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ABSTRACT 

 Northern leaf blight (NLB) is a major foliar disease caused by fungus Exserohilum 

turcicum that leads to limited production of cereals in the Sub-Saharan Africa. Maize is 

normally susceptible to NLB from the seedling stage to maturity making it expensive in 

the management and control. The disease lowers production of maize up to 80%, 

threatening food security in the region. However, to achieve increased food production, 

improved agricultural technologies should be adopted, whereby research institutions and 

breeders have continued assessing the breeding values and using advanced technologies 

for phenotyping diseases. Currently, new technologies have been incorporated where   

digital imagery tools are used for detecting foliar diseases in the field earlier enough before 

the severity is high. To curb this major problem of foliar diseases in maize quantitative trait 

loci (QTL) mapping is recommended and adopted to assist as an effective and efficient tool 

in breeding to generate resistant host plants. QTL mapping enhances in identification and 

evaluation of potential sources of resistance followed by introgression of favorable alleles 

into susceptible variety. This study was implemented to; i) compare the visual scoring 

method of phenotyping foliar diseases with the digital imagery methodology under a high 

disease pressure area. ii) Identifying the genomic regions associated with resistance to 

Northern leaf blight disease through quantitative trait loci (QTL) mapping. One hundred 

and ninety-two double haploid (DH) lines obtained from International maize and wheat 

improvement Center (CIMMYT) were test crossed to 2 single cross parents (CML539 x 

Laposta Seq F64) and (CML 312 x Laposta Seq F64). An alpha lattice design with two 

replications was used to evaluate the 192DH hybrids with three commercial local checks 

across two locations in Kenya under high disease pressure area condition during 2016-2017 

growing seasons. Each plot measured 4m long spaced at 0.75m between rows and 0.25m 
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between hills. Data was collected on days to anthesis, grain yield, plant and ear aspect, 

number of ears,  plant and ear height and northern corn leaf blight where the disease 

severity was scored using a CIMMYT scoring scale of 1-5 where 1-there are no infections, 

the plant is fully clean, 2- light infection with moderate number of lesions on the lower 

leaves, 3-moderate infection  with abundant lesions on the lower leaves and a few lesions 

on the middle leaves, 4- heavy infection with lesion abundant on all leaves, 5- very heavy 

infection with lesions on all leaves. At flowering stage, image analysis was conducted using 

a Nikon camera where images of the maize plot were taken; scanners were also used where 

maize leaves from every plot were scanned to obtain a clear view of the damaged lesions. 

All data collected was analyzed using Meta-R software to obtain the analysis of variance. 

It was concluded from the studies that digital imagery analysis led to more efficient and 

effective breeding since it gives accurate and precise information on the field data and also 

it consumes less time. To identify genomic loci associated with NLB resistance, double 

haploid (DH) lines from two bi-parental mapping populations were genotyped and marker 

trait association analysis carried out. Genome-Wide Association Study (GWAS) revealed 

a major quantitative trait locus (QTL) on chromosome 5 and chromosome 7 that were 

significantly associated with NLB resistance. This study provides important insights into 

the genetic architecture underlying resistance to NLB, and identified a useful set of 

polymorphic single nucleotide polymorphism (SNPs) to be used in breeding for NLB 

resistance. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background information 

Maize (Zea mays) originated from Balsas River basin of southwestern Mexico about 9000 

years ago (Matsuoka, et al., 2002) Since then maize has spread geographically and 

economically becoming one of the most important food crops adapted globally (CIMMYT, 

1999- 2000). It’s also the second largest crop adapted in the world after rice. Maize can be 

grown over a range of agro ecological zones defined by the total rainfall received, 

elevation, maturity period and the length of the growing season (FAO Statistics, 2000). 

Maize is grown from 50°N to 40°S and a sea level of up to 4000m altitude in areas with 

250 mm to 5000mm of rainfall per year (Doswell et al., 1996). The optimum temperature 

for maize growth and development is 18°C to 32°C with temperature of 35°C. It has a 

growing cycle ranging from 3 months to 13 months (CIMMYT, 1999- 2000). However, 

the continuous diversification and high demand for maize production has led to the need 

for genetic improvement of various agricultural and economical important traits. 

 

In sub-Saharan countries, maize has accounted for 22 to 25 percent of starchy staple 

consumption from 1980, representing the largest single source of calories, followed closely 

by cassava. It also ranks the first among rice and wheat due to its diverse uses and relatively 

lower price. Maize is used directly for human consumption since it has great nutritional 

value as it contains 10% protein, 73% starch, 8.5% fibre, 4% oil, 3.0% sugar and 1.7% ash 

(Ranum et al., 2014). It also contains 1.2 to 5.7 % edible oil; this oil is widely used for 

cooking and for manufacturing hydrogenated oil. The oil has the quality of reducing 

cholesterol in the human blood like sunflower oil.  
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 White maize which is in two types mainly dented and flint is associated with different food 

products (FAOSTAT, 1997), the dent maize is soft and floury therefore it’s used for 

porridges, while flint maize has a hard, vitreous endosperm used primarily for gruel or 

couscous maize flour which is easily stored after drying or milling it. In some parts of Sub-

Saharan Africa such as Malawi, flint maize has been preferred to dent because of smaller 

losses incurred in traditional storage and processing practices (VIB, 2017).  

 

Maize is a multi-purpose food crop which may be consumed fresh as green roasted cobs, 

boiled separately or mixed with legumes and other foods. In industries, maize is used for 

processing foods such as corn meal, sweetener and starch, recently there has been interest 

in using maize for production of fermentation products such as ethanol which is a substitute 

for petroleum based fuels; the combs and stalks are used to provide domestic fuel especially 

in rural areas. Maize stalks, leaves and remains from the cobs are used to feed animals 

directly or making silage which is very nutritious particularly to dairy cattle thus enhancing 

high milk production. Processed feeds such as bran are given to poultry and pigs (VIB, 

2017). 

1.2 Problem statement 

 Cereals are the most important sources of food in the world whereby millions of consumers 

in both developing and developed countries rely on as their preferable staple food. 

Production of cereals globally is facing serious challenges since the current production 

rates cannot provide enough food to meet the rising demand of the world’s population by 

2050, thus affecting the global food security (Conway and Barbier, 2013). Constraints that 

mainly affect crop production negatively are abiotic stresses, biotic stress and socio- 
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economic factors which include poor soils, low-yielding varieties, inadequate access to 

farm inputs like fertilizers and improved seeds (VIB, 2017).  Recent study showed that 

Sub-Saharan Africa crop losses and low yields are highly attributed to biotic stresses such 

as foliar diseases, weeds and insect pests (Bekeko, 2013).  

1.3 Justification 

Few decades ago, screening of crop diseases to identify resistant germplasm has always 

depended on traditional ways which are confounded with high error rate due to biasness. 

The use of high throughput digital imagery tools is currently replacing the traditional 

phenotyping methods since in most crops growing regions digital imagery tools have been 

introduced to enhance proper phenotyping of field crops on various traits such as disease 

severity, insect attack and nutrient levels. Additionally, these digital imagery technologies 

provide new opportunities to plant researchers to study a wider range of physiological and 

developmental plant processes with greater efficiency. Digital imagery tools such as 

unmanned aerial vehicle (UAV) have therefore been proposed for use in this study to 

collect disease data on fields to test its efficacy in obtaining precise and accurate 

information (Xu, et al., 2020). Breeding for resistance requires quantifying and genotyping 

of the plant population to identify the genetic bases in the traits (Goggin, Argelia, & 

Christopher, 2015). 

1.4 Objectives 

1.4.1 Main objective 

 To improve disease monitoring, in maize fields through use of high-throughput tools for 

high precision data and mapping of Quantitative trait loci (QTL) related to Northern leaf 

blight. 
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1.4.2 Specific objectives  

1) To compare high-throughput phenotyping with the visual crop evaluation of Northern 

leaf blight diseases among Kenyan and International maize germplasm. 

2) To identify the genomic region associated with resistance to Northern leaf blight 

disease through genome- wide association selection (GWAS) in tropical germplasm. 

1.4.3 Hypotheses 

1) Visual crop evaluation of foliar diseases may lead to biased or inaccurate results unlike 

high-throughput phenotyping platforms. 

2) There are sources of resistance to NLB among Kenyan and international maize 

germplasm. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Maize taxonomy, botany, growth and development  

Maize belongs to the family of grasses (Poaceae) and genus Zea, which comprises of `both 

perennial and annual species. The genus comprises of several wild species; Teosinte and 

the cultivated maize (Zea mays). Maize is a diploid crop with 2n = 20 chromosome number 

(Poehman and Sleper, 2006). Although there are some major differences between the two, 

various morphological and genetic studies show the relationship within the genus (Buckler 

and Steven, 2005).  

 

Maize is a tall, determinate annual C4 plant varying in height from 1 to 4m. It has two 

growth stages namely the vegetative and reproductive stages. The vegetative stage occurs 

in three distinct growth levels. By the end of the first one week after planting, 2- 4 leaves 

appear. At 35-45 days after planting, Knee- height stage occurs, lastly the male flowers 

appear which is tasseling stage. The reproductive stage occurs 2-3 days after tasseling stage 

where female flowers and combs are formed. At this stage silk is identified outside the 

husk enhancing pollination through trapping falling pollen grains. After fertilization is 

over, grains start developing in the cob. Finally, it reaches maturity stage when harvesting 

is done after the leaves and silk get dry completely and become very brittle (Tripathi, 2011). 

Maize have a male inflorescence with loose panicles which produces pairs of free spikelet 

each enclosing a fertile and a sterile floret. The female inflorescences have a spike, which 

produces pairs of spikelet on the surface of a highly condensed rachis. The female flower 

is tightly covered over by several layers of leaves, and so closed in by them to the stem that 

they don’t show themselves easily until emergence of the pale yellow silks from the leaf 
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whorl at the end of the ear. The silks are the elongated stigmas that look like tufts of hair 

initially and later turn green or purple in color. Each of the female spikelet encloses two 

fertile florets, one of whose ovaries will mature into a maize kernel once sexually fertilized 

by wind-blown pollen (Tripathi, 2011). Maize grain is botanically a caryopsis, a dry fruit 

containing a single seed fused to the inner tissues of the fruit case. The seed contains two 

sister structures, a germ which includes the plumule and radical from which a new plant 

will develop. Endosperms provide nutrients for that germinating seedling until the seedling 

establishes sufficient leaf area to become autotrophy.  

2.2 Production of maize in the world   

 Maize is produced widely throughout the world, in temperate and tropical zones. In the 

year 2014, more than 1,022 million tons of maize was produced in more than 170 countries 

on about 181 million hectares of land (FAO, 2016). The high maize producers were United 

States of America with about 361 million tons, followed by China with 216 million tons, 

Brazil with 80 million tons, lastly Argentina and Ukraine with 33 and 28million tons 

respectively. India is the sixth – largest producing country with about 24 million tons, 

followed by Mexico and Indonesia both with about 23 million tons and South Africa with 

14 million tons. These ten regions accounts for 80% of the world’s total maize production 

(FAO, 2016). Global cereal production is expected to increase in the next decade reflecting 

a growth of 15% by 2023 (OECD-FAO, 2014), while in developing regions, there will be 

more than 75% agricultural outputs over the next decade (OECD-FAO, 2014).  

 

Maize production in the world can be divided into two categories namely the white maize 

production and yellow maize production (Meyer, 2006). Both the white maize and yellow 
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maize are genetically the same but differs in their appearance; the yellow maize has no 

carotin oil pigments in the kernel thus causing the yellow color of the grain. In the world, 

a larger area in the tropical highland and sub-tropical/mid-altitude environments is planted 

white maize, as opposed to yellow maize. White maize occupies about 40 percent of the 

lowland tropical maize (Mosisa et al., 2007). Areas which mostly grow white maize are 

Central America excluding the Caribbean sub-region, where it represents about 90 percent 

of total maize output of the region, and the northern part of South America, Colombia and 

Venezuela. Yellow maize is considerably more important in their total cereal production 

than white maize. However, yellow maize is becoming un-popular nowadays in Africa 

because its associated with food aid programs therefore people are perceived that it only 

consumed by the poor also its associated with animal feeds (Doebley, 2004). 

