EFFECT OF WORKING CAPITAL MANAGEMENT ON FIRM VALUE OF COMPANIES LISTED AT THE NAIROBI SECURITY EXCHANGE, KENYA

\mathbf{BY}

ABDISHAKUR AHAMED MOHAMED

A RESEARCH PROJECT PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF MASTER OF SCIENCE IN FINANCE, SCHOOL OF BUSINESSUNIVERSITY OF NAIROBI

OCTOBER 2020

DECLARATION

This research project is my original work and it has never been presented in any other university
for the award of any degree
Signature Date
Abdishakur Ahamed Mohamed
D63/11774/2018
Supervisor
This research project has been prepared and submitted for examination with our approval as the
University Supervisors.
Signature Date
Mr. James Karanja
Senior Lecturer, School of Business,
University of Nairobi

ACKNOWLEDGEMENT

I thank God for providing me with an opportunity, strength, health, knowledge and favor to complete this research project. I am heartily thankful and appreciate my supervisor Mr. James Karanja without whose guidance and supervision, this project would not have been accomplished.

I also thank my very special friends Khadra Ahmed, Salim Mohamed and Amal Kalif for their help and encouragement.

Lastly and not least, am also indebted to my MSC. Finance colleagues and friends and all those who assisted me in one way or another throughout this period of study and though I may not name each one of you individually, your contribution is recognized and appreciated immensely. I owe you my gratitude. To you all, God bless

DEDICATION

This work is dedicated to my dear brother Ilyas Ahmed, my mother Asho Dahir, my father Ahmed Mohamed and all my family members for their assistance in terms of financial and love.

TABLE OF CONTENTS

ACKNOWLEDGEMENTii	i
DEDICATIONiv	V
ABBREVIATIONSx	i
ABSTRACTxi	i
CHAPTER ONE: INTRODUCTION	1
1.1 Background of the Study	1
1.1.1 Working Capital Management	2
1.1.2 Value of the Firm	4
1.1.3 Working Capital Management and the Value of the Firm	5
1.1.4 Firms Listed at the Nairobi Securities Exchange	5
1.2 Research Problem	7
1.3 Research Objective	9
1.4 Value of the Study	9
CHAPTER TWO: LITERATURE REVIEW10	0
2.1 Introduction)
2.2 Theoretical Review)
2.2.1 Keynesian Liquidity Preference Theory	Э
2.2.2 The Conservative Theory of Working Capital	1
2.2.3 Aggressive Theory of Working Capital	1

2.3 Determinants of the working capital	12
2.3.1 Working capital management	12
2.3.2 Nature of business	13
2.3.3 Firm Size	13
2.2.4 Terms of credit	14
2.2.5 Seasonal requirements	15
2.4 Empirical Literature Review	15
2.6 Conceptual Framework	19
2.5 Summary of Literature and Research Gaps	19
CHAPTER THREE: RESEARCH METHODOLOGY	21
3.1 Introduction	21
3.2 Research Design	21
3.3 Target Population	21
3.4 Data Collection	21
3.5 Data Analysis	22
3.5.1 Model Specification	22
3.5.2 Operationalization of Variables	23
3.5.3 Test of Significance	23
3.5.4 Diagnostic Tests	24
CHAPTER FOUR: DATA ANALYSIS, RESULTS, AND FINDINGS	26

4.1 Introduction	26
4.2 Diagnostic Tests	26
4.2.1 Normality Test	26
4.2.2 Homoscedacity Test	27
4.2.3 Test for Multicollinearity	28
4.2.4 Tests for Autocorrelation	28
4.2.5 Unit Root Test	29
4.2.6 Test for Random and Fixed Effects	34
4.3 Inferential Statistics	35
4.3.1 Correlation Analysis	36
4.3.2 Multiple Linear Regression	36
4.4 Interpretation and Discussion of Findings	38
CHAPTER FIVE: SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS	49
5.1 Introduction	49
5.2 Summary of Findings	49
5.3 Conclusion	50
5.4 Recommendations	51
5.5 Recommendations for Further Study	52
5.6 Limitations of the Study	53
REFERENCES	54

APPENDICES	
Appendix 1: Companies Listed at the Nairobi Securities Exchange	57
Appendix II: Data Collection Sheet	62
Appendix III: Research Data	63

LIST OF TABLES

Table 3.1: Operationalization of Study Variables	23
Table 4.1: Shapiro-Francia Test for Normality	27
Table 4.2: Breusch-Pagan/Cook-Weisberg Test for Homoscedacity	27
Table 4.3: VIF Multicollinearity Statistics	28
Table 4.4: Unit Root Test for Firm Value	29
Table 4.5: Unit Root Test for Inventory Conversion Period	30
Table 4.6: Unit Root Test for Average Collection Period	30
Table 4.7: Unit Root Test for Average Payment Period	31
Table 4.8: Unit Root Test for Cash Conversion Cycle	32
Table 4.9: Unit Root Test for Firm Size	33
Table 4.10: Unit Root Test for Leaverage	33
Table 4.11: Unit Root Test for Sales Growth	34
Table 4.12: Hausman Test of Specification	35
Table 4.13: Correlation Analysis	36
Table 4.14: Fixed Effects Panel Multiple Linear Regression	37

LIST OF FIGURES

Figure 2.1: Conceptual Framework	
----------------------------------	--

ABBREVIATIONS

ACP Average Collection Period

APP Average payment period

ARP Account Receivable Period

CA Current Asset

CL Current Liabilities

CMA Capital Market Authority

DIO Days inventory outstanding

DPO Day's payable outstanding

DSO Days sales outstanding

ICP Inventory collection period

KCB Kenya Commercials Bank

KNBS Kenya National Bureau of Statistics

MPS Market price per share

NSE Nairobi Securities Exchange

NTC Net trade cycle

SMEs Small and Medium Enterprises

TA Total Asset

WC Working Capital

WCM Working Capital Management

ABSTRACT

Proper managing of working capital enhances the value of the shareholders. Indeed, the key cause for the failure of most firms, partnerships and small firms is poor working capital management, which entails inventory, receivables, and payables management. The objective of this research is to establish the effect of working capital management on firm value of firms listed at the Nairobi Securities Exchange, Kenya. It also aimed at reviewing the increasing body of theoretical and empirical studies that have endeavored to examine the range of magnitude and effects of the working capital management on corporate value. The target population was all the listed firms at the Nairobi Securities Exchange. Secondary sources of data were employed. Panel data was utilized, data was collected for several units of analysis over a varying time periods. The research employed inferential statistics, which included correlation analysis and panel multiple linear regression equation with the technique of estimation being Ordinary Least Squares (OLS) and so as to establish the relationship of the working capital management and corporate value while incorporating the control effect of firm size, leverage, and sales growth. The study findings were that average collection period, average payment period, firm size, and leverage are negatively significantly associated with firm value. Additionally study findings revealed that the various working capital management practices, firm size, leverage, and sales significantly influenced firm value and they can be utilized to significantly predict firm value. The final study finding was that only firm size had a significant relationship with firm value, t has a significant negative influence on firm value. Policy recommendations were made to the CMA and NSE, and by extension, the National Treasury, to formulate and enforce rules and regulations on working capital management since it has been established that it influences the value of quoted firms. Further recommendations were made to firm management and consultants to implement working capital management in order to boost firm value. Additional recommendations were made to other capital markets' stakeholders like investment banks, equity analysts, and individual investors to search for firms with good working capital management to invest or recommend to invest. Final recommendations were made to firm management and consultants not to concentrate on any one WCM component in isolation but to employ wholesomely good working capital management practices.

CHAPTER ONE: INTRODUCTION

1.1 Background of the Study

The working capital management performs a critical part for the success and failure of the firm since it controls the profitability and liquidity position of the firms. Proper managing of working capital constituents enhances the value of the shareholders. Indeed, the key cause for the failure of most firms, partnerships and small firms is poor working capital management including inventory, receivables and payables management. In order to avoid liquidity risk, it is vital for a firm to have efficient mechanisms of managing the constituents of working capital (Mweta 2018). Rendering to the Kenya National Bureau of Statistics (KNBS), the recent failure of companies such as Nakumatt supermarkets, tuskys supermarkets and Athi river mining has been traced to how liquidity occasioned by poor Working Capital Management(WCM). Insufficient WCM leads to the firm's cash flow being poor causing the company to inability to meet day to day activities (Kiganda, 2016). The value of the firm determines the overall equity and debt position of the enterprise based on the market indicators. The value of the firm incorporate the equity and the liability portion of the balance sheet of the firm as determined by the market forces (Tauringana & AdjapongAfrifa, 2013).

The liquidity preference theory provides the rationale as to why people should have cash at their disposal. Some of the reasons why people hold cash are to act as a precaution against future price increase and to meet the current expenditures. In essence, holding on cash would create liquidity which is key component of working capital management. In fact, cash itself is a component of WCM (Keynes, 1936). The conservative theory of WCM on the hand argue that firm leverage on long term sources of funds to finance its permanent assets (Weston & Eugene, 1975). Conversely, the aggressive theory of working capital provides the explanation as to why firms anticipate

investing in high risk with high use of short term funding in finance of fixed and current assets (Belt, 1979). Thus, a conservative WCM policy focuses on reduction of return and possible risk while the essence of the aggressive policy is to generate more returns to the shareholders and greater risk.

The stock and financial market play a crucial role in the economic growth of the country. The most important function of financial sector is to promote economic development. It is clear that a well-functioning capital and stock market enhance economic efficiency, investment and growth (Olweny, 2014). This means the performance of listed firms at Nairobi security exchange (NSE) is important to the economic growth of country. Working capital presents a big opportunity for listed companies at NSE to release cash from their balance sheet and operate more effectively. Actually well-managed working capital elements provide firms with growth without need for additional funding (Olweny, 2014).

1.1.1 Working Capital Management

Working capital management is a strategic decision that relates with the assets and liabilities that extent for a short period of less than a year. This is a significant decision because it effects extends to the liquidity, solvency and profitability position of the firm (Oluoch, 2017). Working capital management relates with the decisions concerning how the firm optimally balances amongst the current assets and the current liabilities which are the obligations arising in the course of the business. This is a significant decision, because it influences the company's view of liquidity risk. Apart from the current assets and liabilities, the cash conversion cycle is another important component of WCM (Nzioki, Kimeli, Abudho & Nthiwa, 2013). Net trade cycle is another proxy that can be used to measure WCM and this is as same as the CCC (Shin & Soenen, 1998). In NTC,

the three building blocks of WCM (account payable, receivables and inventories) are expressed in proportion to turnover in percentage form (Shin & Soenen, 1998). Thus, WCM management must also recognize the difference between the liquidity and the need to create value for shareholders that is a delicate deliberation (Makori & Jagongo, 2013).

Current assets include inventories, trade receivables, prepaid expenses, cash and the bank balances and the associated equivalents. Holding too much cash would limit the investment prospects of the firm and this would affect its value (Gorondutse, Ali, Abubakar & Naalah, 2017). On the other hand, if an organization maintains a lot of cash into the inventories, it may increase the built up capital which represents an opportunity costs as such funds would have been utilized to finance investment prospects of the firm. On the other hand, firms that have limited level of current assets for instance inventories would face a challenge of meeting unexpected changes in demand as well as other unforeseen risks (Kaur & Sing, 2013).

Current liabilities include the trade payables, accruals and short term loan facilities that mature in less than a year like the bank overdraft. They represent the short term sources of finances for the firm (Majeed, Makki, Salem & Aziz, 2013). A firm should be able to pay off these current liabilities on a timely basis. Sound management of the current liabilities aims to ensure that the cash outflow from the firm does not adversely affect its liquidity position. The CCC is a time frame from the point the outputs are purchased and when cash is collected from the sale (Arunkumar & Ramanan, 2013). Longer CCC requires an organization to invest a huge amount of WC and they can maximize the sales generated by the firm hence the value. The components of CCC include days inventory outstanding (DIO), the days sales outstanding (DSO), and the days payable outstanding (DPO) (Enqvist, Graham & Nikkinen, 2014).

Thus, Working capital management strives to establish a balance amongst current assets and current liabilities as the key components. WCM require an organization to put in place a plan and control for both current assets and liabilities (Naser, Nuseith & Al-hadeya, 2013). This should be done effectively to limit the possibility of failure to meet the obligations on time. However, finance managers can negotiate with the trade payables to extent repayment period while collecting account receivable at a faster pace. According to Arbidane & Ignatjeva, 2013), the best way of gauging the level of efficiency of WCM is through use of ratio analysis including quick ratio and current ratio. Thus, this study will adopt ratios in operationalizing WCM and these will include the current ratio, liquidity ratio and asset tangibility.

1.1.2 Value of the Firm

The firm value is market based measures that determine how much a business would fetch if its assets were to be disposed. It is the sum total of all the equities and debts in the firm including the preferential shares. The value of the firm is closely related with the concept of shareholder wealth maximization. Being a market based indicator, firm of the firm is the most objective gauge of the wealth of the shareholders of an entity (Ogundipe et al., 2012).

The main goal of managing organizational funds is accomplishing the objective of shareholder wealth maximization. Shareholders wealth, which is synonymous with firm value, it factors in all the benefits that a firm derives in the future be it short-term or long-term. Market value can be used to measure the performance of publicly listed firms since it requires information on the current stock prices. This gets rid of the challenge of approximating the time lag between implementation and increased productivity or profitability. Other accounting ratios like the price to earnings ratio (P/E) ratio and market-to-book value ratio suffer from a number of flaws in that

accounting rules change, shifted reported earnings without any real change in the underlying business. Further, numerous loopholes in accounting ease the ability of executives to misinform investors (Cheng, Liu & Tzeng, 2011; Boyd, 2010; Chowdhury & Chowdhury, 2010; McConnel & Servaes, 1990).

Different measures have been adopted in measuring the value of the firm. These include the use of Tobin's Q (Arachchi, Perera&Vijayakumaran, 2017 & Vijayakumaran, 2019) and market capitalization. Nyoro (2013) operationalized the value of shareholders in terms of market price per share (MPS). Previous research (Florackis, Kostakis & Ozkan, 2009; Agrawal & Knoeber, 1996; Thomsen, Pedersen & Kvist, 2006 & Himmelberg, Hubbard & Palia, 1999) concur that the value of the firm is represented by the ratio of market based value of equity and debts expressed in the book value which is divided by the book value of the total assets in place. This study will measure firm value using Tobin's Q as adopted from past related studies.

1.1.3 Working Capital Management and the Value of the Firm

Theoretically, the conservative WC theory favors the firm to adopt a longer CCC unlike the aggressive WC theory that advocates for a shorter CCC. However, there exists mixed empirical evidence on short and longer CCC and their influence on the value of the firm. Arachchi, Perera and Vijayakumaran (2017) focused on the frontier market to bring out the link amongst WCM and the firm value. The study operationalized WCM into CCC and its associated components whereas firm value was measured using Tobin's Q. The control variables that were adopted in this inquiry included growth in sales, leverage and the size of the firm. An inverse link was established between CCC and Tobin Q.

While focusing on Indonesian listed entities, Sianipar and Prijadi (2018) explored the link between WC and the firm value. The study noted that the net trade cycle (NTC) and the firm value are negatively and significantly related with each other. In Egypt, Moussa (2018) was interested in bringing out the link between WCM and on the ability of the firm to perform and its overall value. The study noted that CCC as a dimension of WCM and the firm value are positively and significantly related with each other. A study conducted among the listed Chinese firms by Vijayakumaran (2019) focused on the efficiency of WCM and the firm's value. NTC was used as a proxy of WCM while Tobin Q was used in place of firm value. A negative link was noted between NTC and the firm's value.

1.1.4 Firms Listed at the Nairobi Securities Exchange

In the year 1954, the Nairobi Securities Exchange (NSE) was founded by stockbrokers as a voluntary association and was given the responsibilities to regulate the trading activities and also develop the securities market. It has developed to be one of the leading African Exchanges and more even it acts as an iconic trading facility not only to local investors but also international investors who aims of gaining entrance to the economic growth of Kenya and Africa at large. It deals with both variable and fixed income securities and has 64 listed companies, an Income Real Estate Investment Trust (I-REIT), an Exchange Traded Fund (ETF) and a futures derivatives market (CMA, 2016).

The exchange performs a vital part in the Kenyan economy through promoting savings and investments and also assisting both local and foreign companies obtain cost effective capital. Capital Markets Authority of Kenya (CMA) is the regulator of NSE. NSE is also an associate of World Federation of Exchange and it is the founding partner of both the East African Securities

Exchanges (EASEA) and the African Securities Exchange Association (ASEA). In addition it an associate of the Association of Futures Market and is a partner exchange in the United Nation-led sustainable stock exchanges (SSE) initiative (Mutai, 2014). From 1950s when the NSE started operation of organized stock markets there has been a tremendous growth in the stock market over the years both in terms of the services and product offered and the number of listed firms in the exchange with the current number of listed firms being over sixty firms (CMA, 2016).

The stock and financial market play a crucial role in the economic growth of the country. The most important function of financial sector is to promote economic development. It is clear that a well-functioning capital and stock market enhance economic efficiency, investment and growth (Olweny, 2014). This means the performance of listed firms at Nairobi security exchange (NSE) is important to the economic growth of country. Working capital presents a big opportunity for listed companies at NSE to release cash from their balance sheet and operate more effectively. Actually well managed working capital elements provide firms with growth without need for additional funding (Olweny, 2014).

1.2 Research Problem

Working capital management represents an internal and short term source of financing which can enhance the value of the firm if well utilized. Working capital management is a delicate decision to make since it has an effect on liquidity risk of the firm (Gorondutse, 2017). It requires an organization to maintain a balance amongst the current assets and liabilities that would maximize the value of the firm. Working capital management and its associated components like CCC and NTC as well as the current assets and liabilities should be well planned and managed for the firm to maximize its value (Nzioki et al., 2013).

The working capital management performs a critical part for the success and failure of the firm since it controls the profitability and liquidity position of the firms. Proper managing of working capital constituents enhances the value of the shareholders (Mweta, 2018). In Kenya, a concern has been raised about the listed firms pertaining their working capital components as these firms have been put under statutory management of working capital, bailouts by government or subsidizing on collapsing firms such as Uchumi supermarkets, Nakumatt supermarkets, tuskys supermarkets and Athi river mining. This circumstance has resulted to loss of both the confidence and wealth of investors in the stock market (KNBS, 2017).

Studies conducted on WCM include Arachchi et al. (2017) who focused on the frontier market to bring out the link between WCM and the firm value. An inverse link was established between CCC and Tobin Q ratio while focusing on Indonesian listed entities, Sianipar and Prijadi (2018) explored the link between WC and the firm value and noted that CCC as a dimension of WCM and the firm value are positively and significantly related with each other. A study conducted among the listed Chinese firms by Vijayakumaran (2019) focused on the effectiveness of WCM and the firm's value and a negative link was noted between NTC and the firm's value.

