the Study....................................................................................................... 13
1.12 Methodology of the Study ................................................................................................. 13

2 Chapter 2 ..................................................................................................................... 14

2.1 Literature Review.............................................................................................................. 14
2.2 Introduction ..................................................................................................................... 14
2.3 Studies on Optimal Control ............................................................................................... 14



ix

2.4 Researches done on Haar Wavelet ..................................................................................... 17
2.5 Study on Hamilton Jacobi Bellman Equation ...................................................................... 20

3 Chapter 3 ..................................................................................................................... 23

3.1 Hamilton Jacobi Bellman Equation .................................................................................... 23
3.2 Necessary condition for optimal control ............................................................................. 28
3.3 Viscosity Solution ............................................................................................................. 33

3.3.1 Viscosity Solutions of Hamilto-Jacobi- Bellman equation .................................................. 33
3.3.2 Deterministic Optimal Control .................................................................................... 33

3.4 Bellman Principle of Optimality......................................................................................... 34
3.4.1 Discrete Time certainity ............................................................................................. 34
3.4.2 Discrete Time uncertainty........................................................................................... 36
3.4.3 Continuous Time certainty ......................................................................................... 36
3.4.4 Continuous Time uncertainty ...................................................................................... 39

3.5 Numerical Determination of Optimal Trajectories .............................................................. 39
3.5.1 The Method of Steepest Descent - Minimization of Functions by Steepest Descent................ 40
3.5.2 Variation of extremals ................................................................................................ 40
3.5.3 �asilinearlization .................................................................................................... 41

4 Chapter 4 ..................................................................................................................... 42

4.1 Application of Haar Wavelet and Conclusion...................................................................... 42
4.1.1 Overview of Haar Wavelets ......................................................................................... 42
4.1.2 Advantages / Features of Haar Wavelet Method .............................................................. 43
4.1.3 Haar Wavelet Method ................................................................................................ 43

4.2 Solved Examples ............................................................................................................... 46
4.2.1 Case 1 .................................................................................................................... 46
4.2.2 Case 2 ..................................................................................................................... 48
4.2.3 Case 3 ..................................................................................................................... 51
4.2.4 Conclusion: .............................................................................................................. 54

Bibliography....................................................................................................................... 56



x

Acknowledgments

I thank the Almighty God for his strength, kindness and favor and for this far he has
brought me.

I wish to thank my supervisor Dr. James Okwoyo who devoted much of his time to
supervise the writing of this project.

My gratitude also goes to my Mathematics colleagues and classmates who we shared
good and di�icult moments in the course of the program and I am grateful for the time
and encouragement.

I also thank my family for the moral support they gave me through the course.

Edwin Murithi Njeru

Nairobi, 2020.



1

Introduction

Optimal control problem without constraints can be solved successfully using most of
the of the direct and indirect techniques. However, inequality constraints o�en generates
both analytic and computational di�iculties. Thus researchers aim at solving constrained
optimal control problems with numerical methods.

Optimal control problems are divided into two categories, direct and indirect methods.
The direct methods reduce an optimal control problem to a non-linear programming
problems by parametrizing a discretizing the infinite dimensional optimal control problem
into finite dimensional optimization problem. On the other hand the indirect method solve
the Hamilton- Jacobi- Bellman equation, a first order necessary condition for optimality
which are obtained from Pontryagin minimum principle. Parametrization methods are
classified into three types: State, control and state control.

The optimality conditions usually lead to solution of two point boundary value problems
which are di�icult to solve. To overcome these di�iculties various numerical methods
such as shooting technique, non-linear programming, quasi-linearisation, e.t.c have been
applied.

Both direct and indirect methods are important in solving optimal control problems, how-
ever, the di�erence between them is that, the indirect methods are believed to yield more
accurate result whereas, the direct method tends to have be�er convergence properties.

The wavelet approach has some advantage compared with other numerical methods.
Due to the sparsity of the transform matrices and small number of significant wavelet
coe�icients high accuracy of result is guaranteed already for the small number of grid
points. The wavelet method are very convenient for solving boundary conditions since
the boundary conditions are taken into account automatically
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1 Chapter one

.

1.1 Background for the Optimal Control

1.1.1 Performance Index:

We have to find the control history u(t) that minimizes the function

I =
∫ T

t0
F(t,x,u)dt (1.1)

Here t, t0,T are scalar, the state variables x(t) and controls u(t) are n and r−dimensional
vectors respectively. It is assumed that x,u have as many derivatives as are needed for the
theory being developed.

1.1.2 State Variables

They are subjected to di�erential constraints

ẋ = f (t,x,u) (1.2)

1.1.3 Adjoint Variables

If Ĥ denotes the Hamiltonian

Ĥ(t,x,ψ) =−F +ψ f (1.3)

then the adjoint varaibles (Langrange multiplier ) are calculated from the equation

ψ̇ =−∂ Ĥ
∂x

(1.4)

Here f and ψ are n−dimensional vectors

1.1.4 Admissible Controls
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If the vector u is unconstrained then optimal control are calculated from

∂ Ĥ
∂u

= 0 (1.5)

If u ∈U , where U is a closed set, the maximum principle (Pontryagin’s principle) holds.

Ĥ(t,x(t),u(t),ψ(t) = max
u∈U

Ĥ(t,x(t),u(t),ψ(t)) (1.6)

For simplicity, we consider only the case where u is a scalar satisfying the inequality
constraint |u(t)|< u0

1.1.5 Boundary Conditions

We confine ourselves with case where the values xα(t0),α = 1,2 . . . ,r are prescribed and
the remained values xα(t0),β = 1,2, . . . ,n− r are free. It follows from the transversality
condition that ψα(t0) is free and ψβ (t0) = 0, similar results hold also for the final time
t = T .

1.1.6 Free Final Time

If the final time T is not fixed then the complementary condition Ĥ|t=T = 0 hold.

If F = 1 we get a minimum time problem T = min

1.1.7 Integral Constraint

A scalar integral constrain has the form

∫ T

t0
G(x,u)dt = k (1.7)

In this case, it is suitable to introduce a new state variable

ẋn+1 = G(x,u),xn+1(t0 = 0) and xn+1(t) = k (1.8)

1.1.8 State Inequality Constraints

Consider the case , g(t,x)≤ 0
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Where g is a prescribed function. It is assumed that the equality g(t,x) = 0 holds for
t ∈ [t1, t2]. In this case the adjoint system gets the form

ψ̇ =−∂H
∂x

+µ5S, t ∈ [t1, t2] (1.9)

where S(x,u) = ∂g
∂x f , 5S = ∂S

∂x
Here µ(t) denotes the Langrange multiplier, it can be shown the following conditions
hold;

1. ψ(t1 +0) = ψ(t1−0)

2. (t2 +0) = ψ(t2−0)−µ(t2)OS(u(t2),x(t2))

1.2 Control Theory

Control theory is a mathematical study of methods to steer the evolution of a dynamic
system to achieve desired goals. For example stability on trading reference

Optimal control is a branch of control system that seeks to steer the evolution so as
to optimize a specific objective functional. There is a close connection with calculus
of variation. Mathematical study of control requires predictive model of the system
evolution. Assume Markovian models everything relevant to future evolution of the
system is captured in the current state.

1.2.1 Control Theory Objective

Choose input signal u(·) ∈U∆{u : [0,∞[−> u|u(·)] is measurable‘}

To minimize the cost functional J(x,u(·)) as J(x, t,u(·)).

Many possible cost functional exist such as

Finite horizon: given horizon T > 0 running cost ` and terminal cost g
J(x, t), t,u(·)∆

∫ T
t µ(x(s),u(s))ds+g(x(T ))

minimum Time: given target, set T ⊂ Rdx

J(x0,u(·)),

{
{min{t|x(t) ∈ T}} i f {t|x(t) ∈ T 6= 0}
+∞ otherwise.

(1.10)
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Discounted infinite horizon: given discount factor λ > 0 and running cost Λ

J(x0,u(·)),
∫

∞

0
`(x(s),u(s))e−λ sds (1.11)

Alternatively maximize payo� functional ” or “ optimize objective functional”

1.3 Haar Wavelets

Wavelet analysis is a branch of mathematics and widely applied in signal analysis, image
processing and numerical analysis. Wavelets method have proved to be very e�ective
and e�icient tool in solving problems of mathematical calculus. Alfred Haar introduced
the notion of wavelet in 1910. His initial theory has been expanded into a wide variety
of application but primarily it allows for the representation of various function by a
combination of step functions and wavelet transform is one of the earliest example of
what is known as a compact, dynamic, orthonormal wavelet transform.

The pioneering work in system analysis via Haar wavelets was led by Chen and Hsiao(1997),
who first derived a Haar oparational matrix for the integral of the Haar function vector
and paved the way for the Haar analysis of the dynamical system.

Haar wavelet was a system of square waves. The first curve was marked up as h0(t) and
second curve marked up as h1(t), that is

h0(t) =

{
1,0≤ x≤ 1

0,otherwise
(1.12)

h1(t) =


1, 0≤ x≤ 1

2

−1, 1
2 ≤ x≤ 1

0, otherwise

(1.13)

Where, h0(t) is scaling function, h1(t) is mother wavelet, for x ∈ [0,1]. Haar wavelet
function is defined as follows h0(t) = 1√

m

hi(x) =
1√
m


2

j
2 k−1

2 j ≤ x < k− 1
2

2 j

−2
j
2

k− 1
2

2 j ≤ x < k
2 j

0 otherwise

(1.14)
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Integer m = 2 j with ( j = 0,1, . . .J) indicate the level of the wavelet i = 0,1,2, . . .m− 1
is the translation parameter. Maximal level of resolution is J. The index i is calculated
according to the formula i = m+ k+1. In the case of minimal values m = 1, k = 0 we
have i = 2, the maximal value of i is i = 2m = 2 j+1. It is assumed that the value i = 1
corresponds to the scaling function for which h1 = 1 in [0,1].

1.4 Value Function

The value function specifies the best positive value of the cost functional starting from
each state and possibly time.

V (x) = inf
u(·)∈U

J(x,u(·)) or V (x, t) = inf
u(·)∈U

J(x, t,u(·)) (1.15)

Infimum may not be achievable and if infimum is a�ained then the possibly non-unique
optimal input is o�en designated u∗(·) and sometimes the corresponding optimal trajec-
tory is designated x∗(·)

Intuitively to find the best trajectory from a point x, go to a neighbour x̂ of x which
minimizes the sum of the cost from x to x̂ and the cost to go from x̂.

