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Abstract

Technological advancements and big data adaptations are broadly impacting the insur-

ance industry. Usage Based Insurance is a result of the emerging technologies and big

data adaptation as it is based on telematics data. Incorporating telematics data in auto

insurance pricing models reduces moral hazard and adverse selection phenomena which

arise from information asymmetry. Traditional auto insurance does not consider how

and when driving is done which is part of telematics data. Thus, there is need for insur-

ers to rede�ne their pricing models and risk selection criteria to include telematics data.

This study aims to model claim frequency and severity using generalized linear models

in order to evaluate the impact of distance driven, speed and time of driving on premium

rates which are part of telematics data. Generalized linear models have been applied by

insurers in ratemaking, reserving and underwriting general insurance policies for over

50 years. The models allow for response variables with non-gaussian error distributions

hence suitable for modelling auto insurance claim frequency and severity. Speci�cally, the

gamma and Poisson generalized models have been employed in this study. The gamma

has been used to model claim severity while claim frequency is modelled by the Poisson

model. From the insurance portfolio analyzed, speed and distance variables were found to

be signi�cant while time was not signi�cant in both models. Coe�cient estimates for dis-

tance categories were positive indicating positive correlation. Speed band categories had

negative estimate values indicating negative correlation. We observe that severity and

frequency increase with distance and speed. Similarly, the pure premium increases with

distance and speed. These �ndings are representative of particular auto insurance policies

and do not represent a generalized trend. Results of this study can help auto insurance

industries to evaluate the risk of driving more precisely and come up with personalized

premiums for drivers based on their real time driving factors.
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1 Introduction

1.1 Background

Usage-Based Insurance (UBI) is a type of motor insurance that incorporates driving be-
havior and distance driven in determining premium rates. Telematics devices such as
dongle, blackbox, and smartphones fi�ed in insured cars are used to monitor and cap-
ture data regarding how driving is done. The data is then relayed to insurers and used to
determine the risk exposure of a driver. The basic idea of UBI is that premium rates are
matched to a driver’s risk exposure that is directly monitored as the individual drives [1].
Variables of interest to insurers that are recorded by telematics devices include; distance
driven, speed, acceleration, time of day, cornering and braking; all the other variables
except distance determine driving behavior. Insurers use the data to determine premium
rates and give discounts accordingly [18].

UBI seeks to change the fixed costs linked to driving distance and convert them to costs
that vary depending on distance and other rating variables in determining premium rates.
Unlike traditional insurance that relies on combined statistics and driving records that
depend on past trends, UBI utilizes individual and current driving behaviors, thus making
the premium pricing precisely personalized [28]. United States, United Kingdom and Italy
were early adopters of UBI solutions as telematics technology that came into existence
over 20 years ago. TripSense solution was started by American Insurer Progressive in
1999 and later renamed to MyRate policy. The UBI solution a�racted significant publicity
thereby expanding telematics ideas to a majority of states in the US. A regulation known
as eCall was voted for by the European Parliament in 2015 which requires all new cars in
Europe to have telematics devices programmed to dial 112 automatically when a crash
occurs, reporting impact data and precise location of the crash [29].

Insurers in the United States o�er UBI solutions such as Drivewise by AllState, Smar-
tRide solution by Nationwide, and Snapshot solution by Progressive reward safe and
good drivers by considering time of day, speed, mileage and braking. Big data technolo-
gies are used to record and relay the data regarding those variables. Nationwide provides
discounts ranging from 10% to 40% for good drivers who are determined by analysis of
collected actual driving data that is also used to give personalized feedback to drivers.
[2].

Policies such as Pay How You Drive (PHYD), Pay As You Speed (PAYS), and Pay As You
Drive (PAYD) are modern innovative insurance schemes that are being embraced and
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commercialized all over the world [32]. The underlying principle for these schemes is
charging personalized premiums depending on how driving is done and the extent of
risk exposure rather than using traditional premium rating factors only. In 2016, Aryeh
Insurance operating in Israel covered about 200,000 vehicles under PAYD policy which
represented about 15% of all vehicles in Israel [16].