Locally in Kenya, Mwangi and Obwogi (2018) focused on Kenyan listed manufacturing firms to bring out the link between WCM and their profitability. The study noted mixed results between the components of WCM represented by CCC and the ability of the firms to perform. Kiptoo (2017) focused on firms that engage in processing of tea to bring out the link between WCM and their financial performance. A significant link was registered between WCM and the ability of the firm to perform in financial terms.

As indicated by the studies reviewed, it is shown that some of them were conducted in different countries and contexts like Indonesia and not in Kenya. Other studies were done focusing on WCM and performance or financial performance of the firm and not firm value. This create contextual and conceptual gap, which the present study seeks to fill through responding to the following research question: what is the effect of Working capital management on firm value of firms listed at the Nairobi security exchange, Kenya?

1.3 Research Objective

To establish the effect of working capital management on firm value of firms listed at the Nairobi security exchange, Kenya.

1.4 Value of the Study

This study will be advantageous to many stakeholders ranging from scholars, researchers, government and its agencies, manager of listed firms, lawmakers, stock market official and many others. Additionally, this study will contribute much to the current knowledge body and aid in predicting firm value basing on working capital management. More so, other scholar may use this study in future to reference their work. The study will also contribute in enlarging the breadth as well as quality of the research works and publications. Findings from the study will be of assistance in furtherance of the knowledge base on the study parameters

The policy makers including the Capital Market Authority (CMA) will be able to formulate sound policies that will enhance and support maximization of the value of the listed firms. Practitioners in the field of corporate finance including the finance managers will be able to have an understanding of the role played by WCM with respect to the value of the firm. Scholars and researcher will be able to review material of this study in future.

CHAPTER TWO: LITERATURE REVIEW

2.1 Introduction

The theories guiding the study will be reviewed in this chapter. The chapter will look at the determinants of the working capital and the past related studies with the gaps being indicated. The conceptual framework will be presented with the variables and how they are interlinked with each other.

2.2 Theoretical Review

The section looks the theories that will inform the present study.

2.2.1 Keynesian Liquidity Preference Theory

The theory was formulated by Keynes (1936) and it indicate that it is good for the firm to effectively manage its cash reserve. The theory raises three reasons why it is of essence for the firm to management its cash; transaction, precautionary and speculative motives. The safety supply of the reserves and cash in the firm inform the precautionary motive. The desires for the firm to participate in the opportunities of investment inform the precautionary motive of requiring cash. For transaction motive, the firm is required to maintain cash so as meet the bills including the need to pay for wages and salaries, dividends to owners, trade payables and the taxes.

According to Pandey (2010), a firm cannot ignore a need for cash to ensure that the day to day operations are maintained for smoothness. Thus, it is important that organizations invest a reasonable amount of cash into their current assets. In essence, the management of cash is a component of WCM, which cannot be ignored by the firm. Therefore, the theory provides the need for firms to operationalize their WCM through sound management of their cash.

10

2.2.2 The Conservative Theory of Working Capital

The origin of this theory can be linked to Weston and Eugene (1975). The theory argues that a firm leverages on long term sources of funds to finance its fixed assets with some portion of the current assets. This is a WCM approach that is characterized by lower levels of productivity and risk. With the level of risk being low, it follows that the level of return from this aggressive WCM dimension would be low. WCM aims at realizing two key objectives in the firm, profitability and the solvency.

Solvency requires a firm to have some level of liquidity (Pandey, 2006). The theory argues that firms should hold a huge buildup of inventories and cash so as to meet the obligations as they arise. This is too risky because they increase the opportunity cost of tied up capital that would have otherwise been utilized ion financing investment projects which can maximize the value of the firm. The theory will be used to underpin the need for the firm to embrace WCM so as to enhance the value of the shareholders. The theory incorporates an element of risk and return in the WCM, which determine the firm value. Based on this theory, a negative association is predicted amongst WCM and the value of the firm.

2.2.3 Aggressive Theory of Working Capital

Attributed to Belt (1979), this theory argues that a firm leverages on short term sources of funds to finance the current as well as the fixed assets in place. The theory is ideal to the firms that are characterized by high risk which automatically translate into greater returns. Since the funds are borrowed on a short period, the interest rates on these funds in the aggressive theory are very low. However, there are higher risks linked with such short term debt facilities in the aggressive WCM perspective.

The aggressive theory of WCM is more ideal to those firms operating in an economy that is characterized by a greater degree of stability with certainty of the future cash flows. The aggressive WCM theory advocates the firm should offer shorter credit periods to trade receivables, with minimal amount of inventories held in stock and a relatively smaller quantity of cash held at hand. There are higher risks of default on the company on account of inadequate funds to meet the obligations. However, these higher risks are associated with greater returns to the firm. On the basis of this theory, a positive association is anticipated amongst WCM and the value of the firm.

2.3 Determinants of the working capital

This section will bring out the key factors that shape the value of the listed firms in Kenya.

2.3.1 Working capital management

WCM has different associated components like the current assets, current liabilities and the cash conversion cycle as well as the net trade cycle. Proper management of these components is a key driver of profitability and ultimate value creation to the firm. In fact, one of the basic functions of the finance managers of the corporation is to enhance the working capital of the firm. WCM has both desirable and undesirable influence on profitability position of the firm and ultimately on its value (Makori & Samp; Jagongo, 2013).

Excellent WCM is critical for profitability of the firm which maximizes the wealth of the firm. A firm that has good WCM practices will have limited chances of external borrowing which maximizes the overall firm value. Furthermore, good WCM practices require the firm to prudently utilize the borrowed funds to avoid liquidity and cash flow challenges which may hurt the overall position of the firm (Kaur & Sing, 2013). In essence, WCM aims at ensuring that there are adequate cash flows in the firm so as to meet the obligations arising in the course of the operations

2.3.2 Nature of business

Nature of business is a very significant aspect as long as establishing the required WC is concerned for different kind of companies. Mostly, huge amount of working capital will be needed by manufacturing or trading firms as a result of fixed investment in raw materials, work in progress inventory and finished products. Therefore, nature of business is one of the key factors. Normally, working capital requirements in trade firms are greater since many investments are centered in inventory or stock in order to satisfy production needs, manufacturing firms do require a great amount of work capital. While, companies that offer services and not products need less working capital in cash, since they do not have to maintain large inventories (Elbadry, 2018).

In other companies with large fixed investment for instance large companies and public utilities, they normally require very minimal current assets partially due to cash, partially due to fact that they deal with services as opposed to products and also due to the nature of business. Equally, the fundamental and mail industries or manufacturers of goods are typically less involved in working capital than those of the consumer goods manufacturing industries (Alehegne, 2019).

2.3.3 Firm Size

Firm size is a multidimensional concept that has traditionally been operationalized as a logarithm of the total assets of the firm, the overall staff, the sales revenues and the number of branches of the firm. Smaller firms have limited assets to be pledged as securities in case they aspire to have access to long term sources of funds. This is as opposed to larger firms that are deemed to have excellent relationship with capital markets and can access funds (both equities and debts) at the market rates more easily. These two items are the basic components of the value of the firm (Naser, Nuseith & Al-hadeya, 2013).

According to Whited (1992), and Petersen and Fazzari (1993) the relatively smaller entities are associated with more financial related challenges. Ideally, smaller firms may have low amount of capital invested in their current assets. This may be an explanation as to why such smaller firms are characterized by low levels of inventories and receivables. At the same time, the operations of smaller firms are largely supported by short term credit obtained from the trade payables. Therefore, the size of the firm will have an influence on the value of the firm. The study will operationalize firm size as a natural logarithm of the overall value of assets in the firm.

2.2.4 Terms of credit

Credit terms is another determining factors of working capital. Credit terms allow the company to decide the amount and length of credit earned by its suppliers. Where suppliers of raw materials offer long-term credit, the company can afford less working capital, while suppliers only offer a short-term loan, the company needs additional working capital to pay the creditors (Nuryana, 2017). According to Nuryana (2017) more working capital will be needed by companies that normally buys its raw materials for cash and sells its products on credit. On the contrast, less working capital will be required for companies that normally sell for cash and purchase on credit. The duration of the credit affects working capital directly.

Credit policy denotes the average time that it takes to collect cash of the sales made on credit. There are a number of factors, which determine the credit policy comprising of clients credit rating, industry practices among others. The requirements for working capital will certainly be higher when longer credit period and extended to all customers regardless of the reliability of the customers. It is because the debtors' balance would be higher, and therefore a comparatively longer duration, which would naturally take more capital (Holmstrom & Tirole, 2000)

2.2.5 Seasonal requirements

The requirement for working capital is constant for companies that sell products during the entire season, however for companies that sell seasonal goods, a higher amount is needed in the peak season a there is more demand, more stock needs to be maintained and a quick supply needs to be provided, whereas the demand is extremely small during off-season or slack season, and less capital is needed (Leeson, 2016).

According to Leeson (2016) there are raw materials which are found only during particular season though they are needed all year round. Therefore, an organization is required to purchase and store raw material in bulk for use during the year. In this scenario, more working capital will be needed. Also there are products which are highly marketed during a certain season, in this case, more working capital during the season and less working capital during the off season is required.

2.4 Empirical Literature Review

Borrowing evidence from the context of Turkey, Şamiloğlu and Akgün (2016) sought to bring out the link between WCM and the ability of firms to remain profitable. The measures of WCM included the ARP, APP and CCC and the specific focus of the inquiry was on listed firms. A ten year time horizon was taken covering 2003 all through to 2012. The returns generated on the values of the assets and the equities of the entities were used as proxies of financial performance. An inverse but significant link was noted between WCM and the ability of the firms to perform. A related inquiry in Turky by Samet and Nazan (2017) focused on WCM and the ability of the firms to remain profitable. A total of 41 entities were covered with the time horizon covering 2005 all through to 2016. The study noted existence of an inverse link between WCM and the profitable prospects of an entity. A study conducted among the listed Chinese firms by Vijayakumaran

(2019) focused on the efficiency of WCM and the firm's value. In effort to operationalize WCM, the inquiry used NTC which was found to have an inverse link with the Tobin's Q of the entity.

While focusing on Indonesian listed entities, Sianipar and Prijadi (2018) explored the link between WC and the firm value. The focus of the study was on the non-monetary but listed entities where a total of 167 of them were covered. With adoption of the panel data methodologies, the period of consideration of the inquiry was from 2006 all through to 2016. The inquiry noted that WCM and the firm value are inversely but significantly linked with other. Another investigation among non-money entities listed in Pakistan was done by Hassan, Imran, Amjad and Hussain (2014) with a focus on WCM and its link with the ability of the firm to perform. The period of consideration of the inquiry was from 2007 all through to 2010 with information sought from auxiliary sources. The inquiry documented a direct and significant link between the ability of the firm to manage receivables and performance. As control indicators, the size of the entity was seen to have a direct interaction with the ability of the firm to perform.

Sudiyatno, Puspitasari and Sudarsi (2017) focused on Indonesian entities to bring out the link between WC and the ability of the entity to perform with some elements of its value. The period covered by this inquiry was 2010 all through 2013. Ratios were used as proxies of WC which included current assets against the overall assets and current liabilities to overall assets. The capital structure was taken as a control indicator in the inquiry. The firm's value was measured using Tobin's Q. While CA/TA resulted into a direct link with ability of the firm to perform, CA/TA had an inverse link. Arachchi, Perera and Vijayakumaran (2017) focused on the frontier market to bring out the link between WCM and the firm value. The specific focus of the inquiry was on listed entities on Colombo Security market. The period of consideration was from 2011 all through to 2015. WCM and its efficiency were examined using CCC while Tobin's Q was applied to gauge

firm value. The size of the entity, the growth in turnover and the leverage were taken as control indicators. An inverse link was noted between CCC and the firm value.

Akoto, Awunyo and Angmor (2013) looked at WCM and the ability of Ghanaian entities to remain profitable. A total of 13 listed manufacturing entities were covered with the time frame ranging from 2005 all through to 2009. By leveraging ion panel data methodologies, it was shown that ARD and the level of firm performance are inversely linked. On the other hand, CCC and performance had a direct and significant link with each other. An inquiry into WCM and the ability of the firm to create wealth was reviewed by Oseifuah and Gyekye (2017) with reference to the South African context. The adopted methodologies were panel data and the time frame was from 2003 all through to 2012. The results of the inquiry were mixed based on the individual components of WCM. The conversion period of inventories and the receivables were directly and significantly linked with the value of the entity. CCC and the firm value had a direct but insignificant link with each other. In Egypt, Moussa (2018) was interested in bringing out the link between WCM and on the ability of the firm to perform and its overall value. The adopted methodologies of the inquiries were panel data with the time horizon taken as 2000 all through to 2010. A direct and significant link was noted between CCC and the value of the firm.

Mwangi and Obwogi (2018) focused on Kenyan listed manufacturing firms to bring out the link between WCM and their performance. The adopted design was quantitative that entailed gathering of information from auxiliary sources. The period of consideration of the inquiry was ten year frame covering 2007 all through to 2016. The ability of the entity to perform financial was analyzed with the aid of ROE and Tobin's Q. It was shown that while CCC and the ability of the firm to perform in financial terms are inversely but significantly linked with each other, the link with Tobin's Q was direct but not significant. Kiptoo (2017) focused on firms that engage in

processing of tea to bring out the link between WCM and their financial performance. The adopted design was cross sectional descriptive with 54 respondents being the target. Information was gathered from first hand data sources. A significant link was documented between WCM and the ability of the entity to perform.

Likalama (2016) did an assessment of WCM and its role as much as the profitability of the entity is concerned. The specific focus of the inquiry was on agro- firms with their operations with Eldoret. Gathering the views from first hand sources, it was shown that WCM and the profitable ability of the firm are significantly linked with each other. Nyoro (2013) looked at WCM and its link with the ability of the entity to create the value for its shareholders. CA and CL were the specific indicators used to gauge WCM while value creation was operationalized as MPS. Mixed results were obtained by this inquiry.

Mwirigi, Wambugu and Maina (2018) focused on the small and medium enterprises (SMEs) to bring out the interaction between WCM and their ability to perform. The adopted designs were cross sectional and correlational in nature. The information for the inquiry was obtained from questionnaire. Mixed results were obtained between the WCM components and the ability of the firm to perform. Mwangi, Makau and Kosimbei (2014) focused on the non-monetary listed entities in Kenyan context to bring out the link between WCM and their ability to perform. A total of 42 entities were covered with the time frame covering 2006 all through to 2012. The adopted methodologies were panel data. A direct and significant link was noted between aggressive, conservative policy of financing and the ability of the firm to perform financially.

2.6 Conceptual Framework

Independent Variables

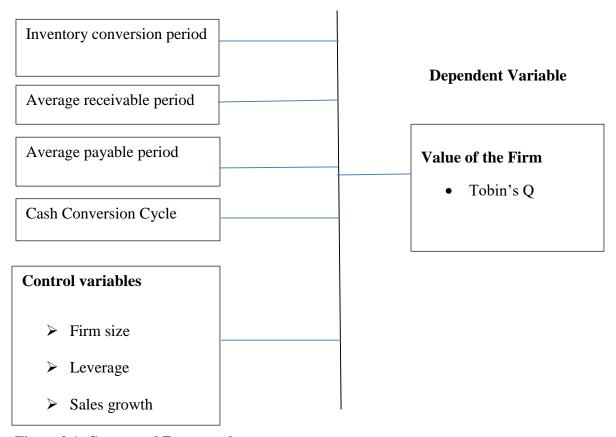


Figure 2.1: Conceptual Framework

2.5 Summary of Literature and Research Gaps

Generally, from almost all surveys reviewed in the literature, it is clear that working capital management is a key aspect in optimizing the profits of a firm. In summary, all through the literature a most researchers have concluded that the working capital management is related with reduction in cash conversion cycle that affects firm value.

In terms of gaps, several gaps were unearthed, which warranted this study. There was a conceptual gap in the studies conducted by Mwangi and Obwogi (2018), Samet and Nazan (2017), Kiptoo (2017) because they focused on financial performance and profitability not firm value.

There is also a conceptual gap in the study conducted by Şamiloğlu and Akgün (2016) because it utilized financial performance as dependent variable but the current study will look firm value. Finally, the study conducted by Mwangi et al (2014) presents a contextual gap because not all firms listed at the NSE were used as the population in the study and thus the findings can vary if the excluded sectors are included.

There is a contextual gap in the studies conducted by Vijayakumaran (2019), and Sianipar and Prijadi (2018), because they were not conducted in the Kenyan context. There is a methodological gap in the study conducted by Mwirigi et al. (2018), because it employed primary data, which was cross-sectional, the current study will utilize secondary panel data.

CHAPTER THREE: RESEARCH METHODOLOGY

3.1 Introduction

The design that will be adopted and the targeted population in the study are detailed in this chapter.

The means gathering information and how the processing will be done are also detailed in this chapter. All these contents are aligned with the overall topic of the inquiry.

3.2 Research Design

The study embraced a descriptive correlational design. It aided in summarizing the WCM and firm value of firms quoted at the NSE, Kenya. On the other hand, the correlational design was used to support regression analysis in establishing the cause effect relationship between WCM and firm value (Kothari, 2012).

3.3 Target Population

Grabich (2012) posits that a set of people, events or elements that are studied with an aim of providing answers to the research questions is referred to as a study population. All the 67 listed firms at the NSE, whose list is provided in Appendix I, formed the population in this study. The study is a census because the entire population was examined.

3.4 Data Collection

The study collected five years secondary data for the time frame 2015 to 2019. Data on firm market value, liabilities total assets, cash-flows from operations, market value of equity, accounts receivable, inventory, accounts payable, tax payable, and other assets, was collected for the period. This data was collected from publications by the NSE, CMA and respective financial statements

of the listed firms. The data was gathered on the annual basis. A data collection sheet was applied in collecting of the secondary data in this study.

3.5 Data Analysis

Data collected was organized, tabulated and simplified so as to make it easier to analyze, interpret and understand. Because panel data was employed for the study, STATA version 13 was the statistical analysis program utilized for the study because it is able to perform panel multiple linear regression. Inferential statistics covering correlation and regression analysis were used to test the effect of WCM on firm value.

3.5.1 Model Specification

The regression model to be adopted by the study took the following form:

 $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \beta_5 X_5 + \beta_6 X_6 + \beta_7 X_7 + \epsilon$

Where:

Y = Tobin Q ratio

 β_0 = constant

 β_0 , β_1 , β_2 , β_3 , β_4 , β_5 , β_6 , β_7 = beta coefficients

X1 = Average collection period

X2 = Average payment period

X3 = Inventory conversion period

X4 = Cash Conversion Cycle

X5= Firm size

X6= Leverage

X7= Sales growth

 $\varepsilon = Error term$

The results were presented using tables and graphs for trend analysis on the variables.

