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Abstract.  

This thesis is about the qualitative Analysis and model of equations concerned to the control of the 

mechanical system by moving coordinates and locomotion in a fluid. There are two essential 

different ways of controlling the mechanical system’s motion that is; by applying additional forces 

and by directly prescribing some of the coordinates as a function of time.   

Flettner rotor initiates locomotion of mechanical systems in fluid and by changing the position of 

the mass center gravity or internal mass, the body can then be moved dependently and can be 

controlled. There is full stabilization realized at any point of space when the mechanical system 

subjected to circulation. 

When mechanical system is subjected to non-holonomic constraints whereby the asymptotic 

stability appertaining to non-equilibrium location gets debilitated and transformed to non-

asymptotic. By action of holonomic restraints possessing feeble non-holonomic, a system can be 

stabilized to stable non-asymptotic. 

This thesis also model equation of motion for finite-dimensional lagrangian systems and explains 

the laws of set-valued force that come from the system's interaction with its environs. The laws of 

a set-valued conditionally rely on geometric form and entities of kinematics.  

The dissertation qualitatively analyzes into controllability of bodies dealing with countless or 

infinite-dimension extension, plunged in fluids with viscosity, and with non-zero vorticity. In 

particular, we can obtain controllability and stabilization properties for these infinite-measurable 

extents systems. 
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1.0 Introduction 

The aim of this project is to conduct qualitative analysis and model equation concerned in 

control of mechanical system by moving coordinates and motion in fluids, by applying of 

additional forces and having coordinates as a function of time. 

Chapter 1 

There has been a lengthy time frame of research on challenges appertaining to forces acting on the 

mechanical system moving in a perfect fluid. The thesis is about, control of motion of an inflexible 

system in a perfect fluid. Essentially a lot of outcomes have been achieved through the formulation 

of a perfect fluid by the likes of Chaplygin [10] and Kirchh of [19]. These modeling checks into a 

qualitative breakdown of the mechanical system's motion in a perfect fluid, check [9, and 8]. 

The control hypothesis where moving coordinates that initiate the movement of internal mass or 

center of mass that subsequently enhanced body's (propulsion), is a validated as captured in [21] 

which is explicitly expressed in [18,20], even though viscous fluid execute a masterpiece role by 

giving traction force that controls motion [11]. An alternative body's motion is also achieved by 

rotation of the Flettner rotor which engages gyrostatic momentum (Kilin and Vetchanin, 2015). 

Stability through buoyancy explained in [23, 24]. Flettner rotor also controls the system of 

nonholonomic as exhibited in [5, 6, 7, and 16]. 

In the motion of mechanical, there is acceptance of occurrence of circulation induced by the fluid 

velocity existing around the system, this further expounds actions of lift force in the reference to 

Zhukovskii and Chaplygin. Circulation itself is valued and is induced by gyroscopic forcing aids 

in alteration of the system's dynamics [9]. The system's motion is controlled with the aid of gyrostat 

that brings stabilizing effect to the system and alteration of circulation existing around the system 

as shown in [26]. Notably, circulation initiates the change of position of the internal mass. 

1 
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It is pragmatic that control of motion of the mechanical system in a free motion can be achieved 

in [6, 21, 25 by use of Rashevskii-chow hypothesis to substantiate manageability of control of 

motion as reflected in [1], the aforementioned hypothesis proofs control in free motion as captured 

in [3]. Furthermore, in [15] there is formulation concerning the substantiation of Poisson 

stabilization of free motion. 

There is proof of motion controllability with aid of linear and circular motion of the center of mass. 

Surveillance on control of the system's motion introduces challenges concerning speed thus time-

optimal control is improvised and expressed in [13, 14], more information about controllability 

check [17]. In this thesis Integrals of motion's equation substantiate control by rotation of Flettner 

rotor and circulation around the enhance control of motion 

In the details at the final position of trajectory, the system's stabilization mitigates or thwarts the 

poor effects of circulation. The motion of internal mass should be linear and consistent to get a 

stable system at a certain position. There should be angular velocity and System's velocity 

shouldn't have a translation to enhance proper control because the center of mass is bounded. 
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1.1 Statement of the Problem 

The control task is to manipulate the motion of a two-dimensional body in an ideal fluid with the 

aid of a moving internal mass and a Flettner rotor in the presence of constant circulation around 

the body. To achieve this, we need to change the position of the internal mass and with the help of 

a rotating Flettner rotor, the body can be made to move from one point to another.  

We determine the complete stability of a body at an arbitrary point of space, in achieving this we 

require prior knowledge about the influence of nonzero circulation on the motion control, which 

we ensure that body moves near the given point. 

Subsequent task is determining, the influence of non-holonomic constraints on the mechanical 

system. This is achieved by whereby ensuring asymptotic stability of non-equilibrium position 

gets weaken and transformed to non-asymptotic by weak non-holonomic constraints, this is when 

a system is stabilized to stable non-asymptotic. 

Another task is controllability and stabilization of bodies with infinite-dimension, immersed in 

viscous fluids having non-zero vorticity. In achieving this, we need to have an idea about properties 

for these infinite-measurable extents systems. In a detailed linear system, we get a nonlinear 

trajectory fully characterized. The control of a linear system admits the solution of inverse 

dynamics using the structure of a linear system to compute inputs necessary for the performance 

of a task.  

An additional task is the controllability of a body or a chain of bodies with finite-dimensional, 

immersed in a non-viscous irrotational fluid. To obtain this, we need to know the motion of a body 

having a finite-dimensional Lagrangian system. This is done by getting some geometric properties 

that make the system "fit for jumps" so that the equations of motion are linear concerning the time 

derivative of the control function. 
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1.2 Objectives and Methodology  

The primary aim of the research is to do developed formulation and establish manageability of 

control of the mechanical system by moving coordinates and motion in fluids using two 

important concepts, which are; 

i. Application of additional forces 

ii. Direct prescription of some coordinates as functions of time. 

The objective of the thesis considers a diverse extension of theory appertaining to controllability, 

stabilization, geometric dimensions, and impacts of non-holonomic constraints to the mechanical 

system, the listed below are also the objectives of the thesis; 

i. To seek impact when a mechanical system is subjugated to its non-holonomic constraints.  

ii. To determine geometric dimensions that make the system “fit for jump”, to check if the 

equations of motion are linear with respect to time derivative of control function. This is 

will be possible by immersing a body in a non-viscous irrotational fluid since the motion 

can elaborate by the finite-dimensional Lagrangian system. 

iii. To probably obtain controllability and stabilization properties for infinite-dimensional 

systems, when bodies immersed in viscous fluids with non-zero vorticity. 

As per the methodology, the research done regarding this dissertation was an applied research, 

meaning it is not new. Instead, many pieces of previous academic research exist about control of 

mechanical system by moving coordinates and locomotion in fluids. Other extension of the basic 

theory and some practical were done and analyzed that is “a rolling ball on horizontal table”. This 

dissertation has possessed a new research form but on an existing research subject. Methodology 

uses mathematical model, kinematics analysis, and mathematical analysis in which there is 

formulation of functions 
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Chapter 2 

2.0 Literature Review 

Research about the control motion of a body in an ideal fluid with a moving internal mass and an 

internal rotor in the presence of constant circulation around the body, which was first researched 

by (Vetchanin and Kilin 2016). The control motion of a rigid body in an ideal fluid is a classical 

problem of hydrodynamics and has been studied for a long time. Many substantial outcomes were 

achieved within the hypothetical description of an ideal fluid by Lamb [22] and Steklov [29]. 