2.2.1 Maize Production in the Sub-Saharan Africa 

 Maize was first introduced into Africa by the Portuguese who came as explorers and 

traders in the 16th to 18th century (Vollbrecht and Sigmon, 2005). Since then, maize has 

become Africa's most preferred staple food and feed system. Besides being a major staple 

food for most of the households in sub-Saharan Africa, it dominates the diet of the rural 

and urban people. Much of the maize in Africa is produced in Eastern and Southern Africa 

region namely, Tanzania, Uganda, Zambia and Swaziland under 17.4 million hectares 

which is about 12.5% of the global production (FAOSTAT, 2014). In Eastern Africa, 3.9% 

of the cultivated land is under maize which yields 700 to 1800 kg /ha as opposed to7437 

kg /ha in the USA (Mosisa et al., 2007). Generally, maize in Africa is grown by small-scale 

farmers for local consumption. By 2020, maize production in both sub-Saharan countries 

and developed countries will surpass that of wheat and rice (FAO, 2016).  
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Many African countries, the average maize yield per hectare is very low. The reason being, 

maize production is continuously affected by a number of biotic and abiotic stresses. Biotic 

stresses occur as a result of damage done to the plant by other living organisms such like 

bacterial, nematodes, fungus, weeds and viruses while the abiotic stresses are the negative 

impacts of non-living factors on plants in a given area. For maize abiotic stresses are poor 

fertility, drought and poor post-harvest management. 

2.3 Maize production constraints  

Maize suffers from about 110 diseases on a global basis caused by fungus, bacteria and 

viruses. In Sub Saharan Africa the widely spread fungal disease is Northern leaf blight. 

2.3.1 Northern Leaf Blight 

2.3.1.1 The causal agent  

 Northern leaf blight (NLB) is caused by the hemibiotrophic ascomycete fungus 

Exserohilum turcicum(Leonard and Suggs, 1974). The Exserohilum fungus belongs to 

division Eumycota, sub-division Deuteromycotina, order Moniliales and family 

Dematiaceae. This fungus spreads biotrophically during the initial infection stage before 

changing to a necrotrophic lifestyle.  

2.3.1.2 Pathogenesis 

Exserohilum turcicum fungus lowers yields up to 70% in maize by forming necrotic 

lesions, thus interfering with photosynthesis (Tillahum, et al., 2001). This fungus forms an 

aspersorium which penetrates through the maize leaf cell using an infection hypha which 

produces infection pegs to get in the epidermal cell wall. After penetration, the fungus 

produces intracellular vesicle to obtain nutrients from the cell resulting in necrotic spots 

that cause epidermal cell to collapse within 48 hours (Lexy, et al., 1983). 
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2.3.1.3 Epidemiology and infection  

During warm, humid conditions, mycelia and conidia, of E. turcicum are produced on 

infested maize residues (Leach, et al., 1977). These forms the primary source of inoculums 

and spread when splashed by rain or carried by wind from distant areas and deposited on 

the surfaces of maize leaves.  

Once deposited, conidia germinate when free water mainly in the form of dew is present 

on the leaf surface for 6 to 16 hours and temperature of 18 to 27°C (Levy and Cohen, 1983). 

Conidia develop a germ tube which penetrates through stomata, and invades the 

parenchyma cells (Gowda, et al., 1994). In moist conditions, the fungus overwinters as 

mycelium and conidia produced on maize residues are left on the ground surface. These 

conidia can also develop into spores, thick-walled resting spores that remain viable for long 

periods of time. Northern Leaf Blight incidence is influenced by temperature of 22 to 32°C 

and relative humidity of 70% (Misra and Singh, 2005). 

 

Figure 1: Disease cycle of Northern leaf blight (obtained from www.pioneer.com)  

 

2.3.1.4 Symptoms 

 Northern leaf blight is identified as one of the most devastating foliar disease of maize in 

Sub-Saharan Africa (Harlapur, 2005).  It is also a main problem in the North eastern United 

States, areas of China, Latin America and India (Adipala, et al., 1993). The disease is more 

aggressive in young susceptible plants but the fungus is capable of infecting maize plants 
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at all the stages of crop growth right from seedlings to maturity. The fungus can survive 

for years in an infected maize residue, thus making it a problem once it develops in an area 

(Muiru, 2008).  

 

Northern leaf blight disease is more prevalent in humid areas with moderate temperatures 

that favor fungal spore production and germination (Muriithi and Mutinda, 2001). Spores 

produced on the residue or the diseased plants can be splashed to new leaves or brown by 

wind over distances to nearby fields. If the weather conditions become warmer or drier, 

disease progression may be slower but the fungus remain viable and can resume activity 

once conditions become more favorable. 

 

 Northern leaf blight disease infection shows by long elliptical lesions that run parallel to 

the leaf margin. It begins on lower leaves and progress up the plant (Muiru, 2008) (Fig 2). 

It takes 7- 12days for the lesions to develop after infection but it highly depends on hybrid 

susceptibility and high nitrogen levels in the soils. The infection may also begin in the 

upper plant canopy where spore loads are high since the lesions produce olive green or 

black fungal spores. Northern leaf blight lesions may also appear on the leaf sheaths and 

husks of susceptible maize plants leading to reduction of maize yield caused by destruction 

of photosynthetic activity on leaf area due to blighting of the leaf surface during the period 

of grain filling (Hooker, 1981).  

 

NLB disease first starts as a small elliptical spot on the leaves, grayish green in colour with 

water soaked lesions. The spot turns greenish with age and increase in size and finally 



11 
 

attains a spindle shape. Spores of the fungus develop abundantly on both sides of the spot. 

Heavily infected field shows scorched appearance (Chenulu and Hora, 1962). When fully 

expanded, the lesions may be 5- 10 cm length. These lesions first appear on the lower 

leaves and as the season progresses, the lesion number increases abundantly with time and 

then all the leaves are covered, the plants look dead and grey (Ullstrup, 1966).  

 

Figure 2: Maize plant showing Northern Leaf Blight lesions (picture taken by 

Arnet) 

 

Infection occurs from the lower part of the leaves and gradually extends to the upper side. 

The size and color of the disease lesions differ with variety, when the weather is damp and 

rainy, grey black mold layer occurs on the lesions (Zhao and Wang, 2009). NLB disease 

causes extensive leaf damage and defoliation during grain filling period. It also reduces the 

sugar content and viability of the seed predisposing the crop to stalk rot (Harlapur, 2005). 

 

 

2.3.1.5 Management of NLB disease in maize 

Various ways are used to control the disease. The basic management strategy to reduce 

northern leaf blight incidences and severity is planting of resistant varieties because it fits 

Africans condition. This method is cheap, effective and gives high results (Dunn and 

Namn, 1977). 
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 Northern leaf blight has two types of resistance that exist in maize, the polygenic resistance 

that is expressed as a reduction in lesions size, number of lesions, and sporulation. 

Monogenic resistance is controlled by four single dominant genes Ht1, Ht2, Ht3 and HtN. 

Both resistances monogenic and polygenic can be incorporated together to lower TLB 

severity (Monsanto, 2014).  

 

Cultural methods such as crop rotation using non-host plant crops like beans, soybean and 

sunflower have been adopted. It lower incidence of the disease by allowing the conidia that 

survive in the residue to desiccate before maize is planted again (Harlapur, 2005). Burying 

residue and conventional tillage ensures proper handling of infested crop remains, this 

helps reduce infection levels by decreasing the amount of primary inoculum of the 

pathogens and incidences of diseases developing early in the season (Madden et al., 1993).  

Additionally, in a reduced tillage or no till field with NLB history it requires a two-year 

rotation (Monsanto, 2014). Multiple fungicides are registered for use on maize for NLB 

control. The commonly used fungicide includes Dithine, Difolatan, Zinc ethiylenebis and 

O-Ethyl-S.S-diphenyl. Spraying schendule begins when the first lesion appear on the leaf 

below the ear. However, before deciding to use fungicides one should consider cropping 

practices since the application cost of fungicide leads to an additional cost in maize 

production (PANNAR Seed Ltd, 2009), and can represent a risk to the  farmers and to the 

environment when not handled in the right ways.  

Various biological control agents such as Bacillus subtilis and Enterococcus species can 

be used to lowers the growth of S.turcica effectively. These biological controls have several 

advantages in that they are environmental friendly, do not develop resistance to pathogens 
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and do not require industry processes (James-Cook, 2003). However, this method is slow 

and unpredictable therefore it requires a specialized person for rearing and releasing them 

to the field. This is due to the species multiplying in excess and turning to be pathogens in 

other crops (Jutsum et al., 1988). 

2.3.2 Source of resistance  

Qualitative and quantitative resistances to Northern leaf blight (NLB) have been identified 

by maize breeders (Pataky, et al., 1986). In maize Quantitative disease resistance (QDR) 

has widely been used in breeding programs, it provides more durable disease resistance 

that remains effective over a long period in a large area (Brown, 2015) although it is 

difficult to test (St Clair, 2010).  

Two important reasons for wide use of quantitative disease resistance in maize are; maize 

is naturally outcrossing species which makes the genetic architecture controlling 

quantitative traits more complex in maize than in self-pollinating plants such as rice and 

wheat (Buckler, et al., 2014). Secondly, the most economical maize disease is caused by 

necrotrophic pathogens where resistance to necrotrophic disease is almost exclusively 

quantitative rather than qualitative (Govrin and Levine, 2000). Quantitative disease 

resistance is a polygenic; it’s controlled by many genes each with a small effect which is 

often affected by the environmental factors (Pataky, et al., 1986). 

 Researchers in Uganda used variety Babungo3, Ev8342-SR, Mo 17, and H99 as sources 

of northern corn leaf blight resistance; they reported that the results were successful (Lipps, 

et al., 1997). Other researchers recorded that Mo17 provides polygenic TLB resistance to 

maize plants (Freymark, et al., 1993). CML104 and CM105 from CIMMYT were used to 

analyze the mechanism of northern leaf blight disease in India where it was identified that 
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they conferred durable resistance to TLB disease (Sharma and Payak, 1990). Further it was 

reported that, durable resistance can be obtained by improving population through 

recurrent selection (Campana and Pataky, 1995). 

2.3.3 Plant immune system 

 In nature, plants are highly affected by various destructive pathogens and pests, including 

viruses, bacteria, fungi, nematodes and insect herbivores. Each of these disease causing 

organisms attacks vital features so as to develop a parasitic relationship with its host plant. 

Plant pathogens are generally divided according to their way of living, the necrotrophs and 

biotrophs (Glazebrook, 2005). Necrotrophs first destroy plant cells mainly through 

production of phytotoxins, and then later it feed on the contents. Biotrophs obtain nutrients 

from living plant tissues, mainly through specialized feeding structures that invade the 

plant cell without disrupting it.  

For plants to defend themselves against all these different types of pathogens, they have a 

number of structural barriers and preformed antimicrobial metabolites to prevent or to stop 

invasion by the pathogens. Despite the plant having much defense, numerous microbes 

fortunately succeed in getting through. However, a broad spectrum of inducible plant 

defenses can be introduced to control further pathogen invasion.  

 

2.3.3.1 Systemic acquired resistance and induced systemic resistance in 

maize  

Most of the maize Quantitative Trait Loci and genetic inheritance studies of disease 

resistance have assessed foliar pathogens, thus leading to many breeders progressing 

successively against foliar pathogens. Plants which are initially infected by a 

microorganism may become systemically more resistant to any other pathogen attack 

(Balint and Johal, 2009).  
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There are two types of systemic responses namely systemic acquired resistance (SAR) and 

induced systemic resistance (ISR). SAR is a response to necrotizing pathogens that gives 

a broad-spectrum resistance (Hunt and Ryais, 1996) and is related to introgresion of 

pathogenic- related (PR) gene. Salicylic acid seems to be the inducer of systemic acquired 

resistance and Methyl salicylate (MS) acts as the moving signal which induces SAR 

systemically (Park, et al., 2007). Methyl salicylic is produced at the point with an infection, 

carried though the whole plant in the phloem and is converted to salicylic acid at the point 

of action. Induced systemic resistance (ISR) is induced by symbiotic micro-organisms in 

the rhizosphere (Vallad and Goodman, 2004). It gives broad-spectrum resistance but the 

pathway is controlled by jasmonate and ethylene instead of salicylic acid (SA) and 

pathogenesis- related (PR) genes. The SAR and ISR pathways have widely been described 

in dicotyledonous systems but the presence of analogous pathways in monocotyledonous 

systems has not been scientifically shown. Systemic acquired resistance has also been 

identified to work in a wheat field (Calonec, et al., 1996) while an induced systemic 

resistance has recently been published in maize for response to the fungal root colonizing 

fungus Trichoderma(Djonovicet al., 2007). 

