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Abstract

The social costs of volcanic eruptions are severe for eruptions of considerable magnitude.

Understanding the temporal behaviour of volcanic eruptions is thus key to hazard assess-

ments and prevention of future loss of life and damage to property. This project aimed

to demonstrate that the temporal behaviour of volcanic eruptions in the East African Rift

System can be e�ectively modelled using Poisson processes. The data used for the anal-

ysis was from the Smithsonian Institution’s Global Volcanism Program, which is freely

available on line. Three models were chosen for analysis: homogeneous Poisson model,

log-linear non-homogeneous Poisson model and Weibull power non-homogeneous Pois-

son model. The assumptions and theory underpinning Poisson processes were presented

and the eruption data considered was shown to �t into a Poissonian framework. The

method of maximum likelihood was used to estimate the parameters of each model. The

Akaike Information Criterion was used to select the optimal model. The log-linear non-

homogeneous Poisson model with intensity function λ (t) = exp(−0.911036781+
0.009976769t) was found to best �t the empirical data with 95% con�dence and based on

it basic forecasts were issued. It was recommended that governments and disaster man-

agement authorities incorporate these �ndings in their preparedness frameworks as the

log-linear model predicts an increasing trend in volcanic activity.
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Chapter One

Introduction

1.1 Introduction

This chapter provides the background of the topic, gives a statement of the problem,
states the objectives, furnishes a brief justification for the study as well as the scope and
gives an the overview of the entire body of this work.

1.2 Background

Volcanic eruptions represent the visible and sometimes violent manifestation of the dy-
namic funnelling of the Earth’s internal energy to the surface (Wilson, 2009). The most
active volcanic zones are located at the boundaries between tectonic plates, either at ri�
zones (zones of crustal separation) or subduction zones (zones of crustal collision). The
distribution is such that 75% of the world’s active and dormant volcanoes are situated in
the Pacific Ring of Fire, a horseshoe-shaped region of intense geological activity hemming
in the Pacific Ocean along the Western coast of the Americas and Eastern Asia stretch-
ing from Russian through Japan, the Malay Archipelago, Micronesia to New Zealand
(Co�rell, 2014). The next greatest concentration of volcanoes is located in Eastern Africa,
roughly following the course of the Great Ri� Valley. Of the 148 volcanoes found in Africa,
120 are found in the East African Ri� System. Ethiopia contains 59 volcanoes followed in
second place by Kenya with 22 volcanoes (Global distribution of volcanism: Regional and
country profiles, 2015). Other volcanic systems are found in Anatolia, the Italian Peninsu-
lar, the Middle East, Antarctica, Central Asia, The Caucasus, Iceland, South Caribbean,
and sca�ered across the Atlantic Ocean and Indian Ocean. (Co�rell, 2014). The figure
below shows this distribution.
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Figure 1. Worldwide distribution of Active Subaerial Volcanoes

Volcanoes possess enormous destructive power and volcanic eruptions constitute a major
natural hazard. Eruptions of considerable magnitude can have localized e�ects, causing
destruction through ballistic projections, pyroclastic flows, tephra (fragmented material),
lava flows, lahar flows (slurry of volcanic material), landslides and avalanches, as well as
global environmental impact through the dispersion of ashes, aerosols and other fine ma-
terial from eruption plumes to the atmosphere where they can remain suspended for long
periods of time (Global Volcanic Hazards and Risk, 2015). Eruptions can change weather
pa�erns and lead to disruption of established climatic pa�erns, and, in the past, caused
large-scale destruction that led to mass extinctions (Gilbert & Sparks, 1998).

Over 800 million people currently reside within 100 km of a volcano, of which more than
120 million of these are in Africa (Global distribution of volcanism: Regional and country
profiles, 2015). These populations continues to grow, magnifying the potential e�ects of
an eruption on life and property. Ethiopia and Kenya are ranked 5th and 10th respec-
tively in terms of volcanic threat as measured by hazard index, number of volcanoes and
population exposed within 30 km of volcanoes (Global Volcanic Hazards and Risk, 2015).
It is further estimated that in the 20th century alone volcanic eruptions claimed the lives
of about 80,000 people (Sigurdsson et al., 2015). The social costs are potentially high in
the case of eruptions of significant magnitude. Statistical analysis and modelling of the
uncertain behaviour of volcanoes, then, becomes an important task.
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The field of statistical volcanology, specifically the temporal behaviour of volcanic activ-
ity, is driven by the increasing awareness of the hazards that volcanoes pose to life and
property as the population swells. Many authors have contributed to the field, from the
pioneering Poissonian modelling works of Wickman (1966) and Reyment (1969) to the
successor studies of Ho (1991, 1992) and Bebbington and Lai (1996a, 1996b) who consid-
ered renewal models through to the more recent use of Gumbelian extreme value models
as well as cluster models considered by authors such as Marzocchi and Zaccarelli (2006)
and Gusev (2008) and novel models such as cellular automata models used by Sanchez
(2014). Poisson models, however, seem to the most popular among many authors despite
the merits of other models because of the ease of their use and their ability to capture
e�ectively the count and temporal aspect of volcanic activity. The African perspective
is largely absent from these e�orts and this author has not come across any modelling
enterprise with respect to the temporal aspect of volcanism. It is hoped that this project
will go some way in remedying this.

1.3 Statement of the Problem

East Africa sits astride an area of seismic and geological importance with a significant
number of active and dormant volcanoes. Eruptions of considerable size are rare events
yet the when they do occur they have the potential for devastating consequences. In-
deed, most volcanoes pose the greatest hazard over considerably long time scales in the
order of decades and centuries; at longer time scales they have the potential for global
impact and catastrophe. Even volcanoes thought to be dormant or extinct can suddenly
erupt with li�le warning. The problem, then, becomes building probabilistic forecasts
that account for this long-scale uncertainty using potential eruption scenarios and rele-
vant data. An important consideration is that the historical record is short, biased and
incomplete. The instrumented record is even more problematic, being shorter and, for
most volcanoes, spanning only the last few decades of uninterrupted surveillance — a
infinitesimal fraction of their long lifetime.
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1.4 Objectives

The main objective of this project was fit eruption data to Poisson process models and ob-
tain a model with an intensity function that would best approximate the observed trend
in the data. This was accomplished by achieving the following specific objectives:

1. Test eruption data for the assumptions of Poisson processes;

2. Estimate the parameters of the intensity functions and compare model fit;

3. Determine goodness of fit for the model selected;

4. Forecast the number and probability of future eruptions.

1.5 Justification

The use of Poisson processes has been successful in varying degrees in modelling vol-
canism in the last five decades. This is because of its a�ractive quality of being able to
combine the discrete property of count with the continuous element of time. The three
specific models used were selected based on the literature review, as well as their par-
simony: the homogeneous model based on the need to incorporate a stationary model
that could capture any underlying constant trend in the data especially in light of the
potential that the data considered was incomplete and the log-linear and Weibull non-
homogeneous models based on the the assumption the data set was complete and inher-
ently non-stationary coupled with the need to capture any trend observed in the data.

1.6 Significance

Most of the research done in statistical volcanology has concentrated on volcanoes in
other tectonic-geological se�ings, particularly in the Pacific Ring of Fire, with scant at-
tention paid to African volcanoes in general and East African ones in particular. It is
hoped that this project will enrich the literature and add to our understanding of the
stochastic processes that govern the temporal behaviour of volcanic eruptions and assist
in hazard assessments that might be useful in mitigating risk to life and property.
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1.7 Scope

The sampling frame for the sample used for the project was a global database of doc-
umented eruptions known to have occurred over the last 12,500 years compiled by the
Smithsonian Institution’s Global Volcanism Program. This catalogue contains all docu-
mented geological and historical-observation eruptions known to have occurred and con-
sists of a set of just under 10,000 eruptions from approximately 10,500 B.C.E. till present
day. The project was limited in scope to eruptions from 1 January 1919 to 1 January 2019,
encompassing 13 volcanoes that have erupted in this period out of a total of the 120 vol-
canoes found in the East African Ri�. The volcanoes are spread out across eight countries
located in the East African Ri� System: Ethiopia, Eritrea, Djibouti, Kenya, Uganda, Tan-
zania, Rwanda, and the Democratic Republic of Congo. The database contains a variety
of information related to eruptions; however, the variable of interest was date of onset,
which was either given in exact or approximated form.