According to the research, changing the position of the internal mass and by rotating the rotor, the 

body can be made to move to a given point, and discuss the influence of nonzero circulation on 

the motion control. However, in the presence of circulation around the body the system cannot be 

completely stabilized at an arbitrary point of space.  

Therefore, this thesis which perfectly researches the study of the control of the mechanical system 

by moving coordinates and locomotion in the fluid by application of additional forces and 

prescription of the coordinates as a function of time fully controls the motion of the mechanical 

system motion with complete stabilization at any point. 

Also, the thesis further discusses the impacts of non-holonomic constraints on the mechanical 

system. Review of an article titled "effects of nonholonomic constraints on the mechanical 

system", written by Porikladnaya Mekhanika (1965). In which the primary result found comprises 

the concept that whenever ideal nonholonomic restraints are inflicted on mechanical systems the 

asymptotic stability of the zero-equilibrium position is weakened to nonasymptotic, However, the 

article does not explain how nonholonomic constraints with weak nonholonomic strengthen a 

system to nonasymptotic stability. This thesis, therefore, improves the article by expounding that 
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utilizing nonholonomic constraints with weak nonholonomic it is also possible to strengthen a 

system to nonasymptotic stability. 

The article titled "measure differential involvement in Control of motion for finite-dimensional 

lagrangian systems" written by Zurich (1973), explains the laws of set-valued force that come 

from the system's interaction with its environment. Laws of a set-valued conditionally rely on 

geometric form and entities of kinematics. Due to the habituation, this relationship of forces and 

entities of kinematic are surveyed in detail. Classically, nonpotential unilateral forces are 

contained by appropriate generalized force directions in the generalized force direction. The 

weakness of the article is that there is no formulation of impinging situations on positions thus is 

not explicitly comprehensive. This thesis formulates the impinging on the position where 

velocity an acceleration levels exactly defined. 

A research title, "Infinite-dimensional extension, symmetries and catalog", written by Phillipe, 

Richard, and Pierre (2007), explain the notion of infinite dimension system central equivalence 

and flatness matched correspondence between trajectories of systems which is not restricted to 

control systems described by ordinary differential equations. It can be adjusted to delay differential 

systems and to partial differential equations with boundary control. The weakness of the research 

is that there are a lot of technicalities and the visualization is not comprehensive. This thesis, 

therefore, makes partial differential equation visualizable, less technical, and comprehensive. 

The dissertation also checks into controllability and stability of infinite-dimension extension, 

covering bodies immersed in fluids with viscosity, and with non-zero vorticity. In particular, we 

can obtain controllability and stabilization properties for these infinite-measurable extents al 

systems. The thesis expounds a linear system in which the nonlinear trajectory is fully 

characterized and are controllable. Comprehensive control of the linear system admits the solution 
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of inverse dynamics using the structure of the linear system to compute inputs necessary for the 

performance of a task. 

Chapter 3  

3.0 The Mathematical Model  

 

 

 

 

 

 

 

 

 

Figure 1: Mechanical system here is a simple body and Flettner rotor. 

The system contains a speck1 of mass ‘n’ and fletcher rotor having a mass of 𝒏𝒌. Speck motion is 

limited by the shell motion though traces (arbitrary) smooth trajectory given by     ttq  , . 

Flettner rotor is circular and it is rotating at an angular velocity  t , in detail the system's or body's 

level of motion is orthogonal to the Flettner rotor axis of rotation that goes via rotor's internal mass. 

The assumption is made that there exist continuous circulation ψ at the body's peripheral is induced 

by fluid’s velocity; this is derived from the Lagrange hypothesis. The position 0  concurs with the 

system's internal mass at a point whereby the system's position in space is given by vector  yxk ,

                                                           
1 Speck is a very small particle, which in this case is contained in a moving mechanical system. 
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, this is a radius vector. To explain about system's motion, we have two Cartesian coordinates that 

are a rigid one and a moving coordinate xy are bounded 

0  respectively on the system (check Fig 1). Moving coordinate rotates and makes an angle   

with fixed coordinate hence the system's space framework is illustrated by point (k, β), this fully 

points out the system's location and alignment.     

The system's angular velocity is denoted by . At the body's center 0 , the absolute velocity is 

represented by  21,uuu  . This velocity appertains to the axes of the moving coordinate. 

Therefore, this relation of kinematic account is liable: 

Pdp  ,















 

































 



100

0cossin

0sincos

100

0cossin

0sincos

100

011

011









P

       (1)

 

Here the vector of velocities denoted by  ,, 21 uuw  and abscissa  ,, yxp   are vectors. 

Vectors of radius d and d  defines the position d  of the internal mass of the system2while vectors 

of radius k k define the position k of the internal mass of the Flettner rotor.  

3.1 Prescription of Coordinates as Functions of Time 

Flettner action, the center of the system's moving coordinate, the Mechanical system's kinetic 

energy is expressed to the extent of a certain function of time as shown below. 

𝐸 = 0.5((𝐶 × 𝜓), 𝜓) + (v,𝜓), 

𝐶 = (
𝑐1 0 ℎ

0 𝑐2 𝑙
ℎ 𝑙 𝑑

)  , 𝑣 = (

𝑛𝜁′

𝑛𝜇′

𝑛(𝜁𝜇′ − 𝜁′𝜇) + 𝜏𝑘𝜋

)

  (2)

 

𝑐1 = 𝑁 + 𝑛 + 𝑛𝑟 + 𝛾1, 

                                                           
2 The term system referred to the body in motion  
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,22  knnNc

 
𝑑 = 𝑁(𝜁𝑑

2 + 𝑢𝑑
2) + 𝜏 + 𝑛(𝜁2 + 𝑢2) + 𝑛𝑘(𝜁𝑘

2 + 𝑢𝑘
2) + 𝜏𝑘 + 𝛾6, 

nlnuh  ,  

 

3.2 Additional Forces  

External circular motion or circulation around the body’s peripheral induces additional forces 

thus making to have an equation of motion of the system considered as below. 

𝑑

𝑑𝑡
(
𝛿𝐸

𝛿𝑢1
) = 𝜓

𝛿𝐸

𝛿𝑢2
− 𝛾𝑢2 − 𝜉𝜓, 

 

 

       (3) 

,21

2

1

1

2 uu
u

E
u

u

E
u

E

dt

d























 

Unequal sided body moving in fluid experiences acting forces and the coefficient related to the 

system of the body(10) are    ,u,    and  uX    the previous 

derivatives (3) can simply be illustrated with aid of Poincare equations in (2) above. 