This intuition is familiarized in the dynamic programming principle.

1.5 Dynamic Programming Principle (DPP)

The Hamilton Jacobi Bellman equation is a result of the dynamic programming principle
of Bellman which allows us to split the value function.

Dynamic programming is an optimization approach that transforms a complex problem
into a sequence of simpler problems; its essential characteristics is the multi-stage nature
of the optimization procedure. More so than other optimization techniques, dynamic
programming provides a general framework thus analyzing many problem types. Within
this framework a variety of optimization techniques can be employed to solve particular
aspects of a more general formulation. Usually creativity is required before one can
recognize that a particular problem can be cast e�ectively as a dynamic program and
o�en subtle insights are necessary to restructure the formulation so that it can be solved
e�ectively.
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1.6 Pontryasin’s Minimum Principle

Pontryasin’s minimum principle is closely related to the Hamilton Jacobi Bellman equation
and provides condition that an optimal trajectory must satisfy . However that the minimum
principle provides necessary conditions but not su�icient conditions for optimality in
contrast the Hamilton Jacobi Bellman equation o�ered su�icient conditions. Using the
minimum principle alone one is so�en not able to conclude that a trajectory is optimal
however in same cases it is quite useful for finding candidate optimal trajectories. Any
trajectory that fails to satisfy the minimum principle cannot be optimal.

Following the method of Lagrange a control Hamiltonian function can be constructed by
appending the state equation to the integrand L using the Lagrange multipliers λ (t) as
follows;

H(u(t),z(t),λ (t), t) = L(u(t),z(t), t)+λ
T (t) f (u(t),z(t), t) (1.16)

where z(t) is the optimal control and u(t) is the corresponding optimal state. Then the
Pontryagin minimum principle states that there exists a continuous function λ known as
an adjoint function that is the solution of the adjoint equation.

˙λ (t) =−Hu(u(t),z(t),λ (t), t) (1.17)

along with the appropriate initial (or find) condition of λ . In equation above Hu denotes
the di�erentiation of the Hamiltonian function with respect to the state. In particular the
adjoint function is a Lagrange multiplier that brings the information of the state equation
constraint to the optimization problem. According to the PMP the optimal control z(t)
and corresponding optimal state u(t) and adjoint, λ (t) must minimize the Hamiltonian
so that

H(u(t),z(t),λ (t), t)≤ H(u(t),z∗(t),λ (t), t) (1.18)

for all time and for all admissible (i.e feasible ) trajectory control variables z∗(t) while the
adjoint equation above is satisfied. Admissible trajectories are defined as a set of variables
that lay in the neighborhood of the minimal solution and satisfies all of the constraints.

1.7 Calculus of Variations

Calculus of variations is extremely useful in solving optimization problems. �een Dido
of Carthage was apparently the first person to a�ack a problem that can readily be solved
by using variational calculus.
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Dido having been promised all the land she could enclose with a bull’s hide, cleverly she
cut the hide into many lengths and tied the ends together. Having done this her problem
was to find the closed curve with a fixed perimeter that encloses to maximum area.

The first problem in calculus of variation was the Branchistochrone problem formulated
by J. Bernoulli in 1906, consider a bead sliding under gravity along a smooth wire joining
two fixed point A and B( not on a vertical line). What is the shape of the wire in order
that the bead when released from rest at a point A slides to B in minimum time?

A a

y(x)

B

g

x

y

b

Figure 1

The figure shows the choice of axes with A taken to be the origin without loss of generality.
Here we require to minimize ∫ B

A
dt =

∫ B

A

ds
v

(1.19)

where s is the arc length along the wire and v is the instantaneous speed of the bead.

The theory of optimal control allows for the solution of a large class of non-linear control
problem subject to complex state and control signal constraints. The theory is an extension
of classical calculus of variation since it does not rely on the smoothness assumption,
indeed in most cases the optimal control is highly discontinuous (bang- bang control,
control along switching curves, sliding control). The formulation of the problem involves
the minimization of cost function subject to initial and terminal constraints which is
reminiscent of calculus of variation problems. The optimal control signal is typically
obtained either as a function of time u∗(t) or more interestingly as control application in
feedback form as a function of state u∗(x).



9

1.8 Performance Measures for Optimal Control Problems

The optimal control problem is to find a control u∗ ∈U which causes the system

ẋ(t) = a(x(t),u(t), t) (1.20)

to follow a trajectory x∗ ∈ X that minimizes the performance measure.

J = h(x(t f ), t f )+
∫ t f

to)
g(x(t),u(t), t)dt (1.21)

1.8.1 Minimum Time Problems

Problem: To transfer a system from an arbitrary initial state X(t0) = X0 to a specified
target set S in minimum time

The performance measure to be minimized is J = t f − t0

with t f the first instant of time when X(t) and S intersect. A typical examples are the
interception of a�acking aircra� and missiles and the skewing mode operation of a radar
or a gun system.

1.8.2 Terminal Control Problem

Problem: To minimize the deviation of the final state of a system from its derived value
r(t f ).

A possible performance measure is

J =
n

∑
i=1

[Xi(t f )− ri(t f )]
2 (1.22)

Since positive and negative derivations are equally undesirable, the error is squared.

1.8.3 Minimum-Control-E�ort Problems

Problem: To transfer a system from an arbituary initial X(t0) = X0 to a specified target
set S, with a minimum expenditure of control e�ort. The meaning of the term “minimum
control e�ort” depends upon the particular physical application; therefore, the perfor-
mance measure may assume various terms. For example consider a spacecra� on an
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interplanetary exploration. Let u(t) be the thrust of the rocket engine and assume that
the magnitude of thrust is proportional to the rate of diesel consumption. In order to
minimize the total expenditure of fuel the performance measure

J =
∫ t f

t0
|u(t)|dt (1.23)

would be selected. If there are several controls and the rate of expenditure of control
e�ort of the ith control is Ci|ui(t)|, i = 1, · · ·m (Ci is a constant of proportionality) then
minimizing

J =
∫ t f

t0

[ m

∑
i=1

βi|ui(t)|
]

dt (1.24)

would minimize the control e�ort expanded. The β ′i s are non negative weighing factor.

As another example consider a voltage source driving a network containing non energy
storage elements. Let u(t) be the source voltage and suppose that the network is to
be controlled with minimum source energy dissipation. The source current is directly
proportional to u(t) in this case so to minimize the energy dissipated, minimize the
performance measure

J =
∫ t f

t0
u2(t)dt (1.25)

For several control inputs the general form of performance measure corresponding to
equation above is

J =
∫ t f

t0 [u
T (t)Ru(t)]dt

=
∫ t f

t0 ||u(t)||
2
Rdt

(1.26)

where R is a real symmetric positive definite weighting matrix. The elements of R may be
functions of time if it is derived to vary the weighting control e�ort expenditure during
the interval [t0, t f ]

1.8.4 Trading Problems

Problem: To maintain the system state X(t) as close as possible to the desired state r(t)
in the interval [t0, t f ]

As a performance measure we select
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J =
∫ t f

t0
||X(t)− r(t)||2Q(t)dt (1.27)

A real symmetric matrix R is positive definite if ZT RZ > 0 for all Z 6= 0

where Q(t) is a real symmetric n×n matrix that is positive semi definite for all t ∈ [t0, t f ].
The elements of the matrix Q are selected to weight the relative importance of the di�erent
components of the state vector and to normalize the numerical values of the derivations.
If the set of admissible controls is bounded e.g |ui(t) ≤ 1|, i = 1,2, · · · ,m the equation
above is a reasonable performance measure. However , if the controls are not bounded
minimizing equation above results in controls with impulses and few derivatives. To avoid
placing bounds on the admissible controls, or if control energy is to be conserved, we use
the modified performance measure.

J =
∫ t f

t0
[||X(t)− r(t)||2Q(t)+ ||u(t)||

2
R(t)]dt (1.28)

R(t) is a real symmetric positive definite m×m matrix for all t ∈ [t0, t f ].

It may be especially important that the rates be close to their desired values at the final
time. In this case the performance measure

J = ||x(t f )− r(t f )||2H +
∫ t f

t0
[||X(t)− r(t)||2Q(t)+ ||u(t)||

2
R(t)]dt (1.29)

could be used. H is a real symmetric positive semi definite n×n matrix.

1.8.5 Regulator Problems

A regulator problem is the special case of a trading problem which results when the derived
state values are zero (r(t) = 0 for all t ∈ [t0, t f ])

1.9 Selecting Performance Measure

In selecting a performance measure the designer a�empts to define a mathematical
expression which when minimized indicates that the system is performing in the most
desirable manner. Thus choosing a performance measure is a translation of the system is
physical requirements into mathematical terms. In particular suppose that two admissible
control histories which cause admissible state trajectories are specified and we are to
select to be�er one.
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To evaluate these controls, perform the test shown in the figure below.

First apply the control u(1) to the system and determine the value of the performance
measure J(1) then repeat this procedure with u(2) applied to obtain J(2). If J(1) < J(2)

then we designate u(1) as be�er control. If J(2) < J(1) u(2) is be�er. If J(1) = J(2) the two
controls are equally desirable.

An alternative test is to apply each control, record the rate trajectories and then subjectively
decide which trajectory is be�er.

If the performance measure truly reflects desired system performance the trajectory
selected by the designer as being more to his liking should yield the smaller value of J. If
this is not the case the performance measure or the constraints should be modified.

1.10 Statement of the Problem

Haar Wavelet is a sequence, re-scaled square shaped function which together form a
wavelet family or basis which allows a target function over an interval to be represent
in terms of an orthonormal basis. It possesses useful properties such as orthogonality
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and has been applied to a wide range of application such as in system analysis (Chen
and Hsiao, 1999) and numerical solution of nonlinear integral equation (Aziz and Siraj,
2013). In addition, the function has been used to solve optimal control problems and other
applications. However, the problem is that, the real value addition of using Haar wavelet
function in solving optimal control problem had not been assessed and therefore its full
adoption and application has not been embraced. Therefore, we established the value
addition of using Haar Wavelet function in solving optimal control problems.