 

2.3.4 Genetics of Northern leaf blight resistance 

In maize, resistance to Northern leaf blight is located on chromosome 3, 5, and 8 (Welz 

and Geiger, 2000). According to (Brewster, et al., 1992) MO17 maize line had NLB disease 

resistances linked to chromosome 3 and chromosome 6. However, northern leaf blight 

disease resistance is controlled by six dominant Ht1, Ht2, Ht3, HtN, NN, HtM and a 

recessive gene Ht4 (Ferguson and Carson, 2004).  
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All these provide qualitative resistance either dominant or partial dominant. For the HtN 

gene it provides partial resistance to NLB disease (Pataky, et al., 1986). In the past, both 

qualitative and quantitative disease resistances were important for controlling NLB, 

comparing with Ht genes quantitative trait loci (QTL) is highly adopted in maize breeding 

because they show durable resistance and are less likely to be overcome by evolution of 

novel resistant pathogen races. A number of studies have been conducted to map QTL for 

resistance to NLB, these QTL seem to be distributed throughout the genome (Ali and Yan, 

2012). 

2.3.5 Breeding for Northern Leaf Blight resistance 

Host plant resistance breeding is the most feasible approach in combating the major stresses 

hindering optimum maize production. Many breeding strategies have been used to 

contribute to genetic gains in grain yield and other traits of economic significance (Welz 

and Geiger, 2000). The use of pedigree breeding combined with extensive multi-location 

testing, has been used to assess the phenotypic performance of new genotypes across a 

large sample of environments in Sub-Saharan Africa.  

Breeding for resistance have been implemented by national programs, Kenya agricultural 

and livestock research organization –KALRO, International institute for tropical 

Agriculture IITA, and the International Center for the Improvement of Maize and Wheat 

(CIMMYT) (Pratt, et al.,1997). These breeding programs have managed to improve 

multiple populations and inbred lines (Kim, et al, 1989), also has improved the 

performance of the germplasm for agronomic traits as well as for quantitative resistance to 

maize diseases.  
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In some breeding programs breeders are trying to incorporate durable resistance into maize 

germplasm. Numerous crop varieties with the resistance have been achieved from the R 

gene that introgress strong resistance (Dang, et al., 2013). However, this has been a success 

in few areas but due to the rapid evolution of pathogens the resistance is often lost quickly 

(Dang, et al., 2013). 

Resistance to foliar diseases such as southern and northern leaf blights, gray leaf spot and 

maize streak virus are all highly controlled through conventional breeding, where by 

susceptible genotypes are eliminated before recombining the germplasm. This is achieved 

by introducing the germplasm under a high disease pressure area. Additionally, in modern 

molecular breeding, PCR based markers can be used for developing disease resistant 

varieties and hybrids. This is achieved since it gives a complete insight into the diseases 

and it’s cost effective. It also offers an effective summary on gene mapping, genetic 

transformation and quantitative genetics. Recently, breeders have reported identifying 

disease resistance quantitative trait loci and exploring the mechanism through molecular 

breeding such as; SCMV (Sugarcane Mosaic Virus) resistance (Zhang, et al., 2003) and 

MDMV (Maize Dwarf Mosaic Virus) resistance (Liu, et al., 2006).  

All disease QTLs are not easy to identify and clone, due to their limited capacity to identify 

small effect QTLs, large genotype × environment interactions thus preventing scientists 

from achieving an effective breeding program through molecular assisted selection. High 

throughput genotyping platforms are available at the moment and when joined with 

precision phenotyping in the field can provide the information needed to effectively use 

marker assisted selection in a breeding program for complex traits. Due to current high 

costs in genotyping this method may be highly adapted for use in breeding programs. All 
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these will lead to upgrading the economic value of maize and ensure global food safety 

(Zhang, et al., 2003). 

2.4 Plant phenotyping 

Plant phenotyping is an assessment of complex traits in plants such as resistance, growth 

and development, tolerance and architecture (Lei, et al., 2014). Traditionally, assessment 

of phenotypic traits for plant diseases resistance or stress in breeding research highly 

depend on visual scoring by qualified experts, who are capable of identifying disease 

severity in a discrete scale (Bock, et al., 2010).  

 

Unfortunately, these visual assessment methods are time consuming, confounded with high 

error rate due to temporal variation arising from (a) the raters being prone to various 

illusions for example lesions number and (b) rater may tire and lose concentration thus 

lacking accuracy and reproducibility (Lei, et al., 2014).Phenotyping of disease symptoms 

can be divided into two (a) collection of data (b) analyzing the data, they both requires one 

to be keen. 

 

2.4.1 Image based methods for assessment of plant disease symptoms 

Variety of quantitative high throughput image-based methods for assessing plant growth 

and development are currently being developed. These methods range from simple analysis 

of a single plant, to broad assessment of crop canopy in a field (Andrew, et al., 2015). 

Image-based phenotyping methods have numerous advantages; (a) Phenotypic data can be 

obtained from one particular plant population in the entire experiment. (b)Produces correct 

and specific data compared to the visual crop assessment (c) The phenotyping tools have 
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the ability to collect data from large experimental fields due to their increased statistical 

power (Andrew, et al., 2015). In a particular study on imaging, strains of the fungus 

Zymoseptoria tritici on wheat leaves was compared to the visual crop evaluation method 

(Stewart and McDonald, 2014). The fungus leads to wheat blotching which is identified by 

necrotic lesion, fruiting fungus known as pycnidia and chlorosis of leaves. 

 

Basically visual evaluation of diseases depends on estimates of the leaf area affected by 

pycnidia or lesions. Estimation of these fungus pycnidia is not easy due to its size and 

numbers when they multiple. For reliable and objective diagnosis of plant diseases, new 

methods have been introduced and incorporated in the rating system. This improves the 

precision, accuracy and reproducibility of diseases and insect damage (Nilsson, 1995). The 

use of high-throughput imagery tools in phenotyping crop diseases allows data collection 

at various time, it also generate quantitative data from the generated images, therefore these 

improves high outcome of the experiment. (Andrew, et al., 2015). 

 

High-throughput image analysis is an improved method used in extraction of useful 

information from photographs, screens and infra-red photograph. Raw data obtained from 

image-based phenotyping tools like camera and the scanner is not directly usable.  It 

requires processing to extract information which is normally done by humans, electronic 

and also by chemicals means (Christian, 2012). The statistical method by which the data 

information is analyzed is important. It was suggested that any data on image analysis can 

be grouped into three stages; computational- these describes the process done, algorithm- 
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is the steps used by the process to implement the computational theory and mechanism is 

the physical systems and software that carry out the process (Primore, et al., 2012).  

 

However, these stages should be adopted when generating phenotypic experiments. To 

note the appropriate approach on the computational theory and algorithm, one chooses the 

appropriate method to implement. This is because plant breeders may lack skills in 

computers and tends to focus on methods depending on hardware and software (Primore, 

et al., 2012). The use of the digital sensing systems has enhanced opportunities for plant 

researchers. They study a wide range of physiology and developmental plant processes, 

with greater efficiency hence their integration in seed companies and National Agricultural 

Research System (NARS) (Araus and Cairns, 2014).  

2.5 Quantitative trait loci mapping 

Quantitative trait loci analysis has really improved knowledge on genetic constitution of 

different traits. These include resistance of disease in maize crops (Wiser, et al., 2006). 

Various quantitative trait loci for important traits are mapped in maize. Majority of 

agronomic important traits of plants have a complicated inheritance pattern and are under 

the control of many genes.  

 

Quantitative trait loci mapping shows information about the inheritance of disease 

resistance generating information such as genome location of each genetic factor, gene 

action, gene effect and the direction of effects. A couple of traditional methodologies with 

QTL mapping in disease resistance could result in more high and precise population 

improvement (Pereira, et al., 2000). However, QTL mapping has brought about new 
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approaches for understanding and exploiting both qualitative and quantitative resistance 

factors. Analyses have also certainly helped in understanding the genetic constitution of 

various traits in a greater way, including resistance of diseases (Wisser et al., 2006) and 

tolerance in drought (Tuberosa et al., 2007) in maize crops. Quantitative trait loci (QTL) 

mapping of bi-parental populations is an appropriate method of identifying the genetic 

constitution of crops.  

 

Quantitative trait loci is mapped in maize for a number of important traits including plant 

height (Zhang, 2007) downy mildew resistance (Agrama et al., 1999), resistance to sugar 

cane mosaic virus (SCMV) (Zhang, et al., 2003) resistance to common smut (Ding, et al., 

2008), resistance to head smut (Tian, et al., 2008), yield under drought stress at flowering 

time (Lu, 2006), and popping ability (Li, et al., 2006). QTLs for Northern Leaf Blight 

resistance have been identified in different populations and they are distributed throughout 

the genome showing insensitivity to light and temperature variations (Carson and Van 

Dyke, 1994). 

2.5.1 Genome – wide association mapping 

Genome wide association selection (GWAS) is a powerful tool to effectively and 

efficiently identify genomic regions. However, this is achieved by enhancing analysis of 

genetic make-up of complex traits in plants.  It also gives effective output for identifying 

the genetic loci responsible for a particular trait of interest, therefore saving time and cost 

(Yu and Buckler, 2006).  
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Association analysis has been successfully carried out to identify the genomic regions 

related to diseases such as Northern leaf blight (Poland, et al., 2011). It has the ability to 

identify a single polymorphism within a gene that is responsible for phenotypic variation 

of a specific trait. Association mapping is faster and cost effective compared to other 

mapping methodologies. Association mapping can map quantitative traits in a very 

powerful statistical way. It has been identified to be useful in locating major QTL in maize 

(Ingheland et al., 2012) whereby diverse inbred lines are incorporated in several 

association mapping studies in maize. Additionally, it helps in identifying molecular 

markers associated with complex traits. To ensure success in association mapping, 

germplasm chosen should be composed of elite inbred lines, diverse inbred lines or land 

races (Yang, et al., 2010). However, the best association mapping population should have 

a wide genetic diversity as possible and be used to identify complex genetic traits (Yang, 

et al., 2010). Recently, 32 and 29 QTLs for the two most threatening foliar diseases in 

maize in the world, southern leaf blight and northern leaf blight have been observed 

(Poland, et al., 2011).  

 

Another method is association mapping based on linkage disequilibrium concept which 

exploits the diversity observed in existent cultivar and in breeding line without developing 

new populations. Quantitative trait loci (QTL) mapping and genome-wide association 

studies (GWAS) are beneficial tools for genetic analysis since they give valuable 

information about genomes in various plant studies. They have been broadly adopted for 

gene mapping (Topp et al., 2013).  
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Recently, scientists have been using modern molecular technologies such as association 

mapping and joint linkage to confirm genes for different traits. These techniques will help 

the scientists to improve on the basic understanding of plant disease resistance, and 

improving the genetic constitution of plants. However, very little is known about the 

genetic make-up of many plant traits (Mackay, 2001). This is because the phenotypic 

variation in most traits is an outcome of several genes involved in the biological system, 

where each gene has a small to moderate effect on phenotype. Several studies involving 

exploring the mechanisms of disease resistance showed that different genes are involved 

in controlling the plant growth or activation of defense responses against pathogens 

(Esquerre, et al., 2000). 

2.5.2 Application of Molecular markers for Northern leaf blight 

Molecular markers use has been identified in maize for characterization of germplasm, 

linkage disequilibrium analysis and mapping quantitative trait loci for different traits 

(Prakash, 2014). These markers are 100% heritable, fast, efficient, not influenced by 

environmental factors, have an advantage in selection of simple inherited traits which is 

more effective and less expensive than phenotypic selection for that trait. They have the 

ability of improving efficient selection for complex traits following the concept of 

correlated traits selection (Falconer, 1960). Markers were identified in 1980s with great 

chances in breeding because they meet some objectives including identification of QTLs, 

genetic diversity analysis and prediction of hybrid performances of different plant species 

(Christian, 2012). Markers are polymorphic and show in different ways that the 

chromosome consisting the mutant gene can be identified from a chromosome with normal 

genes. 
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 In most cases plant breeders monitor the physical make up of a plant through the use of 

molecular marker instead of waiting for a plant to reach maturity. 

