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Abstract  

Several challenges like high cost of production continue to affect the performance of sugar 

industries depicted by undesirable process efficiencies and productivity with average sugar 

productivity of 85%, which is below 92% recommended world average. This is attributed to lack 

of a holistic application of key components of lean thinking applied prior to adoption of advanced 

techniques like automation to reap maximally and more importantly enhance their process 

performance. More specifically, sugar industries in Kenya operate on conventional automation 

(LoA 4) among other factors for monitoring and controlling processes.  Also, proper sensitization 

of lean automation and its impact on the performance of industrial competitiveness of sugar 

industry in Kenya is non-existence. This has resulted to uncompetitive and unsustainable process 

performance leading to collapse of Kenyan sugar companies. Lean automation is the technique of 

applying the optimum level of automation to a lean environment with a focus on robustness, 

reliability and minimization of complex tasks.  With the objective of assessing the effects of lean 

automation through advanced LoA for full benefits, an experimental design in a case sugar industry 

was conducted to assess the status of real world circumstances for optimum level of automation. 

The indicators of lean manufacturing integrated with proper level of automation on sustained 

performance was assessed and compared, and the potential of lean automation simulated. Based 

on adaptive control, both LoA 5 and 6 recorded the lowest index of 0.21 compared to 2.1 for LoA 

4 due to rapid changeover within a shortest time, thus LoA 5 and 6 ideal for real time monitoring. 

For quality in production, LoA 6 recorded the highest index of 84.96 compared to 84.03 and 81.29 

recorded by LoA 5 and 4 respectively. Implying that, LoA 6 enables mornitoring and attainment 

of optimum performance of process parameter. Similarly, the continuous improvement index of 

175.0, 430.0 and 430.0 for LoA 4,  LoA 5 and LoA 6 respectively depicted a lower rate of 

production for LoA 4 at 100 T/h compared to LoA 5 and 6 at a rate of 360 T/h. For wastage 

reduction, LoA 6 recorded the least resource utilisation index of 2101.2 compared to 2103.6 and 

3311.2 for LoA 5 and 4 respectively. This is as a result of minimum variations in the process 

parameters due to their real time monitoring and control with LoA 6.  Finally, the overall process 

performance index for LoA 4, LoA 5 and LoA 6 was 65.69, 147.56 and 147.79 respectively. It is 

evident that lean automation which consists of LoA 5 (SCADA) and LoA 6 (DCS), provides the 

optimum AMT that the local sugar industry require to attain a sustainable and competitive process 

performance. Therefore, it should be considered for adoption and implementation within the sugar 

processing line as the appropriate AMT that will enable real time monitoring of process variables, 

minimization of resource wastages, quality production and continuous improvement in the sugar 

industry 
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Fibre is the water-insoluble matter of cane and bagasse from which the Brix-free water has 

been removed by drying 

Glucose (also known as grape sugar) is a monosaccharide and a reducing sugar  

High performance liquid chromatography - Generally referred to as HPLC this is a widely 

known technique to very accurately determine the quantity of a specified substance in a 

sample. HPLC is routinely used in the Southern African sugar industry to determine the 

amount of sucrose, fructose and glucose in molasses. 

Imbibition is - the process in which water or juice is put on bagasse to mix with and dilute 

the juice present in the bagasse. The water so used is termed imbibition water. 

Liming - The addition of lime to mixed juice for the purpose of clarification 

Mean circumference: mean diameter x p. 



 

xiii 
 

Mill ratio - the ratio of feed to discharge work openings. 

Preparation Index (PI) is the ratio of Brix in the ruptured cells to total Brix in cane expressed 

as a percentage. PI is an empirical method and uses the ratio of the Brix’s obtained using two 

different cane preparation methods. 

Set opening - the distance between the circumferences escribed by the mean diameters of the 

top roller and feed or discharge roller with the mill running empty. 

Sugar cane is botanically a tall grass of the type Saccharin and agriculturally the crop 

produced from hybrids that are the descendants of a number of Saccharin species commonly 

referred to as sugar cane and is the raw material accepted at the cane sugar mill for processing. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

1 
 

CHAPTER 1 : INTRODUCTION 

1.1. Background Information 

The Kenya’s manufacturing industry, in which the sugar industries belongs, has declined in its 

GDP contribution. The stagnation has been at an average of 10% for more than ten years, with 

Sugar industry contributing 41% decrease in manufactured products (Mwangi, 2018). The 

Kenya vision 2030 stipulates that the industry should account for a GDP of 20%. Attaining 

this goal need underlying constraints which hinder rapid growth be addressed. The constraints 

include technological inadequacies, high input costs, and decrease in investment portfolio and 

increase in credit and competition costs from imports (Otieno, 2015). In Kenya, there are 11 

operational sugar factories namely: Mumias Sugar Factory, Chemelil Sugar Factory, Nzoia 

Sugar Factory, Kibos Sugar and Allied Factories, Muhoroni Sugar Factory, Transmara Sugar 

Factory; South Nyanza Sugar Factory, Sukari Industries Limited, Kwale International Sugar 

Company, West Kenya Sugar Factory and Butali Sugar Factory. (Kenya National Assembly: 

March, 2015). 

As reviewed by Ondiek and Kisome (2013), in spite of the availability of these companies, as 

highlighted by KESREF (2010), sustainability and self-sufficiency in sugar production 

continues to drop as consumption demands continues to increase. Several challenges continues 

to affect the performance of sugar industries depicted by undesirable process efficiencies and 

productivity with average sugar productivity of 85%, which is below 92% recommended world 

average. In Kenya, the sugar production cost is approximately Ksh 46,000 per metric ton, and 

this is almost twice that of countries like Swaziland in Southern Africa register which is Ksh 

24,000, KESREF (2010) confirms.  
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According to Ondiek and Kisome, (2013), it will be beneficial if sugar industries in Kenya can 

give consideration to the holistic application of key components of lean thinking, so that they 

can reap maximally and more importantly enhance their process performance among them lead 

time. These lean techniques among them employee involvement, visual display and control, 

5S, and standardization are applied prior to adoption of advanced techniques like production 

smoothing and value stream mapping. This is because the advanced methods can only be 

implemented when there is good quality, stable machine condition and good layout.  

Current studies in the sugar industries show that, instead of a holistic approach, lean thinking 

is not embraced or employed selectively with no regard to its knowledge and principles. The 

optimum outcomes of a production system therefore, requires a proper determination and 

integration of all the related and associated advanced technology. Thus, this study will 

investigate the impact of integrating levels of automation with a holistic implementation of 

lean manufacturing techniques to satisfy customer needs. With the help of process indicators 

namely lead and cycle times, product quality and frequency of injuries, the effectiveness of 

this integration can be evaluated (Ondiek and Kisome, 2013).  

1.1.1. Automation 

In advanced manufacturing technology, four fields are pertinent namely: additive 

manufacturing, automation, fabrication and precision engineering (Mitchell, 2012). 

Automation is the application of software and control circuitry to autonomously monitor and 

manipulate mechanical processes in an industry (Jonsson, 2013). According to Kalpakjian and 

Schmid (2008), automation may be grouped into 6 categories namely: 
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a. Numerical control, which involves the automation of machine tools through 

programmed commands. Most numerical control is undertaken via computers, 

applying computer numerical control (CNC), which manufacture specific products 

according to input programs.  

b. Adaptive control, which creates a control method with adaptable parameters for 

changing their response according to the desired model.  

c. Material handling, which involves the transfer, monitoring, regulation and storage of 

both finished and raw products along the process line.  

d. Robotics, which refers to automated machines that may replace the role of people in 

manufacturing processes.  

e. Assembly, which involves the mechanical act of combining components in 

manufacturing systems.  

f. Flexible fixturing, which enables machines to hold a variety of fixtures. 

Granlund (2012) alluded that, automation as an advanced manufacturing technique, is mainly 

divided into two categories namely: mechanization and computerization. Mechanization is 

related to the physical flow of goods while computerization is the flow of information. 

According to Frohm (2008), automation can lead to many benefits depending on the type of 

industry, among them: improved working environment, increased throughput, flexible material 

handling, less workforce, improved productivity, reduced costs, and improved quality. 

However, in lean environments, if the same automation is not well planned, it may cause 

challenges ranging from maintenance, difficulties in visualization, time consumption, and 

difficult machine-human interface. 
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Automation can be regarded as either fully automated or fully manual, and it is aimed at 

acquisition of value addition, better process throughputs and increased productivity (Winroth 

et al., 2006; Orr, 1997). Similarly, the competitive approach of reducing the unit cost of a 

product agitated the need for a faster production pace, and this is through automation of crucial 

tasks (Ribeiro and Barata, 2011). In addition, there are extreme ordinary situations where 

human intervention is impractical and thus calls for the implementation of automation.  (Harris 

and Harris, 2008). Examples are hazardous products, sensitive nanotechnology components, 

accuracy, high tolerance components and strenuous activities. Therefore, automation provides 

an excellent ergonomics (Kochan, 1998). 

For optimum technological solutions, an integration of automatic and manual functions of a 

manufacturing plant to have semi-automatic processes will result into efficient monitoring and 

control of both physical and statistical quantities that affect the processes. This integration will 

result to the so called level of automation that ranges from purely manual to fully automated 

process operations. Choosing an optimum level of automation will have a positive outcome on 

the manufacturing process, contrary to if automation is under or over applied (Säfsten et al., 

2007).  

Therefore, this study focused on how automation adoption impacts on the industrial process 

performance. The principle of automation adoption was represented by the level of automation. 

The automation objective considered was material handling and adaptive control, since they 

are the most predominant in the sugar process line.  
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1.1.1.1 Levels of automation 

Level of automation is the extent to which automation is employed within the production line. 

There are different models for work functions the describe level of automation. According to 

Harris and Harris (2008), there exist five levels of automation in manufacturing. Level 1 

consist of pure manual tasks by an operator. In level 2 the loading onto the machine is done 

manually by an operator, followed by an automatic machine cycling or operation, then manual 

unloading and transfer of the machined part to the next manufacturing stage. In level 3 the 

loading is done manually by the operator, next the machine cycles automatically, same to 

unloading of the part from the machine. Finally, the part is transferred manually by the operator 

to the next stage. In level 4, the part is loaded automatically, followed by automatic machine 

cycling, automatic unloading and finally manual transfer to the subsequent production stage. 

Level 5 is fully automatic, that is loading and cycling, unloading and transfer of parts are all 

automated. 

Another model for work functions was developed by Sheridan and where LoA was classified 

as LoA 1 (with work functions totally manual) to LoA 10 (with work functions totally 

automatic) (Lindström et al., 2006). Groover (2000) also proposed three automation levels and 

three different layout. The material handling equipment represents technologies at level 2, 

although some of the handling equipment is sophisticated. In all these levels, the working 

environment should be properly selected.  However, a different model was suggested by Garcia 

(2015) with six levels of automation. This is referred to as the six-sigma levels of automation. 

In all these models, it was observed that automation enhances efficiency, quality and reduces 

cost of production. It permits much greater manufacturing flexibility, that is, products which 

have larger volumes or ergonomically awkward to manipulate can be produced in an easy way.  
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Since automation focuses on problems related to human engineering, different LoA can give 

different results that needs to be studied. In this regard, the study adopted Garcias’s model and 

looked at only three LoA namely LoA 4, 5 and 6. LoA 5 and 6 represents lean automation 

while LoA 4 is the conventional LoA as the control experiment (Garcia, 2015).  

1.1.2. Lean manufacturing  

Lean which is implemented majorly by Just in time (JIT) technique focuses on waste 

elimination. This implies adoption of minimal manpower, space, investment in equipment and 

tool, lead times, inventory and manufacturing defects among others. This reciprocates well 

with Just in time implementation which aims at improving quantity, inventory, and lead times 

cycles, investment cost, staff welfare and workforce productivity (Fullerton and McWatters, 

2001). In Japanese waste is called muda, which is any activity that utilizes inputs but doesn’t 

create any outcomes. The efficiency of a lean organization is realized when inputs are spent on 

productive activities. The only challenge though in our sugar industry is monitoring and control 

of these activities (Orr, 1997). In this study, the following three lean manufacturing indicators 

were adopted to facilitate JIT in achieving better process performance: rapid changeability, 

waste reduction and system improvement. 

Lean depends on personal responsibility and customer satisfaction to the level which customer 

specifies (Chen, 2010). Lean manufacturing is considered to be an enhancement of mass 

production, hence it is assumed not to be a new technique. Its objectives are to maximize profit 

by reducing costs and waste of material and improving quality, in such a way one can say these 

are essentially the underlying principles of mass production (Mehrabi, 2002). To enhance 

reduced inventory, just in time (JIT) a Japanese word for kanban, is the philosophy that can 

achieve smooth supply chain flow of parts. This will facilitate manufacture of what is needed 
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without waste and subsequently reduced wastes. However, the Kenyan Sugar industries fail 

short of holistic implementation of lean manufacturing and this provides a gap that needs to be 

addressed. 

1.1.3. Lean automation 

The term lean automation refers to the technique of applying the optimum level of automation 

to a lean environment with a focus on robustness, reliability and minimization of complex 

tasks. One pillar of lean manufacturing is the jidouka meaning autonomation, it implies 

automation together with manpower. Autonomation focuses on adoption of unique tasks or 

equipment to detect any abnormal and undesirable defective state of the production process 

(Jackson et al., 2011).  

According to Orr (1997), Hedelind and Jackson, 2008b, Hedelind et al., 2008a lean automation 

has been successful in the motor industry by Toyota motors in relation to robotics, 

Computerized Numerical control and assembly and proved that it can enhance the repair and 

maintenance of processes since they can incorporate maintenance programs like predictive, 

preventive and total productive maintenance. On the other hand, it has not been incorporated 

in the sugar industry, thus giving a research gap to determine the effectiveness of lean 

automation on optimum performance of sugar industries. 

1.1.4. Process performance 

According to Garcia (2015), any industrial activity can either lead to value addition or cost 

addition (waste).Value addition is only when there is physical conversion of a product to the 

customers’ intention or provision of services that satisfies the worth of a customer’s money in 

terms of design and engineering.  In most sugar industries, 90% of the process lead time does 



 

8 
 

not add value and therefore, needs elimination. As attributed to Shaman and Sanjiv (2013) and 

Wong et al. (2009) through their research, continuous improvement and waste reduction tools 

are vital elements of lean manufacturing and thus need to be understood by all the 

manufacturers.  

Also, using conventional statistical process controls in industries, variable parameters are not 

monitored in real time and thus the need to assess the response ability of advanced LoA. In 

developing countries, cost of production of goods is unfriendly due to adoption of conventional 

manufacturing processes and this has led to unsustainability and collapse of local industries. 

In Kenya, sugar industry is an example where companies are collapsing, and this calls for 

drastic measures. Four elements in this study were considered to demonstrate the performance 

of process in the sugar industry namely: real-time monitoring, product quality, resource 

utilization and production rate. These are in line with the expected competitive production. 

By implementing and simulating the integration of lean and level of automation, this research 

will assess the technical importance of adopting improved manufacturing processes through 

lean automation. In addition, the research will draw on a case sugar industry firm employing 

automation to identify the drivers and obstacles behind competitive trend. Consequently, the 

dynamic capabilities of automated manufacturing systems will be considered. 

1.1.5. Sugar industry in Kenya 

According to KSB (2007), Kenyan sugar factories are high cost producers of sugar which has 

led to its reduced competitiveness compared to the same industry in other countries. The cost 

of sugar production in Kenya is twice the cost of production in other competing COMESA 

countries currently estimated at USD 870 per MT. This is relatively high compared to Zambia 

(USD 400), Sudan (USD 340), Swaziland (USD340), Malawi (USD 350) and Zimbabwe (USD 
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300) (Kenya National Assembly, 2015).  Also, the sugar factories are affected by low 

production rates, unpredicted harvesting schedules, debts, managerial incompetency, 

fluctuating weather patterns, process and equipment wastages and obsolete technology. The 

factories continue to operate at low capacities due to low levels of technical efficiency and 

wastages (KSI, 2009 and KSB, 2010).  

The main determinant of the productivity of a sugar factory is the ratio of total sugar cane 

crushed to total sugar made (TC/TS ratio). This shows the MT of cane crushed to yield one 

MT of sugar. A comparison of TC/TS ratios between private and government owned factories 

reveals a significant difference. In 2012, the conversion rate for Butali was 9.74 while Chemelil 

was 18.41 (KSB, 2013). This means Chemelil had to crush an extra 9MT of cane to produce 

one MT of sugar like Butali. Being a member of COMESA free trade agreement, Kenya is 

bound by the provisions of the free trade protocol that allows sugar imports from COMESA 

FTA countries to gain access to the Kenyan market without any quota or duty restrictions. This 

has resulted in an influx of sugar imports whose prices are much lower in comparison to sugar 

produced in the country. This renders locally produced sugar non-competitive.  

Based on this observations, it is evident that sugar industries in Kenya are not performing to 

the expected global competitive standard and therefore not sustainable. It is on this basis that 

the study is founded to investigate the impact of proper adoption of automation on the 

performance of these sugar industries in the presence of lean environment in Kenya. 

1.1.6.  Mumias Sugar Company Limited 

Mumias Sugar Company which is located in Mumias town in Kakamega county of Kenya, was 

selected as the case study company. It is a local sugar industry which was founded in 1971 and 

has progressively upgraded its plant operations from semi-automatic to full automation in some 
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work modules of its layout. It also has both the conventional and automatic juice extraction 

techniques in terms of modern mills and a diffuser. The different process lines, incorporating 

different levels of automation within the factory, provided an opportunity to set up experiments 

for the various levels of automation to ascertain the impact of various levels of automation on 

the process performance.  

According to Wachira (2014) and Wanga (2014), Mumias Sugar Company Limited is the 

largest sugar manufacturing company in East African with a production capacity of about 

250,000 MT accounting for 42% of the estimated 600,000 MT annual national output. The 

company has its operation center located in Nairobi, the capital city of Kenya. The raw 

materials which is sugar cane is obtained from both the company nuclear estate (7%) and 

outgrowers (93% consisting of over 50,000 registered farmers with over 99,000 acres (MSCL, 

2012). The company’s ownership is by the following shareholdings: Government of Kenya 

(20%), Standard Chartered Nominee Account KE17984 (2.31%) Kenya Commercial Bank 

(1.72%), Jubilee insurance(1.46%), Abdul Karim Popat (0.94%), Suresh Varsani (0.6%), 

Pradeep Patani (0.59%), Yana Trading Limited (0.56%), Ramila Mavji and Harji Mavji Kerai 

(0.49%), CfC Stanbic Nominee Account R57601 (0.45%), Other Investors via NSE (70.89%) 

(Mburu, 2014) 

According to MSCL (2012), the sugar production process consists of the following stages in a 

sequential order: 

 Cane handling - where the cane is stored in the cane yard to provide stock for the factory 

to crush throughout. The cane is offloaded using hydro unloaders and overhead gantry 

cranes from trucks onto the feed tables then conveyed to the main cane carrier.  

https://en.wikipedia.org/wiki/Sugar
https://en.wikipedia.org/wiki/Government_of_Kenya
https://en.wikipedia.org/wiki/Kenya_Commercial_Bank
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 Cane preparation - where cane is finely broken into small grains before juice extraction by 

either milling or diffusion. This increases surface area for juice extraction. Preparations 

are done by passing the cane through one or two sets of knives and then to the shredder. 

Preparation index (PI) gives an indication of the extent to which cane cells have been split 

by knives and shredder relative to the stack. 

 Juice extraction - this is the removal of juice from the crashed cane fibres by diffusion or 

mill tandems.  Diffusion is the washing of the pol out of the prepared cane fibres at high 

temperature of about 85oC, compared to mills which involves mechanical squeezing of the 

juice out of the fibres. Upon washing, fibre residue called bagasse is conveyed via 

dewatering mills for drying then used as fuel in the boilers to generate steam, A diffuser 

is 60m long and 6m wide enclosed box with perforated bed that has a chain that drags 

prepared cane slowly as water and juice percolates through the bed.  

 Juice treatment - where the juice from the diffuser is weighed as a factory control measure 

then heated to elevate the temperatures for the next process of clarification. 

 Juice clarification - involves liming of juice to coagulate, form and remove insoluble 

matter.  Flocculants are also added to the limed juice to facilitate settling of this matter.  

 Juice evaporation - where clear juice is concentrated from 11% brix to 63% brix by 

removal of water. Usually, 1 kg of steam evaporates 1 kg of water from juice. However, 

if 1 kg of steam is fed to the first vessel with a quadruple effect evaporator (four vessels) 

then it will evaporate four kilos of water  

 Sugar boiling - Is the saturation of sugar crystals into highly concentrated sugar solutions 

in three steps using three different boiling system. The supersaturation coefficient of 
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solution is a measure that indicates the extent to which a solution is over saturated. This 

over saturation is what forces sucrose to be deposited onto the crystals making them grow. 

 Crystallization-Crystallizers are stirred tanks in which massecuite is allowed to cool, thus 

effecting further crystal growth as the sucrose in the mother liquor is exhausted. The purity 

of the liquid fraction (mother liquor) of the massecuite is called the nutsch purity. 

Monitoring the nutsch purity is an important way of measuring the performance of 

crystallizers  

 Centrifugation - A centrifugal separates mother liquor from the crystals in a massecuite. 

Continuous centrifugal are normally not used to produce VHP sugars  

 Sugar drying - to maintain keeping and handling qualities, VHP sugars are dried from a 

moisture content of 5% to 0.1%  

 Bagging/packaging is done using clean food grade materials. Sugar is bagged/packaged 

to protect it from contamination. This is done in 50kg, 2kg, 1kg, 1/2kg, and 1/4kg.  

 
Figure 1-1: Pre-milling section at Mumias Sugar Company Ltd (MSCL, 2012) 

Cane handling stage 

Cane preparation 

stage 

Juice extraction 

stage 



 

13 
 

1.2. Problem statement 

According to Ondiek and Kisome (2013), sugar industries in Kenya operate on conventional 

automation for monitoring and controlling processes among other challenges. This automation 

technology is inefficient and has recorded uncompetitive and unsustainable process 

performance leading to collapse of Kenyan sugar companies. Consequently, proper 

sensitization of lean automation and its impact on the performance of industrial 

competitiveness of sugar industry in Kenya is non-existence. They revealed that in Kenya, 

sugar companies exhibited either partial application of lean techniques or improper 

consideration of automation. In their conclusion, there is no understanding of lean and 

automation principles and therefore little benefits have been realized. They recommended a 

need to investigate the effects of advanced techniques like lean automation, for full benefits.  

In addition, Maria (2015) observed that fluctuating demand for sugar exports and their 

declining production is on a rise yet major sugar industries derive the advantage of being 

automated. With automation we expect better process performance and subsequently high 

production. Can this be attributed to improper determination of level of automation required at 

the respective stages of the process flow?  

Therefore, a proper integration between lean techniques and optimum level of automation to 

have lean automation, its adoption and implementation was investigated on process flow to 

assess its effects on performance. Possibly, effective process performance in sugar industry 

will be realized when lean approach is applied fully prior to appropriate selective automation. 

Thus, the need to assess the effects of lean automation on process performance.  
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1.3. Objectives 

1.3.1 Main objective 

To establish the impact of lean automation as an advanced manufacturing technique on process 

performance in sugar industries in Kenya.  

1.3.2 Specific objectives 

a. To evaluate the impact of advanced levels of automation on adaptive control for 

improved real time process control to reduce  process variations in sugar industry 

b. To assess the potential of advanced levels of automation on improving production 

quality. 

c. To assess the effect of advanced levels of automation in minimization of resource 

wastage. 

d. To indicate the effect of advanced levels of automation on continuous improvement in 

sugar industries. 

1.4. Justification 

To be the strongest competitor, a company should manufacture the most number of parts within 

the shortest time and lowest costs. In many cases, this can be through adopting lean 

manufacturing methods like continuous improvements. But this alone will not help the industry 

to forecast and monitor the trends in technology and demand in the market, gauge their 

competitive viability, create scenario reports and sensitivity analysis (Chen, 2010). Thus 

depending on the method and level upon which automation has been adopted, lean 

manufacturing can impact on flexibility of automation and shortened cycle time of design for 

assembly and quality function deployment (Orr, 1997).   
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Effective lean manufacturing combines both manual and automation to obtain the right type of 

automation. The concern for engineers is to identify what should and what should not be 

automated. It was found that LoA 4 (conventional automation) and lower automation levels do 

not perform well in a lean manufacturing system because the loading and transfer of parts 

cannot easily be achieved by operators, making it reasonable to incur the expenses of investing 

in LoA 5 and 6 (Hedelind et.al, 2008). It also has lower changeover times and inadequate 

uptimes than level 5 and 6, since it uses simple and special purpose machines. The higher 

automation levels are flexible and has a potential to address the inadequacies of LoA 4 (Harris 

and Harris, 2008; Mehrabi, 2002).  One concern during employment of lean manufacturing is 

the conformity of traditional automation to the techniques and principles of lean. Thus, the 

term lean automation. This is the proper integration of automation into the techniques and 

principles of lean manufacturing. That is, choosing the appropriate level of automation 

(Jackson et al., 2011). 

With these expectations of lean automation, the firm may achieve zero inventory, shorter 

product cycles and improved quality. Many industries noted that quality control was achieved 

easily with automation than human-based. Lean automation also minimizes capital outlays 

related to waste and inventory. This is a result of absolutely investing the capital in the 

automation of equipment, process and product (Orr, 1997).Thus, the need to establish the 

impact of lean automation on process performance. 