1.11 Objective of the Study

In this project we aimed at:

1. To establish the value addition of using Haar wavelet function in solving optimal
control problem.

2. To establish the properties of Haar wavelet function appropriate in solving optimal
control problems.

1.12 Methodology of the Study

The main objective of this project was to establish the value addition of using Haar Wavelet
function and to establish its feature. To achieve this the following approach was employed;
first we reviewed the existing literature on the optimal control, Hamilton Jacobi Bellman
and Haar Wavelet in order to find out what has already been done/ studied on this subject
including understanding in details their development/evolution over time. Then three
optimal control problems with di�erent constraints were solved by introducing the Haar
Wavelet and the results thereof compared to the exact solution in order to establish any
similarity or otherwise of the solution in addition to assessing the complexity or simplicity
of solving the problems.
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2 Chapter 2

2.1 Literature Review

This chapter covers the literature review aspect in the area of optimal control Hamilton
Jacobi Bellman and the Haar wavelet function. We looked at the various researches that
were done in these areas and kind of conclusion that they came up with from their study.
The section is outlined as follows : Introduction, the studies done on optimal control, then
Haar wavelet equations and then a study on Hamilton Jacobi Bellman.

2.2 Introduction

Many researchers have studied the theoretical aspects of the inequality constraints of the
trajectory. Mehva and Davis (1972) noted that the complications in conjugate gradient
methods were caused by the exclusive use of control variables as independent variables
in the search procedure. In response they presented the so called generalized gradient
technique. Jaddu (1998) established some numerical methods based on a parametrization
technique with Chebyshev polynomials to solve unconstrained and constrained optimal
control problem using quasi linearlization method. Jaddu(2002) later extended this con-
cept to non linear optimal control problems with terminal state and control inequality
constraints as well as to simple boumds on state variables.

Infact Doi and Cochran (2009) converted optimal control problem into non linear program-
ming (NLP) parameters at the collocation points using Haar wavelet technique. Han and
Li (2011) also presented a numerical method to solve non linear optimal control problems
with terminal state and state control inequality constraints. This method is based on
quasilinearlization and Haar function. In addition Marzban and Razzaghi (2010) presented
a numerical method to address constrained and non linear optimal control problems.
Although their method was also based on Haar wavelets but it required a set of necessary
conditions.

2.3 Studies on Optimal Control

In the study titled, "comparative analysis of numerical solution of optimal control prob-
lems" by Shangareera, Origoryev and Mustahna (2016) they developed a step by step
algorithms of solving optimal control problem based on the method of successive ap-
proximation and the method of variations in the space of controls. They were seeking
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a numerical study and comparative analysis of the developed algorithms performed at
di�erent values of accuracy.

This was mainly driven by the larger variety of statements of problems of algorithms
control and the specified di�iculties causing there to be many various approaches for
their numerical decision now.

The statement problem was the following optimal control that was considered

minimize
I(u) = G(x(T )) (2.1)

subject to
dxi

dt
= fi(t,x(t),u(t)), t ∈ [t0,T ],x(0) = x0 (2.2)

φ(u)≤ 0 (2.3)

where u(t) ∈ R is the function characterizing the operating influence x(t) ∈ Rn is function
describing a condition of process and t is time.

In their conclusion, they had compared a method of variation with successive approxima-
tion method and that by comparison of the numerical results of the methods with exact
solution the performance of the methods had been confirmed.

Vasilieva (2007) did a study on optimal control in the class of smooth and bounded func-
tions. In his paper the objective was to develop the optimality conditions and optimization
technique for a control problem with boundary condition whose class of admissible con-
trols contains smooth continuously di�erentiable functions with inclusion or homogeneous
inclusion constraints.

The investigation technique was the increment of the objective functional together with
conjugate boundary value problem being considered as a certain type of control variations
thus providing the admissibility of varied control under same adjustments of the parame-
ters of variations. In contrast to the classic variation of lagrange and the needle-shaped
variation of Boltyanskii. Statement of the problem was controllable process;

{u,x}= {u(t) ∈ Rm x(t) ∈ Rn, t ∈ T = [t0, t1] (2.4)
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be defined by the conditions

J(u) = φ0(x(t0),x(t))+
∫

T F(x,u, t)dt

ẋ = f (x,u, t) φ(x(t0),x(t1)) = 0
(2.5)

Here admissible control u(t), t ∈ T are smooth vector functions with fixed end points
u0,u1 ∈ Rm that is

u(·) ∈U = {u ∈Cm
1 (T ) : u(t0) =U0,u(t1) =U1} (2.6)

In conclusion Olga Vasilieva noted that the application of general methods for solving real
world problems requires alot of computational e�ort and is rarely successful Algorithmic
support to non-linear optimal control problems is provided by numerical methods of the
gradient type linearlization methods and methods based on the maximum principle. The
presence of control of constraints in many cases leads to the application of numerical
techniques based on the maximum principle where the control trajectories are adjusted
by mean of needle shaped or combined variation. The majority of such techniques rest on
a compulsory assumption of explicit solvability of the maximum condition with respect to
the maximal Hamiltonian function such as an assumption becomes completely excessive
if the control trajectories are adjusted by means of interior variations.

Russu(2012), in his study titled, "the optimality of limit cycles in nature based tourism".
He mentioned that virgin nature as well as historical and cultural monuments located
in National parks all form part of national heritage. Then one of the objective of the
administration of the governmental institution (National park) is to maximize profits from
tourism and recreation. That is the di�erence from revenue and expenditure on recreation
investments.

In the paper he tried to model some relevant aspects of these prey predator relations.
The model was formulated in terms of optimal control theorem and transformed into an
augmented dynamic system by means of optimal choice of control variables resulting
from the application of Pointryagin maximum principle.

Formulation of the problem.

The model problem was formulated with two state variables

x(t) vulnerable nature resources
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v(t) a number of persons visiting a national part for a period of 24 hours.

In his conclusion he noted that for reasonable parameter values the optimal trajectory
exhibits a cyclical behaviour that is to mean large investments call many visitors this
generates large revenues. The continuous cyclical pa�ern in fact allows the National park
to regenerate.

2.4 Researches done on Haar Wavelet

In their study titled, " Haar wavelet method for numerical solution of telegraph equation
" by Navesh,Dinesh and Parihar (2013),sought to modify the result given by Hariharan
(2009) on the solution of fisher’s equation based on the above topic. In their abstract,
they stated that, "we are giving the solution of second order linear hyperbolic telegraph
equation in one - space dimension. The telegraph equation is solved numerically by Haar
wavelet method". They noted that telegraph equation appeared in many engineering field,
such as modeling of anomalous di�usive and wave propagation phenomenon, modeling
of anomalous di�usion and sub-di�usive systems continuous line random walk.

They used the second- order linear hyperbolic telegraph equation in one space dimension
given by

∂ 2u
∂ t2 +2α

∂u
∂ t

+β
2u =

∂ 2u
∂x2 + f (x, t) a≤ x≤ b, t ≥ 0 (2.7)

subject to initial conditions :

u(x,0) = f (x) a≤ x≤ b

u̇(x,0) = f1(x) a≤ x≤ b

and the Dirichlet boundary condition u(a, t) = g0(t), u(b, t) = g1(t), t ≥ 0

where α and β are known constant coe�icients for α > 0, β = 0 equation above represent
a dumped wave equation and for α > β > 0 , u is called telegraph equation. They assumed
that f (x), f1(x) and their derivation are continuous function of x and g0(t), g1(t) and
their derivatives are continuous function of t , both the electric voltage and the current in
double conductor satisfy the telegraph equation where x is distance and t is time

In their conclusion they noted the following," Haar wavelet method is proposed for the
numerical solution for the second order hyperbolic telegraph equation. Approximate
solution of the telegraph equation obtain by MATLAB are compared with exact solution.
This calculation demonstrate the accuracy of Haar wavelet solution.
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The main advantage of their method is its simplicity and small computation cost, which
is due to the sparsity of transform matrices and the small number of significant wavelet
coe�icient. It is worthy mentioning that Haar solution provide excellent result even for
small values of m(M = 16), for larger values of M we can obtain the result closer to the
real values"

In the study by Siraj, Imaran, and Bozidar(2010), they looked at a concept of, " The
numerical solution of second- order boundary value problems by collocation method with
Haar wavelets ". They were seeking an e�icient numerical method based on uniform Haar
wavelets for the numerical solution of second order boundary value problem arising in
the mathematical modeling of the deformation of beams and plate deflection theory,
deflection of a cantilever beam under a concentrated load, obstacle problems and many
other engineering applications.

They noted that Haar wavelets have gained popularity among reserchers for the useful
properties such as simple, applicability, orthigonality and compact support. Compact
support of Haar wavelets basis permits straight inclusion of the di�erent types of boundary
condition in the numerical algorithm.

The objective of their study was to construct a simple collocation method with the Haar
basis function for the numerical solution of linear and non-linear second order BV Ps

arising in the mathematical modeling of di�erent engineering application. To test the
applicability of the Haar wavelets they focused on the following types of boundary value
problem defined in the interval [a,b]

y′′ = φ(x,y,y′) (2.8)

subject to the following six sets of boundary conditions that cope a reasonable spectrum
of possible cases two di�erent type of peridic boundary condition (PBCs)

(i) y′(a) = α1 y′(b) = β1

(ii) y(a) = α2 y(b) = β2

(iii) y′(a) = α3 y(b) = β3

(iv) y(a) = α4 y′(b) = β4

(v) y(a) = y(b) y′(a) = y′(b) PBCs

(vi) y(a) = α5 y(c) = y(b) f orc ∈ (a,b)
where α1,α2,α3,α4,α5,β1,β2,β3,β4 are real value constant and a = 0,b = 1



19

In their conclusion they noted that a simple and straightforward numerical technique
based on the Haar wavelets was proposed in the numerical solution of di�erent types of
linear and non-linear second order ODEs. Minor modifications were needed to apply the
same method to di�erent sets of boundary conditions. The distinctive features was that it
can be applied to initial and boundary value problems without transformation of BVPs
and IVPs as needed for the Runga Ku�a methods. The new method showed excellent
performance for highly nonlinear BVPs, simple applicability and fast convergence of
the Haar wavelets provide a solid foundation for using these function in the context of
numerical approximation of integral equation, partial di�erential equations, and ordinary
di�erential equation. They further noted that the only limitation of the approach in multi-
dimensional problems is the increased computational cost due to inversion of 2M×2M
sparse coe�icient matrix.

Harpreet, Mi�al and Mishra (2014), they looked at a topic on Haar wavelet solution on
nonlinear oscillation equations. Their main objective was to present a numerical scheme
using uniform Haar wavelet approximation and quasilinearization process for solving
some nonlinear oscillator equations.

Nonlinear problem are of interest to many scientist and engineering because most of
physical system in the real world are inherently nonlinear in nature. Many nonlinear
di�erential equations arise in physical, chemical and biological contexts.