 
𝑑

𝑑𝑡
(
𝛿𝐺

𝛿𝑢1
) = 𝜓

𝛿𝐺

𝛿𝑢2
+
𝑠𝑖𝑛 𝛽

𝑡𝑎𝑛 𝛽

𝛿𝐺

𝛿𝑥
+ 𝑠𝑖𝑛 𝛽

𝛿𝐺

𝛿𝑦
, 

𝑑

𝑑𝑡
(
𝛿𝐺

𝛿𝑢2
) = −𝜓

𝛿𝐺

𝛿𝑢1
− 𝑠𝑖𝑛 𝛽

𝛿𝐺

𝛿𝑥
+
𝑠𝑖𝑛 𝛽

𝑡𝑎𝑛𝛽

𝛿𝐺

𝛿𝑦
,

              (4)















 G

u

G
u

u

G
u

G

dt

d










2

1

1

2

       
System mass is taken as the summation of body mass N moving in an ideal fluid, speck mass n 

(mass of a particle in the body), and Flettner rotor having mass 𝒏𝒌.  Product of system mass and 

gravitational force result in an acting force. This force acts perpendicularly and when divided by 

area of the body which is in contact with fluid, it exacts a pressure, then the pressure weakens 

     ,1 1

12



















u

u

E

u

E

dt

d
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viscous drag3 between the mechanical system and the fluid. Hence the velocity of the mechanical 

system moving in the ideal fluid is not limited by viscous drag. Going to further extend of putting 

down equations in Lagrangian form as expressed below;   

      

 
 

   

































sincoscossin

sincos5.0

cossin5.0

,,,,5.0

yxyx

yx

yx

a

vaCG

             (5)
 

Combination of equations (1) and (4) create an enclosed compound of six differential equations 

    ,2

'

22

'

11   unlucnhuc
dt

d
  

    ,1

'

11

'

22   unhucnluc
dt

d
 

   knDluhu
dt

d
 ''

21
  ,21221

.

112 uunlucunhucu  







   

,sincos 21  uu
dt

dx
  ,cossin 21  uu

dt

dy
  




dt

d

          
(6) 

 

The motion of the mechanical system is fully annotated in the variables u1, u2, , x, y, and  . In a 

scenario where the mechanical system is in free motion that is ,0,0''   then equation (6) 

above, mathematically acknowledge first integrals in equations 9 and 10.  

  ,5.0sin
tan

sin

21

y
u

G

u

G
qx 




 



























  

 x
u

G

u

G
qy 




 5.0

tan

sin
sin

21






























             (7)

 

  .5.0 3

22 ayx
G

yqxqR xy 



 


 

When the motion of a mechanical system is controlled, then the equation above is expressed as 

below. 

                                                           
3 is the frictional force between moving mechanical system and fluid. It limits the velocity of the motion of 

the system in the fluid 
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    ,sin
tan

sin
222111 yvlucvhucqx 




  . 

   

  .5.0

,
tan

sin
sin

22

321

222111

xy

y

yqxqyxvDluhuR

xvlucvhucq













           (8)

 

The body’s angular and linear momentum speck appertain to the integrals 𝑞𝑥 , 𝑞𝑦 , and R. these 

also control specks of locomotion of a body in a fluid which is summarized as integrals for the 

mechanical system having internal masses in motion (21). 

We take into account that equations (6) having the differentiation of ( ' ) and it has no angular 

velocity ( ), thereafter the rotation of the Flettner rotor is at consistent angular velocity as never 

affects the dynamic of the mechanical system. 

 

3.3 Controllability of Mechanical System’s Motion 

With aid of the Rashevskii-Chow hypothesis expressed in [1, 12, and 27] substantiates chances of 

control of motion on a rigid set of initial integrals in the mechanical system with the prevalence of 

free motion4 [3].The hypothesis needs a compact set of steady Poisson speck at every point for 

drift in the mechanical system phase, provided there is fullness of linear span of the vector fields, 

the velocities     𝑈1, 𝑈2, and  as shown in equations below.  

     222

22

2

11 )( xqyqluchuc yx    .    (9)5 

In equation (9) it’s prominent that curved domain bounds the free motion, in which domain’s 

location and size rely on magnitude of the kinetic energy of the system E, sets of integrated 

functions qx and qy, geometrical of body structure and circular motion.  

                                                           
4 is a motion of mechanical system that cannot be controlled or are debilitated and its non-zero motion, 

drift is same as free motion 
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In the integration of (1) and (4) concerning Poincare recurrence hypothesis (2) then it's achieved 

that drift is Poisson steady. Then, after this, we research on the fullness of the vector field's linear 

span and related exchangers. 

Control of motion of the mechanical system with aid of internal mass that's moves (arbitrary) 

within the body is validated. Therefore, the addition of the Flettner rotor to (an analogous) 

mechanical system then it is obvious that motion can be controlled. In this part, we substantiate 

control of motion of two situations whereby the following restraining conditions are subjected to 

the possibility of movement of the center of mass; 

a) Non-moving or rigid center of mass. 

b) Center of mass moving curve-wise.  

 

3.4 Control of motion of a system when internal mass is rigid  

The thesis checks into control of motion of the mechanical system, taking into account the altering 

rotation of the Flettner rotor, internal mass ignored because it is rigid. Various equations of motion 

are annotated and expressed as manifested below by first commencing with 0''   . Having 

motion’s equations in [4] and very initial integrals in [8] as below:          

𝑑

𝑑𝑡
(𝑐1𝑢1) +

𝑑

𝑑𝑡
(ℎ𝜓) = 𝑐2𝑢2𝜓 + 𝑙𝜓

2 − (𝛾𝑢1 + 𝜁𝜓), 

𝑑

𝑑𝑡
(𝑐2𝑢2) +

𝑑

𝑑𝑡
(𝑙𝜓) = −𝜓𝑐1𝑢1 −𝜓

2ℎ+ 𝛾𝑢1 + 𝑥𝜓, 

𝑑

𝑑𝑡
(ℎ𝑢1 + 𝑙𝑢2 + 𝑑𝜓 + 𝜏𝑘𝜋) = 𝑢2(𝑐1𝑢1 +ℎ𝜓) − 𝑢1(𝑐2𝑢2 + 𝑙𝜓) + 𝜉𝑢1 − 𝑥𝑢2        

(10) 

 Then the equations below follow:  
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𝑞𝑥 = (𝑐1𝑣1 +ℎ𝜓 − 𝜒)
𝑠𝑖𝑛 𝛽