Adding together what all researchers believe, many organizations adopted lean manufacturing 

methods to ensure competitiveness through technology trends. Lean philosophy helps to ease 

automation of a company due to increased quality and short cycle times. Lean automation can 

employ both automatic and manual principles. However, it first need to adopt automation onto 
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the practices and principles of lean manufacturing. Lean automation can then be described as 

the approach of applying the optimum quantity of smart on a task and can be utilized for faster 

product, lower inventory levels, simplifying operation processes, increasing turnover rates, 

improving quality and maximizing the reliability of equipment. 

1.5. Significance of the study 

The findings of this study will be applied for decision-making process by the management of 

sugar companies as well as state organs for policy formulation in realization of a sustainable 

and competitive sugar industry in the country.  This is in line with the tenets of both Kenya’s 

vision 2030 and UN country ranking (2015), where Kenya is among the developing countries 

that needs the adoption of new technologies to boost her industrial economy. Also, the Kenya’s 

vision 2030 envisions to attain a competitive industrial economy free of any wastes with a 

GDP of 20% compared to the current 10% (Kenya National Bureau of statistics, 2015).  

To the sugar industry practitioners, lean automation will enhance the repair and maintenance 

of processes since they can incorporate maintenance programs like predictive, preventive and 

total productive maintenance. This will in turn maximize reliability of lean automated 

equipment and continuous improvement by the trained staff. Through the use of reliable 

equipment and robustness, lean automation will minimize over-complicated practices. This 

will ease configuration, enhance visual inspection and reduced cycle times. Some of the key-

enablers in the Lean Robotics which are vital for future robotic working cells are: increased 

ease-of-use, intuitive user interfaces, and better ways to visualize what is going on in the cell 

and focus on simplicity and usability (Hedelind et al., 2008a).  

The study will also add value to the existing knowledge on adoption of advanced 

manufacturing techniques like lean automation which is a new technique in the sugar industry. 
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Lean Automation aims at improving cost effective methods in the production line. Leanness 

does not necessarily mean lowest investment cost, but the total investment cost will be lower 

compared with the traditional route because all matters are “on the table” from the beginning 

and all eventualities are considered (Hollingum, 1994). Harris and Harris (2008) stated that a 

manufacturer of lean equipment should have a knowledge in machine design and prospects of 

different types of automation. The knowledge will help in achieving flexibility and efficiency 

in the manufacturing process. Lean manufacturing is implemented to enhance flow while 

automation is chosen and integrated into that flow to improve it. Thus, the optimum level of 

automation is crucial. 

1.6. Scope 

The research focused on the pre-milling (juice extraction) section in a case study sugar industry 

with an automated production line that will be simulated for lean outcomes and level of 

automation. The focus on juice extraction alone is guided by the fact that, the output sugar 

production is directly proportional to the quality and quantity of the juice extracted. Therefore, 

conclusions drawn on the juice extraction can be extrapolated to significantly apply to the 

overall sugar production by the process line. Thus, the experiment was only conducted on the 

process line of pre-milling section which comprises of cane handling, cane preparation and 

juice extraction stages. The parameters attributed to lean automation were subjected at every 

stage of this section and the findings extrapolated to the overall performance of sugar 

production process with lean automation adopted.   
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CHAPTER 2 : LITERATURE REVIEW 

2.1 Introduction  

This chapter provides a comprehensive review of lean manufacturing, automation adoption, 

process performance in sugar industries and the fit between them. The review concentrates on 

the literature of the link between level of automation and process performance and the 

influence of lean manufacturing indicators to this relationship. This chapter also provides a 

means of setting the scope of the current research, as well as to identify the gaps that this 

research seeks to address. A framework is then proposed for incorporating lean manufacturing 

indicators in the relation between level of automation and process performance. This 

framework poses the hypotheses arising out of the reviewed literature. 

2.2 Theoretical framework 

In manufacturing, process improvement is vital in modifying and transforming raw materials 

into final product. In response, Western companies adopted crucial changes to their operations, 

by mimicking the JIT (just-in-time) and adoption of TQM (total quality management) 

processes adopted by the likes of Toyota (Westkämpfer et al., 2011). In this study, the intention 

was to investigate the impact of integration of level of automation and lean manufacturing on 

the process performance in sugar industries in Kenya. Thus, the research was guided by three 

theories namely: six sigma, lean manufacturing and theory of constraints (TOC). These 

theories are in agreement with the lean manufacturing indicators adopted in this study to enable 

incorporation of the levels of automation.  
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2.2.1 Six - sigma theory 

Six Sigma theory emphasizes on reduction of variations to enhance processes. Through the 

help of statistical techniques, it is possible to forecast the process outcomes. If unexpected 

outcome is noticed, then advanced control tools can be used to explain the phenomenon. In 

relation to lean automation, the integration of lean and proper levels of automation provides a 

suitable advanced control tool to best understand and identify parameters that affect or vary 

the process, and hence the overall performance of the organization (Dave, 2002).  

2.2.2 Lean manufacturing theory 

Lean manufacturing emphasizes on waste reduction. Waste is anything that hinders high 

production and process capabilities like machine set ups. In this regard lean emphasizes on 

smooth and continuous flow with little waste along the process line. Womack et al. (1990) 

found that competitive markets such as lean manufacturing that are aimed at saving cost have 

influenced many industries like motor industry especially Toyota. Lean manufacturing focuses 

on the reduction of waste in terms of scrap, manpower, high inventory and work in process, 

process complexity, improper space utilization, high investment on equipment among others.  

Jackson et al. (2011) asserts that the adoption of lean techniques has often enhanced 

competitive process performance in industries. In addition, industries can adopt advanced 

technology like automation to further improve manufacturing competitiveness. 

2.2.3 Theory of constraints (TOC) 

Theory of Constrains focuses on system improvement. A system is a combination of 

interrelated and dependent work cells which aim at attaining a common goal. Any weak cell 

will become the constraint along the process line and will hinder the expected outcome. In this 

respect, TOC identifies those constraints that slow the process flow. By improving each work 
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cell independently, increased overall performance can be realized that will maximize the output 

of the industry (Dave, 2002). 

2.3 Lean Manufacturing and Sugarcane Extraction process  

As attributed to Padraic (2010) waste is that which is bought but not utilized. Sustainable 

manufacturing denotes the adoption of manufacturing process that decreases negative impacts 

on the environment, improves energy and resource conservations, provide safety and are 

economical in operation. On the other hand, competitiveness is the ability of a company to 

efficiently and effectively produce goods more than its competitors. The competitive indicators 

include the rate of exportation, the market share of the company and its profitability. 

Sustainability is the bottom line in the achievement of social, environmental and economic 

performance. These two core values are lacking in our key local sugar industries, thereby 

initiating the need to undertake this study. The study will propose alternative technology for 

the sugar company for increased throughputs. 

According to Oliverio et.al (2015), juice extraction in Sugarcane is a process operation where 

the water and sugars in the cane are extracted, and it occurs after cane preparation stages. 

Basically there are two techniques employed commercially to achieve this prior to cane 

preparation namely: mechanical squeezing, which employs mill tandems, or by diffusion 

where the prepared cane fibers are washed in many stages as the sugar contents and water are 

subsequently dissolved and sucked in a diffuser from the unbroken fibers constituting 10% and 

by leaching in broken fibers constituting 90%. The major concern during extraction process is 

the production of quality juice and final removal of the bagasse with the least moisture content 

of at least 50% of moisture, which can support burning in the boilers to produce steam and 

power. The goal is to extract the maximum mass amount of sugar contents in the cane fibers 
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and consequently produce bagasse with optimum moisture content suitable as biomass fuel in 

steam or power boilers.  

 
Figure 2-1: Arrangement of 6 sets of 3-roll crusher mills forming a milling tandem (Source: Oliverio et.al, 2015) 

 

 
Figure 2-2: Complete juice extraction system by diffusion – cane diffuser (Source: Oliverio et.al, 2015) 
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2.3.1 Technical comparison: milling and diffusers  

Following the main goal of the juice extraction process, the industry should select wisely the 

optimum technique to adopt for optimum production. In comparison, the factors in considering 

the viability and impact of any of the two techniques includes the frequency and quality of 

maintenance required, quality of juice extracts and power consumptions. Ideally, mill tandems 

are subject to severe wear during their operation and this subsequently affects the average 

extraction rates, compared to diffusers. However, extraction rates by diffusers are more 

sensitive to impurities caused by vegetable minerals present in the cane feedstock (Oliverio 

et.al, 2015) 

 

Figure 2-3: Typical diffuser extraction parameters (Source: Oliverio et.al, 2015) 
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Figure 2-4: Typical extraction parameters in mill tandems (Source: Oliverio et.al, 2015) 

2.3.2 Response time in a production system 

The basic criterion of performance in a production system is response time. In ordinary 

production processes, the response time is measured in the range of five to ten millisecond. 

Thus, the response time in a process is reasonable if it is at its lowest value to demonstrate the 

rapid rate at which an anomaly can be detected by the system and appropriate action taken. 

In a case of the computer processor, to check whether the performance of a CICS® system is 

in line with the system's required capability, then investigations should be on the hardware, the 

software, and the applications that are in the installation. However, response time depends on 

the speed of the processor, and on the nature of the application being run on the production 

system. Thus the shorter the response time, the more rapid a process will be executed in a 

production system. Also, to note is the consistency of the response times. Sharp variations will 

imply erroneous system operation. (Colledani, 2006). 

Also, Gambier (2004) asserted that, the correctness of an output in a real-time monitoring 

system does not only depend on the logical accuracy of the calculation but also on the time at 
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which the output is displayed. According to Gambier (2004), this assertion validates the 

importance of time factor for a real time setup in any manufacturing and industrial system, and 

that there exist timing constraints which will always hinder cycle times of manufacturing tasks. 

As a result, these tasks must be able to synchronize with the real-time events in the external 

environment within the industry. Therefore, a real-time setup must synchronize with the 

external events associated with it. 

2.3.3 Influence of pH and temperature on the sugar production process 

According to Panpae et.al (2008), the rate of sucrose inversion in sugar cane juice extraction 

is largely depended on the solid content, temperature and pH.  When these parameters are 

increased, they equally increase sucrose inversion rate. To lower the total reducing sugar, 

temperature control is important in regulating the sucrose inversion while a high pH in the OH- 

from lime slightly affects the properties of the juice extract in comparison to the high apparent 

purity of the pure sugarcane juice. It was observed that at 80°C, sugars and %pol magnitudes 

were relatively significant compared to lower temperatures. However, when solid content was 

increased at 80°C, it recorded a lower %pol which is the sucrose content. Therefore, juice 

extraction process is highly depended on the pH and temperature fluctuations, which must then 

be maintained for optimum production.  

According to Day J.M (1996), most sugar mills implement pH control technique via feedback 

loop relaying a mA electric signal to an actuator valve or pump for corrective reagent delivery 

into the process line. The usual technique in conventional automation consists only a 

proportional control instead of a more complex PID control. The proportional control is only 

possible because sugar processing is an operation which requires an appropriate recipe. The 

cane feed stock often exhibits small variabilities in acidity or alkalinity. In most sugar 
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industries in developing countries, pH monitoring and control is absolutely manual where 

samples are manually scooped from mills for pH measurements at intervals without precise 

electronic pH sensing techniques. In some mills, pH is measured using pH papers. The only 

challenge in monitoring pH in sugar mills is getting an accurate equipment with the ability to 

withstand the harsh conditions within this environment. 

pH sensors must be appropriately located and installed due to two reasons. First, the sensor 

must visualize the process fluid in real time without experiencing any time lags. This must be 

at the operating flow rate, pressure and temperature. Because temperature change affects pH 

and chemical reactions in the process fluid, it is therefore, necessary that pH measurements are 

taken upon reagent addition and resulting reaction at process operating temperatures. 

2.3.4 Preparation index 

This requires an additional set of mechanisms to further split the fibres. Therefore the need of 

a shredder and high density knives. It may be thought of an additional power consumption to 

the plant, but if low power and variable speed controlled electro mechanical shredders and high 

density knives are chosen, the advantages of high preparation index and high extraction of 

juice will be attained. This is in line with Kent and Lewinski (2007) who observed that for 

efficient cane preparation, the method of preparation index provides better result than the pol-

in-open cells method. Also, advanced In-line shredders can easily be incorporated even when 

processing whole-stick cane and the power consumption is relatively less with a single 

shredder than with two sets of knives and a shredder as it is in the case of conventional 

automation. 
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2.3.5 Effect of pol and brix on sucrose content 

According to Xiao (2017) in his analysis of sugar cane juice quality indexes it was found out 

that, the effect of polarization (%Pol) and %brix on sucrose content is directly proportional to 

the apparent purity of the juice. Further, sucrose content is the quotient of %pol to %brix, thus 

it increases as the %pol increases and decreases as the %brix increases. This subsequently 

influences the effect of apparent purity and %brix on the sucrose content while maintaining 

%pol in that, sucrose content decreases with an increase in apparent purity and %brix.  

In addition, this conforms to Six Sigma theory that emphasizes on reduction of variations to 

enhance processes. Through the help of statistical techniques, it is possible to forecast the 

process outcomes. If unexpected outcome is noticed, then advanced control tools can be used 

to explain the phenomenon. In relation to lean automation, the integration of lean and proper 

levels of automation provides a suitable advanced control tool to best understand and identify 

parameters that affect or vary the process, and hence the overall performance of the 

organization (Dave, 2002). 

2.3.6 Power transmission and set up time 

Kent and Lewinski (2007), explored the comparison between electromechanical mill tandems 

and the conventional drive (turbine). The electromechanical mill drive has the following 

merits: higher efficiency and speed ranges, better speed control, easier monitoring, higher 

torque range and lower maintenance cost. Further, a comparison between variable speed 

electromechanical drives and electro-hydraulic drives in relation to efficiency and torque – 

speed was also determined and the following was deduced:   

 Electro-hydraulic drives have a better torque – speed advantage.  
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 Both electromechanical and electro-hydraulic drives have the same efficiencies in similar 

applications 

 The efficiency of a hydraulic drive is relatively easy to measure compared to that of 

electromechanical (VFD) drive.  

 Power losses and service factor must be considered when determining the efficiency of 

the drives.  

It was observed that, the efficiency of the variable frequency electromechanical drive is of 

higher than the electro-hydraulic drive.  

Also, Ali et.al 2011, confirmed that productivity is related to value adding activities in the 

manufacturing transformation process. Thus, any activity not adding value is regarded as a 

waste. It is therefore, essential to minimize these resource wastes if productivity is to improve. 

This is in line with the theory of waste elimination which emphasizes on the reduction of non-

value adding activities. 

2.3.7 Impact of pH and temperature optimization in minimizing sucrose losses in 

sugar industry  

Panpae (2008) reviewed that, the main objective of perfecting industrial processes is to 

maximize production capacities while upholding continuous improvement of product quality 

and minimizing production costs. Thus, there is always a tradeoff between these requirements. 

This majorly is the case when high quality sugar production at minimized invert sugar is the 

requirement from the sugar factory. The sugar cane is first crushed so that the juice can be 

extracted. The crushing breaks up the hard nodes and flatten the stems to expose the fibers. 

The juice extract collected is filtered and treated, then boiled to remove excess water. During 

juice treatment, filtration of the juice should be done through a cloth before boiling so as to 

eliminate any solids particles in the cane. Lime (CaOH2) is then added before boiling to 
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neutralize the juice. After heating, the juice is passed onto the pans which are normally stirred 

rapidly to provide for an even crystallization and incorporation of air. The output sugar 

production should correspond to a brix (sugar content) of 90-95% when incorporating simple 

sugar measuring instruments. However, the main challenge that needs to be addressed is on 

accurate, precise and real time monitoring of total reducing sugar (reducing sugars plus 

hydrolyzed sucrose) which is very crucial in the provision of performance data and information 

to help evaluate the raw material and quality control in sugar manufacturing processes. It was 

also observed by Day (1996) that pH, temperature and response time monitoring is a vital task 

to undertake in a sugar industry so as to uphold the optimum required sugar quality by 

facilitating sucrose reduction. 

2.3.8 Continuous improvement 

Oliverio (2013) alluded that the juice extraction can reach only up to 80% with mill tandems, 

but can be higher when a diffuser incorporated with dewatering mills are used. In relation to 

lean automation, Six sigma emphasizes that the integration of lean and proper levels of 

automation will provide a suitable advanced control tool to best understand and identify 

parameters that affect or vary the process, and hence the overall performance of the 

organizations. Also, Ali et.al (2011) conforms to this finding through his study that to attain a 

continuous improvement, advanced manufacturing techniques like automation should be in 

place together with lean philosophy that will enable elimination of waste and efficient 

utilization of resources.  

The current study considered the above mentioned process performance factors that affect 

quality sugar production in line with lean thinking as follows: Adaptive control (response time, 

process temperature and the process pH), production quality (brix, pol and Preparation Index), 
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waste reduction (power consumption, set up time and the process cycle time) and continuous 

improvement (rate of production) 

2.4 Lean manufacturing and industrial process performance 

As reviewed by Naveen et.al (2013), lean manufacturing is a technique known by many 

industrial set ups (Womack & Jones, 1994), it emphasizes on waste elimination in a process 

line (Womak & Jones, 1996). The waste can be termed as an intangible or tangible activity 

along the process line that don’t add value to the finished goods or services. Though, for lean 

manufacturing, the essence is to produce as per the customers’ requirement, it necessitates 

appropriate elimination of these wastes in the process line (Henderson and Larco, 2003).  Since 

lean is an operational culture that will initiate an organizational change, it is vital first to 

enlighten the employees on the action that will be taken and the expected outcomes before the 

adoption of lean techniques. Otherwise resistance to change may arise and cause hindrance to 

effective production (Csokasy & Parent, 2007, Bhasin & Burcher, 2006). The essence being to 

achieve high performance efficiency in the processes (Holweg, 2007). According to Huang 

et.al (2013), proper implementation to lean can result to reduction, if not elimination, of waste 

such as high inventory and delayed material handling. Consequently it will realize low 

production cost. 

As reviewed by Shaman and Sanjiv (2013), implementation of lean manufacturing is directly 

allied to the performance of industrial processes. Currently, the quality of a product is judged 

by the customers’ satisfaction, which can only be achieved when the process line is excellent, 

that is, free from any waste. The waste elimination can only be achieved through lean thinking. 

The combination of SWOT (strength, weakness, opportunity, threats) analysis and lean 

techniques in an industry will further enhance the waste elimination (Upadhye, Deshmukh, & 
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Garg, 2010). If well implemented, all the waste will be eliminated, the cycle time will reduce, 

the work in process and inventory will be low, productivity will be high and ultimately he 

production cost will be low(Seth & Gupta, 2005; Dennis, 2007). 

As attributed to Zafarzadeh (2013), emphasize should be concentrated on the smooth flow of 

those activities that only add value. In line with the customers’ expectations, production 

departments should only work on the subsequent operation that is yet to take place within the 

shortest time possible. Therefore, continuous improvement of the process line is important 

since we are interested in reducing the time that will be taken from the order placement to the 

product collection. Time reduction can only be a reality if non value adding activities are 

eliminated (Liker, 2004, p20). 

Lean which is implemented majorly by Just in time (JIT) technique focuses on waste 

elimination. This implies adoption of minimal manpower, space, investment in equipment and 

tool, lead times, inventory and manufacturing defects among others. This reciprocates well 

with Just in time implementation which aims at improving quantity, inventory, and lead times 

cycles, investment cost, staff welfare and workforce productivity (Fullerton and McWatters, 

2001). In lean, strength is aimed at eliminating the above parameters to attain infinite variations 

in production and zero wastage (White et al., 1999; Womack et al., 1990). Therefore, lean 

automation is applied to achieve waste elimination and value creation for customers (Hedelind 

and Jackson, 2008b, Jackson et al., 2011). Importantly, lean is about waste avoidance. In 

Japanese waste is called muda, which is any activity that utilizes inputs but doesn’t create any 

outcomes. The efficiency of a lean organization is realized when inputs are spent on productive 

activities. Though there is a challenge in identifying these activities (Orr, 1997). 
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 Lean is also perceived in terms of the organization of the production line. In this, teams of 

workers are organized and led by team leaders and not a foreman as it’s the case in mass 

production. The workers will effectively effect the tasks allocated (Womack et al., 1990). This 

will create satisfaction and fulfilment due to the workers not being confined to repetitive tasks. 

These teams have the authority to stop a production line where necessary in case of a 

breakdown repair. Full participation by workers is practiced through the provision to suggest 

on enhancing continuous improvement. The continuous improvement technique, a Japanese 

word for keizen is effective since proper motivation to workers who understand the processes 

well can substantially contribute immensely (Ribeiro and Barata, 2011). In manufacturing, 

inventory reduction is also a focus. Thus, warehouses and buffers are eliminated since they are 

a form of waste that is costly. The essence is to manufacture a product when only needed or an 

order if it is placed. This calls for a highly synchronized network of the industry, clients and 

suppliers. In this matter all efforts are going to avoid wasteful product stock (Kochan, 1998).  

By and of itself, lean depends on personal responsibility and customer satisfaction to the level 

which customer specifies (Chen, 2010). Lean manufacturing is considered to be an 

enhancement of mass production, hence it is assumed not to be a new technique. Its objectives 

are to maximize profit by reducing costs and waste of material and improving quality, in such 

a way one can say these are essentially the underlying principles of mass production (Mehrabi, 

2002). To enhance reduced inventory, just in time (JIT) a Japanese word for kanban, is the 

philosophy that can achieve smooth supply chain flow of parts. This will facilitate manufacture 

of what is needed without waste and subsequently reduced waste. 

JIT is only a tool for lean manufacturing. Therefore lean combines muda, keizen and kanban. 

The impact of a properly structured JIT will be to eliminate storage facilities that add to the 
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cost of the product (Ribeiro and Barata, 2011). However, lean also has adverse influences on 

innovative capabilities, product design, work characteristics and employee outcome (Chen, 

2010). According to White et.al (1999), success of JIT is when employees are fully involved 

in the continuous process improvement this will in turn enhance a competitive advantage than 

those companies that do not practice it. This is only possible if the company’s organizational 

structure and culture are conducive and flexible to allow for positive changes (Ribeiro and 

Barata, 2011; Hedelind and Jackson, 2008b; Jackson et al., 2011).  

Therefore, lean emphasizes on achieving supremacy through continuous improvement, 

reducing inventories, reducing waste and creating value for end-user customers. Lean has 

proved to reduce production cost, increase quality and productivity, reduce lead times, 

eliminate inventory and enhance employee welfare in areas it has been employed.  Unlike in 

industries where it is yet to be implemented. While it is verified that lean manufacturing has 

been effectively implemented, it can have adverse influences on the company if it is not well-

balanced with automation. 

As reviewed by Zafarzadeh (2013), a check list for assessing production changes that will lead 

to lean manufacturing is shown in Table 2.1. To achieve lean production, the indicators should 

change as shown under the behavior column.   
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Table 2-1: Lean manufacturing indicators’ behavior (Martinez et.al, 2001) 

Approach Indicators  Behavior   

Removal of 

non-value 

activities 

Frequency and distance products are conveyed 

Ratio of similar parts produced in the industry 

Cost of work-in-progress relative to sales 

Inventory variations 

Quantity of time required for task altered 

Ratio of preventive maintenance to total productive maintenance 

Decreases 

Increases 

Decreases 

Increases 

decreases 

Increases 

Continuous 

Improvement 

Number of proposals per worker in a year 

Ratio of executed proposals 

Convertible and/or paybacks from the proposals 

Ratio of  inspection conducted by manufacture personnel 

Ratio of  defective parts attuned in manufacturing 

time machines are upended  because of breakdown 

Cost of rework and scrap relative to sales 

Workers devoted majorly to quality control 

increases 

Increases 

Increases 

Increases 

Increases 

Decreases 

Decreases 

decreases 

Multifunctional 

team 

 

Ratio of workers operating in teams 

Quantity and ratio of tasks achieved by workers 

Ratio of workers changing tasks in the company 

Typical occurrence of job rotation 

Ratio of team leaders nominated by their team workmates 

increases 

Increases 

Increases 

Increases 

Increases 
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JIT 

manufacturing 

and 

Supply 

Lead times of clients' order 

Ratio of products supplied JIT 

Integration level between supplier delivery and the firm's 

Manufacturing data structure 

Ratio of  JIT supply between divisions in the manufacturing path 

Production and delivery lot sizes 

Decreases 

increases 

 

Increases 

Increases 

Decreases 

Incorporation 

of  

Suppliers 

Ratio of products co-designed by the supplier 

Number of proposals prepared to supplier 

Rate of visits to the firm by dealer’s technicians 

The frequency of visits to industry’s suppliers by technicians 

Ratio of documents exchanged via Intranet 

Average time cycle agreement for important supplies 

Average number of suppliers for crucial spare parts supply 

increases 

Increases 

Increases 

Increases  

Increases 

Increases 

Decreases 

Flexible 

information 

System 

Frequency of conveying information  to the workforce 

Frequency of top administration meetings with staff 

Ratio of procedures written and documented by the industry 

Ratio of manufacturing equipment which are computer 

integrated 

Number of assessments personnel can accomplish with no 

supervisory control 

increases 

Increases 

Increases 

Increases 

 

increases 
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2.5 Automation adoption on process performance 

Automation can be regarded as either fully automated or full manual, and it is aimed at 

acquisition of value addition, better process throughputs and increased productivity. (Winroth 

et al., 2006; Orr, 1997). In reference to Delkhosh (2013), due to technological advancement, 

automation was initiated in manufacturing industries. Flexible equipment can work tirelessly 

for repeatable tasks. This improves efficiency and subsequently the competitiveness of the 

industry (Winroth et al., 2006; Säfsten et al., 2007).    

Similarly, the competitive approach of reducing the unit cost of a product agitated the need for 

a faster production pace, and this is through automation of crucial tasks (Ribeiro and Barata, 

2011). In addition, there are extreme ordinary situations where human intervention is 

impractical and thus calls for the implementation of automation.  (Harris and Harris, 2008). 