In their work, they considered a wave general nonlinear oscillator system of the form

εu′′(t)+δ +βup(t))u′(t)−µu(t)+αuq(t) = g(F,ω, t) p,q ∈ N) (2.9)

with initial conditions
u(0) = y0, and u′(0) = y1

depending on the parameter chosen equation above can take a number of special forms,
where di�erentiation is with respect to independent time variable t and all parameters
ε,δ ,β ,µ and α are real constant Here ω is an angular frequency and g(F,ω, t). represent
the periodic arising function of time with period T = 2p

ω

In their conclusion, they stated the following," The aim of the work was to represent a
Haar wavelet method to solve well known nonlinear oscillator di�erential equations such
as Du�ing, Van der pol and Du�ing -Van der pol with di�erent parameters. To overcome
the nonlinearities, quasilinearization was used. it was observed that the quasilinearization
makes easier procedue for the Haar wavelets method to handle nonlinearity in shorter
time. of computations. There was no need of iterations for achieving su�icient accuracy in
numerical results. Therefore it was suggested that that quasilinearization can e�ectively
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be used to solve the nonlinear oscillator di�erential equations. In their method, they
increased number of points m = 2 j then coe�icient matrix becomes ill-conditioned and it
becomes di�icult to find direct solutions. The Haar wavelet collocation method computes
the solutions only at odd pints , however, results can be obtained at any point of the
domain. The obtained numerical solutions are in a very good coincidence with those
solution which are available in literature computed by other methods and indicates that
the proposed method is feasible and convergent. Therefore they recommended the use of
Haar wavelet to compute solution of nonlinear vibration problems.

In their study titled, "Haar wavelets matrices for the numerical solution of di�erential"
by Sengeta, Singh and Kumar (2014), they implemented a computational scheme using
Haar matrices to find the numerical solution of di�erential equations with known initial
and boundary conditions. They also presented the exact solution, numerical solution and
resultant absolute error. They noted that nowadays wavelets methods are extensively
applied to the problem for numerical solution as wavelets method have several advantages
are FEM and FDM. They further stated that wavelets analysis is new technique that can
be performed in several ways, a continuous wavelets transform, a discretized continuous
wavelet transform, and a true discrete wavelets transform.

In their conclusion, they noted that they had represented simple and straight forward
numerical technique based on Haar wavelets for solving di�erential equations. They
noted that simple the method was simple and has small computation cost and also
very convenient for solving variety of boundary value problems. Their work presented
numerical solution very close to the to the exact solution. So Haar wavelet method is very
simple, fast and reliable. In addition, it was observed by them that Haar wavelet method
can be extended for more collocation point.

2.5 Study on Hamilton Jacobi Bellman Equation

Peyrl, Herzoa and Geering (2005) did a study on numerical solution of the Hamilton Jacobi
Bellman Equation for Stochastic Optimal control problems. In their work they wanted
to provide a numerical solution of the Hamilton Jacobi Bellman equation for stochastic
optimal control problems bearing in mind that there was a computation di�iculty due to
the nature of the HJB equation being a second order partial di�erential equation which
was coupled with an optimization.

Problem formulation
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They considered the n− dimensional stochastic process x which is governed by the given
stochastic di�erential equation (SDE)

dx = f (t,x,u)dt +g(t,x,u)dz (2.10)

where dz denotes k− dimensional uncorrelated standard Brownian motion defined on a
fixed, filtered probability space (Ω,F{Ft}t≥0,P). The vector u denotes the control variables
constrained in some compact, convex set U ⊂ Rm the dri� term f (t,x,u) and the di�usion
g(t,x,u) are given function

f : [0,T ]×G×u→ Rn (2.11)

f : [0,T ]×G×u→ Rn×k (2.12)

for some open and bounded set G⊂ Rn

The value functional of their study starting at an arbitrary time t ∈ (0,T ) and state x ∈ G
with respect to a fixed control law u is destined by

(t,x,u) = E{
∫ T

t
L(s,x,u)ds+K(τ,x(τ))dt (2.13)

where E denotes the expectation operator and L,K are scalar functions

L : [0,T ]×G×U → R
K : [0,T ]×G→ R

The final time of the problem denoted by τ is the time when the solution x(t) leaves the
open set

Q = (0,T )×G
τ = in f{s≥ t|(s,x(s)) /∈ Q

In conclusion they found out that by using a successive approximation algorithm the
optimization gets separated from the boundary value problem. This makes the problem
solvable by standard numerical methods. They also noted that for a problem of port-
folio optimization where no analytical solution is known the numerical methods is applied.
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That based on the literature review it very clear that Hamilton Jacobi Bellman equation
provides the mathematical framework for optimization and that out of it the state equation
is derived together with the control function. In this project we sought to find the value
addition that Haar Wavelet adds in solving optimal control problem and we have already
established that Haar Wavelet function possess special features/ properties that fit in very
well in the optimization discussion. Therefore, we proceeded mainly focusing on the value
addition and how Haar Wavelet features fits in solving optimal control problems.
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3 Chapter 3

3.1 Hamilton Jacobi Bellman Equation

In dynamic programming one approximates continuously operating systems by discrete
systems. However, Hamilton Jacobi Bellman (HJB) equations provides an alternative
approach of approximating continuously operating systems which leads to a nonlinear
partial di�erential equation. The derivation of the HJB equation starts by considering a
process described by the state equation defined as follows;

ẋ(t) = a(x(t),u(t), t) (3.1)

is to be controlled to minimize the performance measure

J = h(x(t f ), t f )+
∫ t f

t0
g(x(z),u(z),z)dz (3.2)

where h and g are specified functions, t0 and t f are fixed and z are dummy variables of
integration. Let us now use the impending principle to include this problem in a larger
class of problems by considering the performance measure.

J(x(t), t,u(z))t≤z≤t f = h(x(t f ), t f )+
∫ t f

t
g(x(z),u(z),z)dz (3.3)

where t can be any value less than or equal to t f and x(t) can be any admissible state
value. Notice that the performance measure will depend on the numerical values for x(t)
and t and on the optimal control history in the interval [t, t f ]

Let us now a�empt to determine the controls that minimize [3.3] for all admissible x(t)
and for all t ≤ t f . The minimum cost function is then:

J∗(x(t), t) = min
uz,t≤z≤t f

{∫ t f

t
g(x(z),u(z),z)dz+h(x(t f ), t f )

}
(3.4)

By subdividing the interval we obtain
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J∗(x(t), t) = min
uz,t≤z≤t f

{∫ t+δ t

t
gdz+

∫ t f

t+δ t
gdz+h(x(t f ), t f )

}
(3.5)

The principle of optimality requires that

J∗(x(t), t) = min
uz,t≤z≤t f

{∫ t+δ t

t
gdz+ J∗(x(t +δ t), t +δ t)

}
(3.6)

where J∗(x(t+δ t), t+δ t) is the minimum cost of the process for the time interval t+δ t ≤
z≤ t f with initial state x(t +δ t)

Assuming that the second partial derivative of J∗ exists and are bounded, we can expand
J∗(x(t +δ t), t +δ t) in a Taylor series about the point (x(t), t) to obtain

J∗(x(t), t) = min
u(z)

{∫ t+δ t
t gdz+ J∗(x(t), t)+

[
∂J∗
∂ t (x(t), t)

]
δ t

+

[
∂J∗
∂x (x(t), t)

]T[
x(t +δ t)− x(t)

]}
+ terms of higher derivatives

(3.7)

Now for small δ t

J∗(x(θ), t) = min
u(z)

{
g(x(t),u(t), t)δ t + J∗(x(t), t)+ J∗t (x(t), t)δ t

+J∗Tx (x(t), t)
[

a(x(t),u(t), t)
]

δ t +0(δ t)
(3.8)

where 0(δ t) denotes the terms containing [δ t]2 and higher orders of δ t that arise from
the approximation of the integral and the function of the Taylor series expansion. Next
removing the terms containing J∗(x(t), t) and J∗t (x(t), t) from the minimization [since
they do not depend on u(t)] we obtain

0 = J∗t (x(t), t)δ t +minu(t)
{

g(x(t),u(t), t)δ t + J∗Tx (x(t), t)
[

a(x(t),u(t), t)δ t
]
+0(δ t)

}
(3.9)

Dividing by δ t and taking the limit as δ t→ 0 gives
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0 = J∗t (x(t), t)δ t +minu(t)
{

g(x(t),u(t), t)δ t + J∗Tx (x(t), t)
[

a(x(t),u(t), t)
]}

(3.10)

To find the boundary value for this partial di�erential equation ,set t = t f from equa-
tion[3.4] it is apparent that

J∗(x(t f ), t f ) = h(x(t f ), t f ) (3.11)

we define the Hamiltonian H as

H(x(t),u(t),J∗x , t) = g(x(t),u(t), t)+ J∗Tx (x(t), t)
[

a(x(t),u(t), t
]
) (3.12)

and

H(x(t),u∗(x(t),J∗x , t),J
∗
x , t) = minu(t)H(x(t),u(t),J∗x , t) (3.13)

since the minimizing control will depend on x,J∗x and t. Using these definitions we obtain
the Hamiltonian Jacobi Bellman equation as;

0 = J∗t (x(t), t)+H(x(t),u∗(x(t),J∗x , t),J
∗
x , t (3.14)

Example 3.1.1. A �rst order system is described by the di�erential equation

ẋ(t) = x(t)+u(t) (3.15)

It is desired to �nd the control law that minimizes the performance

J =
1
4

x2(T )+
∫ T

0

1
4

u2(t)dt (3.16)

The �nal time T is speci�ed and the admissible state and control values are not constrained
by any boundaries.