1.8 General Outline of the Project

Chapter 1 introduced the topic and laid the groundwork for later chapters. Chapter 2
will be a review of important papers that present what other researchers have done and
inform the basic motivation for this project, with some critique o�ered and gaps iden-
tified, as well the theory underpinning Poisson processes. Chapter 3 will present tests
of data validation, the method of maximum likelihood estimation for the intensity func-
tions selected, model selection criteria and a goodness-of-fit statistical test. Chapter 4
will involve analysis of the data in accordance with the framework set out in Chapter
3. Goodness of fit will then be performed and forecasts will then be given based on the
model found to best suit the data. Finally, Chapter 5 will summarize the results, give
recommendations and provide direction for further work.
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Chapter Two

Literature Review

2.1 Introduction

This chapter presents a review of the theory underpinning Poisson processes as well a
review of some existing papers that motivated and informed this project. The papers se-
lected for review are by no means exhaustive but serve to provide a general snapshot of
the work done in the area of Poissonian volcanic modelling over the past fi�y years.

2.2 Theoretical Review

2.2.1 Homogeneous Poisson Process

A simple Poisson process is a mathematical model that describes a temporal-spatial series
of events that occur randomly and independent of each other. The broad characteristics
of a homogeneous Poisson process are: events occur singly with probability of near zero
that two events occurring simultaneously; the rate of occurrence of events is constant;
the probability of future events is independent of the past; and lack of time trend, i.e.,
stationarity. One useful characteristic to investigate is the distribution of inter-event
times, which for a homogeneous Poisson process have an exponential distribution which
is completely defined by a single parameter commonly denoted by λ , which represents
the rate of occurrence of events or arrivals (Cox & Lewis, 1966).
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De�nition 2.2.1. A collection of random variables {N(t): t ∈ [0,∞)} indexed by time t is
called a continuous-time stochastic process. Further, such a stochastic process is a (homoge-
neous) Poisson process if:

(a) starting from N(0) = 0 the process N(t) takes non-negative integers 0,1,2.... for all

t ≥ 0;

(b) the increment N(t + s) - N(t) is surely non-negative for any s > 0;

(c) the increments N(t1),N(t2)−N(t1).............................................N(tn)−N(tn−1)

are independent for any 0 < t1 < t2...........................tn−1 < tn;

(d) the increment N(t + s) - N(t) has a distribution which is dependent on the values

s > 0 but independent of t > 0; and

(e) the increment N(t + s) - N(t) has a Poisson distribution with mean λ t, i.e., for any

s, t ≥ 0.

Pr(N(t + s)−N(s) = n) =
(λ t)nexp(−λ t)

n!
; n = 0,1,2....... (1)

The definition given by Ross (2010) lays the foundation for looking at the Poisson process
as an integrated collection of three random variables: a counting process, a sequence of
arrival or onset times and a sequence of inter-arrival or inter-event times.

A stochastic process satisfying (a) and (b) is called a counting process in which N(t) rep-
resents the total number of ’events’ (from here onwards ’events’ will refer to volcanic
eruptions). Properties (c) and (d) are respectively called the independent and stationary
increments.
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Events counted by a Poisson process {N(t), t ≥ 0} are called Poisson events. Now, let Tn

denote the time when the n-th Poisson event occurs. Tn is called the arrival, event, onset
or occurrence time (in this case the onset of an eruption) and we can then define the
inter−arrival, inter− event or (in a volcanological context) repose times Wn as

Wn = Tn−Tn−1; n = 1,2, ....... (2)

where T0 = 0 by convention and for convenience.

If we apply (a) and (d) together (see Definition 2.2.1) we obtain

Pr(N(t + s)−N(t) = n) = Pr(N(s) = n); n = 0,1,2, ...... (3)

We observe that the event {Wn > s} for an inter-arrival time can equivalently be ex-
pressed by the event {N(Tn−1 + s)−N(Tn−1) = 0}, i.e., no event has occurred in the
waiting period less than s, and that N(s) = 0. This will justify the properties that inter-
arrival time random variable Wn has a distribution independent of n and inter-arrival
times W1,W2,W3............... are independent.

Consider the survival function S(s) = Pr(W1 > s). It then follows that

S(t + s) = Pr(W1 > t + s)

= Pr(N(t) = 0,N(t + s)−N(t) = 0)

= Pr(N(t) = 0)Pr(N(t + s)−N(t) = 0)

= Pr(N(t) = 0)Pr(N(s) = 0)

= Pr(W1 > t)Pr(W1 > s)

= S(t)S(s)

(4)
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The property above is called the memoryless property. The memeoryless property has
the following formal definition. Let G(a) = Pr(X > a). If X is memoryless, then G has the
following properties: (i) G(a+b) = G(a)G(b); and (ii) G is monotonically decreasing, i.e.,
if a ≤ b then G(a) ≥ G(b) (Sigman, 2009). This means that waiting time until an event
occurs does not depend on how much time has already elapsed. This implies that W1

must have an exponential distribution since it is the only continuous distribution with
this unique property. This can be easily proved.

The survival function of an exponential distribution is

S(t) = e−λ t (5)

such that

S(t + s) = e−λ (t+s)

= e−λ te−λ s

= S(t)S(s)

(6)



10

Let us define Tn, the time to the n-th arrival. It can be seen that the arrival time random
variable can be expressed as Tn =∑

n
k=1Wk. Since W1,W2,W3.............Wn are iid expo-

nential random variables with the common parameter λ , Tn has an Erlang density with
parameters (n, λ ). The Erlang density can be derived by performing an n-fold convolution
of the exponential distribution. Alternatively, it can be derived using the duality equa-
tion Wn > t⇐⇒ N(t)< n, which implies that the n-th event by a certain time t has not
occurred if the waiting time to the n-th event is beyond t (Ross, 2010).

The Erlang distribution takes the following form:

fTn(t) =
(λ n)tn−1exp(−λ t)

(n−1)!
; t,λ ≥ 0 (7)

The joint density of arrival times T1,T2..................................Tn conditional on N(t) = n
is identical to the order statistics U(1),U(2)..............................U(n) of iid uniform ran-
dom variables on (0,t]. This follows from the fact that if a homogeneous point process
is defined on the real line as a mathematical model for occurrences of some observable
event, then the positions of these occurrences on the real line (the real line in this case
representing time) will be uniformly distributed. More concretely, if an event occurs ac-
cording to this process in an interval (a,b] where a ≤ b, then its location in the interval
will be a uniform random variable. The homogeneous point process is sometimes called
the uniform Poisson point process for this reason (Ross, 2010).

An interesting property of the Poisson process is that it can be partitioned. If {N(t), t ≥ 0}
is a Possion process with expectation λ t each arrival independently either of type 1 or
type 2 with probability p and q = 1− p respectively, then, the process can be parti-
tioned into two independent sub-Poisson processes {N1(t), t ≥ 0} and {N2(t), t ≥ 0} each
with its unique rate function such that N1(t) ∼ Pois(λ t p) and N2(t) ∼ Pois(λ tq) and
E[N(t)] = E[N1(t)]+E[N2(t)]. The opposite (where separate Poisson process can be com-
bined) is also true and is called supposition (Sigman, 2009).
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2.2.2 Renewal Process

A simple Poisson process imposes the constraint of exponentially distributed inter-arrival
times, which might be untenable in certain situations. A renewal process relaxes this as-
sumption and permits other distributions to describe inter-event times. A renewal process
is a generalization of a Poisson process consisting of inter-arrival times that are identi-
cally and independently distributed with a common distribution D (Ross, 1996). Some of
the most common distributions for D are the Weibull distribution, gamma distribution,
log-normal distributions and log-logistic distribution.

