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Abstract

Low birthweight (LBW < 2500 g) is a phenomenon that is more pronounced in developing
countries where infectious diseases are most prevalent. Malaria infection in all endemic
areas of Sub-Saharan Africa has become an important factor associated with LBW dur-
ing pregnancy with increased susceptibility to mothers of lower parities. Hence LBW
can serve as an indicator of malaria transmission. In Kenya stable malaria occur in most
parts of the coast and the western regions. Part of its control mechanism is to study the
traits that are linked to its spread. This study examined trends of LBW prevalence in
Kili� Health Demographic and Surveillance System (KHDSS) area. Data on birth deliver-
ies from Kili� County Hospital (2006-2019) were used to study trends over time. Trend
signi�cance was assessed using the Mann-Kendall test while variations of LBW preva-
lence were assessed by the monthly seasonal indices obtained from the Moving Average
Method. Change point analysis was conducted to establish point in time when signi�cant
change in LBW prevalence occurred. Seasonal Autoregressive Integrated Moving Aver-
age model that described the LBW prevalence over time was �tted to assess the trend in
the predicted values. Additive Logistic Regression was used to obtain Odds Ratio of LBW
among primiparity with reference to multiparity and interpreted in relation to the contex-
tual information regarding the changing landscape of malaria transmission. Spatial Scan
Statistic (SaTScan) was used to identify local clusters of low birthweights. Findings from
the study revealed a signi�cant decreasing trend of LBW prevalence during the study pe-
riod. Higher prevalence rates were observed in the southern part of KHDSS depicting high
malaria transmission as compared to the Northern region. Results from the change point
analysis indicated a signi�cant change in LBW prevalence at around 2014. Variations of
LBW prevalence could be explained by changes in the climatic conditions, with increased
prevalence experienced shortly during the rainy periods. LBW clusters were identi�ed in
various parts of the KHDSS. Odds ratios for LBW among the primiparity could be used
to de�ne the transition of malaria in Kenya. Findings hereby, can help the government
improve on the measures to combat malaria transmission in the mostly a�ected areas.
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1 INTRODUCTION

1.1 Backgroud

Malaria infection still remains a public health challenge around the globe. It is an infec-
tion caused by plasmodium parasites transmi�ed to humans through bites of infected
female Anopheles mosquitoes. According to the World Health Organization (WHO), a
worldwide total of 228 million malaria cases and 405,000 deaths in 2018 were due to
malaria infection, WHO (2019). The most vulnerable groups impacted by malaria are
expectant mothers and children below the age of five.

Pregnant women are prone to infection with malaria Desai et al. (2007) and this risk is
a�ributed to the immunological changes in pregnancy and to the unique predilection
of a group of plasmodium falciparum parasites to sequester in maternal blood spaces of
the placenta, (Rogerson et al., 2007). Malaria in pregnancy poses a negative pregnancy
outcome to both the mother and the developing fetus. As a result, pregnant women
having the infection are more likely to deliver low birthweight (LBW) infants. Walker
et al. (2014).

Low birthweight (LBW) has been described by WHO as a weight at birth that is less than
2.5 Kg irrespective of gestational age. This empirical cut-o� for international comparison
was focused on epidemiological findings that infants weighing about 2.5 Kg were about 20
times more likely to die than normal weight babies, (Kramer, 1987). LBW is an important
factor associated with greater risk of illness, increased vulnerability to childhood disease,
reduced odds of infant survival, long-term physical and mental deficits. (Metgud et al.,
2012) . Mmbando et al. (2008), also a�irmed that children having low birthweight are at
high risk of morbidity, impaired cognitive development and growth retardation.

LBW is a phenomenon which is more pronounced in developing countries where infec-
tious diseases are extreme. Statistics from WHO in 2018 indicated a global estimate of
15.5% LBW prevalence which amounted to about 20 million low birthweight babies each
year, with developing countries contributing to about 96.5%.

Many studies have a�ributed LBW to malaria infection during pregnancy. Shulman et al.
(2001) reported that past placental malaria was associated to LBW;Unger et al. (2019) in
their study reported that peripheral microscopic p. falciparum at the time of delivery was
associated with low birthweight.
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Interventions aimed at minimizing the risk of malaria infection during pregnancy have
shown improvement in the outcomes of birthweight among primigravid women. A meta-
analysis of these findings from randomized control trials suggests that primigravidae
under an intervention against malaria infection deliver infants that are 101 g heavier
on average compared to those who are not subjected to any intervention, (Gülmezoglu
and Garner, 1998). Several other studies have gone an extra mile and reported that the
occurrence of low birth weight due to malaria infection declines as the gravidity increases,
(Mutabingwa et al., 2005) implying that the higher risk among the primigravids could be
used to study malaria transmission (Brabin et al., 1999). Thus, this retrospective study
focuses on evaluating trends of low birthweights and to assess the endemicity of malaria
using LBW as an indicator of transmission.

1.2 Statement of the problem.

Normal Weight at birth implies increased likelihood of infant survival. To a greater ex-
tent, low birth weight on the other hand remain to be a significant risk factor to infant
and child mortality. It may also contribute to developmental complications in later stages
of adulthood. Studying the trends of LBW in relation to its causing factors help to iden-
tify the most a�ected areas and to e�ectively plan to alleviate or improve on preventive
mechanisms against the leading causes of low birth weight.

Malaria infection during pregnancy is an important factor which poses adverse e�ects to
the mother and the child. The infection may lead to intrauterine growth restriction and
preterm birth, (Desai et al., 2007) which are the main contributing factors to LBW. It has
been estimated in Sub-Saharan Africa that approximately 900,000 LBW deliveries related
to placental infection due to plasmodium falciparum would occur yearly if MIP preventive
measures are not implemented, (Walker et al., 2014). In Kenya, Low birthtweight has been
estimated to be 11.5%, Blencowe et al. (2019).

The infection however, has been documented to be di�erent in parity with those of lower
parity having increased susceptibility to malaria infection, BRABIN (1991); Rogerson et al.
(2007). This finding postulate that the excess risk of LBW in first pregnancies can serve
as an indicator of malaria transmission and exposure, (Brabin et al., 1999). Many stud-
ies in kenya have focused on the epidemiology of malaria but none has used LBW has
an indicator of malaria transmission. We therefore use the low birthweight in both the
primigravid and multigravid women as a metric to explain the dynamics of malaria trans-
mission and exposure.
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1.3 Objectives

1.3.1 Main objective.

The main objective of the study was to evaluate trends in low birthweight deliveries to
explain malaria transmission and exposure.

Speci�c objectives.

• To evaluate the trend and seasonal variations in LBW prevalence.

• To evaluate the endemicity of Malaria in the study region.

• To establish the spatial distribution of low birthweights cases.

1.4 Significance of the study

Significant goal in any health related research is to gain insight about a disease or health
condition under consideration with the aim of developing health interventions. Studying
malaria dynamics in relation to low birthweight is a simple and an inexpensive approach
that can be implemented easily. At the peak of this research, we would have assessed
the evolving pa�erns of low birthweight over time. Moreover, malaria transmission in
relation to low birthweight would be known. The researchers expect that the findings
derived from this work will play a significant role in alleviating two aspects in the health
spectrum: Knowledge on the transmission of malaria will be known hence improving on
measures to alleviate its spread and in the long run other malaria-related conditions like
low birthweight will be controlled.

1.5 Structure of the thesis.

This work comprises five chapters. The first chapter presents an overview for the all
project and it is made up of the following sections; introduction, problem statement, ob-
jectives and significance of the study. The second chapter presents a review of previous
work on low birthweight, Malaria in pregnancy, endemicity of malaria and LbW and fi-
nally on strategies to prevent malaria in pregnancy. Chapter three describes the study
design, study area and the population. Moreover, a detailed explanation on the method-
ologies that have been used to analyze the data is provided; these included Mann-Kendall
test for trend, change-point analysis, time series models and model building procedure
using the Box-Jenkins approach, evaluation of malaria transmission and lastly, spatial
pa�ern analysis to study clustering of LBW cases has been discussed. Chapter four gives
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the descriptive statistics and analysis of the data using the aforementioned methodolo-
gies. The last chapter discusses findings, conclusions, limitations, recommendations and
suggestions for future studies.
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2 LITERATURE REVIEW

2.1 Overview

This chapter presents works that have been addressed by other authors on LBW, malaria
during pregnancy, endemicity and ways to prevent malaria during pregnancy.

2.2 Low birthweight

The WHO describes LBW as birthweight below 2500 g irrespective of gestational age and
typically refers only to live births. Birth weight is determined within the first hour of life
prior to significant postnatal weight loss, Blanc and Wardlaw (2005). LBW in infants is a
product of preterm birth (PTB), Intrauterine growth restriction (IUGR) or both (Kramer,
1987). A birth is deemed preterm if it takes place before the 37th week of pregnancy.

LBW is still a global public health problem and is associated with a range of short and long
term e�ects. It is a factor associated with higher risk of illness, increased vulnerability
to childhood diseases, reduced odds of infant survival, long-term physical and mental
deficits, (Metgud et al., 2012). Mother-related causes to the LBW range from nutritional
status, tobacco and alcohol use, non-communicable diseases and infections including
malaria, Wardlaw (2004).

WHO’s goal has been to realize a 30% decrease in the number of babies born below 2.5
Kg by 2025. Recently,in 2018 it was estimated that 15% to 20% of all births around the
world were of LBW accounting for 20 million births annually.