Substituting g = 1
4u2(t) and a = x(t)+u(t) into equation ?? we �nd that the Hamiltonian is

omitting the arguments of J∗x .
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H(x(t),u(t),J∗x , t) =
1
4

u2(t)+ J∗x [x(t)+u(t)] (3.17)

and since control is unconstrained a necessary condition that the optimal control must satisfy
is

∂H
∂u

=
1
2

u(t)+ J∗x (x(t), t) = 0 (3.18)

Observe that ∂ 2H
∂u2 = 1

2 > 0

Thus the control that satis�es equation [3.18] does minimize H from equation [3.18]

u∗(t) =−2J∗x (x(t), t) (3.19)

which when substituted in the Hamiltonian Jacobi Bellman equation gives

0 = J∗t +
1
4
[−2J∗x ]

2 +[J∗x ]x(t)−2[J∗x ]
2 = J∗t − [J∗x ]

2 +[J∗x ]x(t) (3.20)

The boundary value is from [3.16]

J∗(x(T ),T ) =
1
4

x2(T ) (3.21)

One way to solve the Hamiltonian Jacobi Bellman equation is to guess a form for the solution
and see it can be made to satisfy the di�erential equation and the boundary condition. Let us
assume a solution of the form:

J∗(x(t), t) =
1
2

k(t)x2(t) (3.22)

where k(t) represents an unknown scalar function of t and that is to determine. Notice that :

J∗x (x(t), t) = k(t)x(t) (3.23)

which together with equation [3.19] implies that

u∗(t) =−2k(t)x(t) (3.24)
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Thus if a function k(t) can be found such that [3.20] and [3.21] are satis�ed the optimal
control is linear feedback of the state indeed this was the motivation of selecting the form
[3.22] by making k(T ) = 1

2 the assumed solution matches the boundary condition speci�ed
by equation [3.21].

Substituting [3.23] for J∗x and

J∗t (x(t), t) =
1
2

k(t)x2 (3.25)

into equation [3.20] gives

0 =
1
2

k(t)x2− k2(t)x2(t)+ k(t)x2(t) (3.26)

since this equation must be satis�ed for all x(t)

1
2

k(t)− k2(t)+ k(t) = 0 (3.27)

k(t) is a scalar function of t therefore the solution can be obtained by separation of variables
with the result

k(t) =
εT−t

εT−t + ε−(T−t)
(3.28)

The optimal control law is then

u∗(t) =−2J∗x (x(t), t) =−2k(t)x(t) (3.29)

Notice that as T →∞ the linear time ranging feedback approaches constant feedback (k(t)→
1) and that the controlled system

ẋ(t) = x(t)−2x(t) =−x(t) (3.30)

is stable. If this were not the case the performance measure would be in�nite.
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3.2 Necessary condition for optimal control

To determine the necessary condition for optimal control, the problem is to find the
admissible control u∗ that causes the system

ẋ(t) = a(x(t),u(t), t) (3.31)

to follow an admissible trajectory X∗ that minimizes the performance measure

J(u) = h(x(t f ), t f )+
∫ t f

t0
g(x(t),u(t), t)dt (3.32)

We shall initially assume that the admissible state and control regions are not bounded
and that the initial condition x(t0) = x0 and the initial time to are specified. As usual x is
the n×1 state vector and u is the m×1 vector of control inputs. Assume h is a di�erential
function we can write

h(x(t f ), t f ) =
∫ t f

to

d
dt
[h(x(t), t)]dt +h(x(t0), t0) (3.33)

so that the performance measure can be expressed as

J(h) =
∫ t f

t0

{
g(x(t),u(t), t)+

d
dt

[
h(x(t), t)

]}
dt +h(x(t0), t0) (3.34)

since x(t0) and t0 are fixed the minimization does not a�ect the h(x(t0), t0) term so we
need to consider only the functional.

J(u) =
∫ t f

t0

{
g(x(t),u(t), t +

d
dt
[h(x(t), t)])

}
dt (3.35)

using chain rule of di�erentiation, we find that this becomes

J(u) =
∫ t f

t0

{
g(x(t),u(t), t)+ [

∂h
∂x

(x(t), t)]T ẋ((t)+
∂h
∂ t

(x(t), t)
}

dt (3.36)

To include the di�erential equation constrains, we form the augmented functional.
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J(h)=
∫ t f

t0

{
g(x(t),u(t), t)+

[
∂h
∂x

(x(t), t)
]T

ẋ(t)+
∂h
∂ t

(x(t), t)+PT (t)
[

a(x(t),u(t), t)− ẋ(t)
]}

dt

(3.37)

by introducing the Lagrange multipliers p1(t), · · · , pn(t). Let us define

ga(x(t), ẋ(t),u(t), p(t), t) = g(x(t),u(t), t)+ pT (t)[a(x(t),u(t), t)− ẋ(t)]

+

[
∂h
∂x (x(t), t)

]T

ẋ(t)+ ∂h
∂ t (x(t), t)

(3.38)

so that

Ja(u) =
∫ t f

t0
{ga(x(t), ẋ(t),u(t), p(t), t)}dt (3.39)

We shall assume that the end points at t = t f can be specified or free. To determine the
variation of Ja we introduce the variations σx,σ ẋ,σu,σ p and σt f . This gives

σJa(u∗) =0 =

[
∂ga

∂ ẋ
(x∗(t f ), ẋ∗(t f ),u∗(t f ), p∗(t f ), t f )

]T

σx f

+

[
ga(x∗(t f ), ẋ∗(t f ),u∗(t f ), p∗(t f ), t f )

−
[

∂ga

∂ ẋ
(x∗(t f ), ẋ∗(t f ),u∗(t f ), p∗(t f ), t f )

]T

ẋ∗(t f )

]
σt f

+
∫ t f

t0

{[
∂ga

∂x
(x∗(t), ẋ∗(t),u∗(t), p∗(t), t)

]T

− d
dt

[
∂ga

∂ ẋ
(x∗(t), ẋ∗,u∗(t), p∗(t), t)

]T]
σx(t)

+

[
∂ga

∂u
(x∗(t), ẋ∗(t),u∗(t), p∗(t), t)

]T

σu(t)

+
∂ga

∂ p
(x∗(t), ẋ∗(t),u∗(t), p∗(t), t)

]T

σ p(t)
}

dt

(3.40)

Notice that the above result is obtained because u̇(t) and ṗ(t) do not appear in ga.

Next let us consider only those terms inside the integral which involve the function h
these terms contain
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∂

∂x

[[
∂h
∂x

(ẋ∗(t), t)
]T

ẋ∗(t)+
∂h
∂ t

(x∗(t), t)
]
− d

dt

{
∂

∂ ẋ

[[
∂h
∂x

(x∗(t), t)
]T

ẋ∗(t)
]}

(3.41)

writing out the indicated partial derivatives gives[
∂ 2

∂x2 (x
∗(t), t)

]
ẋ∗(t)+

[
∂ 2

∂ t∂x
(x∗(t), t)

]
− d

dt

[
∂h
∂x

(x∗(t), t)
]

(3.42)

or if we apply the chain rule to the last term[
∂ 2h
∂x2 (x

∗(t), t)
]

ẋ∗(t)+
[

∂ 2h
∂ t∂x

(x∗(t), t)−
[

∂ 2h
∂x2 (x

∗(t), t)
]

ẋ∗(t)−
[

∂ 2h
∂x∂ t

(x∗(t), t)
]

(3.43)

It is assumed that the second partial derivative are continuous, the order of di�erentiation
can be interchanged and these terms add to zero. In the integral term we have, then

∫ t f

t0

{[
∂y
∂x

(x∗(t),u∗(t), t)
]T

+ p∗(t)
[

∂a
∂x

(x∗(t),u∗(t), t
]

− d
dt

[
− p∗T (t)

]
σx(t)+

[[
∂g
∂u

(x∗(t),u∗(t), t)
]T

+ p∗T (t)
[

∂a
∂u

(x∗(t),u∗(t), t)
]]

σu(t)+
[
[a(x∗(t),u∗(t), t)− ẋ∗(t)]T

]
σ p(t)

}
dt

(3.44)

This integral must vanish on an extremal regardless of the boundary conditions. We first
observe that the constraints

ẋ∗(t) = a(x∗(t),u∗(t), t) (3.45)

must be satisfied by an extend so that the coe�icient of σ p(t) is zero. The lagrange
multipliers are arbitrary so let us select them to make the coe�icient of σx(t) equal to
zero that is

ṗ∗(t) =
[

∂a
∂x

(x∗(t),u∗(t), t)
]T

p∗(t)− ∂g
∂x

(x∗(t),u∗(t), t) (3.46)
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we shall therefore call equation [2.16] the co-state equation and p(t) is the co-state.

The remaining variation σu(t) is independent so its coe�icient must be zero thus

0 =
∂g
∂u

(x∗(t),u∗(t), t)+
[

∂a
∂u

(x∗(t),u∗(t), t)
]T

p∗(t) (3.47)

There are still terms outside the integral to deal with since the variation must be zero we
have

[
∂h
∂x

(x∗(t f ), t f )− p∗(t f )

]T

σx f +

[
g(x∗(t f ),u∗(t f ), t f )+

∂h
∂ t

(x∗(t f ), t f )

+ p∗T (t f )

[
a(x∗(t f ),u∗(t f ), t f )

]
σt f = 0

(3.48)

in writing equation [3.48] we have used the fact that

ẋ∗(t f ) = a(x∗(t f ),u∗(t f ), t f ) (3.49)

Equations [3.45, 3.46, 3.47] are the necessary conditions we wish to determine. Notice
that these necessary conditions consist of a set of 2n first order di�erential equations the
state and co-state equations [3.45 and [3.46] and a set of m algebraic relations [3.47]
which must be satisfied throughout the interval [t0, t f ]. The solution of the state and
costate equations will contain 2n constants of integration. To evaluate these constants we
use the equations x∗(t0) = x0 and an additional set of n or n+1 relationships depending on
whether or not t f is specified from [3.48]. Notice that as expected we are again confronted
by a new point boundary value problem.

we can use the function H called Hamiltonian defined as

H(x(t),u(t), p(t), t) = g(x(t),u(t), t)+ pT (t)[a(x(t),u(t), t)] (3.50)

Using this notation we can write the necessary conditions [3.45], [3.46],[3.47] using
[3.48] as follows
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ẋ∗(t) =
∂H
∂ p

(ẋ∗(t),u∗(t), p∗(t), t) ∀ t ∈ [t0, t f ]

ṗ∗(t) =− ∂H
∂x

(ẋ∗(t),u∗(t), p∗(t), t) ∀ t ∈ [t0, t f ]

0 =
∂H
∂u

(ẋ∗(t),u∗(t), p∗(t), t) ∀ t ∈ [t0, t f ]

(3.51)

and

[
∂h
∂x

(x∗(t f ), t f )− p∗(t f )

]T

σx f +

[
H(x(t f ),u∗(t f ), p∗(t f ), t f )+

∂h
∂ t

(x∗(t f ), t f )

]
σt f = 0

(3.52)

Equation [3.52] above is the boundary condition.

Let us now consider the boundary condition that may occur.