𝑡𝑎𝑛 𝛽
− (𝑐2𝑢2 + 𝑙𝜓 − 𝜉) 𝑠𝑖𝑛 𝛽 + 𝛾𝑦, 

𝑞𝑦 = (𝑐1𝑢1 +ℎ𝜓 − 𝜒) 𝑠𝑖𝑛 𝛽 + (𝑐2𝑢2 + 𝑙𝜓 − 𝜉)
𝑠𝑖𝑛 𝛽

𝑡𝑎𝑛 𝛽
− 𝛾𝑥, 

𝑅 = ℎ𝑢1 + 𝑙𝑢2 + 𝑑𝜓 + 𝜏𝑘𝜋 +
𝛾

2
(𝑥2 + 𝑦2) + 𝑥𝑞𝑦 − 𝑦𝑞𝑥

````````` 
         

(11) 

We get velocities from integral functions of  𝑞𝑥, 𝑞𝑦 and function R as;  

𝝍 =
𝟏

𝑪

(

 
 

x
sin β

tan β
+ y sin β+ χ

− x̅sin β+ y̅
sin β

tan β
+ ξ

H − (2γ)−1(x
2
+ y

2
) − τkπ)

 
 

             

(12) 

In which ,yxqx  ,xyqy   2225.0 yx qqRH   , sequentially velocities in the matrix 

(12) is replaced with k6 in (1). Thereafter equation appertaining body's motion is achieved as the 

body is at a rigid point on integrals set: 𝑞𝑥, 𝑞𝑦 and R. The equation responsible to motion control 

and it is outstanding linear form is expressed below; 

   10 UpU
dp

d  ,              (13) 

 

  ,,,0,01
C

p
ZZU

E

k  
         

 

                                                           
6kinematic similarities occur when velocity at any position in the framework flow is rationally related by a 
fixed scale factor to the velocity at the homologous point in the perfect flow while thinking it is preserving 
the similar flow streamline shape. 
 

     EyxHyxyxzpU
22

0 5.0,cossin,sincos  
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Flettner rotor7 rotates at an angular velocity  which is regarded as the control of motion, the 

vector U0   relates to drift as vector field U1 concerns for of control activity. Notably, the Flettner 

rotor initiates  

the locomotion of the mechanical system in a fluid. Checking into vectors field with some in 

brackets: U0, U1, U2= [U0 U1], U3= [U2, U1].                  

(14) 

Rank appertaining to the linear span of a vector that is U0U1U3 equivalent to three on every point, 

but not on the plane expressed below  

        

































tan

sin
sin2cos21

tan

sin

2
4

21

2

1

2

22
222

1

2

2 xycccxyyxcc  

  0
tan

sintancos
2

2

21

2

2 











 




 yx
xccc             (15) 

Alternatively, a linear span of the vector fields U1, U2, U3 has a rank equivalent to three in every 

surface but not on this plane below;  

           0cossin3
tan

sin
sin3

2
4

21

2

2121

222

21

22

2

22

1 







 




 xycccyxcccyxccxcc

                 

(16) 

Remark            

Equations [15] and [16] are true whenever the moving coordinate is selected in a way that matrix 

C becomes a diagonal matrix as C=diagonal (c1, c2, d). The planes of (15) and (16) intersect on the 

curves; 

   





tan

sin
tancos 2121 IIIIx   

                                                           
7. Notably, the Flettner rotor is a kind of a rotor that initiates locomotion of the mechanical system in a 

fluid.  
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     (17)  

The solutions to equations are I1 and I2 

        0
2

4

2
6

2
163

2
16 22

2

22

1

2

21212

2

21112  xccxccIccxccIcc   

   
  

   
  

  
 

0
4

22

42

22

42

22
2

1

2

2

211221

2

2

1

2

2

211122
2

2

2

1

2

2

211122
1 
































cc

xcccccc

cc

cccxccc
I

cc

cccxccc
I



                 (18) 

Therefore, measurable extent8  appertaining to vector fields’ linear span within configuration  

space Ӈ is equivalent to three in all points but not on the line of curvatures check [17]. This is 

because the aforementioned curvatures are planes of double dimension two, hypothesis below 

attest to be true.   

A body moving in an ideal fluid with circulation around it with the first velocity can be moved 

from one point to another by rotation of the Flettner rotor. This notion makes the control of motion 

to be logic. The hypothesis of Rashevskii-Chow establishes control by utilization of motion 

onward the vector fields in oscillating time that is forth and back. If free-motion prevails then there 

is the possibility of motion onward it in forward time (Kilin and Verchanin, 2015). 

With aid of perpetual occurrence quality of progressive path or trajectories there is the application 

of motion in backward time, though proration of the period that continuously occurs within a 

system may be intricately challenged and if the period is lengthy hence putting up such kind of 

control is cumbersome.   

For preferred kind of control with a prevalence of circulation around the body is a prerequisite for 

control of motion of the mechanical system. It is possible to exhibit. 0 The system displayed 

                                                           
8 A measurable extent is a set of coordinates specifying the position of a point or sizes same as extensive 

magnitude or generally dimension 

 

 

    



tancos

tan

sin
2121 IIIIy 
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by expression (13) cannot be controlled in the notion of Rashevskii-Chow. Alternatively, from 

expression (13) circulation initiated by free motion which doesn’t fully get indemnified by rotation 

of Flettner rotor. Then what ensues is that we take into account the compounded model of control 

by Flettner rotor and motion of the internal mass.    

 

3.5 Control of motion as internal mass moves along a specific curve 

Let's propose that motion of the center of mass moves is specifically onward a curve

    ,, zzq   the curve has a constant z, below is a matrix form illustration of velocities 

emanating from integrals equation (8). 

𝜓 =
1

𝐶

(

 
 

𝑥̄
𝑠𝑖𝑛 𝛽

𝑡𝑎𝑛 𝛽
+ 𝑦̄ 𝑠𝑖𝑛 𝛽 + 𝜒 − 𝑛

𝑑𝜁

𝑑𝑧
𝑧 ′

−𝑥̄ 𝑠𝑖𝑛 𝛽 + 𝑦̄
𝑠𝑖𝑛 𝛽

𝑡𝑎𝑛 𝛽
+ 𝜉 − 𝑛

𝑑𝜇

𝑑𝑧
𝑧 ′

𝐻 − (2𝛾)−1(𝑥
2
+ 𝑦

2
) − (𝜁𝑛

𝑑𝜇

𝑑𝑧
− 𝜇𝑛

𝑑𝛾

𝑑𝑧
) 𝑧 ′ − 𝜏𝑘𝛱)

 
 

          

(19) 

We get the system's equation of motion of integrals (8) by replacing equation (19) with relative 

kinematic expression in (1). The achieved equation relies on the mass position of z and velocity 'z  

on a line of curvature, on the same line achieving linear controllability which is equations of 

motions this is got by application of expression [4]. 

𝑑𝑠 = 𝑣0(𝑠) + 𝑣1(𝑧)𝑑𝑧 + 𝑣2𝛱,              

(20)
 

𝑢0(𝑠) = 𝐾 (𝑥
𝑠𝑖𝑛 𝛽

𝑡𝑎𝑛 𝛽
+ 𝑦 𝑠𝑖𝑛 𝛽 + 𝜒,

𝑠𝑖𝑛 𝛽

𝑡𝑎𝑛 𝛽
(−𝑥 𝑡𝑎𝑛 𝛽 + 𝑦) + 𝜉,𝐻 − (2𝛾)−1(𝑥

2
+ 𝑦

2
), 0)

𝐸

 

𝑢1(𝑧) = 𝐾   

Within facet space Ӈ there is the existence of vector  Ezyxs ,,,  . It's factual that the velocity 

of the mechanical system moving onward a curve 'z plus the Flettner rotor s’ angular velocity 
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ensures the controllability of the mechanical system. In this case coordinates of the center of mass 

do not contribute to controllability. Free motion is confirmed by vector field U0 as vector fields U1 

and U2 are aligned to activities concerned for control of motion. Let’s check into these vector 