Insurers in Switzerland, Germany, Netherlands, Spain and Italy have launched various
telematics solutions in those countries. AIG XLNT driver solution by AIG insurance in
Ireland, IBM Telematics by IBM corporation in US, Smiles solution by Etiga Insurance
based in Singapore, and TD My Advantage solution o�ered by TD Insurance based in
Canada use a driving score to determine insurance premium amounts [2]. Driving data
consisting of speed, braking, acceleration, time of day and cornering variables per trip
is relayed and analyzed using big data technologies to come up with the driving score.
"Drive Safe and Save" solution o�ered by StateFarm Company in US focuses on similar
PHYD parameters. The solution provides roadside assistance, maintenance alerts and
stolen car locator services to the insureds as well.

In Africa, Kenya is the second country a�er South Africa where telematics technology
has been employed in auto insurance [9]. Auto Correct solution o�ered by Heritage In-
surance based in Kenya is a program that rewards safe drivers based on driving behavior.
Telematics devices fi�ed in cars send real time driving data to Heritage where it is ana-
lyzed to come up with a driver score. Based on the score, Heritage is able to di�erentiate
good and average drivers who are then rewarded with premium cashbacks amounting to
a maximum of 15% annually. Additionally, drivers under the program are o�ered tips on
how to improve on driving skill and a review of trips made.

Rate making is a process of determining the level of premium to charge for each and
every risk covered by insurers. The rate making process is aimed at charging a fair pre-
mium to cover future losses, expenses, and make provision for the cost of capital [15].
Simplifying the rate structure enables clients to easily understand factors in play and en-
courage behaviors that minimize losses among those covered [30]. For instance, drivers
will easily comprehend the impact of hard braking or high speed on their premium rates,
hence they will be more cautious on the road [33]. A comprehensive driver’s risk pro-
file in UBI is developed by incorporating driving behavior specific to each driver [10].
Insurance companies that have adopted the advanced use of telematics to build driver
risk profiles and come up with UBI solutions include Allstate with Drivewise solution,
Progressive with Snapshot solution, Esurance with Drivesense program, Travellers with
IntelliDrive program. Variables of interest monitored by insurers in these UBI solutions
are not restricted to distance driven and time but also include how the actual driving is
done; speed, acceleration, braking and cornering that determine driving behavior [2].
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Limitations to adopting UBI technology for most insurers include; costs that come along
with handling and collecting of telematics data. Secondly, most of the potential cus-
tomers are not willing to sacrifice their privacy for the incentives o�ered in form of pre-
mium reductions and bonuses [18]. In addition, policyholders’ accumulated driving be-
havior is not transferable to newly acquired cars since the telematics devices are linked
to the car and not the policyholder which as well contradicts ownership of the data [7].

1.2 Statement of the problem

According to East Africa Insurance Outlook Report 2019/2020, there is a need for auto
insurance companies to redefine their pricing models, risk selection criteria and under-
writing techniques by integrating big data such as data from telematics devices in their
models [9]. Traditional auto insurance is based on actuarial calculations of combined his-
torical data to give rating factors such as driver record, type of car, previous claims, and
driver characteristics. It does not consider how and when driving is done, instead it as-
signs an average premium rate to specific drivers considering only the traditional rating
factors hence leading to adverse selection and moral hazard phenomena in auto insur-
ance industry. Adverse selection and moral hazard are a result of information asymmetry
between insurers and insureds [6]. Insureds take advantage of the information asymme-
try to unfairly claim or get covered at a premium that does not match their risk exposure,
a phenomenon referred to as moral hazard. Insurers on the other hand are discouraged
from covering medium risks or charge the risks exorbitantly due to information asymme-
try leading to adverse selection phenomenon. Therefore, usage-based insurance through
use of telematics devices can reduce the issue of moral hazard and adverse selection by
enabling information symmetry. This lowers fraudulent claims and o�ers fair premiums
to the insured based on their risk profiles

1.3 Objectives

The overall objective of this study is to apply Generalized Linear Models (GLMs) in eval-
uating Usage-Based Insurance (UBI) premium rates. Variables of interest included are
average speed, distance driven and time of day.

