IN VITRO ANTIMICROBIAL ACTIVITY OF AVICENNIA MARINA (MANGROVE) STEM BARK

JUNE NYAKIANDA MUTHIOIRA (MBCHB, UON)

W64/87051/2016

A DISSERTATION SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF MASTER OF SCIENCE IN TROPICAL AND INFECTIOUS DISEASES OF THE UNIVERSITY OF NAIROBI

UNIVERSITY OF NAIROBI INSTITUTE FOR TROPICAL AND INFECTIOUS DISEASES (UNITID)

2020
DECLARATION

I declare that this dissertation is my original work and it has not been presented to any other university for a similar or any other degree award.

Dr. June Nyakianda Muthiora,
MBChB (UoN)
W64/87051/2016

Signed ... Date 06/10/2020

We confirm that this dissertation was written by the above-named student and has been submitted with our approval as university supervisors:

Prof. Julius O. Oyugi,
Associate professor, Department of Medical Microbiology
University of Nairobi.

6th. October 2020
Signed ... Date ..

Prof. Kennedy O. Abuga
Associate professor, Department of Pharmaceutical Chemistry
University of Nairobi.

Signed ... Date06 October 2020

Dr. Humphrey K. Njaanake
Lecturer, Department of Medical Microbiology
University of Nairobi.

Signed: Date: 6th October 2020
PLAGIARISM DECLARATION FORM

NAME: JUNE NYAKIANDA MUTHIORA

REGISTRATION NUMBER: W64/87051/2016

UNIVERSITY OF NAIROBI

COLLEGE OF HEALTH SCIENCES

INSTITUTE OF TROPICAL AND INFECTIOUS DISEASE

COURSE: MASTER OF SCIENCE IN TROPICAL AND INFECTIOUS DISEASES

TITLE: IN VITRO ANTIMICROBIAL ACTIVITY OF AVICENNIA MARINA (MANGROVE) STEM BARK

DECLARATION

1. I understand what plagiarism is and am aware of the university’s policy in this regard.
2. I declare that this dissertation is my original work and has not been submitted elsewhere for examination, award of a degree or publication. Where other peoples’ work or my own work has been used, this has been properly acknowledged and referenced in accordance with the university’s requirements.
3. I have not sought or used the services of any professional agencies to produce this work.
4. I have not allowed and shall not allow anyone to copy my work with the intention of passing it off as his/her own work.
5. I understand that any false claim in respect to this work shall result in disciplinary action in accordance with the plagiarism policy.

SIGNATURE ……………………………

DATE …06/10/2020…………………………..
DEDICATION

This dissertation is dedicated to my parents Mr. Stanley Njenga Muthiora and Mrs. Lorna Njeri Muthiora
I sincerely thank The Almighty God for granting me His favor, grace, and patience throughout my academic journey.

I wish to acknowledge the invaluable support of my family for their unwavering support, understanding and patience throughout my academic journey.

Special mention goes to my supervisors; Dr Humphrey K. Njaanake, Prof. Kennedy O. Abuga and Prof. Julius O. Oyugi for their patient guidance and mentorship.

Special thanks to the technical staff at the School of Pharmacy, University of Nairobi, especially Mr. Jonathan Nyamatari and Mr. Hannington Mugo for their patience and assistance during the extraction phase of the study.

Special gratitude to Mr. Meshack Juma (Chief laboratory technologist, Department of obstetrics and gynecology University of Nairobi), Mr. Moses Musyoki (Laboratory technologist, Department of medical microbiology University of Nairobi) and Ms. Ivyn Musasia for their assistance during the susceptibility testing phase of the project.

I would also like to acknowledge everyone within the Department of Medical Microbiology who gave me words of encouragement.

Finally, my heartfelt gratitude to my classmates Dr. Wangari Mwanika, Ms. Ivyn Musasia and Mr. Joshua Murule for their continued support and numerous words of encouragement throughout this academic journey.
TABLE OF CONTENTS

DECLARATION ... II

PLAGIARISM DECLARATION FORM ... III

DEDICATION .. IV

ACKNOWLEDGEMENTS ... V

LIST OF TABLES ... IX

LIST OF FIGURES .. X

ABBREVIATIONS .. XI

ABSTRACT ... XII

CHAPTER 1: BACKGROUND AND LITERATURE REVIEW .. 1

1.0 BACKGROUND .. 1

1.1 PROBLEM STATEMENT .. 1

1.2 LITERATURE REVIEW ... 1

1.3 MANGROVE SPECIES ... 2

1.4 LOCAL USE OF MANGROVE .. 3

1.5 ANTIMICROBIAL ACTIVITY OF MANGROVES ... 4

1.6 AVICENNIA MARINA .. 5

1.7 VIBRIO CHOLERAE .. 5

1.8 STAPHYLOCOCCUS AUREUS .. 6

1.9 SALMONELLA TYPHI .. 7

1.10 ESCHERICHIA COLI ... 8

1.11 CANDIDA ALBICANS ... 8

1.12 JUSTIFICATION ... 9

1.13 RESEARCH QUESTION .. 10

1.14 OBJECTIVES .. 10

1.14.1 GENERAL OBJECTIVE .. 10

1.14.2 SPECIFIC OBJECTIVES .. 10

CHAPTER 2: METHODOLOGY .. 11

2.0 INTRODUCTION ... 11

2.1 PLANT COLLECTION AND IDENTIFICATION .. 11

2.2 EXTRACTION OF PLANT MATERIAL .. 13

2.2.1 SOLVENTS AND REAGENTS .. 13
2.2.1.1 MATERIALS AND EQUIPMENT ... 13
2.2.2 PREPARATION OF CRUDE EXTRACTS IN ORGANIC SOLVENTS 13
2.2.3 PREPARATION OF AQUEOUS EXTRACTS ... 13
2.2.4 CONCENTRATION OF THE EXTRACTS ... 14
2.2.5 DETERMINATION OF PERCENTAGE YIELD .. 14
2.3 ANTIMICROBIAL SUSCEPTIBILITY TESTING ... 15
2.3.1 TEST ORGANISMS .. 15
2.3.2 ANTIMICROBIAL SUSCEPTIBILITY TESTS ... 15
The strain of C. albicans used was a strain obtained from a clinical specimen and
was found to be resistant to Fluconazole antimicrobial disc 15
2.3.3 AGAR WELL DIFFUSION ... 15
2.3.4 PREPARATION OF PLANT EXTRACTS .. 15
2.3.5 INOCULUM AND INOCULUM PROCEDURE .. 15
2.3.6 PREPARATION OF AGAR WELLS ... 16
2.4 DETERMINATION OF MINIMUM INHIBITORY CONCENTRATION AND
MINIMUM BACTERICIDAL CONCENTRATION .. 16
2.4.1 DETERMINATION OF MINIMUM INHIBITORY CONCENTRATION 16
2.4.1.1 METHOD OF DILUTION .. 16
2.4.1.2 GROWTH TECHNIQUE ... 16
2.4.1.3 DILUTION TECHNIQUE ... 17
2.4.1.4 MINIMUM INHIBITORY CONCENTRATION .. 17
2.4.2 MINIMUM BACTERICIDAL CONCENTRATION .. 17

CHAPTER 3: RESULTS AND DISCUSSION .. 18

3.0 INTRODUCTION .. 18
3.1 PERCENTAGE YIELD .. 18
3.2 ANTIMICROBIAL SUSCEPTIBILITY PATTERN ... 19
3.3 ANTIMICROBIAL ACTIVITY OF THE CRUDE EXTRACTS 20
3.3.1 METHANOL .. 20
3.3.2 ETHYL ACETATE .. 21
3.3.3 AQUEOUS EXTRACTS ... 23
3.3.5 DICHOLOROMETHANE, CHLOROFORM, HEXANE 25
3.4 MINIMUM INHIBITORY CONCENTRATION AND MINIMUM BACTERICIDAL
CONCENTRATION .. 25