3.5.2 Operationalization of Variables

Table 3.1 shows how the variables of the study were operationalized

Table 3.1: Operationalization of Study Variables

Variables	Measurement
Dependent variable	
Tobin's Q ratio	(Total Market Value + Liabilities)/(Total Book
	Value + Liabilities) (Tobin, 1969)
Independent variables	
Inventory conversion period	Inventory/cost of goods sold* 365
Average collection period	Account receivable / net sales*365
Average payment period	Account payable/ purchases*365
Cash conversion cycle	ACP + ICP – APP
Control variables	
Firm size	Natural logarithm of total assets
Leverage	Total debt/ total equity
Sales growth	Current period sales – prior period sales/ prior
	period sales*100

3.5.3 Test of Significance

The p-values aided in determining the overall significance of the study variables. To interpret p-values, the threshold was 0.05 or 5%. In this regard, the p-values less than 0.05 denoted that the link between the study variable is significant.

3.5.4 Diagnostic Tests

For the validity of regression analysis, a number of assumptions are done in conducting linear regression models. These are; no multi-collinearity, observations are sampled randomly, conditional mean ought to be zero, linear regression model is "linear in parameters", spherical errors: there is homoscedasticity and no auto-correlation, and the optional assumption: error terms ought to be distributed normally. According to the Gauss-Markov Theorem, the first 5 assumptions of the linear regression model, the regression OLS estimators, are the Best Linear Unbiased Estimators (Grewal *et al.*, 2004).

The aforementioned assumptions are of great importance since when any of them is violated would mean the regression estimates will be incorrect and unreliable. Particularly, a violation would bring about incorrect signs of the regression estimates or the difference of the estimates would not be reliable, resulting to confidence intervals that are either too narrow or very wide (Gall et al., 2006).

The diagnostic tests are conducted so as to guarantee that the assumptions are met to attain the Best Linear Unbiased Estimators. Regression diagnostics assess the model assumptions and probe if there are interpretations with a great, unwarranted effect on the examination or not. Diagnostic examinations on normality, linearity, multicollinearity, and autocorrelation were done on the collected data to establish its suitability in the formulation of linear regression model. Normality was tested by the Shapiro-Francia test, which is suitable for testing distributions of Gaussian nature which have specific mean and variance. Linearity indicates a direct proportionate association amongst dependent and independent variable such that variation in independent variable is followed by a correspondent variation in dependent variable (Gall et al., 2006). Linearity was tested by determining homoscedasticy, which was determined by the Breusch-Pagan Cook-Weisberg Test for Homoscedacity.

Tests for multicollinearity of data was carried out using variance inflation factors (VIF) to determine whether the predictor variables considered in the research are significantly correlated with each other. According to Grewal *et al.* (2004) the main sources of multicollinearity are small sample sizes, low explained variable and low measure reliability in the independent variables. Auto-correlation test was carried out through the Durbin-Watson Statistic.

Additionally, to avoid spurious regression results unit root test was carried out on the panel data. The aim of conducting unit root test is to check whether the macroeconomic variables under study are integrated of order on (1, 1) or not before estimation procedure can be proceeded into. Unit root test was conducted through the Fisher-type unit root test. The study also utilized the Hausman specification test to ascertain if the variables used in the study possess fixed influence overtime or if they have varying and random influence over time. The null hypothesis is that that the variables have a random effect and the alternate hypothesis is that the variables have a fixed effect. If the significance value is less than α (0.05), the null hypothesis will consequently rejected and if the significance value is greater than α (0.05), the null hypothesis will not be rejected.

CHAPTER FOUR: DATA ANALYSIS, RESULTS, AND FINDINGS

4.1 Introduction

This chapter entails of the data analysis, interpretation and the discussions of the outcomes. The

section hence is fragmented to three sub sections, which entail; diagnostic tests, inferential

statistics, and the interpretation and the discussion of findings. Precisely this chapter summarizes

the platform for data presentations, analysis, interpretations, and discussions.

4.2 Diagnostic Tests

Diagnostic tests that are a precursor to conducting linear regression were conducted. Diagnostic

tests done in this study included; normality tests, homoscedacity tests, multicollinearity tests and

autocorrelation tests. Normality test was carried out using the the Shapiro-Francia test and the

homoscedacity test was conducted through the Breusch-Pagan Cook-Weisberg Test for

Homoscedacity. Test on Multicolinearity of data was carried out using Variance Inflation Factors

(VIF) while the autocorrelation test was done through the Durbin-Watson statistic. Unit root test

was conducted through the Fisher-type unit root test. Additionally, the Hausman test was

conducted to determine whether fixed or variable effects panel regression should be conducted.

4.2.1 Normality Test

The normality tests for all the variables employed in the study are highlighted in Table 4.1.

26

Table 4.1: Shapiro-Francia Test for Normality

Variable	Obs	W'	V'	Z	Prob>z
TobinQRatio	277	0.15569	181.865	10.988	0.00001
Inventoryc~d	277	0.82181	38.382	7.703	0.00001
Averagecol~d	274	0.96748	6.94	4.088	0.00002
Averagepay~d	274	0.97483	5.371	3.548	0.00019
Cashconver~e	274	0.79132	44.528	8.011	0.00001
FirmSize	277	0.97645	5.074	3.43	0.0003
Levearage	277	0.37537	134.546	10.352	0.00001
Salesgrowth	277	0.12609	188.242	11.061	0.00001

In the test, the null hypothesis holds that the data has a normal distribution. The level of significance adopted in the study is 5%. Since the significance values in tests for all the variables are less than α (0.05), the null hypothesis is rejected. Hence, the data series of the variables employed in the study are not normally distributed.

4.2.2 Homoscedacity Test

The homoscedacity tests for all the predictor variables employed in the study are enlisted in Table 4.2.

Table 4.2: Breusch-Pagan/Cook-Weisberg Test for Homoscedacity

Breusch-Pagan / Cook-Weisberg tes	st for	heteroskedasticity
-----------------------------------	--------	--------------------

Ho: Constant variance

Variables: fitted values of TobinQRatio

chi2(1) = 967.74 Prob > chi2 = 0.0000

The null hypothesis is that there is homoscedacity. The level of significance adopted in the study is 5%. Since the significance value is less than α (0.05), the null hypothesis is rejected. Hence, the data series of all the predictor variables are heteroscedastic.

4.2.3 Test for Multicollinearity

Results on Test for Multicolinearity of data carried out using Variance Inflation Factors (VIF) are displayed in Table 4.3.

Table 4.3: VIF Multicollinearity Statistics

Variable	VIF	1/VIF
Cashconver~e	72.22	0.013847
Inventoryc~d	70.95	0.014095
Averagepay~d	5.91	0.169138
FirmSize	5.75	0.174057
Levearage	1.2	0.830493
Salesgrowth	1.01	0.990525
Mean VIF	26.17	

The common rule in statistics is that the VIF values should be less than 10 and greater than 1. The findings indicate that the VIF of cash conversion cycle and inventory conversion period fall out of the range of 1 to 10. Thus, the variables exhibit multicollinearity. The findings also indicate that the VIF values of average collection period, firm size, leverage, and sales growth fall below 10 and are greater than 1. Hence, there is no presence of multicollinearity amongst those predictor variables.

4.2.4 Tests for Autocorrelation

Test for Autocorrelation of data was carried out using the Durbin Watson statistic. The findings displayed that Durbin-Watson d-statistic (7, 274) = 1.6599943. The Durbin-Watson statistic ranges from point 0 and point 4. If there exist no correlation between variables, a value of 2 is shown. If the values fall under point 0 up to a point less than 2, this is an indication of an autocorrelation and on the contrast a negative autocorrelation exist if the value falls under point more than 2 up to 4. As a common rule in statistics, value falling under the range 1.5 to 2.5 is considered relatively

normal whereas values that fall out of the range raise a concern (Shenoy & Sharma, 2015). Field (2009) however, opines that values above 3 and less than 1 are a sure reason for concern. Therefore, the data used in this panel is not serially autocorrelated since it meets this threshold.

4.2.5 Unit Root Test

The results for the unit root test conducted for the data series firm value is displayed in Table 4.4.

Table 4.4: Unit Root Test for Firm Value

Fisher-type unit-root test for TobinQRatio				
Based on augmented Dickey	Fuller tests			
Ho: All panels contain unit re	oots Num	nber of panels = 58		
Ha: At least one panel is stati	onary Avg	g. number of periods = 4.78		
AR parameter: Panel-specific	e Asyı	mptotics: T -> Infinity		
Panel means: Included				
Time trend: Not included				
Drift term: Not included	ADF re	gressions: 0 lags		
	Statistic	p-value		
Inverse chi-squared(114) P	633.2738	0.0000		
Inverse nomal Z	0.0000			
Inverse logit t(269) L* -19.9377 0.0000				
Modified inv. chi-squared Pri	a 34.3898	0.0000		

The null hypothesis is that firm value has a unit root and the alternate hypothesis is that the variable is stationery. Since the significance values for the P, Z, L* and Pm tests are all less than the critical value (α) at the 5% confidence level, then the null hypothesis is rejected. Thus, the panel data series is stationery.

The results for the unit root test conducted for the data series inventory conversion period are displayed in Table 4.5.

Table 4.5: Unit Root Test for Inventory Conversion Period

Fisher-type unit-root test for Inventoryconversionperiod							
Based on augmented Dickey-Fuller tests							
Ho: All panels contain unit roo	ots Nu	mber of panels	=	58			
Ha: At least one panel is statio	nary Av	g. number of peri	iods =	4.78			
AR parameter: Panel-specific	As	ymptotics: T -> In	ifinity				
Panel means: Included							
Time trend: Not included							
Drift term: Not included	ADF	regressions: 0 lag	S				
	Statistic	p-value					
Inverse chi-squared(114) P 306.2		0.0000					
Inverse normal Z	-3.5336	0.0002					
Inverse logit t(184) L*	-9.7531	0.0000					
Modified inv. chi-squared Pm	12.7346	0.0000					

The null hypothesis is that inventory conversion period has a unit root and the alternate hypothesis is that the variable is stationery. Since the significance values for the P, Z, L* and Pm tests are all less than the critical value (α) at the 5% confidence level, then the null hypothesis is rejected. Thus, the panel data series is stationery.

The results for the unit root test conducted for the data series average collection period are displayed in Table 4.6.

Table 4.6: Unit Root Test for Average Collection Period

Fisher-type unit-root test for Averagecollectionperiod							
Based on augmented Dickey-Fuller tests							
Ho: All panels contain unit roo	ots Nun	nber of panels =	58				
Ha: At least one panel is statio	nary Avg	g. number of periods =	4.72				
AR parameter: Panel-specific	Asyı	mptotics: T -> Infinity					
Panel means: Included							
Time trend: Not included							
Drift term: Not included	ADF re	gressions: 0 lags					
	Statistic	p-value					
Inverse chi-squared(114) P	343.7647	0.0000					
Inverse normal Z	-2.9271	0.0017					
Inverse logit t(269) L*	-7.3543	0.0000					
Modified inv. chi-squared Pm	15.2165	0.0000					

The null hypothesis is that average collection period has a unit root and the alternate hypothesis is that the variable is stationery. Since the significance values for the P, Z, L* and Pm tests are all less than the critical value (α) at the 5% confidence level, then the null hypothesis is rejected. Thus, the panel data series is stationery.

The results for the unit root test conducted for the data series average payment period are displayed in Table 4.7.

Table 4.7: Unit Root Test for Average Payment Period

Fisher-type unit-root test for Averagepaymentperiod						
Based on augmented Dickey-F	uller tests					
Ho: All panels contain unit roo	ots Nu	mber of panels	=	58		
Ha: At least one panel is statio	nary Av	g. number of peri	ods =	4.72		
AR parameter: Panel-specific	Asy	mptotics: T -> In	finity			
Panel means: Included						
Time trend: Not included						
Drift term: Not included ADF regressions: 0 lags						
Statistic p-value						
Inverse chi-squared(114) P 167.1332 0.0009						
Inverse normal Z	1.5985	0.9450				
Inverse logit t(269) L*	0.1720	0.5682				
Modified inv. chi-squared Pm	3.5188	0.0002				

The null hypothesis is that average payment period has a unit root and the alternate hypothesis is that the variable is stationery. The significance values for the P and Pm tests are less than the critical value (α) at the 5% confidence level while the significance values of the Z and L* are more than the critical value (α) at the 5% confidence level. In case of any conflict in the tests, the inverse chi-squared and modified inv. chi-squared tests take precedence. Thus, the null hypothesis is rejected. Thus, the panel data series is stationery.

The results for the unit root test conducted for the data series cash conversion cycle are displayed in Table 4.8.

Table 4.8: Unit Root Test for Cash Conversion Cycle

Fisher-type unit-root test for Cashconversioncycle

Based on augmented Dickey-Fuller tests

Ho: All panels contain unit roots

Ha: At least one panel is stationary

AR parameter: Panel-specific

Number of panels = 58

Avg. number of periods = 4.72

Asymptotics: T -> Infinity

Panel means: Included Time trend: Not included

Drift term: Not included ADF regressions: 0 lags

The null hypothesis is that cash conversion cycle has a unit root and the alternate hypothesis is that the variable is stationery. Since the significance values for the P, Z, L* and Pm tests are all less than the critical value (α) at the 5% confidence level, then the null hypothesis is rejected. Thus, the panel data series is stationery.

The results for the unit root test conducted for the data series firm size are displayed in Table 4.9. The null hypothesis is that firm size has a unit root and the alternate hypothesis is that the variable is stationery. Since the significance values for the P, Z, L* and Pm tests are all less than the critical value (α) at the 5% confidence level, then the null hypothesis is rejected. Thus, the panel data series is stationery.

Table 4.9: Unit Root Test for Firm Size

Fisher-type unit-root test for FirmSize				
Based on augmented Dickey-F	uller tests			
Ho: All panels contain unit roo	ots	Number of panels =	58	
Ha: At least one panel is statio	nary	Avg. number of periods =	4.78	
AR parameter: Panel-specific		Asymptotics: T -> Infinity		
Panel means: Included				
Time trend: Not included				
Drift term: Not included		ADF regressions: 0 lags		
	Statistic	p-value		
Inverse chi-squared(114) P	485.5789	0		
Inverse normal Z -2.4752		0.0067		
Inverse logit t(264) L* -10.9101		0		
Modified inv. chi-squared Pm	24.6084	0		

The results for the unit root test conducted for the data series levearage are displayed in Table 4.10.

Table 4.10: Unit Root Test for Leaverage

Fisher-type unit-root test for Le	vearage	
Based on augmented Dickey-Fulle	er tests	
Ho: All panels contain unit roots		Number of panels = 58
Ha: At least one panel is stationary	y	Avg. number of periods = 4.78
AR parameter: Panel-specific		Asymptotics: T-> Infinity
Panel means: Included		
Time trend: Not included		
Drift term: Not included		ADF regressions: 0 lags
St	tatistic	p-value
Inverse chi-squared(114) P 31	1.9052	0
Inverse normal Z -	2.1663	0.0151
Inverse logit t(239) L* -	6.5607	0
Modified inv. chi-squared Pm 1	3.1066	0

The null hypothesis is that levearage has a unit root and the alternate hypothesis is that the variable is stationery. Since the significance values for the P, Z, L* and Pm tests are all less than the critical value (α) at the 5% confidence level, then the null hypothesis is rejected. Thus, the panel data series is stationery.

The results for the unit root test conducted for the data series sales growth are displayed in Table 4.11.

Table 4.11: Unit Root Test for Sales Growth

Fisher-type unit-root test for Salesgi	owth
Based on augmented Dickey-Fuller tes	ts
Ho: All panels contain unit roots	Number of panels = 58
Ha: At least one panel is stationary	Avg. number of periods = 4.78
AR parameter: Panel-specific	Asymptotics: T-> Infinity
Panel means: Included	
Time trend: Not included	
Drift term: Not included	ADF regressions: 0 lags
Statisti	c p-value
Inverse chi-squared(114) P 738.36	43 0
Inverse normal Z -11.83	66 0
Inverse logit t(274) L* -24.92	63 0
Modified inv. chi-squaredPm 41.34	195 0

4.2.6 Test for Random and Fixed Effects

The study carried out the Hausman test to determine if the variables have fixed influence overtime or if the variables have varying and random influence over time. Before the Hausman test was conducted, the variables had to be transformed because they did not meet the conditions of normality, homoscedacity. Thus, a logarithmic function was introduced to all the variables to transform them. Since you cannot transform a negative value with a logarithmic function, negative values were considered as missing values. The variables cash conversion cycle and inventory conversion period exhibited multicollinearity, thus, they were dropped from the analysis. The finding on the Hausman test of specification is presented in Table 4.12.

Table 4.12: Hausman Test of Specification

	Coefficients
	(b) (B) $(b-B)$ $sqrt(diag(V_b-V_B))$
	fe re Difference S.E.
LogA~nperiod	.67745 1.1952335177829 .2905153
LogA~tperiod	7912266 .20236319935897 .4374121
LogFirmSize	-8.891879 -4.95462 -3.937258 1.194127
LogLevearage	00108370015794 .0004957 .0004819
LogSalesgr~h	.00032230007484 .0010707 .
B=	b = consistent under Ho and Ha; obtained from xtreg inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

 $chi2(5) = (b-B)'[(V_b-V_B)^{-}(-1)](b-B)$ 21.76

Prob>chi2 = 0.0006

(V_b-V_B is not positive definite)

The null hypothesis assumed that variables have a random effect and alternate hypothesis was that the variables have a fixed effect. If the p value is less than 0.05 then the null hypothesis will be rejected and if greater than 0.05 then the null hypothesis will not be rejected. When the Hausman chi-square test statistic is negative, the alternate hypothesis is adopted because asymptotically, the p value is equal to 1. The significance value obtained in the hausman test conducted (0.0006) is less than 0.05. Thus, the variables have a fixed effect and a fixed effect panel model was utilized.

4.3 Inferential Statistics

Inferential statistics were used in determining the direction, relationship, and strength of the association between the predictor variables and the response variable. The section entails the inferential statistics employed in the study, which included correlation and fixed effects panel multiple linear regression analysis.

4.3.1 Correlation Analysis

Correlation analysis establishes whether there exists an association among two variables. The association falls between a perfect positive and a strong negative correlation. The study used Pearson Correlation. This study employed a Confidence Interval of 95% and a two-tail test. The correlation test was done to ascertain the association between financial risk and financial performance.

Table 4.13: Correlation Analysis

1 abic 4.13. Coi	LogTob~o	•	L~paym~d	LogFir~e	LogLev~e	LogSal~h
LogTobinQR~o	1.0000					
LogA~nperiod	-0.2447* 0.0000	1.0000				
LogA~tperiod	-0.3028* 0.0000	0.9424*	1.0000			
LogFirmSize	-0.4041* 0.0000	0.8586* 0.0000		1.0000		
LogLevearage	-0.1753* 0.0034	0.3616* 0.0000			1.0000	
LogSalesgr~h	-0.1051 0.0809		-0.0119 0.8440	0.0098 0.8708	0.0181	1.0000

Table 4.13 displays that average collection period, average payment period, firm size, and leverage are significantly correlated at the 5% significance level to firm value. They all have a negative significant association with firm value. Sales growth however, does not have a significant association with firm value at the 5% significance level.