De�nition 2.2.2. A point process {tn,n ≥ 1} is a strictly increasing sequence 0 < t1 < t2
...................... If {N(t), t ≥ 0} is de�ned as a counting process with tn being random variables,
then {N(t)} has iid inter-arrival times and is called a renewal process and it has a rate λ

de�ned as 1/E(D), where W is the inter-event time random variable.

From this definition adopted from by Sigman (2009) it becomes evident that if D is expo-
nentially distributed then a renewal process dissolves to a HPP.

The distribution of N(t) can be obtained by using the equality N(t)≥ n⇐⇒ Tn ≤ t, i.e.,
the number of events or renewals by time time t is greater than or equal to n if and only
if the n-th event or renewal occurs before or at time t (Ross, 1996). Therefore

Pr(N(t) = n) = Pr(N(t)≥ n)−Pr(N(t)≥ n+1)

= Pr(Tn ≤ t)−Pr(Tn+1 ≤ t)
(8)

Since the inter-event times are iid and have a common distribution D and Tn =∑
n
k=1 Dk

it follows that Tn is distributed as Dn, the n-fold convolution of D with itself. The distri-
bution of N(t) therefore becomes as shown below.

Pr(N(t) = n) = Dn(t)−Dn+1(t) (9)
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Let us define the expectation function m(t). This function is called the renewal f unction
in the context of a renewal process and much analysis is devoted to its properties (Ross,
1996). It is defined by the relationship given below.

m(t) = E[N(t)] =
∞

∑
n=1

Dn(t) (10)

2.2.3 Non-Homogeneous Poisson Process

The restrictions in the properties of the homogeneous Poisson process make it inade-
quate for many other real world systems and natural phenomena which are prone to
wild unpredictability but nonetheless possess Poisson-like characteristics with parame-
ters dependent on time. Such systems can be described by non-homogeneous (or non-
stationary) Poisson processes. The empirical review will show that while Poisson models
have been found to be adequate in certain volcanic systems, universal application for
all volcanic systems is found to be untenable as certain data sets show considerable de-
viation. The introduction of the non-homogeneous Poisson process as a generalization
of the homogeneous Poisson model allows for some of this randomness to be captured.
A non-homogeneous Poison process satisfies the same assumptions as a homogeneous
Poisson process but with λ dependent on time, i.e., λ (t). Utilizing a non-homogeneous
time-dependent Poisson process in the context of volcanic activity implies that a number
of underlying processes conflate together and the balance of these processes is a function
of time (Sanchez, 2014).

De�nition 2.2.3. The counting process {N(t), t ≥ 0} is said to be a NHPP with intensity
function λ (t),t ≥ 0 if it satis�es the following conditions:

(a) N(0) = 0 almost certainly;

(b) N(t) has independent increments;

(c) Pr(N(t + h) - N(t) = 0) = 1 - λ (t)h+o(h);

(d) Pr(N(t + h) - N(t) = 1) = λ (t)h+o(h);

(e) Pr(N(t + h) - N(t) ≥ 2)) = o(h).
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This definition from Ross (2010) introduces another way of defining a Poisson process.
Parts (c) and (d) of the definition may look awkward at first sight but are, in fact, insight-
ful and intuitive. They state that having two or more events in a small time interval is
extremely unlikely while the probability of a single event is approximately proportional
to the length of that small interval. The notation o(h) refers to some function g for which
limh→0

g(h)
h = 0. The intensity function λ (t) is a function of time and is o�en called the

instantaneous arrival rate.

The distribution of the number of events in an interval is as follows:

Pr(N(t + s)−N(t) = n) =
[Λ(t + s)−Λ(t)]ne−[Λ(t+s)−Λ(t)]

n!
(11)

This logically follows from the HPP since both processes have independent increments.
This means that that the distribution of N(t+ s)−N(t) is, in fact, Poisson with parameter
Λ(t + s) - Λ(t).

The relationship between the average number of events which occur in the interval (0,t]
and the intensity function can be expressed as

E[N(t)] =
t∫

0

λ (u)du

= Λ(t)−Λ(0)

= m(t)

(12)

This expectation function m(t) completely defines the NHPP and is a monotonic non-
decreasing right-continuous function such that

0≤
∫
R

λ (u)du < ∞
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for all bounded subsets R of the state space S of the process.

This concept can be extended to the number of events between times t and t + s to yield

E[N(t + s)−N(t)] =
t+s∫
t

λ (u)du = Λ(t + s)−Λ(t) (13)

The above results were adopted from Çinlar (2013).

For a NHPP {N(t), t ≥ 0} with intensity function λ (t), the integrated function between
two successive event times (which is, in fact, the mean function) Tn and Tn+1 follows an
exponential distribution with unit mean, i.e.,

m(Tn,Tn+1) =

Tn+1∫
Tn

λ (t)dt (14)

In addition, as a result of the independent increments property in non-overlapping in-
tervals, m(T0,T1),m(T1,T2)........................m(Tn−1,Tn) are iid exponential random vari-
ables (Smethurst, 2009). This serves as a useful link between the HPP and NHPP, which
can be exploited, for example, if NHPP event times are to be converted to HPP event times.

The final set of results are adopted from Cox & Lewis (1966).
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For a NHPP {N(t), t ≥ 0} with mean function m(t) with an intensity function λ (t) which
is absolutely continuous, the arrival times t1, t2...............tn for n observed events in the
interval (0,T ] are distributed as order statistics from a sample with probability density
function

fT (t) =
λ (t)

Λ(T )−Λ(0)
(15)

We use the equality Wn > t⇐⇒N(t)< n and observe that Pr(T > t) = Pr(N(t+ s)−N(t) = 0),
i.e., time of the next arrival from start of observation is greater than t only if there is no
event in the interval (t, t + s]. Using Eq. 11 it can be seen that for any t,s≥ 0

Pr(N(t + s) - N(t) = 0) = e−[Λ(t+s)−Λ(t)] (16)

and the cdf of arrival time becomes

FT (t) = 1− e−[Λ(t+s)−Λ(t)] (17)

To obtain the density function of conditional arrival time we get the derivative of the cdf
wrt to s.

d
ds

FT (t) =
d
ds
{1− e−[Λ(t+s)−Λ(t)]}

= λ (t + s)e−[Λ(t+s)−Λ(t)]
(18)
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For n observed events in the interval (0,T ] at times t1, t2...............tn the joint density be-
comes

λ (t1)e−[Λ(t1)−Λ(t0)]λ (t2)e−[Λ(t2)−Λ(t1)].........................λ (tn)e−[Λ(tn)−Λ(tn−1)]e−[Λ(T )−Λ(tn)]

= e−[Λ(T )−Λ(0)]
n

∏
i=1

λ (ti)

= e
−

T∫
0

λ (u)du n

∏
i=1

λ (ti)

(19)

where the term e−[Λ(T )−Λ(tn)] denotes the probability that no event occurs in the interval
(tn,T].

Eq. 19 can also be expressed as

[Λ(T )−Λ(0)]ne−[Λ(T )−Λ(0)]

n!

n

∏
i=1

λ (ti)
[Λ(T )−Λ(0)]n

(20)

if we consider unordered event times.