The specific study objectives are;

(i) To model claim frequency using the Poisson GLM and assess the impact of the variables
of interest on the frequency of auto insurance claims.
(ii) To model claim severity using the gamma GLM and assess the impact of the variables
of interest on the severity of auto insurance claims.
(iii) To compute the pure premium rate.
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1.4 Justification

Due to increased driving behavior monitoring and improved client segmentation, UBI ad-
dresses issues of adverse selection and moral hazard that result from information asym-
metry between policyholders and insurers. Closer matching of car insurance policies
to their actual risks lowers cross-subsidization thereby increase actuarial fairness com-
pared to classifying drivers into broad groups [15]. UBI enables be�er quantification of
a driver’s risk exposure for premium rate adjustment. By use of telematics technology
to monitor driving of the insured, insurers can easily di�erentiate safe drivers from risky
drivers who appear safe on paper [27]. Drivers in high-risk groups and the young are
usually charged higher premium rates, which sometimes do not reflect their actual risk
exposure. With telematics technology, a policyholder’s true accident risk can be deter-
mined based on how they drive furthermore, the cost of car insurance determination is
potentially reduced when using telematics risk factors.

1.5 Limitations of the study

Data collected is not segmented according to the di�erent road types used by insureds.
Driving on certain roads such as highways that allow higher speed limits compared to
other types of roads render speed and acceleration non-uniform factors. In consequence,
drivers’ risk exposure is not proportionate to speed and acceleration factors.
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2 Literature review

In a study to unravel the predictive capability of telematics data in pricing auto insurance,
it is concluded that premium depends on individual a�ributes such as car age and type of
road while gender is identified as a redundant variable [2]. Black box technology, which is
a telematics technology was used to collect data from Belgian young drivers that was used
in estimating risk exposure. Compositional predictors and generalized additive models
were applied to evaluate the impact of telematics factors on frequency and severity of
the expected car claims. Similar results were achieved in a study analyzing pay as you
drive model where road crashes were linked to road categories in Netherlands [32].

Analysis of PAYD model was carried out to evaluate the impact of large-scale implemen-
tation of the model in Netherlands where seven strategies were analyzed. Experimental
design was applied while the strategies were di�erentiated into road type, age of car and
time of day categories. From the study it was concluded that depending on the type
of PAYD di�erentiation, risk exposure varies greatly [3]. However, di�erentiating the
premium to reflect risk exposure will appeal to more drivers and therefore reduce road
crashes as a result [11]. With the implementation of PAYD model in Netherlands, total
road crashes are expected to reduce by 5% or more every year thereby reducing the num-
ber of fatalities and injured people by 60 and 1,000 respectively [32]. Road category dif-
ferentiation was found crucial in the Netherlands as inter-urban roads were found riskier
than motorways hence should a�ract higher premiums. Driving during the night was
also found to be riskier than day driving since 33% of single car crashes happen during
the night compared to only 13% during the day [32].

Generalized linear models have also been used in a French auto insurance portfolio to
determine pure premium by factoring characteristics of policyholders that are observ-
able while on the road. Variables of interest in the study included profession and age of
the insured, age of insurance contract, coe�icient of bonus-malus, type and purpose of
car. Claim frequency and severity were analyzed separately in the study thus confirming
isolation of the two phenomena as stated by Actuarial literature [31]. Poisson GLM was
used to model frequency whereas severity was modelled by gamma GLM. A decrease
in frequency of claims was found to be in line with both increase in age of insurance
contract and insured’s age while an increase in bonus-malus coe�icient increases claim
frequency [6]. Similar findings that age of insured is a significant factor were echoed in
a study where claim frequencies were predicted using tree-based models [25]. Profession
of insured, car type and car purpose were not significant in the frequency model. Claim
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severity on the other hand was influenced by car type, profession and age of insured. A
decrease in cost of claims was recorded as the age of insured increased.