4.3.2 Multiple Linear Regression

The fixed effects panel regression model assessed the effect of WCM and firm size on firm value. The regression analysis was established at the 5% significance level. The significance critical value

exhibited from the Analysis of Variance and Model Coefficients were compared with the values obtained in the analysis. The findings are displayed in Table 4.14.

Table 4.14: Fixed Effects Panel Multiple Linear Regression

Fixed-effects (within) regression	Number of obs = 277	
Group variable: Number	Number of groups = 58	
R-sq: within = 0.1699	Obs per group: min = 2	
between = 0.1750	avg = 4.8	
overall = 0.1661	max = 5	
	F(5,214) = 8.76	
corr(u_i, Xb) = -0.8038	$\mathbf{Prob} > \mathbf{F} \qquad = 0.0000$	
LogTobinQRatio Coef.	Std. Err. t P>t [95% Conf. Interval]	
LogAveragecollectionperiod .67745	.6395273 1.06 0.2915831295 1.93803	
LogAveragepaymentperiod7912266	.798521 -0.99 0.323 -2.3652 0.782747	
LogFirmSize -8.891879	1.582221 -5.62 0.000 -12.01061 -5.77315	
LogLevearage0010837	.0020639 -0.53 0.6000051517 0.002984	
LogSalesgrowth .0003223	.0026664 0.12 0.9040049334 0.005578	
_cons 10.86074	1.711141 6.35 0.000 7.487891 14.23359	
sigma_u .48008992		
sigma e .11151105		
rho .9488117	(fraction of variance due to u_i)	
	,	
F test that all u_i=0: F(57, 214)=	29.62 $Prob > F = 0.0000$	

The overall R^2 indicates deviations in response variable as a consequence of differences in predictor variables. The overall R^2 value is 0.1661, a discovery that 16.61% of the deviations in firm value are caused by the various working capital management practices, firm size, leaverage, and sales growth. Other factors not incorporated in the model justify for 83.39% of the variations in firm value.

The null hypothesis is that the various working capital management practices, firm size, leaverage, and sales growth do not significantly influence firm value. The significance value obtained in the study (Prob>F=0.0000) is less than the critical value of 0.05. Consequently, the null hypothesis is

rejected. Thus, the various working capital management practices, firm size, leaverage, and sales

growth do influence firm value. Thus, they can be utilized to significantly predict firm value.

The null hypothesis was that there was no significant relationship between each aspect of working

capital management employed in the study, firm size, leverage, and sales growth with firm value.

The study findings exhibited that only firm size had a significant relationship with firm value. This

is because its significance value is less than the critical significance value (α) of 0.05 and thus the

null hypothesis is rejected. It has a significant negative influence on firm value. Average collection

period, average payment period, leverage, and sales growth however do not have significant effects

on firm value. This is because their significance values are greater than the critical significance

value (α) of 0.05. The following model was thus developed;

 $Y = 10.86074 - 8.891879X_1$

Where;

Y = Firm Value

 $X_1 = Firm Size$

This implies that when firm size is equal to zero, the firm value is 10.86074. Subsequently, when

firm size increases by one unit, there is a decrease in firm value by 8.891879 units.

4.4 Interpretation and Discussion of Findings

The study endeavored to establish the effect of working capital management on firm value of firms

listed at the Nairobi security exchange, Kenya, with firm size, leverage, and sales growth acting

as the control variables. The variables had to be transformed because they did not meet the

conditions of normality, homoscedasticity. Thus, a logarithmic function was introduced to all the

38

variables to transform them. The variables cash conversion cycle and inventory conversion period exhibited multicollinearity, thus, they were dropped from the analysis.

The study findings established that average collection period, average payment period, firm size, and leverage are significantly correlated at the 5% significance level to firm value. They all have a negative significant association with firm value. Sales growth however, does not have a significant association with firm value at the 5% significance level. Additionally, the study findings revealed that the various working capital management practices, firm size, leaverage, and sales growth do influence firm value. Thus, they can be utilized to significantly predict firm value. The study findings also exhibited that that only firm size had a significant relationship with firm value. It has a significant negative influence on firm value. Average collection period, average payment period, leverage, and sales growth however do not have significant effects on firm value.

The current study finding that the average collection period and average payment period components of WCM are significantly negatively associated with firm value and the additional finding that the various working capital management practices, firm size, leaverage, and sales growth do influence firm value concurs with the Conservative Theory of Working Capital proposed by Weston and Eugene (1975). The theory incorporates an element of risk and return in the WCM which determine the firm value. Based on this theory, a negative association is predicted amongst WCM and the value of the firm, with the study findings. However, the current study also established that none of the working capital component individually significantly affected firm value.

The current study finding that the average collection period and average payment period components of WCM are significantly negatively associated with firm value and the additional

finding that the various working capital management practices, firm size, leaverage, and sales growth do influence firm value concurs with the Aggressive Theory of Working Capital attributed to Belt (1979). According to the theory, there are higher risks of default on the company on account of inadequate funds to meet the obligations. However, these higher risks are associated with greater returns to the firm. Based on this theory, a positive association is anticipated amongst WCM and the value of the firm. However, the current study also established that none of the working capital component individually significantly affected firm value.

The current study finding that the average collection period and average payment period components of WCM are significantly negatively associated with firm value and the additional finding that the various working capital management practices, firm size, leaverage, and sales growth do influence firm value concurs with the study findings of the study conducted by (Mweta, 2018). The study established that proper managing of working capital constituents enhances the value of the shareholders. Indeed, the key cause for the failure of most firms, partnerships and small firms is poor working capital management including inventory, receivables and payables management. In order to avoid liquidity risk, it is vital for a firm to have efficient mechanisms of managing the constituents of working capital.

While focusing on Indonesian listed entities, Sianipar and Prijadi (2018) explored the link between WC and the firm value. The study noted that the net trade cycle (NTC) and the firm value are negatively and significantly related with each other. In Egypt, Moussa (2018) was interested in bringing out the link between WCM and on the ability of the firm to perform and its overall value. The study noted that CCC as a dimension of WCM and the firm value are positively and significantly related with each other. The current study finding that the average collection period and average payment period components of WCM are significantly negatively associated with

firm value and the additional finding that the various working capital management practices, firm size, leaverage, and sales growth do influence firm value concurs with the study findings. However, the current study also established that none of the working capital component individually significantly affected firm value.

A study conducted among the listed Chinese firms by Vijayakumaran (2019) focused on the efficiency of WCM and the firm's value. NTC was used as a proxy of WCM while Tobin Q was used in place of firm value. A negative link was noted between NTC and the firm's value. The current study finding that the average collection period and average payment period components of WCM are significantly negatively associated with firm value and the additional finding that the various working capital management practices, firm size, leaverage, and sales growth do influence firm value concurs with the study findings. However, the current study also established that none of the working capital component individually significantly affected firm value.

Arachchi et al. (2017) focused on the frontier market to bring out the link between WCM and the firm value. An inverse link was established between CCC and Tobin Q ratio while focusing on Indonesian listed entities, Sianipar and Prijadi (2018) explored the link between WC and the firm value and noted that CCC as a dimension of WCM and the firm value are positively and significantly related with each other. The current study finding that the average collection period and average payment period components of WCM are significantly negatively associated with firm value and the additional finding that the various working capital management practices, firm size, leaverage, and sales growth do influence firm value concurs with the study findings. However, the current study also established that none of the working capital component individually significantly affected firm value.

Locally in Kenya, Mwangi and Obwogi (2018) focused on Kenyan listed manufacturing firms to bring out the link between WCM and their profitability. The study noted mixed results between the components of WCM represented by CCC and the ability of the firms to perform. The current study finding that the average collection period and average payment period components of WCM are significantly negatively associated with firm value and the additional finding that the various working capital management practices, firm size, leaverage, and sales growth do influence firm value concurs with the study findings. However, the current study also established that none of the working capital component individually significantly affected firm value.

Kiptoo (2017) focused on firms that engage in processing of tea to bring out the link between WCM and their financial performance. A significant link was registered between WCM and the ability of the firm to perform in financial terms. The current study finding that the average collection period and average payment period components of WCM are significantly negatively associated with firm value and the additional finding that the various working capital management practices, firm size, leaverage, and sales growth do influence firm value concurs with the study findings. However, the current study also established that none of the working capital component individually significantly affected firm value.

Excellent WCM is critical for profitability of the firm which maximizes the wealth of the firm. A firm that has good WCM practices will have limited chances of external borrowing which maximizes the overall firm value. Furthermore, good WCM practices require the firm to prudently utilize the borrowed funds to avoid liquidity and cash flow challenges which may hurt the overall position of the firm (Kaur & Sing, 2013). The current study finding that the average collection period and average payment period components of WCM are significantly negatively associated with firm value and the additional finding that the various working capital management practices,

firm size, leaverage, and sales growth do influence firm value concurs with the study findings. However, the current study also established that none of the working capital component individually significantly affected firm value.

According to Whited (1992), and Petersen and Fazzari (1993) the relatively smaller entities are associated with more financial related challenges. Ideally, smaller firms may have low amount of capital invested in their current assets. This may be an explanation as to why such smaller firms are characterized by low levels of inventories and receivables. This is in contrast to the current study finding that firm size has a statistically significant negative relationship with firm value.

Şamiloğlu and Akgün (2016) sought to bring out the link between WCM and the ability of firms to remain profitable. The measures of WCM included the ARP, APP and CCC and the specific focus of the inquiry was on listed firms. A ten year time horizon was taken covering 2003 all through to 2012. The returns generated on the values of the assets and the equities of the entities were used as proxies of financial performance. An inverse but significant link was noted between WCM and the ability of the firms to perform. The current study finding that the average collection period and average payment period components of WCM are significantly negatively associated with firm value and the additional finding that the various working capital management practices, firm size, leaverage, and sales growth do influence firm value concurs with the study findings. However, the current study also established that none of the working capital component individually significantly affected firm value.

A related inquiry in Turkey by Samet and Nazan (2017) focused on WCM and the ability of the firms to remain profitable. A total of 41 entities were covered with the time horizon covering 2005 all through to 2016. The study noted existence of an inverse link between WCM and the profitable

prospects of an entity. A study conducted among the listed Chinese firms by Vijayakumaran (2019) focused on the efficiency of WCM and the firm's value. In effort to operationalize WCM, the inquiry used NTC which was found to have an inverse link with the Tobin's Q of the entity. The current study finding that the average collection period and average payment period components of WCM are significantly negatively associated with firm value and the additional finding that the various working capital management practices, firm size, leaverage, and sales growth do influence firm value concurs with the study findings. However, the current study also established that none of the working capital component individually significantly affected firm value.

Another investigation among non-money entities listed in Pakistan was done by Hassan, Imran, Amjad and Hussain (2014) with a focus on WCM and its link with the ability of the firm to perform. The period of consideration of the inquiry was from 2007 all through to 2010 with information sought from auxiliary sources. The inquiry documented a direct and significant link between the ability of the firm to manage receivables and performance. The current study finding that the average collection period and average payment period components of WCM are significantly negatively associated with firm value and the additional finding that the various working capital management practices, firm size, leaverage, and sales growth do influence firm value concurs with the study findings. However, the current study also established that none of the working capital component individually significantly affected firm value. As control indicators, the size of the entity was seen to have a direct interaction with the ability of the firm to perform. This is in agreement to the current study finding that firm size has a statistically significant relationship with firm value.

Sudiyatno, Puspitasari and Sudarsi (2017) focused on Indonesian entities to bring out the link between WC and the ability of the entity to perform with some elements of its value. The period covered by this inquiry was 2010 all through 2013. Ratios were used as proxies of WC which included current assets against the overall assets and current liabilities to overall assets. The capital structure was taken as a control indicator in the inquiry. The firm's value was measured using Tobin's Q. While CA/TA resulted into a direct link with ability of the firm to perform, CA/TA had an inverse link. The current study finding that the average collection period and average payment period components of WCM are significantly negatively associated with firm value and the additional finding that the various working capital management practices, firm size, leaverage, and sales growth do influence firm value concurs with the study findings. However, the current study also established that none of the working capital component individually significantly affected firm value.

Arachchi, Perera and Vijayakumaran (2017) focused on the frontier market to bring out the link between WCM and the firm value. The specific focus of the inquiry was on listed entities on Colombo Security market. The period of consideration was from 2011 all through to 2015. WCM and its efficiency were examined using CCC while Tobin's Q was applied to gauge firm value. The size of the entity, the growth in turnover and the leverage were taken as control indicators. An inverse link was noted between CCC and the firm value. The current study finding that the average collection period and average payment period components of WCM are significantly negatively associated with firm value and the additional finding that the various working capital management practices, firm size, leaverage, and sales growth do influence firm value concurs with the study findings. However, the current study also established that none of the working capital component individually significantly affected firm value.

Akoto, Awunyo and Angmor (2013) looked at WCM and the ability of Ghanaian entities to remain profitable. A total of 13 listed manufacturing entities were covered with the time frame ranging from 2005 all through to 2009. By leveraging ion panel data methodologies, it was shown that ARD and the level of firm performance are inversely linked. On the other hand, CCC and performance had a direct and significant link with each other. The current study finding that the average collection period and average payment period components of WCM are significantly negatively associated with firm value and the additional finding that the various working capital management practices, firm size, leaverage, and sales growth do influence firm value concurs with the study findings. However, the current study also established that none of the working capital component individually significantly affected firm value.

An inquiry into WCM and the ability of the firm to create wealth was reviewed by Oseifuah and Gyekye (2017) with reference to the South African context. The adopted methodologies were panel data and the time frame was from 2003 all through to 2012. The results of the inquiry were mixed based on the individual components of WCM. The conversion period of inventories and the receivables were directly and significantly linked with the value of the entity. CCC and the firm value had a direct but insignificant link with each other. The current study finding that the average collection period and average payment period components of WCM are significantly negatively associated with firm value and the additional finding that the various working capital management practices, firm size, leaverage, and sales growth do influence firm value concurs with the study findings. However, the current study also established that none of the working capital component individually significantly affected firm value.

In Egypt, Moussa (2018) was interested in bringing out the link between WCM and on the ability of the firm to perform and its overall value. The adopted methodologies of the inquiries were

panel data with the time horizon taken as 2000 all through to 2010. A direct and significant link was noted between CCC and the value of the firm. The current study finding that the average collection period and average payment period components of WCM are significantly negatively associated with firm value and the additional finding that the various working capital management practices, firm size, leaverage, and sales growth do influence firm value concurs with the study findings. However, the current study also established that none of the working capital component individually significantly affected firm value.

Mwangi and Obwogi (2018) focused on Kenyan listed manufacturing firms to bring out the link between WCM and their performance. The adopted design was quantitative that entailed gathering of information from auxiliary sources. The period of consideration of the inquiry was ten year frame covering 2007 all through to 2016. It was shown that while CCC and the ability of the firm to perform in financial terms are inversely but significantly linked with each other, the link with Tobin's Q was direct but not significant. The current study finding that none of the working capital component individually significantly affected firm value is in agreement with the study findings.

Kiptoo (2017) focused on firms that engage in processing of tea to bring out the link between WCM and their financial performance. Information was gathered from first hand data sources. A significant link was documented between WCM and the ability of the entity to perform. The current study finding that the average collection period and average payment period components of WCM are significantly negatively associated with firm value and the additional finding that the various working capital management practices, firm size, leaverage, and sales growth do influence firm value concurs with the study findings. However, the current study also established that none of the working capital component individually significantly affected firm value.

Likalama (2016) did an assessment of WCM and its role as much as the profitability of the entity is concerned. The specific focus of the inquiry was on agro- firms with their operations with Eldoret. Gathering the views from first hand sources, it was shown that WCM and the profitable ability of the firm are significantly linked with each other. The current study finding that the average collection period and average payment period components of WCM are significantly negatively associated with firm value and the additional finding that the various working capital management practices, firm size, leaverage, and sales growth do influence firm value concurs with the study findings. However, the current study also established that none of the working capital component individually significantly affected firm value.

Mwangi, Makau and Kosimbei (2014) focused on the non-monetary listed entities in Kenyan context to bring out the link between WCM and their ability to perform. A total of 42 entities were covered with the time frame covering 2006 all through to 2012. The adopted methodologies were panel data. A direct and significant link was noted between aggressive, conservative policy of financing and the ability of the firm to perform financially. The current study finding that the average collection period and average payment period components of WCM are significantly negatively associated with firm value and the additional finding that the various working capital management practices, firm size, leaverage, and sales growth do influence firm value concurs with the study findings. However, the current study also established that none of the working capital component individually significantly affected firm value.

CHAPTER FIVE: SUMMARY, CONCLUSIONS, AND

RECOMMENDATIONS

5.1 Introduction

This section shows the study findings summary, offered conclusions, and recommendations on the effect of working capital management on firm value of firms listed at the Nairobi Security Exchange. Additionally, the research limitations and further research suggestions are also outlined.

5.2 Summary of Findings

The study endeavored to assess the effect of the effect of working capital management on firm value of firms listed at the Nairobi Security Exchange, with firm size, leverage, and sales growth acting as the control variables. The study employed the use of correlation and regression analyses. The correlation analysis employed in the study established that average collection period, average payment period, firm size, and leverage are significantly correlated at the 5% significance level to the value of firms listed at the NSE. They all have a negative significant association with firm value. Sales growth however, does not have a significant association with the value of firms listed at the NSE at the 5% significance level.

The fixed effects of panel multiple linear regression revealed that the various working capital management practices, firm size, leaverage, and sales growth do influence the value of firms listed at the NSE. Thus, they can be utilized to significantly predict firm value. The analysis also revealed that only firm size had a significant relationship with the value of firms listed at the NSE. It had a significant negative influence on firm value. Average collection period, average payment period, leverage, and sales growth however do not have significant effects on the value of firms quoted at the NSE.

5.3 Conclusion

In this section, the conclusion of the study is given; the conclusion is affiliated to the study objective, which was to establish the effect of working capital management on firm value of firms listed at the Nairobi Security Exchange. The study concluded that working capital management with the control factors entailing firm size, leaverage, and sales growth do influence the value of listed firms. The study also concluded that the WCM aspects of average collection period and average payment were significantly negatively associated with the value of listed firms. The study concluded that however none of the components of WCM had an individual significant effect on firm value.

The current study conclusion that the average collection period and average payment period components of WCM are significantly negatively associated with firm value and the additional finding that the various working capital management practices, firm size, leaverage, and sales growth do influence firm value concurs with the Conservative Theory of Working Capital proposed by Weston and Eugene (1975). The theory incorporates an element of risk and return in the WCM which determine the firm value. Based on this theory, a negative association is predicted amongst WCM and the value of the firm, with the study findings. However, the current study also established that none of the working capital component individually significantly affected firm value.

The conclusion also concurs with the Aggressive Theory of Working Capital attributed to Belt (1979). According to the theory, there are higher risks of default on the company on account of inadequate funds to meet the obligations. However, these higher risks are associated with greater returns to the firm. Based on this theory, a positive association is anticipated amongst WCM and

the value of the firm. However, the current study also established that none of the working capital component individually significantly affected firm value.