fields:  

U1, U2, 

U3= [U1, U2], 

U4 = [U1, U3], 

U5= [U2, U3], 

U6= [U1, U4]                 (21) 

The above vector fields except for VO exhibit fullness of their linear span as we also substantiate 

motion control in the absence of circulation. It is important to check either motion of canter of 

mass is onward a curve or a line;   

1. The reciprocating motion of the center of mass on a straight line is parameterized as shown 

below  

𝜁 = 𝑟1 𝑠𝑖𝑛 𝑧  𝜇 = 𝑟2𝑠𝑖𝑛 𝑧                   (22) 

 and taking note that constants𝑟1, 𝑟2, doesn’t disappear at one time while the vector field U1, U2, 

U4, U5 depend on the condition that 𝑧 =
𝜋

2
 𝑎𝑛𝑑

3𝜋

2
   

           (23)   
 

The condition of one-dimensional dependence emanating from the equation (23) we get 

that, 𝐶 𝑠𝑖𝑛 𝛽 + 𝐷 𝑠𝑖𝑛 𝛽 = 0,                   (24) 

C and D rely on (24) independent variables of the mechanical system. Four ranks are appertaining 

to vector field linear span (21) which exists in the facet space Ӈ but not on the plane with double 

measurable extent as in (23) and (24). Therefore, these hypotheses are true. The body can move in 

an ideal fluid at a given velocity by responding motion, these are; rotation of Flettner rotor and by 
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the circular motion of the center of mass. The motion is independent to circulation at the body's 

peripheral 

We the given variable to Circular motion of the center of mass as expression shown below𝜁 =

𝑘0
𝑠𝑖𝑛 𝑧

𝑡𝑎𝑛 𝑧
, ,tancos0 zzk .00 k

             (25)
  

The vector field U1, U2, U3, and U5 are autonomous in space Ӈ hence the theorem (1.2) above is 

true.  

3.6 A Skier Controlling His Motion 

In this case, we consider mechanism a skier use when skiing on a skate to control his speed. The 

control mechanism involves raising and lowering internal mass or barycentre9 in the process of 

skiing on a surface with different undulating10 topography. We model control derivative equations 

and then check into jump function with impulsive motion (Lind and Sanders,1996).  

Skater carrying a skier has a total weight of "skier” plus the weight of skate itself. In the process 

of skiing, the skier controls the motion of the skate by raising or lowering his barycenter or internal 

mass. This is achieved by the skier reactions specifically up and down movements of his body thus 

changing internal mass position.  

On the steep sloppy surface of the snow, there is a high magnitude of gravitational force which 

influence the high speed of the skate thus skier moderates the speed by lowering barycenter or 

internal mass which tend to reduce the influence of gravitational force, meaning if skier lowers 

barycenter, the internal mass gets away from center hence less magnitude of centripetal force and 

skiing speed reduced. This is done by moving the whole body up and enhances stability by using 

skiing sticks.   

                                                           
9 Barycenter is the internal mass or center of mass of the body.   
10 Undulating means sloppy surface, as per the thesis, it is the slope of snowcapped surfaces or 

topography (landscape).  
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When the skier gets onto a snow surface of a gentle slope, the magnitude of gravitational force is 

lessening and the skate’s speed is reducing hence the skier raises barycenter or internal mass which 

moves close to center and centripetal force influence intensify of kinetic energy thus then skiing 

motion speed increases. Raise of barycenter is done by moving the whole body downwards. 

The rate of the body's reaction is not equivalent to the speed of ice molecules displacement or 

generally speed of the skate. Analytical stability initiated by the change of mass position and speed 

aids in motion control when skiing. When the skier's weight reacts at a rate equivalent to the speed 

of inclination of a skier then it limits analytical stability. This scenario happens to liquid with low 

viscosity, for instance, water and skate with a low natural frequency. 

 

3.7 Additional Forces Aids Control of Skiers’ Motion 

The mass of the skier under the influence of gravity introduces weight and in this case weight of a 

skier, the due force of gravity is expressed as 𝐺𝑤 = 𝐺𝑚 + 𝐺𝑙𝑒𝑡 + 𝐺𝑎. Where 𝐺𝑎 denotes the force 

that accelerates the skier and 𝐺𝑤 denotes weight due to gravity, there exists another force 

represented as 𝐺𝑓𝑙𝑎𝑑which is expressed as 𝐺𝑓𝑙𝑎𝑑 = 𝐺𝑚 + 𝐺𝑙𝑒𝑡, 𝐺𝑓𝑙𝑎𝑑 is denoting effective force, 

The 𝐺𝑓𝑙𝑎𝑑 is a skier load simply exerted on the snow and requited influenced by snow. The Skier 

needs evade skidding by balancing his or her weight making center of mass and the ski intersects 

on a straight line which must be at 1800 or parallel to direction traced by the vector of force 𝐺𝑓𝑙𝑎𝑑 

𝐺𝑓𝑙𝑎𝑑 = 𝐺𝑤 − 𝐺𝑎 = 𝐺𝑚 + 𝐺𝑙𝑒𝑡                   (26) 

Then we subsequently achieve 

 



















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







































1sinsin

sincossin

cossinsin

1sincos

sincossin

sinsinsin

1sinsin

sin11

111

22

2















 gmG flad
 

The absolute value of 𝐺𝑓𝑙𝑎𝑑 is given as shown below; 
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     gravitymassGGG Mletflad 
5.0225.022 1sincos1           (27) 

Figure 2 below demonstrates that in the process of skiing a path traced an angle  on the horizontal 

plane with a line on which force Ga operates. Skier operative weight force is denoted by 𝐺𝑓𝑙𝑎𝑑. A 

force orthogonal to the slope of the ski is represented by 𝐺𝑚 . There is an inner operating force on 

the sloping plane called lateral force is denoted as 𝐺𝑙𝑒𝑡. The angle between forces 𝐺𝑓𝑙𝑎𝑑 and 𝐺𝑚is 

the same as the angle of skier's inclination to the ski ‘s slope and is given as . To evade skidding 

skier’s feet and his internal mass must intersect on the same line with 𝐺𝑓𝑙𝑎𝑑 

 

 

 

 

 

 

Figure 2 

The angle of inclination  lies in this frame
2

00   , the said angle  is associated with a 

path that is radius which relies on the tilt of skier mathematically equation manifest relationship 

  shown below. 

  
  5.0222

1

sincoscos

cos
cos











mfladmflad GGGG          (28) 
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Then we proceed and multiply both sides of the equation by this trigonometric identity

  5.0

2
1

cos

sin
x

x

x
  and as a result, we get tan and on the other side it is narrowed down to









tan

sin

cos

sin
. 

Another factual mathematical observation on 𝐺𝑓𝑙𝑎𝑑, 𝐺𝑚, and 𝐺𝑙𝑒𝑡 is that they are planar vectors, 