This, then, yields the conditional density function of Ti as shown below.

fT (ti|N(t) = n) =
λ (t)

Λ(T )−Λ(0)
; i = 1,2.............n (21)
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2.3 Empirical Review

Wickman (1966) carried out one of the pioneering works of statistical analysis on volcanic
data where he described the applicability of Poisson modelling. The Poisson process was
defined as a model for describing random temporal-spatial events. He noted that certain
volcanoes showed eruptive rates that were independent of time and were thus mem-
oryless: past events had no bearing on future events. Such volcanoes were described
as Simple Poissonian Volcanoes. This lack of memory naturally implied the use of an
exponential distribution to model inter-event times. The exponential distribution is com-
pletely defined by its single parameter λ , which represents the rate of occurrence, which
is constant in the case of stationarity. Wickman tested the homogeneous Poisson pro-
cess hypothesis on two Hawaiian volcanoes: Mauna Loa and Kilauea. He found that the
eruptive activity of Mauna Loa was well described by a stationary Poisson process but
that the activity of Kilauea deviated from the model and showed non-stationarity and
hence a non-constant event rate. Wickman’s study le� open the question of the nature
of this inhomogeneity but suggested modelling the intensity using a step function.

Reyment (1969) expanded on Wickman’s work by studying the activity of three Japanese
volcanoes (Asama, Aso and Kirisima), Mount Etna, three Indonesian volcanoes (Bromo,
Semeru and Peak of Ternate) and Mauna Loa. Mauna Lao was found to approximately
follow a simple Poisson process, a finding that coincided with Wickman’s earlier work.
Bromo, Semeru and Peak of Ternate showed Poissonian behaviour consistent with either
some form of renewal process. The three Japanese volcanoes and Mt. Etna showed some
trend in the eruption rates, suggesting inhomogeneity and a log-linear intensity function
was proposed. The conclusion was that the Poisson model was not universal in appli-
cation and individual volcanoes exhibited unique eruption pa�erns. As with Wickman
(1966), no direction was given on what sort of renewal model was likely to fit the data set
considered.

Se�le and Mcgetchin (1980) took a di�erent approach. Instead of examining a number of
volcanoes, they chose to concentrate on one volcano with multiple sites of volcanic ac-
tivity. They examined the three-day 1971 activity of Stromboli (a volcano o� the Sicilian
coast in Italy) through the eruption sequence of three di�erent vents. They found that
when considered separately the repose times of the three vents showed a Gaussian dis-
tribution. However, a critical analysis of the entire record showed correlated behaviour
between two of the vents with remaining one. The repose time distribution for two of
the three vents could be fi�ed by an exponential distribution, and therefore their activ-
ity could be modelled by a Poisson process. This vent dependency suggested the direct
connection of the two vents to the magma reservoir of the remaining vent.
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In another study, Klein (1982) returned to the Hawaiian twins of Mauna Loa and Kilauea
and investigated their holistic activity using an updated catalogue. He used the custom-
ary definition of inter-event times of volcanic eruptions as the time passed between one
eruption onset to the next. The absence of major periodicity with future eruptions rela-
tively independent of past eruptions suggested that their random behaviour was typical
of a Poisson process though it was noted that long repose times observed in both volca-
noes were associated with large eruptions.

Noting that previous studies had been restricted in scope, De la Cruz-Reyna (1991) opted
for a di�erent approach by considering worldwide volcanic eruptions. Exception was
taken to the lumping together of all eruptions without regard to their strength. The study
found that when sorted based on size, higher magnitude eruptions followed a Poisson
process with a constant rate. This was explained in terms of a load-and discharge heat
transfer mechanism, where the vast energy pent up in volcanic systems was released to
the surface at a constant rate in small amounts.

In the aforementioned investigations the unifying thread was the hypothesis of volcanic
events being a series of independent random events with some sort of constant under-
lying rate implied. However, considerable deviations for a number of volcanic systems
studied suggested the inadequacy of the homogeneous Poisson model. A number of in-
vestigators turned their a�ention to the non-homogeneous Poisson model as means of
addressing these weaknesses.

Ho (1991) tested the appropriateness of a homogeneous Poisson model on five individual
volcanoes in four di�erent tectonic se�ings: Kilauea, St. Helens, Etna, Aso and Yake. He
considered a Weibull process with an eruptive rate λ (t) such as λ (t) = (β

θ
)( t

θ
)β−1 where

β and θ were parameters to be estimated and t the time from a pre-defined origin. The
parameter β was of special interest because it was used to characterize volcanoes into
three types: volcanoes with increasing eruption rate (β > 1); volcanoes with decreasing
eruptive rate (β < 1); and volcanoes with constant eruptive rate (β = 1). Essentially Ho
used the Weibull model as a goodness of fit test to investigate if a volcano was Simple
Poissonian under the null hypothesis that β = 1. The results showed none of the volca-
noes he considered had a constant eruptive rate.
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Bebbington and Lai (1996a) were critical of Ho’s method and argued for a more gen-
eral approach. They especially questioned the use of a non-stationary monotonic-trend
model in the face of the available and potentially incomplete data arguing that a mono-
tonic trend parameter would likely overestimate the underlying increase in activity with
data sets that become more complete with time. They subjected the same data set consid-
ered by Ho (1991) to a renewal process. They proposed a generalized Weibull distribution
and log-normal distribution for the common distribution D describing inter-arrival times,
noting that while the exponential distribution represented pure random behaviour as es-
poused by the memoryless trait unique to the distribution, the log-normal distribution
represented periodicity and the Weibull distribution represented both periodicity and
clustering. They found the Weibull renewal process produced more plausible results than
Ho’s model but found log-normal inter-arrival times untenable.

Bebbington and Lai (1996b) followed up on their earlier e�orts by using a general Pois-
son process and Weibull renewal process to study the activity of Mt. Ruapehu and Mt.
Ngauruhoe in New Zealand. They found that a homogeneous Poisson process (where D
is an exponential distribution) described the behaviour of Ngauruhoe well but Ruapehu
showed a more complex eruption pa�ern even though fairly reasonable forecasts were ob-
tained. The study showed no correlation between the eruptive behaviour between these
two closely neighbouring volcanoes. Ho (1992) had in fact used the type of renewal mod-
els suggested by Bebbington and Lai (1996a, 1996b), using one such to give forecasts on
the activity of Vesuvius where he defined D as a gamma distribution and the frequency
distribution of eruptions in a given interval of equal size governed by a negative binomial
distribution.

Salvi et al (2006) analysed the lateral (flank) activity of Mt. Etna over the last five cen-
turies with the aim of defining a space-time distribution and obtaining estimates of lava
flow hazard. The conclusion reached was that a non-homogeneous Poisson process was
a likely model considering that there was strong statistical evidence for increasing in-
tensity, notice being taken of the increase in the number of eruptions over the period of
20 years prior to the study. This result was corroborated by Smethurst et al (2009), who
found a nearly linear increase in intensity from the 1950s and li�le evidence of period-
icity. The findings of the two studies contradicted those of Mulargia et al (1985), who
had found a general Poisson model suitable. This was a�ributed to use of an updated
time series and indicated the need for re-examination of past models based on improved
catalogues.
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Marzocchi and Zaccarelli (2006) were skeptical of past studies that relied on data from
one or a few volcanoes. They argued that it was di�icult to gauge whether the behaviour
noticed was generic or represented activity specific to the system studied. They opted
to use a more diverse catalogue of volcanoes from all over the world in order to obtain
results that reconciled the universal and peculiar of di�erent eruptive styles within the
framework of Poissonian modelling. Their study came to the conclusion that there were
two competing eruptive regimes: time clustering of short inter-event times following a
time-dependent model characteristic of open conduit systems and randomness of long
repose times associated with closed conduit systems behaving according to a Poisson
process. Gusev (2008) also observed clustering in time and size of eruptions of similar
order with an event rate non-uniform in time. He posited the existence of an underlying
global mechanism whose distribution was not well understood.