2.3 Malaria

Malaria stands out to be one among the world’s major cause of morbidity and mortality. It
continues to be a significant life-threatening disease despite the immense measures that
have been set to control its spread. Infection in humans is caused by the Plasmodium par-
asites which are transmi�ed through the bites of infected female Anopheles mosquitoes,
(Autino et al., 2012). Malaria-transmi�ing plasmodium parasites include; p. falciparum,
p. malariae, p. Ovale and p. vivax

In Africa, p. falciparum is predominant and it accounts for the adverse e�ects of the dis-
ease. In 2018, it accounted for 99.7% of all the reported malaria cases in WHO African
region, (WHO, World malaria report 2019). Symptoms of Malaria according to WHO can
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develop between 8 and 25 days a�er the infection; they include headaches, fever, vom-
iting, shivering, joint pain, abdominal pain, convulsions, nausea or muscle pain. Severe
malaria can result into having seizures, abnormal postures or even coma. The most sus-
ceptible groups are young children under the age of five whose immune system is yet to
develop, pregnant women with weakened immune system due to pregnancy and travelers
traveling from areas with li�le to no transmission to high transmission areas.

World Health Organization in their recent report estimated that a worldwide total of 231
million cases, [ 95 % CI; 211-259 million] and 416,000 deaths in 2017 were due to malaria
infection. In 2018, there was a slight decrease in the number of deaths reported (405,000)
while the number of cases decreased to 228 million, [95 % CI; 206-258 million]. The WHO
African Region had most of the reported cases in 2018 (213 million), equivalent to 93 %
of the total cases.

Like any other part of Sub-Saharan Africa, malaria in Kenya is a serious public health
issue giving rise to morbidity and mortality. The temporal presentation of malaria in
the country since 1990 as described by (Macharia et al., 2018) varied with the changing
landscape of disease management, climate anomalies and vector control. From 1990 to
2015, the national mean of plasmodium falciparum parasite prevalence (Pf PR) declined by
87.7%. For the period of 1990 and 1998 the mean value of (Pf PR) had remained constant at
21.2% until when a small decrease was reported in 1998 and 1999 a�er which it remained
constant until 2003. Between 2003 and 2007 a greater decrease of 81% (from 17.1% to
3.2%) in the national mean of (Pf PR) was recorded. The same level was maintained from
2007 until when a rise was seen from 2011 to 2014 and eventually fell to 2.6% in 2015.

2.4 Malaria during pregnancy.

Pregnant women are vulnerable to infections from malaria, Desai et al. (2007). The vul-
nerability arises when a womans immmune system is weighed down by the pregnancy
thus rendering her more prone to the infection. In Sub-Saharan Africa, Malaria during
pregnancy still poses substantial adverse e�ects on mother’s health and the developing
fetus, (Walker et al., 2014). It causes intrauterine growth restriction, preterm delivery
and maternal anemia,(Desai et al., 2007) which may lead to LBW. The Intrauterine devel-
opment is impaired when erythrocytes infected with Plasmodium parasites-sequester in
the placental intervillous space disturbing the flow of nutrients to the fetus and creates a
reservoir of inflammation, (Rogerson et al., 2007). The high density infection of parasites
according to Guya� and Snow (2004) may also contribute to the consumption of oxygen
and glucose meant for the development of the fetus, hence the inflamatory reaction due
to the infection induces immunotollerance in the o�spring as suggested by, Cot et al.
(2003). In a study done by Co�rell et al. (2007) found that placental infection and periph-
eral infection during pregnancy associated significantly with low birthweight in infants.
But most notably is the moment when malaria infection has adverse e�ects on the fe-
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tal growth during pregnancy. Co�rell in their research took into account three periods
of pregnancy; less than 4 months of pregnancy, 4-6 months and more than 6 months of
pregnancy. They found that peripheral infection was correlated significantly with LBW,
however, the infection was only significant at the end of the pregnancy upon adjustment
of the cofactors. Moreover, a cohort study on the timing and e�ect of malaria during
pregnancy on child growth and morbidity conducted in Uganda (De Beaudrap et al.,
2016) showed that infection with malaria occurring 12 weeks before birth posed a higher
risk of height and weight growth retardation. Findings above show that malaria infection
occurring during the last trimester contributes significantly infants’ LBW.

The prevalence and the e�ect of malaria infection during pregnancy can di�er with ma-
ternal gravidity, (Mutabingwa et al., 2005) This is because women develop adaptive immu-
nity which reduces the risk of placental infection with succeeding infected pregnancies,
(Rogerson et al., 2007). Study conducted by Okiring et al. (2019) in highly endemic area
indicated that, gravidity was the most significant risk factor for microscopic parasitemia,
with primigravid women having almost double the risk when compared to multigravida.

2.5 Endemicity of Malaria and LBW.

Malaria endemic areas can be categorized into high and low-transmission regions (Beier
et al., 1999). Most areas of Sub-Saharan Africa have been described as having a high
transmission of malaria, while in some other areas the transmission is moderate to low.
In all endemic regions, pregnant women are at risk of malaria infection. Study by Brabin
(1983) reported that in the last trimester malaria prevalence was highest irrespective of
the area. Moreover, in a subsequent study by Brabin and Rogerson (2001), found that
pregnant women were more vulnerable to malaria infection than either before or a�er
pregnancy owing to their decreased immunity due to pregnancy and seasonal fluctua-
tions in malaria transmission.

However, despite the fact that pregnant women are at risk to infections in all endemic re-
gions, they are asymptomatic in areas characterized by high malaria transmission, (Nos-
ten et al., 1991) compared to areas of low transmission where Plasmodium falciparum
infection is symptomatic with typical symptoms of fever, vomiting, headache, nausea
among others.

While the prevalence of malaria parasites is lower with rising gravidity, the infection
a�ects all parity classes in low-transmission areas, (Nosten et al., 1991). whereas in areas
of high malaria transmission primigravidae are at higher risk of infection and its negative
consequences compared to multigravidae, Steketee et al. (1996).

With a greater link of LBW to malaria during pregnancy, maternal malaria in all endemic
areas is related to low birth weight, (Menendez, 1995). Where malaria transmission is
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high, the risk of low birthweight was approximated to be double if women had placental
malaria, (Guya� and Snow, 2004) with primigravidae experiencing greater impact.

2.6 Anemia and malaria

Anemia is a condition that is a�ributable to the concentration of hemoglobin falling be-
low normal. It is a major public health challenge a�ecting mostly pregnant women and
young children. Anemia during pregnancy according to the WHO is characterized as
hemoglobin (Hb) levels that is less than 11.0 g/dL. Concentrations that fall below a spec-
ified cut-o� point impairs the blood’s capability to transport oxygen across the body.

Anemia during pregnancy is associated with adverse maternal and neonatal health e�ects
such as, but not limited to, intrauterine growth retardation, preterm births, LBW and
maternal mortality, (Ouma et al., 2007). Study done by Desai et al. (2007) further alludes
that high transmission of malaria leads to maternal anemia which is a significant factor
towards LBW in infants resulting due to limitations on the development of the fetus or
premature delivery.

In pregnancy, the causes of anemia are multifactorial. Among the causes of anaemia
is infection by malaria which may occur through excess removal of non-parasitized ery-
throcytes (Ekvall, 2003) thus anaemia stands to be the most common symptom of malaria
in pregnancy. A study by Co�rell et al. (2015) reported that infection by Submicroscopic
Plasmodium parasites was associated with decreased mean levels of Hb during pregnancy
and the e�ect being more pronounced in primigravidae compared to multigravidae.

Decreased Hb concentrations increases the chances of LBW Bahizire et al. (2018). This
mostly occur in the case of severe anaemia (Hb < 7 g/dl) which is a risk factor for intrauter-
ine growth restriction. During pregnancy, anaemia causes chronic hypoxia or oxidative
stress which stimulates the production of corticotropin releasing hormone that increases
cortisol production which inhibits fetal growths.

2.7 Malaria in pregnancy: The situation in Kenya

In its bid to combat malaria during pregnancy, Kenya adopted the three-pronged ap-
proach of the WHO which includes Intermi�ent preventive treatment in pregnancy (IPTp),
distribution and use of nets treated with insecticides and e�ective case management,
(Robert et al., 2004). The provision of IPTp was first introduced in Kenya in 1998 upon
which at least two doses of sulphadoxine pyrimethamine were given during the second
and third trimesters to all pregnant women. The policy was later updated in 2009 in
line with the WHO recommendations to restrict IPTp to women living in endemic ar-
eas. Currently, IPTp policy recommends treatment of malaria in malarias endemic coun-
ties like the Coast and Western Kenya. The treatment involves prescribing sulfadoxine-
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pyrimethamine (SP) to pregnant women via directly observed therapy at each antenatal
care beginning in the second trimester with corresponding doses at least 4 weeks apart.

Kenya Malaria indicator Survey (KMIS, 2015) was conducted on women who had live
births 2 years before the survey to determine the utilization of IPTp. The findings indi-
cated that nationally 51% of women received at least one dose of IPTp, 35% received at
least two doses and 22% got at least three doses. Taking endemic areas into considera-
tion, 77% of women received at least one dose, 56 % received two or more doses and 38%
received the 3 or more doses which is currently recommended. The survey reported an
improvement in IPTp coverage, but still too small was the 38% who received the recom-
mended dose.

Using insecticide-treated bed nets as a preventive mechanism against mosquito bites
serves as an important measure to control malaria during pregnancy. The survey assessed
ownership of mosquito nets and the outcome was that 63% of households possessed at
least one long-lasting insecticidal net (LLIN) while 37% owned more than 1. That averaged
to 1.3 LLINs per household which was an increment from the previous 0.8. From the
survey, 40% of the households in Kenya had hit a universal LLIN coverage of one net per
two people sleeping in the night prior to the survey. The study also reported that the
night prior to the survey, 58% of pregnant women (aged 15-49) had slept under LLIN.

2.8 Strategies to prevent malaria in pregnancy

Despite the detrimental e�ects posed by malaria during pregnancy, it is an infection
which can be prevented. Measures to combat its adverse e�ects have been suggested
and even implemented. The WHO recommends a three-pronged approach to malaria
infection prevention and management in pregnant women in Sub-Saharan Africa. These
strategies are discussed in the next subsections.