2.5.2.1 Low-Throughput marker system 

Restricted fragment length polymorphism molecular markers were first used in 1975 to 

identify DNA sequence polymorphisms for genetic mapping of a temperature-sensitive 

mutation of adeno-virus serotypes (Grodicker et al., 1975). In 1980s and 1990s RFLP 

markers were the most popular and widely adopted in plant breeding as they were the first 

generation molecular markers (Jones, 2009).   

 

The main advantages of RFLPs markers are reproducible, high locus- specificity and co-

dominance. Restricted fragment length polymorphism markers were successfully 

incorporated in constructing genetic maps in several crops such as wheat, maize and rice 

(Cho, 1998). However, in the past years the use of RFLPs markers in genetic research and 

breeding has been reported to be low because most plant breeders think that RFLP markers 

are time consuming, requires the presence of high quantity and quality of DNA and the 

experimental procedure is tiresome (Edward and Mc.couch, 2007). 

 

 

2.5.2.2 Medium –Throughput Marker Systems 

 PCR-based markers- invented in the beginning of 1990s they include random 

amplification of polymorphic DNA (RAPDs) these markers were invented by two 

laboratories (Welsh and Mc Cleland, 1990). RAPD markers have been used widely in plant 

species for assessing genetic variation in population and fingerprinting. 
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 Amplified fragment length polymorphism (AFLPs) is anonymous while the level of their 

reproducibility is very high but their detection method was laborious and not amenable to 

automation.  

 

Simple sequence repeat (SSRs) markers were established in 1990s and provided a choice 

for many genetic researchers since they are highly polymorphic thus highly informative in 

plants, are co-dominant markers, abundant and uniformly dispersed in plant genome. SSRs 

markers are time consuming and expensive to develop because genomic regions carrying 

SSRs must be identified and sequenced. 

 

 

2.5.2.3 High-Throughput Marker Systems 

2.5.2.3.1 Single nucleotide polymorphism  

Single nucleotide polymorphism is a single nucleotide base change between two DNA 

sections. It can either be a deletion or insertion of nucleotides. SNPs are used as molecular 

markers in plant breeding program and especially in genetic analysis which is gaining 

interest and displacing other form of molecular markers due to their increasing availability 

in the genome sequence and reduction in cost (Rafalski, 2002). SNP markers are identified 

to have several recommendable features of an ideal marker (Yang, et al., 2010) and their 

abundance availability in plant genomes enhances construction of very high density genetic 

maps. This enhances SNPs to become markers of choice in construction of linkage maps, 

analysis of genetic diversity, mapping quantitative trait loci and in marker-assisted 

selection (Ching and Rafalski, 2002). SNPs can work as powerful tool for markers assisted 

selection because they are highly stable and have low mutation rate that makes them good 

markers for studying complex genetic traits (Syvanen, 2001). Recently SNPs have been 
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used to assess diversity within genomic region for a number of years where maize genetic 

diversity was studied using SNPs at 21 loci along chromosome 1 (Tenallon et al., 2002). 

The study enhanced understanding of the forces contributing to genetic diversity in maize. 

A number of genotyping methods are available but most are expensive for academic 

laboratories and breeding purposes like Illumina Golden Gate® genotyping and 

Biosciences Allele Specific PCR technologies (Comai, 2004). It has been identified that 

SNP frequency in maize are higher compared to other crops such as rice that has a SNP 

frequency of 0.5-0.78%, soybean 0.36% and wheat with 0.5% (Vroh et al., 2006).  

2.5.2.3.2 The K Bioscience Competitive Allele-specific PCR  

K Bioscience Competitive Allele-specific is a SNP genotyping system that enhances 

detection of SNPs without separating and also gives a strong system for determination of 

SNP insertion or deletion. It originated from K Bioscience where it was used in laboratories 

for some years while undergoing improvement. 

 

K Bioscience Competitive Allele-specific genotyping help researchers and breeders who 

are interested in analyzing small quantity of specified SNPs in a large number of samples. 

However, this makes it the most efficient, cost effective, simplest and flexible way to 

determine SNP genotypes. Although KASPar system has been introduced in the market 

recently they have started to be used for large number of species. In maize 695 highly 

polymorphic gene-based SNPs from 13,882 validated SNPs were selected and converted 

into KASPar genotyping system with successive rate of 98% (Mammdow et al., 2012). 
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2.5.2.3.3 Genotyping by sequencing 

Genotyping -by - sequencing is an important platform for constructing libraries for next 

generation sequencing, also help to study a single gene marker to a whole genome (Poland, 

2012). GBS allows detection of a number of genetic variations that is capable to contain 

small indels and also large-mega- base indels (Kiani et al., 2013). Genotyping -by - 

sequencing was first developed for high resolution association studies in maize. However, 

since then it has been widely used on a number of species with complex genomes.  

 

Genotyping -by-sequencing enhance plant breeders to implement genetic linkage analysis, 

genomic selection, GWAS and molecular marker discovery under breeding programs. It’s 

simple, high reproducible, quick and reach to the important regions of the genome that 

sequence cannot reach, it also uses data directly from the population being genotyped thus 

limiting biasness toward a certain population. GBS is also cost effective making it more 

viable in plant breeding for providing a rapid tool to genotype. A work flow of GBS has 

been presented in (figure 3). The DNA samples, barcode and common adapters are placed 

and dried, the samples are then digested by a restriction enzyme APEK 1 and adapters 

ligated to the end of the genomic DNA fragment. Appropriate primers (primer 1 and primer 

2) are then added by complementary sequence for amplifying restriction fragment with 

ligated adapters. PCR is then done to increase the fragment pools; later the PCR products 

are cleaned and the resulting libraries of fragment identified on the DNA analyzer.  
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Figure 3: GBS libraries construction (picture taken from (Elshire, Glaubitz, Sun, 

Poland, Kawamoto, & Buckler, 2011) Elshire et al., 2011) 
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CHAPTER THREE 

COMPARISON OF IMAGE ANALYSIS AND VISUAL SCORING FOR 

PHENOTYPING REACTION OF MAIZE TO NORTHERN LEAF BLIGHT 

3.1 Abstract 

Northern leaf blight (NLB) is a devastating fungal disease in Sub-Saharan Africa. The 

disease leads to a dramatic reduction in yields and the produce is unfit for consumption. 

Conventionally, it takes a couple of days to phenotype disease severity in a canopy of plants 

while the phenotyping data obtained is neither precise nor accurate. Modern phenotyping 

technologies which involve the use of digital imagery tools have gained rapid adoption in 

maize breeding programs. This study was designed to determine the effectiveness of visual 

scoring and image analyses in phenotyping reaction of maize to northern corn leaf blight. 

In this study, two parental lines obtained from the International Maize and Wheat 

Improvement Center (CIMMYT) gene pool were test-crossed to two single cross parents 

(CML312/LA Posta SeqC7 F64) and (LA Posta SeqC7 F64/CML539/) to generate 192 DH 

hybrids. The 192 hybrids and four commercial checks were grown on an alpha-lattice 

design, with two replications in two locations in Kenya under high NLB disease pressure 

conditions during 2016-2017 growing seasons. Scoring for NLB disease symptoms was 

achieved through visual scoring using the CIMMYT scoring scale of 1-5. Imagery analysis 

data was collected after flowering these was done by taking images of maize plants after 

flowering. Agronomic traits data for every population were as well collected, they included 

day to anthesis, plant aspects, AUDPC and NGRDI. Data obtained was analyzed using 

Meta-R software and some of the results were as follow, In population 1 that was from 

cross LPS64xCML312 the days to anthesis had a heritability of 0.8, CV f 2.5, and LSD of 

2 respectively, plant aspect had a heritability of 0 and CV of 18, respectively, the 
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heritability estimates for (AUDPC) area under disease progressive curve was 0.43, a 

coefficient variance of 12.9 and LSD of 7.6 respectively. In population 2, cross LaPSF64 

x CML 539, anthesis days had a heritability of 0.72, CV of 2.11 and LSD of 1.94, 

respectively; plant aspect had a heritability of 0.2, CV of 17.9 and LSD of 0.2 respectively, 

AUDPC had a heritability of 0.6, CV of 9.7 and LSD of 8.1 respectively. However, image 

and visual morphology were evaluated from the results obtained. Our results suggested that 

due to high accuracy on the AUDPC compared to the visual scoring, visual assessment 

remains subjective and prone to error unlike in image based phenotyping that provides 

more accurate scores, saves time are more efficient and repeatable. In visual scoring biased 

information was acquired. Therefore, imagery phenotyping is more preferred by plant 

breeders in their breeding programs because it enhances fast development of disease and 

pest resistant crop varieties. 

3.2 Introduction 

Plant phenotyping is not a new technology for recording quantitative and qualitative plant 

traits. It has been the backbone of most studies in ecology, agronomy, and eco-physiology 

to explore plant functional diversity, compare the performance of species, or study plant 

responses to different environment (Granier and Vile, 2014). Imagery tools have been 

developed to conduct acquisition of automated images, analysis and quantifying aspects in 

the field (Andrew, et al., 2015).  

 

These methods are being used to study the development and growth of plants (Spalding 

and Miller, 2013). In numerous plant pathogens relationships less information is identified 

on the physiological mechanisms that shows symptoms of pathogens and diseases 
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produced on affected plants. Earlier, detecting of disease severity in plants depended on 

visual scoring. These visual based methods slowed early detection of plant diseases since 

small causing micro-organism are invisible to human eyes, the information obtained highly 

depended on the rater’s experience, it took the rater lot of working hours in case of 

unfavorable weather condition and accessibility to the field was also a challenge. 

 

 However, introduction of Image-based phenotyping methods has led to a number of 

positive results in breeding programs due to their numerous benefits advantages; They are 

amenable to automation, making it easy to study large populations due to their high 

statistical power, they are non-destructive, meaning that phenotypic data can be collected 

from the same area over the course of a long experiment, can detect spatial patterns of 

heterogeneity and allow visualization of localized responses which may likely be a 

challenge to identify using other methods.  

 

High-throughput techniques like thermal imaging and hyper spectral obtain data that 

cannot be identified with eyes. The image data generated image data from various 

phenotyping systems requires appropriate data management as well as an appropriate 

analytical framework for data interpretation (Florani and Schurr, 2013). Imaging 

techniques assist plant researchers’ in identifying features and functionality of living plants 

through scanning temperature profiles, measuring photosynthetic rates, checking on 

growth rates, and getting into root physiology (Finkel, 2009).  
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3.3 Material and methods 

3.3.1 Description of parental inbred lines used in the study 

Three inbred lines CML 312, CML 539 and LA Posta sequia were used for evaluation of 

Northern leaf blight resistance in two regions, Kenya Agricultural and Livestock Research 

Organization (KALRO) - Embu and Kakamega. Double haploid populations obtained from 

CML312xLApostaseqF64B and CML539xLApostaSeqF64B were used in this study. 

3.3.1.1 Inbred lines 

CML 312 

CIMMYT maize line (CML 312) is a tall intermediate maturing inbred line that has white, 

semi-flint kernels. Its source is from P500 with a pedigree of S89500F2-2-2-l-l-B*5 and 

developed by International Maize and Wheat Improvement Center (CIMMYT) Harare 

station. CML 312 matures late and is well adapted to subtropical regions. A genetic study 

also shows that the inbred line has good resistance to grey leaf spot and Exserohilum 

turcicum (Pswarayi and Vivek, 2004). 

CML 539 

CIMMYT maize line 539 inbred lines were developed by CIMMYT Harare station. It is 

tolerant to Exerohilum turcicum and early maturing. 

LA Posta SeqF64B 

Laposta Sequia has kernels that are dent and white in colour. It was obtained from 

CIMMYT population 43C through recurrent selection (CIMMYT, 1975). The maizeline is 

well adapted to lowland zones and it mature late.  