CHAPTER 4: CONCLUSIONS AND RECOMMENDATIONS 27

4.0 CONCLUSIONS .. 27
4.1 RECOMMENDATIONS ... 28

REFERENCES .. 30

APPENDIX I: METHANOL EXTRACT PLATES .. 38
APPENDIX II: ETHYLACETATE EXTRACT PLATES..42
APPENDIX III: AQUEOUS EXTRACT PLATES..46
APPENDIX IV: CHLOROFORM EXTRACT PLATES....................................51
APPENDIX V: DICHLOROMETHANE EXTRACT PLATES..........................53
APPENDIX VI: HEXANE EXTRACT PLATES...55
LIST OF TABLES
Table 1 Mangrove species found in Kenya and their uses (mangrove and mangrove management 2017)..4
Table 2: Standard antibiotics ..15
Table 3 Table of gram stain characteristics of different microorganisms17
Table 4: Polarity index of different solvents (Snyder)...18
Table 5: Percentage (%) yield of extract from each solvent...19
Table 6: Antimicrobial susceptibility to Standard antibiotic discs ...20
Table 7: Minimum inhibitory concentrations and minimum bactericidal concentrations26
LIST OF FIGURES

Figure 1 Mangrove distribution within the 5 counties along the coastal strip (Mangrove and management, 2017) ... 3
Figure 2 Leaves of Avicennia marina. Source: author ... 5
Figure 3 Distribution of mangrove forests in Kwale county (Image courtesy of Mangrove ecosystem management plan 2107-2027) .. 12
Figure 4 Flow chart of extraction process .. 14
Figure 5: Diameter of zones of inhibition (mm) against concentration of methanol extract (mg/ml) for the different microorganisms .. 21
Figure 6: Diameter of zones of inhibition (mm) against concentration of ethyl acetate extract (mg/ml) for the different microorganisms ... 22
Figure 7: Diameter of zones of inhibition (mm) against concentration of hot aqueous extract (mg/ml) of the different microorganisms .. 23
Figure 8: Diameter of zones of inhibition (mm) against concentration of cold aqueous extract (mg/ml) for the different microorganisms ... 24
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMR</td>
<td>Antimicrobial resistance</td>
</tr>
<tr>
<td>MRSA</td>
<td>Multidrug resistant Staphylococcus aureus</td>
</tr>
<tr>
<td>VRSA</td>
<td>Vancomycin resistant Staphylococcus aureus</td>
</tr>
<tr>
<td>ESBL</td>
<td>Extended spectrum beta lactamase</td>
</tr>
<tr>
<td>MDR</td>
<td>Multidrug resistant</td>
</tr>
<tr>
<td>XDR</td>
<td>Extreme drug resistant</td>
</tr>
<tr>
<td>STI</td>
<td>Sexually transmitted infection</td>
</tr>
<tr>
<td>ESC</td>
<td>Extended spectrum cephalosporins</td>
</tr>
<tr>
<td>USD</td>
<td>US dollar</td>
</tr>
<tr>
<td>MIC</td>
<td>Minimum inhibitory concentration</td>
</tr>
<tr>
<td>MBC</td>
<td>Minimum bactericidal concentration</td>
</tr>
<tr>
<td>KWS</td>
<td>Kenya wildlife services</td>
</tr>
<tr>
<td>KFS</td>
<td>Kenya forestry services</td>
</tr>
<tr>
<td>Ha</td>
<td>Hectares</td>
</tr>
<tr>
<td>CFU</td>
<td>Colony forming units</td>
</tr>
<tr>
<td>CLSI</td>
<td>Clinical and lab standards institute</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxide</td>
</tr>
<tr>
<td>CFR</td>
<td>Case fatality rate</td>
</tr>
</tbody>
</table>
ABSTRACT

Background: There has been a rising global antimicrobial resistance (AMR) pandemic in the recent past with far-reaching health and socio-economic implications. For example, there has been an emergence of Methicillin resistant *Staphylococcus aureus* (MRSA), Vancomycin resistant *Staphylococcus aureus* (VRSA) and extended spectrum beta lactamase-(ESBL) producing strains of *Klebsiella* spp., *E. coli*, and *Pseudomonas* spp. which have caused longer hospital stays and higher cost of care. Search for new approaches in the treatment of infectious diseases is therefore imperative.

Africa has a wide unexploited diversity of plants with bioactive molecules that can be used as antibiotics. For instance, local information shows that mangrove trees, were decades ago being used in the treatment of various ailments along the Kenyan coast. In the recent past, mangrove species such as *Rhizophora* sp, *Avicennia* sp, and *Sonneratia* sp have been shown to have anti-*Pseudomonas* spp. activities based on which more studies on its activities against other important microbial pathogens such as *Staph aureus*, *Vibrio cholerae*, *Salmonella typhi*, *E. coli* and *Candida albicans* need to be carried out.

Objective: To determine the *in vitro* activity of *Avicennia marina* extracts against *Staphylococcus aureus*, *Vibrio cholerae*, *Salmonella typhi*, *E. coli* and *Candida albicans*.

Methodology: Barks of *Avicennia marina* were collected from Gazi bay in Kwale county. They were washed, air dried, milled and weighed. The material was then used to prepare extracts using different organic solvents (methane, ethyl acetate, dichloromethane, and chloroform) through maceration. The crude extracts were rotary evaporated, whereof the pure extracts were subjected to *in vitro* antimicrobial susceptibility tests. The zones of inhibition were measured and the minimum inhibitory concentration and minimum bactericidal concentration for each extract determined.

Results: The results from this study showed that the bark of *Avicennia marina* has significant antimicrobial and antifungal activity. The MIC and MBC values also revealed that at lower concentrations, the extracts exhibited bacteriostatic properties and at higher concentrations exhibited bactericidal properties.
CHAPTER 1: BACKGROUND AND LITERATURE REVIEW

1.0 BACKGROUND
Infectious diseases present a major public health problem and remain the leading cause of death globally, with a rising global antimicrobial resistant pandemic [1-3]. Owing to this, antibiotics have a critical role in the reduction of the infectious disease burden [1]. There has however been a rising global antimicrobial resistance (AMR) pandemic in the recent past, with far-reaching health and socio-economic implications [2]. New approaches, including novel drugs, to treat infectious diseases are therefore necessary [3].

Various plants have been used for centuries for medicinal purposes and are an indispensable and valuable source of natural products. They have great potential for sources of new drugs that are considered safer as they are environmentally friendly and are less toxic [4]. Mangroves have been shown to contain bioactive compounds such as steroids, tannins, triterpenes, saponins, alkaloids and flavonoids with varying degree of antimicrobial activities [4-6]. However, their potential as therapeutic agents have not been fully assessed. A few residents from Gazi Bay and Msambweni in Kwale county were interviewed. They averred that when they were younger, they witnessed their parents and grandparents treating abdominal ailments using mangrove trees. According to the residents the community no longer used mangrove trees for medicinal purposes and the knowledge was not common among them.

The present study was designed to assess the activity of crude extracts of *Avicennia marina*, a mangrove species found in the Kenya coast, against *Staphylococcus aureus*, *Salmonella typhi*, *E. coli*, *Vibrio cholerae* and *Candida albicans*.

1.1 PROBLEM STATEMENT
Antibiotics have an important role to play in the fight against infectious diseases [1]. AMR is however a global public health threat. Human infections with these AMR strains have led to longer hospital stays, higher mortality rates and higher cost of care due to availability of very few alternative therapies. For example, there has been rising AMR by *Staph aureus*, *E. coli*, *Salmonella spp*, *Vibrio spp* as well as *C. albicans* which are of public health importance due to their propensity to cause severe, life threatening illness.

1.2 LITERATURE REVIEW
It is estimated that over 80% of the global population relies on traditional medicine partly due to its accessibility and affordability as a source of treatment in primary health care in resource
poor settings [7,8]. Natural products from terrestrial and marine organisms have for long been used in the treatment of human diseases. In recent years there has been renewed interest in the role of plants in drug development due to factors such as unmet therapeutic needs, diversity of structure and biological activity of natural compounds coupled with new technologies in phytochemistry [7].

There is increasing convergence between traditional and modern medicine, and it has been suggested that the inclusion of traditional medicine in provision of essential health services will contribute towards Universal Health Care, as well as attainment of Sustainable Development Goal #3 geared towards ensuring healthy lives and promoting wellbeing for all at all ages [9,10]. There is therefore the need to explore the pharmaceutical potential of various plant species to contribute to the achievement of this goal.