2.8.1 Insecticide treated nets

Sleeping under Insecticide treated Nets (ITNs) remains to be a core method in the pro-
tection against mosquitoes transmi�ing malaria. Use of ITNs in high transmission ar-
eas have exhibited profound usefulness, (Rogerson, 2017). As evidenced in reviews from
Africa, ITNs could be protective of malaria and decreased LBW by 29 %, reduced miscar-
riages and still births in paucigravidae by 33 % and decreased placental parasitemia in all
gravidae by 23 %, (Eisele et al., 2010). Study done by Bahizire et al. (2018) showed that
having slept under ITN the night before the antenatal visit was protective against LBW.

Given the implementation of this strategy by WHO, the proportion of pregnant women
sleeping under ITNs was still low. This is according to the World malaria report of 2019 by
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WHO where reports in 2018 showed that, 50% of Sub-Saharan Africa’s population slept
under the ITN.

Bednet distribution in Kilifi, Kenya, had long begun in the 1990s with an estimated usage
of less than 6% Snow et al. (1992). By the year 2005, insecticide treated nets had been
made available to pregnant mothers and children. Acquisition was at the maternal and
child health clinics. A free ITN mass distribution drive carried out by the then Kilifi
District Management Team later in September 2006 led to an expanded coverage across
kilifi from 0.25 to 0.5 nets per person, (O’Meara et al., 2008). Provision of nets to the
community later a�er the campaigns were made available at 50 Kenyan shillings. This
scenario changed when a new regulation was adopted in January 2009 which saw the
pregnant women and children under the age of five receive bednets freely whilst the rest
of the population acquired at a cost of 50 Kenya shillings. A further mass distribution of
bednets was carried out in July 2012 and October 2015 as a universal coverage for people
at risk of malaria. The government also initiated another mass delivery of long-term
insecticide nets in 2017, which ended in March 2018.

2.8.2 Intermi�ent preventive treatment in pregnancy (IPTp)

In Africa, the WHO recommends prevention of malaria in pregant women in regions expe-
riencing moderate to high transmission to receive IPTp with with sulfadoxine-pyrimethamine
administered during the antenatal care visits. The drug administration during antenatal
visits is done under supervision, (Peters et al., 2007) whether or not the patient is infected.
IPTp reduces placental parasitemia, maternal anaemia, LBW and neonatal mortality.

In 2016, the WHO released a new guideline that pregnant women in endemic areas be
provided with at least three doses of IPTp-SP beginning at their second trimester, with at
least one month a�er each dose. This guideline from WHO has been proven to be e�ective
by studies. A multisite study found that, despite the growing resistance to SP which is
common in eastern and southern Africa, IPTp is still e�ective against LBW, (Desai et al.,
2016). In a Meta-analysis Study by Kayentao et al. (2013) revealed that at least three doses
of SP were associated with 23% reduced risk of low birthweight among HIV-negative
women relative to two doses.

But still the percentage of women receiving IPTp in Sub-Saharan Africa is highly variable.
In 2018 it ranged between 3% in Namibia to 58% in Burkina Faso. During the same time,
20% percent on average of eligible women received at least three doses of IPTp.

Information from the Demographic Healthy Surveys-DHS in Kenya, indicate that the
proportions of women receiving IPTp during the ANC visits has been increasing since
2003. 4% of the women were reported to have received IPTp during the visit in a survey
done in 2003. Later in 2008-2009 DHS, the proportion rose to 14%. In 2014, 17% of women
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were indicated to have taken two or more doses of sulphadoxine pyrimethamine while
10% had received three doses or more.

In Kilifi county, with regard to the DHS 2014, the proportions of women who during the
ANC visit received one or more doses were 65.2%, two or more doses were estimated to
be 41.8% while those who received more than three doses were 28.5%.

2.8.3 E�ective case management

Pregnant women in malarious areas are at increased risk of the adverse impacts initi-
ated by the infection of malaria. Early diagnosis and treatment help lessen placental
malaria leading to decreased adverse e�ects on the fetus, (Nosten et al., 2007). E�ective
case management of malaria during pregnancy calls for biological diagnosis of malaria
prior to treatment. The biological diagnosis is necessary to avoid nonessential exposure
to antimalarials drugs for pregnant women and their fetus, (Nosten et al., 2007). Malaria
infection can be detected through microscopy examination or by use of rapid diagnostic
test that can detect a particular parasite antigen. However, microscopy sensitivity is inef-
fective in situations where asymptomatic low parasite density sequesters in the placenta
which impairs malaria diagnosis and treatment in pregnant women. A study by Co�rell
et al. (2015) indicated light microscopy missed at least half of p.falciparum infections in
maternal peripheral blood. Therefore, a more sensitive Polymerase Chain Reaction (PCR)
has helped in revealing the burden of infection during pregnancy. A blood test should be
provided for malaria and positive cases be handled accordingly for any pregnant woman
seeking for an antenatal care in areas known to transmit malaria, and the lack of evidence
of parasites in the peripheral blood does not rule out infections, (Nosten et al., 2007).

For cases of severe anemia in pregnant women from endemic areas, an e�ective anti-
malarial is administered whether or not there are peripheral parasitemia or fever records.
Due to the growing resistance to both chlorine and sulfadoxinepyrimethamine, WHO rec-
ommends the use of artemisinin-based combination therapy (ACT) to pregnant women
having severe anemia and living in areas with a great risk of P.falciparum in their last 2
trimesters and another e�ective antimalarial in the first trimester.
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3 MATERIAL AND METHODS

3.1 Overview

The present chapter elucidates the structure and the methods that have been used to
address the problem statement for this research. The study area and the population have
been highlighted. Ways of data extraction and inclusion criteria also discussed. Finally,
statistical methods have been introduced.

3.2 Study Design.

The study employed a retrospective longitudinal study design.

3.3 Study area.

Kilifi County occupies an area of 12,610 Km2 with a population of 1,453,787 according to
the 2019 Kenya Population and Housing Census. The eastern part of the county stretches
65 Km along the Kenyan coast line and extends 90 Km from the widest point of the coast
to the inland, (O’Meara WP et al 2008). The county has seven sub counties, namely; Kil-
ifi North, Kilifi South, Kaloleni, Rabai, Malindi Ganze and Magarini. The area is further
subdivided into 36 administrative locations. Kilifi Health and Demographic Surveillance
System (KHDSS) was established as a record of migration events and other vital statistics.
The area under surveillance covers 891 Km2 and stretches 35 Km2 along the coastline,
(Sco� et al., 2012). The county experience a bimodal rainfall pa�ern with long rains oc-
curring from April to June, while short rain falls in October and November. Kilifi County
Hospital is a level 4 government health facility situated within Kilifi Township and serves
as first referral centre for children and adults within the KHDSS and other parts of the
County. The hospital has a maternity ward that a�ends to pregnant mothers seeking an-
tennal care and delivery services. According to the latest records the department registers
more than 4,000 deliveries yearly.
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Figure 1. Map of Kenya on the le� indicating the location of Kilifi county, at the center is Kilifi
County map showing the location of KHDSS and on the right is locations in KHDSS

3.4 Study population

The study considered all pregnant women who sought delivery services at the Kilifi County
Hospital between June 2006 and December 2019.

3.5 Ethical Approval

This study got approval from the Kenya Medical Research Institute Scientific and Ethics
Review Unit (SSC 1778).

3.6 Data extraction.

Information on birth registry was obtained from two sources. Between June 2006 and
December 2010 data were extracted from the hospital registries at the Kilifi County Hos-
pital (KCH). These data were extracted using a standardized extraction form in Microso�
Excel designed to capture relevant information. The second source of information was a
database hosted in the KEMRI-Wellcome Research Programme where data had been sys-
tematically recorded between January 2011 and December 2019. Maternal data collected
include parity, place of residence and the history of Intermi�ent Preventive Treatment
during pregnancy, while infant information include birth weight, sex and the delivery
outcome .
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3.7 Inclusion criteria.

Records used for analysis had to fulfill the following inclusion criteria: First, all live but
singleton births were considered to form part of the analysis. Secondly, births that were
defined within the KHDSS area were included.

3.8 Statistical data analysis.

Data extracted from the two sources were cleaned, merged and descriptive analysis ob-
tained in STATA for windows version 14.2 (StataCorp, College Station, TX, USA) and R
version 3.5.1 was used in time series analysis. Information on birth weight was trans-
formed into a categorical variable; weights below 2500 g were categorized as LBW, other-
wise normal weight. Therea�er, monthly prevalence of low birthweight were computed.

Summaries of non-normal quantitative variables were presented using median and in-
terquartile range (IQR). Birthweight di�erences between groups (parity, sex) were com-
pared using student t-test. Statistical di�erence of low birthweight proportions between
groups (region, parity and gender) were assessed using Z test. Additive Logistic Regres-
sion was used to obtain Odds Ratio of LBW among primiparity with reference to multi-
parity and interpreted in relation to the contextual information regarding the changing
landscape of malaria transmission.

Long term trend in prevalence of LBW was assessed using Mann-Kendall (MK) test. The
magnitude of the trend was obtained using the Theil Sen method.Since MK test is signif-
icantly a�ected by the presence of periodicities and serial autocorrelation in a time series
data, Autocorrelation function (ACF) and decomposed time series was used to check for
the autocorrelation and to assess the seasonal component, respectively.

Change point analysis was conducted to establish point in time when significant changes
in prevalence of LBW were experienced. A time series model (Seasonal auto regressive
moving average) that described the data was fi�ed. To analyze the seasonal variations in
the prevalence of LBW, we applied the moving averages method.