Table 3. 1 Origin, genetics and agronomic character of plant materials 

Inbred line Germplasm 

resources 

Country of origin NCLB 

reaction 

CML 312 CIMMYT  Zimbabwe Resistance 

CML 539 CIMMYT Zimbabwe Tolerant 

LaPostaSeq (LPS64) CIMMYT Mexico  
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3.3.2 Site description 

3.3.2.1 KALRO- Embu 

The experimental fields were situated at Kenya Agricultural and Livestock Research 

Organization (KALRO) - Embu which is in Eastern province, Embu County. The station 

lies at an altitude of 1060 m above the sea level, latitude 0°47'S and longitude 37°40'E. The 

mean annual rainfall ranges between 730 -1200 mm received during long rains (April to 

August) and short rains (September to December) respectively.  

3.3.2.2 KALRO- Kakamega 

The second experimental was conducted at KALRO- Kakamega which is in western region 

of Kenya, Kakamega County. The station lies an altitude of 1270 m above the sea level, 

latitude 0 °17 0 N and longitude 34° 44 58” E. The mean annual rainfall ranges between 

1250- 1750 mm and an average temperature of 20. 5°c with two cropping seasons where 

long rains fall in March to July and short rains in August to November .The soils types are 

deep, friable, Basaltic loam, fertile and well drained (http:// www.kari.org, 2008). The soil 

at KALRO- Kakamega has conditions favorable for Exserohilum turcicum infection and 

thus this site was chosen as a NLB hot spot area. 

3.3.3 Activities  

3.3.3.1 Experimental Layout and design 

The field experiments were conducted in KALRO Embu and Kakamega where double 

haploid lines obtained from the CIMMYT gene pool were test-crossed to two single cross 

parents (CML312/LA Posta SeqF64) and (LapostaSeq F64/CML539) in a North Carolina 

design to generate 192 DH hybrids. An alpha-lattice design with two replications was used 

to evaluate the 192 DH hybrids with other four commercial checks (CZH0616, WE1101, 

WH507 and CZH0616) across the two sites. The experiments were conducted under rain-

fed condition, irrigation and under a high disease pressure conditions in 2016-2017 
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growing seasons. Each single-row plot measured 4m long spaced at 75cm between rows 

and 25cm between one hill to the other. Three seeds were sown per hill and later thinned 

to one seed per hill to achieve the targeted plant population. Crop husbandry practices for 

all experiments involved application of phosphate fertilizer (Di-ammonium Phosphate- 

DAP 18:46:0) of 3g per hill (80kg P2O5) at planting. Top- dressing was done six weeks 

after planting an amount of 2g in every hill (80kg N/ha) of nitrogenous fertilizer (Calcium 

ammonium Nitrate - CAN 26%N). Bull dock, 0.05 GR (Beta-cyfluhtrin) was used to 

control stalk borers and cutworms. Weeds were mostly controlled using round-up.  

3.3.4 Data collection 

3.3.4.1 Disease assessment 

A score rating of Northern leaf blight (NLB) was done basing on a scale of five points as 

suggested by (CIMMYT, 1985). (Table 3.2) 

Table 3. 2 NLB disease scoring 

Score  Remarks 

1 no infection, fully clean plants, 

2 light infection with moderate number of lesions on lower leaves 

3 moderate infection with abundant lesions on the lower leaves and a few lesions 

on the middle leaves, 

4 heavy infection with lesions abundant on all leaves 

5 Very heavy infection with all leaves fully covered by lesions.  

 

 NLB resistance ratings were done three times and were basing on visual evaluation of 

symptoms on each plant. Disease ratings were done from when the disease symptoms 

started showing till harvesting time. The Area under Disease Progress Curve (AUDPC) 

was determined according to the equation of (Campbell and Madden, 1991). 
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3.3.4.2 Agronomic data 

i. Anthesis day (AD) refers to the number of days from planting to when 50% of 

plants had tassels 

ii. Silking day (SD) refers to the number of days from planting to when 50% of plant 

had silk.  

iii. Plant height (PH) was measured from the top of the soil to the node of flag leaf;  

iv. Ear height (EH) was measured in centimeters as height between the base of a plant 

to the node bearing the upper ear respectively. Measurements were randomly 

obtained on 10 plants from every plot.  

v. Ear aspect (EA) and Plant aspect (PA) was scored using a scale of 1 to 5. For the 

ear aspect, 1= indicated clean, uniform and large cobs with the preferred texture in 

the area whereas 5= indicated small non-uniform and diseased cobs with an 

undesirable texture. For the plant aspect, 1= indicated plants with uniform height, 

low and uniform ear placement and free of diseases whereas 5= indicated tall plants 

with high and irregular ear placement and are affected by diseases.  

vi. Field weight (FW) was calculated using the ears weight per plot, it was done after 

the removal of husks.  

vii. Grain yields (GY) was calculated as the weight of grains using shelled grains.  

3.3.5 Statistical Analysis 

Analysis of phenotypic data for estimating genetic components and heritability for 

quantitative traits is an important tool for breeders. 

 

3.3.5.1 Analysis of variance 

Analysis of variance (ANOVA) for NLB disease was based on the rating of individual 

plants. For the agronomic trait data such as plant height (PH), ear heights (EH), days to 
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silking, days to anthesis, ear and plant height and grain yield (GY) obtained across the 

environment were subjected to multi- environment trait analysis with R (META-R) 

software for analysis. The analysis generated the means, genetic variance, heritability, least 

significant difference and coefficient of variation. The environment and replication were 

treated as fixed effect while other components were treated as random effects. The ratio of 

genotypic variance to the phenotypic variance was used to estimate environment 

heritability (H²). Best linear unbiased prediction (BLUP) of each line was estimated and 

the predicted means were used to generate histogram plots and boxplot to determine the 

distribution of the data, across and within populations.      

3.3.5.2 Area under disease progressive curve (AUDPC) 

Area under disease progressive curve was introduced and calculated according to the 

equation of (Campbell and Madden, 1991) using the following formula; 

𝐴𝑈𝐷𝑃𝐶 = ∑[(𝑥𝑥𝑖+ 1+ 𝑥𝑖 ) ⁄ 2]  + 𝑡𝑖+1+𝑥𝑖+1

𝑛−1

𝑡−1

 

Where, 

𝑥𝑖Is the percentage expressing disease index at the 1th observation 

𝒕𝒊 Represents the time at the 1th observation 

𝑛 Represent the number of observation in total 

 

 

3.3.5.3 Heritability 

Heritability (h²) in broad sense was calculated as the ratio of total phenotypic variance as 

expressed as percentage. 

ℎ2 =
𝜎²𝑔

𝜎²𝜌
  × 100   

Where; 

𝜎²𝑔 Is the genotypic variance 

𝜎²𝜌 Is the phenotypic variance 
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3.3.5.4 Correlation analysis 

The correlation coefficient was carried out to determine the degree of association of a 

particular trait with yield and among other agronomic traits. Genotypic and phenotypic 

correlations were computed by using the formula given by (Weber and Moorthy, 1952). 

𝑟 =
𝑐𝑜𝑣(𝑥𝑦)𝑝

𝜎𝑝𝑥   ×𝜎𝑝𝛾
  × 100       

𝑟 =
𝑐𝑜𝑣(𝑥𝑦)𝑔

𝜎𝑔𝑥 × 𝜎𝑔𝑦
  × 100 

Where; 

r = Correlation coefficient 

Cov(𝑥𝛾) =Covariance between the trait x and y  

𝜎𝜌𝑥 𝑎𝑛𝑑 𝜎𝜌𝛾 =phenotypic variance of the trait x and y 

𝜎𝑔𝑥 𝑎𝑛𝑑 𝜎𝑔𝛾 =Genotypic variance of the trait x and y 

 

3.3.5.5 Image based Analysis 

The images and annotation data collected were subjected to the integrated analysis platform 

(IAP) maize pipeline for analysis (Christian et al., 2014). 

3.4 Results 

3.4.1 Analysis of Variance 

The analysis of variance showed significant difference (P ≤ 0.01) among the parents for 

the disease severity and all other agronomic traits within the evaluated maize genotypes 

for Northern leaf blight resistance.  

 

3.4.1.1 Cross LPS64xCML312 

 In the components of variance, anthesis day had a heritability of 0.78, LSD of 1.97, %CV 

of 2.5 respectively. Plant aspect had heritability of 0, LSD 0, and %CV of 18, respectively. 

For the AUDPC heritability was 0.41, LSD of 7.6 and %CV of 12.9 respectively. NGRDI-

100 recorded heritability of 0.60, LSD of 1.60 and %CV of 228.4 respectively. Heritability 
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estimate was 0.75. AUDPC recorded a genotypic variance of 33.8, %CV of 9.7, heritability 

estimate of 0.55 and LSD of 8.05 respectively. Anthesis day and NGRDI-100 recorded 

high heritability values thus showing that the variability in the trait is due to genetic 

differences. Plant aspect recorded a heritability of zero this showed that all the variability 

in the trait is due to environment (Table 3.3). 

 

3.4.1.2 Cross 1 CML539 x LPS64 

On the variability the tasseling day had a heritability estimate of 0.74, LSD of 1.90, %CV 

of 2.048 respectively. Plant aspect had a heritability estimate of 0.17, LSD of 0.24, and 

%CV of 17.9 respectively. For the AUDPC, heritability estimate was 0.55, LSD of 8.05 

and %CV of 9.7, respectively. Tasseling day and AUDPC recorded high values for 

heritability whereas plant aspect recorded a low value, this showing that almost all the 

variability in the trait are due to environment (Table 3.4).  
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Table 3. 3: Means, genotypic variance components (σ²G), error variance (σ²e), narrow sense heritability (h²), least significant 

difference, and coefficient of variance, of CML312/LaPSF64 DH population evaluated for NCLB disease, agronomic and image 

traits across environments 

Statistic AD PH EH 
P

A 
HC NE FW EA TURC1 TURC2 AUDPC 

Necrosis 
Saturation NGRDI_100 

Soil 

               

h² 0.8 0.5 0.5 0 0.2 0.4 0.5 0.5 0.4 0.4 0.4 0.4 0.4 0.6 

σ²G 4.1⃰ ⃰ 67 22 0 0.4 1.9 0.1 0 0 0 23.6⃰ ⃰  ⃰ 6.4 4.3 1.5 

σ²e 4.2⃰ ⃰ 201 72.3 
0.

1 
3.7 8.1 0.2 0.2 0.1 0.2 92.2⃰ ⃰  ⃰ 27.6 23.3 ⃰ 3.5 ⃰⃰ 

Mean 83.9 184 77.3 
1.

8 
3 12.2 2 3.1 2.2 2.7 74.3 75.7 87.4 -0.8 

LSD 2 11.9 6.9 0 1.1 2.1 0.5 0.3 0.3 0.3 7.6 4 3.4 1.6 

CV 2.5 7.7 11 
1

8 

63.