CASE1 Fixed final time and fixed final state.
In this case there will be boundary condition since σt f = σx f = 0

CASEII Free final time and fixed final state.
In this case, σx f = 0 and therefore the boundary condition shall be[

H(·)+ ∂h(·)
∂ t

]
σt f = 0

CASEIII Fixed final time and free final state

In this case σt f = 0. Therefore the boundary condition shall be

[
∂h
∂x (·)− p∗(t f )

]T

σt f = 0

CASEIV Free final time and free final state

The boundary condition shall be

[
∂h
∂x (·)− p∗(t f )

]T

σx f +

[
H(·)+ ∂h

∂ t (·)
]

σt f = 0

In conclusion in all the four cases above equation [2.21] holds.
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3.3 Viscosity Solution

3.3.1 Viscosity Solutions of Hamilto-Jacobi- Bellman equation

Here we shall see the link between the Hamilton Jacobi Bellman equation of an optimal
control problem and viscosity solution. The value function of a deterministic optimal
control problem is in fact a viscosity solution of the associated HJB equation. We restricted
ourselves to the deterministic cases because the technicalities of the stochastic case require
more involving analysis.

3.3.2 Deterministic Optimal Control

We consider here the finite time bounded domain deterministic problem. Let the state
dynamics be given by

dxα(·)(s) = b(xα(·),s,α(s))ds s ∈ (t,T ) xα(·)(t) = x (3.53)

The control set A is chosen to be

A = {α : [0,T ]→∧|α(·) Lebesgue measurable

We will use the following lemma: Let XA be the indicator function of statements A : XA= 1
if A,XA = 0 if not A.τ is the time of first exit of (x(s),s) from ū× [t,T ]

Consider Dynamic programming principle where for an h > 0 such that t + h < T if
t̄ = min(τ, t +h) then

u(x, t) = inf
α(·)∈A

[∫ t̄

t
f (x(s),s,α(s))ds+g(x(t̄), t̄)xτ<t+h +u(x(t̄), t̄)xt+h≤τ

]
(3.54)

Theorem 3.3.1. (First order Hamiltonian Jacobi Bellman equation-viscosity sense)

Provided that the value function u is uniformly continuous upto the boundary i.e u ∈ c(ō),u
is a viscosity solution of the HJB equation with no boundary data.

−Ut + supα∈∧[−bα ·Dxu− f α = 0 on o.

If furthermore u = g on ∂O, then u is a viscosity solution of the HJB equation

−Ut + supα∈∧[−bα ·Dxu− f α = 0 on o

u = g on ∂O,
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3.4 Bellman Principle of Optimality

There are two approaches to dynamic optimization, the pontrjagin (Hamiltonian) approach
and the Bellman approach. In this section we look at local conditions for having a finite
optimum.

3.4.1 Discrete Time certainity

We start in discrete time and assume perfect foresight. The general problem we want to
solve is

{
max(ct)∑

∞
t=0 f (t,kt,ct)

s.tkt+1 = g(t,kt ,ct)
(3.55)

In addition we compose a budget constraint which for many examples is the restriction
that kt be eventually positive (i.e liminft kt ≥ 0). This budget constraints excludes explosive
solutions for ct so that we can apply the Bellman method. The usual name for the variables
involved is the control variable (Because it is under the control of the choice maker) and
kt is the state variable (because it describes the state of the system at the beginning of t
when the agent makes the decision).

The equation kt+1 = g(t,kt ,ct) is called the state equation.

To get some intuition about the problem we think of kt as capital available for production
at time t and ct as consumption at t. At time 0 for a starting level of capital k0 the consumer
checks the level of consumption c0. This determines the level of capital available for the
next period k1 = g(0,c0,k0). So at time 1 the consumer decides on the level of c1 which
together with k1 determines k2 and the cycle is repeated on and on. The infinite sum
∑

∞
t=0 f (t1,kt ,ct) is to be thought of as the total utility of the consumer which the la�er is

supposed to maximize at time 0.

Bellman’s idea for solving [3.55] is to define a value function V at each t = 0,1,2, · · ·

V (t,kt) = maxcs

∞

∑
c=t

f (s,ks,cs)

such that ks+1 = g(s,ks,cs)

which represent the common maximum “utility” given the initial level of kt .
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From Bellman’s principle of optimality, for each t = 0,1,2, · · ·

V (t,kt) = maxct

[
f (t,kt ,ct)+V (t +1,g(t,kt ,ct))

]
(3.56)

This in principle reduces an infinite period of optimization problem to a two limit opti-
mization problem. So now we see how we shall solve optimization problem [3.55] using
the Bellman’s equation [3.56]. We denote partial derivatives by using subscripts a star
superscripts denotes the optimum. Then the first order condition from [3.56] reads

fc(t,kt ,c∗t )+Vk(t +1,g(t,kt ,c∗t )) ·gc(t,kt ,c∗t ) = 0 (3.57)

Looking at this formula it is clear that we would like to be able to compute the derivative
Vk(t + 1,kt+1) by trying to use formula 3.56] since we are di�erentiating a maximum
operator, we apply the envelope theorem and obtain

Vk(t,kt) = fk(t,kt ,c∗t )+Vk(t +1,g(t,kt ,c∗t )) ·gk(t,kt ,c∗t ) (3.58)

from [3.57] we can calculate Vk(t +1,g(t1,kt ,c∗t )) and substituting it in ?? we get

Vk(t,kt) = ( fk−
fc

gc
·gk)(t,kt ,c∗t ) (3.59)

Finally substitute this formula into [3.57] and obtain a condition which does not depend
on the value function any more.

fc(t,kt ,c∗t )+gc(t,kt ,c∗t ) · ( fk−
fc

gc
·gk)(t +1,g(kt ,c∗t ),c

∗
t+1) = 0 (3.60)

Notice this formula is true for any kt not necessary only for the optimal are upto that
point. But in that case c∗t and c∗t+1 are the optimal choices given kt . In any case from
now on we are only going to work at the optimum (t,k∗t ,c

∗
t ). The previous formula can be

wri�en as follows

fk(t +1)− fc(t +1)
gc(t +1)

·gk(t +1) =
− fc(t)
gc(t)

(3.61)
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This is the key equation that allows us to compute the optimum c∗t using only the initial
data ( ft)andgt equation ?? is called Bellman- Euler equation

For purposes of comparison with continuous time version we write g(t,kt ,ct) = kt +

h(t,kt ,ct). Denote Mt φ = φ Then we can rewrite [3.61] as:

Mt

(
fc(t)
hc(t)

)
= fk(t +1)− fc(t +1)

hc(t +1)
·hk(t +1) (3.62)

3.4.2 Discrete Time uncertainty

Now we assume everything to be stochastic and the agent solves the problem{
max(ct)E0 ∑

∞
t=0 f (t,kt ,ct)

s.tkt+1 = g(t,kt ,ct)

As usual we denote by Et the expectation given information available at time t. Then we
can define the value function

v(t,kt) = max(ct)Et ∑ f (s,ks,cs) such that ks+1 = g(s1,ks,cs)

The Bellman principle of optimality [3.56] becomes

v(t,kt) = max(ct)

[
f (t1,kt ,ct)+Etv(t +1,g(t,kt ,ct))

]

Now in order to derive the Euler equation with uncertainty, all we have to do is replace
v(t + 1) in the formulas of the previous section by Etv(t + 1) (using of course the fact
that di�erentiation commutes with expectation) we arrive at the following Bellman Euler
equation

Et( fk(t +1)− fc(t +1)
gc(t +1)

·gk(t +1)) =− fc(t)
gc(t)

(3.63)

3.4.3 Continuous Time certainty

This is a bit trickier but same derivation as in discrete time can be used. The di�erence is
that instead of the interval (t, tt+1) we now look at (t, t +dt).
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The problem that the decision maker has to solve is;

{
maxct

∫
∞

0
f (t,kt ,ct) s.t

dkt

dt
= h(t1,kt ,ct) (3.64)

The constraint can be rewri�en in di�erential notation

kt+dt = kt +h(t,kt ,ct)dt (3.65)

so we have a problem similar inform to ?? and we can solve it by an analogous method.

Define the value function

v(t,kt) = max(cs)

∫
∞

t
f (s,ks,cs)ds | dks

ds
= h(s,ks,cs) (3.66)

Using equation [3.66] the Bellman principle of optimality can be wri�en as;

v(t,kt) = maxct

[∫ t+dt

t
f (s,ks,cs)ds+ v(t +dt,kt +h(c,kt ,ct)dt)

]
(3.67)

we know that
∫ t+dt

t f (s,ks,cs)ds = f (t,kt ,ct)dt. The first order condition for minimum is

fc(t)dt + vk(t +dt,kt+dt) ·hc(t)dt = 0 (3.68)

This is equivalent to

vk(t +dt) =− fc(t)
hc(t)

(3.69)

As we apply the envelope theorem to derive

vk(t) = fk(t)dt + vk(t +dt) · (1+hk(t)dt) (3.70)

substitute [3.69] into [3.70] to obtain
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vk(t) =−
fc(t)
hc(t)

+

(
fk(t)−

fc(t)
hc(t)

·hk(t)
)

dt (3.71)

If φ is any di�erential function, then φ(t +dt)dt = φ(t)dt. So we get the formula

vk(t +dt) =− fc(t +dt)
hc(t +dt)

+

(
fk(t)−

fc(t)
hc(t)

·hk(t)
)

dt (3.72)

pu�ing equations [3.69] and [3.72] we get

fc(t +dt)
hc(t +dt)

− fc(t)
hc(t)

=

(
fk(t)−

fc(t)
hc(t)

·hk(t)
)

dt (3.73)

Using the formula φ(t +dt)−φ(t) = dφ

dt dt we can reunite the above formula as

d
dt

(
fc(t)
hc(t)

= fk(t)−
fc(t)
hc(t)

·hk(t)

This is the Bellman-Euler equation in continuous time. It is pre�y similar to our equation
[3.62] in discrete time.