The overall and stratified LBW ratios of primiparity group in relation to multiparity were
computed upon which trend analysis was evaluated. Lastly, Spatial distribution of LBW
prevalence and clusters were geographically mapped.
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3.9 Mann-Kendall (MK) test for trend.

Mann-Kendall is a non-parametric test commonly used to evaluate the trend of a time
series data. Unlike other test like the regression coe�icient test which assumes the nor-
mality of the data, Mann-Kendall test statistic is distribution free since it only relies on
the ranks of the observations. It tests the null hypothesis of no monotonic trend.

H0: No monotonic trend in the series.
H1: Presence of monotonic trend in the series.

For a time series Zt = Z1,Z2,Z3, ...,Zn , the test statistic is given by;

SMK =
n−1

∑
i=1

n

∑
j=i+1

Di j (1)

Where Di j = Sgn (Z j−Zi) ; j > i and n is the time series observations

Sgn (Z j−Zi) =


+1, if Zi < Z j

0, if Zi = Z j

−1, if Zi > Z j

For n≥ 10 , the variance is given by;

Var(SMK) =
n(n−1)(2n+5)

18
(2)

When the series has tied ranks then;

V ∗(SMK) =
n(n−1)(2n+5)

18
−

m

∑
i=1

ri(ri−1)(2ri +5)
18

(3)

Where m represents the number of clusters of tied ranks while ri is the total observations
in a given cluster.

MK test statistic tends to normal distribution as the size of n gets larger. Significance of
the trend can thus be tested by comparing the computed Zs statistic with the standard
normal value. For this analysis we chose α=0.05.

Zs =


SSK−1√
Var(SSK)

, if SSK > 0

0, if SSK = 0
SSK+1√
Var(SSK)

, if SSK < 0

(4)
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Where Zs is the standardized value. An upward trend is represented by positive values of
Zs while negative values represent a downward trend in the time series.

MK test gives the the direction and the significance of a trend but does not provide the
magnitude of the slope. We estimated the magnitude by using the Sen’s Slope method
(Sen, 1968). To illustrate this concept; assume a sample of M pairs of observations,

Qk =
Z j−Zi

j− i
for k = 1,2, . . . ,M (5)

Where;
Z j and Zi are time series observations at times j and i respectively for j > i

The resulting M values of Qk are ranked in ascending order. The Sen’s Slope is then
estimated as;

QMed =

Q M+1
2

; if M is odd
Q M

2
+Q M+2

2
2 ; if M is even

(6)

The value of QM indicates the magnitude of the slope. while the positive and negative
signs of of QM indicate whether the trend is increasing or decreasing respectively. Eval-
uation of slope’s significance was at α = 0.05.

3.10 Change point analysis (CPA)

A change point is an instance in time when the time series properties such as mean or
variance before and a�er a certain time point di�er. Change Point Analysis in a time
series data aims at detecting and localizing points at which these statistical properties
change. Assuming a time series Zt = (Z1,Z2,Z3, . . . ,Zn), a change point within the set
of the series occur when a time point τ ∈ (1,2, . . . ,n− 1) exist such that the statistical
properties of Z1,Z2, . . . ,Zτ and Zτ+1,Zτ+2, . . . ,Zn di�er.

3.10.1 Change point detection.

A change point in the data can be evaluated by applying the general likelihood Ratio (LR)
method. LR is commonly used in assessing the goodness of fit of two nested models. In
this context, the LR test is used to compare two models, one with no changepoint and
another having a changepoint. More precisely, to test for a change point in mean then
the hypotheses to test is as follows;

H0 : µ1 = µ2 = . . .= µn

H1 : µ1 = · · ·= µτ 6= µτ+1 = . . .= µn
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The maximum log-likelihood is then obtained for both hypotheses.

Under the null hypothesis, we have;

Likelihood of H0 :

L(H0) =
n

∏
i=1

Pr(Z1:n|θ̂)

Maximum log likelihood of H0 :

n

∑
i=1

log(Pr(Z1:n|θ̂)

Where θ̂ is the maximum likelihood estimate (MLE) of the parameters (for instance, the
mean) and Pr(Z1:n|θ̂) is the pdf associated with the distribution of (Z1:n) . Generally,
assuming Gaussian distribution of our data, then the likelihood function is given as;

L(H0) =
n

∏
t=1

1(√
(2πσ2

)n exp− 1
2σ2 (Zt−µ)2 (7)

The maximum likelihood estimators for µ and σ2 are;

µ̂ =
1
n

n

∑
t=1

zt and σ̂
2 =

1
n

n

∑
t=1

(zt− z̄)2 respectively.

Under the Alternative hypothesis

The alternative hypothesis represents a model with a change point at τ where τ ∈ 1,2,3, . . . ,(n−1).
The likelihood function is thus;

L(H1) =
τ

∏
t=1

Pr(Z1:τ |θ̂1)
i=n

∏
t=τ+1

Pr(Z(τ+1):n|θ̂2) (8)

While the corresponding maximum log-likelihood;

τ

∑
t=1

logPr(Z1:τ |θ̂1)+
n

∑
t=τ+1

logPr(Z(τ+1):n|θ̂2)
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More generally;

L(H1) =
τ

∏
t=1

1√
(2πσ2

)n exp− 1
2σ2 (Zt−µ1)

2
n

∏
t=τ+1

1(√
(2πσ2

)n exp− 1
2σ2 (Zt−µ2)

2

(9)

The maximum likelihood estimators for µ1, µ2, and σ2 are respectively;

µ̂1 =
1
τ

τ

∑
t=1

Zt , µ̂2 =
1

n− τ

n

∑
t=τ+1

Zt ,

and

σ̂
2 =

1
n

[ τ

∑
t=1

(Zt− Z̄τ)
2 +

n

∑
t=τ+1

(Zt− Z̄n−τ)
2
]

Maximum log likeligood:

ML(τ) = logPr(Z1:τ |θ̂1)+ logPr(Z(τ+1):n|θ̂2)

The likelihood Ratio Test:

LR = log
(L(H1)

L(H0)

)
=

τ

∑
t=1

logPr(Z1:τ |θ̂1)+
n

∑
t=τ+1

logPr(Z(τ+1):n|θ̂2)−
n

∑
t=1

logPr(Z1:n|θ̂0)

The maximum of Likelihood Ratio test

γ = 2

[
Max LR

τ

]

Change point is inferred if γ > c and the MLE is the value τ that maximizes the LR.
The value of c is a threshold set to test the null hypothesis. More o�en, c is such that
α = Pr(γ > c|H0) for a chosen level of α .

τ̂ =

[
argMax

τ LR

]
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3.11 Concept of time series.

A time series Zt = Z1,Z2, . . . ,Zn is a collection of measurements on a quantitative variable
over time. Time series data produced regularly (for example daily, weekly or monthly)
forms a regular time series. The analysis of data from a time series helps to draw statistics
and data-related features so as to explain the driving factors and structure behind the
observed data.

3.11.1 Time series components.

A time series can be decomposed into four components each with a particular pa�ern.

Trend component.

The trend is the time series long-term pa�ern. It can exhibit a positive or negative trend
depending on whether the time series has an increasing or decreasing long term pa�ern.
Trend in a time series can either be linear or nonlinear. A nonlinear trend can assume an
exponential or a quadratic form.

Seasonal variations.

Seasonality takes place when the time series consistently fluctuates in the same months
each year. Seasonal variations are mostly due to climate and weather conditions, or even
customs.

Cyclical fluctuation:

Can be described as an up and down movement around a particular trend. The fluctuation
is unforeseeable as it does not assume a constant time interval. The di�erence between
seasonal and cyclical variation is that the la�er has variable lengths and usually lasts for
longer periods while the former reoccurs at regular time intervals with shorter periods
less than one year.

Irregular variation.

It is the time series random component. It is the variation which can not be a�ributed
trend,seasonal or cyclical variations. The variation is random, unforeseeable and unpre-
dictable. It can be caused by incidents like floods or earthquakes.
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3.11.2 Time series decomposition.

Decomposition entails the spli�ing of a time series into its various pa�erns which in-
clude trend, seasonality, cyclicality and the noise. Thus, time series is a function of four
components.

Zt = f (Tt ,St ,Ct ,ω t)

Where Zt is the time series values at di�erent time points; Tt the secular trend; St the
seasonal part; Ct ; cyclic component and ω t the white noise. The above function can
exhibit two forms

• Additive model. Under additive model the assumption is that the four components
are independent of one another, hence the time series is the sum of its components.

Zt = Tt +St +Ct +ω t

• Multiplicative model. The assumption is that the time series components can a�ect
one another hence not necessarily independent.

Zt = Tt ·St ·Ct ·ω t

Applying the log transformation to the multiplicative model converts to additive model.

log(Zt) = log(Tt ·St ·Ct ·ω t)

= log(Tt)+ log(St)+ log(Ct)+ log(ω t)

3.11.3 Di�erencing

Di�erencing is a technique that helps in stabilizing a non-stationary time series. A first
order di�erence involves computing the di�erences between two consecutive observa-
tions. For instance a time series Zt can be transformed into a new set of observations
having (t-1) values; Z∗t = Zt−Zt−1 = OZt , where O is the di�erence operator. Di�erenc-
ing of a time series can be done many times until stationarity is achieved.
A back shi� operator which is defined by BZt = Zt−1 is usually introduced for con-
venience. Where BZt represents a time series observation at lag 1. This follows that
B2Zt = B(BZt) = B(Zt−1) = Zt−2 and thus BkZt = Zt−k

A first order di�erence will take the form;

OZt = Zt−Zt−1 = Zt−BZt = (1−B)Zt

Therefore, O= (1−B).
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While for a second order di�erence ;

O2Zt = (1−B)2Zt

In general, di�erence of order d will assume the following equation. ;

OdZt = (1−B)dZt (10)

3.11.4 Stationarity.

Values of a time series at specific time points can be influenced by the underlying trend
and seasonal variation, thus making the series non-stationary. For a time series to be
stationary the mean, variance and autocovariance should not be a function of time. Non-
stationarity in time time series observations can be removed through di�erencing. If
the variance is changing with time, then a log transformation can be applied. Testing
for stationarity is done using Augmented Dickey Fuller test (ADF) which tests the null
hypothesis of non-stationarity versus the alternative that the observations are stationary.