Plants have been used for centuries for medicinal purposes and are a valuable source of natural products with historical evidence on the use of plants in the preparation of drugs dating back over 5000 years [4,8].

1.3 MANGROVE SPECIES

Mangroves are evergreen, salt tolerant trees growing in sheltered tidal and intertidal waters between 30° N and 30°S of the equator. Extensions to these limits however occur in Japan (31°32’N), Bermuda (32°20’N), New Zealand (38°03’S), Australia (38°45’S) and South Africa (32°59’S)[11,12]. Globally, there are approximately 60 -70 species of mangroves which are divided into 12 families [11]. These cover approximately 25% of Earth’s coastline in about 112 countries and cover close to 181,000km² of the earth’s surface [12,13].

Mangrove forests cover 61,271Ha of land in Kenya and account for approximately 3% of the country’s natural forest cover and less than 1% of the national land area where they are protected bylaw and managed by the Kenya Forest Service (KFS) singly or in collaboration with Kenya Wildlife Service (KWS) where they occur in marine protected areas. These forests are found along the 536km coastline, extending from the Kenya-Tanzania border in the south to the Kenya-Somalia border in the north (latitudes 1°40´S and 4°25´S and longitudes 41°34´E and 39°17´É) [14]. This area spans Kwale, Kilifi, Lamu, Tana River and Mombasa Counties. Within Kwale County, the forests are found in Vanga-Funzi, Gazi Bay and River Mwachema in Diani (Figure 1).
Mangroves exist in a unique habitat and therefore need to develop different metabolic processes to survive thus leading to the synthesis of secondary metabolites including tannins, saponins, flavonoids, alkaloids, steroids and triterpenes that may have pharmaceutical value [4,5,15]. It has been suggested that they have been used to treat ailments such as gastric distress, skin disease, elephantiasis, sores, leprosy and headache [16].

1.4 LOCAL USE OF MANGROVE

Mangrove trees have a myriad of uses locally although they are mainly used as fuel wood (Table 1)[17]. The tree stems are also used for medical purposes. For example, *Rhizophora mucronata* is said to provide relief from constipation, fertility problems and menstrual disorders in women whereas *Xylocarpus granatum* is known to relieve muscle aches and skin disorders. These ailments are usually caused by different viral, fungal, and bacterial pathogens. The bark of *Rhizophora* spp. is used to make local dyes whereas the smoke from logs of *Avicennia marina* is said to have insect repelling properties.
Table 1 Mangrove species found in Kenya and their uses (mangrove and mangrove management 2017)

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>LOCALNAME(SWAHILI/DIGO)</th>
<th>MAIN USE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhizophora mucronata</td>
<td>Mkoko</td>
<td>Poles, dye, firewood, fencing, charcoal</td>
</tr>
<tr>
<td>Bruguiera gymnorrhiza</td>
<td>Muia</td>
<td>Poles, firewood, charcoal</td>
</tr>
<tr>
<td>Ceriops tagal</td>
<td>Mkandaa</td>
<td>Poles, firewood, charcoal</td>
</tr>
<tr>
<td>Sonneratia alba</td>
<td>Mlilana</td>
<td>Boat ribs, poles, firewood</td>
</tr>
<tr>
<td>Avicennia marina</td>
<td>Mchu</td>
<td>Firewood, poles</td>
</tr>
<tr>
<td>Lumnitzera racemose</td>
<td>Kikandaa</td>
<td>Fencing poles, firewood</td>
</tr>
<tr>
<td>Xylocarpus granatum</td>
<td>Mkomafi</td>
<td>Furniture, poles, firewood</td>
</tr>
<tr>
<td>Heritiera littoralis</td>
<td>Msikundazi</td>
<td>Timber, poles, boat masts</td>
</tr>
<tr>
<td>Xylocarpus moluccensis</td>
<td>Mkomafi dune</td>
<td>Fencing poles, firewood</td>
</tr>
</tbody>
</table>

1.5 ANTIMICROBIAL ACTIVITY OF MANGROVES

Several studies have been conducted on effects of mangrove extracts on various bacterial, fungal and viral pathogens using different extraction methods including water, methanol, ethanol, ethyl acetate, chloroform and petroleum ether [4,5,18,19].

Previous work [4] has showed that extracts of Rhizophora mucronata were active against hepatitis B whereas Avicennia marina, Avicennia officinalis, Bruguiera sexangularis and Lumnitzera racemose were active against Staphylococcus aureus and Proteus spp.

Sahoo et al (2012) conducted a study on the leaf extracts of Rhizophora mucronata, Avicennia marina and Exoecaria agallocha and demonstrated no activity against Salmonella typhi and Proteus vulgaris. They had varying degrees of activity against Staphylococcus aureus, Streptococcus pneumoniae and Proteus mirabilis. Lotilkar et al ((2016) studied the activity of dried and powdered leaf extracts of Acanthus ilicifolius, Ceriops tagal and Sonneratia caseolaris against Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae and Bacillus subtilis. These mangrove species were active against these bacteria but C. tagal had no activity against Klebsiella pneumoniae.

Two studies on the activity of Lumnitzera littorea and Avicennia marina against human pathogenic fungi Candida albicans, Aspergillus spp. and Cryptococcus neoformans showed
that mangrove have no activity against these three pathogens[11,19]. However, no information is available on the microbicidal activities of *A. marina* from Kenya.

1.6AVICENNIA MARINA
Avicennia marina is locally known as “Mchu” among the Digo. It is classified as a true mangrove due to the formation of pure stands, presence of morphologically specialized adaptive forms and physiological mechanisms to control salt. Mature trees stand at a height ranging from 7 – 18 metres. The tree trunk is grey to greyish brown, with a diameter of 30 – 35cm and cracks in the bark [20]. The trees grow in 2 zones: seaward and land ward. Seaward trees grow up to 12-18m tall while landward groves grow up to 2-5m tall. The roots appear vertically on the surface of the soil and are light to dark brown in color. The leaves occur singly and are round with no angles as shown in the Figure below.

Figure 2 Leaves of Avicennia marina. Source
(Photo taken by author at Gazi bay on 26/11/2019)

1.7VIBRIO CHOLERAE
Vibrio cholera is a Gramnegative, non-sporing bacillus inhabiting estuarine aquatic habitats. It is a flagellated, facultative anaerobe, curved rod, capable of respiratory and fermentative metabolism. Its growth is stimulated by 1% NaCl but is able to grow on nutrient agar without NaCl. This bacterium is oxidase positive and reduces nitrate to nitrite [21,22].

Vibrio cholerae has re-emerged as a major cause of disease, causing diarrhea that affects both rural and urban populations. Locally, between January 2019-April 2019 about 1,350 new cases were identified of which 72 were confirmed positive and 6 reported deaths (CFR 0.4%) [21,23]. Disease occurrence is usually due to ingestion of contaminated and undercooked sea and freshwater fish, contaminated water supplies and rarely exposure of wounds to contaminated water. Once ingested, enterotoxin is produced which disrupts ion transport within the intestinal epithelium leading to water and electrolyte loss through watery diarrhea. Other symptoms may include bloody diarrhea, necrotizing fasciitis and primary septicemia in immunocompromised patients [21,22].

The drugs of choice for treatment of the infection include tetracyclines, fluoroquinolones and azithromycin, which until recently remained active against the bacteria [24]. There have however been reports in the recent past of strains exhibiting reduced susceptibility to these agents leading to treatment failure [24,25]. Reports of multidrug resistant strains date back as far as the 1970’s to tetracyclines, streptomycin and chloramphenicol, with increased resistance over the years [25,26]. Resistance is either acquired through gene mutations or through horizontal gene transfer through plasmids. The bacteria may then be able to transfer these genes of resistance to gut commensals and pathogens thus complicating treatment [27]. With resistance to all classes of drugs documented, and no new drugs under development, it is imperative that novel and alternative strategies are devised for disease management [28].