Similarly, the conclusion concurs with the study conclusions of the study conducted by (Mweta, 2018). The study established that proper managing of working capital constituents enhances the value of the shareholders. Indeed, the key cause for the failure of most firms, partnerships and small firms is poor working capital management including inventory, receivables and payables management. In order to avoid liquidity risk, it is vital for a firm to have efficient mechanisms of managing the constituents of working capital.

The current study conclusion that none of the working capital component individually significantly affected firm value is in agreement with the study conclusion by Mwangi and Obwogi (2018) on a study focusing on Kenyan listed manufacturing firms to bring out the link between WCM and their performance. The adopted design was quantitative that entailed gathering of information from auxiliary sources. The period of consideration of the inquiry was ten year frame covering 2007 all through to 2016. It was shown that while CCC and the ability of the firm to perform in financial terms are inversely but significantly linked with each other, the link with Tobin's Q was direct but not significant.

5.4 Recommendations

The study findings will aid in further researches to be conducted on the field of working capital management and its impact on corporate value. Later scholars keen in research on working capital management and its impact on corporate value will use the study findings as referral. Policy recommendations are made to the CMA and NSE, and by extension, the National Treasury, to formulate and enforce rules and regulations on working capital management since it has been

established that it influences the value of quoted firms. The recommendation will guide government regulators in making policies and practices to boost the capital markets and in extension, the financial system, to mitigate collapse of listed companies and ensure lack of stability in value of financial securities issued in the capital markets.

The finding that the average collection period and average payment period components of WCM are significantly negatively associated with firm value and the additional finding that the various working capital management practices, firm size, leverage, and sales growth do influence firm value generates conclusions to firm management and consultants to implement accrual quality in order to boost firm value. Other stakeholders like investment banks, equity analysts, and individual investors should search for firms with good working capital management to invest or recommend to invest. This is because there is a significant link between the ability of the firm to manage working capital and performance (Amjad & Hussain, 2014). The finding that none of the components of WCM had an individual significant effect on firm value calls for recommendations to firm management and consultants not to concentrate on any one WCM component in isolation but to employ wholesomely good working capital management practices.

5.5 Recommendations for Further Study

Exploring the influence of working capital management on corporate value is of great importance the policy makers in the National Treasury, CMA, and NSE, practitioners in the capital markets, and consultants. However, the current study was carried out in the capital markets context, the same study could be carried out across other firms like Small and Medium-Sized Enterprises (SMEs) establish if the study findings would hold. The study was only carried out in the Kenyan context, further studies can be conducted out of Kenyan context, they can be conducted in the African or global jurisdictions to establish whether the study findings would hold.

The study only considered firm size, leverage, and sales growth as the only factors moderating the relationship between working capital management and corporate value. A study can be conducted to ascertain there are factors that moderate on the relationship between WCM and corporate value. This study used secondary data, a subsequent research should be undertaken applying primary data to ascertain if the study findings would hold and either complement or criticize the finding of this study. Multiple linear regression and correlation analysis were applied in the study; Other analysis technique for example cluster analysis, discriminant analysis, granger causality and factors should be incorporated in the subsequent research.

5.6 Limitations of the Study

The study was conducted only in the capital markets context, due to time and cost and also availability of data constraints, which does not give clear indication of findings if firms in other sectors like Over the Counter (OTC) markets and SMEs or all the firms in the economy were also incorporated in the study. More uncertainties would occur if similar studies were replicated in firms outside the realm of capital markets. Although the research engaged secondary sources of data, there were some major challenges like some of the data being not readily available; especially data on the accruals quality and it took great lengths and costs to obtain it. The data was not utilized in their raw form and further calculations and manipulations of the data were required. Impending delays were experienced due to data processing and further editing before the compilation by the researcher.

REFERENCES

- Agrawal, A., & Knoeber, C. R. (1996). Firm Performance and Mechanisms to Control Agency Problems between Managers and Shareholders. The Journal of Financial and Quantitative Analysis, 31(3), 377-397 https://doi.org/10.2307/2331397
- Akoto, K. (2013). Working capital management and profitability: Evidence from Ghanaian listed manufacturing firms. Journal of Economics and International Finance, 5(9), 373–379. https://doi.org/10.5897/jeif2013.0539
- Alehegne, Damot. "Determinants of Working Capital Requirement on Manufacturing Firms." European Business & Management, vol. 5, no. 1, 2019, p. 1, 10.11648/j.ebm.20190501.11.
- Arachchi, A. N. H., Perera, W., & Vijayakumaran, R. (2018). The Impact of Working Capital Management on Firm Value: Evidence from a Frontier Market. Asian Journal of Finance & Accounting, 9(2), 399. https://doi.org/10.5296/ajfa.v9i2.12449
- Arbidane, I, & Ignatjeva, S. (2013). The Relationship between working capital management and profitability: a Latvian Case. *Global Review of Accounting and Finance* 4(1), 148-158.
- Arunkumar, O. N, & Ramanan, T. R. (2013). Working capital management and profitability: a sensitivity analysis. *International Journal of Research and Development* 2(1), 51-58.
- Cheng, Y., Liu, Y. &Tzeng, C. (2011). Capital structure and firm value in china: A panel threshold regression analysis. *African Journal of Business Management*, 4(12), 2500-2507.
- Elbadry, Ahmed. "The Determinants of Working Capital Management in the Egyptian SMEs." *Accounting and Finance Research*, vol. 7, no. 2, 14 Mar. 2018, p. 155, www.sciedu.ca/journal/index.php/afr/article/download/13052/8150, 10.5430/afr.v7n2p155. Accessed 8 May 2019.
- Enqvist, J., Graham, M., & Nikkinen, J. (2014). The impact of working capital management on firm profitability in different business cycles: Evidence from Finland. Research in International Business and Finance, 32, 36–49. https://doi.org/10.1016/j.ribaf.2014.03.005
- Florackis, C., Kostakis, A., & Ozkan, A. (2009). Managerial ownership and performance," *Journal of Business Research*, 62 (4), 1350-1357
- Gorondutse, A. H., Abubakar, A., Ali, R. A., & Naalah, M. N. I. (2017). THE EFFECT OF WORKING CAPITAL MANAGEMENT ON SMEs PROFITABILITY IN MALAYSIA. *Polish Journal of Management Studies*, *16*(2), 99–109. https://doi.org/10.17512/pjms.2017.16.2.09
- Hassan, N. U., Imran, M. M., Amjad, M., & Hussain, M. (2014). Effects of Working Capital Management on Firm Performance: An Empirical Study of Non-financial listed Firms in Pakistan. *International Journal of Academic Research in Business and Social Sciences*, 4(6), 114–132. https://doi.org/10.6007/ijarbss/v4-i6/931
- Himmelberg, C. P., Hubbard, R. G., & Palia, D. (1999). Understanding the determinants of managerial ownership and the link between ownership and performance. *Journal of Financial Economics*, 53(3), 353–384. https://doi.org/10.1016/s0304-405x(99)00025-2

- Holmstrom, Bengt, and Jean Tirole. "Liquidity and Risk Management." *Journal of Money, Credit and Banking*, vol. 32, no. 3, Aug. 2000, p. 295, 10.2307/2601167.
- Kaur, H. V, & Sing S. (2013). Managing efficiency and profitability through working capital: An empirical analysis of BSE 200 companies. *Asian Journal of Business Management* 5 (2), 197-207.
- Kiganda, A. (2016, 10 19). *Kenya's Construction Industry and its Challenges*. Retrieved from construction review online: https://constructionreviewonline.com/2016/09/kenyas-construction-industry-and-its-challenges/
- Kiptoo, I. K. (2017). Working capital management practices and financial performance of tea processing firms in Kenya. *Unpublished MBA Project-University of Embu*
- Kothari C. R. (2012). *Research Methodology*, 2nd Ed. New Delhi: New Age International Publishers
- Leeson, J. (2016). CONCEPT OF WORKING CAPITAL management. *International Journal of Commerce, Business and Management*, 5, 372-377.
- Likalama, A. A. (2016). Assessing working capital management as a determinant of profitability of agro- firms in Eldoret business center, Kenya. *Unpublished MBA Project-Kisii University Repository*
- Majeed, S, Makki M, Salem, S, & Aziz, T. (2013). The relationship of cash conversion cycle and profitability of firms: An empirical investigation of Pakistani Firms. *Journal of Emerging Issues in Economics, Finance and Banking* 1, 35-51.
- Makori, D. M., & Jagongo, A., (2013). Working Capital Management and Firm Profitability: Empirical Evidence from Manufacturing and Construction Firms Listed on Nairobi Securities Exchange, Kenya. *International Journal of Accounting and Taxation*, 1 (1).
- Moussa, A. A. (2018). "The impact of working capital management on firms' performance and value: evidence from Egypt," *Journal of Asset Management, Palgrave Macmillan*, 19(4), pages 259-273
- Mwangi, J. G., & Obwogi, J. (2018). Effect of working capital management on the performance of listed manufacturing firms in Kenya. *The International Journal of Business and Management*. 6(9),
- Mwangi, L. W., Makau, M. S., & Kosimbei, G. (2014). Effects of working capital management on performance of nonfinancial companies listed in NSE, Kenya. *European Journal of Business and Management* 6(11), 195-2015\
- Mweta, T. M. (2018). Effect of Working Capital Management on the Financial Performance: Evidence of Construction and Allied Sector Firms Listed at Nairobi Securities Exchange. *Research Journal of Finance and Accounting*, *9*, 38-49.

- Mwirigi, D., Wambugu, H. W., & Maina, M. (2018). The effect of working capital management on performance of small enterprises in Kenya. *International Journal of Managerial Studies and Research* 6(12), PP 1-9
- Naser K, Nuseith R, Al-hadeya A (2013). Factors influencing corporate working capital management: Evidence from an emerging economy. *Journal of Contemporary Issues in Business Research* 2(1), 11-30.
- Nuryana, Ida. "Analysis Credit Risk Management Minimizing Performing Loans to Credit Business People." *Management and Business Review*, vol. 1, no. 1, 12 June 2017, p. 38, 10.21067/mbr.v1i1.2126.
- Nzioki, P. M., Kimeli, S. K., Abudho, M. R., & Nthiwa, J. M. (2013). Management of working capital and its effect on profitability of manufacturing companies listed on Nairobi securities exchange (NSE), Kenya. *International Journal of Business and Finance Management Research*. 1(3), 35-42
- Ogundipe, S. E., Idowu, A. & Ogundipe, L. O. (2012). Working Capital Management, Firms' Performance and Market Valuation in Nigeria. *International Journal of Social and Human Sciences*, 6, 143-147.
- Oseifuah, E. K., & Gyekye, A. (2017). Working capital management and shareholders' wealth creation: evidence from non-financial firms listed on the Johannesburg Stock Exchange. *Investment Management and Financial Innovations*, 14(1), 80-88.
- Şamiloğlu, F., & Akgün, A. L. (2016). The relationship between working capital management and profitability: Evidence from Turkey. *Business and Economics Research Journal* 7(2), 1-14
- Shin, H.H., & Soenen, L (1998). Efficiency of Working Capital and Corporate Profitability, *Financial Practice and Education* 8 (2), 37-45.
- Sianipar, A., & Prijadi, R. (2018). Effect of working capital and financial aspects to firm Value: an empirical study on Indonesian listed firms. *Advances in Economics, Business and Management Research* 89(2), 388-393
- Sudiyatno, B., Puspitasari, E., & Sudarsi, S. (2017). Working capital, firm performance, and firm value: An empirical study in manufacturing industry on Indonesia Stock Exchange. *Economics World*, 5(5), 444-450
- Tauringana, V., & AdjapongAfrifa, G. (2013). The relative importance of working capital management and its components to Small Enterprises' profitability. *Journal of Small Business and Enterprise Development*, 20(3), 453-469.
- Thomsen, S., Pedersen, T., & Kvist, H. (2006). Block holder ownership: Effects on firm value in market and control based governance systems," *Journal of Corporate Finance*, 12(3), 246-269
- Vijayakumaran, R. (2019). Efficiency of working capital management and firm value: Evidence from Chinese listed firms. *International Journal of Financial Research* 10(6), 30-47

APPENDICES

Appendix 1: Companies Listed at the Nairobi Securities Exchange

Agricultural	
Ticker	Company Name
EGAD	Eaagads Limited
KUKZ	Kakuzi Limited
KAPC	Kapchorua Tea Company Limited
LIMT	Limuru Tea Company Limited
SASN	Sasini Tea and Coffee
WTK	Williamson Tea Kenya Limited
Automobiles and Accessories	
Ticker	Company Name
G&G	Car & General Kenya

Banking	
Ticker	Company Name
BBK	Barclays Bank of Kenya
CFC	CfC Stanbic Holdings
DTK	Diamond Trust Bank Group
EQTY	Equity Group Holdings Limited
HFCK	Housing Finance Company of Kenya
I&M	I&M Holdings Limited
KCB	Kenya Commercial Bank Group
NBK	National Bank of Kenya
NIC	National Industrial Credit Bank
SCBK	Standard Chartered of Kenya

COOP	Cooperative Bank of Kenya	
Commercial and	Commercial and Services	
Ticker	Company Name	
XPRS	Express Kenya Limited	
KQ	Kenya Airways	
LKL	Longhorn Kenya Limited	
EVRD	Eveready East Africa	
SCAN	Scangroup	
NMG	Nation Media Group	
SGL	Standard Group Limited	
FIRE	Sameer Africa Limited	
TPSE	TPS Serena	
UCHM	Uchumi Supermarkets	

Construction and Allied	
Ticker	Company Name
ARM	ARM Cement Limited
BAMB	Bamburi Cement Limited
BERG	Crown-Berger (Kenya)
CABL	East African Cables Limited
PORT	East Africa Portland Cement Company
Energy and Petroleum	
Ticker	Company Name
KEGN	Kengen
KENO	KenolKobil
KPLC	Kenya Power and Lighting Company
TOTL	Total Kenya Limited

UMME	Umeme
Insurance Segment	
Ticker	Company Name
BRIT	British-American Investments Company
CIC	CIC Insurance Group
CFCI	Liberty Kenya Holdings Limited
JUB	Jubilee Holdings Limited
KNRE	Kenya Reinsurance Corporation
PAFR	Sanlam Kenya Plc
Investments	
Ticker	Company Name
ICDC	Centum Investment Company
OCH	Olympia Capital Holdings
HAFR	Home Afrika Ltd
TCL	TransCentury Investments
	I

Investment Services	
Ticker	Company Name
NSE	Nairobi Securities Exchange
Manufacturing and Allied	
Ticker	Company Name
BOC	BOC Kenya Limited
BAT	British American Tobacco Limited
CARB	Carbacid Investments Limited
EABL	East African Breweries
EVRD	Eveready East Africa
ORCH	Kenya Orchards Limited

MSC	Mumias Sugar Company Limited					
UNGA	GA Unga Group					
Telecommunication and Technology						
Ticker	Company Name					
SCOM	Safaricom					

Source: Nairobi Securities Exchange Website (2020)

Appendix II: Data Collection Sheet

Name of	Sector				
Company					
Data	2015	2016	2017	2018	2019
Data	2015	2010	2017	2010	2019
Total Market					
Value					
Total Book					
Value					
Liabilities					
Tobin's Q					
Ratio					
Net Income					
Cash flows from					
operations					
Conservative					
Accounting					
Accounts					
Receivables					
Inventory					
Accounts					
Payable					
Tax Payable					

Other	Current			
Assets				

Appendix III: Research Data

Num ber	Year	Tobin Q Ratio	Average collection period	Average payment period	Firm Size	Levear age	Sales growth
					17.569	0.3757	
1	2017	0.532075	14.64973	15.20284	69	44	-0.52486
					17.748	0.4205	
1	2016	0.604281	15.34577	15.46973	49	59	-0.12935
					17.765	0.7172	
1	2015	0.640816	15.0784	15.36669	54	93	0.373451
					17.709	0.2814	
2	2019	0.696413	14.73778	15.71088	06	37	0.012364
					17.734	0.1549	
2	2018	0.966313	14.7912	15.87156	65	73	0.011894
_					17.669	0.0898	
2	2017	1.296207	15.34048	15.62314	97	48	0.09897
_					17.524	0.0679	
2	2016	1.333233	15.52552	15.74457	46	48	0.061078
_					17.553	0.0729	
2	2015	1.395332	14.89562	15.73287	89	09	0.066721
					16.256	1.4526	
3	2019	0.460549	14.26871	14.47038	44	33	0.242449
					16.135	1.7292	
3	2018	0.443872	14.34423	14.415	3	3	0.313401
					16.042	1.4325	
3	2017	0.438984	14.18912	14.3559	03	75	0.14162
	2015	0.4550	4.4.4.000	44.50440	16.088	0.7669	
3	2016	0.466826	14.41983	14.62442	17	42	0.200802
	2015	0.504016	14.40207	14.70406	16.011	0.6130	0.10.4000
3	2015	0.504916	14.49287	14.73486	41	65	0.134322
	2010	0.500=10	10.0710.5	11	15.069	0.1015	0.400075
4	2019	0.623718	12.07106	11.57347	27	29	0.133257
	2010	1 1 7 2 7 2 7	44.00==	44.04.50	15.030	0.0543	0.05.405
4	2018	1.153631	11.8955	11.34582	79	27	0.07407
	2015	4.0000=0	44.00-0	44 =61==	15.011	0.0494	0.0505
4	2017	1.388878	11.9028	11.73177	54	95	0.06991
	2016	0.0001	13.000=0	44 0000	14.941	0.0305	0.045005
4	2016	2.36821	12.09079	11.88986	01	42	0.047807