6 
23.2 25.2 14.6 16.6 14.4 12.9 6.9 5.5 228.4 ⃰

**P≤0.001; **P≤0.01; *P≤0.05; AD= anthesis days; interval; PH=plant height; NE= number of ears; FW=Field weight; HC=husk cover EH=ear 

height; PA=Plant aspect; EA=ear Aspect; Turc= Turcicum; AUDPC== area under disease progress curve; NGRDI= normalized green- red difference 

index; σ²g=genetic variance; LSD=least significant difference CV%=coefficient of variance; h²=heritability 
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Table 3. 4: Means, genotypic variance components (σ²G), error variance (σ²e), narrow sense heritability (h²), least significant 

difference, and coefficient of variance, of LaPSF64XCML 539 DH population evaluated for NCLB disease, agronomic and 

image traits across environments 

Statistic AD SD PH EH PA FW EA Turc1 Turc2 Turc3 AUDPC green veg Greener veg 

h² 0.7 0.7 0.6 0.7 0.2 0.8 0.4 0.5 0.4 0.6 0.6 0.5   0.4 

σ²G 3.2⃰ ⃰  3 67.6 39.6 0 0.4 0 0 0 0.1 33.8 ⃰⃰ 15.7  18.4 

σ²e 2.6⃰ ⃰ 2.8 118.6 58 0.2 0.4 0.2 0.1 0.1 0.1 36.1 ⃰⃰ 60.9  109.9 

Mean 79.3 81.2 210.4 91.5 2.2 3 2.4 1.8 2.2 2.6 61.9 39.7   61.6 

LSD 1.9 2.1 10.4 7.7 0.2 0.7 0.3 0.2 0.3 0.4 8.1 5.9   6.8 

CV 2.1 2.1 5.2 8.3 17.9 19.9 16.6 13 13.9 11.4 9.7 19.6    17 

 **P≤0.001; **P≤0.01; *P≤0.05; AD= anthesis days; SD= silking days; interval; PH=plant height; EH=ear height; PA=Plant aspect; EA=ear Aspect; 

Turc= Turcicum; AUDPC= area under disease progress curve; σ²g=genetic variance; LSD=least significant difference  

CV% =coefficient of variance; h²=heritability 
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3.4.2 Phenotypic correlations 

The correlation study provides an idea about the traits whether or not they are associated 

with each other. Across the sites, grain yield had a negative correlation with flowering day 

(r= -0.46), silking Day (r = -0.48), root Lodging (r= -0.13), stem lodging (r= -0.04), ear 

Aspect (r =-0.72), ear rot (r = -0.103), AUDPC (r = -0.65), saturation (r= -0.12), brightness 

(r =-0.29). Grain yield also had significant and positive correlations with field weight (0.98) 

and number of ears (0.76). Flowering day, silking day, stem lodging, root lodging, ear rot 

and ear aspect had a positive correlation with turcicum. AUDPC-Turc showed a positive 

correlation with Flowering day, silking day, stem lodging, root lodging, ear rot and ear 

aspect but recorded a negative indirect effect for field weight with -0.788 respectively 

(Table 3.5).  

Table 3. 5: Phenotypic correlation among different  traits in a combined 

association measured for 192 DH lines 

Traits AD SD PA NE FW EA AUDPC NGRDI-100 

SD 0.83        

PA -0.45 -0.39       

NE -0.57 -0.61 0.31      

FW -0.46 -0.48 0.07˟˟ 0.75     

EA 0.67 0.68 -0.31 -0.77 -0.73    

AUDPC-T 0.37˟˟ 0.39 -0.06 -0.55 -0.68 0.61   

NGRDI -0.35 -0.4 0.09˟˟ 0.49 0.55 -0.59 -0.59  

GY -0.46 -0.48 0.07˟˟ 0.76 0.98 -0.72 -0.67 0.54 

Significance levels; **=P<0.01 and *=P<0.05, ns= non-significant; GY= grain yield; Turc 

=Northern leaf blight; SD= Silking day; PA= Plant aspect; EA=Ear aspect; NE=number of 

ears; FW= field weight; AUDPC= area under disease progress curve; NGRDI= normalized 

green- red difference index.  



 
 

42 
 

3.5 Discussion and conclusion 

Maize is among important food crops benefitting both the industries, animals and man in 

the world. In the Sub-Saharan Africa, NLB caused by fungus Exserohilum turcicum (Pass) 

(Dunn and Namn, 1977) has become the major threatening foliar disease that is really 

affecting food security. Insufficient availability of adequate and diverse genetic source of 

resistance to NLB has been the main constraint. For plant breeders to achieve all these 

objectives in breeding resistant crop cultivars, phenotyping of the crops in the experimental 

fields has to be implemented. These phenotyping techniques help breeders to achieve in 

monitoring phenotypic traits of the crops. Phenotyping involves assessing of crops with 

diseases, pests and the severity caused by diseases. 

 

The present study was conducted to identify the most effective phenotyping technology 

namely the visual assessment with the imagery technology. Considerable variation was 

found in visual scoring because most of the information on the quantitative traits obtained 

was biased due to human error while the digital imagery tools collected accurate and 

precise information. This study first confirmed that traditional ways of phenotyping 

quantitative traits was not efficient at all because it depended on the rater’s experience, 

rater’s ability to carry out effective assessment, weather condition during assessment 

period and accessibility of the fields. The differences observed between the digital imagery 

phenotyping tools and the visual methodology gives plant breeders basics for developing 

improved germplasm. The main objective is to lower the effects of diseases on agricultural 

production and also to identify the relationship between the disease symptoms and the 

effects on yields. Imaging could be help to identify many plant diseases that occur with 
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only internal symptoms for example the Fusarium spp fungi that cause maize ear rot 

(Mester et al., 2012). Previous studies have shown that these phenotyping technologies are 

neither precise nor sensitive compared to visual evaluation for certain host–pathogen. 

According to Olmstead et al. (2001), the use of image based technologies in estimating 

powdery mildew infection on sweet cherry leaves failed to produce correct estimates for 

the leaf area infected due to unclear colour between the infected and the uninfected leaf 

areas.  An extensive morphological and genetic diversity for plant architecture traits in 

maize could aid to study complex traits (Flint, et al., 2005).  

 

In the present study, the disease severity of one resistant parent CML312 and two 

susceptible parents CML539 and LA Posta seq were assessed at flowering, after flowering 

and at maturity. For the imagery technology, images of the maize crops were obtained at 

an interval of 10days from flowering time until maturity by collecting the data three times. 

Moreover, leaf scanners were used in scanning three maize leaves from every plot with the 

aim to observe the number of lesions on the leaves. Two DH populations from crosses 

LPS64x CML312and CML539x LPS64 were evaluated.  

After a combined analysis across locations, CML539xLPS64 phenological and 

morphological traits, such as days to tasseling and silking, plant and ear height, showed 

high values for the mean, plant aspect, ear aspect, field weight and disease scores recorded 

low mean values. Heritability estimates for tasseling day, silking day, field weight and ear 

height was high at 0.74, 0.67, and 0.75 while the plant and ear aspect showed intermediate 

to low heritability. Genotypic variances analysis was highly significant. These findings 
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showed that the CML539 parental line had no resistance traits to Northern leaf blight with 

reference to its poor performance.  

 

In cross LPS64xCML312, the morphological traits, the tasseling day, silking day, field 

weight and number of ears showed moderate to high heritability estimates, for plant and 

ear aspect, stem and root lodging they expressed a low heritability estimate. Mean values 

was high for tasseling day, silking day and area under disease progressive curve. The 

genotypic variance of the traits was significant.   

 

This study revealed that the LPS64xCML312 DH hybrid was superior, indicating that the 

donor parent used in developing the DH lines had better resistance or favorable alleles to 

resist northern leaf blight in maize. Their parental components also showed presence of 

good genetic materials that should be further evaluated for commercial use. 
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CHAPTER FOUR 

MAPPING GENOMIC REGION ASSOCIATED WITH RESISTANCE TO 

NORTHERN LEAF BLIGHT DISEASE IN TROPICAL GERMPLASM 

4.1 Abstract 

Northern leaf blight disease (NLB) is a devastating disease in the Sub-Saharan Africa 

(SSA) which causes significant yield loss in maize. The main purpose of breeding is to 

characterize diversity with an aim of developing germplasm that has durable genetic 

resistance to diseases and high yielding. In this study, the objective was to identify 

quantitative Trait Loci (QTL) related to northern leaf blight in tropical maize germplasm. 

An association mapping panel of 192 double haploid lines with different degrees of 

reaction to the disease derived from a CML312xLPS64 and CML 539xLPS64 were planted 

in Embu and Kakamega in 2016 and 2017. NLB score and other agronomic traits were 

investigated under high disease pressure areas. Significant phenotypic variation in NLB 

resistance was observed. Using a genetic map containing high density single-nucleotide 

polymorphisms with average genetic distance of 0.30Cm, qualitative trait loci for score 

and agronomic traits were analyzed. For NLB score, two stable QTLs were identified in 

2016 respectively. For these qNLB 7 located on chromosome 7 had the largest resistance 

effect, accounting for 33% of the phenotypic variation in 2016 respectively. The 

identification of quantitative trait loci conferring resistance to NLB may contribute to 

breeding programs seeking to protect the crop through improved genetic resistance. 
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4.2 Introduction 

Northern leaf blight disease is one of the major biotic constraints in maize production 

system in Sub-Saharan Africa. It belongs to the division Eumycota, sub-division 

Deuteromycotina, order Moniliales and family Dematiaceae. NLB disease outbreaks often 

coincide with moderate temperatures and humidity (Balint and Johal, 2009). Maize yields 

are dramatically reduced by NLB for destroying the photosynthetic process at the period 

of grain-filling (Raymundo and Hooker, 1981). Therefore, it’s considered to be first 

important disease of maize in the world then followed by gray leaf spot and maize streak 

virus (Pratt and Gordon, 2006). One of the most suitable ways of managing the NLB 

disease is through host plant resistance. Maize breeders from CIMMYT in collaboration 

with many national and international agricultural research institutions in SSA have been 

continually developing improved maize varieties with resistance that are routinely 

deployed in the region. Resistant lines possessing Ht gene have been reported and widely 

used in maize breeding programs (Welz and Geiger, 2000). Dominant genes (Ht1, Ht2, Ht3 

and Htn1) have been mapped with molecular markers. Gene Ht1 has been mapped on bin 

2.08 at chromosome 2 (Bentolila, et al., 1991). Ht2 has been mapped Tripsacum 

floridanumon chromosome 8 on bin 8.06. Gene Ht3 was introgressed from into maize 

(Inghelandt et al., 2012) and was mapped on chromosome 7 bin 7.04 (Zhang et al., 2014). 

Gene Htn1 mapped on bin 8.05 is effective to most NCLB races however, its level of 

resistance depends on environment and genetic. Another major QTL on chromosome1 

have been fine-mapped conferring resistance to NLB, Stewart’s wilt and common rust 

(Jamann et al., 2016). In this study, evaluation of resistance to NLB was done performed 

in two different ecological zones, KALRO-Embu and Kakamega center where epidemic of 
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NLB has appeared. The main aim of this experiment was to identify the QTLs position 

associated with resistance to NLB in 192 DH lines. Inbred lines CML312, CML539 and 

La Posta seq were used with the molecular markers (SNPs). Studies aiming to know the 

genetic background of NLB resistance genes are important to guide maize breeders and 

plant pathologist for breeding programs. 

4.3 Material and methods 

4.3.1 Plant materials and field design 

A mapping population of 192 double haploid lines was produced from a cross between 

CML312 (resistant), CML539 (susceptible) and LA Posta seq. The double haploid lines 

and their parents were planted at KALRO-Embu and Kakamega center in 2016 -2017. An 

alpha-lattice design with two replications was used in these studies. CML312x La Posta 

and CML539xLa Posta seq were planted respectively. Each single-row plot measured 4m 

long spaced at 75cm between rows and 25cm between hills. Three seeds were planted per 

hill and later thinned to one seed per hill to achieve the targeted plant population. Standard 

agricultural practices were followed throughout the growing season. Table 4.1 shows the 

origin and description of different lines. 

Table 4. 1: Origin, genetics and agronomic characteristics of germplasm 

Variety Origin Genetic 

constitution 

NCLB reaction 

CML 312 CIMMYT- 

Zimbabwe 

Inbred line Resistant 

CML539 CIMMYT Inbred line Susceptible 

LA Posta seq F64B CIMMYT Inbred line  

4.3.2 Evaluation of Resistance for Northern leaf blight 

The 192 DH lines were grown at an experimental field of Kenya agricultural livestock 

research organization Embu and Kakamega in April to September 2016. Resistant levels 

assessment was performed on individual plants of each plot, mean score was also 
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calculated for every plot. NLB severity was scored using a five-point relative scale from 

(CIMMYT, 1985) where one indicated, highly resistant (no infection, fully clean plants) 

and five designated as highly susceptible (very heavy infection with lesions on all leaves). 

4.3.3 Statistical data Analysis 

Several range tests that includes genetic variance components, analysis of variance 

(ANOVA) and correlation coefficient of NLB rating in two locations and a combined 

analysis for NLB in DH lines were analyzed using Meta-R software program. Heritability 

of means was estimated from the variance components. In addition, best linear unbiased 

estimates (BLUEs) were estimated across locations assuming fixed genotype effects. For 

association analyses, best linear unbiased prediction (BLUP) of each line was calculated 

for across locations. 