meaning they are on one plane since 𝐺𝑚 is orthogonal to the slope of the ski as vector 𝐺𝑙𝑒𝑡is 

generated by the slop, knowing that the vectors are orthogonal (check figure 2). Subsequently, 

achieve 

.
tan

sin

cos

sin

tan

sin

tan

sin
costan

cos

sin





















 gmgravitymass

G

G

m

flad

       (29) 

Chapter 4 

4.0 Influence of non-Holonomic constraints 

In section, we discuss a mechanical system is subjected to non-holonomic11 constraints whereby 

the asymptotic stability appertaining to non-equilibrium position get weaken and transformed to 

non-asymptotic by weak non-holonomic constraints, a system can be stabilized to stable non-

asymptotic. For more explanation, we take an instance of a ball rolling on a horizontal table, and 

at the very same time, the table is shifted horizontally to any d direction. In the motion of a ball, 

there is a particle whose motion is constrained to be on the surface of the ball which simply means 

this is a holonomic constraint when the table is shifted, the mechanical system is subject to non-

homonymic constraints thus this particle on the ball can fall off under the influence of shifting 

force (Svinin, Morinaga, and Yamamoto, 2012). 

                                                           
11 A non-holonomic system is a perpetual and complete flow of variable or parameters managing the system through 

which a mechanical system may be changed from a certain state to another state 
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 The ball is to be rolled on a table and it is assumed that the ball has a three-measurable extent 

which is the right-angled Cartesian coordinate frame. The table is flat and the origin point is 

marked on it, furthermore, the x-axis and y-axis also inscribed on it.   

The ball has one unit radius, we mark a point D in red, this point denotes the diameter of the ball 

again the plane is right-angled to the diameter and it is located at center A of the ball, which defines 

a big circle associated with point D, on this big circle we mark another point K  green, Position on 

the ball is  z=0 plane and point D coincides with the origin, A is at x=0, y=0, z=1 and K are at x=1, 

y=0, and z=1 that is K protrude to the positive x-axis. This is the initial orientation of the ball 

The rolling ball is on a fully closed line z=0 planes, it is not preconditioning for the said line to be 

connected, which may not make a ball to skid and cannot twist. Point A get back to x=0, y=0, 

z=1.Point D doesn't now coincide with the origin and point K doesn't protrude onto the positive x-

axis. Actually, by taking the best fit line, the ball gets again another orientation from previous 

orientation to any likelihood orientation of the ball having A positioned at x = 0, y = 0, z = 1. Thus, 

the system is non-holonomic which may be denoted by the unique and double quaternion p and 

−p and if used onto the points denoting the ball, takes points D and K to their new locations 

(Svinin, Morinaga, Yamamoto, 2012). 

 

4.1 Effects of non-holonomic constraints on a System  

Let's have an equation of motion of mechanical system expressed to "m" terms using abscissa of 

Lagrangian 𝒑𝟏, 𝒑𝟐, 𝒑𝟑, 𝒑𝟒…… . . 𝒑𝒎, this motion is subjected to some dispelling forces. The 

equation can now be expressed as below; 

∑ (
𝑑

𝑑𝑡
(
𝜕𝐸

𝜕𝑝𝑗
) −

𝜕𝐸

𝜕𝑝𝑗
+

𝜕𝑈

𝜕𝑝𝑗
+

𝜕ℎ

𝜕𝑝𝑗
)𝑚

𝑗=1 𝜕𝑝𝑗 = 0            (30) 
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Where E is energy in motion of the system, U is the system’s energy at rest and the (dissipation) 

function is depicted by letter h that can be expressed in velocities 

as𝑑𝑃1. 𝑑𝑃2. 𝑑𝑃3. 𝑑𝑃4. . . . . . . . 𝑑𝑃𝑚: 𝑈 = 0.5(∑ 𝑎𝑗𝑘
𝑚
𝑗𝑘 𝑑𝑃𝑗𝑑𝑃𝑘). Apparently (E) and (U) denote 

kinetic energy and potential energy respectively and have (holomorphic) expression as shown 

below. 

0.5(4𝐸) = ∑ 𝑑2𝑝𝑗
𝑚
𝑗=1 + ∑ 𝐶𝑗𝑘

𝑚
𝑗𝑘=1 𝑑𝑝𝑗𝑑𝑝𝑘

.

  kj

m

jk

jkj

m

j

j PPPU 



1

2

1

)4(5.0          

(31) 

Further explanation j  are stable parameters coefficients and axes pj (j=1, 2, 3, 4, 5, 6…., m) has   

Cjk, θjk as their functions, disappearing at 𝑝1 = 𝑝2 = 𝑝3 = 𝑝4 = 𝑝5=⋯.𝑝𝑚 = 0. From expression 

(30) we achieve equations of Lagrange. Having non-negative  mjj ,......,4,3,2,1  then non-

balancing points; 𝑝1 = 𝑝2 = 𝑝3 = 𝑝4… . 𝑝𝑚 = 0 becomes line with a curve that is steady provided 

there is full dispersion. The mechanical system is subjected to linear n which is non-moving and 

non-holonomic constraints as manifested below. 

 
rm

m

nr

u

l pdpppppppD
du

dp .

654321

1

...


  (𝑢 = (1,2,3,4,5, . . . . . , . 𝑛)         

(32) 

Then proceed on to research about the steadiness of the system's unbalancing point. Subsequently 

get that, equation (30) composed of non-holonomic components (33) preludes equations of 

Boltzmann-Hamel. 

𝑑

𝑑𝑡
(
𝜕𝐸

𝜕𝑎𝑙
) + ∑

𝜕𝐸

𝜕𝑝𝑗

𝑚
𝑗=1 (𝐵𝑙

𝑗
) + ∑

𝜕𝑢

𝜕𝑝𝑗

𝑚
𝑗=1 (𝐵𝑙

𝑗
) + ∑

𝜕𝐸

𝜕𝑎𝑗

𝑚
𝑗𝑘=1 (𝜆𝑙

𝑗
𝑎𝑗) = −

𝜕ℎ

𝜕𝑎𝑙
(𝑙 = 𝑛 + 1, . . . , 𝑚), ) 

      (33) 



24 
 

 
 

From the equation we get Ricci-Hamel constants, these are𝜆𝑘𝑙
𝑗

. The Kinematic speck is a 

function of abscissa p1, p2, p3…pm, plus speck t1, t2, t3…tn, and equivalent to the element of non-

holonomic. 

 𝑡𝑢 = 𝑑𝑝𝑢 − ∑ 𝐷𝑟
𝑢𝑚

𝑙=𝑛+1 𝑝
.

𝑟 (u=1, 2, 3, 4, 5, 6… n);           

(34) 

tn+1………tm, are probably equalizes velocities that is 𝑡𝑟 = 𝑑𝑝
.

𝑟 (r=n+1… m); dpj in       (35) 

Kinetic energy𝐸 substituted by an aspect of motion, this is shown as below  

𝑑𝑝𝑗 = ∑ 𝐵𝑖
𝑖𝑚

𝑘=1 𝑡𝑗  (j=1, 2, 3, 4, 5….m)             

(36) 

Having composed the equation of Boltzmann-Hamel we express 𝑡𝑢 = 0 (u=1, 2, 3, 4, 5… n). We 

remove velocities 𝑝𝑖
′from dispersion function and get function h. We get that𝒉 is a negative state 

of velocities hence cannot be dispersion function. 

 it follows that forces of dispersion on the system can be influenced by non-holonomic constraints 

decline, then forces hence debilitate and destabilize the system. As the ball roll without slipping, 

it is said to be a holonomic constraint with force opposing motion. This force is typically frictional 

force, and this is illustrated below, 

𝐻 = −𝐻ℎ𝑘(±)(𝑢 − 𝑢0),           

𝐻ℎ𝑘 is a constant and v0 denotes plane velocity and v denotes the velocity of the regional point of 

contact. If the ball doesn't slip then non-holonomic constraints decline and produce resisting force 

that stable the mechanical system at the border domain.  

Having coordinates yn+1…yn, then the system's stability can be investigated using a coefficient of 

stability𝛾
𝑙
. There is a disturbance of 𝛾

𝑙
⊳ 0stability when coefficient𝛾

𝑙
≤ 0. Constant coefficient 