3.11.5 Autocorrelation function (ACF)

Given a series of observations, Z1,Z2, . . . ,Zt the correlation between two observations say
Zt and an observation at lag k, Zt−k, gives the autoccorrelation function at lag k.

ρk = corr(Zt ,Zt−k) =
Cov(Zt ,Zt−k)√

Var(Zt)Var(Zt−k)
=

E[(Zt−µz)(Zt−k−µz)]

E[(Zt−µz)2(Zt−k−µz)2]

Zt - time series observations.
Zt−k - is the time series observation at lag k.
µZ is the mean.

ACF is thus a collection of ρk where k = 0,1, . . . ,n. ACF can be approximated by sample
ACF from a time series with finite length. Consider a time series observations of size n;
Z1,Z2,Z3, . . . ,Zn. Its sample autocovariance;

ϒ(k) =
t = 1

n

n

∑
1
(zt− z̄)(zt−k− z̄)

Hence, the sample ACF is given by;

ρ̂k =
ϒ(k)
ϒ(0)

Where K = 0,1, . . . ,n
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3.11.6 Partial autocorrelation function (PACF)

PACF is a function that gives the correlation between Zt and Zt−1 or Zt and Zt−2 or Zt and
Zt−p while the influence of the intermediate lags is removed.

Time series models works with independent observations which can be assessed by the
ACF plots or by use of the Durbin-Watson (DW) test. DW, test the null hypothesis of
serial autocorrelation versus the alternative that regression residuals are autocorrelated.
For this test α=0.05 was chosen.

The test statistic;

DW =
∑

n
k=2(εk− εk−1)

2

∑
n
k=1 ε2

k
(11)

where; εk = Zk− Ẑk are the residuals resulting from linear regression while Zk and Ẑk are
the observed and predicted values respectively.

3.11.7 Cochrane-Orcu� method.

In the case where positive autocorrelation is remarked from the residuals, then indepen-
dence can be reached by applying the Cochrane-Orcu� method as described by Cochrane
and Orcu� (1949). Iteration procedure is outlined outlined below;

• From the time series observations, model residuals are obtained from a fi�ed linear
regression.

• First order autocorrelation coe�icient ρ is computed from the residuals obtained.
More precisely as follows;

εk = ρεk−1 +ωk

• The original time series values are then transformed by using the autocorrelation
coe�icient ρ obtained above.

Z∗ = Zk−ρZk−1

• The newly transformed variable is again regressed and the independence of the lagged
residuals is assessed.

• The process is repeated until convergence is realized.
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3.12 Time series models

3.12.1 Autoregressive (AR) model.

In AR model, a future value is predicted using the linear combination of previous values.
The order of AR model gives the number of the lagged values used to estimate the present
value. Below is a first-order, AR (1) model.

Zt = θ 1Zt−1 + ε t (12)

Where Zt is the time series values; θ is the regression parameter to be determined; ε t ∼
WN(0,σ 2) and is uncorrelated with Zs for s < t . In equation 12, Zt−1 , (the previous
response value), is the predictor of the present value, Zt .

A pth order, AR(p) is a multiple linear regression model having a value of the series at a
given time as a linear combination of values at t−1, . . . , t− k. An AR model of order p is
given by the following equation;

Zt = θZ(t−1)+ . . .+θ pZ(t−p)+ ε t (13)

Equation 13 can be simplified as;

Zt =
p

∑
k=1

θ kZt−k + ε t (14)

Introducing the back-shi� operator,

Zt−
p

∑
k=1

θ kZ(t−k) = ε t

(1−θ 1(B1)−θ 2(B2)−, . . . ,−θ p(Bp))Zt = ε t(
1−

p

∑
k=1

θ kBk)Zt = ε t

θ(B)Zt = ε t (15)

3.12.2 Moving Average (MA) model

MA model of order q, is a weighted sum of the present error term and q previous error
terms given by the following;

Zt = ε t +ρε (t-1) +ρ2ε (t-2) + . . .+ρqε (t-q) (16)
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Equation 16 can be simplified as;

Zt = ε t +
q

∑
k=1

ρkε t-k (17)

Introducing the backshi� operator B such that Bεt = εt−1

Zt = (1+ρ(B)+ρ2(B2)+, . . .+ρq(Bq))ε t

Zt = (1+
q

∑
k=1

ρkBk)ε t

Zt = ρ(B)ε t (18)

3.12.3 Autoregressive Moving Average model (ARMA)

Box-Jenkins ARMA is a mixture of the Autoregressive model of order p, AR( p) and a
moving average model of order q, MA( q). The resulting model assumes the form ARMA
(p, q), where p and q are respectively the orders of AR and MA models. The ARMA (p,
q) model is used for analyzng stationary time series. The process Zt ; t ∈ Z is an auto-
regressive moving average of order (p, q) such that Zt ∼ ARMA(p,q) such that;

Zt = θ 1Z(t−1)+ . . .+θ pZ(t−p)+ ε t +ρ1ε (t-1) + . . .+ρqε (t-q)

Zt = ε t +
p

∑
k=1

θ kZt−k +
q

∑
j=1

ρ jε t-j (19)

where ε t ∼WN(0,σ 2) and θ 1,θ 2, . . . ,θ p,ρ1,ρ2, . . . ,ρq are (p+q) parameters to be de-
termined.
Rewriting equation 19

Zt−
p

∑
k=1

θ kZt−k = ε t +
q

∑
j=1

ρ jε t-j[
(1−θ 1(B1)−θ 2(B2)−, . . . ,−θ p(Bp)

]
Zt =

[
1+ρ(B)+ρ2(B2)+, . . .+ρq(Bq)

]
ε t

Hence,
θ(B)Zt = ρ(B)ε t (20)

3.12.4 Auto-regressive integrated moving average model (ARIMA)

ARIMA(p, d, q) is an extension of ARMA(p, q) model. Non-stationary ARMA model is
made stationary by di�erencing. The resulting model a�er di�erencing is an ARIMA (p,
d, q) where d signifies the non-seasonal terms required to stabilize the integrated time
series observations. Below is the general form an ARIMA (p, d, q) is

θ(B)OdZt = ρ(B)ε t (21)
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Where

1. θ(B) = [1−θ(B1)−, . . . ,−θ p(Bp)] =
(
1−∑

p
k=1 θ kBk

)
2. OdZt = (1−B)dZt

3. ρ(B)ε t = (1+ρ(B)+ρ2(B2)+, . . .+ρq(Bq))ε t =
(
1+∑

q
k=1 ρkBk

)
ε t

Hence combining the three equations forms the ARIMA(p,d,q) process.

(
1−

p

∑
k=1

θ kBk)(1−B)dZt =
(
1+

q

∑
k=1

ρkBk)
ε t (22)

3.12.5 Seasonal Autoregressive integrated moving average (SARIMA) model.

Time series observations can have pa�erns that repeat itself at a regular period of time.
Seasonal ARIMA is an extension of non-seasonal ARIMA model for analyzing seasonal
non-stationary data. The periodicity in time series can be weekly, quarterly or monthly.
The notation of the multiplicative SARIMA is given as ARIMA(p,d,q)(P,D,Q)m; m de-
notes the period at which the seasonal pa�ern repeats itself, the parameters p, d and q
are non-seasonal integers corresponding to the order of non-seasonal AR, non-seasonal
di�erencing and non-seasonal MA while P, D, and Q are the order of seasonal AR, order
of seasonal di�erencing and the order of seasonal MA respectively.
The mathematical form of SARIMA(p,d,q)(P,D,Q)m is as follows.

φ P(Bm)θ(B)OD
mO

dZt = ΨQ(Bm)ρ(B)ε t (23)

Zt is the non-stationary time series observations, εt is the white noise and m is the period
of the time series.

Notations;

1. θ(B) =
[
1−θ 1(B1)−θ 2(B2)−, . . . ,−θ p(Bp)

]
is the non-seasonal AR(p)

2. φ P(Bm) =
[
1−φ 1(Bm)−φ 2(B2m)−, . . . ,−φ P(BPm)

]
is the seasonal AR(P)

3. ρ(B) =
[
1+ρ1(B)+ρ2(B2)+, . . .+ρq(Bq)

]
is the non-seasonal MA(q) process.

4. ΨQ(Bm) =
[
1+Ψ1(Bm)+Ψ2(B2m)+, . . .+ΨQ(BQm)

]
is the seasonal MA(Q)

5. Od = (1−B)d denote the non-seasonal di�erence

6. OD = (1−Bm)D denote the seasonal di�erence
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3.13 Box-Jenkins model building steps.

Box-Jenkins (1970) describes a procedure towards modelling ARIMA models. The steps
involved are discussed in the next subsections.

3.13.1 Model identification.

Box-Jenkins model works with the notion that the data is a realization of a stationary
process; hence the first step is to determine the stationarity and also the possibility of
seasonality in the time series. Time series observations that fluctuate with a constant
variance around a constant mean can be supposed to be stationary. The stationarity
of the process generating the data can be examined by plo�ing the time series values.
Seasonality in the data can be detected by an auto-correlation plot. Transformation of
the time series by di�erencing is necessitated if it is found to defy the assumption of
stationarity.