4.3.4 Genotypic data analyses 

DNA was of extracted from the inbred lines that were grown in a greenhouse at 3–4 leaves 

stage in December 2016 at CIMMYT screening facility in the Kenya Agricultural and 

Livestock Research organization, KALRO- Naivasha. It lies at a Latitude 0 43’S, 

Longitude 36 26’E, 1896m above sea level. DNA was used for genotyping using GBS 

platform (Elshire et al., 2011) at Cornell University in the Genomic Diversity Institute, 

USA. Leaves were cut, folded and put in different perforated bags with ice-cubes and taken 

to laboratory where genotyping was done using high density markers through genotyping 

-by- sequencing (Elshire et al., 2011). 
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4.3.5 Linkage analysis and inclusive composite interval mapping 

After SNPs number were minimized by choosing the homozygous and polymorphic 

markers, high quality SNP data were used to construct genetic linkage maps for two 

populations using QTL Ici-Mapping version 4.1.1 Software, MAP function (Meng et al., 

2015). The genetic maps were constructed using the estimate map which uses Lander-

Green algorithm. ICIM is a two-way method used to separate the cofactor selection from 

interval mapping process effectively hence controlling the background effects and 

improving mapping of QTL with additive effects (Meng et al., 2015). The highly 

significant markers were used to calculate the logarithms of odds (LOD) scores for each 

marker of more than 3.0 logarithms of odds (LOD) and a maximum distance of 30cM 

between the loci. In each population, BLUPs across environment and AUDPC value for 

NLB were incorporated to detect QTL based on inclusive composite interval mapping 

(ICIM). A threshold LOD score of 3 was used to determine a significant QTL and the 

phenotypic variation explained (PVE) across all QTL and in each trait (Tuberosa, et al., 

2007). 

4.3.6 Joint linkage association mapping (JLAM) 

Two Double haploid populations genotyped with GBS were used for JLAM. For quality 

checking in both populations the SNPs that were either monomorphic, missing value, 

heterozygous, or with a minor allele frequency were eliminated from the analysis. 404SNPs 

of high quality were retained for further analysis in all populations. BLUPs estimated 

across population and regions were used in JLAM studies. 
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4.3.7 Genome –wide association analysis 

BLUP of each line was used as phenotypes in association mapping. NCLB severity data 

were corrected for population structure using general linear model (GLM), as well as 

population structure and kinship (Q + K) using mixed linear model (MLM) algorithm 

(Flint, et al., 2005). GWAS and principal component (PC) analysis was performed using 

TASSEL version 5.2 (Bradbury et al., 2007). The first three PCs were used to correct the 

population structure. 

4.4 Results 

4.4.1 Phenotypic variation and heritability 

Descriptive variation was observed for Northern leaf blight AUDPC values in two double 

haploid populations (Table 3.3 and 3.4). Between the two CMLs used as parents in DH 

population, CML312 was resistant with a mean of 74.3 whereas CML539 was susceptible 

with a mean of 61.9 for AUDPC value, respectively. The combined analyses of the two 

populations revealed an average mean of 67.8 for AUDPC. The ANOVA across the 

environment revealed significant genotypic variance for AUDPC value in each and across 

the DH populations. Heritability h² estimates ranged from moderate to high with 0.42 in 

DH pop2 for AUDPC to 0.55 in DH pop1 for AUDPC value, respectively (Table 4.2). 
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Table 4. 2: Combined Means, components of variance for disease severity, agronomic traits, image traits  

and area under disease progress curve (AUDPC) measured for both pop 1 and pop 2 DH populations in  

Embu and Kakamega. 

Statistic AD SD PH EH PA FW EA AUDPC_T Necrosis_ 

soil 

Satur- NGRDI_100 GY 

ation 

h² 0.7 0.4 2.71 0 0 0.2 0.4 0.4 0.5 0.6 0.3 0.3 

σ²G 6.7 6.8 1.07 0 0 0.2 0.1 51.9 12.9 13.2 1.1 0.3 

σ²e 4.9 25.1 111.2 40.9 0.2 0.3 0.3 83.4 51.7 30.9 6.7 0.2 

Mean 81.7 84.3 199.2 85.8 2 2.5 2.8 67.8 77.7 85.9 0.3 2.5 

LSD 3.1 4 2.35 0 0 0.7 0.5 10.9 5.2 4.8 1.8 0.8 

CV 2.7 5.9 5.39 7.5 20.9 21 17.9 13.5 9.2 6.5 803.2 18.3 

**P≤0.001; **P≤0.01; *P≤0.05; AD= anthesis days; SD= silking days; interval; PH=plant height; EH=ear height;  

PA=Plant aspect; EA=ear Aspect; FW= field weight; AUDPC= area under disease progress curve; Turc= Turcicum; 

GY=grain yield; σ²g=genetic variance; LSD=least significant difference; CV%=coefficient of variance; h²=heritability 
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4.4.2 QTL mapping for NLB Resistance 

An Inclusive Composite Interval Mapping carried out on cross CML312xLaPS64 with 

192DH lines identified AD, SD, Green veg, saturation and Greenerveg QTLs on 

chromosome 6, with a LOD score ranging between 2.55 and 3.71, greener veg had the 

highest phenotypic variance of 43.76.  EH was identified on chromosome 3 with a LOD 

score value of 3.48, phenotypic variance of 22.58 and a R² of 21.58.  

 

Two more QTLs conferring resistance to Northern leaf blight were detected on 

chromosome 5 and 7. A major QTL which explained 32.9% of the phenotypic variance 

and a LOD score value of 3.48 was detected on chromosome 7 between markers 

PZA00424-1 and S7128895684. Another QTL was identified on chromosomes 5 between 

markers S5170023977 and PZA014101 which explained a LOD score value of 3.15, a 

phenotypic variance of 26%, after a cross validation was carried out R² values explained 

23.7%.   Both QTL detected were contributed by the resistant parent, CML312 where one 

QTL detected on chromosome 7 which explained 32.9% of the total phenotypic variation 

was found to have the largest effect and the favorable alleles (Table 4.3). 

 

On cross CML539xLaPS64, five QTLs were identified on chromosome 1, 8, 6 and 10 

respectively, two QTLs were detected on chromosome 1 and 8 in AD with a LOD score 

values of 2.66 -3.12 and a R² value of 14.95. Other QTLs were identified on chromosome 

6 and 10 on Ear aspect and grain yields. It was concluded that the cross CML539xLaPS64 

was susceptible to Northern leaf blight. 
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Table 4. 3: Detection of QTL associated with resistance to NCLB, their physical positions and genetic effects 

of the QTL in two DH populations CML539xLaPOSTA F64 and LAPOSTAF64xCML 312  

Trait name Chromosome Position Left marker Right marker LOD score PVE % Add R² 

CML312 X LPSF64 

AD 6 145 PZA00440_15 PZA02673_1 3.49 23.39 1.55 15.32 

SD 6 29 PZA00910_1 PHM4662_153 2.73 9.02 0.43 

39.51 8 44 S8_102533570 PZB02155_1 4.17 13.86 -0.49 

EH 3 38 S3_144088367 PHM15475_27 3.48 22.58 -2.73 21.58 

Turc3 5 199 S5_170023977 PZA01410_1 3.15 26.00 0.28  

7 163 PZA00424_1 S7_128895684 3.48 32.97 0.09 23.72 

Greenveg 6 119 PHM2658_129 PHM7922_8 2.55 18.52 -1.05 12.01 

Greenerveg 4 124 PZA01905_12 S4_6209167 2.71 43.76 1.64 

12.54 

6 143 PZA01884_1 PZA00942_2 3.71 42.14 -1.83 

8 200 PZA00739_1 PHM14104_23 3.33 43.21 -1.53 

9 58 PZB00221_3 S9_145906361 3.50 41.99 -1.77 

Saturation 1 177 PHM1438_34 PZA00175_2 2.65 11.06 0.27 

21.22 6 119 PHM2658_129 PHM7922_8 3.67 25.45 -0.47 

CML539 X LPSF64 

AD 1 91 S1_173654738 PHM4053_15 3.12 16.95 -0.70 

14.95 8 139 PZA02746_2 PZA02019_1 2.66 19.82 1.71 

GY_FW 10 123 PHM4066_11 PZA02961_6 2.89 15.03 -0.21 14.25 

EA 6 26 S6_93211949 PZB01009_1 2.89 27.30 0.05 

14.54 10 112 PZA01456_2 S10_120670943 2.90 15.40 0.04 

LOD=logarithm of odds; PVE= phenotypic variance explained; Add= additive effect; AD=anthesis day; SD= silking day; EH=ear 

height; Turc=turcicum; Saturation= intensity of colour present; Green veg= green vegetation; Greener veg= greener vegetation; 

EA=ear aspect; GY-FW=grain weight 
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4.4.3 Joint linkage association mapping (JLAM) analysis 

Combined analysis of DH populations through JLAM revealed four QTLs from model A, 

three QTLs from model B, and two QTLs from model C on Anthesis date (AD) explaining 

a phenotypic variance of between 0.3 and 0.4; a P value of zero on model A and B 

respectively. On Turcicum, four QTLs from model A, ten QTLs from model B and two 

QTLs from model C were identified. The QTLs were distributed across 7 chromosomes 

namely 1, 3, 4,5,7,8 and 10. These QTLs individually explained 3.4-11.1% phenotypic 

variance in model A, 1.9-9.7% for model B, and 6.8-9% for model C. One QTL qNLB8-

23 was the common QTL to the three models while the others were specific. QTL qNLB5-

147 detected on chromosome 5 has the largest effect QTL and it explained 11.1% of 

phenotypic variance followed by qNLB8-23 on chromosome 8 which explained 9.2% 

phenotypic variance. QTL qNLB8-23 was consistently detected for the three models. All 

the detected QTLs together explained 46%, 81% and 53% of total phenotypic variance for 

model A, B and C respectively. On NGRDI, six QTLs were identified on model A that had 

a total phenotypic variance of 0.4, two QTLs from model B with a phenotypic variance of 

0.2, and three QTLs from model C with a phenotypic variance of 0.6. It was noted that 

turcicum, had the highest phenotypic variance on   model A, B and C compared to other 

traits (Table 4.4). 
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 Table 4. 4: Analysis of traits associated markers, allele substitution (α), effects and total phenotypic 

variance (R²) of the joint linkage association mapping in Double haploid population based on three 

different biometric models 

Trait Chromosom

e 

Positio

n 

(Mbp) 

Model A Model B Model C 

α-

effect 

P 

value 

PVE 

(%) 

α-

effect 

P 

value 

PVE 

(%) 

α-

effect 

P value PVE 

(%) 

Anthesis Date            

PHM1956_90 3 0.0 3.0 0.0 14.4 3.0 0.0 19.7 2.3 4.0 22.4 

S3_82056859 8 123.3 -0.8 0.0 12.6 -0.8 0.0 9.2 - - - 

PZA01796_1 10 8.8 0.4 0.0 3.6 0.4 0.0 3.6 - - - 

PZA03713_1 7 137.3 - - - - - - 0.5 0.4 6.1 

Total PVE (%)     0.3   0.3   0.4 

            

Silking Date            

PHM15278_6 1 176.7 -0.6 0.0 8.2 -0.5 0.0 6.1 0.3 -0.5 6.0 

PZA03226_3 1 208.1 -0.4 0.0 1.8 - - - - - - 

PHM1956_90 3 0.0 1.2 0.0 12.7 - - - 2.8 3.4 17.1 

PZA02792_26 3 33.0 -0.2 0.0 1.9 - - - - - - 

PHM13440_13 6 86.5 2.0 0.0 5.9 - - - - - - 

PHM662_27 6 155.4 0.4 0.0 3.4 - - - 0.1 0.0 4.9 

PZA02681_8 1 298.9 - - - 0.2 0.0 2.1 - - - 

S6_21007530 5 42.3 - - - 2.8 0.0 17.8 - - - 

S4_19430220 8 123.3 - - - -0.6 0.0 8.3 - - - 

PZA02564_2 9 142.3 - - - 0.3 0.0 3.7 - - - 

PZA00240_6 9 109.6 - - - - - - 0.3 0.2 2.6 

Total PVE (%)     0.4   0.4   0.5 

            