Mendoza-Rosas and De la Cruz-Reyna (2009) averred that the Bebbington and Lai (1996b)
approach was useful but found it complex in its calculation and proposed a simpler model
for repose times. They opted for a mixed exponentials approach to study Colima and
Popocatépetl volcanoes in Mexico and compared the results to those of a Weibull distri-
bution. This approach involved modelling non-stationary eruptive series with di�erent
occurrence rates as a sum of exponential random variables. They found that their ap-
proach fared be�er and was easier in application than the Weibull renewal process and
recommended their method when eruption rates had well-defined pa�erns evident from
a cumulative series of arrivals.

Dzierma and Wehrmann (2010) also chose a dual approach and used both the homoge-
neous and non-homogeneous process on ten volcanoes in the South Chile Volcanic Zone
with the aim of forecasting the likelihood of future eruption. They modelled repose times
using the exponential distribution, Weibull distribution and log-logistic (Pareto III) dis-
tribution. They were able to show that each volcano was be�er fi�ed by a particular
distribution, that is, the nature of D appeared to be unique depending on the volcano
considered. This further highlighted the issue of volcanoes having their own individual
eruptive regimes even for volcanoes in general proximity to each other. Their study also
raised the issue of the delineation of di�erent eruption regimes of a single volcano, espe-
cially in light of historically incomplete data.
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The use of a log-logistic distribution to model interval data already had precedence. Con-
nor et al (2003) had approached the issue of modelling of repose times from the point of
view of the balance of competing geological processes operating in a volcanic conduit
system at di�erent times and argued that any model should take into account. To that
e�ect they used a log-logistic model to study a curtate eruption sequence of the then
highly active Soufriere Hills on the island of Montserrat. Their model produced an excel-
lent fit and they a�ributed this to the fact the parameters of the model were linked to the
underlying geological processes in a meaningful way. They stated that the elegance of
the log-logistic distribution was that some parameters worked to increase probability of
an event in time while others working on a di�erent time scale operated in the opposite
direction, operating in a similar fashion to the shape parameter of a Weibull model. They
were, however, wary of modelling repose times using Weibull failure models, because of
their unreliability in explaining eruptive pa�erns with significant variation.
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Chapter Three

Methodology

3.1 Introduction

This chapter presents the tests used to validate the data in order to ascertain that the
assumptions of Poisson processes are met. The method of maximum likelihood estima-
tion is elaborated upon, followed by the inversion simulation method to be used in the R
algorithm. Finally, the goodness-of-fit statistic to be used is briefly outlined.

3.2 Data Validation

Temporal Poissonian processes are built on a number of assumptions. Events are assumed
to occur singly, i.e., over an infinitesimally small period of time only one event can occur.
A point of reference is needed so it is also assumed that at the start of observation there is
almost certainly no chance of observing an arrival. These arrivals occur randomly in time
and of each other. The type of Poisson process determines whether arrival is constant in
time or time-dependent and hence whether the process is stationary or non-stationary.
The first two assumptions are axiomatic; the other assumptions were tested to see if the
eruption data considered fit into a Poissonian framework. This took the form of plots and
formal statistical tests.

3.2.1 Testing for Randomness of Arrivals

To test if arrivals depend on date Brown et al (2004) suggested choosing a short inter-
val of time over which λ (t) is plausibly constant. If λ (t) = λdate is constant on this short
interval, then the counts over an extended period of time are approximately uniform
in distribution as a function of date. The implication is that an eruption can occur on
any given calendar day, thus making the arrival process random in time. A plot of the
eruption data arranged as above should show a rectangular shape for uniform data. The
Kolmogorov-Smirnov (K-S) one-sample test (see Section 3.5 for more details) was used to
test this assumption. Below are the hypotheses.
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H0: Eruption data arranged by week is uniform in distribution

vs

H1: Eruption data arranged by week is not uniform in distribution

3.2.2 Testing for Independence of Arrivals

For events to be said to be occurring independently of each other Brown et al (2004) stated
that the inter-arrival times need to be independent of ordering and serially uncorrelated.
They suggested not only checking for independence of the raw inter-event times but also
of their various transformations. The hypotheses are shown below.

H0: Inter-event times (and their transformations) are serially uncorrelated

vs

H1: Inter-event times (and their transformations) are serially correlated

Two statistics were used to test this assumption: the co-e�icient of determination and
the Ljung-Box statistic.

The co-e�icient of determination R2 measures the proportion of total variation explained
by the regressor(s) in the regression model, in this case a regression of inter-event times
against their index of ordering.

R2 = 1− SSE
SST

(22)

where SSE is sum of squared errors and SST is total sum of squares.
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Arrivals are judged as independent of ordering and serially uncorrelated if regression pro-
duces a poor fit as evidenced by a low R2.

The Ljung-Box statistic is shown below.

Qk = n(n+2)
k

∑
j=1

r j2

n− j
(23)

where r j is the sample autocorrelation co-e�icient at lag j, k is the lag order and n is the
sample size. The statistic has a χ2 distribution with k degrees of freedom.

3.2.3 Testing for Stationarity

Dzierma and Wehrmann (2010) suggested testing stationarity by computing moving av-
erages for repose times and plo�ing them as a function of time. For a formal test the
Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test is utilized to see if a time series is sta-
tionary around a mean or linear trend. The KPSS test decomposes a time series into a
deterministic trend, a random walk and an error term. The hypotheses to be tested were
as follows.

H0: Eruption data is trend stationary

vs

H1: Eruption data is not trend stationary
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3.2.4 Testing for Exponentiality of Transformed Inter-event Times

The exponentiality of inter-arrival times of a HPP was presented in Chapter 2. To test
whether a time series is generated by a Poisson process Brown et al (2005) suggested
transforming the empirical event times into those of a HPP by assuming a piecewise-
constant arrival rate. The method is discussed below.

The duration of time of interest is broken down into relatively short blocks of time, prefer-
ably of equal length. These blocks should be short enough to assume a constant arrival
rate but long enough to include between five and seven observations. Arrivals are then
considered within these block in either a vertical manner (arrivals in the same time block)
or a horizontal manner (arrivals staggered across blocks). The first approach tests for ho-
mogeneity within a block while the second approach tests for homogeneity across blocks.
The second approach was the approach of interest.

Divide the time period of length N into blocks of equal length L such that J(i) represents
the number of events in the i-th block. Define the starting point for each block as Ti0 = 0
and let Ti j denote the j-th ordered arrival time in the i-th block. Finally define Ri j such
that

Ri j = (J(i)+1− j)(−ln(
L−Ti j

L−Ti( j−1)
)); j = 1,2 ............ J(i) (24)

Ri j represents iid exponential random variables with unit mean. This is how that comes
about. Let Ui j represent the j-th unordered arrival time in the i-th block. Assuming a
constant arrival rate in each block then conditional on J(i), Ui j ∼ iid Uni f (0,L] andTi j =
Ui( j) (see p. 10). It then follows that (see Lehmann (1986), Problem 6.14.33 [345-346])

L−Ti j

L−Ti( j−1)
∼ iid Beta( j,J(i)+1− j) (25)
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A change of variable yields the exponential distribution of Ri j conditional on J(i). The
null hypothesis then becomes that Ri j are iid unit-mean exponential random variables.

Once the transformed event times are obtained a diagnostic plot can be produced and
augmented with a formal test, in this case the K-S one-sample test.

3.3 Parameter Estimation and Model Selection

In this section we examine the estimation of the intensity function parameters using
MLE. This is followed by a brief description of the Akaike Information Criteria (AIC) as a
method of model selection.

3.3.1 Maximum Likelihood Estimation

MLE involves optimizing the likelihood function with the goal of estimating parameters
which make it more probable to observe the given data. The advantage of MLE it takes
into account the real distribution of the data and is robust in case of deviation from nor-
mality, a key assumption of OLS estimation (Myung, 2003).