Tree-based methods have been applied as alternatives to GLMs in predicting the expected
claim frequencies for non-life insurance [24]. Unlike GLMs, advanced tree-based meth-
ods such as bagging, random forest and regression trees are not limited to prior infor-
mation about data structure hence can be used when li�le or nothing is known about
the structure of the data [5]. In a study involving both simulated data and collision data
from AXA Winterthur in Switzerland, tree-based methods performed be�er than GLMs
in predicting claim frequency. Tree based algorithms have the ability to incorporate non-
significant or correlated predictor variables without a�ecting the outcome unlike GLMs
thus they provide competitive options in predictive capacity terms as determined from
the study [25].

A study carried out to examine the validity of applying Bonus Malus (BM) coe�icient
to group car insureds su�iciently concluded that the coe�icient increases the predictive
power of a priori risk factors. Automobile policies data from an insurance company in
Spain was used in the study that employed Rough Set (RS) theory method to achieve
the study’s objective. BM coe�icient, driving region, age of insured and characteristics of
the insured car such as type, purpose and age were used as predictor variables. Driving
region, age of both car and insured were found to be the most relevant predictor variables
in grouping car policies while BM coe�icient slightly increased the predictive power of a
priori risk variables [23]. Purpose or use of the insured car was not significant in classi-
fying car policies according to the study which concluded from empirical analysis of the
data that predictor variables used by insurers in classifying policies were significant.

The existence of several insurers in Ghana enabled carrying out a study involving car pol-
icyholders in the country to determine factors that insureds consider before choosing an
insurer. Random Utility Theory (RUT) and Discrete Choice Experiment (DCE) approach
were deployed in analyzing the choice behavior of policyholders. Claims se�lement, cost
of premium, proximity of insurer and customer satisfaction were the factors used in the
analysis to achieve the study’s objective. Parameters for choice consideration were esti-
mated using the probit model. Results of the study showed that car owners highly value
insurers who pay claims promptly while charging moderate premium levels and are closer
to them when choosing an insurer. However, paying claims promptly was the most im-
portant a�ribute influencing choice amongst alternative insurers. Customer satisfaction
levels can be substituted by prompt claims payment, near proximity and moderate pre-
miums [17].

Aggressiveness in driving is shown by speed, acceleration and braking while proficiency
in car controlling is shown by cornering and turning. Suddenly changing speeds, speeding
and tailgating are indicators of aggressive driving behavior. Therefore, monitoring driving
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speed, acceleration and braking can help insurers determine aggressive drivers hence
adjust their premiums accordingly. American Automobile Association conducted a study
from 2003 through 2007 on aggressive driving where it was determined that speeding
was the leading factor for fatal car crashes. Aggressive driving accounted for 56% of fatal
car accidents in the 5-year period [21]. In addition, NHTSA (National Highways Tra�ic
Safety Administration) reported in 2012 that fatal car crashes occur when driving speed
is above 55 mph [21]. Besides, monitoring cornering behavior helps insurers predict the
possibility of car rollover since it is a dangerous kind of accident and has very high fatality
rates [15].
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3 Methodology

3.1 Introduction

This chapter covers data modelling approaches, variable significance and other model
considerations. Generalized linear models specifically gamma and Poisson models are
discussed. The gamma has been used to model claim severity while Poisson models claim
frequency.

3.2 Generalized Linear Models

Generalized linear models (GLMs) is a criterion of modelling the relationship between a
dependent variable whose result we are interested in predicting and one or more inde-
pendent variables [12]. In auto insurance ratemaking, the outcome variable can either
be claim severity, claim frequency, loss ratio or pure premium while predictor variables
are insured’s characteristics or policy terms included in rating models by insurers [26].
In traditional rating models, the predictors include type of car, age of both car and the
insured, use of the car among others.