Examples are hazardous products, sensitive nanotechnology components, accuracy, high 

tolerance components and strenuous activities. Therefore, automation provides an excellent 

ergonomics (Kochan, 1998).   

A number of factors are important to consider when designing competitive production systems. 

These include changes in: customization, integrated information systems, rapid changeability, 

robustness, level of automation, flexibility in terms of changeovers, production volume, and 

product variants.  

Industries that aim at reaping the full advantage of automation must first enlighten the 

employees to avoid resistance to change, and these new implementations should be gradual 

and stepwise (Orr, 1997). Automation is regarded as a key to transformation in an industry, 

whose goal is to reduce production cost. This is demonstrated in the automotive industry which 

has recorded tremendous improvement in lowering the cost of production through less 
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dependency on human labour (Jovane et al., 2003). Industrial robots have been incorporated 

to substitute human in performing labour intensive activities and in unsuitable environments 

(Hedelind et.al, 2008; Jackson et al., 2011).   

Automation can further be advanced to achieve product design within the shortest time possible 

and increase the productivity, and this leads to reduced costs and increased volume outputs. 

These are as a result of appropriate process control through planning methods and 

manufacturing tool selection that is provided by automation (Orr, 1997).  

On the contrary, automation is considered not to be suitable in the following cases: when 

ramping up manufacturing of new products, manufacturing of a large variety of products and 

variants in small volumes, very short product life cycle and requisites of product e.g. visual 

inspection (Winroth et al., 2006).  

Decisions about automation are made on the basis of the following important factors: desired 

product quality, conduciveness of work environment and rationalization. Product quality is 

associated to the customer perspective, the work environment is concerned with the internal 

perspective while rationalization can be described as the shareholder perspective (Lindström 

et al., 2006). Kaplan & Atkinson argued that automation offers reliability and permits 

flexibility through virtually eliminating setups or change over times. Goldhar et.al (1986), 

Hansen et.al (1997) and Hoque (2000) suggested that through automation sustainability and 

competitiveness can be assured, and this can increase process performance.   

The best of automation efforts are realized if they only conform to the industry’s goals and 

objectives. The main key to success is to integrate good organizational structure and 

manufacturing tools (Winroth et al., 2006). If the main goal is to reduce production cost, then 
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the concern will only be to automate with a mere implementation strategy on human labour 

such as task allocation. Otherwise, if the aim is to achieve advanced manufacturing technology, 

then automation will mainly focus on long term technological solutions for the company with 

no regard to implication on human force. In this regard, a proper balance of an optimum level 

of automation will apply in the task allocation (Säfsten et al., 2007).   

The tasks are separated into two categories, information and control tasks and mechanical 

tasks. Some companies talk about semi-automation, which often is referred to the humans 

performing some tasks, such as changing work piece or pushing the button to start each 

operation (Winroth et al., 2006). Groover (2000) elaborates that, automation is the 

accomplishment of a task without human intervention. It is assigned using a program of 

commands integrated with a control system that executes the commands.   

For optimum technological solutions, an integration of automatic and manual functions of a 

manufacturing plant to have semi-automatic processes will result into efficient monitoring and 

control of both physical and statistical quantities that affect the processes. This integration will 

result to the so called level of automation that ranges from purely manual to fully automated 

process operations. Choosing an optimum level of automation will have a positive outcome on 

the manufacturing process, contrary to if automation is under or over applied (Säfsten et al., 

2007).  

2.5.1 Levels of automation  

According to Harris and Harris (2008), there exist five levels of automation in manufacturing. 

Level 1 consist of pure manual tasks by an operator, that is manual loading and starting of a 

machine, cycling or operation, unloading and finally transferring the machined part to the next 

manufacturing stage like in a manual press. In level 2 the loading onto the machine is done 
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manually by an operator, followed by an automatic machine cycling or operation, the manual 

unloading and transfer of the machined part to the next manufacturing stage. In level 3 the 

loading is done manually by the operator, next the machine cycles automatically, same to 

unloading of the part from the machine. Finally, the part is transferred manually by the operator 

to the next stage. In level 4, the part is loaded automatically, followed by automatic machine 

cycling, automatic unloading and finally manual transfer to the subsequent production stage. 

Level 5 is fully automatic, that is loading and cycling, unloading and transfer of parts are all 

automated. 

The gap between level 3 and level 4 is great. This gap is in terms of equipment cost, cost of 

maintenance and ergonomic costs among others. A shift to level 4 implies an increase in cost 

and decrease in flexibility. A third level machine operates with 95% uptime, yet fourth level 

operates at 70-75% uptime while level 5 operates at 65-70% uptime. As the process is more 

automated the uptime decreases gradually. This gap can also be in terms of changeover time 

which is shorter in Levels 1, 2 and 3 than it is in levels 4 and 5. This makes the upper levels of 

automation to have a desirable change over cycle rate called takt time. However, when the takt 

time is low, tasks will be accomplished easily due to less inventories in the industry, thus the 

three lower levels of automation are suitable (Harris and Harris, 2008). 

When level 5 machine is employed to achieve production, it is common that an engineer and a 

technician must be hired to maintain that machine. Thus, if individual machines performing 

specific functions are implemented by a company with the optimum level of automation, there 

will be flexibility, faster change over and quick uptime. The parameter to compete in the 

industry is to be flexible rather than just implementing automation design for future demands 

which can change anytime (Harris and Harris, 2008).   
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Another model for work functions was developed by Sheridan and where LoA was classified 

as LoA 1 (with work functions totally manual) to LoA 10 (with work functions totally 

automatic) and these are grouped into two major activities namely: mechanized tasks and 

computerized tasks. Classifications of manufacturing systems is based on the kind of operation, 

type of layout, automation level and part or product variety (Lindström et al., 2006).   

Groover (2000) also proposed three automation levels and three different layout. This was 

obtained from the learning rate curves plotted for different types of work.  Three control and 

automation levels comprises system positioning, production system and machine tool. Five 

possible levels of automation in a production plant can be identified as the device automation, 

Machine automation, Cell automation, Plant automation and organizational automation. Level 

2 encompasses automation of individual machine tools like PLC, CNC, industrial robots and 

computerized controllers. The material handling equipment represents technologies at level 2, 

although some of the handling equipment is sophisticated. In all these levels, the working 

environment should be properly selected.   

According to Garcia (2015), the following are the sigma levels for control monitoring:  

 5 to 6s: Six Sigma automated process is autonomously designed to monitor and 

automatically eliminate or adjust any error condition with no human intervention. 

 4 to 5s: the automatic process will shut down the operation in case of an error and prevent 

any further activities until the necessary action is undertaken. 

 3 to 4s: error detection will prevent a part from moving to the next stage on a production 

line. 

 2 to 3s: statistical process control on dependent variables with their cause are spotted and 

amended by trained operators in line with the rules and regulations.  
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 1 to 2s: statistical process control on independent variables are spotted and corrected by 

operators. 

 0 to 1s: design of process audits and statistical operational plans through training programs 

In summary, automation enhances efficiency, quality and reduces cost of production. It permits 

much greater manufacturing flexibility, that is, products which have larger volumes or 

ergonomically awkward to manipulate can be produced in an easy way.  Since automation 

focuses on problems related to human engineering, then it is important to observe level of 

automation between the human being and the equipment. There are a lot of classifications of 

level of automation between researchers from five-levels of Harris's classification to three 

levels of Groover's classification. Meanwhile, the best level which could be called 

"rightomation" may be Semi-Automation. 

2.5.2 Automation Challenges 

Orr (1997) observed that low capital per unit and low complexity resulted when a mass 

production system was automated. This is because a new product cannot be introduced on an 

existing process line unless the line is redesigned or completely replaced. Thus in mass 

production, machine changeovers also need to be automated. Similarly, the equipment 

involved are customized or specialized and thus can cause increased equipment cost.  

Winroth et.al (2007) reported that the most important barriers for automation are technical 

feasibility, education and qualification, and economic viability. Other problems are: adapting 

the product to automation, the high number of different products and variants, problems to get 

the money back from the investment and the lack of competence at shop floor level. In the 

vaster view, he investigated that automation is never related to the production capabilities, the 

equipment are too complicated and challenges occur when trying to balance manual approach 
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along the process line. Work in process cost will then be increased by the huge buffers which 

will adversely increase the cost. This implies that automation is challenging if not well related 

to the expected long term production strategies (Winroth et al., 2006, Winroth et al., 2007).  

Frohm et.al (2006) found that automation involves more complex production processes while 

in more advanced automation, it includes investment cost. This makes it challenging too in 

machining and manufacturing. Automation is also not suitable if it is applied to newly 

introduced products, short term products or short product life cycles. Equally variations in the 

production is challenging to automation. On the contrary, high volumes of production and 

ergonomics problems cannot be addressed manually. However, as manufacturing becomes 

more complex as demand for specialized parts increase, higher levels of automation will record 

undesirable outcomes. It is affirmed that a variation in product and adapting the products for 

automated production can be a problem. In their findings, some firms mentioned untimely 

automation planning or operator training and also, a challenge in getting payback from 

automation. Most industries admit that operator’s competence is the main issue when 

automating activities involving seasonal products. This results to high changeover times and 

cost-inefficiency (Frohm et al., 2006).  

Hedelind et al. (2008) believes that lack of flexibility could be considered as a challenge to 

automation. The flexibility of a manufacturing system can be defined and determined by its 

sensitivity to change and serves as a measure for a number of variant products in a production 

system. A flexible system is that which can accommodate changes effectively at a low cost 

within a manufacturing system. Lack of re-configurability could be another challenge to the 

automation which is defined as a systems’ response to changes. The main barriers to small 



 

42 
 

industries in investments in industrial robotics are cost and the need for expertise and 

experience.  

Hedelind et al. (2008) asserts that automation is accomplished by complexity. Many reasons 

have also hindered the adoption of industrial robots including scarcity of robotic cells, lack of 

understanding of robotic technology by the operator which creates uncomfortable environment 

and a lot of protocols that needs to be followed yet they don’t give information on procedures. 

Other challenges include fear to invest in automation when there is variation of products, 

shorter cycle times, high costs, failure to consider advanced manufacturing techniques and the 

need to hire maintenance engineers and technicians, configuration and flexibility costs. 

However, sophisticated machines could give interference due to fixed solutions and limited 

transparency into the automated process (Jackson et al., 2011).  

Hedelind et al. (2011) noted that there are many detailed and specific challenges that any firm 

may be encountered as such the small buffers between stations may cause stops in one station 

and affect other stations too. The times of set ups in the stations may be another challenge, but 

the observation noticed was the availability of a wide range of automation solutions in the 

industry. This was because various suppliers and system integrators were utilized without any 

detailed technical specifications provided from the company. In the same category, there was 

also low confidence in the ability of the operators employed by the company to resolve issues 

arising in the automated stations (Hedelind and Jackson, 2011). 
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2.6 Modelling of experiments 

According to Tzu-Ming et.al (2001), two major models can be used for experimental analysis 

namely: Regression models and ANOVA models.  

 

 

a) For regression models, independent variable  y is 

𝑦 = 𝜂(𝑥, 𝜗) + 𝜀                            2-1 

Where  x represents a set of dependent experimental conditions, 

𝜗 (𝜗1 … … . 𝜗𝑝)
𝑇
 Represents a vector of unknown parameters, 

𝜀 =represents an observational error, a random variable. 

𝜂(𝑥, 𝜗) = 𝑓1(𝑥)𝜗1+. . . +𝑓𝑝(𝑥)𝜗𝑝     2-2 

That is 

𝑦 = 𝑓(𝑥)𝑇𝜗 + 𝜀      2-3 

Where 

𝑓(𝑥)𝑇 = (𝑓1(𝑥), … … . , 𝑓𝑝(𝑥)) , 𝜗 = ((

𝜗1

⋮
𝜗𝑝

))    2-4 

Or in matrix notation (to include all observations) 

𝑌 = 𝑋𝜗 +  𝜗       2-5 

 

 

b) Analysis of variables (ANOVA) 

The variance of a model is gotten by the sum of the square deviations from the mean. 
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𝑉𝑎𝑟(𝑦) = ∑ (𝑦𝑗 − ȳ)
2

𝑗       2-6 

Where  ȳ is the mean of the model y  

For any model M that forecasts values ӳ for the data, the residual variance or residual sum of 

squares of M is evaluated in the same way as: 

𝑅𝑆𝑆𝑀(𝒚) = ∑ (𝑦𝑗 − ӳ𝑗)
2

𝑗       2-7 

Therefore, if more than single variables are involved then ANOVA is the appropriate model 

that behaves like a multi regression model for nonlinear variables as: 

𝑦𝑗 = 𝜂(𝑥𝑗 , 𝜗) + 𝜀𝑗       2-8 

Taylor series expansion of the model, at a prior𝜗𝑜, yields 

𝜂(𝑥, 𝜗) = 𝜂(𝑥, 𝜗𝑜) + 𝑓𝑇(𝑥, 𝜗𝑜)(𝜗 − 𝜗𝑜) + (𝜗 − 𝜗𝑜)𝑇𝑓. . (𝑥, 𝜗𝑜)(𝜗 − 𝜗𝑜)+..  2-9 

Where 

𝑓𝑇(𝑥, 𝜗𝑜) = (
𝜕𝜂(𝑥,𝜗)

𝜕𝜗1
,

𝜕𝜂(𝑥,𝜗)

𝜕𝜗2
, … ,

𝜕𝜂(𝑥,𝜗)

𝜕𝜗𝑝
) 𝐼𝜗=𝜗𝑜    2-10 

And 𝑓. . (𝑥, 𝜗𝑜) is a matrix of second order derivatives with respect to the parameters, thus a 

sumarised linear model being 

𝑌 = 𝛼 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝑎𝑖 + 𝑏𝑖1𝑋1 + 𝑏𝑖2𝑋2 + 𝑏𝑖3𝑋3 + 𝜀   2-11 

Where  𝑎𝑖, 𝑏𝑖1, 𝑏𝑖2, 𝑏𝑖3 are jointly normal multivariate with zero mean and some unknown 

covariance matrix M. 

In this study, ANOVA modelling will be adopted due to its ability to handle multivariate 

problems with nonlinear variables. 
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2.7 Summary of Research gap  

Competitive industries adopt cost saving strategies like lean manufacturing. In others, stiff 

competition and challenges like poor ergonomics and quality, and high labour costs initiate 

industries to adopt higher levels of automation. Most lean manufacturers allege that too much 

automation due to lower levels of automation result to much complexity that even contradicts 

lean principles. Some don’t have confidence in the automation facilities and are left to rely on 

their suppliers and contributors. Automation requires high investment costs, maintenance and 

complex interface, specialized training and space utilization among others (Delkhosh, 2012). 

With these challenges of low levels of automation, it is important to implement just in time 

before automating. This is because automation aims at increasing improvements on quality and 

lead times. Thus, it should not be of concern as to whether lean is manual or fully automated, 

since it can integrate both manual and integrated tasks. Therefore, it’s key to determine the 

optimum level of automation in a lean environment to obtain lean automation benefits 

(Granlund et al, 2011; Harris, 2008; Hedelined et.al, 2011; Orr 1997). A chronological 

summary of the research gaps to be explored in the study is summarized herein in Table 2-2. 

Table 2-2: Chronological summary of the research gaps  

Author Objective Methodology Findings Gap 

Day, 1996 pH Control in 

the Sugar Mill 

Survey conducted 

with survey 

questionnaires 

- In most sugar 

industries in 

developing 

countries, pH 

monitoring and 

control is 

absolutely manual 

where samples are 

manually scooped 

from mills for pH 

measurements at 

intervals or pH 

papers  

- Severe variability 

in pH level. 

Need for smart 

technology to 

reduce variability 

in pH. 
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Orr, 1997 Impact of 

automation in 

the Australian 

and Asian 

industries 

Survey conducted 

with survey 

questionnaires 

- low capital per unit 

and low 

complexity 

resulted when a 

mass production 

system was 

automated 

- increased 

equipment cost 

Need to determine 

the optimum 

automation level in 

a lean environment  

Winroth et 

al., 2006 

Requirements 

and existing 

theory of 

automation in 

manufacturing 

Survey conducted 

with survey 

questionnaires 

- Automation is 

never related to the 

production 

capabilities, the 

equipment are too 

complicated and 

challenges occur 

when trying to 

balance manual 

approach along the 

process line.  

- Work in process 

cost increased by 

the huge buffers 

which adversely 

increase the cost.  

- automation is 

challenging if not 

well related to the 

expected long term 

production 

strategies 

Need to determine 

the optimum 

automation level in 

a lean environment 

Frohm et al., 

2006 

Impact of 

Automation in 

Manufacturing 

Survey conducted 

with survey 

questionnaires 

- In lean 

environments, if 

automation is not 

well planned, it 

may cause 

challenges ranging 

from maintenance, 

difficulties in 

visualization, time 

consumption, and 

difficult machine-

human interface  

Need to determine 

the optimum 

automation level in 

a lean environment 

Kent and 

Lewinski, 

2007 

comparison 

between 

electromechanic

Experimental - the efficiency of 

the variable 

frequency 

Need for advanced 

technology to 
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al mill tandems 

(VSD) and the 

conventional 

drive (CSD) 

electromechanical 

drive is higher than 

the constant 

electro-hydraulic 

drive 

reduce resource 

wastage 

Hedelind et 

al., 2008a 

Impact of 

industrial robots 

in 

manufacturing 

firms 

Survey conducted 

with survey 

questionnaires 

- Automation is 

affected by lack of 

sensitivity to 

change, systems’ 

response to 

changes and low 

confidence in the 

ability of the 

operators 

employed by the 

company to 

resolve issues 

arising in the 

automated stations 

Need to determine 

the optimum 

automation level in 

a lean environment 

Kenya Sugar 

Board 

Reports, 

2007, 

2009,2010, 

2013 

Statistics of 

Sugar 

Production in 

Kenya 

Review of audit 

reports and survey 

questionnaires 

- Kenyan sugar 

factories are high 

cost producers of 

sugar currently 

estimated at USD 

870 per MT. 

- The factories 

operate at low 

capacities due to 

low levels of 

technical 

efficiency and high 

resource wastages 

Need for adoption 

of advanced 

techniques in sugar 

production in 

Kenya 

Ondiek and 

Kisome, 2013 

Adoption of 

Lean 

Manufacturing 

Tools and 

Techniques in 

Sugar 

Processing 

Industries in 

Kenya 

Survey conducted 

with survey 

questionnaires 

- In Kenya, sugar 

companies 

exhibited either 

partial application 

of lean techniques 

or improper 

consideration of 

the level of 

automation.  

- No understanding 

of lean 

manufacturing 

principles and 

therefore little 

Need for a holistic 

integration of 

advanced 

techniques, like 

lean automation. 
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benefits have been 

realized. 

- Undesirable 

process 

efficiencies and 

productivity with 

average sugar 

productivity of 

85%, which is 

below 92% 

recommended 

world average. 

Oliverio et.al 

2015 

The technical 

comparison 

between Mills 

and Diffuser  

juice extraction 

systems in Brazil 

Experiment was 

set, data recorded 

from each system 

employed 

- Juice extraction 

can reach only up 

to 80% with mill 

tandems, but can 

be higher when a 

diffuser 

incorporated with 

dewatering mills 

are used. 

Need to assess the 

impact of an 

optimally 

automated diffuser 

on quality juice 

production 

Maria, 2015 A review of 

economic 

growth in Africa 

by the World 

bank 

Survey conducted 

with survey 

questionnaires 

- Fluctuating 

demand for sugar 

exports and their 

declining 

production is on a 

rise yet major 

sugar industries 

derive the 

advantage of being 

automated. 

Need to integrate 

level of 

automation 

required at the 

respective stages 

of the process flow 

Xiao et.al, 

2017 

analysis of sugar 

cane juice 

quality indexes 

Experiment was 

set, data recorded 

from each system 

employed 

- The effect of 

polarization 

(%Pol) and %brix 

on sucrose content 

is directly 

proportional to the 

apparent purity of 

the juice. 

- sucrose content 

decreases with an 

increase in 

apparent purity 

and %brix 

Need for advanced 

technology to 

reduce variability 

in (%Pol) and 

%brix  
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2.8 Conceptual synergy 

The three theories namely six sigma, lean manufacturing and theory of constraints are geared 

towards improving the process performance and they collaborate in terms of general criticisms 

on the cause of industrial failure. In addition, they make a few of the same assumptions. The 

emphasis on constraints by TOC, gives a clear indication at every stage of a production line to 

enhance improved output. This conforms to lean thinking where waste reduction is conducted 

to rectify the weak cell/modules with the aim of achieving increased outputs. Consequently, it 

conforms to six sigma in that when the weak cell is improved, there will be less process 

variations and this will improve quality. Ultimately, all the models derive at attaining improved 

quality and subsequently effective industrial performance. 

2.9 Conceptual framework 

All local sugar industries in Kenya, records a declining production trend. In Kenya, all the 

industries are at the knee of closure if not uncompetitive and unsustainable production. This 

follows the proved inadequacy of advanced manufacturing approach among many other 

limitations that can foster a good process performance. The framework developed gave a 

conceptual basis for an experimental case study analysis. The framework links lean automation 

integration and process performance with lean manufacturing to moderate the relationship. 

Lean automation was selectively chosen as the appropriate advanced manufacturing approach 

that suits the performance of sugar processing with the main objective of material handling 

and adaptive control. 

Lean automation was examined in terms of level of automation (LoA) adoption in the sugar 

industries. Process performance was explored in terms of adaptive control, production quality, 

waste reduction and continuous improvement indices. Adaptive control was characterized by 

Intermediate 

variables 

Level of 

automation 
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rapid changeability of response time, process temperature and process pH. Production quality 

was characterized by the flexibility of changeovers in %brix, %pol, preparation index (PI) and 

% apparent sugar quality. Resource utilization was characterized by waste reduction in power 

consumption, setup time and process cycle time. Continuous improvement was characterized 

by the variability in the rate of production. The chosen parameters of the process performance 

are those factors that directly affect production line and sugar quality. 

The framework, poses an expectation that the higher the level of automation, the better the 

process performance. The framework also suggests that adoption of lean automation requires 

a lean manufacturing environment with an aim of value addition as shown in Figure 2-5 below. 

 

Figure 2-5: Conceptual framework (Source: Researcher) 

 

2.10 Hypothesis 

The competitiveness and sustainability of process performance in local sugar industries is on 

a decline due to adoption of obsolete technology among other factors. In this regard, there is 

Lean automation

- Adoption of high levels 
of automation (LoA 4, 

LoA 5, LoA 6)

Process performance

- Adaptive control

- Production quality

- Resource utilisation

- Continuous improvement

Independent variable Dependent variable 

H1 H2 
H3 H4 
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need for an advanced manufacturing approach to address the production in the local industries. 

This prompted the necessity to assess the impact of lean automation on process performance 

in sugar industries guided by a null hypothesis (Ho) of there being no relationship between 

lean automation and process performance indicators. However, to validate the null hypothesis, 

the listed alternative hypotheses were tested in line with the process performance indicators. 

a. H10: All the LoA means are equal for adaptive control parameters;                            

μLoA 4 = μ LoA 5 = μ LoA 6     

H11:  At least one of the LoA means is different from one of the other means for 

adaptive control parameters; μLoA 4 ≠ μ LoA 5 ≠ μ LoA 6 

b. H20: All the LoA means are equal for resource utilization parameters;                       

μLoA 4 = μ LoA 5 = μ LoA 6  

H21:  At least one of the LoA means is different from one of the other means for 

resource utilization parameters;   μLoA 4 ≠ μ LoA 5 ≠ μ LoA 6 

c. H30: All the LoA means are equal for quality production parameters;                        

μLoA 4 = μ LoA 5 = μ LoA 6  

H31:  At least one of the LoA means is different from one of the other means for 

quality production parameters; μLoA 4 ≠ μ LoA 5 ≠ μ LoA 6 

d. H40: All the LoA means are equal for continuous improvement parameters;             

μLoA 4 = μ LoA 5 = μ LoA 6     

H41:  At least one of the LoA means is different from one of the other means for 

continuous improvement parameters; μLoA 4 ≠ μ LoA 5 ≠ μ LoA 6 
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CHAPTER 3 : MATERIALS AND METHODS 

3.1 Introduction  

In this chapter, the relevant materials and method aspects are discussed in line with the study 

objectives to assess the attainment of the expected outcome as highlighted in the conceptual 

framework. These include: experimental unit, materials used, research design, the 

experimental setups, measurement procedure, data collection tools, data analysis and validity 

and reliability of the data.  

3.2 Experimental unit  

Mumias Sugar Company, located in Mumias town in Kakamega county of Kenya, was selected 

as the case company. It is a local sugar industry that has progressively upgraded its plant 

operations from semi-automatic to full automation in some work modules of its layout. It also 

has both the conventional and automatic juice extraction techniques in terms of modern mills 

and a diffuser.  This provided an opportunity to set up experiments for the various levels of 

automation to ascertain the impact of various levels of automation on the process performance.  

3.3 Materials  

1. Digital refractometer to measure directly Brix degrees or HFCS % 

2. Stop watch 

3. Visual display cameras and screens to provide high level of automation 

4. Temperature sensor and probes provide high level of automation 

5. SCADA platform provide high level of automation 

6. DCI platform provide high level of automation 

7. Polarimetre for measuring the %pol 
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3.4 Research philosophy 

 
Figure 3-1: Research onion (Source: Saunders et al., 2009) 

Saunders et al., (2009) suggested a research sphere to help guide researcher in choosing the 

best strategies and approaches given a scenario as shown in Fig 3.1. In the process of 

establishing knowledge on any subject matter, a researcher is guided by one of the many 

philosophical viewpoints as suggested by Saunders (2009) in the research union. The main 

philosophy that guides applied science is positivism. Positivism is based upon reason, truth 

and validity with a focus on facts that are gathered through direct observations and experience 

and measured empirically using quantitative methods of surveys and experiments and 

subjected to statistical analysis. In this philosophy the focus is on facts and looks for causality 

in the relationships through the formulation and testing of hypothesis. 