Once the stationarity has been achieved, the order (p) of AR model, di�erencing order d,
MA order (q) are identified with the corresponding seasonal values of P, D, and Q. ACF
plots and the PACF plots are used in identifying the order of these parameters. The order
of the non-seasonal AR (p) and MA (q) are chosen according to the characteristics shown
in table 1. Similarly, the values of seasonal AR and MA processes are obtained from the

Table 1. Order of AR and MA processes

Model ACF PACF

1. AR(p) The lags decay exponentially cuts o� after p lags

2. MA(q) Cuts o� after q lags The lags decay exponentially

3. ARMA(p, q) Tails o� Tails o�

ACF and the PACF plots. For instance an ARIMA (0,0,0)(1,0,0)12 represents a seasonal
part of an AR process of order (P = 1) which is having a significant PACF spike at lag
12 and an exponentially decaying seasonal lags of the auto correlation function. While
an ARIMA(0,0,0)(0,0,1)12 represents a seasonal part of the MA process of order (Q = 1)
having a significant ACF spike at lag 12 and an exponentially decaying seasonal lags of
the partial auto correlation function. Presence of a seasonal component in the data will
require seasonal di�erencing to enhance stationarity of the time series.

Model identification will always lead to the selection of more than one probable models.
The most parsimonious model is arrived at by checking the adequacy of the models. The
adequacy can be assessed by comparing the Akaike information Criteria (AIC) or the
Schwarz Bayesian Information Criteria (BIC). The model that presents minimum values
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of AIC and BIC is considered the most adequate. The statistical formulae for the two
criteria approaches are given by;

AIC =−2log(L)+2v

and
BIC =−2ln(L)+ log(m)v

L represents the maximum likelihood, and v the number of model parameters.

3.13.2 Parameter estimation.

Estimation of the model parameters is then done once a tentative model has been iden-
tified. The estimation process can be done in several ways; the method of least squares
can be applied, the approach of the maximum likelihood estimation (MLE) can be uti-
lized or even the Yule-Walker method. For the purpose of this study we discuss the MLE
approach.

Maximum likelihood estimation (MLE).

MLE method is by far the most widely used approach for estimating the unknown param-
eters of a probability distribution. The principle of this approach considers maximizing
the likelihood function so that the estimated parameters are values for which the ob-
served data is most probable.

Consider an AR(1) process which is given by;

Zt = ψ +θZt−1 + εt

Where εt ∼ i.i.d N(0,σ2), under the MLE approach, the parameters to be estimated in-
clude φ = (ψ,θ ,σ2).

Consider Z1 as the first observation. Its mean and variance can be shown to be;

E(Z1) = µ = ψ/(1−θ) and E(Z1−µ)2 = σ
2/(1−θ

2)

The probability density distribution for Z1 is given by:

fZ1(Z1;φ) =
(

2πσ
2/(1−θ

2)
)− 1

2
exp− 1

2

[(
Z1−ψ/(1−θ)

)2

σ2/(1−θ 2)

]
(24)

Also consider a second a second observation Z2 which is conditional on Z1 = z1 such that

Z2 = ψ +θZ1 + ε2
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This implies that the first two terms of the equations i.e ψ and θZ1 are constants. The
error term ε2∼(0, σ2). Thus (Z2|Z1 = z1)∼ N(ψ +θZ1,σ2).

fZ1|Z2(Z2|Z1;φ) =
(
2πσ

2)− 1
2 exp− 1

2

[(
Z2−ψ−θZ1)

)2

σ2

]
(25)

Thus, the joint density of Z1 and Z2 is the product of equation 24 and equation 25.

fZ2,Z1(Z2,Z1;φ) = fZ2|Z1(Z2|Z1;φ) · fZ1(Z1;φ)

Following the same pa�ern, the distribution of Z3 conditional on Z1 and Z2 is given by;

fZ3|Z2,Z1(Z3|Z2,Z1; φ) =
(
2πσ

2)− 1
2 exp− 1

2

[(
Z3−ψ−θZ2)

)2

σ2

]
(26)

and the joint density of Z1,Z2 and Z3 is the product of their conditional distributions.

fZ3,Z2,Z1(Z3,Z2,Z1; φ) = fZ3|Z2,Z1(Z3|Z2,Z1; φ) · fZ2,Z1(Z2,Z1; φ) (27)

It follows that the density of the last observation Zt conditional on its previous observa-
tions Z1,Z2, · · · ,Zt−1 is wri�en as;

fZt |Zt−1,Zt−2··· ,Z1(Zt |Zt−1,Zt−2, · · · ,Z1;φ) =

(
2πσ

2)− 1
2 exp− 1

2

[(
Zt−ψ−θZt−1)

)2

σ2

]
(28)

For t distributions, the density is given by

fZt ,Zt−1,Zt−2, ··· , Z1(Zt ,Zt−1,Zt−2, · · · ,Z1;φ) =

fZt |Zt−1(Zt |Zt−1 ;φ) · fZt−1,Zt−2··· ,Z1(Zt−1,Zt−2, · · · ,Z1 ;φ)
(29)

The likelihood function

fZt ,Zt−1,Zt−2,··· ,Z1(Zt ,Zt−1,Zt−2, · · · ,Z1; φ) =

fZ1(Z1; φ) ·
t=n

∏
t=2

fZt ,Zt−1(Zt |Zt−1; φ)
(30)

The log-likelihood function L(φ) is thus;

L(φ) = log fZ1(Z1;φ)+
t=n

∑
t=2

log fZt |Zt−1(Zt |Zt−1; φ) (31)
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Substituting equation 31 with 24 and 28 gives the log-likelihood of AR(1) process

L(φ) = log

{(
2πσ

2/(1−θ
2)
)− 1

2
exp− 1

2

[(
Z1−ψ/(1−θ)

)2

σ2/(1−θ 2)

]}
+

t=n

∑
t=2

log

{(
2πσ

2)− 1
2 exp− 1

2

[(
Zt−ψ−θZt−1)

)2

σ2

]} (32)

L(ψ,θ ,σ2) =− 1
2

log(2π)− 1
2

log
[
σ

2/(1−θ
2)
]
− 1

2

[(
Z1−ψ/(1−θ)

)2

σ2/(1−θ 2)

]
−

n−1
2

log(2π)− n−1
2

log(σ2)− 1
2

t=n

∑
t=2

[
(Zt−φ −θZt−1)

2

σ2

] (33)

3.13.3 Diagnostic check of the model

Model evaluation is done by analyzing the residuals of the resulting fi�ed model. An ad-
equate model has its residuals follow a white noise process. There are several approaches
that can be used to evaluate the adequacy of the model. Plots of autocorrelation and Par-
tial autocorrelation functions can be used to asses the independence of residual series.
For residuals to exhibit independence of observations, the autocorrelation coe�icients for
lags greater than 1 should lie within a defined threshold. For simplicity,the coe�icients
should not be significantly di�erent from zero, contrary to this signifies presence of a
systematic pa�ern in the residuals.

The Ljung-Box test is yet another approach to asses the lack of fit of the model. The
statistic test the null hypothesis that the residuals follow a white noise process. ;

Q = n(n+2)
k

∑
m=1

(t−m)−1 r̂2
m

The statistic Q ∼ χ2
1−α, k−p−q; p and q are the corresponding orders of AR and MA pro-

cesses, t is the size of the time series, r̂m gives the estimated autocorrelation coe�icient
at lag m and k represents the number of autocorrelations tested. When Q > χ2

1−α, k−p−q
then the model being tested exhibits a lack of fit.

3.13.4 Forecasting

Once a parsimonious model has been identified, the final stage under Box-Jenkins in-
volves the prediction of future values. Assuming an ARMA(p, q) given below;

θ(B)Zt = ρ(B)ε t
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Zt = θ 1Z(t−1)+ . . .+θ pZt−p + ε t +ρ1ε (t-1) + . . .+ρqε (t-q)

Taking the present time as t hence the h period forecast is given by;

Zt+h = θ 1Z(t+h−1)+ . . .+θ pZ(t+h−p)+ ε (t+h) +ρε (t+h-1) + . . .+ρqε (t+h-q)

The parameter values on the right of the equation are estimated and replaced.

3.14 Analysis of Seasonal variation.

As defined earlier, seasonality is the periodic pa�ern that reoccurs at intervals of time
within the year. To evaluate the seasonal variations in LBW prevalence, we used the
Moving Average (MA) method to obtain the seasonal indices associated with the months
of the year. Below is the description of the steps used to obtain the indices.

• First, we obtained a 12-monthly moving average of LBW prevalence, then followed
by a two-monthly moving average to center the data. Herein, the aim is to smoothen
the trend component, thus removing seasonality and the random component.

The 2 × 12-MA can be illustrated as follows;

Tt =
1
2

[
1

12
(
Z(t−6)+Z(t−5)+ . . .+Zt +Z(t+1)+Z(t+2)+ . . .+Z(t+5)

)
+

1
12
(
Z(t−5)+ . . .+Zt +Z(t+1)+ · · ·+Z(t+6)

)]

Simplifying the above equation yielded the following;

Tt =
1

24
Z(t−6)+

1
12
(
Z(t−5)+ . . .+Zt +Z(t+1)+ . . .+Z(t+5)

)
+

1
24

Z(t+6) (34)

• To obtain the seasonal variations, the smoothed trend values are subtracted from the
original series as follows;

Zt−Tt = St + εt

where Zt is the original prevalence values, Tt is the smoothened trend values while St

and εt are the seasonal and noise respectively (detrended series).

• The residual component is then removed by averaging the detrended values on monthly
basis hence obtaining the unadjusted seasonal variations.

• Finally, the adjusted Seasonal variations were obtained by subtracting the average of
the unadjusted seasonal variations (adjustment factor) from each of the unadjusted
monthly seasonal variations. The adjustment herewith is to make seasonal indices
sum up to zero.
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3.15 Malaria endemicity.