Let us consider a random sample from an unknown population. MLE a�empts to make
inference about the population that generated that sample. Assume we have a set of
iid random variables (t1, t2..............tn), each indexed by a unique parameter vector θ =
{θ1,θ2.............θk} whose values can lie anywhere in the parameter space Θ. To obtain
the ML estimates of θ we need to get the likelihood f unction, which is the joint distribu-
tion of the observed sample.

L (θ ; t) = ∏
N
i=1 fi(ti;θ) (26)
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The goal of MLE is to find the specific values that maximize the likelihood function over
the parameter space, i.e,

θ̂ = argmax
θ∈Θ

L (θ ; t) (27)

This maximum point is called the maximum likelihood estimate.

This entails the selection of parameter values that make the observed data most proba-
ble. It is customary and convenient to deal with the log-likelihood, the natural logarithm
of the likelihood function.

`(θ ; t) = lnL (θ ; t) (28)

If `(θ ; t) is a di�erentiable function then the maxima are the solutions to the likelihood
equations obtained by ge�ing the derivative with respect to θ and se�ing the results to
zero, i.e.,

∂`

∂θ1
= 0,

∂`

∂θ2
= 0...........................

∂`

∂θk
= 0 (29)

Two problems might arise. For some models explicit solutions for θ̂ can be derived. For
other models the likelihood equations are intractable; no closed-form solutions exist and
they can only be solved using numerical methods such as Newton-Raphson estimation.
The other problem is the possibility of the existence of multiple solutions to the likelihood
equations. A particular solution is defined as a maximum if the matrix of second-order
partial derivatives of the log-likelihood, known as the Hessian, as shown below,
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H =



∂ 2`
∂θ1

2

∣∣∣∣
θ=θ̂

∂ 2`
∂θ1∂θ2

∣∣∣∣
θ=θ̂

. . . ∂ 2`
∂θ1∂θk

∣∣∣∣
θ=θ̂

∂ 2`
∂θ2∂θ1

∣∣∣∣
θ=θ̂

∂ 2`
∂θ2

2

∣∣∣∣
θ=θ̂

. . . ∂ 2`
∂θ2∂θk

∣∣∣∣
θ=θ̂

...
...

. . .
...

∂ 2`
∂θk∂θ1

∣∣∣∣
θ=θ̂

∂ 2`
∂θk∂θ2

∣∣∣∣
θ=θ̂

. . . ∂ 2`
∂θk

2

∣∣∣∣
θ=θ̂


(30)

is negative semi-definite at θ̂ , indicating local concavity.

3.3.2 Maximum Likelihood Estimators of Models Selected

This section presents the method of MLE with respect to the three Poisson models con-
sidered, namely: the HPP; the log-linear NHPP; and the Weibull power NHPP.

The joint distribution of arrival times conditional on number of arrivals was derived in
Section 2.2.3 (see Eq. 16) and was found to be as follows:

fT (ti|N(t) = n) = e
−

T∫
0

λ (u)du n

∏
i=1

λ (ti) (31)
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Homogeneous Poisson Process
The intensity function for a HPP is as shown below.

λ (t) = λ (32)

The likelihood function is

L (λ ; t) = e
−

T∫
0

λdt n

∏
i=1

λ

= e−λT
λ

n

(33)

and the log-likelihood becomes

`(λ ; t) = nlnλ −λT (34)

Ge�ing the derivative wrt λ and se�ing the result to zero yields the ML estimator of a
HPP, which is

λ̂ =
n
T

(35)
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Log-Linear Non-Homogeneous Poisson Process
The intensity function for a log-linear NHPP is as shown below.

λ (t) = eγ0+γ1t (36)

The likelihood function is

L (γ0,γ1; t) = e
−

T∫
0

eγ0+γ1tdt n

∏
i=1

eγ0+γ1ti

= e−
eγ0
γ1

(eγT−1)enγ0+γ1 ∑
n
i=1 ti

(37)

and the log-likelihood becomes

`(γ0,γ1; t) = nγ0 + γ1

n

∑
i=1

ti−
eγ0

γ1
(eγ1T −1) (38)

Ge�ing the derivative wrt γ0 and γ1 and se�ing the results to zero yields

γ̂0 = ln(
nγ̂1

eγ̂1T −1
)

n

∑
i=1

ti +
n
γ̂1

=
nTe ˆγ1T

e ˆγ1T −1

(39)

which have no closed-form solution.
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Weibull Power Non-Homogeneous Poisson Process
The intensity function for a Weibull power NHPP is as shown below.

λ (t) =
β

η
)(

t
η
)β−1 (40)

The likelihood function is

L (β ,η ; t) = e
−

T∫
0
( β

η
)( t

η
)β−1dt n

∏
i=1

(
β

η
)(

ti
η
)β−1

= e−(
T
η
)β β n

ηβn

n

∏
i=1

tiβ−1

(41)

and the log-likelihood becomes

`(β ,η ; t) = nln(β )−nβ ln(η)+(β −1)
n

∑
i=1

ln(ti)− (
T
η
)β (42)
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Ge�ing the derivative wrt β and η and se�ing the results to zero yields the ML estima-
tors of a Weibull power NHPP, which are

β̂ =
n

∑
n
i=1 ln(T

ti
)

η̂ =
T

n1/β̂

(43)

3.3.3 Akaike Information Criterion

The AIC is an estimator of resampling prediction error and therefore a measure of the
relative quality of a statistical model for a given set of data. A statistical models can
never perfectly represent the process that generated a sample; inevitably some informa-
tion gets lost in the process. AIC estimates the relative amount of information lost by
a given model and gives a score expressing this loss: the less information a model loses,
the be�er the quality of that model. In determining the amount of information lost AIC
performs a balancing act between model fit (as determined by maximized likelihood) and
parsimony (as determined by k, the dimension of the parameter vector), penalizing both
overfi�ing and underfi�ing. If a number of models are considered, then, in the most sim-
plistic sense, the model with the lowest score is the one selected (Aho et al, 2014).

Let us a consider a model with k parameters and let L be the value of the maximized
likelihood of the model. The AIC score of the model is given below.

AIC =−2lnL(θ̂)+2k (44)
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3.4 Simulation

Once the parameters have been estimated the next step is to to use them to simulate a
data set that will be compared with the sample data. The inversion algorithm used in
generating NHPP event times stems directly from the theory presented in Chapter 2.2.3.

Consider arrival times T 1 = t1,T2 = t2.......................Ti = ti. The distribution function of
(i + 1)-th inter-arrival time conditional on i arrivals takes the following form (see Eq. 17):

FW i+1(x) = 1− e−(Λ(ti+x)−Λ(ti)) (45)

Given the i-th event time, the (i + 1)-th event time is generated as the sum of the i-th
event time and the (i + 1)-th inter-arrival time distributed according to FWi+1 . Klein &
Roberts (1984) suggested the following steps when developing an algorithm for simula-
tion:

1. Initialise t = 0

2. Generate x from FW

3. Set t ← t + x

4. Deliver t

5. Return to Step 2
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If the NHPP has a rate function λ (t) this means finding x satisfying

Λ(ti + x)−Λ(ti) =
ti+x∫
ti

λ (y)dy =−ln(1−u) (46)

where u ∼ Unif (0,1).

The explanation of the algorithm is as follows. If we consider a finite interval (0, t] then
a single event can occur in this interval at any point, its random positioning following
a uniform distribution. The length of time to the event occurring follows the distribu-
tion function given in Eq. 45. If a particular random number from Unif (0,1) is generated
representing where the event falls in the interval, then all that is required is to find the
particular time value that causes the distribution function to integrate to the uniform
distribution value generated, i.e., x = F−1(u). This inter-arrival time is then be added to
the previous event time, the process being repeated until the requisite number of arrival
times is obtained. This can be done manually or using so�ware.