1.8 STAPHYLOCOCCUS AUREUS

Staph. aureus is a Gram positive non-motile and non-sporing coccus, appearing in grape-like clusters under a microscopy. It requires 30-37°C, pH 5-7.5 and up to 15% NaCl to grow. Biochemically it is coagulase and catalase positive[29,30].

Staph aureus is a common commensal of skin, oral cavity and the human gut, with an estimated asymptomatic carrier rate of 30-60%[31]. It is however the most common cause of gastroenteritis and food borne infection, with a CFR of 0.03% in adults and 4.4% in paediatrics and geriatrics. Symptoms of the infection include nausea, vomiting, diarrhea, and abdominal pain. It can also cause infections of the skin, bones, soft tissues, urinary tract, respiratory tract and disseminate blood infections[29,31,32].

Staph. aureus is a major pathogen associated with hospital and community acquired disease, Methicillin resistant Staph. aureus has long since been considered a nosocomial bacterium, but in the recent past has been documented in the community as an emerging public health
Drugs used in the treatment of staphylococcal infection include aminoglycosides, tetracyclines, macrolides, oxazolidinones, lincosamides and streptogramins. There has however been documentation of resistance to multiple classes of antimicrobial agents due to decades of recurrent exposure to the agents [35,36]. Antimicrobial resistance is therefore a major challenge to the treatment of both nosocomial and community acquired infections due to the limited treatment options available [33,34].

1.9 SALMONELLA TYPHI

\textit{Salmonella} spp. are flagellated, Gram-negative rods. They are facultative anaerobes capable of respiratory and fermentative metabolism. Biochemically they are indole positive. They reduce nitrates to nitrites and ferment carbohydrates to produce acid. Identification is by culture and biochemistry, as serological tests have low sensitivity and low specificity [37,38].

Salmonellosis is of public health importance with the most common manifestation being gastroenteritis, bacteremia, and enteric fever where the spectrum of clinical manifestations ranges from asymptomatic carriage to fatal disease [39,40]. Enteric fever is caused by typhoidal species \textit{Salmonella enterica} serovar typhi and \textit{salmonella enterica} serovar paratyphi A, with an estimated 22 million cases occurring each year resulting in approximately 200,000 deaths annually [39-41]. Non typhoidal salmonella (\textit{Salmonella typhimurium, Salmonella enteritidis, Salmonella Heidelberg and salmonella Newport}), has become a major cause of illness. The common causes of disease in Africa are S. typhimurium and S. enteritidis. Symptoms of illness include nausea, diarrhea, vomiting, and abdominal pain. Invasive non typhoidal salmonellosis may also occur in immunosuppressed individuals [38,39,42].

The first line drugs in the treatment of salmonellosis were chloramphenicol, ampicillin and cotrimoxazole, with chloramphenicol being the drug of choice. Due to the inappropriate use of antibiotics, there has been selection pressure within bacterial populations with the rise of resistant strains [43,44]. Second line drugs subsequently introduced included fluoroquinolones and azithromycin, to which resistance has also arisen, leading to the introduction of third generation cephalosporins for the treatment of multidrug resistant infections [43-45].
1.10 ESCHERICHIA COLI

E. coli is a Gram-negative rod that ferment sorbitol and grow at a wide range of temperatures[46]. The bacterium is considered to be normal flora inhabiting the gastrointestinal tracts of humans, cattle and deer[47].

Several strains of the bacterium such enteroinvasive *E. coli*(EIEC), enterohaemorrhagic *E. coli* (EHEC), enteropathogenic *E. coli* (EPEC) and enteroaggregative *E. coli* (EAgg.EC) exist which cause human disease. Subtypes are based on the O and H antigens, with E.coli O157:H7 being the most important cause of food borne epidemics[48]. This subtype is also the most studied due to reasons such as its widespread diffusion, tolerance of a diverse physical and chemical environments, the low infective dose required to cause illness as well as the severity of illness it causes [46].

Pathogenic strains of *E. coli* cause a wide spectrum of disease ranging from diarrheal disease to meningitis, wound infections, septicemia, and hemolytic uremic syndrome[47]. Infection with *E. coli* occurs through direct contact from shed bacteria on surfaces, direct person-person contact or through ingestion of contaminated food and water[49].

Antimicrobial studies have shown regional variation in susceptibility. Kibret and Aberas showed that strains of *E. coli* resistant to amoxycillin, erythromycin and tetracycline while susceptible to nitrofurantoin, norfloxacin, gentamycin and ciprofloxacin exist [50]. Vramic and Uzunovic demonstratedthe presence of *E. coli* strains resistant to ampicillin and trimethoprim-sulfamethoxazole, while susceptible to gentamicin, ciprofloxacin, nitrofurantoin, cephazolin and nalidixic acid[51].

1.11 CANDIDA ALBICANS

Candida albicans is a non-fastidious yeast that is dimorphic in nature (exhibits both yeast-like and fungal forms). On gram stain it appears as large, budding, gram-positive cells with pseudohyphae [52,53].

Candida albicans is a common commensal of oral and gastrointestinal flora, with asymptomatic colonization of the mouth, gastrointestinal tract, and reproductive tract of healthy individuals. The gastrointestinal tract acts as a reservoir for disease causing organisms and especially so for *Candida* sp which do not have a significant environmental reservoir[54-56]. *Candida* sp are opportunistic pathogens, causing mucocutaneous, vulvovaginal and hematogenous infections in persons with compromised immunity [57,58].
Candida sp are an important pathogen due to their predilection to cause opportunistic infections especially in immune compromised populations. There are relatively few classes of antifungals therefore treatment options are often limited in diseases. This particular problem is compounded by the emergence of drug resistant strains which emerge as a result of frequent exposure to antifungals leading to selection pressure and tolerance[59].

Azoles and topical treatments are the first choice in oropharyngeal and cutaneous infections, while invasive disease, candidemia and hematogenous candidiasis are treated with amphotericin B, intravenous azoles and echinocandins[59].

As with most microbes, there has been documentation of drug resistant Candida sp which may arise as a consequence of long term antifungal use in recurrent candidiasis [58,60]. Due to the public health burden of disease caused by Candida sp and especially in immune compromised populations, it is imperative that new agents are developed to reduce this burden of disease.

1.1 JUSTIFICATION

The continued misuse and overuse of antimicrobial agents has led to selection pressure among microbial populations, with emergence of antimicrobial resistant phenotypes[61]. The emergence of drug resistant microbes has thus become a serious global public health threat, with treatment failures reported in both nosocomial and community settings[34,43]. With the upward trend in antimicrobial resistance, and an ever-shrinking pool of antimicrobial classes to choose from, it is imperative that the development of new agents is forefront in the global health agenda.

Several studies have been done elsewhere on the antimicrobial and anticancer properties of mangrove species and specifically Avicennia marina[62-64], however there is very little information and very few studies done on the antimicrobial activity of any mangrove species in Kenya. Avicennia marina was chosen as the mangrove of choice as it is found on the landward side. Several microbial species were chosen on the basis of biological importance and potential to cause disease; Staphylococcus aureus, Vibrio cholerae, E. coli, Salmonella typhi and Candida albicans. These are species known to cause serious human infection and have in the recent past been reported to exhibit antimicrobial resistance to their treatment of choice. This resistance has necessitated the development of novel compounds for their treatment, hence the present study
The microorganisms studied in this work were chosen due to their great disease causing potential especially in the background of immune suppression. Chronic infection with C. albicans could lead to hematogenous candidiasis as well as predispose to other opportunistic infections. Failed treatment of V. cholerae could lead to death due to dehydration. It is therefore imperative to test the antimicrobial properties of A. marina which has been shown to be effective against a myriad of bacteria species.

The present study was designed to evaluate the antimicrobial activity of the bark extracts of A. marina and to establish the MIC and MBC of the extracts.

1.1.3 RESEARCH QUESTION

1. Does the species Avicennia marina possess biologically active substances with antimicrobial activity and microbial selectivity?