GLMs have been applied by insurers in ratemaking, reserving and underwriting in gen-
eral insurance for over 50 years. The basic ideas of GLMs were initiated by Nelder and
Wedderburn in 1972 [19]. Most countries started to regulate their insurance markets in
late 90s thereby made the application of generalized linear models become widespread.
GLMs have a capacity to assess relationships in data that is not necessarily normally dis-
tributed hence suitable for modelling motor insurance claim amounts and frequency [8].
In auto insurance, claim amount and frequency are generally presumed independent and
non-identical [15].

The formal expression of randomness of any particular risk’s outcome denoted by yi is as
follows;

yi ∼ Exponential(µi,φ) (1)

Where the exponential represents the exponential family distributions while µi and φ

represent mean and dispersion of the distribution. All the members of the exponential
family share this common trait of taking the two parameters [8]. Parameter φ is assumed
to be the same for all entries while µi is entry-specific hence its unique to every risk[27].
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The relationship between the predictors and the model prediction, µi, modelled by GLMs
is;

g(µi) = β0 +β1xi1 +β2xi2 + · · ·+βpxip (2)

The transformation of µi denoted as g(µi) above is the link function determined by the
user. The linear predictor is the right-hand side of (eqn.3) containing the intercept β0.
xi1, · · · ,xip are the predictor variables and β1,β2, · · · ,βp are the coe�icients. A GLM so�-
ware estimates the values for the coe�icients and the intercept.

A GLM allows for a transformation of the mean as the link function hence provides model
flexibility in relating µi to the predictors. More options in identifying a model that best
suits the industry is a result of the flexibility brought by the link function [14]. For the
insurance industry rating plans, the natural log is specified as the link function as it
produces a rating structure that is multiplicative thus the equation;

ln(µi) = β0 +β1xi1 +β2xi2 + · · ·+βpxip

µi = exp(β0 +β1xi1 +β2xi2 + · · ·+βpxip)

µi = eβ0× eβ1xi1× eβ2xi2×·· ·× eβpxip (3)

Components of a GLM include a distribution for the data, a link function and linear
predictors. Canonical link functions for exponential family distributions are as follows;

Table 1. Expontential distributions, their link functions and linear predictors

Distribution Link Linear predictor

Normal Identity g(µ) = µ

Poisson Log g(µ) = log(µ)

Gamma Inverse g(µ) = log
(

1
µ

)
Binomial Logit g(µ) = log

(
µ

1−µ

)

3.3 Data analysis methods

3.3.1 Frequency model

Claim frequency is the number of claims per risk unit covered within a given duration,
normally a year for auto insurance policies. A Poisson distribution is used in modelling
counts of events that occur during a specified time interval hence commonly applied in
actuarial studies as a claim counts distribution [20].



10

In this case, for driver i, the probability of random variable xi taking value xi is given by
the probability density:

Pr(Xi = xi) =
e−µi µ

xi
i

xi!
(4)

Where µi is the average number of claims incurred within the cover period. Since the
maximum likelihood estimator is the standard estimator for this model, the likelihood
function becomes:

l(µ) =
n

∏
i=1

e−µi µ
xi
i

xi!

And log likelihood function is described as:

LL(µ) =
n

∑
i=1

[µilnxi−µi− lnxi!]

3.3.2 Severity model

The gamma distribution skewed to the right with a sharp peak and a zero lower bound
which are similar characteristics exhibited by claim severity distributions thus the most
commonly applied distribution for modelling claim severity [20].

For a driver i, individual claim costs yi1,yi2,yi3, · · · ,yin are assumed to be independent and
follow a gamma distribution with a probability density function described as follows;

Pr(Yi = yi) =
1

β
αi
i Γαi

(yiαi)
αie(

−yiαi
βi

)
,yi > 0 (5)

The aim is to estimate the shape parameter, α and the scale parameter, β which can used
to estimate the future claim severity.