Plant Height            

PHM1576_25 1 60.2 2.6 0.0 3.3 2.3 0.0 2.3 - - - 

PHM499_19 3 48.5 -1.8 0.1 1.7 - - - - - - 

PZB01358_1 7 137.8 0.4 0.5 0.4 1.9 0.0 4.7 - - - 
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 Table 4. 4: Analysis of traits associated markers, allele substitution (α), effects and total phenotypic 

variance (R²) of the joint linkage association mapping in Double haploid population based on three 

different biometric models 

Trait Chromosom

e 

Positio

n 

(Mbp) 

Model A Model B Model C 

α-

effect 

P 

value 

PVE 

(%) 

α-

effect 

P 

value 

PVE 

(%) 

α-

effect 

P value PVE 

(%) 

PHM635_23 2 186.2 - - - - - - 22.4 -3.7 7.5 

S1_18838432 7 162.0 - - - -2.3 0.0 7.1 3.1 -1.4 7.5 

S10_91685820 9 106.8 - - - 2.5 0.0 7.2 2.1 2.2 7.3 

S4_149896839 4 150.3 - - - 2.2 0.0 2.3 - - - 

S9_108521912 5 160.3 - - - -3.0 0.0 7.6 - - - 

PHM2130_29 6 0.0 - - - 15.7 0.0 7.4 - - - 

Total (PVE %)     0.1   0.4   0.3 

            

Ear Aspect            

PZA03742_1 5 211.9 0.05 0.0 7.0 -0.18 0.0 7.0 - - - 

PZA01905_12 6 129.9 0.032 0.0 5.9 - - - - - - 

PHM1505_31 2 170.3 - - - - - - 0.1 0.0 7.1 

Total (PVE %)     0.2   0.1   0.1 

            

Turcicum            

S4_6601124 4 226.9 0.04 0.0 3.4 0.71 0.0 5.1 - - - 

S10_14759537

3 

5 191.1 0.07 0.0 11.1 0.06 0.0 5.5 - - - 

S7_127970539 5 196.1 0.21 0.0 6.4 -0.06 0.0 9.7 - - - 

S4_237313660 8 155.5 0.08 0.0 10.4 0.06 0.0 4.4 0.06 0.1 9.2 

PZA03733_1 1 44.5 - - - - - - 0.02 0.1 6.8 

S5_217019076 8 163.6 - - - -0.1 0.0 2.1 - - - 

PZA00726_8 10 124.2 - - - 0.06 0.0 5.7 - - - 

PZA01254_2 7 128.9 - - - 0.08 0.0 3.0 - - - 

bt2_7 7 157.5 - - - 0.05 0.0 4.7 - - - 
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 Table 4. 4: Analysis of traits associated markers, allele substitution (α), effects and total phenotypic 

variance (R²) of the joint linkage association mapping in Double haploid population based on three 

different biometric models 

Trait Chromosom

e 

Positio

n 

(Mbp) 

Model A Model B Model C 

α-

effect 

P 

value 

PVE 

(%) 

α-

effect 

P 

value 

PVE 

(%) 

α-

effect 

P value PVE 

(%) 

S3_106337279 8 63.5 - - - 0.05 0.0 5.1 - - - 

S1_173421054 3 180.5 - - - -0.04 0.0 1.9 - - - 

Total (PVE %)     0.46   0.81   0.53 

Green 

vegetation 

           

PZA03733_1 1 44.5 1.2s 0.0 8.5 1.2 0.0 8.4 0.4 1.3 10.4 

PZA02164_16 1 143.8 -8.2 0.0 5.5 0.5 0.0 6.4 0.0 -8.9 7.1 

PHM5185_13 2 169.3 -0.5 0.0 1.0 - - - - - - 

S4_6544767 4 215.3 0.8 0.0 5.6 -2.5 0.0 4.9 - - - 

PZA00240_6 9 109.5 0.6 0.0 5.1 0.6 0.0 3.6 - - - 

PZA02746_2 10 105.9   - -4.7 0.0 4.0 - - - 

Total (PVE %)     0.5   0.5   0.3 

Greener 

vegetation 

           

PZA00273_5 10 0.0 - - - -0.7 0.0 8.5 - - - 

PZA03733_1 1 44.5 0.8 0.0 7.0 - - - - - - 

S1_46411896 3 170.4 - - - - - - 1.6 -1.4 10.9 

Total (PVE %)     0.1   0.2   0.3 

Saturation            

PHM5484_22 1 53.4 -0.3 0.0 3.5 - - - - - - 

S9_146012201 5 112.2 0.2 0.0 2.3 - - - - - - 

S10_14759537

3 

5 191.1 0.5 0.0 7.5 - 0.0 10.9 0.4 0.5 12.1 

PHM563_9 6 158.5 -0.5 0.0 6.1 - 0.0 5.7 0.4 -0.4 6.3 

PZA02746_2 10 105.9 -2.5 0.0 8.1 - 0.0 8.1 - - - 



 
 

58 
 

 Table 4. 4: Analysis of traits associated markers, allele substitution (α), effects and total phenotypic 

variance (R²) of the joint linkage association mapping in Double haploid population based on three 

different biometric models 

Trait Chromosom

e 

Positio

n 

(Mbp) 

Model A Model B Model C 

α-

effect 

P 

value 

PVE 

(%) 

α-

effect 

P 

value 

PVE 

(%) 

α-

effect 

P value PVE 

(%) 

PHM14475_7 9 113.1 - - - - - - O -3.2 6.1 

Total (PVE %)     0.4   0.3   0.3 

NGRDI            

PZA01290_1 1 68.9 -0.4 0.0 3.7 - - - - - - 

PZA02164_16 1 143.8 2.1 0.0 4.7 - - - - - - 

PHM5306_16 3 92.6 -0.4 0.0 3.7 - - - - - - 

PHM563_9 6 158.5 0.4 0.0 6.7 0.4 0.0 6.7 0.7 0.5 11.1 

S7_167230991 9 16.3 -0.2 0.1 1.6 - - - - - - 

PZA02746_2 10 105.8 1.8 0.1 6.7 1.7 0.0 6.2 2.2 2.3 11.2 

S3_173290199 8 105.8 - - - - - - -5.0 0.9 3.8 

Total (PVE %)     0.4   0.2   0.6 

PVE- phenotypic variance; NGRDI – normalized green- red difference index 
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4.5 Discussion and Conclusion 

Developing improved maize varieties with genetic resistance to NLB is an important 

component of sustainable crop management strategy in SSA. International institutions such 

as CIMMYT and IITA have collaborated with several regional and national institutions to 

develop and introduce a number of maize hybrids and OPVs with enhanced levels of NLB 

resistance in SSA, especially through conventional breeding. Improved tropical and sub-

tropical maize germplasm developed at CIMMYT in Mexico, are routinely deployed in 

SSA. Adoption of maize varieties in SSA is mostly conditional upon reasonable levels of 

NLB resistance along with high grain yield. Molecular markers that are associated with 

NLB resistance could highly enhance pre-selection of genomic regions in the tropical 

germplasm developed within and outside SSA leading to accelerated genetic gains.  

4.5.1 QTL mapping of NLB resistance 

Initial mapping for reaction to NLB based on 192 progenies of CML312 (resistant)/La 

Posta seq (susceptible) identified a QTL on chromosome 7 between PZA00424-1 and 

S7128895684 markers had a large effect that explained a phenotypic variance of 32.9%. 

This QTL co-localized with qNLB7; a large effect QTL identified in earlier studies 

involving multiple NLB -resistant lines and evaluated for reaction to NLB in various 

environments in Africa. In this study, we have not attempted to validate these using 

testcrosses. In addition to qNLB7, one more minor QTL was identified in the current study 

on chromosomes 5. The source of resistance was from CML 312, a maize line from 

CIMMYT. These results corroborate with those reported in an earlier research by Chen et 

al. (2015) that showed two stable QTLs namely qNLB5.04 located on chromosome 5 (bin 
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5.04) that had the largest resistance effect accounting for 19 and 20% of the phenotypic 

variation and qNLB7.05 accounting for 11% phenotypic variance respectively. 

 

 Several types of resistance to Exerohilium turcicum exist in maize (Hooker, 1975). A 

major QTL for northern corn leaf blight resistance on chromosome 7 has been reported in 

several studies on NLB resistance with the proportion of phenotypic variance ranging from 

24 to 92 % with the locus being a major gene (Welz et al., 1998). Similar studies using 

CIMMYT maize line 202 as the source of resistance identified 12 QTLs significantly 

conferring resistance across three agro-ecological zones. Three QTLs on chromosome 5, 8 

and 9 were affective in the entire season (Schechert et al., 1999). In another study, 13 QTLs 

were identified for NLB resistance in a population obtained from a resistant European line 

D32 where five QTLs were identified on chromosomal bin 1.06, 3.07, 4.03, 5.04 and 8.06 

that were significantly associated to northern leaf blight (Welz et al., 1998). In general, 

three QTLs on chromosome 3, 5 and 8 were repeatedly identified to be significant in 

different populations increasing the probability that these QTLs regions are shared in 

different population. Due to this consistency, they make suitable candidates for marker 

assisted selection (MAS) in resistance breeding.  

 

Understanding and exploiting quantitative resistance of maize to foliar pathogens is of 

great interest to plant breeders. This is due the emergence of new pathogen races due to 

major alleles being introduced followed by their suppression (Leonard, et al., 1985). The 

current has identified genetic resources for NLB resistance. The causal gene identified on 
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chromosome 5 and 7 through joint linkage association mapping contributes the 

understanding of the molecular basis of the NLB resistance. 
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CHAPTER FIVE 

5.1 GENERAL DISCUSSION 

 Northern Leaf Blight (NLB), also known as Turcicum leaf blight caused by Exserohilum 

turcicum Leonard & Suggs. NLB is a major foliar disease threatening production of maize 

across Sub-Saharan Africa region. Several maize lines resistant to NLB have been 

identified. These elite materials with resistance to NLB have been subjected to different 

high-throughput platforms such as hyper spectral, multispectral or thermal imaging for 

further screening. In screening of these elite materials for their NLB disease severity, the 

study aimed to a) to compare between the digital imagery tools and phenotypic evaluation 

for foliar diseases in maize and b) To identify genomic region associated with resistance 

to northern leaf blight disease in tropical germplasm.  

 

The study identified that the digital imagery tools proposed to phenotype disease severity 

in the maize fields can offer more specific methods of quantifying, identifying, monitoring 

plant diseases and could save time as well as expenses. The use of visual crop evaluation 

in assessing disease resistance in the field is faced by a myriad of challenges namely; the 

trials were large, multiple locations of trials, harsh weather conditions, biased data due to 

fatigue, trials locations leading to poor accessibility, mishandling of collected data, 

consumes lot time causing delay in data analysis. 

 

The study also established the genomic regions associated with the NLB resistance. The 

192 maize inbred lines were screened in two agro-ecological zones namely KALRO-Embu 

and Kakamega. Genotypic and phenotypic data was used to identify the QTL with the help 
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of QTL Ici-Mapping Version Software, MAP function (Meng et al., 2015). The study 

reported that a cross with promising resistance to the NLB namely CML312xLaposta seq 

showed low NLB severity and statistically low AUDPC values. Genotyping was done with 

only 404 polymorphic SNPs markers which were identified during the parental 

polymorphism survey of developing a mapping population. Two QTLs (QTL 5 and QTL 

7) were identified, which were flanked by the markers S5170023977-PZA014101 and 

PZA004241- S7128895684 and with LOD score 3.15 and 3.48 respectively. 

5.2 CONCLUSION AND RECOMMENDATION 

In Conventional phenotyping, the relationship between plants’ genotype have slowed the 

ability to understand the interaction between a plant’s genotype and its surrounding 

environment. The choice of any phenotyping methodology play a critical role in breeding 

since adoption of visual analysis is intensive, time-consuming, costly, and can easily lack 

consistency across workers. There is need for adoption of more advanced imagery tools by 

plant breeders in various research centers to enhance phenotyping of numerous 

phenological traits ensuring efficient breeding of resistant plant materials. 

 

Recommendations from this study are: 

1. There is need for the adoption of digital imagery tools to facilitate accurate high-

throughput phenotyping for resistance to foliar diseases in maize, helping reduce 

the cost and time required to develop improved maize germplasm. 

2. Continued research is recommended to come up with more NLB resistant varieties. 
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