The primary aim of this study was to experimentally inquire into the influence of level of 

automation on process performance hence characterized by the testing of hypothesis developed 

from existing theory (deductive approach) through measurement of observable process 

parameters. These parameters were measured experimentally using quantitative methods. The 

study therefore adopted a positivism philosophy, deductive approach and case study strategy 
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which focused purely on facts, gathered through direct observation and measurements from 

the experiments. 

3.5 Research design 

According to Zafarzadeh (2013), the study into automation needs to be more clarified and 

established in a new and practical way. This called for an experimental design where a sample 

industrial case was reviewed to check the circumstances of real world for optimum lean 

outcomes and future benefits forecasted in collaboration with the appropriate level of 

automation adoption.  

Therefore, a holistic single case design was chosen where the context was the case industry 

that practices automation, the case was lean automation, and the unit was the material handling 

modules of the pre-milling section. Case study will be chosen because of the following:  

a. Research will entail “how” and “why” questions into the challenges and advantages of 

lean automation 

b. Research hypothesis have descriptive nature  

c. There are several bases of evidences like expert ideas around hypotheses, current data 

and state in the case industry and the present and future approach to automation 

progress.  

Furthermore, case study approach was chosen as the study is an empirical investigation of a 

modern spectacle in its real-life perspective. Also, there is no clear boundary between 

automation and lean manufacturing in sugar industries, this created another motive for 

selecting this case study for this research. The parameters of manufacturing flexibility through 
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lean automation and the production competitiveness was compared and the impact of lean 

automation assessed. 

In summary: 

- Case study approach with experimental design was chosen, and the experiment utilized 

the completely random design of experiment in analysis of variables. 

- The parameters involved as per the appropriate categories included: 

o Treatments (parameters to be compared) - 3 treatments namely LoA4, LoA5 and LoA6 

o Experimental unit (where treatments are applied) – Case industry which is Mumias 

Sugar company Ltd 

o Responses (outcomes) – 4 responses that form indicators of process performance in 

sugar industry namely Adaptive control, waste reduction, quality production and 

continuous improvement 

o Randomization (to attain validity) – it was based on different process stage i.e P.Stage 

o Replication – it was attained by having 7 replicates 

o Measurement or response units (the actual objects or factors that affects the responses) 

– See Figure 3-2 below. 

o Control treatment (standard treatment used as basis for comparison) - LoA 4 

 

Figure 3-2: Cumulative responses contributing to process performance in sugar industry and their corresponding measurement 

units (Source: Author, 2019) 
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Table 3-1: Adopted matrix for the complete randomized design of experiment (Source: Author, 2019) 

      

PROCESS PERFORMANCE RESPONSES  

(y) 

      

Adaptive Control  

(y1) 

Resource Utilisation  

(y2) 

Continous 

Improvement 

(y3) 

Production Quality  

(y4) 

  P.Stage 

Reponse 

Time 

(y11) 

Process 

Temp 

(y12) 

Proces 

pH 

(y13) 

Power 

Consump 

(y21) 

Setup 

Time 

(y22) 

Cycle 

Time 

(y23) 

Rate of 

Production 

(y31) 

PI 

(y41) 

% Brix 

(y42) 

% Pol 

(y43) 

Apparent 

Purity 

(y44) 

L
E

A
N

 A
U

T
O

M
A

T
IO

N
 T

R
E

A
T

M
E

N
T

S
  

L
o
A

 4
  

(x
1
) 

WB √ * * √ √ √ * * * * * 

CL √ * * √ √ √ √ * * * * 

FT √ * * √ √ * √ * * * * 

KNIV * √ * √ * √ * √ √ √ √ 

SHREDD * √ * √ * √ * √ √ √ √ 

HDKNV * √ * √ * √ * √ √ √ √ 

EXTRACTN * √ √ √ * √ √ * √ √ √ 

L
o

A
 5

  

(x
2
) 

WB √ * * √ √ √ * * * * * 

CL √ * * √ √ √ √ * * * * 

FT √ * * √ √ * √ * * * * 

KNIV * √ * √ * √ * √ √ √ √ 

SHREDD * √ * √ * √ * √ √ √ √ 

HDKNV * √ * √ * √ * √ √ √ √ 

EXTRACTN * √ √ √ * √ √ * √ √ √ 

L
o

A
 6

  

(x
3
) 

WB √ * * √ √ √ * * * * * 

CL √ * * √ √ √ √ * * * * 

FT √ * * √ √ * √ * * * * 

KNIV * √ * √ * √ * √ √ √ √ 

SHREDD * √ * √ * √ * √ √ √ √ 

HDKNV * √ * √ * √ * √ √ √ √ 

EXTRACTN * √ √ √ * √ √ * √ √ √ 

 Key: * = Non-applicable process stages (Empty fields)  

  √ = Applicable process stages for various process performance attributes
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y11 = β011 + β111 x1 + β211 x2 + β311 x3 + ε11       3-1 

y12 = β012 + β112 x1 + β212 x2 + β312 x3 + ε12      3-2 

y13 = β013 + β113 x1 + β213 x2 + β313 x3 + ε13      3-3 

y21 = β021 + β121 x1 + β221 x2 + β321 x3 + ε21      3-4 

y22 = β022 + β122 x1 + β222 x2 + β322 x3 + ε22      3-5 

y23 = β023 + β123 x1 + β223 x2 + β323 x3 + ε23      3-6 

y31 = β031 + β131 x1 + β231 x2 + β331 x3 + ε31      3-7 

y41 = β041 + β141 x1 + β241 x2 + β341 x3 + ε41      3-8 

y42 = β042 + β142 x1 + β242 x2 + β342 x3 + ε42      3-9 

y43 = β043 + β143 x1 + β243 x2 + β343 x3 + ε43      3-10 

y44 = β044 + β144 x1 + β244 x2 + β344 x3 + ε44      3-11 

 

Where:  

β011, β012, β013, β021, β022, β023, β031, β041, β042, β043, β043 = corresponding population means 

β111, β211, β311 ….…………… β343, β144, β244, β344 = coefficients of corresponding treatments 

 

Also,  

𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑖𝑛𝑑𝑒𝑥 (𝑦1)  =  
2

5
(

∑ 𝑦11
3
1

3
) +  

2

5
(

∑ 𝑦12
4
1

4
) +  

1

5
𝑦13    3-12 

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥 (𝑦2)  =
2

5
(

∑ 𝑦21
7
1

7
) + 

2

5
(

∑ 𝑦22
2
1

2
) +  

1

5
(

∑ 𝑦23
6
1

6
)  3-13 

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 𝑖𝑛𝑑𝑒𝑥 (𝑦3)  = (
∑ 𝑦31

3
1

3
)      3-14 

𝑄𝑢𝑎𝑙𝑖𝑡𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥 (𝑦4)  =
2

5
(

∑ 𝑦41
3
1

3
) +  

3

5
(

∑ 𝑦44
4
1

4
) ;  𝑦44 =  (

𝑦43

𝑦42
) 𝑥100% 3-15 

 

Ultimately, 

 

𝑃𝑟𝑜𝑐𝑒𝑠𝑠 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 (𝑦)  = {4 (
1

𝑦1
) +  4 (

1

𝑦2
) +  (

𝑦3

4
) + (

𝑦4

4
)}  𝑥100%  3-16 
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3.6 Experimental set ups 

 

 

Figure 3-3 Experimental setup for Level 4 of automation (LoA 4) using control circuits 

 

 

 

Figure 3-4 Experimental setup for Level 5 of automation (LoA 5) using SCADA 
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Figure 3-5 Experimental setup for Level 6 of automation (LoA 6) using DCS 

3.7 Measurement procedure 

1. The pre-process line was categorized into various process stages namely weigh bridge 

(WB), cane loading (CL), feed tables and kickers (FT), knives (KNIV), main cane carrier 

(MC), Shredder, heavy duty knives, shredded cane conveyor and juice extraction. 

2. At each process stage, respective levels of automation were adopted through the different 

process lines and relevant parameters that affect the process were recorded. Level 4 was 

represented by the conventional process line which is common in all the local sugar 

industries while Levels 5 and 6 were represented by the new process line with automated 

mills and diffuser.  

3. The three levels of automation namely 4, 5 and 6 were evaluated purposefully with level 

4 being the conventional semi automation process technique that use control circuits and 

buttons employed by all the local sugar industries in Kenya. 

4. Level 5 involved the use of SCADA system incorporated with autonomous independent 

machines within work cells. 
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5. Level 6 involved the use of DCS incorporated with autonomous independent machines 

within the entire plant or wide area. 

6. Variability in %brix, %pol, temperature and pH were measured by the relevant 

instruments at the appropriate process stage. 

7. Power consumption was measured from the cumulative power ratings of various 

machines over the operational time duration  

8. Response time, cycle time and setup time were measured using a stop watch respectively 

9. PI was measured from samples of cane fibers collected at intervals from the process line 

10. The various levels of automation were defined by the following characteristics: 

Level 4 

 Open cell method of cane preparation  

 Constant speed drive motors, compressor and pumps 

 Stand-alone safety and operational control buttons 

 Manual troubleshooting techniques of machinery (monitoring of process temperature, 

pipe and dust flow, mill processes) 

 Random sampling of juice extract to monitor the quality of juice (temperature, brix, 

production rate) 

Level 5 

 Preparation index method of cane preparation (HD KNV) 

 SCADA 

 Variable speed drive motors, compressors and pump 

 Autonomous diffuser and millers 
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 Automatic safety and operational controls 

 Automatic troubleshooting 

 Audio and visual process alert system 

 Verification systems 

Level 6 

 DCS 

 Variable speed drive motors, compressors and pump 

 Autonomous diffuser and millers 

 Automatic safety and operational controls 

 Automatic troubleshooting 

 Audio and visual process alert system 

 Verification systems 

11. The general procedure involved identification of lean automation prospects with the 

optimum level of automation and to design and simulate lean automation outcomes in 4 

functionality domains meant to realize optimum process performance. 

 Reduction of non-value activities (wastages) 

 Continuous improvement 

 Real time monitoring 

 Quality production 

3.8 Data collection  

The following parameters that influenced the performance of the sugar process and the 

functionality of machineries were measured and recorded using various six sigma/lean 
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techniques which include: Setup time Analysis, value stream mapping, Quality Data 

Collection and Analysis (Variability and Reject Rate reduction), Root Cause Analysis, semi 

structured interviews, simulations, observation: 

 The power consumption of equipment and machinery at every process stage 

 The preparation index (PI) at the knives, shredders and heavy knives 

 The rate of feeding cane and juice extraction (production rate) 

 The pol and brix (sugar concentration) of the sugar juice extract 

 Change over time for each level at every process stage (mill settings, namely Mean 

circumference, Mill ratio and Set opening 

 Cycle time for each level at every process stage 

 Process temperatures variability from the expected optimum value 

 Response time to a fault for each level at every process stage 

 Effectiveness of control to the process 

 Effectiveness of process pH  detection and control to the process 

3.9 Data analysis 

By the help of software programs (Excel TM and MinitabTM), the collected data was analysed 

systematically using tables, statistics and graphs. The correlation of lean automation 

(independent variable) was established against process performance indicators (dependent 

variables) respectively using waste minimization index (moderating variable), to examine the 

strength of relationship of the variables for a sustainable and competitive industry. Using 

graphs and tables of those variables, the optimum level of automation was realised to provide 

lean production. Hypothesis testing was done using F-test since it is the most appropriate tool 
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for the purposes of comparison of variables. It was expected to obtain the optimum potentials 

of lean automation indicator in minimizing lead time wastage, improving quality, increasing 

rate of production and rapid response. 

3.10 Validity and Reliability of data 

Validity was achieved through the vast data collection methods proposed for verification of 

the responses from the various sources. To have consistent results for this research, the design 

was selected as case study since it investigated a phenomenon from new insight relative to the 

existing models. Attributing to Zafarzadeh (2013), the significance of case study technique in 

logistics and creation of novel theory from insufficient philosophy. Also, the case design 

proposed was the holistic single case study, and this according to Yin (1997), is effective for 

this research since it’s often used where it delineates a critical or distinctive situation.  

Contrariwise, a single case can be opted since it’s typical or supplies us with a possibility to 

detect and analyze an occurrence that has been considered afore. Concerning data-collection 

techniques, semi-structured interviews were used to enable a discovery of a broader insight to 

the matter, and the specialists interviewed were the reliable source for achieving accurate facts. 

Also, the experiment was meant to provide a control platform for comparison of results, hence 

Pearson’s coefficient of correlation was used to validate the results obtained.  This was to make 

the outcome dependable and valid owing to accuracy of the design and the fact that, all the 

data was attained from real prevailing organization and through examination with specialists. 

Value stream mapping was employed to authenticate interview verdicts that was to form a 

reliable instrument for detecting faults in a company. 
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CHAPTER 4 : RESULTS AND DISCUSSIONS 

4.1 Introduction 

This chapter entails the analysis and discussion of experimental findings and evaluation. It 

gives findings and explains how level of automation as the indicator for independent variable 

affects the key indicators of process performance viz: adaptive control, production quality, 

waste reduction and continuous improvement. The results obtained were from each process 

stage and addressed each of the four objectives of the study as discussed. 

4.2 Impact of lean automation on adaptive control for improved real time process control  

In this objective, the impact of lean automation was analyzed based on its ability to improve 

on the adaptive real time control of processes. The lean automation was accomplished through 

the integration of three different levels of automation in a lean system of sugar production. 

Based on IEEE POSIX Standard (Portable Operation System Interface for Computer 

Environments), a real-time system is one in which the correctness of a result not only depends 

on the logical correctness of the calculation but also upon the time at which the result is made 

available (Gambier, 2004). Also, Gambier (2004) asserted that, the correctness of an output in 

a real-time monitoring system does not only depend on the logical accuracy of the calculation 

but also on the time at which the output is displayed. According to Gambier (2004), this 

assertion validates the importance of time factor for a real time setup in any manufacturing and 

industrial system, and that there exist timing constraints which will always hinder cycle times 

of manufacturing tasks. As a result, these tasks must be able to synchronize with the real-time 

events in the external environment within the industry. Therefore, a real-time setup must 

synchronize with the external events associated with it. 
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From Fig 2-1, on key indicators, it is noted that the effectiveness of an automated lean 

technique to provide real time monitoring is subject to the response time and process parameter 

variability within the system. The lower the response time and variability in process 

parameters, the better the performance of the level of automation in enhancing real time 

monitoring of the manufacturing process and vice versa. 

In this experiment, adaptive real time control was demonstrated by three variables that were 

measured at the respective stages of the sugar pre-process line for different levels of 

automation. They included: response time to anomaly, process temperature variability and the 

process pH variability. The rate at which the anomaly was corrected and the variability in 

process parameters when using different levels of automation were analyzed to ascertain the 

level of automation that will give the best adaptive control, and whether it is dependent on the  

process stage. 

4.2.1 Response time to anomaly 

For the experiment conducted, the response times to anomaly for three different level of 

automation (LoA 4, LoA 5 and LoA 6) was taken in three process stages where it was 

applicable namely PS, CL and FT as shown in Table 4-1 and Figure 4-1. 

 

Table 4-1 Response time to anomaly for different LoA (Source: Field data, 2019) 

  Response time (min) 

Stage Level 1 2 3 4 5 6 7 AVG 

PS 

PS(LoA 4) 2 2.5 2 3 2.5 2 2.5 2.4 

PS(LoA 5) 0.5 0.6 0.5 0.8 0.5 0.6 0.5 0.6 

PS(LoA 6) 0.5 0.6 0.5 0.8 0.5 0.6 0.5 0.6 

CL 

CL(LoA 4) 4 4.5 4 5 6 4 5 4.6 

CL(LoA 5) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

CL(LoA 6) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
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FT 

FT(LoA 4) 3 2 3 3 2.5 3 2.5 2.7 

FT(LoA 5) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

FT(LoA 6) 0.3 0.3 0.2 0.5 0.3 0.5 0.3 0.3 

 

The above Table 4-1 reveals that the conventional automation (LoA 4) at CL resulted to a low 

response time of 4 min (replicates 1, 3 and 6) and high response time of 6 min (replicate 5) for 

all the 8 replicates conducted, while both SCADA (LoA 5) and DCS (LoA 6) at CL recorded 

a low response time range of 0.5 min (replicate1-7) and high response time of 1 min (replicate 

8). Similarly, at PS with conventional automation (LoA 4), a low response time of 2 min 

(replicate 1, 3, 6 and 8) and high response time of 3 min (replicate 4), while both SCADA 

(LoA 5) and DCS (LoA 6) at FT, recorded a low response time of 0.2 and min (replicate 1, 3, 

5, 7) and a high response time of 1 min (replicate 8). 

Also, at FT with conventional automation (LoA 4), the lowest response time was 2 min 

(replicate 2) and highest of 3 min (replicate 1, 3, 4, 6, 8). SCADA (LoA 5) recorded a constant 

and DCS (LoA 6) at FT recorded low response times of 0.5 min (all replicates) and 0.2 

(replicate 3) respectively and a high response times of 0.5 min (replicate 8).  

 
Figure 4-1: Graph of LoA vs response times to anomaly (Source: Field data, 2019) 
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From Figure 4-1, LoA 4 has the highest mean response time of 2.4, 4.6 and 3 min at the PS, CL 

and FT respectively, as opposed to both LoA 5 and 6 that recorded the lowest mean response 

time of 0.6, 0.5 and 0.5 min at PS, CL and FT stages respectively. It is therefore evident that, 

the higher the level of automation the better the response to anomaly. 

 

The experiment was a randomized block with two factors (LoA and P.Stage) being investigated 

on process temperature variability. There were 7 replicates for each separate treatment levels 

under investigation. 

Table 4-2 ANOVA for Response time to anomaly (min) versus LoA, P. Stage (Source: Field data, 2019) 

Factor Information 

Factor       Type       Levels    Values 

LoA          Fixed       3            4, 5, 6 

P. Stage    Fixed       3            CL, FT, WB 

 

Analysis of Variance 

Source       DF   Seq SS   Contribution    Adj SS     Adj MS   F-Value   P-Value  F-Crit 

  LoA         2     15.7868        85.00%      15.7868    7.8934     16.21       0.012       6.94 

  P. Stage   2       0.8379         4.51%         0.8379    0.4189       0.86       0.489       6.94 

Error          4       1.9478        10.49%        1.9478    0.4870 

Total          8     18.5726       100.00% 

 

Model Summary 

       S          R-sq         R-sq(adj)    PRESS      R-sq(pred) 

0.697826    89.51%     79.02%       9.86097      46.91% 

 

Coefficients 

Term           Coef     SE Coef        95% CI            T-Value   P-Value      VIF 

Constant     1.460      0.233      ( 0.814,  2.106)       6.28       0.003 

LoA 

  4               1.873      0.329       ( 0.960,  2.786)       5.69      0.005         1.33 

  5              -0.937      0.329       (-1.850, -0.023)     -2.85      0.047         1.33 

  6              -0.937      0.329       (-1.850, -0.023)     -2.85      0.047          * 

P. Stage 

  CL            0.421       0.329      (-0.493,  1.334)       1.28      0.270        1.33 

  FT           -0.127       0.329      (-1.040,  0.786)      -0.39      0.719        1.33 
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 WB          -0.294       0.329      (-1.207,  0.620)      -0.89      0.422        * 

 

Regression Equation 

Response time (min) = 1.460 + 1.873 LoA_4 - 0.937 LoA_5 - 0.937 LoA_6 

+ 0.421 P. Stage_CL - 0.127 P. Stage_FT - 0.294 P. Stage_WB 

 

Means 

Term        Fitted Mean    SE Mean 

LoA 

  4             3.333               0.403 

  5             0.524               0.403 

  6             0.524               0.403 

P. Stage 

  CL          1.881               0.403 

  FT           1.333               0.403 

  WB         1.167               0.403 
α = 0.05 significance level 

 

In Table 4-2, there are two factors included in the analysis, LoA and P.Stage. Both factors are 

fixed, the LoA factor has 3 levels with values 4, 5, and 6. The P.Stage factor has three levels 

with values CL, FT and WB.  

The effects of LoA and the process stage were assessed. The commonly chosen α-level of 0.05 

was chosen and the results indicate the following: The p-value for the LoA factor given as 

0.012 is less than 0.05. Since this is less than the chosen α-level of 0.05, it means the effect of 

LoA on response time is significant. In other words, the mean response time is different for the 

different LoA while that of the P.Stage (0.489) is greater than 0.05, indicating that there is no 

significant effect of P.Stage on response time, implying that the mean response time is the 

same for a given LoA at different P.Stages. S is 0.697826, R  is 89.51%, and adjusted R  equals 

79.02% which indicates that the model explains 89.51% of the variation in response time when 

you use it for prediction. This is good for comparing different response time models since S is 

minimal and R maximum. LoA is significant at all three levels (p= 0.005, 0.047, and 0.047) 
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since they are all less than α = 0.05 while the P.Stage is not significant at all three levels (p= 

0.270, 0.719, 0.422). All p-values are greater than α-level of 0.05. Consequently, the effect of 

one predictor does not depend on the value of the other predictor. Also, The VIFs are all less 

than 5, which indicates that the predictors are not highly correlated.  

From the regression equation in Table 4-2, the results of the mean response time analysis 

indicate that (LoA = 4) Conventional provides the highest average response time (3.333 min) 

while SCADA (LoA = 5) and DCS (LoA = 6) results to 0.523 min each.  

For relationship analysis, let: 

Ho: There is no linear relationship between LoA and response time to anomaly (All the 

population means for the various treatments are equal) 

H1: There exist a functional relationship between LoA and response time to anomaly. 

True if Fcal > Fcrit. 

Since Fcal (16.21) > Fcrit, (6.94) for LoA, Ho is rejected and it is concluded that at 95% 

confidence level, there is sufficient evidence that there exist a relationship between LoA and 

response time. While for P.Stage Fcal (0.86) < Fcrit, (6.94), thus Ho is not rejected and it is 

concluded that at 95% confidence level, there is no sufficient evidence that there exist a 

relationship between P.stage and response time. 

Also, from the negatively sloped correlation curves in Figure 4-2, the response time is 

inversely proportional to the LoA. 
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Figure 4-2 Correlation of LoA vs Response time (min) (Source: Field data, 2019) 

The basic criterion of performance in a production system is response time. In ordinary 

production processes, the response time is measured in the range of five to ten millisecond. 

Thus, the response time in a process is reasonable if it is at its lowest value to demonstrate the 

rapid rate at which an anomaly can be detected by the system and appropriate action taken. 

Based on this, LoA 5 and 6 provides the best response time in the process line. Thus, either of 

the two LoA is viable to be adopted for real time monitoring of processes and subsequently 

adaptive control. 

In a case of the computer processor, to check whether the performance of a CICS® system is 

in line with the system's required capability, then investigations should be on the hardware, the 

software, and the applications that are in the installation. 

However, response time depends on the speed of the processor, and on the nature of the 

application being run on the production system. Thus the shorter the response time, the more 

rapid a process will be executed in a production system. Also to note, is the consistency of the 

response times. Sharp variations will imply erroneous system operation.  
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The sensitivity test for the response time on a range of 95% CI in Figure 4-3, depicts that the 

residuals appear to follow a straight line. There is no evidence of non-normality, skewness, 

outliers, or unidentified variables that exists. 

 
Figure 4-3 Normal probability plot for response time at 95% CI (Source: Field data, 2019) 

4.2.2 Process temperature variability 

For the experiment conducted, the process temperature variability for three different level of 

automation (LoA 4, LoA 5 and LoA 6) was taken in four process stages where it was applicable 

namely HD KNIV, SHREDD, KNV and EXTRACTN as shown in Table 4-3 and Figure 4-4. 

Table 4-3 Summary of process temperature variability for different LoA (Source: Field data, 2019) 

Process temperature variability (oC) 

Stage Level 1 2 3 4 5 6 7 Avg 

HD KNIV HD KNIV(LoA 4) 0 3 3 0 3 4 2 2 

HD KNIV(LoA 5) 0 0 0 0 0 0 0 0 

HD KNIV(LoA 6) 0 0 0 0 0 0 0 0 

SHREDD SHREDD(LoA 4) 0 3 5 0 4 4 2 3 

SHREDD(LoA 5) 0 0 0 0 0 0 0 0 

SHREDD(LoA 6) 0 0 0 0 0 0 0 0 

KNIV KNIV(LoA 4) 0 5 3 2 3 0 4 2 

KNIV(LoA 5) 0 0 0 0 0 0 0 0 

KNIV(LoA 6) 0 0 0 0 0 0 0 0 

EXTRACTN EXTRACT(LoA 4) 5 4 5 5 5 4 3 4 

EXTRACT(LoA 5) 0 0 0 0 0 0 0 0 

EXTRACT(LoA 6) 0 0 0 0 0 0 0 0 
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The process temperature were always to be maintained at 60o C for the chopping, shredding 

and high density knifing stages and 80o C for the extraction stage. Table 4-3 reveals that, using 

the conventional automation (LoA 4) at the chopping stage (HD KNIV), shredding and juice 

extraction resulted to an average temperature variability of 2oC, 3oC and 4oC respectively. 

While the SCADA (LoA 5) and DCS (LoA 6) showed no temperature variability in the three 

process stages. The lowest temperature variability in the conventional automation was 1oC 

recorded at HD KNIV (replicate 1) and the highest temperature variability being 5 oC at 

SHREDD (replicates 3) and EXTRACTN (replicate 1, 3, 4, and 5).  