The maximum likelihood estimator is the standard estimator for this model and it is
defined as;

l(β ) =
n

∏
i=1

1
β

αi
i Γαi

(yiαi)
αie(

−yiαi
βi

)
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With mean E[yi] = µi and variance Var(yi) =
µ2

i
v , thus the log likelihood function can be

expressed as follows;

l(β ) = ∏
i|zi>0

n

∏
k=1

(
1

Γv
(
vyik

µi
)vexp(−vyik

µi
)

1
yik

)

The log likelihood function is di�erentiated with respect to scale parameter β to get the
partial derivative as follows;

∂LL(β |y)
∂β j

=
∂

∂β j
∑

i|z>0

n

∑
k=1

(−vlnµi−
vcik

µi
) = 0

For driver i, the estimated claim cost is defined as ŷi = µ̂i = exp(riβ̂ )

The maximum likelihood estimates of β̂ is the solution of;

∑
i|zi>0

(zi−
yi

ŷi
)ri = 0

3.3.3 Goodness of fit

To find a model that fits the data adequately, we consider residuals. Smaller residuals
indicate that the model is be�er. A “Full model” is one with the smallest residuals whereas
a “Null model” is one with the largest residuals [13]. Somewhere between the null and
full models lie the optimal model. Scaled deviance or simply deviance, D is used to check
residuals. The scaled deviance is described as double the di�erence of the log-likelihood
of the saturated model and the model under consideration which is the current model. In
a saturated model, observed values are equal fi�ed values since the model has as many
parameters as number of observations[6]. The scaled deviance D is used in this study
with a chi-square test χ2

(α;n−p), where α is the significance level and p parameters. If
D> χ2

(α;n−p), the null hypothesis is rejected concluding that the model is good in respect
to residuals; rejected null hypothesis H0: residuals deviance D is significantly large hence
model is not good.

3.3.4 Other model considerations

When modelling rating plans for insurance, is it required that there are constant elements
in the plan and changing elements dependent on individual covers. Rating algorithms
usually have a base value of the loss amount that varies depending on policyholder char-
acteristics and it is arrived at by a non-GLM-based analysis. In that case, the base value
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included in the GLM is not assigned an estimated coe�icient but still remains part of the
insurance rating plan [14]. The base value is considered a predictor with a coe�icient of 1
in the model to ensure the other estimated coe�icients in the model give optimal results
in its presence.
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4 Data Analysis and discussion

4.1 Introduction

This chapter covers data and its, preparation, analysis and discussion. Telematics and
claims data from a Kenyan insurer of policy year 2019 containing 523 exposure units is
used in this study. The two data sets used are telematics data and claims data.

4.2 Analysis, presentation and discussion

The telematics data contained variables of driver ID, speed, distance driven and time of
day. Variables contained in claims data include driver ID, claim date and claim amount.
The two datasets were grouped into speed bands, distance bands and day or night driving.
Policies of cars driven for less than 200km were excluded from the analysis. Policies
missing any of the variables in telematics data and claims data were removed from the
analysis. Policies in the claims data that were absent in telematics data were omi�ed
from the analysis. Duplicates were removed from both telematics data and claims data.

Assumptions made include; the data is correct apart from the corrected errors during
data preparation, and the claims trend remain similar. Data preparation, grouping and
graphs fi�ing was done in Microso� Excel. R so�ware was used in fi�ing the models
applying the GLM package and Summaries.

4.3 Data Presentation

4.3.1 Severity

This section looks at how severity varies with distance, speed and time of day. Bar graphs
created in excel have been used to present the data. Distance and speed were grouped
into five bands each while time was grouped into day or night. The three variables are
plo�ed on the x-axis.
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Figure 1. A graph of severity against distance

We observe that severity increases with distance. Above 20000 distance band has the
highest severity while distance band 0-5000 has the least severity. Generally, cars driven
for longer distances are more exposed to accident risk hence the high severity.

Figure 2. A graph of severity against speed

We observe that severity increases with speed. Speed band of below 40 has the lowest
severity while 100&Above band has the highest severity. The two speed bands below 60
combined have a lower severity than any of the other individual higher bands.
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Figure 3. A graph of severity against time

We observe that night driving has higher severity than day time driving. Night driving
poses a higher risk to drivers as compared to daytime.