In evaluating the level of malaria transmission in a population Brabin et al. (1999) de-
veloped a birthweight nomogram, Figure 2. It is a simple tool constructed to monitor
transmission of malaria and to study the e�icacy of interventions aimed at controlling
malaria during pregnancy in Afica.

Figure 2. birthweight nomogram indicating transmission intensities.
Source: Brabin et al., 1999

The birth-weight nomogram was designed to show the link between the odds ratio of
excess LBW risk and the LBW prevalence among the primigravdae. According to (Bra-
bin et al., 1999) the odds ratio for excess low birth weight risk signified the excess risk
a�ributed to malaria whereas low birthweight prevalence was a�ributed to the excess
risk from all other causes. An OR of 1.7 signified a cu�ing-o� point between malaria and
non-malarious areas because of its 90 percent sensitivity and 90 percent specificity for
detecting a population exposed to malaria, whilst an OR lower than 1.7 suggested lower
risk of malaria.

In that respect we used the odds ratios of LBW among the primiparity with reference
to multiparity to study the epidemiological transition of malaria in kenya. Additive lo-
gistic regression model with two independent variables (parity and season) and a binary
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dependent variable (birth weight) was used to obtain the odds ratios.

Birthweight =

{
1, Low birth weight

0, Normal weight

Parity =

{
1, Primiparity

2, Multiparity

Season =

{
1, Wet

2, Dry

The general form of the equation was defined as follows

ln(
θ

1−θ
) = b0 +b1Z1 +b2Z2 (35)

Where;
θ is the probability of low birthweight.
1−θ is the probability of normal weight.
b j′s are the regression coe�icients to be estimated; for j=0,1,2.
Z1 and Z2 represents parity and season respectively.

Hence, from the equation 35 , we can obtain the odds of low birthweight as

θ

1−θ
= exp(b0 +b1Z1 +b2Z2) (36)

And the corresponding probability of low birth weight;

θ = exp(b0 +b1Z1 +b2Z2)−θ [exp(b0 +b1Z1 +b2Z2)]

θ [1+ exp(b0 +b1Z1 +b2Z2)] = exp(b0 +b1Z1 +b2Z2)

hence,

θ =
exp(b0 +b1Z1 +b2Z2)

1+ exp(b0 +b1Z1 +b2Z2)
(37)

Odds ratio is given by exp(b j).
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3.16 Spatial Pa�ern analysis.

Spatial pa�erns exhibited in the distribution of certain phenomena are determined by
the arrangement of the individual entities in space and the geographical relationships
among them. The pa�ern portrays the underlying spatial process at a particular period
of time.

3.16.1 Cluster analysis.

A spatial cluster in a certain location refers to grouping of events or spatial objects. Spatial
cluster analysis encompasses methods and algorithms used to group spatial objects in a
way that there is maximal resemblance between objects belonging to the same group
and minimal otherwise. The analysis helps to unravel the underlying spatial distribution
of occurrences and possible correlation with the environmental factors. Spatial cluster
modelling approaches have seen considerable application in spatial epidemiology, crime
analysis and disease surveillance.

3.16.2 Spatial autocorrelation.

Spatial autocorrelation is simply the correlation between the values of a variable in one
location and values of the same variable in the neighboring locations. Positive spatial
autocorrelation implies similarity in nearby values such that high values tend to cluster
together and low values being near low values.

3.16.3 Spatial pa�ern detection.

Clustering of events can be detected by quantifying the degree in which the spatial ob-
jects cluster themselves in geographical location. Such testing is made possible by se�ing
a hypothesis and applying available methods. Detection involves assessing either global
or local clustering of cases or controls.

3.16.4 Spatial scan Statistic.

The spatial scan statistic (SaTScan) Kulldor� (1997) is an open source so�ware and has
found a great application in the field of epidemiology. Its usage being mainly to detect
and identify the locations of hotspots. Unlike the global techniques which assume homo-
geneity of the study location, SaTScan adjust for population heterogeneity of di�erent
locations. For a specified geographical location, the scan statistic operates by implement-
ing multiple scan windows or circles of varying sizes. Each imposed circle is a potential
hotspot whose significance must be tested using likelihood ratio approach. The size of
the circle has a default se�ing of 50% of the population size. For each circle, cases of
LBW are counted and the expected number is obtained. Specifying Bernoulli probabil-
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ity model, the maximum likelihood statistic for each circle is obtained by comparing the
prevalence of LBW in the circle to the outside prevalence. The window with the max-
imum value becomes the most likely hotspot. The significance of the clusters are then
tested for spatial randomness. The test is implemented by Monte Carlo simulations with
replications specified by the user, (a default value is 999 replications). In each simula-
tion a likelihood ratio statistic is computed. Then a p value to evaluate the randomness
of cases in the cluster is obtained by comparing actual value from likelihood ratio with
simulated values. A cluster is inferred if the associated p < 0.05.

We implemented our analysis using the Bernoulli model which requires the definition of
cases and controls. We set the low birthweights as cases and normal weights was controls.
The maximum size of the proportion in each window was set to 50% of the population and
999 Monte Carlo simulations were set to test the significance of each candidate cluster.

Bernoulli principle.

( z
m

)z (m− z
n

)m−z
(

Z− z
M−m

)Z−z (
(M−m)− (Z− z)

M−m

)(M−m)−(Z−z)

I() (38)

Where;

• z: number LBW cases in a scanned window,

• m: number of LBW cases and controls(Normal weights) in a scanned window,

• Z: Total number of LBW cases

• M: Total number of LBW cases and controls.
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4 DATA ANALYSIS AND RESULTS

4.1 Introduction

The sections presents utilizes the methodologies discussed in chapter three. Descriptive
statistics forms the first part of the chapter. Later on inferential statistics are presented.
Assumptions for the methods used were checked and analysis done. The results are doc-
umented in form of tables, figures, bar charts and maps.

4.2 Demographic characteristics

Details of information obtained and included in this study is presented in Figure 3 . Out
of 45,749 entries of live singleton births; 8,381 (18.32 %) were excluded because they lived
outside KHDSS. Among those who lived within KHDSS, 1,933 (5.17 %) had missing infor-
mation on weight and were excluded. The remaining 35,435 records of live births were
used for analysis and it comprised of 16,964 (48.24 %) females and 18,205 (51.76 %) males.

Maternal information available on the records was also extracted concurrently with that
of the child. Out of 35,435 mothers, 59.94% were multiparous, 38.55% were primiparous
while 1.53% had their parity status not indicated. Their age distribution was as follows:
17.2% were less than 20 years, 30.76% were 20-24 years, 25.77% were 25-29 years, 15.74%
were 30-34 years while 10.53% were above 34 years. The age distribution of multiparous
versus primiparous group was as shown in Figure 4.
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Figure 3. The flow of inclusion criteria of infants in the study.

Figure 4. Age distribution of multiparity versus primiparity.



37

4.3 Birthweight.

The overall mean weight was 2.98 Kg and was higher among males (3.03 Kg) compared to
females (2.93 Kg), Table 2. The mean di�erence in the weights was statistically significant
(t statistic = -18.479, p-value = 0.0001). Birthweight by parity also showed a significant
di�erence (t statistic= 23.817, p-value = 0.0001); which was higher among multigravid
(3.03 Kg) compared to primigravid (2.90 Kg). Mean weight in Kilifi DSS North (2.989 Kg)
and South (2.927 Kg) was relatively same, Table 2 .

4.4 Low birthweight.

The overall prevalence of low birthweight throughout the study period (2006-2019) was
14.23 % and was significantly di�erent among the infants born to primigravids (17.34
%) compared to those of multigravida (12.23 %), p value=0.0001, (Table 2). In the two
regions, the prevalence was 17.54% in Kilifi DSS South and 13.50% in Kilifi DSS North.
The di�erence in the two proportions was significant, p value = 0.0001, Table 2

Table 2. Mean weights, LBW prevalence and di�erence in LBW proportions

Mean LBW Di�erence in LBW

Number (%) Weight Prevalence (%) proportion, p-value

Gender

Female 16,964 (48.24) 2.925 15.93 0.0001

Male 18,205 (51.76) 3.028 12.63

PARITY

Primiparity 21,239 (60.87) 2.895 17.34 0.0001

Multiparity 13,654 (39.13) 3.031 12.23

REGION

Kili� DSS South 6,437 (18.17) 2.989 17.54 0.0001

Kili� DSS North 28,998 (81.83) 2.985 13.50

Focusing on the locations within the two regions, Table 3 , LBW prevalence ranged from
12.50% in Kilifi Township an area in the Northern region to 21.58% in Banda ra Salam an
area in the Southern region. The corresponding mean weights of the two locations were
3.03 Kg and 2.87 Kg respectively. The low prevalence of LBW in Kilifi township could be
explained by the close proximity to the health care facilities within the urban area.
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Table 3. LBW prevalence at locational level.

Location Mean Birthweight (Kg) LBW prevalence (%)

Kili� DSS North

Gede 2.973 13.51

Kili� Township 3.028 12.50

Matsangoni 2.885 19.11

Ngerenya 2.957 13.99

Roka 2.926 15.77

Sokoke 2.934 15.05

Takaungu / Mavueni 2.946 14.75

Tezo 2.974 13.27

Kili� DSS South

Banda ra Salam 2.865 21.58

Chasimba 2.936 16.14

Jaribuni 2.988 12.95

Junju 2.926 18.54

Kauma 2.935 16.37

Mtwapa 2.927 17.86

Ziani 2.926 16.04

4.4.1 Low birthweight trends.

Prevalence of LBW on a four year period, Table 4, seemed to have a downward trajectory
from 2014. Between 2006 and 2009 the prevalence was 14.24%, between 2010 and 2013
it rose to 16.56%.A drop was observed with a record of 13.80% during the period of 2014
and 2017 while between 2018 and 2019 (2-year period) it further decreased to 12.75%.
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Table 4. prevalence of low birthweight on a 4-year basis.