1.1.4 OBJECTIVES

1.1.4.1 GENERAL OBJECTIVE

To determine the antimicrobial activity of A. marina against C. albicans, E. coli, S. typhi, Staph. aureus and V. cholerae

1.1.4.2 SPECIFIC OBJECTIVES

1. To evaluate the in vitro bactericidal activity of different extracts of A. marina against C. albicans, E. coli, S. typhi, Staph. aureus and V. cholerae

2. To determine the minimum inhibitory concentrations of extracts of different extracts of A. marina against C. albicans, E. coli, S. typhi, Staph. aureus and V. cholerae

3. To determine the minimum bactericidal concentrations of extracts of different extracts of A. marina against C. albicans, E. coli, Salmonella typhi, Staph. aureus and V. cholerae
CHAPTER 2: METHODOLOGY

2.0 INTRODUCTION

The present study was an experimental study employing solvent extraction. Different solvents were used for the extraction of phytochemicals from A. marina. The bark of A. marina was harvested and subjected to pre-washing, drying, and milling to obtain a homogenous substance that was exposed to the different solvents through a process of maceration. The solvents used were methanol, ethyl acetate, water, dichloromethane, chloroform, and hexane. The plant extracts were then tested against Staph. aureus, V. cholerae, E. coli, Salmonella Typhi and C. albicans using agar well diffusion method for antimicrobial susceptibility testing and broth dilution for determination of the minimum inhibitory concentration and minimum bactericidal concentrations.

2.1 PLANT COLLECTION AND IDENTIFICATION

Plant material (A. marina) was obtained from the Gazi bay mangrove ecosystem in Kwale county (Figure 3) following approval from Kenya Forest Services (KFS) for the same. Gazi is located at 4°25’S, 39°30’E and approximately 50km from Mombasa. It experiences a diurnal tidal pattern with a bimodal rainfall pattern which peaks in May and November. The forests cover approximately 6.61km² with all 8 species of mangrove present. Four species are however dominant: Rhizophora mucronata, Avicennia marina, Ceriops tergal and bruguiera spp.
The barks were obtained from mature *A.marina* trees from the Gazi bay ecosystem in Kwale County of coastal Kenya. The pieces of bark were spread on a flat surface under a shade to dry overnight in preparation for transport and stored in clean containers and transported to the Department of Medical Microbiologylaboratory, University of Nairobi. The barks were then spread into a single layer on a bench top to air dry for five days under shade.

Mature leaves, fruits and bark material were also collected and prepared by mounting and pressing in between sheets of mounting paper until they were dried. These specimens were then shipped to the Department of Botany herbarium, school of biological sciences, University of Nairobi for identification. A voucher specimen was also deposited at the herbarium for documentation (voucher number JNM 2019/02).
2.2 EXTRACTION OF PLANT MATERIAL

2.2.1 SOLVENTS AND REAGENTS

The solvents used were methanol, ethyl acetate, chloroform, water, hexane, and dichloromethane (Finar Ltd, Ahmedabad, India). Dimethylsulphoxide (Finar Ltd, Ahmedabad, India) was used to prepare the suspensions of the crude extracts used for antimicrobial activity testing.

2.2.1.1 MATERIALS AND EQUIPMENT

Filtration of the crude extracts before rotary evaporation was done using Whatman filter paper no. 1 (Whatman international Ltd, Maidstone, England).

A Heidolph VV2000® rotary vacuum evaporator (Heidolph Electro GmbH & Co. K.G., Kelheim, Germany) connected to a diaphragm vacuum pump (KNF Neuberger GmbH, Freiburg, Germany) was used to dry the crude extracts to dryness. All glassware used was sterilized at 150°C for 1 hour using a Memmert universal oven (Memmert GmbH & Co, KG, Schwabach, Germany). The culture media was sterilized using a portable autoclave (Dixon’s surgical instruments Ltd, Essex, England) at 121°C for 15 minutes.

2.2.2 PREPARATION OF CRUDE EXTRACTS IN ORGANIC SOLVENTS

The dried plant material was milled to fine powder to increase the surface area for efficient extraction[65]. For this purpose, cold maceration technique with continuous stirring was used (figure 4).

Two hundred grams (200g) of the powdered crude extract was placed in a stoppered container with 1200ml of the different organic solvents, stirred and extracted for 48 hours with frequent agitation until the soluble matter had dissolved. The mixture was then strained and filtered through Whatman filter paper No.1, after which the filtrate was collected in a stoppered conical flask.

2.2.3 PREPARATION OF AQUEOUS EXTRACTS

Cold maceration was used to prepare the cold aqueous extract (figure 4). Two hundred grams of the plant material was mixed with 1200ml of distilled water at room temperature. The mixture was extracted for 48 hours with continuous agitation using a magnetic stirrer. It was then strained and filtered through Whatman filter paper No.1 and the filtrate collected in a stoppered conical flask.
For hot decoction, 200 g of the plant material was mixed with 1200ml of distilled water at room temperature and the mixture was allowed to come to a boil for 20 minutes. The mixture was allowed to cool then strained and filtered through Whatman filter paper No.1 and the filtrate collected in a stoppered conical flask.

2.2.4 CONCENTRATION OF THE EXTRACTS
This was done in-vacuo using a rotary evaporator which contains a vacuum chamber that produces a reducing pressure that reduces the boiling point of the solvent, allowing it to condense in a separate flask, leaving behind the crude extract (figure 4).

The aqueous extracts were separately freeze dried to leave behind a dry residue which was stored in tightly sealed containers under refrigeration at 4°C until use.

2.2.5 DETERMINATION OF PERCENTAGE YIELD
The percentage yield was calculated as:

\[
\text{Percentage yield} = \frac{W_2 - W_1}{W_0} \times 100
\]

Where \(W_1\) was the weight of the empty container; \(W_2\) was the weight of the container plus the weight of the plant extract; \(W_0\) the weight of the milled extract (200g)
2.3.1 ANTIMICROBIAL SUSCEPTIBILITY TESTING
The current study used the agar well diffusion method and macro dilution method to determine the antimicrobial activity of *Avicennia marina*.

2.3.1 TEST ORGANISMS
Staphylococcus aureus, *E. coli*, *Vibrio cholerae*, *Salmonella Typhi* and *Candida albicans* strains were obtained from stock culture at the Department of Medical Microbiology laboratory, University of Nairobi.

2.3.2 ANTIMICROBIAL SUSCEPTIBILITY TESTS
Antimicrobial susceptibility testing was carried out as per CLSI guidelines and protocols (2012) using Kirby Bauer disc diffusion method.

Table 2: Standard antibiotics

<table>
<thead>
<tr>
<th>Strain</th>
<th>Antibiotic</th>
<th>Zone of inhibition (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vibrio spp</td>
<td>Ciprofloxacin</td>
<td>13.5mm</td>
</tr>
<tr>
<td>Staph. Aureus</td>
<td>Ciprofloxacin</td>
<td>13.5mm</td>
</tr>
<tr>
<td>C. albicans</td>
<td>Fluconazole</td>
<td>0mm</td>
</tr>
<tr>
<td>S. Typhi</td>
<td>Ciprofloxacin</td>
<td>25mm</td>
</tr>
<tr>
<td>E. coli</td>
<td>Ciprofloxacin</td>
<td>13mm</td>
</tr>
</tbody>
</table>

The strain of *C. albicans* used was a strain obtained from a clinical specimen and was found to be resistant to Fluconazole antimicrobial disc.

2.3.3 AGAR WELL DIFFUSION
Antimicrobial susceptibility screening of the different extracts was carried out as per CLSI guidelines using agar well diffusion technique.

2.3.4 PREPARATION OF PLANT EXTRACTS
The prepared plant extracts were dissolved in dimethylsulfoxide to yield a stock solution of 100mg/ml. Double serial dilutions of the stock solution were carried out to yield concentrations of 50mg/ml, 25mg/ml and 12.5mg/ml. Forty microlitres (40 µl) of each plant extract concentration was then inoculated into each agar well.

2.3.5 INOCULUM AND INOCULUM PROCEDURE
A 0.5 McFarland standard was prepared with a 1.5×10^8 CFU/ml inoculum concentration. Two to five single colonies from each microorganism culture agar plate were suspended in 2ml of Mueller Hinton broth and incubated as per their growth requirements until turbidity was visible. The turbidity was adjusted as per the McFarland standard.
A sterile swab was used to transfer the standard suspension onto already prepared culture plates. Nutrient agar plates were used for all the organisms. Asterile swab was used to streak the dried media and the plate rotated 60°to ensure even inoculation on the media.