4.3.2 Frequency

This section looks at how frequency varies with distance, speed and time of day. Bar
graphs created in excel have been used to present the data. Distance and speed were
grouped into five bands each while time was grouped into day or night. The three vari-
ables were plo�ed on the x-axis.

Figure 4. A graph of frequency against distance
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We observe that frequency increases with distance. Frequency is highest for the 15001−
20000 distance band followed closely by the 10001−15000 band while Above 20000 has
the third highest frequency.

Figure 5. A graph of frequency against speed

Generally, frequency increases with speed. Frequency is highest at 80− 99 speed band
followed by 60− 79. The two speed bands below 60 when combined give the least fre-
quency compared to the individual speed bands above 60.

Figure 6. A graph of frequency against time

Night time driving has higher frequency than day driving.
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4.4 Model fi�ing

Models fi�ing was done in R so�ware using the glm() package and Summaries. Sever-
ity and frequency were the respective response variables in the first and second models
below. Estimated parameters of the severity and frequency models are shown below.

Figure 7. Parameter results for severity model

From figure 7 above, all the speed and distance bands are significant except distance band
10001−15000. Night time is also not significant. The significant variables indicate that
there is correlation with severity. Coe�icient estimates for distance bands are positive
values indicating that distance has a positive correlation with severity whereas speed
band estimates are negative values hence are negatively correlated with severity.

The estimated parameters of the frequency model are shown below.

Figure 8. Parameter results for frequency model

From above figure 8, all the speed and distance bands are significant except distance
bands 5001−10000 and 10001−15000. Night time is also not significant. The significant
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variables indicate that there is correlation with frequency. The positive estimates for
distance bands indicate a positive correlation between distance and frequency whereas
the negative estimates for speed bands indicate a negative correlation with frequency.

4.5 Tables

This section contains tables of claim severity, claim frequency and pure premium. The
contingency tables were created in Microso� excel. Distance bands are presented in rows
while columns present speed bands.

Table 2. Claim severity

Table 2 above contains aggregated claim amounts grouped into distance and speed bands.
The amounts are increasing with distance and speed. The Above20000 distance band and
speed band 100&Above has the highest claim amount.

Table 3. Claim frequency

Table 3 above contains claim frequencies grouped into distance and speed bands. Gen-
erally, the frequencies are increasing with distance and speed except for the below40
speed band. The 15001− 20000 distance band and speed band 80− 99 has the highest
frequency.
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Table 4. Pure premium

Table 4 above contains calculated pure premiums grouped into distance and speed bands.
The amounts are increasing with distance and speed. The Above20000 distance band and
speed band 100&Above has the highest pure premiums.

4.6 Evaluation of models

Scaled deviance was used to test the models’ goodness of fit as follows; the severity model
has a residual deviance of 450.28 on 522 degrees of freedom. The chi-square distribution
returns a p-value of 1. Consequently, the null hypothesis is rejected at 5% level of sig-
nificance; Ho: residual deviance is not significantly large and the model is good as far as
the residuals are concerned.

The frequency model has a residual deviance of 442.96 on 522 degrees of freedom. From
the chi-square distribution, the p-value is 1. Consequently, the null hypothesis is rejected
at 5% level of significance; Ho: residuals deviance is not significantly large and the model
is good as far as the residuals are concerned.

4.7 Modelling results

Results of the modelled severity and frequency are presented in this section. Microso�
excel was used to plot the graphs. Stacked bar graphs were used to present the results.
Distance and speed bands were both plo�ed on the same x-axis.

4.7.1 Severity

The figure below shows how severity varies with distance and speed bands.
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Figure 9. A graph of severity against distance and speed bands.

From figure 9 above, we note that severity increases with distance and speed. Speed
band 100&Above has the highest severity in all distance bands while speed below 40 has
the least severity in all the distance bands. Severity for the two speed bands below 60 is
increasing at a slower rate unlike the other 3 speed bands.