(ekz) in kinetic energy depending on non-holonomic (𝐶𝑙
,0𝑢

) influence of the Coefficient stability𝛾
𝑙
. 
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Weak holonomic in holonomic constraints help in obtaining stability referring to yn+1…ym, 

coordinates. Stable holonomic doesn't influence coefficient of stability 𝛾𝑙therefore ultimately the 

system doesn’t get strengthen. 

The effects of non-holonomic constraints can be illustrated. We consider coefficients associated 

with constraints equation we then proceed in power expansion of equation in coordinate-wise 

and by first starting with zero-order terms and note it that these constraints are non-holonomic 

having weak non-holonomic and when the coefficients either starts with first or higher terms, the 

constraints are non-holonomic with strong non-holonomic. 

 

4.2 Motion for Finite-Dimension Lagrangian System 

A body or a chain of bodies, immersed in a non-viscous irrotational fluid, the motion can be 

described by a finite-dimensional Lagrangian system. We get some geometric properties that 

make the system "fit for jumps" so that the equations of motion are linear concerning the time 

derivative of the control function (Yunt and Glocker, 2008). 

The non-viscous and irrotational fluid is an ideal fluid and body or chain of bodies in this fluid is 

in motion that can be a finite-dimensional system in which Lagrangian dynamics are manifested 

by considering derivative or differential measure whereby the force of control on velocity and 

acceleration is incorporated. 

Actions of the Lagrangian system in values belonging to the force of control is made credible by 

the differential measure. Finite-dimensional Lagrangian's control has some of its conditions 

derived. In the Lagrangian system, there are impulses introduced by control action which are 

internal confining lines on time circle. 
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There is a manifestation of fit for a jump when the high magnitude of control forces is applied to 

the dynamical system, fit for the jump are exhibited as external forces that alter the system's path 

of motion severely progress. There is also a consideration of numeric expression for optimal 

trajectories that belong to the finite-dimensional Lagrangian system with variables. 

Control of the mechanical system has non-smooth dynamics, and the mechanical system can be 

expressed in derivative or differential equations with the provision of contact status. Integration is 

carried out to determine the measured extent of derivative involved. 2nd order derivatives in 

dynamics give differential equations expressed using algebraic speck. Geometric properties that 

render the system "fit for jumps", are tangent lines, normal line, relative angles between links, and 

velocity (Yunt and Glocker, 2008). 

There comprehensive explanation of the forces from the domain of interaction of the mechanical 

system and the non-viscous irrotational fluid. Control motion is explicitly captured in the referral 

of Gauss principle which we get two expressions. One depicts expression appertaining to Gauss 

principle in free motion’s impact and the other involves impulsive forces in control of motion. 

The force imposes a law that is dependent conditionally on a kinematical and geometrical speck. 

The direction of general force incorporates unilateral force with aid of vector f as expressed by the 

equation of Lagrange for smith dynamics or motion 

𝑑

𝑑𝑡
(
𝜕𝐸

𝜕𝑣
)
𝐸

− (
𝜕𝐸

𝜕𝑝
)
𝐸

+ (
𝜕𝑈

𝜕𝑝
)
𝐸

− 𝑓 = 0             (37) 

In this case, E (p, v) is the summation of kinetic energy in the same mechanical system there is the 

sum of all smooth potential energy denoted by U (p). Vector force f brings control into motion 

equations and for contact on position, velocity, and acceleration there is equation expression using 

indexes of acceleration and body’s velocity as illustrated below.  

𝜏𝐿 = {1,2,3,4, 𝑆}, 
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𝜏𝑍 = {𝑗 ∈ 𝜏𝐿|𝑙𝑣𝑗 = 0}, 

𝜏𝑀 = {𝑗 ∈ 𝜏𝐿|𝑙𝑣𝑗 = 0, 𝜆𝑣𝑗 = 0}.
              

(38)
 

The index𝝉𝑳 represents contacts on the level position of mechanical system which are not smooth 

and summation, totaling to S. Index 𝜏𝑍 is closed contacts onto mechanical system’s position level 

totaling to R. Contacts having velocity and distance normal contacts equivalent to zero is 

represented by 𝜏𝑀totaling to N. 

We get that Vector contact distance and valued component of force are simply related by 

Kinematics which is tangential and normal For the realization of closing contact vector lv(p) 

denotes normal distances between non-negative inflexible bodies.𝜆𝑣is normal contact velocity and 

𝛾𝑧depicts tangential contact velocity and all are annotated respectively in the expression below.  

𝜆𝑣 = 𝜓𝑣
𝐸(𝑝)𝑣,

                (39)
 

𝜆𝑧 = 𝜓𝑧
𝐸(𝑝)𝑣, 

Where 𝜆𝑣is gotten from the sum of the time derivative of lv (p). Accelerations of contact which 

are tangential and normal are expressed as below  

𝑑𝛾𝑣 = 𝜓𝑉
𝐸(𝑝)𝑑𝑣 + 𝑤𝑣(𝑝, 𝑣), 

𝑑𝜆𝑧 = 𝜓𝑍
𝐸(𝑝)𝑑𝑣 + 𝑤𝑧(𝑝, 𝑣).              (40) 

Acceleration has these indexes 

𝐴𝑣𝑗 = {𝛾𝑣𝑗|𝛾𝑣𝑗 ≥ 0, ∀𝑗 ∈ 𝜏𝐿}, 

𝐴𝑧𝐽(𝛾𝑣𝑗) = {𝛾𝑧𝑗| |𝛾𝑧𝑗 | ≤ 𝜂𝑗𝛾𝑣𝑗,∀𝑗 ∈ 𝜏𝑀},
             

(41)
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We have normal and tangential contact force depicted by 𝛾𝑣𝑗and 𝛾𝑣𝑗respectively and at contact j 

the coefficient of friction is represented by𝜂𝑗. The Law of friction appertaining to isotopic is 

explained. The mechanical system imposed on spatial friction and unilateral contact forces without 

impacts are expressed below 

𝑁(𝑝)𝑑𝑣 − 𝑓(𝑝, 𝑣) − 𝜓𝑧(𝑝)𝛾𝑧 − 𝜓𝑣(𝑝)𝛾𝑣 − 𝐷(𝑝)𝐼 = 0 

𝑑𝜆𝑣𝑗 ∈ 𝑀𝑎𝑣𝑗(𝛾𝑣𝑗), ∀𝑗 ∈ 𝐼𝑀              (42)
 

−𝑑𝛾𝑧𝑗 ∈ 𝑀𝑎𝑧𝑗(𝛾𝑣𝑗)(𝛾𝑧𝑗), ∀𝑗 ∈ 𝐼𝑀 

4.3 Control and Stability for Infinite Dimensional Systems 

We check into controllability of bodies with infinite-dimension, plunged or immersed in viscous 

fluids having non-zero vorticity. In particular, we can obtain controllability and stabilization 

properties for these infinite-measurable extents al systems. 

The thesis expounds a linear system in which the nonlinear trajectory is fully characterized and are 

controllable. Comprehensive control of the linear system admits the solution of inverse dynamics 

using the structure of the linear system to compute inputs necessary for the performance of a task 

(Yunt and Glocker, 2008). 

Inversion achieved by getting the right inputs to enhance a control system actually from a state to 

another one. For the occurrence of stability, there must be a function balancing right or required 

aims of operation with stability and effort producing maximum control to the system.  Inversion 