By fc(t) in the above formula what we really mean is fc(t,kt ,ct) as usual calculated at
the optimum. Then we calculate

d
dt
( fc) = ftc + fkc ·h+ fcc ·

dc
dt

(3.74)

so we can rewrite the Bellman-Euler equation ?? is as follows

− ( ftc + fkc ·h+ fcc ·
dc
dt

) =− fc

hc
(htc +hkc ·h+hcc ·

dc
dt
−hc ·hk)−hc · fk (3.75)

In general in order to solve this, notice that we can rewrite [3.74] as dct
dt = λ (t,kt ,ct) so

the optimum is given by the following system of ODEs

{
dct
dt = λ (t,kt ,ct)
dkt
dt = h(t,kt ,ct)

(3.76)
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3.4.4 Continuous Time uncertainty

First we assume that the uncertainty cases from the function h (for example, if h dependent
as an uncertain endowment et ). The problem is

max
ct

E0
∫

∞

0 f (t,kt ,ct)

s.tdkt
dt = h(t,kt ,ct)

(3.77)

The value function takes the form

v(t,kt) = maxcs

∫
∞

t f (s,ks,cs)ds | dks
ds = h(s,ks,cs)

and the Bellman principle of optimality [3.67] becomes

v(t,kt) = maxct

[∫ t+dt

t
f (s,ks,cs)ds+Etv(t +dt,kt +h(t,kt ,ct)dt)

]
(3.78)

we arrive at the following Bellman-Euler equation

Et
d
dt

(
fc

hc

)
= fk−

fc

hc
·hk (3.79)

3.5 Numerical Determination of Optimal Trajectories

Variational techniques have been used to derive the necessary conditions for optimal
control. In problems with linear plant dynamics and quadratic performance criteria. It
was found that it is possible to obtain the optimal control law by numerically integrating
a matrix di�erential equation of the Rica�i type. Optimal control laws have also been
determined for several other simple examples by applying Pontryagin minimum principle.
In general however the variational approach leads to a nonlinear two point boundary value
problem that cannot be solved analytically to obtain the minimal control law or even an
optimal open loop control. To address this there are four iterative numerical techniques for
determining optimal controls and trajectories. Three of the techniques steepest descent,
variation of extremals and quasilinearlization are procedures for solving non linear two
point boundary value problems. The fourth technique gradient projection does not make
use of the necessary condition for optimality provided by the variational approach. Instead
the optimization problem is solved by minimizing a function of several variables subject to
various constraining relationships. A brief highlight of the three techniques is as follows:
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3.5.1 The Method of Steepest Descent - Minimization of Functions by Steepest
Descent

Consider f be a function of two independent variables y1 and y2 the value of the function
at the point y1,y2 is denoted by f (y1,y2). It is desired to find the point y∗1 and y∗2 where f
assumes its minimum value f (y∗1,y

∗
2).

If it is assumed that the variables y1 and y2 are not constrained by any boundaries, a
necessary condition for y∗1 and y∗2 to be a point where f has a (relative) minimum is that
the di�erential of f vanish at y∗1,y

∗
2 that is

d f (y∗1,y
∗
2) =

[
∂ f
∂y1

(y∗1,y
∗
2)

]
M y1 +

[
∂ f
∂y2

(y∗1,y
∗
2)

]
M y2

=

[
∂ f
∂y

(y∗)
]T

M y = 0
(3.80)

∂ f/∂y is called the gradient of f with respect to y. Since y1 and y2 are independent, the
components of M y are independent arbitrary and equation above implies

∂ f
∂y

(y∗) = 0

In other words for f (y∗) to be a relative minimum it is necessary that the gradient of f be
zero at the point y∗.

3.5.2 Variation of extremals

This method is called variation of extremals because every trajectory generated by the
algorithm satisfies

ẋx(t) =
∂H
∂ p

= a(x∗(t),u∗(t), t)

through

0 =
∂H
∂u

=

[
∂a
∂u

(x∗(t),u∗(t), t)
]T

p∗(t)

and hence is the extremal.
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3.5.3 �asilinearlization

Numerical integration can be used to solve non linear di�erential equation if a complete
set of boundary conditions is specified at other initial time or the final time the method
of variation of extremals consists of solving a sequence of such problems. In the method
of quasilinearlization a sequence of linear two points boundary value problem is solved.
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4 Chapter 4

4.1 Application of Haar Wavelet and Conclusion

In this section we focused on the Haar Wavelet function by looking at how it was developed,
its inherent features and finally solving some optimal control problems using the function.
Then we compared the results thereof of the problems with the numerical solutions (exact
solutions) to establish if there was any similarity and e�iciency in the process.

4.1.1 Overview of Haar Wavelets

Haar wavelets was first introduced by Alfred Haar in 1990, Haar wavelets is also referred
to as Daubechies (I) wavelet.

The scaling function φ(x) is defined as

φ(x) = 1, i f x ∈ [0,1]

φ(x) = 0, i f x /∈ [0,1]

The wavelet function Ψ(x) for this scaling function is defined as

Ψ(x) = 1 i f x ∈ [0,0.5]

Ψ(x) =−1 i f x ∈ [0.5,1]

Ψ(x) = 0 i f x /∈ [0,1]

The scaling function and wavelet for the Haar wavelet are shown in the figure below
respectively.
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(a) Scaling f unction (b) wavelet f unction

4.1.2 Advantages / Features of Haar Wavelet Method

These were highlighted by Hariharan and Kannn(2013) and Radomir and Bogdan(2003).

1. High accuracy is obtained already for a small number of grid point.

2. The method is very convenient for solving boundary value problem since the boundary
conditions are taken care of automatically.

3. Singularities can be treated as intermediate boundary conditions, this circumstance
to a great extend simplifies the solution.

4. The obtained solution are mostly simpler compared with other known methods.

5. From the definition , it is obvious that the Haar functions are orthogonal function.
Therefore ∫ 1

0
har(m,θ)har(n,θ)dθ =

{
1, n = m

0, n 6= m

4.1.3 Haar Wavelet Method

Consider the interval t ∈ [A,B] where A and B are given by constants. Define the quantity
m = 2J where J is the maximal level of resolution . Distribute the interval [A,B] in 2m
submanifolds of equal length

∆t = (B−A)/2M
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The other two parameters , the dilation parameter j = 0,1, . . . ,J and translation parameter
k = 0,1 . . . ,m−1 where m = 2J . The wavelet number is defined as i = m+ k+1.

We define the Haar wavelet as

hi(t) =


1, f or t ∈ [ξ1(i),ξ2(i)]

−1 f or t ∈ [ξ2(i),ξ3(i)]

0, elsewhere.

(4.1)

where

ξ1(i) = A+2kµ∆t, ξ2(i) = A+(2k+1)µ∆t, ξ3(i) = A+2(k+1)µ∆t and µ = M/m

The case i = 1 corresponds to the scaling function h1(t) = 0 for t ∈ [A,B]. In the following
we need the integrals

Pi(t) =
∫ t

A
hi(t)dt (4.2)

In the view of [1.1] these integrals can be evaluated analytically and by doing this we
find

Pi(t) =


0 f or t ≤ ξ1(i)

t−ξ1(i) f or t ∈ [ξ1(i),ξ2(i)]

−t−ξ1(i)+2ξ2(i) f or t ∈ [ξ1(i),ξ3(i)]

0 f or t ≥ ξ3(i)

(4.3)

These formulas hold for i > 1. In the case i = 1 we have ξ )1 = A, ξ2 = ξ3 = B and

P1(t) = t−A (4.4)

The collocation points are

t1 = 0.5(t̂`−1 + t̂`) `= 1,2, . . . ,2M (4.5)

The symbol t̂` denotes the `thgrid point t̂` = A+ `∆t

Equation [4.1] - [4.4] are discretized by replacing t→ t`. We introduce t he Haar matrices
H(i, `) = hi(t`):

P(i, `) = Pi(t`)
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For solving the boundary value problem we need the values of Pi at t = B

In view of [4.3] and [4.4] we find

Pi(B) =

{
B−A f or i = 1

0 f or i 6= 1

We introduce the matrix R with elements

R(i, `) = P(i, `)−Pi(B) (4.6)

Next we introduce some formulas useful in solving some problems. First we introduce the
vectors

E = [1,1, . . . , ,1],E1 = [1,0,0,0, . . . ,0] with t = (t`), t̂ = t−AE

Then the following formula hold.

E1 = E/H, ‘(E/H)P = E1P = t−AE = t̂ (4.7)

1
α!

(t̂α/H)P =
1

(α +1)!
t̂α+1 (4.8)

If we have to integrate by the Haar wavelet method of equation

ẋ = f (t,x,µ),x = (xi) (4.9)

Then the solution is sought in the form

ẋ = aH (4.10)

and by integrating [4.9] we find
x = aP+ c (4.11)

where c stand for the vector of integration constants. These constants can be calculated
from the initial boundary conditions. Replacing [4.10] and [4.11] into [4.9] we obtain
we obtain a system of 2m equations for evaluating the wavelet coe�icient a = (ai)
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4.2 Solved Examples

4.2.1 Case 1

Consider the problem ∫ 2

0
xdt→

∫ 2

0
ẍ2dt = 1, (4.12)

x(0) = ẋ(0) = 0, ẍ(2) = 0

We interpret ẍ as control state variables

x1 = x, x2 = ẋ

ẋ3 = ẍ = u, x4 =
∫ t

0
u2dt

State equations are
x1 = x2, ẋ2 = x3, ẋ3 = u, ẋ4 = u2 (4.13)

with the boundary conditions;

x1(0) = x2(0) = x4(0) = 0

x3(2) = 0 x4(2) = 1

The Hamiltonian is given by

Ĥ =−x1 +Ψ1x2 +Ψ2x3 +Ψ3u+Ψ4u2 (4.14)

The adjoint system has the form:

Ψ̇1 = E, Ψ̇2 =−Ψ1, Ψ̇3 =−Ψ2, Ψ̇4 = 0 (4.15)

According to the transversality conditions

Ψ1(2) = Ψ2(2) = Ψ3(2) = 0

To begin with we integrate [4.15] by assuming

Ψ̇1 = b1H, Ψ1 = b1R

Ψ̇2 = b2H, Ψ2 = b2R

Ψ̇3 = b3H, Ψ3 = b3R

Ψ̇4 = 0, Ψ4 = λ = constant

(4.16)
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The matrix R is calculated from [4.6] substituting [4.16] into [4.15] we obtain,

b1H = E, b1R+b2H = 0, b2R+b3H = 0 (4.17)

From here we calculate the wavelet coe�icient, b1,b2,b3 and fro [4.16] the adjoint variables
Ψ1,Ψ2,Ψ3

Evaluating the optimal control from ∂ Ĥ
∂u = 0, we find

u =− Ψ3

2Ψ4
=−Ψ3

2λ
(4.18)

Since Ψ3 is already known we can calculate the auxiliary variable

û = λu =−Ψ3

2
(4.19)

Next the state variable are developed into the Haar series adopted from [4.10] and [4.11]

ẋ1 = a1H, x1 = a1P, ẋ2 = a2H, x2 = a2P

ẋ3 = a3H, x3 = a3P ẋ4 = a4H, x4 = a4P
(4.20)

Replacing these results into [4.13] we get

a1H−a2P = 0, a2H−a3P = 0

a3H = û/λ , a4H = û2/λ 2
(4.21)

The langrange multiplier λ is calculated in the following way from [4.21]

â4 = λ
2a4 = û2/H (4.22)

satisfying the boundary condition x4(2) = φ1 we get from [4.20]

x4|t=2 = a4P|t=2 = 2a4(1) = 1 (4.23)

From the two equations above we find

λ =
√

2â4(1) (4.24)
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The state variables x1,x2 are then calculated.