 
Figure 4-4 Average temperature variability for different LoA (Source: Field data, 2019) 

 

From Figure 4-4, it is evident that LoA 4 has the highest mean temperature variability in all 

the four process stages while both LoA 5 and LoA 6 indicated the lowest mean temperature 

variability. The experiment was a randomized block with two factors (LoA and P.Stage) being 

investigated on process temperature variability. There were 7 replicates for each separate 

treatment levels under investigation. 
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Table 4-4 ANOVA for Process temp variability (0C) versus LoA, P. Stage (Source: Field data, 2019) 

Factor Information 

Factor       Type      Levels    Values 

LoA          Fixed       3           4, 5, 6 

P. Stage    Fixed       4           EXTRACTN, HD KNV, KNIV, SHREDD 

 

Analysis of Variance 

Source         DF     Seq SS         Contribution    Adj SS    Adj MS     F-Value    P-Value   F-Crit 

  LoA            2       20.1667        88.00%           20.1667   10.0833      33.00       0.001      5.14 

  P. Stage      3        0.9167         4.00%              0.9167     0.3056        1.00       0.455       4.75 

Error            6         1.8333         8.00%              1.8333     0.3056 

Total           11      22.9167       100.00% 

 

Model Summary 

       S          R-sq         R-sq(adj)    PRESS       R-sq(pred) 

0.552771    92.00%     85.33%      7.33333      68.00% 

 

Coefficients 

Term                 Coef      SE Coef           95% CI          T-Value    P-Value    VIF 

Constant            0.917     0.160        ( 0.526,  1.307)      5.74           0.001 

LoA 

  4                       1.833     0.226        ( 1.281,  2.386)       8.12          0.000      1.33 

  5                      -0.917     0.226       (-1.469, -0.364)      -4.06          0.007      1.33 

  6                      -0.917     0.226       (-1.469, -0.364)      -4.06          0.007     * 

P. Stage 

  EXTRACTN    0.417     0.276       (-0.260,  1.093)        1.51          0.182      1.50 

  HD KNV         -0.250     0.276       (-0.926,  0.426)      -0.90          0.401      1.50 

  KNIV              -0.250     0.276       (-0.926,  0.426)       -0.90          0.401     1.50 

  SHREDD         0.083     0.276       (-0.593,  0.760)         0.30          0.773     * 

Regression Equation 

Process temp Var (0C) = 0.917 + 1.833 LoA_4 - 0.917 LoA_5 - 0.917 LoA_6 

+ 0.417 P. Stage_EXTRACTN - 0.250 P. Stage_HD KNV - 0.250 P. Stage_KNIV 

+ 0.083 P. Stage_SHREDD 

Means 

Term                      Fitted Mean     SE Mean 

LoA 

  4                          2.750                0.276 

  5                         -0.000                0.276 

  6                         -0.000                0.276 

P. Stage 

  EXTRACTN       1.333                0.319 

  HD KNV             0.667                0.319 

  KNIV                  0.667                0.319 

  SHREDD            1.000                0.319 
α = 0.05 significance level 
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From Table 4-4, there are two factors included in the analysis, LoA and P.Stage. Both factors 

are fixed, the LoA factor has 3 levels with values 4, 5, and 6. The P.Stage factor has four levels 

with values EXTRACTN, HD KNV, KNIV, and SHREDD. 

From the ANOVA, the effects of LoA and the process stage were assessed. The significance 

level of 0.05 was chosen and the results indicated that, the p-value for the LoA factor given as 

0.001 is less than 0.05. Since this is less than the chosen α-level of 0.05, it means the effect of 

LoA on response time is significant. In other words, the mean process temperature variability 

is different for the different LoA while that of the P.Stage (0.455) is greater than 0.05, 

indicating that there is no significant effect of P.Stage on process temperature, implying that 

the mean process temperature variability is the same for a given LoA at different P.Stages. S 

is 0.5527, R  is 92%, and adjusted R  equals 85.33% which indicates that the model explains 

92% of the variation in process temperature variability when you use it for prediction. This is 

good for comparing different process temperature models since S is minimal and R maximum. 

From the coefficient, LoA is significant at all three levels (p = 0.000, 0.007, and 0.007) since 

they are all less than α = 0.05 while the P.Stage is not significant at all four levels (p= 0.182, 

0.401, 0.40, 0.773) since all p-values are greater than the α-level of 0.05. This implies that the 

effect of one predictor does not depend on the value of the other predictor. Also, the VIFs are 

all less than 5, which indicates that the predictors are not highly correlated. From the regression 

equation, employing Conventional automation (LoA = 4) in the 4 process stages applicable, 

the mean variability in process temperature is (0.917 + 0.417 - 0.250 - 0.250 + 0.083 + 

1.833)2.75o C, while SCADA (LoA = 5) and DCS (LoA = 6) results to no temperature 

variability (0o C) in each.  
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The results of the mean temperature changes indicate that (LoA = 4) Conventional automation 

provides the highest average temperature variability (2.75o C) while SCADA (LoA = 5) and 

DCS (LoA = 6) results to 0o C each.  

For relationship analysis, let: 

Ho: There is no linear relationship between LoA and temperature variability (All the 

population means for the various treatments are equal) 

H1: There exist a functional relationship between LoA and temperature variability. True 

if Fcal > Fcrit. 

Since for LoA, Fcal (33.0) > Fcrit, (5.14), Ho is rejected and it is concluded that at 95% 

confidence level, there is sufficient evidence that there exist a relationship between LoA and 

process temperature variability.  While for P.Stage Fcal (1.00) < Fcrit, (4.75), thus Ho is not 

rejected and it is concluded that at 95% confidence level, there is no sufficient evidence that 

there exist a relationship between P.stage and temperature variability. 

Also, from the negatively sloped correlation curves with high Pearson’s coefficient 0.75 in 

Figure 4-5, the variability in process temperature is inversely proportional to the LoA. 

 
Figure 4-5: Correlation of process temperature variability vs LoA (Source: Field data, 2019) 
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According to Panpae et.al (2008), the rate of sucrose inversion in sugar cane juice extraction 

is largely depended on the solid content, temperature and pH.  When these parameters are 

increased, they equally increase sucrose inversion rate. To lower the total reducing sugar, 

temperature control is important in regulating the sucrose inversion while a high pH in the OH- 

from lime slightly affects the properties of the juice extract in comparison to the high apparent 

purity of the pure sugarcane juice. It was observed that at 80°C, sugars and %pol magnitudes 

were relatively significant compared to lower temperatures. However, when solid content was 

increased at 80°C, it recorded a lower %pol which is the sucrose content. Therefore, juice 

extraction process is highly depended on the pH and temperature fluctuations, which must then 

be maintained for optimum production. 

From Figure 4-6, the sensitivity test for the process temperature variability on a range of 10% 

to 95% CI depicts that the residuals appear to follow a straight line. There is no evidence of 

non-normality, skewness, outliers, or unidentified variables that exists. 

 
Figure 4-6 Normal probability plot for process temperature variability (Source: Field data, 2019) 
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4.2.3 Process pH variability 

For the experiment conducted, the process temperature variability for three different level of 

automation (LoA 4, LoA 5 and LoA 6) was taken in a single process stages where it was 

applicable namely EXTRACTN as shown in Figure 4-7. 

 
Figure 4-7 Process pH variability graph (Source: Researcher, 2019) 

The process pH was always to be maintained at 6.5 for the extraction stage. Figure 4-7 reveals 

that, using the conventional automation (LoA 4) resulted to an average pH variability of 0.2, 

while the SCADA (LoA 5) and DCS (LoA 6) showed no pH variability. The lowest pH 

variability in the conventional automation was 0.1 while the highest being 0.3. It is observed 

that LoA 4 has the highest mean temperature variability at the extraction process stages while 

both LoA 5 and LoA 6 indicated the lowest mean temperature variability of 0. 

The experiment was a randomized block being investigated on pH variability. There were 7 

replicates for each separate treatment levels under investigation. 
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Table 4-5 ANOVA for Process pH variability versus LoA, P. Stage (Source: Field data, 2019) 

Factor Information 

Factor    Type        Levels      Values 

LoA       Fixed           3           4, 5, 6 

 

Analysis of Variance 

Source     DF     Seq SS      Contribution    Adj SS     Adj MS       F-Value  P-Value 

  LoA        2       0.02667    100.00%          0.02667    0.01333     0.0001      0.0001 

Error         0       0.0001       0.0001            0.0001       0.0001 

Total         2       0.02667    100.00% 

 

Model Summary 

S      R-sq            R-sq(adj)     PRESS      R-sq(pred) 

*     100.0%         0.0001         0.0001         0.0001 

 

Coefficients 

Term           Coef          SE Coef      95% CI             T-Value       P-Value      VIF 

Constant      0.06667    0.0001   (0.0001, 0.0001)  0.0001       0.0001 

LoA 

  4                0.1333      0.0001   (0.0001, 0.0001)         0.0001       0.0001        1.33 

  5               -0.06667    0.0001   (0.0001, 0.0001)          0.0001       0.0001       1.33 

  6               -0.06667    0.0001   (0.0001, 0.0001)         0.0001        0.0001       0.0001 

 

Regression Equation 

Process pH = 0.06667 + 0.1333 LoA_4 - 0.06667 LoA_5 - 0.06667 LoA_6 

 

Means 

Term       Fitted Mean       SE Mean 

LoA 

  4            0.2000               0.0001 

  5           -0.000000           0.0001 

  6            0.000000           0.0001 
* = infinitesimally small; α = 0.05 Significance level 

From Table 4-5, there is one factor under analysis which is LoA with 3 levels of values 4, 5, 

and 6. In the ANOVA table, the effects of LoA was assessed. The significance level of 0.05 

was chosen and the results indicated that, the p-value for the LoA factor given as * is 

infinitesimally smaller than 0.05. Since this is less than the chosen α-level of 0.05, it means 

the effect of LoA on pH variation is significant. In other words, the mean pH variability is 
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different for the different LoA. R  is 100%, which indicates that the model explains 100% of 

the variations in pH when you use it for prediction. This is good for comparing different pH 

models since R is maximum. 

From the coefficient, LoA is significant at all three levels (p = *) since they are all less than α 

= 0.05. This implies that the effect of one predictor does not depend on the value of the other 

predictor. Also, the VIFs are all less than 5, which indicates that the predictors are not highly 

correlated. From the regression equation, employing Conventional automation (LoA = 4) at 

the extraction stage, the mean variability in pH is (0.06667 + 0.1333) 0.2, while SCADA (LoA 

= 5) and DCS (LoA = 6) results to no pH (0) in each. The results of the mean pH changes 

indicate that (LoA = 4) Conventional automation provides the highest average pH variability 

(0.2) while SCADA (LoA = 5) and DCS (LoA = 6) results to 0 each. This can be attributed to 

the precision offered by SCADA and DCS in monitoring any changes. 

4.2.4 Adaptive control 

The experiment was a randomized block with two factors (LoA and P.Stage) investigated on 

three key indicators that affect adaptive control through real time monitoring namely response 

time, process temperature variability and pH variability. There were 7 replicates for each 

separate treatment levels under investigation. From Eq. 3-12, the adaptive control index was 

evaluated and recorded as shown in Table 4-6 and Figure 4-8 

Table 4-6: Adaptive control parameter indices vs LoA 

Average Parameters for Adaptive control Conventional automation  SCADA DCS 

 (LoA 4) (LoA 5) (LoA 6) 

Response time (min), y11 3.3 0.5 0.5 

Process temp variabilty (oC), y12 2.8 0.0 0.0 

Process pH variability, y13 0.2 0.0 0.0 

Adaptive control index, y1 2.5 0.2 0.2 
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Figure 4-8: Adaptive control index vs LoA 

 

The results in Table 4-6 indicated that the means of 3 adaptive control parameters decreased 

when the LoA increased. Furthermore, Figure 4-8 revealed that adaptive control index reduced 

from LoA 4 through LoA 5 to LoA 6, suggesting that either LoA 5 or 6 is the optimum for 

attaining real time monitoring of process due to their negligible variability in process 

parameters. This concurs with Martinez et.al, 2001 who alluded that for optimum real time 

monitoring, the responsible manufacturing indicators must decrease.  

Since μ LoA 4 ≠ μ LoA 5 ≠ μ LoA 6 it can be asserted that there is a relationship between LoA and 

adaptive process control. 

 

The analysis is summarized in both the probability plot and summarized ANOVA table shown 

below. 
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Figure 4-9 Probability plot of Response time, Process temperature variability and Process pH for 5 - 95% CI 

(Source, Field data, 2019) 

 

Table 4-7 Analysis for impact of lean automation on adaptive process control (Source: Field data, 2019) 

Description  LoA No. of 

P.stages  

Mean Variance Test for significance 

(ANOVA) 

Response 

time to 

anomaly 

LoA 4 

LoA 5 

LoA 6 

 

3 

3 

3 

3.33 

0.54 

0.54 

1.3894 

0.0017 

0.0017 

FCalc = 16.21 

FCrit  =   6.94 

P-Value = 0.012 

α = 0.05 

DF = 2 

FCalc > FCrit  and α > P-Value 

Com = Significant at 0.05 level 

Process 

temperature 

variability 

LoA 4 

LoA 5 

LoA 6 

4 

4 

4 

2.75 

0 

0 

0.9167 

0 

0 

FCalc = 33.00 

FCrit  =   5.14 

P-Value = 0.001 

α = 0.05 

DF = 3 

FCalc > FCrit  and α > P-Value 

Com = Significant at 0.05 level 

pH 

variability 

LoA 4 

LoA 5 

LoA 6 

1 

1 

1 

0.2 

0 

0 

0 FCalc = 65535 

FCrit  =   0 

P-Value = 0 

α = 0.05 

DF = 0 

FCalc > FCrit  and α > P-Value 

Com = Significant at 0.05 level 
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From both Figure 4-9 and Table 4-7, adaptive control in the sugar processing was evaluated by 

three variables namely: response time, process temperature variability and the process pH 

control. The response time to an anomaly conducted in three stages showed that level 4 of 

automation had a slow response to anomaly with the longest mean response time of 2.4-4.6 

minutes compared to levels 5 and 6 which depicted a rapid response to anomaly with the 

shortest response time of 0.5 min. Also, conventional automation (LoA 4) at the chopping stage 

(HD KNIV), shredding and juice extraction resulted to an average temperature variability of 

2oC, 3oC and 4oC respectively. While the SCADA (LoA 5) and DCS (LoA 6) showed no 

temperature variability in the three process stages. The lowest temperature variability in the 

conventional automation was 1oC recorded at HD KNIV (replicate 1) and the highest 

temperature variability being 5oC at SHREDD (replicates 3) and EXTRACTN (replicate 1, 3, 

4, and 5). It is evident that LoA 4 has the highest temperature variability in the three process 

stages while both LoA 5 and 6 indicated the lowest temperature variability. Unlike in levels 5 

and 6 where set temperatures are easily monitored, controlled and maintained by the system. 

This applies to pH control too. Thus, adopting levels 5 or 6 the process parameters are 

controlled and maintained at the optimum levels. This is in line with the requirement that the 

optimum process temperatures at the Knives, shredders and heavy duty knives should be 

maintained at 60oC, while at the extraction stage 85oC should be maintained to enhance 

dissociation of sugars from the fibers. Also, a mild acidic condition of pH 6.5 should be 

maintained to prevent the survival of bacteria and microorganisms  

From the analysis of variance, the p-values for LoA and stage respectively < α =0.05, it is 

concluded that there is a statistically significant association between the response variables and 
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the term. The modal explains 89.51% of the variation in the response. S indicates that the 

standard deviation between the data points and the fitted values is approximately 0.698 units. 

From the coefficients table, all the variance inflation factor (VIF) are in the range of 1 to 5 thus 

the parameters are moderately correlated, thus no much multicollinearity in the variances. 

Furthermore, the model equation for the response time, process temperature monitoring and 

pH variability  depicts increasing values in level 4 due to (+) sign and reducing values both in 

levels 5 and 6 due to (-) sign. This implies that LoA 5 or 6 is the optimum automation level for 

real time monitoring in a sugar industry if adaptive control is to be achieved. From the 

probability plot in Figure 4-9, all the three parameters have p < 0.05. Therefore, results are 

significant. 

This conforms to the findings of Gambier (2004) who asserted that, the correctness of an output 

in a real-time monitoring system does not only depend on the logical accuracy of the 

calculation but also on the time at which the output is displayed. According to Gambier (2004), 

this assertion validates the importance of time factor for a real time setup in any manufacturing 

and industrial system, and that there exist timing constraints which will always hinder cycle 

times of manufacturing tasks. As a result, these tasks must be able to synchronize with the real-

time events in the external environment within the industry. Therefore, a real-time setup must 

synchronize with the external events associated with it. 

 

According to Panpae et.al (2008), the rate of sucrose inversion in sugar cane juice extraction 

is largely depended on the solid content, temperature and pH.  When these parameters are 

increased, they equally increase sucrose inversion rate. To lower the total reducing sugar, 
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temperature control is important in regulating the sucrose inversion while a high pH in the OH- 

from lime slightly affects the properties of the juice extract in comparison to the high apparent 

purity of the pure sugarcane juice. It was observed that at 80°C, the extent of sugars and %pol 

magnitudes were relatively significant compared to lower temperatures. However, when solid 

content was increased at 80°C, it recorded a lower %pol which is the sucrose content. 

Therefore, juice extraction process is highly depended on the pH and temperature fluctuations, 

which must then be maintained for optimum production. This critical contribution of pH, 

temperature and response time regulation serves a good reason for all the local sugar industries 

to adopt LoA 5 (SCADA) or 6 (DCS) for its processes. 

In addition, it concurs with Six Sigma theory, which emphasizes on reduction of variations to 

enhance processes. Through the help of statistical techniques, it is possible to forecast the 

process outcomes. If unexpected outcome is noticed, then advanced control tools can be used 

to explain the phenomenon. In relation to lean automation, the integration of lean and proper 

levels of automation provides a suitable advanced control tool to best understand and identify 

parameters that affect or vary the process, and hence the overall performance of the 

organization (Dave, 2002) 

Therefore, levels 5 or 6 of automation will provide a steadfast real time monitoring, control 

and maintenance of process parameters that will enhance quality production.  

4.3 Potential of lean automation on improving production quality. 

A high rate of production in manufacturing processes is attributed to many indicators, among 

them, higher productivity with minimum defects in processes and products, which is possible 

only with higher rates of quality. For a competitive advantage, productivity and quality are 
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very vital indicators for an industry to think of attaining its goals. High rate of productivity is 

rather the main content for improving quality and reducing defects, increasing profitability and 

decreasing costs. Manufacturing organizations that continuously produce high-quality 

products and are most productive have lower costs, higher profit margins, and monopolize a 

larger and larger share of the market. The guidance from recognized productivity and quality 

leaders provides a general framework for making improvement in quality efforts successful. 

From Fig 2-1, it is noted that the effectiveness of an automated lean manufacturing to provide 

quality sugar production is subject to the extent with which the fibers are scattered to expose 

sucrose and the ability to extract the most sucrose concentration from the fibers. This is 

indicated by the PI and %brix respectively, which ultimately determines the apparent purity of 

the juice extract. The higher the PI and brix, the higher the apparent purity and consequently 

the quality of the sugar produced within the manufacturing line and vice versa. 

In this experiment, production quality was demonstrated by three major parameters namely 

brix, pol and Preparation Index (PI) which were measured at the respective stages of the sugar 

pre-process line for different levels of automation. The purity of sugar juice when using 

different levels of automation was calculated from the values of brix and pol measured and 

then analyzed to ascertain the level of automation that will give the best sugar purity. 

4.3.1 Preparation index (PI) 

For the experiment conducted, PI for three different level of automation (LoA 4, LoA 5 and 

LoA 6) was determined in three process stages where it was applicable namely KNIV, 

SHREDD and HD KNV.  
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Table 4-8: PI for different LoA (Source: Field data, 2019) 

  
%PI for different replicates 

 
Stage Level R1 R2 R3 R4 R5 R6 R7 AVG 

KNIV 

KNIV(LoA 4) 64 65 64 65 67 65 64 65 

KNIV(LoA 5) 68 69 68 69 69 68 69 69 

KNIV(LoA 6) 70 68 69 70 70 70 70 70 

SHREDD 

SHREDD(LoA 4) 76 77 76 79 78 76 75 77 

SHREDD(LoA 5) 80 81 82 81 80 81 81 81 

SHREDD(LoA 6) 85 84 85 84 84 86 84 85 

HD KNIV 

HD KNIV(LoA 4) - - - - - - - - 

HD KNIV(LoA 5) 92 93 92 92 91 90 92 92 

HD KNIV(LoA 6) 93 94 94 94 93 93 94 94 

 

Table 4-8 reveals that the three stages namely KNIV, SHREDD and HD KNIV are cascaded and 

the PI increases sequentially along the cascade from the KNIV to HD KNIV. Similarly, in all 

the stages, conventional automation (LoA 4) recorded the least PI value with an average of 

65% and 77% at the KNIV and SHREDD stages respectively. The HD KNIV is not applicable 

with the 4th LoA but was estimated at a value of 89%. However, with SCADA mostly used 

with diffuser the PI values were relatively high with an average of 69%, 81% and 92% for 

KNIV, SHREDD and HD KNV respectively. While DCS recorded the highest PI values of 

70%, 85% and 94% at KNIV, SHREDD and HD KNV stages respectively. The PI values 

increases along the cascade from KNIV to HD KNIV because of the nature and type of 

chopping mechanism with the KNIV having sharp cutting knives while HD KNIV possessing 

smooth discs hence KNIV producing rough and coarse chips of low PI wile HD KNIV 

producing very fine chips of high PI. 
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Figure 4-10 PI graph for different LoA and P.Stage (Source: Field data, 2019) 

From Figure 4-10, LoA 4 has the lowest mean PI of 65%, 77% and 89 at the KNIV, SHREDD 

and HD KNV respectively, as opposed to both LoA 5 and 6 that recorded relatively high mean 

PI. It is therefore evident that, the higher the level of automation the higher the %PI. 

The experiment was a randomized block with two factors (LoA and P.Stage) being investigated 

on PI. There were 7 replicates for each separate treatment levels under investigation. 

Table 4-9 ANOVA for PI (%) versus LoA and P. Stage 

Factor Information 

Factor      Type      Levels        Values 

LoA          Fixed       3            4, 5, 6 

P. Stage    Fixed       3            HD KNV, KNIV, SHREDD 

 

Analysis of Variance 

Source        DF   Seq SS     Contribution     Adj SS     Adj MS     F-Value    P-Value   F-Crit 

  LoA          2      54.889         6.09%          54.889      27.444        29.06      0.004        6.94 

  P. Stage    2     842.889        93.49%       842.889    421.444     446.24      0.000        6.94 

Error           4        3.778         0.42%             3.778        0.944 

Total           8    901.556       100.00% 

 

Model Summary 

       S           R-sq          R-sq(adj)    PRESS      R-sq(pred) 

0.971825     99.58%     99.16%       19.125      97.88% 
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Coefficients 

Term               Coef        SE Coef          95% CI               T-Value      P-Value     VIF 

Constant         80.222     0.324       ( 79.323,  81.122)      247.64       0.000 

LoA 

  4                    -3.222     0.458       ( -4.494,  -1.950)          -7.03       0.002        1.33 

  5                     0.444     0.458        ( -0.828,   1.716)           0.97       0.387        1.33 

  6                     2.778     0.458        (  1.506,   4.050)           6.06       0.004         * 

P. Stage 

  HD KNV      11.444     0.458        ( 10.172,  12.716)       24.98       0.000         1.33 

  KNIV          -12.222     0.458        (-13.494, -10.950)     -26.68       0.000         1.33 

  SHREDD       0.778     0.458        ( -0.494,   2.050)           1.70       0.165         * 

 

Regression Equation 

PI(%) = 80.222 - 3.222 LoA_4 + 0.444 LoA_5 + 2.778 LoA_6 + 11.444 P. Stage_HD 

KNV - 12.222 P. Stage_KNIV + 0.778 P. Stage_SHREDD 

 

Means 

Term          Fitted  Mean  SE Mean 

LoA 

  4               77.000    0.561 

  5               80.667    0.561 

  6               83.000    0.561 

P. Stage 

  HD KNV  91.667    0.561 

  KNIV        68.000    0.561 

  SHREDD  81.000    0.561 
α = 0.05 significance level 

From Table 4-9, there are two factors included in the analysis, LoA and P.Stage. Both factors 

are fixed, the LoA factor has 3 levels with values 4, 5, and 6. The P.Stage factor has three 

levels with values HD KNV, KNIV and SHREDD.  

In the analysis of variance, the effects of LoA and the process stage were assessed. The 

commonly chosen α-level of 0.05 was chosen and the results indicate the following: The p-

value for the LoA factor given as 0.004 is less than 0.05. Since this is less than the chosen α-

level of 0.05, it means the effect of LoA on PI is significant. In other words, the mean PI is 

different for the different LoA. Similarly, the p-value of the P.Stage (0.000) is less than 0.05, 
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indicating that there is significant effect of P.Stage on PI, implying that the mean PI is different 

for a given LoA at different P.Stages. S is 0.971825, R  is 99.58%, and adjusted R  equals 

99.16% which indicates that the model explains 99.58% of the variation in PI when you use it 

for prediction. This is good for comparing different PI models since R is maximum. 

From ANOVA, The LoA is significant only at LoA 4 and 6 (p = 0.002 and 0.004) since they 

are all less than α=0.05. LoA 5 has a p-value of 0.387 which is higher than 0.05, hence not 

significant in in explaining the relationship between LoA and PI. This is because LoA 5 almost 

similar to LoA 6. The P.Stage is also significant at the KNIV and HD KNIV with p= 0.000. 