2.3.6 PREPARATION OF AGAR WELLS
Sterile cork borers (6mm) were used to punch wells into the agar plates. Each plate comprised 4 wells equidistant to each other to avoid overlap of the zones of inhibition. Each of the fourwells wasinoculated with a different concentration of the plant extract. Another plate was designated for the controls. A standard antibiotic disc and DMSO were used as the positive control and negative control, respectively. Forty microlitres of the different concentrations of extract was inoculated into each well as well as 40μl of the DMSO into the negative control well.

The plates were left to dry, then incubated overnight at 37°C. After 24 hours the plates were examined for visible zones of inhibition and a caliper used to measure the diameter of the zones to the nearest millimeter.

All tests were conducted in triplicate for reliability.

2.4 DETERMINATION OF MINIMUM INHIBITORY CONCENTRATION AND MINIMUM BACTERICIDAL CONCENTRATION

2.4.1 DETERMINATION OF MINIMUM INHIBITORY CONCENTRATION
Minimum inhibitory concentration was defined as the highest dilution of plant extract inhibiting growth of the different microorganisms.

Plant extracts showing zones of inhibition on the agar well plates were subjected to further tests to determine their MIC values by microbroth dilution method.

2.4.1.1 METHOD OF DILUTION
The different dilutions were obtained using double serial dilution of the stock plant extracts in sterile Mueller Hinton broth.

2.4.1.2 GROWTH TECHNIQUE
Four to six colonies of the microorganisms with identical morphological characteristics were identified. Two to three of these colonies were used to prepare the 0.5 MacFarland turbidity standard, using aseptic transfer method, into test tubes containing 5ml of fresh MuellerHinton broth and incubation until visibly turbid. Two to three of the colonies were used to perform grams staining to reveal the characteristics of the microorganisms as shown in Table 3.
<table>
<thead>
<tr>
<th>Organism</th>
<th>Gram stain characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staph. Aureus</td>
<td>Gram positive cocci in clusters</td>
</tr>
<tr>
<td>Vibrio cholerae</td>
<td>Gram negative curved bacillus</td>
</tr>
<tr>
<td>E. coli</td>
<td>Gram negative bacilli</td>
</tr>
<tr>
<td>Salmonella Typhi</td>
<td>Gram negative bacilli</td>
</tr>
<tr>
<td>C. albicans</td>
<td>Gram positive budding yeast cells</td>
</tr>
</tbody>
</table>

2.4.1.3 DILUTION TECHNIQUE

Ten test tubes, each containing 2 ml of Mueller Hinton broth, were allocated to each plant extract concentration, and arranged in a rack. A stock solution of 100 mg/ml of plant extract was prepared in a separate tube. Double serial dilutions were conducted until a concentration of 12.5 mg/ml was achieved. The first test tube in each set of 10 contained 2 ml of the 12.5 mg/ml of plant extract. Double serial dilutions were then carried out to yield the following concentrations: 6.25 mg/ml, 3.125 mg/ml, 1.562 mg/ml, 0.781 mg/ml, 0.39 mg/ml, 0.195 mg/ml and 0.098 mg/ml. The final 2 tubes acted as positive and negative controls and contained 2 ml Mueller Hinton broth, 40 μl McFarland standard, 2 ml Mueller Hinton agar and 40 μl sterile water. The tubes were incubated for 18–24 h at 37°C.

2.4.1.4 MINIMUM INHIBITORY CONCENTRATION

After overnight incubation, the test tubes were assessed for bacterial growth visualized as turbidity. To confirm that each test tube did or did not have growth, a standard loop of suspension from each tube was subcultured on nutrient agar. After overnight incubation, the plates were examined for growth. The lowest concentration for the extracts showing no visible growth was regarded as the MIC.

2.4.2 MINIMUM BACTERICIDAL CONCENTRATION

Minimum bactericidal concentration was defined as the lowest concentration of extract that will kill the microorganism after overnight incubation. The tube within the series of 12 that immediately followed the tube with the MIC was considered as the MBC. After overnight incubation, the test tubes were assessed for bacterial growth as visualized by turbidity. To ensure that each test tube did/did not have growth, a standard loop of suspension from each tube was subculture on appropriate agar.
CHAPTER 3: RESULTS AND DISCUSSION

3.0 INTRODUCTION

This chapter describes the results from the study—percentage yield of crude extract acquired, the antibiotic susceptibility pattern of the organisms, mean diameter of the zones of inhibition of the crude extracts against the different microorganisms, minimum inhibitory concentration and minimum bactericidal concentrations of the crude extracts.

3.1 PERCENTAGE YIELD

This study used cold maceration as the solvent extraction technique. This technique facilitated the extraction of the biologically active components required without altering their functional properties. Seven solvents were used for this technique—methanol, ethyl acetate, hot water, cold water, chloroform, hexane, and dichloromethane. Solvents used in extraction of bioactive compounds are usually chosen on the basis of the polarity of the compound of interest whereby solvents should be of similar polarity to the compounds to facilitate almost complete dissolution [66]. Table 4 below shows the polarity index of the different solvents.

Table 4: Polarity index of different solvents (Snyder)

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Polarity index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>9.0</td>
</tr>
<tr>
<td>Methanol</td>
<td>6.6</td>
</tr>
<tr>
<td>Ethyl acetate</td>
<td>4.4</td>
</tr>
<tr>
<td>Chloroform</td>
<td>4.1</td>
</tr>
<tr>
<td>Dichloromethane</td>
<td>3.7</td>
</tr>
<tr>
<td>Hexane</td>
<td>0.1</td>
</tr>
</tbody>
</table>

The polarity of the biologically active compounds found in Avicennia marina was unknown to us, therefore we chose the seven solvents, each with differing polarity, to increase the probability of getting good results. The percentage yields from the different solvents are shown in table 5 below.
Table 5: Percentage (%) yield of extract from each solvent

<table>
<thead>
<tr>
<th>Solvent</th>
<th>W_1 (grams)</th>
<th>W_2 (grams)</th>
<th>W_3 (grams)</th>
<th>% yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanol</td>
<td>150</td>
<td>207</td>
<td>57</td>
<td>28.5</td>
</tr>
<tr>
<td>Ethyl acetate</td>
<td>150</td>
<td>160</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Hot aqueous</td>
<td>150</td>
<td>158</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Cold aqueous</td>
<td>150</td>
<td>157.8</td>
<td>7.8</td>
<td>7.8</td>
</tr>
<tr>
<td>Dichloromethane</td>
<td>50.34</td>
<td>52.64</td>
<td>2.3</td>
<td>1.15</td>
</tr>
<tr>
<td>Chloroform</td>
<td>46.43</td>
<td>47.03</td>
<td>0.6</td>
<td>0.3</td>
</tr>
<tr>
<td>Hexane</td>
<td>48.78</td>
<td>49.28</td>
<td>0.5</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Where:

W^1 is the weight of the empty container

W^2 is the weight of the container plus the weight of the extract

W^3 is the weight of the extract ($W^2 - W^1$)

The percentage yield ranged from 28.5% to 0.25%. The highest yield, was obtained from methanol at 28.5%, followed by hot aqueous decoction at 8%, cold aqueous maceration at 7.8%, ethyl acetate at 5%, dichloromethane at 1.15%, chloroform at 0.3% and hexane at 0.25%.

The different solvents had differing yields, with the more polar solvents having higher yields. Methanol, hot aqueous decoction, cold water and ethyl acetate had the best yields at 28.5%, 8%, 7.8% and 5% respectively. Dichloromethane, chloroform, and hexane had lower yields at 1.15%, 0.3% and 0.25% respectively. The variation in yields from the different solvents could have been due to the varying chemical structures of the bioactive compounds, which would affect the solubility of the compounds in the different solvents [67]. The choice of solvent therefore affected what biologically active compound was extracted.