3.5 Goodness of Fit

The Kolmogorov-Smirnov test (K-S test) is a formal statistical test used to augment the
customary plots used to check goodness of fit. The K-S test is a non-parametric and
agnostic test used to detect di�erences between distributions. It examines a single max-
imum di�erence between distributions. If a statistical di�erence exits, the test does not
provide insight into the cause of the di�erence nor does it indicate the nature of the com-
mon distribution if there is no statistical di�erence between the two distributions. The
di�erences could be as a result of di�erence in: location; variation; skewness; kurtosis;
and modality, or presence of outliers, among other things (Daniel, 1990).
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Consider two random variables X and Y with specific distributions (not necessarily known)
from which are drawn samples of equal size n. Under the hypotheses

H0 :F(x) = F(y), i.e., the two distributions are the same

vs

H1 :F(x) 6= F(y), i.e., the two distributions are not equal

the K-S test statistic is as follows:

d = max|F(x)−F(y)| (47)

where F(x) is the empirical cdf of n iid ordered observations, F(y) is the comparison cdf of
size m and max is the maximum of the absolute di�erences of the set of ordered distances.

If the two samples come from the same distribution then the statistic d converges to zero
almost surely as n, m→ ∞. For large samples H0 is rejected at α level if

d > c(α)

√
n+m

nm
(48)

where in general c(α) =
√
−ln(α

2 )∗0.5

The one-sample version of the test is used to check whether data follows a hypothesized
distribution. Critical values for comparison are obtained from statistical tables.



36

It should be noted that the test only applies to continuous distributions and tends to be
more sensitive near the centre of the distributions than at the tails. However, the test
becomes more robust if a large sample size is used, in which case the minimum bound
becomes more sensitive.
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Chapter Four

Data Analysis, Interpretation and Results

4.1 Introduction

This chapter presents the testing of assumptions of a Poisson process and fits the ob-
served data to three selected models in order to chose an appropriate one followed by
simulation of an idealized data set with which to compare the empirical data. Tests are
then carried out to check how well the data fits the model.

4.2 Source and Brief Description of the Data

The data used for the analysis was from the Smithsonian Institution’s Global Volcanism
Program. It contains information on name and index number of the volcano, eruption in-
dex number, eruption category (in this case all confirmed eruptions), dates for onset and
ending of eruptions, each eruption’s corresponding Volcanic Explosivity Index (a relative
metric developed by Newhall and Self (19282) taking the form of a gradated logarith-
mic scale which measures the strength of eruptions), dating method for each eruption
(in this case all historical observations), and longitudinal and latitudinal location of each
volcano. The data contains (in chronological order) all the known and/or documented
volcanic eruptions of the Holocene Epoch (the current geological epoch, which began ap-
proximately 12,000 years ago), a set of just under 10,000 volcanic eruptions. However, a
choice was made to limit the project to confirmed eruptions from 1919 to 2019, represent-
ing 69 eruptions. The justification for this judgement call is fourfold: the historical record
is be�er documented in the last century as a result of increased surveillance of volcanoes,
as well as be�er scientific methods; the majority of eruption dates are a�ested (the seven
missing data points were obtained by interpolation); the sample size is su�iciently large;
and the time span encompasses the recent historic component of activity.
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4.3 Data Validation

The first task was to produce a plot to have a sense of how the eruptions were arranged
in time.

Figure 2. Step Plot of Cumulative Number of Eruptions against Time

The data shows two noticeable regimes: a regime featuring a number of long reposes
and another (starting from around 1980) dominated by shorter reposes. The slight cur-
vature was an indication that the eruption rate was non-constant. To check if this was
the case the intensity was plo�ed as a function of time using a non-parametric method
with points smoothed out using a Gaussian kernel function (see Gelissen (2016a) for the
R code used in obtaining the intensity).



39

Figure 3. Line plot of Empirical Intensity

4.3.1 Testing for Randomness of Arrivals

A short interval of approximately a week (taken to be 8 days on average since some
months contain 31 days) was chosen. The bar plot below shows Week 1 eruption counts
over the 100-years data set, representing 18 eruptions.

Figure 4. Bar Plot of Eruption Counts by First Week of Occurrence
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The bar plot shows some uniformity in the counts but not conclusively. The K-S test
was used to check the uniformity assumption by comparing the empirical cdf with the
uniform cdf under the null hypothesis that there was no di�erence between the two dis-
tributions. Since d = 0.139 <d18,0.05 = 0.453, the null hypothesis was not rejected and
the conclusion taken that Week 1 counts were uniform in distribution at 5% level of sig-
nificance. An investigation of the other three intervals also led to the same conclusion
though Week 2 showed a result on the boundary of statistical significance. This was be-
cause the calendar date 16th recorded 6 counts, quite a significant deviation from the
mean of Week 2. There was no a priori reason to believe that this date was particularly
special and it was concluded that its frequency was a ma�er of chance. The results are
shown in the table below.

n d dn,0.05

Week 1 18 0.139 0.309

Week 2 12 0.375* 0.375

Week 3 20 0.200 0.294

Week 4 19 0.075 0.301

Table 1. Results for K-S Test for Uniformity on the Four Short Intervals
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4.3.2 Testing for Independence of Arrivals

Three transformations of the inter-arrival times were chosen: natural logarithm; power;
and first order di�erencing. Independence was visually demonstrated by plo�ing inter-
event times against their position in the order of events. The four plots generated all
showed ’white noise’ behaviour typical of random data.

Figure 5. Plot of Raw Inter-Event Times
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Figure 6. Plot of Natural Logarithm of Inter-Event Times

Figure 7. Plot of Squared Annualized Inter-Event Times
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Figure 8. Plot of Di�erenced Inter-event Times

The plot of inter-event times against their first-order lagged values was used to augment
the previous plots.

Figure 9. Plot of Inter-Event Times against First-Order Lagged Inter-Event Times
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The argument for independence of arrivals was reinforced as the sca�er plot showed no
distinct pa�ern, which suggested that successive inter-arrival times were not correlated
with each other.

Two procedures were carried out to confirm what was observed visually: regression of the
inter-event times against their ordering and the Ljung-Box test. The null hypothesis for
the Ljung-Box test was that arrivals were independent with no serial correlation for the
first-order lag (any significant non-zero correlations are a result of chance). The results
of the two tests are shown below.

n Multiple R2
Ljung-Box Test p value

Raw Inter-event Times 69 0.0500 0.7423

Natural Logarithm of Inter-event Times 69 0.0142 0.8069

Squared Annualized Inter-event Times 69 0.0589 0.9061

First Order-Di�erenced Inter-event Times 69 0.0004 0.0007
∗

Table 2. Results of Tests for Serial Correlation of Various Transformations of the Inter-event
Times

From the results it was concluded that inter-event times and their transformations are
independent and arrivals are not serially correlated from one observation to the next.
(though di�erenced inter-events times showed a deviant result for the Ljung-Box test).
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4.3.3 Testing for Stationarity

The plot below shows five-year moving averages for repose times.

Figure 10. Line plot of Five-Year Moving Averages of Inter-Event Times

The shape of the line indicated stationarity; noticeably, the moving averages dri� away
from the mean (shown by a violet dashed line) towards the end, a sign of time trend. The
KPSS test for trend stationarity on cumulative event times, however, returned a negative
result (p value < 0.01) and it was concluded that the data was non-stationary at 5% level
of significance.
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4.3.4 Testing for Exponentiality of Transformed Inter-Event Times

For the analysis exponentiality was tested on the eruption time series for the period
1994 - 2019 with five blocks of equal length five years. A probability-to-probability (p-p)
exponential plot was then produced to check the validity of the null hypothesis. The p-p
exponential plot is shown below.