1.5974 1.4903 0.0072 0.011673 1.59743 64 59 0.011673 1.59743 64 59 0.011673 1.59743 1.59743 1.546 1.0813 1.59743								
5 2019 0.933686 13.69318 14.27963 15.446 1.0813 0.029809 5 2018 1.022045 14.03833 14.42992 83 01 0.030647 5 2017 0.982262 14.38348 14.58021 64 99 0.040331 5 2016 0.75813 14.19999 14.42543 69 2 0.078079 5 2015 0.974486 14.04683 14.27874 25 42 0.01375 6 2019 0.458548 12.65622 13.56677 06 66 0.992768 6 2018 0.494692 13.18386 13.63185 13 22 -0.38478 6 2017 0.536082 13.71149 13.69694 89 41 -0.49119 6 2016 0.518172 14.11849 13.92297 85 36 -0.39412 7 2016 0.518171 14.51549 14.00299 85 6 0.068828	4	2015	0.070002	12.02562	11 50742	14.903	0.0072	0.011672
5 2019 0.933686 13.69318 14.27963 02 96 0.029809 5 2018 1.022045 14.03833 14.42992 83 01 0.030647 5 2017 0.982262 14.38348 14.58021 64 99 0.040331 5 2016 0.75813 14.19999 14.42543 69 2 0.078079 5 2015 0.974486 14.04683 14.27874 23 42 0.01375 6 2019 0.458548 12.65622 13.56677 06 66 0.992768 6 2018 0.494692 13.18386 13.63185 13 22 -0.38478 6 2017 0.536082 13.71149 13.69694 89 41 -0.49119 6 2016 0.518172 14.11849 13.92297 85 36 -0.39412 7 2018 0.287612 13.35721 15.57442 82 5 5.420182	4	2015	9.879083	12.03563	11.59/43			0.0116/3
5 2018 1.022045 14.03833 14.42992 83 01 0.030647 5 2017 0.982262 14.38348 14.58021 64 99 0.040331 5 2016 0.75813 14.19999 14.42543 69 2 0.078079 5 2016 0.75813 14.19999 14.42543 69 2 0.078079 5 2015 0.974486 14.04683 14.27874 25 42 0.01375 6 2019 0.458548 12.65622 13.56677 0 66 0.992768 6 2018 0.494692 13.18386 13.63185 13 22 -0.38478 6 2017 0.536082 13.71149 13.69694 89 41 -0.49119 6 2016 0.518172 14.11849 13.92297 85 36 -0.39412 7 2018 0.287612 13.35721 15.5742 82 5 5.420182	_	2010	0.022696	12 (0210	14.27062			0.020000
5 2018 1.022045 14.03833 14.42992 83 01 0.030647 5 2017 0.982262 14.38348 14.58021 64 99 0.040331 5 2016 0.75813 14.19999 14.42543 69 2 0.078079 5 2016 0.75813 14.19999 14.42543 69 2 0.078079 5 2015 0.974486 14.04683 14.27874 25 42 0.01375 6 2019 0.458548 12.65622 13.56677 06 66 66 0.992768 6 2018 0.494692 13.18386 13.63185 13 22 -0.38478 6 2017 0.536082 13.71149 13.69694 89 41 -0.49119 1 15.766 0.8648 36 -0.39412 15.736 0.8648 6 2015 0.581371 14.51549 14.00299 85 6 0.068828	3	2019	0.933686	13.09318	14.27963			0.029809
5 2017 0.982262 14.38348 14.58021 64 99 0.040331 5 2016 0.75813 14.19999 14.42543 69 2 0.078079 5 2015 0.974486 14.04683 14.27874 25 42 0.01375 6 2019 0.458548 12.65622 13.56677 0.6 66 0.992768 6 2018 0.494692 13.18386 13.63185 13 22 -0.38478 6 2017 0.536082 13.71149 13.69694 89 41 -0.49119 6 2016 0.518172 14.11849 13.92297 85 36 -0.39412 7 2016 0.581371 14.51549 14.00299 85 6 0.068828 7 2018 0.287612 13.35721 15.57442 82 5 5.420182 7 2017 0.34096 12.90359 14.86423 5 81 -0.43448	_	2010	1 022045	14.02022	1.4.42002			0.020647
5 2017 0.982262 14.38348 14.58021 64 99 0.040331 5 2016 0.75813 14.19999 14.42543 69 2 0.078079 5 2015 0.974486 14.04683 14.27874 25 42 0.01375 6 2019 0.458548 12.65622 13.56677 06 66 0.992768 6 2018 0.494692 13.18386 13.63185 13 22 -0.38478 6 2017 0.536082 13.71149 13.69694 89 41 -0.49119 6 2016 0.518172 14.11849 13.92297 85 36 -0.39412 7 2018 0.287612 13.35721 15.57442 82 5 5.420182 7 2018 0.287612 13.35721 15.57442 82 5 5.420182 7 2017 0.34096 12.90359 14.86423 5 81 -0.43448	3	2018	1.022043	14.03833	14.42992			0.030647
5 2016 0.75813 14.19999 14.42543 69 2 0.078079 5 2015 0.974486 14.04683 14.27874 25 42 0.01375 6 2019 0.458548 12.65622 13.56677 06 66 0.992768 6 2018 0.494692 13.18386 13.63185 13 22 -0.38478 6 2017 0.536082 13.71149 13.69694 89 41 -0.49119 6 2016 0.518172 14.11849 13.92297 85 36 -0.39412 6 2015 0.581371 14.51549 14.00299 85 6 0.068828 7 2018 0.287612 13.35721 15.57442 82 5 5.420182 7 2017 0.34096 12.90359 14.86423 5 81 -0.43448 7 2016 0.318261 13.17225 14.74646 06 01 1.956107	5	2017	0.092262	14 20240	1.4.59021			0.040221
5 2016 0.75813 14.19999 14.42543 69 2 0.078079 5 2015 0.974486 14.04683 14.27874 25 42 0.01375 6 2019 0.458548 12.65622 13.56677 06 66 0.992768 6 2018 0.494692 13.18386 13.63185 13 12.22 -0.38478 6 2017 0.536082 13.71149 13.69694 89 41 -0.49119 6 2016 0.518172 14.11849 13.92297 85 36 -0.39412 7 2018 0.287612 13.35721 15.57442 82 5 5.420182 7 2018 0.287612 13.35721 15.57442 82 5 5.420182 7 2016 0.318261 13.17225 14.74646 06 01 1.956107 7 2015 0.41679 13.90119 14.4799 89 3 1.704675	3	2017	0.982202	14.36346	14.38021			0.040331
5 2015 0.974486 14.04683 14.27874 25 42 0.01375 6 2019 0.458548 12.65622 13.56677 06 66 0.992768 6 2018 0.494692 13.18386 13.63185 13 122 -0.38478 6 2017 0.536082 13.71149 13.69694 89 41 -0.49119 6 2016 0.518172 14.11849 13.92297 85 36 -0.39412 6 2015 0.581371 14.51549 14.00299 85 6 70.034912 15.57442 82 5 5.420182 7 2018 0.287612 13.35721 15.57442 82 5 5.420182 7 2016 0.318261 13.17225 14.74646 06 01 1.956107 7 2016 0.318261 13.17225 14.74646 06 01 1.956107 8 2019 0.954719 11.29668 11.6	5	2016	0.75913	14 10000	14 42543			0.078070
5 2015 0.974486 14.04683 14.27874 25 42 0.01375 6 2019 0.458548 12.65622 13.56677 06 66 0.992768 6 2018 0.494692 13.18386 13.63185 13 22 -0.38478 6 2017 0.536082 13.71149 13.69694 89 41 -0.49119 6 2016 0.518172 14.11849 13.92297 85 36 -0.39412 6 2015 0.581371 14.51549 14.00299 85 6 0.068828 7 2018 0.287612 13.35721 15.57442 82 5 5.420182 7 2017 0.34096 12.90359 14.86423 5 81 -0.43448 7 2016 0.318261 13.17225 14.74640 06 01 1.956107 8 2019 0.954719 11.29668 11.62382 3 99 -1.31404		2010	0.73613	14.17777	14.42343			0.078079
6 2019 0.458548 12.65622 13.56677 0.6 66 0.992768 6 2018 0.494692 13.18386 13.63185 15.703 1.0196 6 2017 0.536082 13.71149 13.69694 89 41 -0.49119 6 2016 0.518172 14.11849 13.92297 85 36 -0.39412 6 2015 0.581371 14.51549 14.00299 85 36 -0.39412 7 2018 0.287612 13.35721 15.57442 82 5 5.420182 7 2017 0.34096 12.90359 14.86423 5 81 -0.43448 7 2016 0.318261 13.17225 14.74646 06 01 1.956107 8 2019 0.954719 11.29668 11.62382 3 99 -1.31404 8 2018 1.23985 11.95222 11.5987 98 91 -0.15013 8	5	2015	0 974486	14 04683	14 27874			0.01375
6 2019 0.458548 12.65622 13.56677 06 66 0.992768 6 2018 0.494692 13.18386 13.63185 13.703 1.0196 6 2017 0.536082 13.71149 13.69694 89 41 -0.49119 6 2016 0.518172 14.11849 13.92297 85 36 -0.39412 6 2015 0.581371 14.51549 14.00299 85 6 0.068828 7 2018 0.287612 13.35721 15.57442 82 5 5.420182 7 2018 0.287612 13.35721 15.57442 82 5 5.420182 7 2017 0.34096 12.90359 14.86423 5 81 -0.43448 7 2016 0.318261 13.17225 14.74646 06 01 1.956107 8 2019 0.954719 11.29668 11.62382 3 99 -1.31404 8		2013	0.774400	14.04003	14.27074			0.01373
6 2018 0.494692 13.18386 13.63185 15.703 1.0196 -0.38478 6 2017 0.536082 13.71149 13.69694 89 41 -0.49119 6 2016 0.518172 14.11849 13.92297 85 36 -0.39412 6 2015 0.581371 14.51549 14.00299 85 6 0.068828 7 2018 0.287612 13.35721 15.57442 82 5 5.420182 7 2017 0.34096 12.90359 14.86423 5 81 -0.43448 7 2016 0.318261 13.17225 14.74646 06 01 1.956107 7 2015 0.41679 13.90119 14.4799 89 3 1.704675 8 2019 0.954719 11.29668 11.62382 3 99 -1.31404 8 2018 1.23985 11.95222 11.5987 98 91 -0.15013 <t< td=""><td>6</td><td>2019</td><td>0.458548</td><td>12 65622</td><td>13 56677</td><td></td><td></td><td>0 992768</td></t<>	6	2019	0.458548	12 65622	13 56677			0 992768
6 2018 0.494692 13.18386 13.63185 13 22 -0.38478 6 2017 0.536082 13.71149 13.69694 89 41 -0.49119 6 2016 0.518172 14.11849 13.92297 85 36 -0.39412 6 2015 0.581371 14.51549 14.00299 85 6 0.068828 7 2018 0.287612 13.35721 15.57442 82 5 5.420182 7 2017 0.34096 12.90359 14.86423 5 8 -0.43448 7 2016 0.318261 13.17225 14.74646 06 01 1.956107 7 2015 0.41679 13.90119 14.4799 89 3 1.704675 8 2019 0.954719 11.29668 11.62382 3 99 -1.31404 8 2018 1.23985 11.95222 11.5987 98 9 -0.15013	0	2017	0.430340	12.03022	13.30077			0.552700
6 2017 0.536082 13.71149 13.69694 89 41 -0.49119 6 2016 0.518172 14.11849 13.92297 85 36 -0.39412 6 2015 0.581371 14.51549 14.00299 85 6 0.068828 7 2018 0.287612 13.35721 15.57442 82 5 5.420182 7 2017 0.34096 12.90359 14.86423 5 81 -0.43448 7 2016 0.318261 13.17225 14.74646 06 01 1.956107 7 2015 0.41679 13.90119 14.4799 89 3 1.704675 8 2019 0.954719 11.29668 11.62382 3 99 -1.31404 8 2018 1.23985 11.95222 11.5987 98 91 -0.15013 8 2016 0.781289 11.45958 11.87831 07 63 -0.27378	6	2018	0 494692	13 18386	13 63185			-0 38478
6 2017 0.536082 13.71149 13.69694 89 41 -0.49119 6 2016 0.518172 14.11849 13.92297 85 36 -0.39412 6 2015 0.581371 14.51549 14.00299 85 6 0.068828 7 2018 0.287612 13.35721 15.57442 82 5 5.420182 7 2017 0.34096 12.90359 14.86423 5 81 -0.43448 7 2016 0.318261 13.17225 14.74646 06 01 1.956107 8 2019 0.954719 11.29668 11.62382 3 99 -1.31404 8 2018 1.23985 11.95222 11.5987 98 91 -0.15013 8 2017 0.991688 11.91328 11.91572 58 74 0.356883 8 2016 0.781289 11.45958 11.87831 0.7 2 89 0.856369		2010	0.424072	13.10300	13.03103			0.30470
6 2016 0.518172 14.11849 13.92297 85 36 -0.39412 6 2015 0.581371 14.51549 14.00299 85 6 0.068828 7 2018 0.287612 13.35721 15.57442 82 5 5.420182 7 2017 0.34096 12.90359 14.86423 5 81 -0.43448 7 2016 0.318261 13.17225 14.74646 06 01 1.956107 7 2015 0.41679 13.90119 14.4799 89 3 1.704675 8 2019 0.954719 11.29668 11.62382 3 99 -1.31404 8 2018 1.23985 11.95222 11.5987 98 91 -0.15013 8 2017 0.991688 11.91328 11.91572 58 74 0.356883 8 2016 0.781289 11.45958 11.87831 07 63 -0.27378	6	2017	0.536082	13 71149	13 69694			-0 49119
6 2016 0.518172 14.11849 13.92297 85 36 -0.39412 6 2015 0.581371 14.51549 14.00299 85 6 0.068828 7 2018 0.287612 13.35721 15.57442 82 5 5.420182 7 2017 0.34096 12.90359 14.86423 5 81 -0.43448 7 2016 0.318261 13.17225 14.74646 06 01 1.956107 7 2015 0.41679 13.90119 14.4799 89 3 1.704675 8 2019 0.954719 11.29668 11.62382 3 99 -1.31404 8 2018 1.23985 11.95222 11.5987 98 91 -0.15013 8 2017 0.991688 11.91328 11.91572 58 74 0.356883 8 2016 0.781289 11.45958 11.87831 07 63 -0.27378	0	2017	0.550002	13.7111)	13.07071			0.19119
6 2015 0.581371 14.51549 14.00299 85 6 0.068828 7 2018 0.287612 13.35721 15.57442 82 5 5.420182 7 2017 0.34096 12.90359 14.86423 5 81 -0.43448 7 2016 0.318261 13.17225 14.74646 06 01 1.956107 7 2015 0.41679 13.90119 14.4799 89 3 1.704675 8 2019 0.954719 11.29668 11.62382 3 99 -1.31404 8 2018 1.23985 11.95222 11.5987 98 91 -0.15013 8 2017 0.991688 11.91328 11.91572 58 74 0.356883 8 2016 0.781289 11.45958 11.87831 07 63 -0.27378 8 2015 0.562564 12.31821 12.68818 72 89 0.856369	6	2016	0.518172	14 11849	13 92297			-0 39412
6 2015 0.581371 14.51549 14.00299 85 6 0.068828 7 2018 0.287612 13.35721 15.57442 82 5 5.420182 7 2017 0.34096 12.90359 14.86423 5 81 -0.43448 7 2016 0.318261 13.17225 14.74646 06 01 1.956107 7 2015 0.41679 13.90119 14.4799 89 3 1.704675 8 2019 0.954719 11.29668 11.62382 3 99 -1.31404 8 2018 1.23985 11.95222 11.5987 98 91 -0.15013 8 2017 0.991688 11.91328 11.91572 58 74 0.356883 8 2016 0.781289 11.45958 11.87831 07 63 -0.27378 8 2015 0.562564 12.31821 12.68818 72 89 0.856369		2010	0.510172	1 1111019	13.7227			0.55 112
7 2018 0.287612 13.35721 15.57442 82 5 5.420182 7 2017 0.34096 12.90359 14.86423 5 81 -0.43448 7 2016 0.318261 13.17225 14.74646 06 01 1.956107 7 2015 0.41679 13.90119 14.4799 89 3 1.704675 8 2019 0.954719 11.29668 11.62382 3 99 -1.31404 8 2018 1.23985 11.95222 11.5987 98 91 -0.15013 8 2017 0.991688 11.91328 11.91572 58 74 0.356883 8 2016 0.781289 11.45958 11.87831 07 63 -0.27378 8 2015 0.562564 12.31821 12.68818 72 89 0.856369 9 2019 1.020657 12.90344 12.11017 3 18 0.107059	6	2015	0.581371	14.51549	14.00299			0.068828
7 2018 0.287612 13.35721 15.57442 82 5 5.420182 7 2017 0.34096 12.90359 14.86423 5 81 -0.43448 7 2016 0.318261 13.17225 14.74646 06 01 1.956107 7 2015 0.41679 13.90119 14.4799 89 3 1.704675 8 2019 0.954719 11.29668 11.62382 3 99 -1.31404 8 2018 1.23985 11.95222 11.5987 98 91 -0.15013 8 2017 0.991688 11.91328 11.91572 58 74 0.356883 8 2016 0.781289 11.45958 11.87831 07 63 -0.27378 8 2015 0.562564 12.31821 12.68818 72 89 0.856369 9 2019 1.020657 12.90344 12.11017 3 18 0.107059		2010	0.001071	1 15	1002//			0.000020
7 2017 0.34096 12.90359 14.86423 5 81 -0.43448 7 2016 0.318261 13.17225 14.74646 06 01 1.956107 7 2015 0.41679 13.90119 14.4799 89 3 1.704675 8 2019 0.954719 11.29668 11.62382 3 99 -1.31404 8 2018 1.23985 11.95222 11.5987 98 91 -0.15013 8 2017 0.991688 11.91328 11.91572 58 74 0.356883 8 2016 0.781289 11.45958 11.87831 07 63 -0.27378 8 2015 0.562564 12.31821 12.68818 72 89 0.856369 9 2019 1.020657 12.90344 12.11017 3 18 0.107059 9 2018 1.018711 12.04047 12.80154 4 96 0.079763	7	2018	0.287612	13.35721	15.57442			5.420182
7 2017 0.34096 12.90359 14.86423 5 81 -0.43448 7 2016 0.318261 13.17225 14.74646 06 01 1.956107 7 2015 0.41679 13.90119 14.4799 89 3 1.704675 8 2019 0.954719 11.29668 11.62382 3 99 -1.31404 8 2018 1.23985 11.95222 11.5987 98 91 -0.15013 8 2017 0.991688 11.91328 11.91572 58 74 0.356883 8 2016 0.781289 11.45958 11.87831 07 63 -0.27378 8 2015 0.562564 12.31821 12.68818 72 89 0.856369 9 2019 1.020657 12.90344 12.11017 3 18 0.107059 9 2018 1.018711 12.04047 12.80154 4 96 0.079763								
7 2016 0.318261 13.17225 14.74646 06 01 1.956107 7 2015 0.41679 13.90119 14.4799 89 3 1.704675 8 2019 0.954719 11.29668 11.62382 3 99 -1.31404 8 2018 1.23985 11.95222 11.5987 98 91 -0.15013 8 2017 0.991688 11.91328 11.91572 58 74 0.356883 8 2016 0.781289 11.45958 11.87831 07 63 -0.27378 8 2015 0.562564 12.31821 12.68818 72 89 0.856369 9 2019 1.020657 12.90344 12.11017 3 18 0.107059 9 2018 1.018711 12.04047 12.80154 4 96 0.079763 9 2017 1.097943 12.58281 13.04405 04 77 0.092019	7	2017	0.34096	12.90359	14.86423			-0.43448
7 2016 0.318261 13.17225 14.74646 06 01 1.956107 7 2015 0.41679 13.90119 14.4799 89 3 1.704675 8 2019 0.954719 11.29668 11.62382 3 99 -1.31404 8 2018 1.23985 11.95222 11.5987 98 91 -0.15013 8 2017 0.991688 11.91328 11.91572 58 74 0.356883 8 2016 0.781289 11.45958 11.87831 07 63 -0.27378 8 2015 0.562564 12.31821 12.68818 72 89 0.856369 9 2019 1.020657 12.90344 12.11017 3 18 0.107059 9 2018 1.018711 12.04047 12.80154 4 96 0.079763 9 2017 1.097943 12.58281 13.04405 04 77 0.092019 9 2016 1.157895 12.49182 12.89612 75 26 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>17.142</td><td></td><td></td></t<>						17.142		
7 2015 0.41679 13.90119 14.4799 89 3 1.704675 8 2019 0.954719 11.29668 11.62382 3 99 -1.31404 8 2018 1.23985 11.95222 11.5987 98 91 -0.15013 8 2017 0.991688 11.91328 11.91572 58 74 0.356883 8 2016 0.781289 11.45958 11.87831 07 63 -0.27378 8 2015 0.562564 12.31821 12.68818 72 89 0.856369 9 2019 1.020657 12.90344 12.11017 3 18 0.107059 9 2018 1.018711 12.04047 12.80154 4 96 0.079763 9 2017 1.097943 12.58281 13.04405 04 77 0.092019 9 2016 1.157895 12.49182 12.89612 75 26 0.093845	7	2016	0.318261	13.17225	14.74646			1.956107
8 2019 0.954719 11.29668 11.62382 3 99 -1.31404 8 2018 1.23985 11.95222 11.5987 98 91 -0.15013 8 2017 0.991688 11.91328 11.91572 58 74 0.356883 8 2016 0.781289 11.45958 11.87831 07 63 -0.27378 8 2015 0.562564 12.31821 12.68818 72 89 0.856369 9 2019 1.020657 12.90344 12.11017 3 18 0.107059 9 2018 1.018711 12.04047 12.80154 4 96 0.079763 9 2017 1.097943 12.58281 13.04405 04 77 0.092019 9 2016 1.157895 12.49182 12.89612 75 26 0.093845						16.955	1.3161	
8 2019 0.954719 11.29668 11.62382 3 99 -1.31404 8 2018 1.23985 11.95222 11.5987 98 91 -0.15013 8 2017 0.991688 11.91328 11.91572 58 74 0.356883 8 2016 0.781289 11.45958 11.87831 07 63 -0.27378 8 2015 0.562564 12.31821 12.68818 72 89 0.856369 9 2019 1.020657 12.90344 12.11017 3 18 0.107059 9 2018 1.018711 12.04047 12.80154 4 96 0.079763 9 2017 1.097943 12.58281 13.04405 04 77 0.092019 9 2016 1.157895 12.49182 12.89612 75 26 0.093845	7	2015	0.41679	13.90119	14.4799	89	3	1.704675
8 2018 1.23985 11.95222 11.5987 98 91 -0.15013 8 2017 0.991688 11.91328 11.91572 58 74 0.356883 8 2016 0.781289 11.45958 11.87831 07 63 -0.27378 8 2015 0.562564 12.31821 12.68818 72 89 0.856369 9 2019 1.020657 12.90344 12.11017 3 18 0.107059 9 2018 1.018711 12.04047 12.80154 4 96 0.079763 9 2017 1.097943 12.58281 13.04405 04 77 0.092019 9 2016 1.157895 12.49182 12.89612 75 26 0.093845						12.423	0.0382	
8 2018 1.23985 11.95222 11.5987 98 91 -0.15013 8 2017 0.991688 11.91328 11.91572 58 74 0.356883 8 2016 0.781289 11.45958 11.87831 07 63 -0.27378 8 2015 0.562564 12.31821 12.68818 72 89 0.856369 9 2019 1.020657 12.90344 12.11017 3 18 0.107059 9 2018 1.018711 12.04047 12.80154 4 96 0.079763 9 2017 1.097943 12.58281 13.04405 04 77 0.092019 9 2016 1.157895 12.49182 12.89612 75 26 0.093845	8	2019	0.954719	11.29668	11.62382	3	99	-1.31404
8 2017 0.991688 11.91328 11.91572 58 74 0.356883 8 2016 0.781289 11.45958 11.87831 07 63 -0.27378 8 2015 0.562564 12.31821 12.68818 72 89 0.856369 9 2019 1.020657 12.90344 12.11017 3 18 0.107059 9 2018 1.018711 12.04047 12.80154 4 96 0.079763 9 2017 1.097943 12.58281 13.04405 04 77 0.092019 9 2016 1.157895 12.49182 12.89612 75 26 0.093845 14.922 0.1194						13.259	0.0118	
8 2017 0.991688 11.91328 11.91572 58 74 0.356883 8 2016 0.781289 11.45958 11.87831 07 63 -0.27378 8 2015 0.562564 12.31821 12.68818 72 89 0.856369 9 2019 1.020657 12.90344 12.11017 3 18 0.107059 9 2018 1.018711 12.04047 12.80154 4 96 0.079763 9 2017 1.097943 12.58281 13.04405 04 77 0.092019 9 2016 1.157895 12.49182 12.89612 75 26 0.093845 14.922 0.1194	8	2018	1.23985	11.95222	11.5987		91	-0.15013
8 2016 0.781289 11.45958 11.87831 07 63 -0.27378 8 2015 0.562564 12.31821 12.68818 72 89 0.856369 9 2019 1.020657 12.90344 12.11017 3 18 0.107059 9 2018 1.018711 12.04047 12.80154 4 96 0.079763 9 2017 1.097943 12.58281 13.04405 04 77 0.092019 9 2016 1.157895 12.49182 12.89612 75 26 0.093845 14.922 0.1194						13.557	0.0115	
8 2016 0.781289 11.45958 11.87831 07 63 -0.27378 8 2015 0.562564 12.31821 12.68818 72 89 0.856369 9 2019 1.020657 12.90344 12.11017 3 18 0.107059 9 2018 1.018711 12.04047 12.80154 4 96 0.079763 9 2017 1.097943 12.58281 13.04405 04 77 0.092019 9 2016 1.157895 12.49182 12.89612 75 26 0.093845 14.922 0.1194	8	2017	0.991688	11.91328	11.91572	58	74	0.356883
8 2015 0.562564 12.31821 12.68818 72 89 0.856369 9 2019 1.020657 12.90344 12.11017 3 18 0.107059 9 2018 1.018711 12.04047 12.80154 4 96 0.079763 9 2017 1.097943 12.58281 13.04405 04 77 0.092019 9 2016 1.157895 12.49182 12.89612 75 26 0.093845 14.922 0.1194						13.895	0.0123	
8 2015 0.562564 12.31821 12.68818 72 89 0.856369 9 2019 1.020657 12.90344 12.11017 3 18 0.107059 9 2018 1.018711 12.04047 12.80154 4 96 0.079763 9 2017 1.097943 12.58281 13.04405 04 77 0.092019 9 2016 1.157895 12.49182 12.89612 75 26 0.093845 14.922 0.1194	8	2016	0.781289	11.45958	11.87831			-0.27378
9 2019 1.020657 12.90344 12.11017 3 18 0.107059 9 2018 1.018711 12.04047 12.80154 4 96 0.079763 9 2017 1.097943 12.58281 13.04405 04 77 0.092019 9 2016 1.157895 12.49182 12.89612 75 26 0.093845 14.922 0.1194						14.228	0.0997	
9 2019 1.020657 12.90344 12.11017 3 18 0.107059 9 2018 1.018711 12.04047 12.80154 4 96 0.079763 9 2017 1.097943 12.58281 13.04405 04 77 0.092019 9 2016 1.157895 12.49182 12.89612 75 26 0.093845 14.922 0.1194	8	2015	0.562564	12.31821	12.68818			0.856369
9 2018 1.018711 12.04047 12.80154 4 96 0.079763 9 2017 1.097943 12.58281 13.04405 04 77 0.092019 9 2016 1.157895 12.49182 12.89612 75 26 0.093845 14.922 0.1194								
9 2018 1.018711 12.04047 12.80154 4 96 0.079763 9 2017 1.097943 12.58281 13.04405 04 77 0.092019 9 2016 1.157895 12.49182 12.89612 75 26 0.093845 14.922 0.1194	9	2019	1.020657	12.90344	12.11017			0.107059
9 2017 1.097943 12.58281 13.04405 04 77 0.092019 9 2016 1.157895 12.49182 12.89612 75 26 0.093845 14.922 0.1194						15.597		
9 2017 1.097943 12.58281 13.04405 04 77 0.092019 9 2016 1.157895 12.49182 12.89612 75 26 0.093845 14.922 0.1194	9	2018	1.018711	12.04047	12.80154			0.079763
9 2016 1.157895 12.49182 12.89612 75 26 0.093845 14.922 0.1194								
9 2016 1.157895 12.49182 12.89612 75 26 0.093845 14.922 0.1194	9	2017	1.097943	12.58281	13.04405			0.092019
14.922 0.1194								0.0000
	9	2016	1.157895	12.49182	12.89612			0.093845
9 2015 1.7/0737 12.45173 12.33281 46 39 0.074787	_	201-		10 1-1	40.000			0.05.4505
	9	2015	1.770737	12.45173	12.33281	46	39	0.07/4787