3.2 ANTIMICROBIAL SUSCEPTIBILITY PATTERN

The 5 organisms were subjected to susceptibility testing using standard antibiotic discs. Ciprofloxacin 30μg/ml was used for *Staph.aureus*, *Vibrio cholerae*, *E.coli* and *Salmonella* typhi, while fluconazole 25μg/ml was used against *C.albicans*.
Table 6 below shows the average zones of inhibition for the various antibiotics against the microorganisms.

Table 6: Antimicrobial susceptibility to Standard antibiotic discs

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Antibiotic concentration (μg)</th>
<th>Zone of inhibition (mm)</th>
<th>CLSI breakpoint</th>
<th>Susceptible (Zone greater than)</th>
<th>Intermediate</th>
<th>Resistant (zone smaller than)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vibrio spp</td>
<td>Ciprofloxacin 30</td>
<td>13.5mm</td>
<td>21mm</td>
<td>16-20mm</td>
<td>15mm</td>
<td></td>
</tr>
<tr>
<td>Staph. Aureus</td>
<td>Ciprofloxacin 30</td>
<td>13.5mm</td>
<td>14mm</td>
<td>-</td>
<td>13mm</td>
<td></td>
</tr>
<tr>
<td>C. albicans</td>
<td>Fluconazole 25</td>
<td>0mm</td>
<td>19mm</td>
<td>15-18mm</td>
<td>14mm</td>
<td></td>
</tr>
<tr>
<td>S. Typhi</td>
<td>Ciprofloxacin 30</td>
<td>25mm</td>
<td>20mm</td>
<td>17-19mm</td>
<td>16mm</td>
<td></td>
</tr>
<tr>
<td>E. coli</td>
<td>Ciprofloxacin 30</td>
<td>13mm</td>
<td>20mm</td>
<td>17-19mm</td>
<td>16mm</td>
<td></td>
</tr>
</tbody>
</table>

Ciprofloxacin was tested against *Vibrio cholerae*, *Staphylococcus aureus*, *E. coli* and *Salmonella typhi* and was found to be active against all. Fluconazole was tested against a strain of *Candida albicans* obtained from a clinical specimen. The strain used was found to be resistant to fluconazole. All tests were conducted in triplicate.

3.3 ANTIMICROBIAL ACTIVITY OF THE CRUDE EXTRACTS

3.3.1 METHANOL

The crude extracts of methanol at the various concentrations were used to carry out antimicrobial susceptibility testing against *Staph aureus*, *E. coli*, *Vibrio cholerae*, *Salmonella typhi* and *Candida albicans*. The results of the effect of the extract against the different organisms is shown in figure 5 below and appendix I.
The extract showed varying results for each organism at each concentration. The extract showed the highest activity against Candida albicans at all concentrations, such that at for example 100mg/ml, the diameter of the zone of inhibition in mm was 22 as compared to 14.5, 12, 0 and 0 for Staph aureus, Vibrio cholerae, Salmonella typhi and E. coli respectively. This trend was replicated for all the different concentrations. The activity of the extract was noted to be concentration dependent, with the highest activity noted at the highest concentration of 100mg/ml. It was also observed that the methanol extract had no effect against E. coli or Salmonella typhi.

Polarity of a solvent influences the biologically active substances extracted. Methanol has a high polarity index of 6.6 and is used frequently as a solvent in extraction as it tends to extract several compounds. The high polarity in this case could have been a contributing factor to the success of extraction of active compounds from A. marina.

The results thus obtained were in line with results from Rao et al who showed that A. marina has antibacterial and antiviral activity.

3.3.2 ETHYL ACETATE

The crude extract of Avicennia marina using ethyl acetate as a solvent, at concentrations of 100mg/ml, 50mg/ml, 25mg/ml and 12.5mg/ml were used to carry out antimicrobial
susceptibility testing against *Staph aureus, Vibrio cholerae, E. coli, Salmonella* typhi and *Candida albicans*. The results are shown in figure 6 below and appendix II.

![Figure 6: Diameter of zones of inhibition (mm) against concentration of ethyl acetate extract (mg/ml) for the different microorganisms](image)

The results varied for each organism at each given concentration. The extract showed the best activity against *Candida albicans* at all concentrations, compared to the other organisms. At 100mg/ml, the zones of inhibition for *Candida albicans* was an average of 21mm, while for *Staph aureus* it was 16.5mm, for *Vibrio cholerae* it was 14mm and 0 for both *E. coli* and *Salmonella* typhi. At 12.5mg, the average diameter of the zone of inhibition against *Candida albicans* was 15.5mm, for *Staph aureus* was 8mm and 0 for the rest of the organisms. The activity of the ethyl acetate extract was thus noted to be concentration dependent, having greater activity at higher concentrations.

The polarity index of ethyl acetate is 4.4, which made it a good solvent for extraction of compounds from *Avicennia marina*. The findings on the activity of ethyl acetate extract of *Avicennia marina* bark were congruent with findings from a study conducted on the same by Rao et al.
3.3.3 AQUEOUS EXTRACTS
The crude aqueous extracts of *Avicennia marina* were used to carry out antimicrobial susceptibility testing against *Vibrio cholerae, Staph aureus, E. coli, Salmonella typhi* and *Candida albicans*. The figures 7 and 8, and appendix III show the results.

Figure 7: Diameter of zones of inhibition (mm) against concentration of hot aqueous extract (mg/ml) of the different microorganisms
Figure 8: Diameter of zones of inhibition (mm) against concentration of cold aqueous extract (mg/ml) for the different microorganisms

For the hot aqueous decoction, the results varied for each organism at each concentration. The extract showed the best activity against *Candida albicans* at all concentrations. At 100mg/ml, the average diameter of the zones of inhibition against *Candida albicans* was 22mm, while for *Staph aureus* it was 14.5mm, *Vibrio cholerae* was 12mm and 0 for *E. coli* and *Salmonella typhi*. The average diameter of the zones of inhibition at 12.5mg/ml for *Candida albicans* was 16.5mm, for *Staph aureus* 9mm, for *Vibrio cholerae* 8mm and 0 for *E. coli* and *Salmonella typhi*. The extract thus shows concentration dependent activity, similar to that seen with the methanol and ethyl acetate extracts.

Similarly, the results for the cold aqueous extract varied at each concentration, with the best activity noted against *Candida albicans*. At 100mg/ml the average diameter of the zones of inhibition were 21mm, 14.5mm and 11mm for *Candida albicans, Staph aureus* and *Vibrio cholerae*, respectively. There was no activity noted at this concentration against *E. coli* and *Salmonella typhi*. The average diameters of the zones of inhibition at 12.5mg/ml were 16mm for *Candida albicans* and 0 for all other microorganisms. Similar to the hot aqueous decoction, the cold aqueous extract showed concentration dependent activity.

Water has a polarity index of 9.0, making it a good solvent for extraction of polar compounds. The hot decoction was noted to have better activity against all the microbes compared to the cold aqueous extract.
Traditionally, the whole root and bark of *Avicennia marina* were prepared by boiling them and the decoction drank by patients exhibiting symptoms of stomach upset. The decoction was drank over a period of several days until symptoms alleviate. Results from the water extractions show antibacterial and antifungal activity against various bacteria and fungi, some of which are known to cause gastrointestinal illness, and thus validating its use in traditional medicine. Results from the water decoctions also illustrate that extracts of *Avicennia marina* are heat stable as both the hot and cold aqueous extracts exhibited antibacterial and antifungal activity.

3.3.5 Dichloromethane, Chloroform, Hexane

The crude extracts of chloroform, dichloromethane and hexane were used to carry out antimicrobial susceptibility testing against *Vibrio cholerae*, *Staph aureus*, *E. coli*, *Salmonella typhi* and *Candida albicans*. The extracts were all inactive against all the microbes at all concentrations tested as illustrated in appendices IV-VI.

The polarity indexes for chloroform, dichloromethane and hexane are 4.4, 3.7 and 0.1, respectively. The polarity indices of these solvents may be low compared to what the polarity of the active compounds in *Avicennia marina* could be. This could be the reason for the low percentage yields from each of these solvents. This would have implications in further studies, as it would discourage further work using solvents of low polarity which have been shown to have low yields of inactive compounds.