Figure 11. P-P Plot of Transformed Event Times from 1994 - 2019

The points fall mostly on or near the 45◦ line indicating that the null hypothesis should
not be rejected and it was concluded that the transformed time points were iid exponen-
tial. To compliment the visual findings, the K-S test was carried out to determine if the
transformed event times were the random realizations from an exponential distribution.
The K-S test statistic obtained was d = 0.00823, which was compared with the table value
d28,0.05 ≈ 0.257, again leading to non-rejection of the null hypothesis. Similar investiga-
tion of other time periods came to the same conclusion.
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4.4 Parameter Estimation and Simulation

MLE was used to obtain parameter estimates for the three models (R codes used in fi�ing
the data adopted from Gelissen (2016a) ). The results are shown in the table below.

Parameter Estimates ` AIC

HPP λ̂ = 0.69 -94.60339 191.2068

Log-Linear NHPP γ̂0 = -0.911036781 -91.81112 187.6222

γ̂1 = 0.009976769

Weibull Power NHPP β̂ = 1.167440 -93.81759 191.6352

η̂ = 2.660038

Table 3. Results of Model Fi�ing

Based on the AIC the best model is the log-linear NHPP. The fi�ed models and empirical
data were plo�ed on the same axes to see if the choice of the log-linear NHPP was justi-
fied.

Figure 12. Plot of Cumulative Number of Eruptions Against Observed and Fi�ed Event Times
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The plot shows that the log-linear NHPP was the best model of the three considered: it
gave the best fit to the data.

4.5 Goodness of Fit

The log-linear intensity function was used to simulate a set of NHPP event times (R code
used in the simulation adopted from Gelissen (2016b)). The eruption data was compared
with the simulated data to check how well the model performed. This was done visually
and through the K-S test.

Figure 13. Plot of Cumulative Number of Eruptions Against Observed and Simulated Event
Times
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The plot showed a fairly good fit. The K-S test was performed to confirm the visual con-
clusion. The null hypothesis was that the two event times were similar in distribution.
The K-S test statistic was d = 0.0875 compared against a critical value of d = 0.236 (p value
= 0.9315). The null hypothesis was therefore not rejected and the conclusion drawn was
that the two event times have similar distributions at 5% level of significance.

4.6 Prediction

The log-linear model was then used to forecast the cumulative number of eruptions in
the next hundred years, together with confidence intervals for the estimates. The plot
shown below illustrates this.

Figure 14. Plot of Cumulative Number of Eruptions Against Times

We might want, for example, to predict the number of eruptions between January 2019
and December 2034, i.e., E[N(125)−N(100)]. The model predicts that there will be about
31 (whole-number approximate of 30.96372) eruptions. This result was obtained by using
Eq. 13. The confidence interval of this estimate is (18.49463, 51.83949). The standard er-
rors were calculated by R using the delta method formula, i.e.,
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Var[ ˆΛ(t)] = (∂ ˆΛ(t)
∂θ

∣∣∣∣θ=θ̂
)2Var[ ˆλ (t)]

Var[ ˆλ (t)] is, in fact, the inverse of the Hessian and the square root of the diagonal gives
the standard errors of the parameter estimates.

By the partitioning of a Poisson process a forecast on the number of eruptions of a partic-
ular volcano and a of particular VEI can be issued. The number of observed eruptions for
Nyamuragira, for example, are 33 and so the model predicts it will have approximately
15 eruptions [(33/69)*31] from January 2019 to December 2034. The number of eruptions
of VEI≥ 3 are 13 and so the model predicts approximately 6 eruptions [(13/69)*31] in the
next 25 years.

Probabilities can also be computed for a particular number of eruptions over an interval
of choice. For instance, the probability of two or more eruptions from January 2019 to
December 2021, i.e., Pr(N(103)−N(100)≥ 2)≈ 0.8439. This result was calculated using
Eqs. 13 and 11. The plot below illustrates predictions for three di�erent cumulative erup-
tions.

Figure 15. Plot of Predicted Probabilities for a 25-Year Period for One or More, Two or More and
Three or More Eruptions
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Chapter Five

Summary, Conclusion and Recommendations

5.1 Introduction

This chapter concludes the project by presenting a summary of the results, gives the chal-
lenges encountered and o�ers recommendations for further work in the area.

5.2 Summary

This project sought to find a Poisson model most appropriate in describing a curtate
catalogue of eruptions. Before model fi�ing was carried out the major assumptions of
Poisson models were elaborated upon and the eruption data was found to meet those as-
sumptions. Of the three models considered a NHPP with a log-linear intensity function
was found to best explain the data. The most parsimonious models are usually preferred
and in this case the most parsimonious model considered was the single-parameter HPP.
However, it was not justified with respect to the model results. In fact, the data validation
process established that the data was non-stationary, making the HPP the least obvious
candidate for selection as a model. While the quality of the eruption data was not called
into question because it was beyond the scope of the project, the issue of incomplete
eruption records (which usually favour rejection of stationary models) is a long stand-
ing concern in statistical volcanology. Indeed, the data considered showed a number of
long reposes in the early record. The Weibull power function performed the poorest. Of
note, however, is the fact that shape parameter β = 1.167440. Ho (1991) identified this
parameter as the indicator of waxing or waning of eruptive activity. Because β > 1, it
was concluded that there was increase in volcanic eruptions with time. This coincides
with the increasing trend that the log-linear model predicts. The forecasting possibili-
ties of the log-linear model were demonstrated with the model predicting of an increase
in eruptive activity with time though the monotonic-increasing nature of the model (in
general contravention of the real-life observable behaviour of volcanoes) means that only
short-term forecasting of, say, one or two decades, will give plausible results.
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5.3 Conclusion

The project was able to meet all four objectives and the log-linear NHPP model with in-
tensity function λ (t) = exp(0.911036781+0.009976769t) was shown to be statistically
tenable and a good fit was found between the observed data and the simulated data with
95% confidence.

5.4 Recommendations

The model results forecast an increase in activity and it is only a ma�er of time before a
serious eruption occurs again. The last major eruption occurred in the East African region
was in June 2011. Nabro in Eritrea animated and erupted violently despite having had no
historic eruptions and being thought to be extinct by the scientific community. The re-
sulting ash cloud was dispersed northwesterly, disrupting air travel throughout the Horn
of Africa and the Middle East. The eruption caused thousands to be evacuated and led
to some fatalities (Global distribution of volcanism: Regional and country profiles, 2015). A
volcanic eruption in a more densely populated area would have wreaked more havoc. It is
recommended that East African governments and their disaster management authorities
incorporate these findings in their disaster preparedness frameworks and hazard assess-
ments and institute robust monitoring of the volcanoes in their jurisdictions to avoid
being caught unawares in event of another major, possibly more violent eruption.

5.5 Challenges Encountered

The main challenge encountered was the completeness of the data set considered. A few
of the dates in the sample extracted were approximate and the dates for a few data points
had to be interpolated, which no doubt reduced the accuracy of the model results. The
near-total lack of documentation of historical eruptions meant that the project had to be
constrained to a time span where the historical record is more reliable.

5.6 Future Work

Three volcanoes (Nyamuragira, Ol Doinyo Lengai and Nyiragongo) represent about 80%
of all eruptions in the East African region in the last century. A narrow focus on these
three volcanoes might yield useful results.
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Appendix: List of Volcanoes

Name Location Number of Eruptions
∗

Date of Last Eruption
∗

Alu-Dala�lla Ethiopia 1 3-11-2008

Ardoukoba Djibouti 1 7-11-1978

The Barrier Kenya 1 31-12-1921

Dabbahu Ethiopia 1 26-9-2005

Dallol Ethiopia 2 4-1-2011

Erta Ale Ethiopia 3 2-7-1967

Ol Doinyo Lengai Tanzania 15 9-4-2017

Manda Hararo Ethiopia 2 28-6-2009

Manda-Inakir Djibouti/Ethiopia 1 31-12-1928

Nabro Eritrea 1 13-6-2011

Nyamuragira DRC 33 18-4-2018

Nyiragongo DRC 7 17-5-2002

Visoke DRC/Rwanda 1 1-8-1957

*for time period considered
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