					19.760	4.8969	
10	2019	0.392505	17.22999	#NUM!	19.760	4.8969	0.165172
10	2019	0.392303	17.22999	πINUIVI:	19.753	3.6473	0.103172
10	2018	0.414017	16.90123	14.27689	98	3.0 4 73	0.15744
10	2010	0.414017	10.70123	14.27007	19.747	3.0824	0.13744
10	2017	0.438603	16.57247	15.16608	04	89	0.150359
10	2017	0.150005	10.57217	12.10000	19.720	4.8644	0.12 032 3
10	2016	0.410927	16.05061	16.1121	16	35	0.178029
					19.651	10.211	
10	2015	0.376584	15.98075	15.88525	84	66	4.213366
					16.997		
11	2017	0.904817	15.82841	15.1644	68	0	0.110045
					17.001		
11	2016	0.940552	15.5535	15.19479	93	0	0.142614
					16.670		
11	2015	0.875011	15.52602	14.79997	66	0	0.127045
					19.634	20.924	
12	2018	0.460333	17.49449	18.08169	57	22	0.297349
					19.618	10.647	
12	2017	0.476786	17.75279	17.80402	34	05	0.452487
	• 0 4 -		.=		19.483	11.323	
12	2016	0.473479	17.29881	17.37934	95	32	0.288515
10	2015	0.465025	17.06670	17 00616	19.434	5.8942	1.00020
12	2015	0.465837	17.06679	17.08616	07	68	-1.09029
12	2010	0.551020	16 42002	17 22020	19.091	12.208	0.14502
13	2019	0.551038	16.42903	17.23928	96 18.732	0.1854	-0.14582
13	2018	0.692478	16.4853	17.21797	18.732	0.1834	-0.36034
13	2016	0.092478	10.4633	17.21797	18.810	23	-0.30034
13	2017	0.639902	16.4095	17.01296	17	4.6663	-3.39306
13	2017	0.037702	10.4073	17.01270	18.863	13.525	-3.37300
13	2016	0.576614	16.52915	16.99523	35	86	-4.66295
13	2010	0.570014	10.32713	10.77323	19.019	14.603	4.00273
13	2015	0.528904	16.51142	16.6564	86	9	0.049515
		0.0 = 0.7 0 .			19.075	0.0014	010 170 20
14	2019	5.445398	16.71286	17.17255	48	82	0.062161
					18.936		
14	2018	4.422449	16.57912	17.09141	13	0	0.045201
					18.901		
14	2017	5.215441	16.69659	17.41466	17	0	0.049663
					18.885		
14	2016	4.015833	16.84192	17.50611	56	0	0.048803
					18.871	0.0007	
14	2015	3.366494	16.14781	17.53937	49	51	-0.73658
		_			14.241	0.4865	
15	2019	0.80469	12.83297	13.28206	33	79	-1.34351
	2010	0.40====	10 0001 -	100====	14.766	0.0381	0.10211:
15	2018	0.487678	13.28915	13.07725	33	58	0.103114
1	2017	0.465075	12 50207	12 10007	14.904	0.0451	0.51000
15	2017	0.465975	13.59296	13.19005	03	14	-0.51892

				=	15.006	0.0084	
15	2016	0.470876	13.48208	13.34307	66	44	-0.00417
13	2010	0.470070	13.40200	13.54501	15.137	0.0043	0.00417
15	2015	0.459593	13.4473	13.14606	59	81	0.482635
- 10	2010	01.05050	2011.170	10111000	16.501	0.3491	01.102000
16	2019	0.342782	13.01836	12.60084	61	59	0.066539
					16.377	0.2596	
16	2018	0.423037	13.50124	12.9278	48	82	0.046538
					16.395	0.1748	
16	2017	0.570953	13.81273	13.21311	43	32	0.176428
					16.637	0.2681	
16	2016	0.329861	13.03042	13.09611	99	66	0.218631
					16.590	0.2205	
16	2015	0.337779	13.14237	12.96954	88	91	-0.21498
1.7	2010	0.721004	12.05445	1.1.20.50.5	15.249	0.2016	0.1002.00
17	2019	0.721084	13.87445	14.28606	63	58	0.108368
1.7	2010	0.602020	14.20070	14.02120	15.357	0.2231	0.06073
17	2018	0.693828	14.29058	14.03138	98	92	-0.06972
17	2017	0.706510	14 22749	14.017	15.310	0.1263	0.147200
17	2017	0.796519	14.22748	14.017	58 15.298	36 0.4574	0.147208
17	2016	0.546115	14.41013	13.64763	15.298	0.4374 71	-0.12655
1 /	2010	0.340113	14.41013	13.04703	15.286	0.3018	-0.12033
17	2015	0.697508	14.2226	13.42626	98	57	0.1464
1 /	2013	0.077308	14,2220	13.42020	17.441	0.1227	0.1404
18	2019	0.600918	16.24268	15.75881	58	73	0.133579
10	2017	0.000710	10.21200	15.75001	17.485	0.0686	0.123277
18	2018	0.607058	15.98638	15.91073	69	62	0.185087
					17.453	0.0905	
18	2017	0.574819	16.0937	15.90949	42	22	0.208769
					17.404	0.1332	
18	2016	0.51938	15.98045	15.87014	17	84	0.140568
					17.348	0.1083	
18	2015	0.552886	16.05817	15.92519	47	31	-2.40159
					17.292	17.502	
19	2019	0.355725	16.13588	15.98024	77	15	-2.68121
				4.7.0004.5	16.629	5.1045	
19	2018	0.575302	14.53365	15.80013	01	64	-1.73667
10	2017	0.561272	15.0260	15 50015	16.746	2.0060	0.44050
19	2017	0.561372	15.0269	15.72815	22	12	-0.44858
19	2016	0.499964	15 12215	15.40493	16.755	1.9436	1 00501
19	2016	0.499904	15.13315	13.40493	28 16.755	1.9188	-1.08501
19	2015	0.55359	15.67052	15.26799	16.733	1.9188	-3.46202
17	2013	0.55559	13.07032	13.20133	15.425	0.4629	-3.40202
20	2016	0.705777	12.31462	15.3598	39	75	-0.98356
		302777	12.01.102	10.0070	15.673	0.1235	0.70000
20	2015	0.800053	13.73539	15.166	84	38	0.211652
-	_				16.180	0.4572	
21	2019	0.47023	14.9198	14.95078	7	65	0.30048
		Į.					

					16.111	0.4772	
21	2018	0.486109	14.84992	14.77542	34	94	-0.0022
21	2010	0.400107	14.04772	14.77542	16.062	0.2528	-0.0022
21	2017	0.560497	14.7078	15.1524	09	78	0.214278
	2017	0.500177	11.7070	10.1021	15.937	0.4089	0.21 .270
21	2016	0.495808	14.54423	14.6416	96	89	0.513486
					15.975	0.8375	
21	2015	0.377666	14.52275	14.51242	59	62	0.115825
					16.308	0.0974	
22	2019	0.716436	15.10281	14.88229	44	16	0.081819
					16.231	0.0023	
22	2018	1.118274	14.96497	14.81963	25	23	0.061767
22	2015	1.500000	14.60104	1.4.707.46	16.242	0.0011	0.002220
22	2017	1.729293	14.63194	14.78746	11	84	0.093228
22	2016	1 242616	14.72405	1476105	16.314	0.0008	0.057512
22	2016	1.342616	14.72405	14.76105	82 16.356	0.0042	0.057512
22	2015	2.418206	14.89341	15.00524	10.336	18	0.01892
22	2013	2.416200	14.07341	13.00324	14.504	0.0057	0.01692
23	2019	0.662137	12.83297	13.20969	97	89	0.017798
	2017	0.002137	12.032)1	13.20707	14.577	07	0.017770
23	2018	0.882105	12.63209	13.27415	13	0	0.009371
	2010	0.002100	12.00209	10.27.110	14.616		0.000011
23	2017	1.085523	12.46691	13.29389	92	0	0.027074
					14.614	9.33E-	
23	2016	1.223845	12.67696	13.17278	75	05	0.030892
					14.657		
23	2015	0.964078	12.79275	13.31604	49	0	0.093946
					18.282	0.3039	
24	2019	1.22475	15.92244	17.14285	17	2	0.02971
2.4	2010	2 000 121	15,00024	15 01045	18.081	0.1571	0.000000
24	2018	2.099421	15.88824	17.01945	66	9	0.032832
24	2017	2.389841	16 11007	16.85114	18.015 22	0.1389	0.045209
24	2017	2.309041	16.11087	10.65114	17.938	0.1197	0.043209
24	2016	2.394013	16.26411	16.89961	56	25	0.031626
	2010	2.574015	10.20411	10.07701	18.019	0.1138	0.031020
24	2015	2.53938	16.0253	16.46467	31	14	0.008149
					13.756	0.2307	
25	2019	0.404943	9.206031	9.23171	1	21	-0.13409
					13.716	0.1633	
25	2018	0.558493	9.267571	9.07738	68	56	2.018756
					13.735	0.1153	
25	2017	0.810203	9.329111	8.92305	17	46	0.050439
	•	0.0510=:	0.000.00	0 = -0=-	13.542	0.0807	0.0010=5
25	2016	0.964874	9.390651	8.76872	61	15	0.001072
25	2017	1.050075	0.450101	0.61420	12.971	0.0867	0.07055
25	2015	1.852875	9.452191	8.61439	15 028	73	-0.07055
26	2019	0.430017	12.81159	13.31713	15.928 38	0.5153	0.191393
20	2019	0.430017	12.01139	13.31/13	30	03	0.171373