3.4 Minimum Inhibitory Concentration and Minimum Bactericidal Concentration

The minimum inhibitory concentration (MIC) was defined as the highest concentration of plant extract that inhibited growth of microorganism after overnight incubation, while the minimum bactericidal concentration was defined as the lowest concentration of subcultured MIC tube that showed no visible growth after overnight incubation. The results after overnight incubation are shown in the table below.
Table 7: Minimum inhibitory concentrations and minimum bactericidal concentrations

<table>
<thead>
<tr>
<th></th>
<th>MIC (mg/ml)</th>
<th>MBC (mg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ethyl Acetate</td>
<td>Methanol</td>
</tr>
<tr>
<td>Vibrio spp</td>
<td>6.25</td>
<td>6.25</td>
</tr>
<tr>
<td>Staph aureus</td>
<td>12.5</td>
<td>12.5</td>
</tr>
<tr>
<td>C. albicans</td>
<td>6.25</td>
<td>6.25</td>
</tr>
</tbody>
</table>

The range for MIC was between 12.5mg/ml and 6.25mg/ml, while the range for MBC was between 6.25mg/ml and 3.125mg/ml.

MIC and MBC were used to quantify the antibacterial and antifungal activity of *Avicennia marina*. The values differed for the different microorganisms—e.g. for methanol extract, the MBC for *Staph aureus* was 6.25mg/ml, for *Vibrio cholerae* was 3.125mg, while for *candida albicans* it was 3.125mg/ml. The MIC values for the same extract were 12.5mg/ml for *Staph aureus*, 6.25mg/ml for *Vibrio cholerae* and 6.25mg/ml for *Candida albicans*. This can be interpreted to mean that at low concentrations crude extracts have bacteriostatic and fungistatic properties, while at higher concentrations they have bactericidal and fungicidal properties. This would suggest that when used traditionally, due to the low concentrations consumed, the extracts are bacteriostatic.
4.0 CONCLUSIONS

The continued rise in antimicrobial resistance has necessitated increased research into novel compounds especially from plants. The WHO recommends that countries formulate standard protocols for validation of medicinal plant products, to facilitate their safe incorporation into mainstream medicine and healthcare [68].

There is limited data on the antimicrobial activity of the bark of *Avicennia marina*. Previous studies have used the leaves and roots, which have been found to be active. Studies have also shown the plant to contain anticancer, antiviral and antifungal properties [69].

This study used cold maceration as the solvent extraction technique. This technique facilitated the extraction of the biologically active components required without altering their functional properties. Seven solvents were used for this technique- methanol, ethyl acetate, hot water, cold water, chloroform, hexane and dichloromethane. Solvents used in extraction of bioactive compounds are usually chosen on the basis of the polarity of the compound of interest whereby solvents should be of similar polarity to the compounds to facilitate almost complete dissolution [66]. The polarity of the biologically active compounds found in *Avicennia marina* was unknown to us, therefore we chose the seven solvents, each with differing polarity, to increase the probability of getting good results.

The more polar solvents methanol, ethyl acetate and water showed both antibacterial and antifungal activity. The less polar solvents chloroform, dichloromethane and hexane exhibited neither activity. The choice of solvent therefore influenced the yield of bioactive compounds and on the activity against the bacteria and fungi.

The different solvents had differing yields, with the more polar solvents having higher yields. Methanol, hot aqueous decoction, cold water and ethyl acetate had the best yields at 28.5%, 8%, 7.8% and 5% respectively. Dichloromethane, chloroform, and hexane had lower yields at 1.15%, 0.3% and 0.25% respectively. The variation in yields from the different solvents could have been due to the varying chemical structures of the bioactive compounds, which would affect the solubility of the compounds in the different solvents [67]. The choice of solvent therefore affected what biologically active compound was extracted. Further phytochemical analyses would however be needed to identify the bioactive component from each solvent fraction.
The antibacterial and antifungal effects of bark extracts of *Avicennia marina* was also found to be concentration dependent i.e. the higher the concentration of extract used, the more the inhibitory activity exhibited.

The extracts of *Avicennia marina* also exhibited a degree of bio selectivity against the microorganisms, showing inhibitory action against *S. aureus*, *V. cholerae*, *N. gonorrhoea* and *C. albicans* but no such activity against *S. typhi* and *E. coli*. There are very few studies that look at the antimicrobial activity of *Avicennia marina* bark extracts against human pathogens. The results thus obtained were in line with what has previously been reported by V.U. Rao et al. that found bark extracts to have both antibacterial and antifungal activity [70].

The crude extracts of *Avicennia marina* were found to have bacteriostatic activity against *Staph aureus*, *Vibrio cholerae* and *Neisseria gonorrhoea* as well as fungistatic activity against *Candida albicans* at lower concentrations. At higher concentrations, the crude extracts were found to have bactericidal and fungistatic activity.

The crude extracts were also found to be inactive against *Salmonella typhi* and *E. coli*. This could possibly be due to presence of one or more mechanisms of resistance (drug efflux pump, reduced membrane permeability, mechanisms of drug inactivation or absence of drug target molecules). This resistance could also be due to the extract concentrations being too low to exhibit any antimicrobial activity against the two bacteria.

MIC and MBC were used to quantify the antibacterial and antifungal activity of *Avicennia marina*. The MIC values ranged from 12.5mg/ml to 6.25mg/ml, while those of MBC ranged from 6.25mg/ml to 3.125mg/ml. This can be interpreted to mean that at low concentrations crude extracts have bacteriostatic and fungistatic properties, while at higher concentrations they have bactericidal properties. This would suggest that when used traditionally, due to the low concentrations consumed, the extracts are bacteriostatic.

4.1 RECOMMENDATIONS

Following the results of this study, it is recommended that additional modes of extractions using additional solvents be carried out on the bark as well as other parts of the plant. The extracts should then be used to carry out antimicrobial susceptibility testing on different species of bacteria. This would help determine what part of the plant is most active against different bacteria.
It is also recommended that phytochemical studies should be conducted to determine the active components of *Avicennia marina*. These compounds should then be used to carry out antimicrobial susceptibility testing to determine the biologically active components. Structural investigation would be required to characterize the bioactive compounds in each fraction.
REFERENCES

A. Sugga, S. Elageed, O. Rajakhan, and A. Bashair, “Phytochemical screening and antimi-crobial activity of Mangrove Gum against some Pathogens,” pp. 1–14.

V. W. Wang et al., “Vegetative and reproductive phenological traits of Rhizophora mucronata Lamk. and Sonneratia alba Sm.,” Flora, vol. 208, no. 8–9, pp. 522–531,

R. D. Cannon, E. Lamping, A. R. Holmes, and B. C. Monk, “Candida albicans drug resistance - Another way to cope with stress This is the post-print version of the paper that can be accessed here : Candida albicans drug resistance – another way to cope

APPENDIX I: METHANOL EXTRACT PLATES
Methanol extract against Staph aureus
Methanol extract against *S. typhi*

Methanol against *V. cholerae*
APPENDIX II: ETHYLACETATE EXTRACT PLATES
Ethylacetate extract against Staph aureus

100mg/ml

50mg/ml

12.5mg/ml

25mg/ml
APPENDIX III: AQUEOUS EXTRACT PLATES

Hot aqueous extract against *Staph aureus*

Cold aqueous extract against *Staph aureus*
Hot aqueous extract against *C. albicans*

Cold aqueous extract against *C. albicans*
APPENDIX IV: CHLOROFORM EXTRACT PLATES
Chloroform extract against S. typhi

- 100 mg/ml
- 25 mg/ml
- 50 mg/ml
- 12.5 mg/ml
APPENDIX V: DICHLOROMETHANE EXTRACT PLATES

Dichloromethane extract against *C. albicans*

- 100 mg/ml
- 50 mg/ml
- 25 mg/ml
- 12.5 mg/ml

Dichloromethane extract against *Staph aureus*

- 100 mg/ml
- 50 mg/ml
- 25 mg/ml
- 12.5 mg/ml
APPENDIX VI: HEXANE EXTRACT PLATES

Hexane extract against *Staph aureus*

Hexane extract against *S. typhi*
Hexane extract against *V. cholerae*