of dynamics will always assume the system’s dynamics are certain and fixed. 

Besides, the idea of a linear system can be extended to various systems of parameters having 

boundary control essential in controlling linear systems. Control of the mechanical system is more 

accurate when a smooth infinite dimension manifold having the advantage of vector filed. 
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4.4 Vectors in Infinite Dimension and System Control  

We regard bodies immersed in a fluid with viscosity, and with non-zero vorticity as a mechanical 

system with differential equations as shown below. 

𝜔 = 𝑦
.
=
𝜕𝑢

𝜕𝑦
−
𝜕𝑢

𝜕𝑥
= ℎ(𝑦),    y∈Y⊂ Ҝ

m         (43) 

Comprehensively paired (Y, h), in this case, letter X is a set of Ҝm and it is an open set and on X a 

smooth vector field is given as h. We get that the solution of (45) is mapping  𝑒 → 𝑦(𝑒)in a way 

that y (e) =h y(e) ∀𝑒 ≥ 0. Noting better that when a smooth function𝑦 → 𝑓(𝑥) on Y and𝑒 → 𝑦(𝑒), 

by definition is a trajectory then; 
𝑑

𝑑𝑒
𝑓(𝑦(𝑒)) =

𝜕𝑓

𝜕𝑦
(𝑦(𝑒)). 𝑦

.
(𝑒) =

𝜕𝑓

𝜕𝑦
(𝑦(𝑒)).ℎ(𝑥(𝑒))  ∀𝑒 ≥ 0.

 From this equation what ensues is an aggregation of derivative that is the mapping 

derivative illustrated as shown; 𝑦 →
𝜕𝑓

𝜕𝑦
(𝑦).ℎ(𝑦)  

This sum of derivative (mapping) may be called “time-derivative” of “f” checking into control 

system there is identical elucidation for a vector field and “space” 𝑦
.
= ℎ(𝑦, 𝑣),       (44) 

Having derivative h smooth on 𝑌 × 𝑉 ⊂Ҝm ×Ҝn as a subset, on Y we get that his infinite vector 

field collection but not a vector field then parameterized by v as𝑣 ∈ 𝑉, the mapping vector field 

on Y is manifested as below𝑦 → ℎ𝑣(𝑦) = 𝑓(𝑦, 𝑣). 

A solution of equation (46) relates well with a smooth solution of it with aid of smooth solution of 

(46) which is mapping𝑒 → (𝑦(𝑒), 𝑣(𝑒)) having values in 𝑌 × 𝑉as 

𝑦
.
(𝑒) = ℎ(𝑦(𝑒), 𝑣(𝑒)) ∀𝑒 ≥ 0, 

Taking note of infinite mapping 𝑒 → 𝜁(𝑒) = (𝑦(𝑒), 𝑣(𝑒), 𝑣
.
(𝑒), . . . . . ). As the values in 𝑌 ×

𝑉 ×Ҝ 𝑛
∞, and Ҝ 𝑛

∞=Ҝ𝑛 × Ҝ𝑛 …, represents the product of many countable numbers of copies 

of Ҝ𝑛.The position of Ҝ 𝑛
∞is in the system o(𝑣1, 𝑣2, . . . . ) 𝑢𝑗 ∈ Ҝ𝑛.The said mapping satisfies. 

𝜻(𝒆) = (𝒉(𝒚(𝒆), 𝒗(𝒆)), 𝒗
.
(𝒆), 𝒗

..
(𝒆), . . . . . . . ) ∀𝒆 ≥ 𝟎, 

Then the infinite vector field trajectory  
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(𝑦, 𝑣, 𝑣1, . . . . . . ) → 𝐻(𝑦, 𝑣, 𝑣1, . . . . . ) = (ℎ(𝑦, 𝑣), 𝑣1, 𝑣2, . . . . . . . . . )  

Is prominently on 𝑌 × 𝑉 ×Ҝ 𝑛
∞  and for any mapping 𝑒 → 𝜁(𝑒) =

(𝑦(𝑒), 𝑣(𝑒), 𝑣1(𝑒), . . . . . . . )and this is the solution of this infinite vector field which ultimately 

expressed as (y (e), v (e), v (e)…) having 𝑦
.
(𝑒) = ℎ(𝑦(𝑒), 𝑣(𝑒)), then this represents the solution 

of (46). H is a vector field and doesn't so far give parameters to a group of vector fields (Yunt 

and Glocker, 2008). 

In the same case, equation (46) which is the control system is is the data for 𝑌 × 𝑉 ×Ҝ 𝑛
∞  in 

conjunction with smooth vector field H. It is seen that same as non-controllable scenario it has 

illustration as “time-derivative” of a smooth function (𝑦, 𝑣, 𝑣1, . . ) → 𝑓(𝑦, 𝑣, 𝑣1, . . . . 𝑣𝑟) relying 

on many and a certain number of variables by 𝑓
.

(𝑦, 𝑣, 𝑣1, . . . . , 𝑣𝑟+1) = 𝐵𝑓.𝐻 

𝝏𝒇

𝝏𝒚
. 𝒉(𝒚, 𝒗) +

𝝏𝒇

𝝏𝒗
. 𝒗𝟏 +

𝝏𝒇

𝝏𝒗𝟏
. 𝒗𝟐+. .. 

The totaling expressed above is certain or finite since function f rely on certain many variables. 

 

Chapter 5 

5.0 Conclusion 

In the research, the motion of a body which is hydro-dynamically asymmetric together with the 

rotation of the Fletcher rotor is fully controllable with aid of moving coordinates that change the 

position of the internal mass, which subsequently changes circular motion of internal mass and 

mechanical system's angular momentum. The main purpose of the Flettner rotor is to induce a 

motion mechanical system. 

In a wide range of countless time interval, the controllability of the system makes up the free 

motion drift simply by the circular motion of internal mass and rotation of the Flettner rotor 

especially when they exist within a circular domain. The body structure and body domain's velocity 
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define radius and central point. The drift outside this domain utilizes the motion of the center of 

mass to get covered within a known time interval. In this conclusion we suggest solutions to 

various problems by denotation of the very physical devices these remedies are; 

a) For full body's stability at any point space at the infinite interval time frame, there should be 

perfectly design of basic and practicable patterns motion of the center of mass 

b) Construction of detailed control of the mechanical system to enhance the system's motion from 

a space point to another space point. 

c) Construction of mechanical system controls by altering circulation around the body as per the 

smooth law actually when the mechanical system's motion does not have first integrals.  

We conclude that when a mechanical system is subjected to non-holonomic constraints, 

controllability can be achieved whereby the asymptotic stability appertaining to non-equilibrium 

position get weaken and transformed to non-asymptotic by weak non-holonomic constraints, thus 

the system gets stabilized. 

System immersed in non-viscous irrotational fluid is controllable, in which the motion is expressed 

by a finite-dimensional lagrangian system. We found out that actions of the Lagrangian system in 

values belonging to the force of control is made credible by the differential measure. 

 Finite-dimensional Lagrangian's control has some of its conditions derived. In the Lagrangian 

system, there are impulses introduced by control action which are internal confining lines on time 

circle. 

Another objective of the thesis that has been achieved, is controllability and stability properties of 

bodies with infinite-dimensional systems immerse in viscous fluid with non-zero vorticity whereby 

we get nonlinear trajectory is controllable and comprehensive control of the linear system admits 
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the solution of inverse dynamics using the structure of the linear system to compute inputs 

necessary for the performance of controlling task. 

  

 

Future Research  

The investigation of controlled motion leads to the operation speed problem. In future time I 

therefore recommend to research on construction of time-optimal controls, I also advice any 

researcher to conduct an investigative study on the stated topic. 
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