26	2010	0.42440	14.55.420	12 70111	16.067	0.5454	0.00205
26	2018	0.43449	14.55432	13.78111	34	19	-0.09395
26	2017	0.475303	14.12858	13.54781	15.939	0.5275	0.154962
26	2017	0.473303	14.12030	15.54/61	46 16.005	0.5135	0.154863
26	2016	0.47848	14.06826	13.20457	08	0.5155	-0.1354
20	2010	0.47040	14.00020	13.20437	15.962	1.0105	-0.1334
26	2015	0.347134	13.94877	12.49055	44	97	-0.20077
			300, 1011		14.525	0.5945	
27	2019	0.458464	11.84044	11.93373	11	33	0.28358
					14.727	0.7529	
27	2018	0.42469	13.55086	12.50892	41	4	-0.10102
					14.523	0.7552	
27	2017	0.426174	12.96527	12.27842	7	43	0.374364
					14.578	0.6711	
27	2016	0.452724	13.04819	11.93987	46	3	-0.02912
27	2015	0.505005	12.0026	11.540.45	14.500	0.5637	0.001770
27	2015	0.527005	12.8926	11.54847	24	99	0.001759
20	2010	4.044671	11.74006	0.721426	12.370	0.0231	0.002122
28	2019	4.044671	11.74006	9.721426	19 12.499	0.0246	0.002123
28	2018	3.71342	11.8327	10.72657	12.499	49	-0.01845
20	2010	3.71342	11.0327	10.72037	12.476	0.0289	-0.01643
28	2017	3.789647	11.67645	10.58251	13	93	-0.015
20	2017	3.707017	11.07015	10.50251	12.550	0.0381	0.015
28	2016	3.759629	11.70243	10.2371	35	77	0.001532
		011070-7	221, 02.10		12.656	0.0262	
28	2015	5.540048	11.94842	9.8816	41	9	-0.09565
					13.064	1.6158	
29	2019	0.748756	9.557399	10.41021	18	65	-0.42817
					12.679	1.8971	
29	2018	0.815185	9.469854	10.75419	02	81	-0.68052
					12.834	1.9962	
29	2017	0.69797	9.993055	11.38589	77	12	-0.77025
20	2016	0.655004	10.05250	10 60105	12.846	1.9227	0.05655
29	2016	0.655024	10.06358	10.60105	81	55	-0.37657
20	2015	0.620072	10 90217	10.0426	12.998	1.4135	0.056846
29	2015	0.629973	10.89217	10.0436	83 16.705	1.8445	0.056846
30	2019	0.447577	13.94626	14.4711	10.703	91	0.042722
30	2019	0.447377	13.94020	14.4/11	16.683	0.8557	0.042722
30	2018	0.485464	14.05273	14.40651	3	0.8337	0.020178
30	2010	0.405404	14.03273	14.40031	16.676	0.9912	0.020170
30	2017	0.551856	14.1025	14.40123	96	43	0.03463
50	2017	0.221020	11.1023	11.10123	16.647	1.4371	0.05 105
30	2016	0.45704	13.96285	14.24391	73	33	-0.06161
					16.576	0.8554	- :
30	2015	0.486862	13.97304	14.30127	52	72	0.066111
					16.365	0.0343	
31	2019	0.670823	15.10167	14.9279	2	7	0.085136
							-

31 2017 0.646386 15.68748 15.28794 2 17 31 2016 0.636097 15.66025 15.26728 19 78 0 31 2015 0.932496 15.51473 15.0851 71 43 32 2019 0.54432 14.44399 14.92663 64 0	0.071131 0.05973 0.024222 0.15794
31 2017 0.646386 15.68748 15.28794 2 17 31 2016 0.636097 15.66025 15.26728 19 78 0 31 2015 0.932496 15.51473 15.0851 71 43 32 2019 0.54432 14.44399 14.92663 64 0	0.05973 0.024222 0.15794
31 2017 0.646386 15.68748 15.28794 2 17 31 2016 0.636097 15.66025 15.26728 19 78 0 31 2015 0.932496 15.51473 15.0851 71 43 32 2019 0.54432 14.44399 14.92663 64 0	0.024222
31 2016 0.636097 15.66025 15.26728 19 78 0 31 2015 0.932496 15.51473 15.0851 71 43 32 2019 0.54432 14.44399 14.92663 64 0	0.024222
31 2016 0.636097 15.66025 15.26728 19 78 0 31 2015 0.932496 15.51473 15.0851 71 43 32 2019 0.54432 14.44399 14.92663 64 0	0.15794
31 2015 0.932496 15.51473 15.0851 71 43 32 2019 0.54432 14.44399 14.92663 64 0	0.15794
32 2019 0.54432 14.44399 14.92663 64 0	
32 2019 0.54432 14.44399 14.92663 64 0	0.66405
	0 66 106
	-0.62482
18.553 0.0251	
	0.013273
22 2017 0 628811 12 80207 14 50620 16 0.0181	0.017672
	0.017673
32 2016 0.616693 14.03148 14.463 61 0	0.003166
18.226	0.003100
	1.130116
17.183	1.120110
	0.180546
17.186	
33 2018 0.54194 14.07263 14.14724 3 0	0.13915
17.210	
	0.178901
17.163	
	0.157208
22 2015 0 622666 12 21144 12 52544 20 0 0	0.122525
33 2015 0.633666 12.31144 13.53544 39 0 0 0 0 0 0 0 0 0	0.133535
	0.079519
17.607	0.077317
	0.103215
17.570	0.1100210
	0.089123
17.466	
34 2016 0.569666 12.1338 13.10968 02 0	0.07046
17.397	
	0.155985
17.458	0.00750
	-0.08759
35 2018 0.547316 14.04887 14.64682 99 0	0.01827
33 2018 0.347310 14.04887 14.04082 99 0	0.01627
35 2017 0.543293 13.57159 14.11434 63 0	0.12795
17.368	0.12173
	-0.04006
17.357	
35 2015 0.616652 12.98438 13.66915 45 0 0	0.064895
18.645	
36 2019 0.536285 14.30051 14.87544 77 0 0	0.080972

					18.456		
36	2018	0.572301	14.48057	14.81869	18.436	0	0.024105
30	2016	0.572301	14.40037	14.01003	18.410	0	0.024103
36	2017	0.599987	14.31322	15.08298	88	0	-0.00416
30	2017	0.577701	11.31322	13.00270	18.242		0.00110
36	2016	0.569912	14.41058	14.70897	06	0	0.04823
					18.167		
36	2015	0.61892	14.31799	14.7529	49	0	0.07143
					17.379		
37	2019	0.549129	12.7362	14.00494	49	0	-0.04152
					17.313	0.0228	
37	2018	0.595055	12.34013	13.83015	42	45	0.277486
27	2017	0.70200	10 40700	12.76207	17.233	0	0.120122
37	2017	0.70288	12.42782	13.76397	41	0	0.130123
37	2016	0.63426	12.406	13.38546	17.104 91	0	-0.15391
37	2010	0.03420	12.400	13.36340	17.031	0	-0.13391
37	2015	0.792814	12.82635	13.57085	17.031	0	0.20989
38	2019	0.214972	11.72173	11.78981	14.302	1.6976	0.143438
36	2019	0.214972	11.72173	11./0901	14.302	1.4994	0.143436
38	2018	0.219097	12.03066	12.03359	66	64	0.285449
30	2010	0.217077	12.03000	12.03337	14.309	1.0343	0.203447
38	2017	0.249173	11.76943	11.80376	47	36	0.404025
					14.239	1.7931	
38	2016	0.259074	12.11488	11.90528	16	14	0.256679
					14.241	0.4626	
38	2015	0.292912	11.99075	12.10492	7	98	-3.65534
					18.438	2.5566	
39	2019	0.459478	15.75015	15.48338	16	22	-1.22041
20	2010	0.4577.61	15 50 661	15 40 400	18.382	2.3320	0.21070
39	2018	0.457761	15.58661	15.42488	86	1.3365	-0.31979
39	2017	0.534376	15.31645	15.50868	18.297 22	1.3363	-0.3464
39	2017	0.554570	15.51045	13.30000	18.172	1.4132	-0.5404
39	2016	0.526515	14.46366	15.02073	91	1.4132	-0.37022
37	2010	0.520515	11.10300	13.02073	18.096	1.0918	0.37022
39	2015	0.609924	14.42527	14.93968	89	71	0.0194
					15.285		
40	2019	0.614108	12.91907	14.30419	18	0	0.049623
						-	
					15.320	0.0022	
40	2018	0.580525	11.15635	14.1807	13	9	0.042801
40	2017	0.501.515	11 20202	12 00010	15.314	0.0826	0.040225
40	2017	0.581645	11.28283	13.89018	65	24	0.048335
40	2016	0.572201	11 00//5	12 20165	15.184	0.3846	0.004616
40	2016	0.573281	11.08445	13.38165	15 15.166	81 5.34E-	0.084616
40	2015	0.638356	11.34025	13.29928	13.100 78	3.34E- 07	0.078119
70	2013	0.030330	11.54025	13.27720	14.623	0.0114	0.070117
41	2019	1.417476	11.11935	11.36031	06	31	-2.12498
	_01/	11/1/0	11.11/33	11.50051	0.0	51	2.12.70

41	2018	1.665241	11.29634	11.44967	14.612 29	0.0007 18	0.367507
41	2018	1.003241	11.29034	11.44907	14.561	0.0014	0.307307
41	2017	2.362609	11.4333	11.11154	35	33	-0.72043
71	2017	2.302007	11.4333	11.11134	14.515	0.0033	-0.72043
41	2016	1.826089	11.16932	11.68871	51	94	0.096384
	2010	1.02000	11110702	11100011	14.466	0.0032	0.000000
41	2015	1.821649	11.24548	11.65677	92	17	0.137996
					16.903	0.0374	
42	2019	1.821595	15.10297	15.87926	66	13	0.080633
					16.724	0.0392	
42	2018	3.341582	14.85381	15.50946	5	74	0.133967
40	2017	2 027525	14.04600	15.05500	16.695	0.1142	0.144500
42	2017	2.827525	14.84622	15.37532	02	32	0.144589
42	2016	2.555516	14.74843	15.32844	16.733 27	0.1304 89	-45.9473
42	2010	2.333310	14.74643	13.32044	16.743	0.0456	-43.9473
42	2015	2.328434	14.73137	15.29355	03	0.0430	-1.94845
12	2013	2.320131	11.73137	13.27333	03	-	1.5 10 15
					16.571	4.4787	
43	2018	0.515811	11.58839	16.40094	44	1	0.081802
						-	
					16.997	1.6879	
43	2017	0.414993	13.99283	16.22915	35	7	0.065267
						-	
40	2016	0.250220	12.05225	15 000 61	17.103	0.3832	0.022012
43	2016	0.369338	13.86335	15.89861	95	3	0.022012
					16.832	1.1440	
43	2015	0.476723	14.24331	15.84766	10.832	1.1440	0.019978
43	2013	0.470723	14.24331	13.04700	14.667		0.017770
44	2019	0.859789	13.73218	13.61015	47	0	0.078203
					14.694		
44	2018	0.694258	13.5844	13.58938	11	0	0.089878
					14.435		
44	2017	0.860176	13.57321	13.22347	41	0	0.007497
	204.5	0.500000	40.07.55	1005150	14.439	0	0.00=0=0
44	2016	0.600022	13.37666	12.96168	81	0	0.007052
4.4	2015	0.746257	12 62042	12 44047	13.443	0	0.000657
44	2015	0.746357	12.63043	12.44947	46 14.255	0	0.000657
45	2017	0.549921	11.84436	13.26151	14.233 59	0	0.102827
73	2017	0.547721	11.04430	13.20131	14.640	U	0.102027
45	2016	0.506507	12.36214	13.34707	42	0	0.12469
					14.726		
45	2015	0.590558	13.18399	12.67294	21	0	0.132828
					14.640	0.4848	
46	2019	0.545626	13.37214	13.20085	2	98	0.149696
					14.424	0.0230	
46	2018	0.893763	13.50873	13.29841	88	21	0.113729

		1					
4.5	2015	1 115500	10.55050	10 15100	14.334	0.0325	0.1.10105
46	2017	1.117539	13.57259	13.17102	76	62	0.149187
1.0	2016	1 1 1 2 2 0 2	12.57.607	12.02752	14.235	0.0307	0.125622
46	2016	1.143203	13.57697	13.03753	01	0.0515	0.135633
16	2015	1 220205	12 55570	12 14700	14.098 08		0.147262
46	2015	1.320295	13.55578	13.14709	11.820	0.0500	0.147263
47	2019	5.131419	11.17662	10.6654	44	19	0.163676
47	2019	3.131419	11.17002	10.0034	11.648	0.0446	0.103070
47	2018	6.590566	10.93296	10.21984	9	6	0.110838
77	2010	0.570500	10.73270	10.21704	11.592	0.0064	0.110030
47	2017	43.8636	10.99475	10.3505	46	46	0.23853
	2017	.5.0050	10,551,70	10.0000	11.399	0.0065	0.2000
47	2016	51.13795	10.72424	9.946693	1	82	0.161848
					11.273	0.0063	
47	2015	58.72219	10.37866	9.687202	8	8	0.128997
					19.739	4.5343	
48	2019	0.571028	19.08797	19.12679	72	79	0.234235
					19.600	4.7184	
48	2018	0.561285	18.99366	19.1502	3	74	0.126226
					19.419	5.3911	
48	2017	0.602972	18.94183	19.04113	74	05	0.12069
					19.375	4.6022	
48	2016	0.568361	18.94251	18.9983	11	24	0.150738
					19.299	2.7232	
48	2015	0.622186	18.79801	18.92196	8	17	0.126117
					19.940	3.9266	
49	2019	0.566888	19.40168	19.60897	21	74	0.146652
					19.840	3.6528	
49	2018	0.577317	19.31844	19.53948	58	99	0.114789
40	2015	0.550205	10.45.20	10.45000	19.773	4.0683	0.04422
49	2017	0.559206	19.47629	19.46998	57	79	-0.04432
40	2016	0.5720	10.27770	10 27416	19.678	3.7503	0.20075
49	2016	0.5728	19.37678	19.37416	65 19.651	27	-0.28075
49	2015	0.627353	19.15579	19.39674	19.631 78	2.7762 4	0.034726
42	2013	0.027333	19.13319	19.39074	19.771	10.556	0.034720
50	2019	0.497484	19.10926	19.52099	94	10.550	0.185009
30	2017	0.477404	17.10720	17.52077	19.749	7.2851	0.165007
50	2018	0.520514	19.07859	19.46046	66	11	0.153837
30	2010	0.320314	17.07037	17.40040	19.710	5.7686	0.133037
50	2017	0.539932	19.09387	19.39993	75	8	0.200298
	_01/	2.227722	17.07507	27.07773	19.608	8.5523	5.200 2 70
50	2016	0.516478	19.04289	19.28822	66	42	0.093241
					19.419	4.4620	
50	2015	0.565621	18.99473	19.08364	87	92	0.06918
					20.328	1.8719	
51	2019	0.551361	19.71935	19.98715	27	07	0.104285
					20.167	3.1754	
51	2018	0.554113	19.51001	19.86231	07	45	0.086409

					20.077	2.8754	
51	2017	0.608217	19.44705	19.73747	89	18	0.151993
31	2017	0.000217	19.11703	17.73717	19.976	3.4602	0.151775
51	2016	0.58345	19.39926	19.63618	11	61	0.208972
	2010	0.000.0	17.07720	17,000,010	19.874	2.3579	0.2007.2
51	2015	0.646531	19.41354	19.5265	78	54	0.150336
					17.848	18.599	
52	2019	0.47432	17.46752	17.30621	95	6	0.223739
					17.918	23.567	
52	2018	0.472596	17.58688	17.36285	97	62	0.146288
					18.028	15.432	
52	2017	0.483094	17.7203	17.41949	25	65	-0.64123
					18.091	12.385	
52	2016	0.494354	17.81315	17.47153	21	45	-0.0471
					18.087	7.8445	
52	2015	0.51861	17.7862	17.54517	44	95	0.247833
	2010	0.555044	10.07020	10.40504	19.428	5.6985	0.00000
53	2019	0.565944	18.87028	19.40784	74	81	0.029087
52	2010	0.62222	10.01010	10 17746	19.331	3.3814	0.01616
53	2018	0.63322	18.81018	19.17746	51	98	-0.21616
52	2017	0.688126	18.84607	18.94708	19.296	1.8389	0.166306
53	2017	0.088120	18.84007	18.94/08	61 19.165	2.2984	0.100300
53	2016	0.643247	18.71838	18.80263	19.163	2.2984 7	0.216069
33	2010	0.043247	10./1030	16.60203	19.071	1.9101	0.210009
53	2015	0.688147	18.66616	18.70571	57	83	0.191899
33	2013	0.000147	10.00010	10.70371	20.616	4.7407	0.171077
54	2019	0.564591	20.09847	20.17551	32	37	0.260222
	2017	0.00.091	20107017	2011/001	20.386	5.2310	0.200222
54	2018	0.544103	19.93774	20.10236	83	63	0.162041
					20.287	4.1251	
54	2017	0.565768	19.86214	20.02922	35	67	0.143001
					20.204	5.6571	
54	2016	0.536444	19.77069	19.92069	47	51	0.173577
					20.140	3.5547	
54	2015	0.590357	19.66186	19.86617	04	86	0.134583
					18.534	81.226	
55	2019	0.509191	17.64136	18.45681	27	49	0.158542
	2010	0.402420	17 (0200	10.40025	18.559	59.850	0.1.70.410
55	2018	0.492439	17.68209	18.40927	13	92	0.150418
	2017	0.407007	17 77277	10.27172	18.514	22 401	0.110411
55	2017	0.497886	17.77367	18.36173	19 524	32.401	0.118411
55	2016	0.492911	17.8232	10 25742	18.534 78	42.692	0.121222
33	2016	0.492911	17.8232	18.35742	18.647	21.436	0.121222
55	2015	0.499205	18.03213	18.52163	18.047	4	0.096768
33	2013	0.777203	10.03213	10.32103	19.155	8.8209	0.070700
56	2018	0.504401	18.57643	18.7888	01	69	0.094685
- 55	2010	0.201101	10.07073	10.7000	19.144	7.9389	0.071005
56	2017	0.511225	18.601	18.74938	22	33	0.110838
	_~.	0.011220	10.001	10.7 1750		23	0.110000

					18.948	8.3596	
56	2016	0.504759	18.55579	18.53244	12	18	0.23853
					18.926	5.0378	
56	2015	0.547524	18.55746	18.53726	22	44	0.161848
					19.494	5.8947	
57	2019	0.544092	18.84473	19.28494	68	99	0.128997
					19.453	6.8671	
57	2018	0.535235	18.80325	19.07084	7	58	0.234235
					19.331	6.4444	
57	2017	0.523797	18.68716	18.85674	91	07	0.126226
					19.184	6.2626	
57	2016	0.520039	18.56554	18.59739	67	75	0.12069
					19.155	5.2151	
57	2015	0.535483	18.43632	18.48127	22	5	0.150738
					19.526	3.6568	
58	2019	0.582082	18.67292	19.27841	4	97	0.126117
					19.469	3.5736	
58	2018	0.582975	18.5917	19.22843	42	26	0.146652
					19.470	3.3598	
58	2017	0.592467	18.65413	19.17844	54	09	0.114789
					19.338	3.1710	
58	2016	0.593394	18.62534	19.04447	9	86	-0.04432
					19.270	2.8769	
58	2015	0.60865	18.56153	18.96321	68	91	0.094685