4.7.2 Frequency

The figure below shows how frequency varies with distance and speed bands
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Figure 10. A graph of frequency against distance and speed bands.

Generally, frequency increases with distance and speed. Frequency is highest at speed
band 80− 99 and distance band 15001− 20000. Speed band 80− 99 has the highest
frequency followed by 60−79 band in 3 out of the 5 distance bands.

4.8 Pure premium results

The premium is calculated by multiplying severity with frequency and has been done in
excel. The values for severity and frequency were estimated using the estimated param-
eters of severity model and frequency model respectively.

ExpectedPurePremium = claim f requency× claimseverity

The figure below shows how pure premium varies with distance and speed bands.
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Figure 11. A graph of pure premium against distance and speed bands

From figure 10 above, we note that pure premium increases with distance and speed.
Speed bands 100&Above and 80−99 have the highest and second highest pure premiums
respectively in all the distance bands. Distance bands 15001− 20000 and Above 20000
together with the two speed bands above 80 are the only ones with pure premium above
15,000.
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5 Conclusion

5.1 Introduction

This chapter covers summary of findings, conclusions drawn, recommendations and ar-
eas of further research. The conclusions drawn are based on data analysis, discussions
and results from the previous chapter.

5.2 Summary of the findings

Based on 5% level of significance and the p-value, severity and frequency models have
passed the test of goodness of fit. We observe that severity and frequency increase with
distance. Distance band of Above 20000 has the highest severity and frequency while
distance band 0− 5000 has the least severity and frequency. Generally, cars driven for
longer distances are more exposed to accident risk on the road hence the high severity
and frequency.

Frequency and severity increase with speed. Below 40 speed band has the least frequency
and severity while 100&Above speed band has the highest severity and 80− 99 speed
band has the highest frequency. A high speed is more likely to lead to a high claim
frequency and severity as it enhances accident risk. From researches on leading causes
of road accidents, it has been shown that driving above set speed limits is among the
leading causes of road crashes.

We observe that night driving has higher frequency and severity than day time driving.
Night driving poses a higher accident risk to drivers due to a number of unfavorable
conditions such as poor road visibility compared to daytime, and high the�/crime cases
which lead to a claim.

We note that the pure premium increases with distance and speed. Since pure premium
is a product of severity and frequency, it also increases in a similar manner as both fre-
quency and severity. Similarly, night driving has a higher pure premium.

5.3 Conclusion

From the above findings, both severity and frequency vary similarly with distance, speed
and time of day. Consequently, the pure premium varies in a similar manner as frequency
and severity. Driving for longer distances and/or at higher speeds is associated with
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higher severity and frequency. The pure premium therefore increases with distance and
speed.

Generally, cars driven for long distances are more exposed to accident risk on the road
hence the high severity and frequency. On the other hand, a high speed is more likely to
lead to a high claim frequency and severity as it enhances accident risk. As a result, pure
premium rates for driving at high speeds and long distances should be relatively higher
as compared to low speeds and short distances.

Since driving time was not significant, it should be categorized into smaller time frames
instead of day or night so as to uncover periods when accident risk is high. This will enable
insurers adjust premium rates according to risk exposure at di�erent time periods.

These findings are representative of a part of auto policies covered and do not represent a
generalized trend. However, the findings are useful to auto insurers since they are aimed
at be�er risk quantification thus be�er pricing of auto policies.

5.4 Recommendation

This study recommends that the insurance industry adopts telematics technology in auto
insurance premium pricing so as to accurately match insured risks to premium rates and
fairly charge drivers as per their exposure to risk.

5.5 Areas of further research

This study was based on private auto insurance policies. A similar study can be conducted
for commercial auto insurance policies. Also, the other exponential distributions instead
of the Poisson and gamma distributions can be applied together with other predictor
variables such as cornering and braking to evaluate their e�ect on the pure premium.
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Appendix

R syntaxes

Syntax for severity model

Syntax for frequency model
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