This is less than 0.005. However, the SHREDD stage has a p-value of 0.165 hence not 

significant since it doesn’t apply to LoA 5. Consequently, the effect of one predictor does not 

depend on the value of the other predictor. Also, The VIFs are all less than 5, which indicates 

that the predictors are not highly correlated. From the regression equation, employing 

Conventional (LoA = 4) in the 3 process stages applicable gives a PI of (80.222 - 3.222 LoA_4 

+ 11.444 - 12.222 + 0.778) 77%, while SCADA (LoA = 5) gives a mean of 80.67% and DCS 

(LoA = 6) results to 83%. The relatively high PI by LoA 5 and 6 proves that either SCADA or 

DCS can be the best options for the sugar industry in attaining the optimum preparation index 

PI that exposes more of the sugar concentrate and thus improving the quality of sugar 

production. 

For relationship analysis, let: 

Ho: There is no linear relationship between LoA and PI (All the population means for 

the various treatments are equal) 

H1: There exist a functional relationship between LoA and PI. True if Fcal > Fcrit. 
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Since for LoA, Fcal (29.06) > Fcrit, (6.94), Ho is rejected and it is concluded that at 95% 

confidence level, there is sufficient evidence that there exist a relationship between LoA and 

PI.  Similarly for P. Stage, Fcal (446.24) > Fcrit, (6.94), thus Ho is rejected and it is concluded 

that at 95% confidence level, there is sufficient evidence that there exist a relationship between 

P.stage and PI. 

Also, from the positively sloped correlation curves with high Pearson’s coefficient of about 1 

in Figure 4-11, the variability in process temperature is directly proportional to the LoA. 

 
Figure 4-11 Coefficient graph of PI vs LoA for different P.stages (Source: Field data, 2019) 

 

LoA 4 uses the open cell method which takes a shorter period to split the cane fibres using a 

single drum of knives since it is mostly installed with the mill tandems. However, this gives a 

low preparation index which does not promote a high extraction efficiency. Comparing this to 

LoA 5 or 6 where a diffuser is employed, the preparation-index method is employed. This 

requires an additional set of mechanisms to further split the fibres. Therefore the need of a 

shredder and high density knives. It may be thought of an additional power consumption to the 

plant, but if low power and variable speed controlled electro mechanical shredders and high 
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density knives are chosen, the advantages of high preparation index and high extraction of 

juice will be attained.  

This is in line with Kent and Lewinski (2007) who observed that for efficient cane preparation, 

the preparation index method provides higher result than the pol in open cells method. Also, 

advanced In-line shredders can easily replace even when processing whole-stick cane. Overall 

power consumption is less with a single shredder than with two sets of knives and a shredder 

as it is in the case of conventional automation. 

From Figure 4-12, the sensitivity test for PI at 95% CI depicts that the residuals appear to follow 

a straight line. There is no evidence of non-normality, skewness, outliers, or unidentified 

variables that exists. 

 

 
Figure 4-12 Normal probability plot for %PI (Source: Field data, 2019) 

4.3.2 %Brix 

The brix was measured in the laboratory using refractometer for the samples of juices collected 

at the relevant process stages. The juice samples from the four process stages were measured 
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when different levels of automation were employed. For the experiment conducted, %brix for 

three different levels of automation (LoA 4, LoA 5 and LoA 6) was determined in four process 

stages where it was applicable namely KNIV, SHREDD, HD KNV and EXTRACT as shown 

in Table 4-10 and Figure 4-13.  

Table 4-10 Summary of %Brix for different LoA (Source: Field data, 2019) 

Replicates (%) 

Level R1 R2 R3 R4 R5 R6 R7 AVG 

KNIV(LoA 4) 12.5 12.5 12.5 12 12.5 13 12.5 12.5 

KNIV(LoA 5) 13 13.7 13.6 13.8 13.6 13.6 13.6 13.6 

KNIV(LoA 6) 13 13.7 13.6 13.8 13.6 13.6 13.6 13.6 

SHREDD(LoA 4) 13 13 13.1 13.1 13 13 13 13.0 

SHREDD(LoA 5) 15.5 14.9 15 15 14.5 15 15 15.0 

SHREDD(LoA 6) 15 15.2 14.8 14.8 15 15 15 15.0 

HD KNIV(LoA 4) - - - - - - - - 

HD KNIV(LoA 5) 16 16 15.9 16 16 15.9 16 16.0 

HD KNIV(LoA 6) 16.2 15.8 16 15.9 16 16.1 16 16.0 

EXTRACT(LoA 4) 17 16.9 17.2 17 16.9 17 17 17.0 

EXTRACT(LoA 5) 18 17.9 17.8 18.1 18.1 18 18 18.0 

EXTRACT(LoA 6) 17.8 18.2 17.9 18.2 18.1 18.2 17.9 18.0 

 

Table 4-10 reveals that in all the stages, conventional automation (LoA 4) recorded the least 

%brix value with an average of 12.5%, 13% and 17% at the KNIV, SHREDD and SHREDD 

stages respectively. The HD KNIV was not applicable with the 4th LoA but was estimated at a 

value of 15 %. However, with SCADA and DCS mostly used with diffuser the % brix values 

were relatively high with an average of 13.6%, 15.0%, 16% and 18% for KNIV, SHREDD and 

HD KNIV and EXTRACT respectively. The three stages namely KNIV, SHREDD and HD 

KNIV and EXTRACTN are cascaded and the %brix increases sequentially along the cascade 

from the KNIV to EXTRACTN. This can be attributed to the nature and type of chopping 

mechanism with the KNIV having sharp cutting knives while HD KNIV possessing smooth 

discs hence KNIV producing rough and coarse chips of low %brix wile HD KNIV producing 

very fine chips of high %brix. 
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Figure 4-13 Graph of the average % Brix of the sugar juice for different LoA employed (Source: Field data, 2019) 

 

From Figure 4-13. The convectional mill tandems (LoA 4) recorded the least overall % brix 

averagely 16.9%, while SCADA (LoA 5) and DCS (LoA 6) recorded averagely 18% each. 

Since brix % is a measure of the sucrose concentration, it shows that higher sucrose 

concentrations can be extracted from the sugar cane if a diffuser and the adoption of SCADA 

or DCS are employed. 

 

 

 

The experiment was a randomized block with two factors (LoA and P.Stage) being investigated 

on % brix. There were 7 replicates for each separate treatment levels under investigation. 
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Table 4-11 ANOVA for % Brix in juice versus LoA and P. Stage 

Factor Information 

Factor       Type       Levels         Values 

LoA          Fixed        3                4, 5, 6 

P. Stage    Fixed        4                EXTRACTN, HD KNV, KNIV, SHREDD 

 

Analysis of Variance 

Source         DF       Adj SS        Adj MS     F-Value      P-Value       F-Crit 

  LoA            2           2.8017      1.4008        85.47        0.000           5.14 

  P. Stage      3         36.2092    12.0697      736.46        0.000           4.76 

Error             6           0.0983      0.0164 

Total            11        39.1092 

 

Model Summary 

       S               R-sq          R-sq(adj)      R-sq(pred) 

0.128019        99.75%     99.54%          98.99% 

Coefficients 

Term                    Coef          SE Coef     T-Value      P-Value    VIF 

Constant              15.2583     0.0370       412.88        0.000 

LoA 

  4                         -0.6833     0.0523        -13.07        0.000       1.33 

  5                           0.3417     0.0523           6.54        0.001       1.33 

  6                           0.3417     0.0523           6.54        0.001       * 

P. Stage 

  EXTRACTN        2.5083     0.0640         39.19        0.000       1.50 

  HD KNV              0.6417     0.0640         10.02        0.000       1.50 

  KNIV                  -2.0250     0.0640        -31.64        0.000       1.50 

  SHREDD            -1.1250     0.0640        -17.58        0.000       * 

Regression Equation 

Brix in juice (%) = 15.2583 - 0.6833 LoA_4 + 0.3417 LoA_5 

+ 0.3417 LoA_6+ 2.5083 P. Stage_EXTRACTN + 0.6417 P. Stage_HD 

KNV- 2.0250 P. Stage_KNIV - 1.1250 P. Stage_SHREDD 

 

Means 

Term                    Fitted Mean       SE Mean 

LoA 

  4                          14.5750              0.0640 

  5                          15.6000              0.0640 

  6                          15.6000              0.0640 

P. Stage 

  EXTRACTN      17.7667             0.0739 

  HD KNV            15.9000             0.0739 

  KNIV                  13.2333            0.0739 

  SHREDD            14.1333            0.0739 
α = 0.05 significance level  
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There are two factors included in the analysis, LoA and P.Stage. Both factors are fixed, the 

LoA factor has 3 levels with values 4, 5, and 6. The P.Stage factor has four levels with values 

KNIV, SHREDD, HD KNV and EXTRACN.  

In the %brix analysis in Table 4-11, the effects of LoA and the process stage were assessed. The 

commonly chosen α-level of 0.05 was chosen and the results indicate the following: The p-

value for both the LoA and P. Stage factor given as 0.000 is less than 0.05. Since this is less 

than the chosen α-level of 0.05, it means the effect of LoA and P. Stage on the juice brix is 

significant. This implies that, the mean %brix is different for the different LoA and P. Stages. 

From the modal summary S is 0.128019, R2  is 99.75%, and adjusted R2  equals 99.54% which 

indicates that the model explains 99.75% of the variation in % brix when you use it for 

prediction. This is good for comparing different % brix models since S is very minimal and R 

maximum. 

From coefficients, both LoA and P.Stage is significant at all levels (p= 0.000 or 0.001) since 

they are all less than α=0.05. Consequently, the effect of one predictor does not depend on the 

value of the other predictor. Also, The VIFs are all less than 5, which indicates that the 

predictors are not highly correlated. From the regression equation, employing Conventional 

automation (LoA = 4) in the 4 process stages applicable gives a mean %brix of (15.2583-

0.6833+2.5083+0.6417-2.0250 - 1.1250) 14.575%, while SCADA (LoA = 5) and DCS (LoA 

= 6) results to 15.6% each.  This is evidence that SCADA (LoA = 5) and DCS (LoA = 6) are 

efficient in enhancing the sucrose concentration and consequently the quality of the sugar juice 

extract. 
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For relationship analysis, let: 

Ho: There is no linear relationship between LoA and %brix (All the population means 

for the various treatments are equal) 

H1: There exist a functional relationship between LoA and %brix. True if Fcal > Fcrit. 

Since for LoA, Fcal (85.47) > Fcrit (5.14), Ho is rejected and it is concluded that at 95% 

confidence level, there is sufficient evidence that there exist a relationship between LoA and 

%brix.  Similarly for P. Stage, Fcal (736.46) > Fcrit, (4.76), thus Ho is rejected and it is concluded 

that at 95% confidence level, there is sufficient evidence that there exist a relationship between 

P.stage and %brix. 

Also, from the positively sloped correlation curves with high Pearson’s coefficient of 0.75 in 

Figure 4-14, the % brix is directly proportional to the LoA. 

 

Figure 4-14 Coefficient graph of % brix vs LoA for different P.stages (Source: Field data, 2019) 
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The brix which represents the percentage by mass of soluble solids in a pure sucrose solution, 

is relatively high when either LoA 5 or 6 is used. This can be attributed to the precision and 

accuracy with which parameters affecting the quality of juice extraction are monitored and 

controlled in real time. Unlike when LoA 4 is employed, the %brix is relatively lower. The 

higher the % brix in the sugar juice, the higher the sucrose content and consequently the higher 

the performance of the production quality. 

This conforms to Xiao (2017), who observed that the higher the brix of the sugar juice, the 

higher the sucrose content and consequently the higher the quality of sugar produced. 

Therefore, LoA 5 or 6 should be introduced in the local industries with the aim of harnessing 

more sucrose content from the sugar cane fibres as compared to LoA 4. 

 

From Figure 4-15, the sensitivity test for PI on a range of 10% to 95% CI depicts that the residuals 

appear to follow a straight line. There is no evidence of non-normality, skewness, outliers, or 

unidentified variables that exists. 

 
Figure 4-15 Normal probability plot for % Brix in juice (Source: Researcher, 2019) 
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4.3.3 %pol 

The %pol was measured in the laboratory using polarimeter for the samples of juices collected 

at the relevant process stages. For the experiment conducted, %pol for three different levels of 

automation (LoA 4, LoA 5 and LoA 6) was determined in four process stages where it was 

applicable namely KNIV, SHREDD, HD KNV and EXTRACTN as shown in Figure 4-16. 

 
Figure 4-16 %pol graph for different levels of automation (Source: Researcher, 2019) 

 

The conventional automation (LoA 4) recorded a low mean pol value of 15.1% compared to 

LoA 5 and LoA 6 which recorded a relatively high mean pol value of 16.1% for the final juice 

extract. The high pol value is as a result of the adoption of HD KNIV stage along the process 

line when a diffuser which only complies with SCADA or DCS automation systems. In this 

stage, the cane fibres are further scattered to expose more sucrose which increase the pol% 

compared to LoA with mill tandems which do not incorporate the HD KNIV. 

 

The experiment was a randomized block with two factors (LoA and P.Stage) being investigated 

on % pol. There were 7 replicates for each separate treatment levels under investigation. 
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Table 4-12: General Linear Model: pol (%) versus LoA, P. Stage 

Factor Information 

 

Factor    Type   Levels  Values 

LoA       Fixed       3  4, 5, 6 

P. Stage  Fixed       4  EXTRACTN, HD KNV, KNIV, SHREDD 

 

 

Analysis of Variance 

Source       DF    Seq SS      Contribution   Adj SS    Adj MS   F-Value   P-Value   F-Crit 

  LoA         2       3.7996       8.42%           3.7996     1.8998   124.38     0.000        4.76 

  P. Stage   3     41.2318     91.38%          41.2318  13.7439   899.81     0.000        5.14 

Error         6        0.0916       0.20%            0.0916   0.0153 

Total         11    45.1231   100.00% 

 

 

Model Summary 

       S           R-sq         R-sq(adj)     PRESS        R-sq(pred) 

0.123589     99.80%     99.63%       0.366582      99.19% 

 

Coefficients 

Term                  Coef        SE Coef         95% CI               T-Value    P-Value     VIF 

Constant           13.1017   0.0357     (13.0144, 13.1890)   367.23      0.000 

LoA 

  4                      -0.7958   0.0505    (-0.9192, -0.6723)      -15.77      0.000         1.33 

  5                       0.3979   0.0505    ( 0.2744,  0.5214)          7.89      0.000         1.33 

  6                       0.3979   0.0505    ( 0.2744,  0.5214)          7.89      0.000         * 

P. Stage 

  EXTRACTN   2.6842   0.0618    ( 2.5330,  2.8354)         43.44     0.000         1.50 

  HD KNV         0.6490   0.0618    ( 0.4978,  0.8002)         10.50     0.000         1.50 

  KNIV             -2.1972   0.0618    (-2.3484, -2.0460)       -35.56     0.000         1.50 

  SHREDD       -1.1360   0.0618    (-1.2872, -0.9848)       -18.38     0.000         * 

 

Regression Equation 

pol(%) = 13.1017 - 0.7958 LoA_4 + 0.3979 LoA_5 + 0.3979 LoA_6 

+ 2.6842 P. Stage_EXTRACTN+ 0.6490 P. Stage_HD KNV 

- 2.1972 P. Stage_KNIV - 1.1360 P. Stage_SHREDD 

 

Means 

Term                  Fitted Mean   SE Mean 

LoA 

  4                       12.3059         0.0618 

  5                       13.4995         0.0618 

  6                       13.4995         0.0618 

P. Stage 
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  EXTRACTN    15.7858        0.0714 

  HD KNV          13.7506        0.0714 

  KNIV                10.9045       0.0714 

  SHREDD          11.9657       0.0714 
α = 0.05 significance level 

In Table 4-12, there are two factors included in the analysis, LoA and P.Stage. Both factors are 

fixed, the LoA factor has 3 levels with values 4, 5, and 6. The P.Stage factor has four levels 

with values KNIV, SHREDD, HD KNV and EXTRACN.  

In the %pol analysis, the effects of LoA and the process stage were assessed. The commonly 

chosen α-level of 0.05 was chosen and the results indicate the following: The p-value for the 

LoA and P. Stage factor given as 0.000 and 0.000 respectively are less than 0.05. Since this is 

less than the chosen α-level of 0.05, it means the effect of LoA and P. Stage on the juice pol is 

significant. This implies that, the mean %pol is different for the different LoA and P.Stages. 

From model summary, S is 0.326261, R2  is 99.81%, and adjusted R2  equals 99.67% which 

indicates that the model explains 99.81% of the variation in % pol when you use it for 

prediction. This is good for comparing different % pol models since S is very minimal and R 

maximum. 

From the coefficients, all the levels of both LoA and P.Stage depicted p-values less than 

α=0.05.therfore, the analysis is significant and consequently, the effect of one predictor does 

not depend on the value of the other predictor. Also, The VIFs are all less than 5, which 

indicates that the predictors are not highly correlated. From the regression equation, employing 

Conventional automation (LoA = 4) a mean %pol of 12.3%, while SCADA (LoA = 5) and 

DCS (LoA = 6) results to 13.5% each.  This is evidence that SCADA (LoA = 5) and DCS (LoA 
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= 6) are efficient in enhancing the concentration of sucrose concentration and consequently the 

quality of the sugar juice extract. 

For relationship analysis, let: 

Ho: There is no linear relationship between LoA and %pol (All the population means 

for the various treatments are equal) 

H1: There exist a functional relationship between LoA and %pol. True if Fcal > Fcrit. 

Since for LoA, Fcal (124.38) > Fcrit (4.76), Ho is rejected and it is concluded that at 95% 

confidence level, there is sufficient evidence that there exist a relationship between LoA and 

%brix.  Similarly for P. Stage, Fcal (899.81) > Fcrit, (5.14), thus Ho is rejected and it is concluded 

that at 95% confidence level, there is sufficient evidence that there exist a relationship between 

P.stage and %brix. 

Also, from the positively sloped correlation curves with high Pearson’s coefficient of 0.75 in 

Figure 4-17, the % pol is directly proportional to the LoA. 

 
Figure 4-17 Coefficient graph of % pol vs LoA for different P.stages (Source: Field data, 2019) 
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The pol represents the apparent sucrose content of any substance determined by a polarisation 

method and expressed as a percentage by mass or in degrees Z (°Z), is relatively high when 

either LoA 5 or 6 is used. This can be attributed to the precision and accuracy with which 

parameters affecting the quality of juice extraction are monitored and controlled in real time. 

Unlike when LoA 4 is employed, the %pol is relatively lower. The higher the % pol in the 

sugar juice, the higher the sucrose content and consequently the higher the performance of the 

production quality. 

This conforms to Xiao (2017), who observed that the higher the pol of the sugar juice, the 

higher the sucrose content and consequently the higher the quality of sugar produced. 

Therefore, LoA 5 or 6 should be introduced in the local industries with the aim of harnessing 

more sucrose content from the sugar cane fibres as compared to LoA 4. 

From Figure 4-18, the sensitivity test for %pol on a range of 95% CI depicts that the residuals 

appear to follow a straight line. There is no evidence of non-normality, skewness, outliers, or 

unidentified variables that exists. 

 
Figure 4-18: Normal probability plot for %pol (Source: Researcher, 2019) 
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4.3.4 Apparent purity of the sugar juice extracted 

The purity was calculated as the quotient of pol to brix of the sugar juice at the final stage of 

the extraction and the result depicted by Figure 4-19. 

 
Figure 4-19: Apparent purity graph of the sugar juice extracted (Source: Researcher, 2019) 

 

The graph indicates that the purity of sugar juice when conventional automation (LoA 4) is 

employed is relatively low with a mean value of 86.5% compared to when SCADA and DCS 

are used where a mean purity level of 89.6% was realised. Therefore, with LoA 5 and 6, the 

purity of the sugar will be high as described and this consequently gives high quality of the 

sugar production compared to the conventional automation. 

 

The experiment was a randomized block with two factors (LoA and P.Stage) investigated on 

three key indicators that affect the quality of sugar produced through the purity of the juice 

extract namely PI, % brix and pH variability. There were 7 replicates for each separate 

treatment levels under investigation. From Eq. 3-15, the quality production index was 

evaluated and recorded as shown in Table 4-13 and Figure 4-20 
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Table 4-13: Quality production parameter indices vs LoA 

Parameters for quality production Conventional automation  SCADA DCS 

 LoA 4 LoA5 LoA6 

Preparation index (PI), y41 77.0 80.7 83.0 

Brix (%), y43 14.6 15.6 15.6 

pol (%), y42 12.3 13.5 13.5 

Apparent purity, y44 84.2 86.3 86.3 

Quality production index, y4 81.3 84.0 85.0 

 

 
Figure 4-20: Quality production index vs LoA 

 

Table 4-13 indicate that the 4 quality production parameters increases when the LoA increases. 

Furthermore in Figure 4-20, quality production index increased from LoA 4 through LoA 5 to 

LoA 6, suggesting that LoA 6 is the optimum for attaining improved quality production due to 

its high changeover in quality parameters. This concurs with Martinez et.al, 2001 who alluded 

that for optimum quality, the responsible manufacturing indicators must increase. Since μ LoA 4 

≠ μ LoA 5 ≠ μ LoA 6 it can be asserted that there is a relationship between LoA and quality 

production.  

The analysis is summarized in both the probability plot and summarized ANOVA table shown. 
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Figure 4-21 Probability plot of PI, % brix, % pol and apparent purity for 5 - 95% CI (Source, Field data, 2019) 

 

Table 4-14 Analysis for impact of lean automation on quality sugar production (Source: Field data, 2019) 

Description  LoA No. of 

P.stages  

Mean Variance Test for significance 

(ANOVA) 

PI LoA 4 

LoA 5 

LoA 6 

 

3 

3 

3 

77.0% 

80.7% 

83.0% 

144.0 

132.3 

147.0 

FCalc = 29.06 

FCrit  =   6.94 

P-Value = 0.004 

α = 0.05 

DF = 2 

FCalc > FCrit  and α > P-Value 

Com = Significant at 0.05 level 

% brix  LoA 4 

LoA 5 

LoA 6 

4 

4 

4 

14.6 

15.6 

15.6 

4.46 

3.82 

3.82 

FCalc = 85.49 

FCrit  =   5.14 

P-Value = 0.000 

α = 0.05 

DF = 2 

FCalc > FCrit  and α > P-Value 

Com = Significant at 0.05 level 

% pol LoA 4 

LoA 5 

LoA 6 

4 

4 

4 

12.3 

13.5 

13.5 

4.40 

4.52 

4.52 

FCalc = 124.38 

FCrit  =   4.76 

P-Value = 0.000 

α = 0.05 

DF = 2 
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FCalc > FCrit  and α > P-Value 

Com = Significant at 0.05 level 

Apparent 

purity 

LoA 4 

LoA 5 

LoA 6 

4 

4 

4 

84.15 

86.27 

86.27 

5.04 

7.85 

7.85 

FCalc = 50.2 

FCrit  =   5.14 

P-Value = 0.000 

α = 0.05 

DF = 2 

FCalc > FCrit  and α > P-Value 

Com = Significant at 0.05 level 

 

From both Figure 4-21 and Table 4-14, the p-values for the LoA given as 0.000 is less than 0.05. 

This implies that the effect of LoA on the juice purity is significant. Thus, the mean %purity 

is different for the different LoA. But this also depends on the respective process stages 

involved. This model explains 99.30% of the variation in % purity when you use it for 

prediction. This is good for comparing different % purity models since R2 is maximum. 

From the coefficients, all the levels of both LoA and P.Stage depicted p-values less than 

α=0.05. Therefore, the analysis is significant and consequently, the effect of one predictor does 

not depend on the value of the other predictor. Also, The VIFs are all less than 5, which 

indicates that the predictors are not highly correlated. From the regression equations, 

employing Conventional automation (LoA = 4) in the 4 process stages applicable gives a mean 

%purity of 84.15%, while SCADA (LoA = 5) and DCS (LoA = 6) results to 86.275% each.  

This is evidence that SCADA (LoA = 5) and DCS (LoA = 6) are efficient in enhancing the 

sucrose concentration and consequently the quality of the sugar juice extract.  

This implies that LoA 5 or 6 is the optimum automation level for high juice purity in a sugar 

industry if quality production is to be achieved. From the probability plot in Figure 4-21, all the 

three parameters have p < 0.05. Therefore, results are significant. 
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The quality of sugar production will depend on the quality of sugar juice. This is consequently 

indicated by the apparent purity of the juice extract which depends on %brix, %pol and the 

preparation index (PI). Quality of the sugar is determined by the apparent purity of the sugar 

juice extracted, and this depends further on the nature of the technology employed which 

dictates the process parameters. A high quality sugar is characterized by a high preparation 

index (PI), high sugar concentration in the juice (%brix) and (%pol). From Table, PI is only 

measured at the knives, shredders and (High density knives for LoA 5 and 6) while brix and 

moisture at the extraction stage. In all the stages level 6 recorded the highest PI and Brix values 

of 94% and 18%, and the lowest moisture in the bagasse of 40% at HD KNV and Extraction 

stages, compared to level 4 with PI and Brix values of 77% and 17.3% at Shredder and 

Extraction stages respectively and a moisture content of 50%. This is because in level 6, the 

process parameters desired to optimize the process, are well monitored and regulated by the 

real time sensors. Also, the diffusion extraction that is usually fully automated provides an 

optimum means of extracting all the sucrose from the fibers compared to the mill tendons that 

are mainly monitored remotely. The diffuser has sensors and actuators that detects a variation 

in the process parameter and initiate appropriate corrective measure to maintain the optimum 

values. Level 6 involved the use of these sensing devices, visual and audio devices for 

communication. Thus adopting levels 5 or 6 the product, the apparent quality of the juice 

extract will be high, and consequently quality will be achieved and this will provide 

competitiveness in the sugar industry. This is due to negligible variability in the set process 

parameters when using LoA 5 or 6, as the response to changes is rapid compared to when LoA 

4 is employed. It is therefore observed that the purity is directly proportional to the polarization 

and inversely proportional to the brix.  
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This concurs with Xiao (2017) in his analysis of sugar cane juice quality indexes who found 

out that, the effect of polarization (%Pol) and %brix  on sucrose content is directly proportional 

to the apparent purity of the juice. Further, sucrose content is the quotient of %pol to %brix, 

thus it increases with an increase in %pol and decreases with an increase %brix. This in turn 

influences the effect of apparent purity and %brix on the sucrose content while maintaining 

%pol in that, sucrose content decreases with an increase in apparent purity and %brix.  