The exact solution is

xex =−
1

12λ
[

1
120

(t−2)6 +
4
3
(t−2)3− 72

5
t +

152
15

]

uex =−
1

48λ
(t−2)[(t−2)3 +32], λex = 0,7559

For estimating the accuracy of our result, the error estimates below were introduced

δx = max
i
|xex(ti)− x(ti)|

δu = max
i
|uex(ti)−u(ti)|

δλ = |λex−λ |

Results of computer simulation were presented as

J δx δu δλ

4 6.5E−4 6.3E−4 3.8E−7

5 1.6E−4 1.6E−4 3.8E−7

6 4.0E−5 4.0E−5 3.8E−7

Conclusion from above is that from the table its clear that already a small number of
points (J = 4;32 grid points ) guarantees su�icient accuracy.

4.2.2 Case 2

This will be the case where constraints are state inequality Brysan and Ho (1975) discussed
the problem below and used analytical methods. In this case we introduced Haar wavelet
to see if the result would converge to the solution as obtained.

I =
1
2

∫ 1

0
udt→ min, x1 ≤ ` (4.25)

ẋ1 = x2, ẋ2 = u, x1(0) = x1(1) = 0, x2(0) =−x2(1) = 1

where ` > 0 is a given constant.

Consider the case where the equality x1(t) = ` holds in the sub-interval t ∈ [t1, t2]. This
subinterval cannot be near the boundaries t = 0 or t = 1 since in this case the prescribed
boundary condition cannot be satisfied.
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Due to symmetry we can solve the problem [4.25] only only for t ∈ [0,0.5]. It is reasonable
to assume that x1(t)< ` for same interval t ∈ [0, t1] and x1(t) = ` for t ∈ [t,o.5]

The Hamiltonian is given by;

Ĥ =−1
2

u2 +Ψ1x1 +Ψ2u (4.26)

It follows from the fact that ∂ Ĥ
∂u = 0 that Ψ = u

Next we put together the adjoint system below.

Ψ̇ =−∂H
∂x

+µ5 s t ∈ [t1, t2] (4.27)

Since in the present case g = x1− `, s = x2, 5s = (0,1)

We find
Ψ̇1 = 0, Ψ̇2 =−Ψ1 +µ (4.28)

Whereas µ(t) = 0 for t ∈ [0, t1] To begin with we consider the subinterval t ∈ t1,0.5 since
x1 = ` it follows that from the state equation that x2 = u = 0 and consequently Ψ2 = 0

Integrating [4.28] we find Ψ1 = c1, µ(t) = c1 where c1 is a constant of integration.

Now we rewrite [4.25] as ;

I =
1
2

∫ t1

0
u2dt→ min (4.29)

ẋ1 = x2, ẋ2 = u, x1(0) = 0, x2(0) = 1, x1(t1) = `, x2(t1) = 0

The wavelet solution is sought in the matrix form from equation [4.10] and [4.11]

ẋ1 = a1H x1 = a1P, ẋ2 = a2H x2 = a2P+E . . .(i)

Ψ̇1 = b1H, Ψ1 = b1P+ c1E Ψ̇2 = b2H Ψ2 = b2P+ c2E . . .(ii)

(4.30)

The matrix H and P is calculated according to [4.1],[4.3],[4.4] assuming that A = 0, B =

t1

Replacing [4.30] into the state equation [4.29] and into the adjoint system [4.28]
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a1H = a2P = E a2H = b2P+ c2E

b1H = 0 b2H =−b1H− c1E
(4.31)

It follows from the third and fourth equation that

b1 = 0, b2 =−c1E/H =−c1E1, c2 = c1t1

Due to continuity Ψ2(t1) = 0, we obtain

Ψ2 = c1(t1E− t) = u (4.32)

Integrating of the second equation of [4.30] gives

a2H =−c1E1P+ c2E =−c1t + c2E
x2 =−c1(E/H)P+(t/H)P+E

In view of [4.7] and [4.8] this result can be put into form

x2 = c1t(t1− t/2)+1 (4.33)

Since

a2P =−c1(t/H)P+ c1t1(E/H)P
=−c1t2/2+ c1t1t

then

a1 = (a2P+E)/H =−1
2c1t2/H + c1t1t/H = E/H

and

x1 =−1
2c1(t2/H)P+ c1t1(t/H)P+(E/H)P

Then

x1 =−c1t2( t
6 −

1
2t1)+ t
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The constant c1, t∗ are calculated from the boundary conditions

x1(t∗) = `, x2(t∗) = 0

satisfying this condition, we find

t1 = 3`, c1 =−2/t2
1 and

x1 = `ζ (ζ 2−3ζ +3), ζ = t/t1
x2 = (1−ζ )2, u =− 2

3`(1−ζ )

This is the same result obtained by Brysa and Ho and so we see that the Haar wavelet
enables us to find the exact analytical solution of the problem

4.2.3 Case 3

This is the case where optimal control has a control inequality constraints.

We shall solve the problem

I =
∫ 1

0
(x2

1 + x2
2 +αu2)dt→ min |u| ≤ u0 (4.34)

ẋ1 = x2, ẋ2 =−x2 +u, x1(0) = 0, x2(0) =−1

It is assumed that the control is smooth and thus the function u(t) must be continuous

Introducing the Hamiltonian

Ĥ =−(x2
1 + x2

2 +αu2)+Ψ1x2 +Ψ2(−x2 +u) (4.35)

Ψ̇ =− ∂ Ĥ
∂x1

We get we put together the adjoint system

Ψ̇ =−∂ Ĥ
∂x1

= 2x1, Ψ̇2 =−
∂ Ĥ
∂x2

= 2x2−Ψ1 +Ψ2 (4.36)

According to the transversely conditions we have Ψ1(1) = Ψ2(1) = 0
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In the region where |u|< u0 it follows from the admissible control conditions that ∂ Ĥ
∂u =

0 that Ψ2 = 2αu

Therefore, it is reasonable to assume that u = u0 for t ∈ [0, t] and u < u0 for t ∈ [t,1].

The value of t1 is for the unknown and will be calculated. We assign some value to t1 and
integrate the state equation for t ∈ [0, t1].

According to the wavelet method we take ( the matrices H and P are calculated for
(a = 0,b = t1) from equation ?? and equation [4.11]

ẋ1 = a1H, x1 = a1P

ẋ2 = a2H x2 = a2P−E
(4.37)

Replacing the results into the state equations ẋ1 = x2 and ẋ2 =−x2 +u0. We find;

a1H−a2P =−E

a2(H +P) = (1+u0)E
(4.38)

Solving this system we evaluate the wavelet coe�icient a1,a2 and calculate the function
x1,x2 according to [4.37]

We need the values x1 = x1(t1) and x2 = x2(t1), µ follows from [4.3] that P1(t1) = t1 and
Pi(t1) = 0 for i 6= 1

In view of the [4.37] we find

x∗1 = a1(1)t1 x∗2 = a2(1)t1−1 (4.39)

We consider the subinterval t ∈ [t1,1]. Again we divide this interval into 2M equal parts
and calculate the matrices H,P and R from [4.11]- [4.3] and [4.6] assuming

A = t1, B = 1− t1

The solution is sought in the form

ẋ1 = â1H, x1 = â1P+ x1E, ẋ2 = â2H x2 = â2P+ x∗2E

Ψ̇ = b̂1H Ψ1 = b̂1R Ψ̇2 = b̂2H Ψ2 = b̂2R
(4.40)
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Here â1, â2, b̂1, b̂2 denote wavelet coe�icients for the sub-interval t ∈ [t1,1]. The matrix R
is calculated according to [4.6]

Then substituting [4.40]- [4.34] and [4.36] and taking into account that

Ψ2 = 2αu we get

â1H− â2P = x∗2E â2(H +P) = 1
2α

b̂2R− x∗2E,

−2â1P+ b̂1H = 2x∗1E, −2â2P+ b̂1R+ b̂2(H−R) = 2x∗2E
(4.41)

This was solved numerically.

The control u(t) must be continuous at t = t∗. In the case of an arbitrary chosen value t∗ the
requirement of u(t) being continuous is not fulfilled. This discrepancy can be estimated
by the function.

∆ = u(t1−0)−u(t1 +0) since

u(t1−0) = u0

u(t1 +0) =
1

2α
Ψ2(t1 +0) =

1
2α

b̂2R|t=t2 =−
1

2α
b̂2(1)(1− t1)

we obtain
∆ =

1
2α

b̂2(1)(1− t1)+u0 (4.42)

We varied t∗ until the condition ∆ = 0 was fulfilled with the necessary exactness.

Computer simulation was carried out for u0 = 0.5, α = 0.5. The results are plo�ed in
the figure below.
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above solution of problem [4.34] for u0 = 0.5, α = 0.5

The exactness of solution was estimated by calculating the values of t1,x1(1),x2(1) at
di�erent levels of resolution J. The results are presented in table below.

J t1 x1(1) x2(1)

4 0.338569 −0.48679 −0.20527

5 0.338570 −0.48676 −0.20535

6 0.338574 −0.48675 −0,20536

Above parameter t1 and boundary values of the problem [4.34]

In conclusion, this result of x1(1) and x2(1) compare with the result simulated by
computer as captured in figure 1 above proving that Haar wavelet e�iciency is achieved.

4.2.4 Conclusion:
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From the three cases we solved, we have shown that, by the introduction of Haar Wavelet
function, we obtained very satisfactory exactness of the results even for a lower number of
collocation points. The Haar Wavelet was therefore in deed of value add in computation of
optimal control problems in providing a simple and straight forward approach in addition
to providing virtually exact solution. This was in concurrence with Sengeta, Singh and
Kumar (2014) who noted that they had represented simple and straight forward numerical
technique based on Haar Wavelet in solving di�erential equations.
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