In addition, this conforms to Six Sigma theory that emphasizes on reduction of variations to 

enhance processes. Through the help of statistical techniques, it is possible to forecast the 

process outcomes. If unexpected outcome is noticed, then advanced control tools can be used 

to explain the phenomenon. In relation to lean automation, the integration of lean and proper 

levels of automation provides a suitable advanced control tool to best understand and identify 

parameters that affect or vary the process, and hence the overall performance of the 

organization (Dave, 2002). 

The relatively high %pol, %brix and %purity indices were recorded by LoA 5 (SCADA) and 

6 (DCS) as compared to LoA 4. Therefore, levels 5 or 6 of automation will provide an optimum 

apparent purity of juice and subsequent steadfast quality production that will be competitive 

and this will render the sugar industries sustainable in their production. 

4.4 Potential of lean automation in minimizing resource wastage. 

Resources are the inputs and controls that are involved in the transformation of raw materials 

to the final products. These resources are acquired by the industry at a cost. This necessitates 

the need to reduce wastage of these resources in the industry if profits and quality products are 

to be realized. From Fig 2-1, it is noted that the effectiveness of an automated lean 
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manufacturing to minimize wastage is subject to the extent with which the resources utilization 

is reduced. This was demonstrated by the power consumption, set up time and the process 

cycle time. The lower the power consumption, set up time and cycle time, the better  LoA in 

minimization of wastage within the manufacturing line and vice versa.  

4.4.1 Power consumption 

The power consumption was measure in relation to the power rating of the machines 

involved when the respective level of automation is employed at a given process stage. For 

this experiment, power consumption for 3 different level of automation (LoA 4, LoA 5 and 

LoA 6) was determined in 8 process stages where it was applicable as shown in Figure 4-22. 

 
Figure 4-22 Power consumption graph for LoA and P.Stage (Source: Researcher, 2019) 

From Figure 4-22, the rate of power consumption of the entire juice extraction process line, when 

employing conventional automation (LoA 4), is relatively higher with a total of 45,044 kW 

compared to when SCADA (LoA 5) or DCS (LoA 6) are used with a total power consumption 

of 42,058 kW and 42,008 kW respectively. Conventional automation is characterized by the 

use of mill tandems which do not require a high PI hence there being no HD KNIV stage, but 
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still the total power consumption is high. Whereas LoA 5 and 6 are associated with the use of 

diffuser but can also be incorporated with mills. The high power consumption could be as a 

result of the machines at respectful stages drawing power without performing meaningful work 

due to unprecise mechanisms of sensing, monitoring and regulating the process parameter. It 

is therefore evident that, the higher the level of automation the lower the power consumption. 

 

The experiment was a randomized block with two factors (LoA and P.Stage) being investigated 

on PI. There were 7 replicates for each separate treatment levels under investigation. 

Table 4-15 ANOVA for total power (Kw/day) vs LoA, P. Stage (Source: Research, 2019) 

Factor Information 

Factor    Type   Levels  Values 

LoA       Fixed       3  4, 5, 6 

P. Stage  Fixed       8  CL, EXTRACTN, FT, HD KNV, KNIV, MC, SHREDD, WB 

 

Analysis of Variance 

Source      DF     Seq SS  Contribution     Adj SS      Adj MS         F-Value  P-Value   Fcrit 

  LoA        2        6788955         0.70%   42493597   21246799     3.98        0.045     3.74 

  P. Stage   7   889795227        92.11%  889795227  127113604    23.82    0.000   2.76 

Error       13      69379339         7.18%   69379339    5336872 

Total       22     965963522       100.00% 

 

Model Summary 

R-sq       R-sq(adj)      PRESS        R-sq(pred) 

92.82%     87.85%        210311742      78.23% 

Coefficients 

Term                   Coef      SE Coef        95% CI         T-Value      P-Value      VIF 

Constant              6260      488         ( 5205,  7314)    12.82          0.000 

LoA 

  4                         2012      713        (  472,  3552)     2.82            0.014          1.42 

  5                        -1003      679       (-2469,   463)    -1.48            0.163          1.38 

  6                        -1009      679       (-2475,   457)    -1.49            0.161          * 

P. Stage 

  CL                     -4180     1254      (-6889, -1471)    -3.33           0.005         1.77 
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  EXTRACTN     -4090     1254      (-6799, -1381)    -3.26           0.006         1.77 

  FT                      -4724     1254      (-7433, -2015)    -3.77           0.002         1.77 

  KNIV                  3820     1254      ( 1111,  6529)     3.05            0.009         1.77 

  MC                    -5420     1254      (-8129, -2711)    -4.32            0.001        1.77 

  SHREDD            7660     1254     ( 4951, 10369)     6.11            0.000        1.77 

  WB                     -5924     1254    (-8633, -3215)    -4.72            0.000        * 

Regression Equation 

Total power (Kw/day) = 6260 + 2012 LoA_4 - 1003 LoA_5 - 1009 LoA_6 

- 4180 P. Stage_CL - 4090 P. Stage_EXTRACTN - 4724 P. Stage_FT 

+ 12858 P. Stage_HD KNV + 3820 P. Stage_KNIV - 5420 P. Stage_MC 

+ 7660 P. Stage_SHREDD - 5924 P. Stage_WB          

Means 

Term                       Fitted Mean          SE Mean 

LoA 

  4                           8272                      900 

  5                           5257                      817 

  6                           5251                      817 

P. Stage 

  CL                        2080                    1334 

  EXTRACTN        2170                    1334 

  FT                         1536                   1334 

  HD KNV            19118                   1672 

  KNIV                  10080                   1334 

  MC                           840                  1334 

  SHREDD              13920                  1334 

   WB                          336                  1334 

  α = 0.05 significance level 

 

In analysis of variables in Table 4-15, the effects of LoA and the process stage were assessed. 

The commonly chosen α-level of 0.05 was chosen and the results indicate the following: The 

p-values for the LoA and P. Stage factor given as 0.045 and 0.000 are less than 0.05. Since 

these are less than the chosen α-level of 0.05, it means the effect of LoA and P. Stage on the 

power consumption is significant. This implies that, the total power consumption| is different 

for the different LoA and P.Stages. From model summary, R2  is 92.82%%, and adjusted R2  
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equals 87.85%% which indicates that the model explains 92.82% of the variation in % power 

consumption when you use it for prediction. This is good for comparing different % power 

consumption models since R is maximum. 

From the coefficients, .all the levels of P.Stage depicted p-values less than α=0.05. Therefore, 

the analysis is significant and consequently, the effect of one predictor does not depend on the 

value of the other predictor. However, for LoA 5 and 6, the p value are greater than the 

significant level. This may be attributed to the shredding stage that is only significant when the 

characteristics of LoA 5 and/or 6 are employed. Also, The VIFs are all less than 5, which 

indicates that the predictors are not highly correlated. From the regression equation, employing 

Conventional automation (LoA = 4) in the 4 process stages applicable gives a mean %purity 

of (6260 + 2012 LoA_4 - 4180 P. Stage_CL- 4090 P. Stage_EXTRACTN - 4724 P. Stage_FT 

+ 12858 P. Stage_HDKNV+ 3820 P. Stage_KNIV- 5420 P. Stage_MC+ 7660 P. Stage_SHR

EDD - 5924 P. Stage_WB) 8272kW, while SCADA (LoA = 5) and DCS (LoA = 6) resulted 

to a mean 5257 kW and 5251 kW respectively.  This is evident that SCADA (LoA = 5) and 

DCS (LoA = 6) are efficient in enhancing power utilisation and consequently minimisation of 

power consumption for equivalent industrial processes. 

 

For relationship analysis, let: 

Ho: There is no linear relationship between LoA and power consumption (All the 

population means for the various treatments are equal) 

H1: There exist a functional relationship between LoA and power consumption. True if 

Fcal > Fcrit. 
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Since for LoA, Fcal (3.98) > Fcrit, (3.74), Ho is rejected and it is concluded that at 95% 

confidence level, there is sufficient evidence that there exist a relationship between LoA and 

power consumption.  Similarly for P. Stage, Fcal (23.82) > Fcrit, (2.76), thus Ho is rejected and 

it is concluded that at 95% confidence level, there is sufficient evidence that there exist a 

relationship between P.stage and power consumption. 

Also, from the negatively sloped correlation curves with high Pearson’s coefficient of about 

0.75 in Figure 4-23 below, the power consumption is inversely proportional to the LoA. 

 
Figure 4-23 Coefficient graph of power consumption vs LoA for different P.stages (Source: Field data, 2019) 

 

Therefore, using LoA 5 or 6, the overall power consumption was lower than the conventional 

milling technologies. This is attributed to the characteristics of the LoA 5 and 6, where speed 

variable electro mechanical and hydraulic drives are employed in form of efficient shredders 

and high density knives compared to the conventional drives used in LoA 4 turbines. Also, 

LoA 5 and 6 uses a diffuser in the extraction which is exclusively automated with frequency 

variable drives thus consuming less power while producing quality sugar with adaptive control 

on parameters. This is contrary to when LoA 4 is employed where mill tandems are 

withdrawing relatively high power to operate at the expense of low quality and production rate. 
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This conforms well with Kent and Lewinski (2007) who observed that use of frequency 

variable electromechanical and hydraulic drives registered an array of advantages compared to 

the conventional drives by turbines, ranging from better torque and speed control, higher 

efficiency, higher speed range, higher torque range, easier monitoring, lower maintenance cost. 

From Figure 4-24, the sensitivity test for power consumption on a range of 95% CI depicts that 

the residuals appear to follow a straight line. There is no evidence of non-normality, skewness, 

outliers, or unidentified variables that exists. 

 
Figure 4-24 Normal probability Plots for total power (Kw/day) for 95% CI (Source: Researcher, 2019) 

 

 

4.4.2 Set up time 

Set up time is the non-value addition time wasted while adjusting the machines to the required 

operational parameters before initiating a process. The waste cannot be recovered back, thus 

the need to reduce if not to eliminate. When the set up time is relatively longer for a given 

process, then the rate of production may be affected leading to a decline in the expected output. 

The recorded results are shown in Figure 4-25. 
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Figure 4-25 Setup time graph for LoA and P.Stages (Source: Researcher, 2019) 

 

Setting up of machines was conducted at three stages namely weigh bridge (WB), Cane 

Loading (CL) and Feed table and kicker (FT). In all the three stages, LoA 4 recorded the 

highest setup time whenever the machines needed to be readjusted. In total LoA 4 recorded a 

set up time of 9.7 min compared to LoA 5 and 6 which recorded a total of 1.6 min and 1.4 min 

respectively for readjustment. Thus the conventional automations involves long set ups of 

machines that leads to a high wastage of time resource and consequently, the production rate. 

Unlike, for SCADA and DCS where the machines are autonomous and the self-align 

themselves unless there is a technical hitch with the instrumentation.  

 

The experiment was a randomized block with two factors (LoA and P.Stage) being investigated 

on setup time. There were 7 replicates for each separate treatment levels under investigation. 
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Table 4-16 ANOVA for setup time (min) versus LoA, P. Stage (Source: Researcher, 2019) 

Analysis of Variance 

Source        DF   Seq SS        Contribution   Adj SS     Adj MS    F-Value   P-Value  F-Crit 

  LoA          2     15.0532        83.90%          15.0532   7.5266    15.61        0.013       6.94 

  P. Stage    2       0.9604         5.35%             0.9604   0.4802      1.00        0.446        6.94 

Error           4       1.9293        10.75%            1.9293   0.4823 

Total           8     17.9429       100.00% 

Model Summary 

       S         R-sq          R-sq(adj)    PRESS        R-sq(pred) 

0.694488   89.25%     78.50%       9.76684      45.57% 

Coefficients 

Term                 Coef      SE Coef       95% CI              T-Value     P-Value      VIF 

Constant            1.405    0.231        ( 0.762,  2.047)     6.07          0.004 

LoA 

  4                      1.829    0.327        ( 0.920,  2.738)     5.59          0.005         1.33 

  5                     -0.881    0.327        (-1.790,  0.028)    -2.69         0.055         1.33 

  6                     -0.948    0.327        (-1.857, -0.039)    -2.89         0.044         * 

P. Stage 

  CL                   0.462    0.327        (-0.447,  1.371)     1.41          0.231         1.33 

  FT                  -0.238    0.327        (-1.147,  0.671)    -0.73          0.507         1.33 

  WB                -0.224    0.327        (-1.133,  0.685)    -0.68           0.532        * 

 

Regression Equation 

set up time (min) = 1.405 + 1.829 LoA_4 - 0.881 LoA_5 - 0.948 LoA_6 

+ 0.462 P. Stage_CL - 0.238 P. Stage_FT - 0.224 P. Stage_WB 

Means 

Term        Fitted Mean     SE Mean 

LoA 

  4             3.233               0.401 

  5             0.524               0.401 

  6             0.457               0.401 

P. Stage 

  CL          1.867               0.401 

  FT          1.167               0.401 

  WB         1.181              0.401 
α = 0.05 significance level 

 

In analysis of variables in Table 4-16, the effects of LoA and the process stage were assessed. 

The commonly chosen α-level of 0.05 was chosen and the results indicate the following: The 

p-value for the LoA factor given as 0.018 is less than 0.05. Since this is less than the chosen 

α-level of 0.05, it means the effect of LoA on the setup time is significant. This implies that, 



 

117 
 

the total setup time| is different for the different LoA. While for the P.Stage, the p-value of 

0.475 is greater than 0.05 thus not significant in explaining set up time. From the model 

summary, R2  is 87.45%, and adjusted R2  equals 74.89% which indicates that the model 

explains 87.45% of the variation in setup time when you use it for prediction. This is good for 

comparing different set up time models since R is maximum. 

From the coefficients, p-values of the constant term and that of LoA 4 are less than α = 0.05. 

Therefore, the analysis is significant and consequently, the effect of one predictor does not 

depend on the value of the other predictor. However, for LoA 5 and 6, the p value are slightly 

greater than the significant level, but within the limits. This may be attributed to the few stages 

chosen for this model. Also, The VIFs are all less than 5, which indicates that the predictors 

are not highly correlated. From the regression equation, employing Conventional automation 

(LoA = 4) in the 3 process stages applicable gives a mean setup time of 3.2 min, while SCADA 

(LoA = 5) and DCS (LoA = 6) resulted to a mean 0.524 min and 0.457 min respectively.  This 

is evident that SCADA (LoA = 5) and DCS (LoA = 6) are efficient in reducing the idling time 

and consequently resource management and higher production rates. 

For relationship analysis, let: 

Ho: There is no linear relationship between LoA and setup time (All the population 

means for the various treatments are equal) 

H1: There exist a relationship between LoA and setup time. True if Fcal > Fcrit. 

Since for LoA, Fcal (15.61) > Fcrit, (6.94), Ho is rejected and it is concluded that at 95% 

confidence level, there is sufficient evidence that there exist a relationship between LoA and 

PI.  On the contrary for P. Stage, Fcal (1) > Fcrit (6.94), thus Ho is not rejected and it is concluded 



 

118 
 

that at 95% confidence level, there is no sufficient evidence that there exist a relationship 

between P.stage and setup time. 

Also, from the negatively sloped correlation curves with high Pearson’s coefficient of above 

0.75 in Figure 4-26, the variability in process temperature is directly proportional to the LoA.  

 
Figure 4-26 Coefficient graph of setup time vs LoA for different P.stages (Source: Field data, 2019) 

It can be seen that LoA 5 and 6 have virtually negligible setup involved except when it is after 

a general plant overhaul. This is as a result of minimum variations in the process parameters 

due to their real time monitoring and control. The self-regulation minimises the setup and 

reduce wastages in the production line and consequently improves performance and quality.  

 
Figure 4-27 Normal probability Plots for set up time (min) for 95% CI (Source: Field data, 2019) 
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4.4.3 Cycle time 

The cycle time is the overall value adding time span required to convert an input to an output. 

In an industrial set up, the cycle time is dependent on the process activity. Therefore, when 

the cycle time is relatively longer for a given process, then the rate of production will be 

reduced as well. This implies that, for an optimum rate of production the cycle time should 

be at its minimum. The results of the measured cycle time at each process stage is shown in 

Figure 4-28. 

 
Figure 4-28 Cycle time graph at various LoA and P.Stage (Source: Research, 2019) 

Cycle time of processes was conducted at six stages namely weigh bridge (PS), Cane Loading 

(CL), chopping (KNV), shredding (SHREDD), high density refining(HD KNV) and juice 

extraction (EXTRACTN).  From Figure 4-28, in all the stages except Extraction, LoA 4 recorded 

the highest cycle time for any given process stage. In total LoA 4 recorded a cycle time of 31.5 

min compared to LoA 5 and 6 which recorded a total cycle time of 18.6 min and 18.0 min 

respectively for a single batch of sugar production. The cycle time of LoA 4 at the extraction 

stage is slightly less than that of LoA 5 and 6 because the quantity of batch produced when 

LoA 4 (mill tandems) is used is slightly lower than that from LoA 5 and 6 (diffuser). Thus the 

conventional automations involves long cycle times for a given process that leads to a high 
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wastage of time resource and consequently, the production rate. Unlike, for SCADA and DCS 

where the process are autonomous and the self-alignment of the machines makes the processes 

to move smoothly, hence saving on time and increasing rate of production.  

The experiment was a randomized block with two factors (LoA and P.Stage) being investigated 

on cycle time. There were 7 replicates for each separate treatment levels under investigation. 

Table 4-17 ANOVA for cycle time (min) versus LoA, P. Stage (Source: Researcher, 2019) 

Factor Information 

Factor      Type       Levels    Values 

LoA          Fixed       3          4, 5, 6 

P. Stage    Fixed       6          CL, EXTRACTN, HD KNV, KNIV, SHREDD, WB 

 

Analysis of Variance 

Source       DF  Seq SS   Contribution  Adj SS  Adj MS   F-Value  P-Value    F Crit 

  LoA         2     22.23        22.64%       22.23   11.116     4.47        0.041        4.10 

  P. Stage   5     51.07        52.02%        51.07  10.215     4.11        0.027         3.33 

Error        10     24.87        25.33%        24.87    2.487 

Total        17     98.18       100.00% 

 

Model Summary 

      S        R-sq          R-sq(adj)    PRESS      R-sq(pred) 

1.57705   74.67%     56.93%      80.5812      17.92% 

 

Coefficients 

Term                Coef    SE Coef        95% CI         T-Value   P-Value   VIF 

Constant          3.821    0.372     ( 2.993, 4.650)    10.28       0.000 

LoA 

  4                     1.571    0.526     ( 0.400, 2.743)     2.99        0.014     1.33 

  5                    -0.762    0.526     (-1.933, 0.409)    -1.45       0.178     1.33 

  6                    -0.810    0.526     (-1.981, 0.362)    -1.54       0.155     * 

P. Stage 

  CL                  1.893    0.831      ( 0.041, 3.745)     2.28       0.046     1.67 

  EXTRACTN  2.607    0.831      ( 0.755, 4.459)     3.14       0.011     1.67 

  HD KNV       -1.488    0.831      (-3.340, 0.364)    -1.79      0.104     1.67 

  KNIV            -1.488    0.831       (-3.340, 0.364)    -1.79      0.104     1.67 

  SHREDD      -1.488    0.831       (-3.340, 0.364)    -1.79      0.104     1.67 
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  WB                -0.036    0.831       (-1.888, 1.816)    -0.04      0.967     * 

 

Regression Equation 

cycle time (min) = 3.821 + 1.571 LoA_4 - 0.762 LoA_5 - 0.810 LoA_6       

+ 1.893 P. Stage_CL + 2.607 P. Stage_EXTRACTN - 1.488 P. Stage_HD 

KNV- 1.488 P. Stage_KNIV - 1.488 P. Stage_SHREDD - 0.036 P. Stage_WB 

      

Means 

Term                Fitted Mean    SE Mean 

LoA 

  4                     5.393              0.644 

  5                     3.060              0.644 

  6                     3.012              0.644 

P. Stage 

  CL                  5.714              0.911 

  EXTRACTN  6.429              0.911 

  HD KNV        2.333              0.911 

  KNIV             2.333              0.911 

  SHREDD       2.333              0.911 

  WB                 3.786              0.911 

Α = 0.05 significance level 

In the cycle time analysis Table 4-17, the effects of LoA and the process stage were assessed. 

The commonly chosen α-level of 0.05 was chosen and the results indicate the following: The 

p-value for both the LoA and P. Stage factor given as 0.041 and 0.027 are less than 0.05. Since 

this is less than the chosen α-level of 0.05, it means the effect of LoA and P. Stage on the cycle 

time is significant. This implies that, the mean cycle time is different for the different LoA and 

P. Stages. From the model summary, R2  is 74.67%, and adjusted R2  equals 56.93% which 

indicates that the model explains 74.67% of the variation in cycle time when you use it for 

prediction. This is good for comparing different cycle time models since R is maximum. 

From the coefficients, the VIFs are all less than 5, which indicates that the predictors are not 

highly correlated. Consequently, the effect of one predictor does not depend on the value of 

the other predictor. Also, from the regression equation, employing Conventional automation 
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(LoA = 4) in the 6 process stages applicable gives a mean cycle time of 5.393 min, while 

SCADA (LoA = 5) and DCS (LoA = 6) results to 3.060 min and 3.012 min respectively.  This 

is evidence that SCADA (LoA = 5) and DCS (LoA = 6) are efficient in reducing the cycle time 

and consequently the rate of production of the sugar juice extract. 

For relationship analysis, let: 

Ho: There is no linear relationship between LoA and cycle time (All the population 

means for the various treatments are equal) 

H1: There exist a relationship between LoA and cycle time. True if Fcal > Fcrit. 

Since for LoA, Fcal (4.24) > Fcrit, (4.10), Ho is rejected and it is concluded that at 95% 

confidence level, there is sufficient evidence that there exist a relationship between LoA and 

cycle.  Similarly for P. Stage, Fcal (4.63) > Fcrit (3.33), thus Ho is rejected and it is concluded 

that at 95% confidence level, there is sufficient evidence that there exist a relationship between 

P.stage and cycle time. 

Also, from the negatively sloped correlation curves with high Pearson’s coefficient of 0.78 in 

Figure 4-29, the variability in process temperature is directly proportional to the LoA. 

 
Figure 4-29 Coefficient graph of cycle time vs LoA for different P.stages (Source: Field data, 2019) 
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The sensitivity test for cycle time on a range of 10% to 95% CI depicts that the residuals appear 

to follow a straight line and that the results are significant. See Figure 4-30 

 

Figure 4-30 Normal probability Plots for cycle time (min) for a range of 10 – 95% CI (Source: Field data, 2019) 

 

4.4.4 Overall rate of resource wastage 

The experiment was a randomized block with two factors (LoA and P.Stage) investigated on 

three key indicators that affect resource utilization through minimized wastages namely power 

consumption, setup and cycle time. There were 7 replicates for each separate treatment levels 

under investigation.  The results indicated that the cumulative resource utilisation in the Sugar 
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industry reduced when higher levels of automation were implemented. The optimum resourse 

utilisation was for LoA 6 as shown in Figure 4-31 below. 

 

 
Figure 4-31 Graph of power consumption, cycle time and set up time for different LoA at different process stages 

(Source: Field data, 2019) 

 

From Eq. 3-13, the resource utilization index was evaluated and recorded as shown in Table 

4-18 and Figure 4-32  

 

Table 4-18 Resource utilization parameter indices vs LoA 

Parameters for resource utilization  Conventional automation  SCADA DCS 

 LoA 4 LoA5 LoA6 

Power consumption (kW), y21 8272.0 5257.0 5251.0 

Set up time (min), y22 3.2 0.5 0.5 

Cycle time (min), y23 5.4 3.1 3.0 

Resource utilization index, y2 3311.2 2103.6 2101.2 
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Figure 4-32 Resource utilization index vs LoA 

 

The results in Table 4-18 indicated that the means of 3 resource utilization parameters decreased 

when the LoA increased. Furthermore, Figure 4-32 revealed that resource utilization index 

reduced from LoA 4 through LoA 5 to LoA 6, suggesting that either LoA 5 or 6 is the optimum 

for attaining waste reduction in resources due to their minimal resource utilisation. This 

concurs with Martinez et.al, 2001 who alluded that for optimum waste reduction, the 

responsible manufacturing indicators must decrease.  

Since μ LoA 4 ≠ μ LoA 5 ≠ μ LoA 6 it can be asserted that there is a relationship between LoA and 

waste reduction. 

 

Also, the summarized probability plot and summarized ANOVA table for the variables that 

affect resource utilization are summarized below. 
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Figure 4-33 Probability plot of total power, cycle time and set up time at 95% CI (Source: Researcher, 2019) 

Table 4-19 Analysis for impact of lean automation on minimization of wastage (Source: Field data, 2019) 

Description  LoA No. of 

P.stages  

Mean Variance Test for significance 

(ANOVA) 

Power 

consumption 

LoA 4 

LoA 5 

LoA 6 

 

8 

8 

8 

8272 

5257 

5251 

52344365.43 

44893754.21 

44962741.71 

FCalc = 3.98 

FCrit  =   3.74 

P-Value = 0.045 

α = 0.05 

DF = 2 

FCalc > FCrit  and α > P-Value 

Com = Significant at 0.05 level 

Setup time  LoA 4 

LoA 5 

LoA 6 

3 

3 

3 

3.23 

0.53 

0.47 

1.423 

0.003 

0.023 

FCalc = 15.61 

FCrit  =   6.94 

P-Value = 0.013 

α = 0.05 

DF = 2 

FCalc > FCrit  and α > P-Value 

Com = Significant at 0.05 level 

Cycle time LoA 4 

LoA 5 

LoA 6 

4 

4 

4 

12.3 

13.5 

13.5 

4.40 

4.52 

4.52 

FCalc = 4.47 

FCrit  =   4.10 

P-Value = 0.041 

α = 0.05 

DF = 2 

FCalc > FCrit  and α > P-Value 

Com = Significant at 0.05 level 
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From both Figure 4-33 and Table 4-19, wastage in the sugar processing was depicted by three 

variables namely: power consumption, cycle time and set up time. The rate of power 

consumption of the entire juice extraction process line when employing conventional 

automation (LoA 4) is relatively higher with a total of 45044 kW compared to when SCADA 

(LoA 5) or DCS (LoA 6) are used with a total power consumption of 42058 kW and 42008 

kW respectively. Conventional automation is characterized by the use of mill tandems which 

do not require a high PI hence there being no shredding stage, but still the power consumption 

is high. Whereas LoA 5 and 6 are associated with the use of diffuser but can also be 

incorporated with mills. The high power consumption could be as a result of the machines at 

respectful stages drawing power without performing meaningful work due to unprecise 

mechanisms of sensing, monitoring and regulating the process parameter.  

Therefore, using LoA 5 or 6, the overall power consumption was lower than the conventional 

milling technologies. This is attributed to the characteristics of the LoA 5 and 6, where speed 

variable electro mechanical and hydraulic drives are employed in form of efficient shredders 

and high density knives compared to the conventional drives used in LoA 4 turbines. Also, 

LoA 5 and 6 uses a diffuser in the extraction which is exclusively automated with frequency 

variable drives thus consuming less power while producing quality sugar wit adaptive control 

on parameters. This is contrary to when LoA 4 is employed where mill tandems are 

withdrawing relatively high power to operate at the expense of low quality and production rate. 

This conforms well with Kent and Lewinski (2007) who observed that use of frequency 

variable electromechanical and hydraulic drives registered an array of advantages compared to 
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the conventional drives by turbines, ranging from better torque and speed control, higher 

efficiency, higher speed range, higher torque range, easier monitoring, lower maintenance cost. 

Setting up of machines was conducted at three stages namely weigh bridge (PS), Cane Loading 

(CL) and Feed table and kicker (FT). In all the three stages, LoA 4 recorded the highest setup 

time whenever the machines needed to be readjusted. In total LoA 4 recorded a set up time of 

9.7 min compared to LoA 5 and 6 which recorded a total of 1.6 min and 1.4 min respectively 

for readjustments. It can be seen that LoA 5 and 6 have virtually negligible setup involved 

except when it is after a general plant overhaul. This is as a result of minimum variations in 

the process parameters due to their real time monitoring and control. The self-regulation 

minimises the setup and reduce wastages in the production line and consequently improves 

performance and quality. This is a similar case with cycle time. 

Since, levels 5 and 6 of automation utilizes the efficient shredders and VSD that consume less 

power compared to level 4 that uses high torque knives and CSD. Hence, more power required 

with conventional level of automation. Consequently, this will ultimately increase both the 

lead and set up times and thus reducing production in LoA 4. Thus, sugar industries have a 

potential to adopt either SCADA (LoA 5) or DCS (LoA 6).  

This conforms to Ali et.al 2011, who confirmed that productivity is related to value adding 

activities in the manufacturing transformation process. Thus, any activity not adding value is 

regarded as a waste. It is therefore, essential to minimize these resource wastes if productivity 

is to improve. This is in line with the theory of waste elimination which emphasizes on the 

reduction of non-value adding activities. The probability of the three parameters shows p 

<0.05. 
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4.5 Continuous improvements in lean manufacturing. 

Continuous improvement also known as Kaizen or Toyota technology is a commitment by 

firms to utilize small and ongoing positive changes in reaping transformation in manufacturing 

with the aim of lowering defects, elimination of wastes, increase productivity, promotion of 

innovation and enhance employee satisfaction. Continuous improvement encompasses 

identification of threats and opportunities, propose solutions, implementation of the solutions 

and lastly monitoring and evaluation. In relation to this study, continuous improvement was 

indicated by the rate of production of the sugar juice extract, and results were as shown in Figure 

4-34 

 
Figure 4-34 Graph of production rate (Source: Researcher, 2019) 

 

From the graph in Figure 4-34, LoA 4 recorded the least loading rate, conveyance rate and the 

rate of juice extraction for a given production batch. With a loading rate of 250 T/h, the 

extracted juice was 100 T/h. Comparing this to the rate of production by LoA 5 and 6 which 

of 500 T/h each for loading and conveying that yielded juice at the rate of 360T/h, then it can 
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be observed that LoA 5 and 6 which utilizes SCADA or DCS on a diffuser provides a 

noticeable improvement in the entire rate of production of the sugar. Thus, the optimum option 

to be adopted in the sugar industries if increased production is to be realized. 

 

The experiment was a randomized block with two factors (LoA and P.Stage) being investigated 

on PI. There were 7 replicates for each separate treatment levels under investigation. From Eq. 

3-14, continuous improvement index was evaluated and recorded as shown in Table 4-20 and 

Figure 4-35 below. 

Table 4-20 Rate of sugar juice extraction vs LoA 

Parameters for 

continuous improvement 

Conventional automation  

LoA 4 

SCADA 

LoA 5 

DCS 

LoA 6 

Mean Juice extraction, y31 175.0 430.0 430.0 

Continous improvement 

index, y3 

175.0 430.0 430.0 

 

 
Figure 4-35 Continuous improvement index vs LoA 
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The results in Table 4-20 indicated that the rate of production parameters increased when the 

LoA increased. Furthermore, Figure 4-35 revealed that continuous improvement index increased 

from LoA 4 through LoA 5 to LoA 6, suggesting that either LoA 5 or 6 is the optimum for 

attaining higher rates of sugar production. This concurs with Martinez et.al, 2001 who alluded 

that for optimum production, the responsible manufacturing indicators must increase.  

Since μ LoA 4 ≠ μ LoA 5 ≠ μ LoA 6 it can be asserted that there is a relationship between LoA and 

waste reduction. 

 

Also, the summarized probability plot and summarized ANOVA table for the variables that 

affect resource utilization are summarized below. 

The linear model for the production rate was analyzed as shown in the table below. 

Table 4-21 General Linear Model for Rate of production (T/h) versus LoA, P. Stage (Source: Researcer, 2019) 

Factor Information 

Factor      Type      Levels    Values 

LoA         Fixed       3           4, 5, 6 

P. Stage   Fixed       2           CL, EXTRACTN 

 

Analysis of Variance 

Source      DF   Seq SS    Contribution   Adj SS     Adj MS      F-Value    P-Value     Pcrit 

  LoA        2      86700        73.76%        86700.0   43350.0     2601.00    0.000        6.94 

  P. Stage   1     30817        26.22%        30816.7   30816.7     1849.00    0.001        6.94 

Error          2           33         0.03%               33.3         16.7 

Total          5   117550       100.00% 

 

Model Summary 

      S        R-sq         R-sq(adj)    PRESS   R-sq(pred) 

4.08248   99.97%     99.93%      300        99.74% 

 

Coefficients 
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Term                    Coef        SE Coef        95% CI              T-Value     P-Value   VIF 

Constant              345.00     1.67         ( 337.83,  352.17)   207.00       0.000 

LoA 

  4                       -170.00     2.36         (-180.14, -159.86)   -72.12       0.000      1.33 

  5                          85.00     2.36          (  74.86,   95.14)      36.06        0.001     1.33 

  6                          85.00     2.36          (  74.86,   95.14)      36.06        0.001     * 

P. Stage 

  CL                       71.67     1.67          (  64.50,   78.84)      43.00        0.001     1.00 

  EXTRACTN     -71.67     1.67          ( -78.84,  -64.50)     -43.00       0.001     * 

 

Regression Equation 

 

Rate of production(T/h) = 345.00 - 170.00 LoA_4 + 85.00 LoA_5 + 85.00 LoA_6          

+ 71.67 P. Stage_CL - 71.67 P. Stage_EXTRACTN 

 

Means 

Term                 Fitted Mean  SE Mean 

LoA 

  4                      175.00          2.89 

  5                      430.00          2.89 

  6                      430.00          2.89 

P. Stage 

  CL                   416.67          2.36 

  EXTRACTN  273.33           2.36 

 

 

From analysis of variables in Table 4-21, the effects of LoA and the process stage were assessed. 

The commonly chosen α-level of 0.05 was chosen and the results indicate the following: The 

p-value for both the LoA and P. Stage factor given as 0.000 and 0.001 are less than 0.05. Since 

these are less than the chosen α-level of 0.05, it means the effect of LoA and P. Stage on the 

rate of production is significant. This implies that, the mean rate of production is different for 

the different LoA and P. Stages. From the model summary, R2  is 99.97%, and adjusted R2  
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equals 99.93% which indicates that the model explains 99.97% of the variation in production 

rate when you use it for prediction. This is good for comparing different rate of production 

models since R is maximum. 

From the coefficients, both LoA and P.Stage is significant at all levels (p= 0.000 or 0.001) 

since they are all less than α =0.05. Consequently, the effect of one predictor does not depend 

on the value of the other predictor. Also, The VIFs are all less than 5, which indicates that the 

predictors are not highly correlated. From the regression equation, employing Conventional 

automation (LoA = 4) in the 2 process stages applicable gives a mean rate of production of 

(345.00 - 170.00 LoA_4 + 71.67 P. Stage_CL - 71.67 P. Stage_EXTRACTN) 175 T/h, while 

SCADA (LoA = 5) and DCS (LoA = 6) results to a mean of 430 T/h each.  This is evidence 

that SCADA (LoA = 5) and DCS (LoA = 6) are efficient in enhancing an increase in the sugar 

juice extraction and consequently the overall rate of production. 

 

For relationship analysis, let: 

Ho: There is no linear relationship between LoA and rate of production (All the 

population means for the various treatments are equal) 

H1: There exist a functional relationship between LoA and rate of production. True if 

Fcal > Fcrit. 

Since for LoA, Fcal (2601) > Fcrit, (6.94), Ho is rejected and it is concluded that at 95% 

confidence level, there is sufficient evidence that there exist a relationship between LoA and 

power consumption.  Similarly for P. Stage, Fcal (1849) > Fcrit, (6.94), thus Ho is rejected and it 

is concluded that at 95% confidence level, there is sufficient evidence that there exist a 

relationship between P.stage and power consumption. 
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From Figure 4-36, the residuals of the production rate appear to follow a straight line. No 

evidence of non-normality, skewness, outliers, or unidentified variables exists. Hence, 

adequate to describe the correlation of level of automation with the rate of production. 

 
Figure 4-36 Residual Plots for Rate of production (T/h) (Source: Researcher, 2019) 

Discussion 

 
Figure 4-37 Probability plot of rate of extraction and loading rate (Source: Researcher, 2019) 
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Continuous improvement in the sugar processing is realized when there is an increase in the 

rate of extraction of quality juice, which subsequently increases the rate of quality sugar 

production. From Figure 4-37, the rate of production conducted at three LoA indicates that level 

4 has a low production rate of 100 T/h compared to levels 5 and 6 which depicted a rate of 360 

T/h.  

Continuous improvement is simply the improvement of the customer’s value through 

improved product quality, increased production. This can only be achieved through 

implementation of reducing waste and employing strategies like lean manufacturing which will 

enable efficient use of resources. Another approach can be advanced manufacturing techniques 

that will enable real time and adaptive control of parameters to have faster productions. 

Thus, a diffuser and six sigma mill tendon will enhance an improved rate of production than 

the conventional semi-automated mill tandems. This conforms to the findings of Oliverio 

(2013), where the juice extraction can reach only up to 80% with mill tandems, but can be 

higher when a diffuser incorporated with dewatering mills are used. In relation to lean 

automation, Six sigma emphasizes that the integration of lean and proper levels of automation 

will provide a suitable advanced control tool to best understand and identify parameters that 

affect or vary the process, and hence the overall performance of the organizations. Also, Ali 

et.al (2011) conforms to this finding through his study that to attain a continuous improvement, 

advanced manufacturing techniques like lean automation should be in place together with lean 

philosophy that will enable elimination of waste and efficient utilization of resources.  

This concurs with the theory of constrains and waste reduction relying on two conceptual 

relationship of productivity, that is economistic concept which focuses on improving 
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production efficiency by minimizing resource utilization (inputs) to attain goals (outputs) and 

the engineering concept which looks at the relationship between the actual and expected 

outputs (reduction of losses in the production lines). Therefore, a diffuser and six-sigma mill 

tandem incorporated with SCADA (LoA 5) or DCS (LoA 6) at all the process stages should 

be adopted if continuous improvement in sugar industries is to be realized.  

Ultimately, the following mathematical model is proposed from the field data for adoption as 

an estimate for the optimum level of automation in improving the rate of production in sugar 

industries. 

Rate of production (T/h) = 345.00 - 170.00 LoA_4 + 85.00 LoA_5 + 85.00 LoA_6          

+ 71.67 P. Stage_CL - 71.67 P. Stage_EXTRACTN 

 

Therefore, 

LoA 4 resulted to: 

Cane loading rate = 345.00 – 170.00 + 71.67 = 246.67 say 250 T/hr 

Extraction rate = 345.00 – 170.00 – 71.67 = 103.33 say 100 T/hr 

 

LoA 5 and LoA 6 resulted to: 

Cane loading rate = 345.00 + 85.00 + 71.67 = 501.67 say 500 T/hr 

Extraction rate = 345.00 + 85.00 – 71.67 = 358.33 say 360 T/hr 
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4.6 Overall process performance index 

According to Eq. 3-16, where 

𝑃𝑟𝑜𝑐𝑒𝑠𝑠 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 (𝑦)  = {4 (
1

𝑦1
) +  4 (

1

𝑦2
) + (

𝑦3

4
) +  (

𝑦4

4
)}  𝑥100% 

The summarized overall sugar processing performance index was evaluated as shown 

Table 4-22: Overall process performance parameter indices (Source: Researcher, 2019) 

Parametersfor process  

 

Conventional 

automation  

LoA 4 

SCADA 

LoA 5 

DCS 

LoA 6 

 

Adaptive control index, y1 2.47 0.21 0.21  

Resource utilisation index, y2 3311.2 2103.6 2101.2  

Quality production index, y4 81.29 84.03 84.96  

Continous improvement index, y3 175.00 430.00 430.00  

Process performance index  65.69 147.56 147.79  

 

 
Figure 4-38: Process performance index (Source: Researcher, 2019) 
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The process performance of sugar industries was illustrated by four major indicators which 

influence the process parameters. From the summarized Table 4-22 of process parameter indices, 

it is observed that LoA 6 provides the most steadfast real time monitoring, control and 

maintenance of process parameters that will enhance quality production compared to LoA 5 

and LoA 4. It allows negligible variability in the process parameters due to rapid response to 

changes. Also, when LoA 4 is employed, more resources are utilised as evidenced by high 

resource utilisation index. This is contrary to  LoA 5 and 6  which have virtually negligible 

setups involved except when it is after a general plant overhaul. This is as a result of minimum 

variations in the process parameters due to their real time monitoring and control. 

Consequently, this will ultimately reduce both the lead times and power consumptions 

resulting in increased production with LoA 6 and 5.  

Ultimately, from Figure 4-38 the process performance index for the three LoA indicates that 

LoA 6 has the highest performance, followed by LoA 5 then lastly LoA 4.Thus, sugar 

industries have a potential to adopt either SCADA (LoA 5) or DCS (LoA 6) if the process is 

to perform optimally for a sustainable and competitive sugar industry.  
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CHAPTER 5 : CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

In relation to Adaptive control objective, the response time to an anomaly conducted in three 

stages showed that LoA 4 had a slow response to anomaly with the longest mean response time 

of 2.4-4.6 minutes compared to LoA 5 and 6 which depicted a rapid response to anomaly with 

the shortest response time of 0.5 min. Also, conventional automation (LoA 4) at the chopping 

(HD KNIV), shredding and juice extraction stages resulted to an average temperature 

variability of 2oC, 3oC and 4oC respectively. While the SCADA (LoA 5) and DCS (LoA 6) 

showed no temperature variability in the three process stages. The lowest temperature 

variability in the conventional automation (LoA 4) was 1oC recorded at HD KNIV (replicate 

1) and the highest temperature variability being 5oC at SHREDD (replicates 3) and 

EXTRACTN (replicate 1, 3, 4, and 5). It is evident that LoA 4 has the highest temperature 

variability in the three process stages while both LoA 5 and 6 recorded the lowest temperature 

variability. Thus LoA 5 and 6 provides set temperatures and pH to be easily monitored, 

controlled and maintained by the system... Thus, adopting levels 5 or 6, the process parameters 

will be controlled and maintained at the optimum levels. Therefore, levels 5 or 6 of automation 

will provide a steadfast real time monitoring, control and maintenance of process parameters 

that will enhance quality production. 

 

In relation to the improvement of sugar quality objective, a high quality sugar is characterized 

by a high preparation index (PI), high sugar concentration in the juice (%brix) and (%pol). In 

all the stages level 6 recorded the highest PI and Brix values of 94% and 18%, and the lowest 

moisture in the bagasse of 40% at HD KNV and Extraction stages, compared to level 4 with 
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PI and Brix values of 77% and 17.3% at Shredder and Extraction stages respectively and a 

moisture content of 50%. This is because in level 6, the process parameters desired to optimize 

the process, are well monitored and regulated by the real time sensors. Also, the diffusion 

extraction that is usually fully automated provides an optimum means of extracting all the 

sucrose from the fibers compared to the mill tendons that are mainly monitored remotely. The 

diffuser has sensors and actuators that detects a variation in the process parameter and initiate 

appropriate corrective measure to maintain the optimum values. Level 6 involved the use of 

these sensing devices, visual and audio devices for communication. Thus adopting levels 5 or 

6 the product, the apparent quality of the juice extract will be high, and consequently quality 

will be achieved and this will provide competitiveness in the sugar industry. This is due to 

negligible variability in the set process parameters when using LoA 5 or 6, as the response to 

changes is rapid compared to when LoA 4 is employed. It is therefore observed that the purity 

is directly proportional to the polarization and inversely proportional to the brix. 

 

In the third objective, the rate of power consumption of the entire juice extraction process line 

when employing conventional automation (LoA 4) was relatively higher with a total of 45044 

kW compared to when SCADA (LoA 5) or DCS (LoA 6) are used with a total power 

consumption of 42058 kW and 42008 kW respectively. Therefore, using LoA 5 or 6, the overall 

power consumption was lower than the conventional milling technologies. This is attributed to 

the characteristics of the LoA 5 and 6, where speed variable electro mechanical and hydraulic 

drives are employed in form of efficient shredders and high density knives compared to the 

conventional drives used in LoA 4 turbines. Also, LoA 5 and 6 uses a diffuser in the extraction 

which is exclusively automated with frequency variable drives thus consuming less power 
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while producing quality sugar with adaptive control on parameters. This is contrary to when 

LoA 4 is employed where mill tandems are withdrawing relatively high power to operate at 

the expense of low quality and production rate. It can be seen that LoA 5 and 6 have virtually 

negligible setup involved except when it is after a general plant overhaul. This is as a result of 

minimum variations in the process parameters due to their real time monitoring and control. 

 

Lastly, continuous improvement is simply the improvement of the customer’s value through 

improved product quality and increased production. This can only be achieved through 

implementation of reducing waste and employing strategies like lean manufacturing which will 

enable efficient use of resources. Another approach can be advanced manufacturing techniques 

that will enable real time and adaptive control of parameters to have faster productions. The 

rate of production at level 4 was 100 T/h which was low compared to levels 5 and 6 at a rate 

of 360 T/h. This conforms to the findings of Oliverio (2013), where the juice extraction can 

reach only up to 80% with mill tandems, but can be higher when a diffuser incorporated with 

dewatering mills are used. Therefore, levels 5 or 6 of automation utilizes the efficient shredders 

that consume less power compared to level 4 that uses high torque knives. Hence, more power 

required with conventional level of automation. Consequently, this will ultimately increase 

both the lead and set up times resulting in reduced production in LoA 4. Thus, sugar industries 

have a potential to adopt either SCADA (LoA 5) or DCS (LoA 6). 

The process performance index for the three LoA indicates that LoA 6 has the highest 

performance, followed by LoA 5 then lastly LoA 4.Thus, sugar industries have a potential to 

adopt either SCADA (LoA 5) or DCS (LoA 6) if the process is to perform optimally for a 

sustainable and competitive sugar industry. 
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5.2 Recommendations 

 In summary, lean (Six-sigma) automation which consists of LoA 5 (SCADA) or LoA 

6 (DCS) according to Garcia (2015), provides the optimum lean automation that local sugar 

industries require to have a sustainable and competitive process performance. Therefore, it 

should be considered for adoption and implementation within the sugar processing line as the 

appropriate advanced manufacturing technique that will enable real time monitoring of process 

variables, minimization of resource wastages, quality production and continuous improvement 

in the sugar industry. 

 An investor interested in lean automation technology may want to know its cost 

implications. However, this study did not address the aspect of its cost. Hence, further 

investigation into the cost of adopting lean automation (LoA 5 and 6) in sugar industry should 

be conducted and cost-benefit analysis evaluated. 

 The study was limited to two dimensions of automation namely adaptive control and 

material handling. It is advised that the other dimensions of automation be studied in relation 

to its adoption in sugar industry to check if process efficiency can be increased. These includes: 

numerical control, robotics, assembly and flexible fixturing. 

 Apart from the technological inadequacies prevailing, other factors that hinder the 

sustainability of sugar industries need to be investigated and appropriate remedies 

recommended. These factors were assumed constant during this study. Among them includes: 

political influence, decrease in investment portfolio, poor agricultural practices and increase in 

credit and competition costs from imports. 
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APPENDIX  

Appendix A: A summary of the tabulated results 

Table A: A summary of the tabulated results for various parameters. 

P
. 
S

ta
g
e 

L
o
A

 

to
ta

l 
p
o
w

er
 

(K
w

/d
ay

) 

R
es

p
o
n
se

 
ti

m
e 

(m
in

) 

cy
cl

e 
ti

m
e 

(m
in

) 

se
t 
u
p
 t
im

e 
(m

in
) 

L
o
ad

in
g
 

ra
te

 

(T
/h

) 

P
u
ri

ty
 (

%
) 

P
ro

ce
ss

 
te

m
p
 

V
ar

 (
0
C

) 

P
I 

(%
) 

B
ri

x
 i

n
 j

u
ic

e 
(%

) 

P
ro

ce
ss

 p
H

  

P
o
l 

(%
) 

R
at

e 
o
f 

ex
tr

ac
ti

o
n
(T

/h
) 

WB 4 576.0 2.4 5.2 2.6                 

WB 5 216.0 0.6 3.1 0.6                 

WB 6 216.0 0.6 3.1 0.6                 

CL 4 2880.0 4.6 7.7 5.3 500.0             250.0 

CL 5 1680.0 0.5 4.9 0.5 500.0             500.0 

CL 6 1680.0 0.5 4.6 0.5 500.0             500.0 

FT 4 3168.0 3.0     30.0             250.0 

FT 5 720.0 0.5     30.0             500.0 

FT 6 720.0 0.5     30.0             500.0 

KNIV 4 10080.0   5.0     81.1 2.0 65.0 12.5   10.1   

KNIV 5 10080.0   1.0     83.0 0.0 69.0 13.6   11.3   

KNIV 6 10080.0   1.0     83.0 0.0 70.0 13.6   11.3   

MC 4 1080.0                   0.0   

MC 5 720.0                   0.0   

MC 6 720.0                   0.0   

SHREDD 4 21600.0   5.0     83.5 3.0 77.0 13.4   11.2   

SHREDD 5 10080.0   1.0     85.2 0.0 81.0 14.5   12.4   

SHREDD 6 10080.0   1.0     85.2 0.0 85.0 14.5   12.4   

HD KNV 4     5.0     84.5 2.0 89.0 15.1   12.8   

HD KNV 5 18112.0   1.0     87.4 0.0 92.0 16.3   14.2   

HD KNV 6 18112.0   1.0     87.4 0.0 94.0 16.3   14.2   

EXTRACTN 4 5660.0   4.4     86.5 4.0   17.3 7.0 15.0 100.0 

EXTRACTN 5 450.0   7.4     89.5 0.0   18.0 6.5 16.1 360.0 

EXTRACTN 6 400.0   7.4     89.5 0.0   18.0 6.5 16.1 360.0 
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Appendix B: Bagasse from LoA 4 Mill tandems and level 6 diffuser 

 

 
Figure B: Bagasse from LoA4 Mill tandems 

(PI is low and Moisture content High 

(Source: Researcher, 2019) 

 
Figure C: Bagasse from level 6 diffuser (PI 

is high and Moisture content low (Source: 

Researcher, 2019) 
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Appendix C: Experimental setups for LoA 4, LoA 5 and LoA 6 

 
Figure C-1: Level 4- Control circuits   

 
Figure C-2: Level 5-SCADA   

 
Figure C-3: Level 6-DCs 

 
 

 