Year category Live Births (%) Mean weight Low Birthweight (%)

2006-2009 6,220 (17.55) 2.987 14.24

2010-2013 7,863 (22.19) 2.925 16.56

2014-2017 12,246 (34.56) 2.985 13.80

2018-2019 9,106 (25.70) 3.01 12.75

2006-2019 35,435 (100) 2.978 14.23

Figure 5 shows the pa�ern of LBW prevalence for the period of 2006 - 2019 in Kilifi HDSS
- (North and South), Kilifi HDSS North and Kilifi HDSS South.

The overall prevalence (both parities combined) in the whole region showed a decreas-
ing rate in the first three years which later rose to around 2012. A downward movement
was then observed from 2013. The highest prevalence was recorded in 2012 (17.06%) and
the lowest rate in 2017 (11.96%). Low birthweight among the primiparity group main-
tained a higher prevalence rate throughout the years as compared to the multiparity. In
both groups a declining trend was observed though the manifestation occurred in dif-
ferent years, with multiparity exhibiting a decline from 2011 while the primiparity a�er
2012. The LBW ratios of primiparity in relation to multiparity seemingly had the same
trajectory to that assumed by LBW prevalence among the primiparity.

In Kilifi HDSS North a declining trend in the prevalence among the multiparity was ob-
served begining 2011 while that of primiparity indicated arising trend from 2009 upon
which a decline in the prevalence was observed a�er 2012.

In the southern region a downward trajectory among the primiparity was observed a�er
2010 while among the multiparity the decline begun a�er 2009. In both regions LBW
prevalence among primiparity was higher compared to that of multiparity.
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Figure 5. Trends of low birthweight prevalence in all parities combined and di�erently among
the primiparity and multiparity. LBW ratios of primiparity to that of multiparity is displayed on

a di�erent scale.

In the two regions (North and South of Kilifi HDSS), LBW prevalence was significantly
di�erent, p-value = 0.0001, Table 2 . The di�erence could clearly be seen in figure 6 .
An eyeballing indicated a higher prevalence almost throughout the year in Kilifi HDSS
South. The highest prevalence rates were 16.25% (2012) and 25.47% (2009) in North and
South respectively while the lowest prevalence were 11.19% (2019) and 13.42% (2018) in
North and South respectively.
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Figure 6. Yearly trend in low birthweight prevalence per Region

Monthly LBW prevalence exhibited a periodic up and down pa�ern across the months.
The month of October had the lowest prevalence of LBW (12.24 %) while April had the
highest prevalence (15.82 %) (Table 5). A decreasing trend in LBW prevalence was also
observed over the months of the year.

The odds of delivering low a birthweight infant among the primiparous group remained
significant throughout the months as compared to multiparous group except in the month
of February, where primiparity group in comparison to multiparity group were 19 % more
likely to deliver a LBW infant, but that was insignificant. (Table 5).
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Table 5. Aggregated monthly low birthweight prevalence and OR of LBW among primiparity
compared to multiparity.

Month Number(n) primiparity (%) multiparity (%) LBW (n, %) OR (95 % CI)
January 2,436 39.72 60.28 367 (15.36) 1.44 (1.15 1.81)
February 2,569 36.44 63.56 375 (14.48) 1.19 (0.95 1.49)
March 3,654 37.41 62.59 506 (14.26) 1.53 (1.27 1.86)1
April 3,868 39.29 60.71 594 (15.82) 1.38 (1.16 1.65)
May 3,682 40.32 59.68 511 (14.31) 1.49 (1.24 1.80)
June 3,057 38.33 61.67 454 (15.24) 1.80 (1.47 2.21)
July 3,025 38.34 61.66 444 (14.84) 1.54 (1.25 1.89)
August 2,672 39.40 60.60 356 (13.47) 1.52 (1.22 1.91)
September 2,618 41.57 58.43 379 (14.56) 1.57 (1.26 1.95)
October 2,850 41.34 58.66 351 (12.24) 1.50 (1.20 1.88)
November 2,821 39.66 60.34 385 (14.27) 1.58 (1.27 1.97)
December 2,183 37.62 62.38 321 (14.88) 1.65 (1.30 2.10)

4.5 Trend significance and change point analysis of LBW prevalence.

In this section we evaluate the significance of the long-term trend in the prevalence of
LBW data using MK test. Results on trend significance can be seen in section 4.5.1 below.

First, we checked on the prerequisites of the test. MK test result is significantly a�ected
by the presence of periodicities and serial autocorrelation in a time series data. To check
the two aspects, we plo�ed the ACF to check for the autocorrelation and also a plot of
the decomposed time series to assess the seasonal component. From the two plots, it
was clear that the data was serially autocorrelated due the presence of significant spikes
at di�erent lags, Figure 7 . The decomposed series in figure 8 exhibits a regular seasonal
pa�ern.

Figure 7. Auto-correlation plot for prevalence of LBW
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Figure 8. Classical decomposition of the low birthweight series.

We de-seasonalize the LBW series by subtracting the seasonal component from the orig-
inal series. i.e Zt − St = Tt + εt , where Zt is the original series, St is the seasonal com-
ponent, Tt is the trend and εt is the noise. To complement the ACF outcome of serial
auto-correlation, we further coupled it with DW test to assess the independence of ob-
servations. DW, tests the null hypothesis of no serial auto-correlation against the alter-
native that the regression residuals are autocorrelated. The results indicated a positive
autocorrelation; DW = 1.545,P value = 0.002.
To remove the positive autocorrelation, we used the Cochrane Orcu� method as ex-
plained in section 3.11.7. We obtained an estimated correlation coe�icient ρ by assessing
the independence of residual terms of fi�ed linear regression model. From the DW test,
the estimated value was, ρ = 0.2217. The obtained ρ value was then used to trans-
form the original variable values; Z

′
t = Zt − 0.2217 Zt−1. Again, we tested the indepen-

dence of the newly transformed variable by assessing the residuals obtained by running
the regression once again. Results from the DW indicated absence of autocorrelation,
DW = 2.022,P value = 0.984..

4.5.1 Mann-Kendall trend outcome.

The rank-based MK test indicated a significantly decreasing trend in the LBW prevalence
over time, Zs = −0.116,P value < 0.05. Mann Kendall test in itself detects a trend and
gives the direction but does not quantify its magnitude. To estimate the trend’s mag-
nitude, we used the Sen’s slope approach. The result from this approach indicated a
significant slope, / S =−0.0118,P value < 0.05.
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The decreasing trend from MK test can be visualized from the fi�ed locally weighted least
squares (lowess) regression on the time series observations, Figure 9.

Figure 9. General trend in low birthweight prevalence over time.

4.5.2 Change point analysis (CPA).

CPA involves the estimation of points and locations of a time series where statistical
properties change abruptly. In our analysis, we let t to be the location at which the mean
prevalence of LBW begin to change. To detect this change, we tested the null hypoth-
esis for unchanging mean prevalence in both parities combined against the alternative
hypothesis of presence of a change-point in the LBW prevalence at location t.

H0 : µ1 = µ2 = · · ·= µn

H1 : µ1 = · · ·= µt 6= µt+1 = · · ·= µn

While testing the two hypotheses, we used the likelihood ratio (LR) approach to compare
models presented by the two hypotheses as explained in section 3.10. From this analysis a
significant changepoint at around 2014 was detected, (Figure 10). This signified an abrupt
change in the prevalence of LBW a�er the period 2006 to mid-2014. The estimated LBW
prevalence in the first segment was 11.92 % a�er which it dropped to 10.32 % in the
remaining time period (between mid-2014 and 2019).
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Figure 10. Changepoint in the prevalence of Low Birthweight.

4.6 Interaction between trend and change point.

The obtained changepoint divide the time series into (q+1) segments. MK test has been
used to check for possible interaction of trend with the change point. Considering the
detected change-point, Figure 10, we divided the series into two segments and tested
for trend in each segment. MK test could detect a significant increasing trend in the first
segment, Zs= 0.157, p value = 0.0240. The second segment had a decreasing trend but was
not significant, Zs = - 0.0751, p value = 0.3759. Figure 11 indicated a visual representation
of the general trend before and a�er the changepoint. The magnitude for the trend in
both cases were 0.0306 and -0.0119 respectively, Table 6.

Table 6. MK test and Sen’s Slope estimates for the two segments.

Segment MK Trend test Sen’s-slope P-value

1st Segment 0.1570 0.0306 0.0240

2nd segment. -0.0751 -0.0119 0.3759



46

Figure 11. General trend from a fi�ed locally weighted least squares (lowess) regression before
and a�er the changepoint.

4.7 Time series modelling.

The next sections discusses the fi�ing of multiplicative Seasonal Autoregressive Inte-
grated Moving Average model that helped to study the pa�ern of LBW prevalence from
the predicted series. The fi�ed model and the general trend of the predicted series can
be seen in section 4.12.

4.8 Stationarity of the LBW prevalence data.

Figure 12, is the plot of the original series of LBW prevalence. Also shown in Figure
13 are the autocorrelation and partial autocorrelation plots of the original series. Time
series models require that the data being used for modelling is stationary in its mean,
variance and autocorrelation structure. Analysis of the ACF plot, Figure 13, reveals non-
stationarity of the LBW observations. The observed spikes of the ACF plot depicts a
geometric decay indicating the presence of a systematic trend in the data. This finding
necessitated a first di�erence of the time series. Figure 14 show the resulting plot of the
data a�er the first di�erence was passed to the data. Inspecting the resultant plot, we
could remark a stabilized series. A further application of the ADF test to ascertain for
the stationarity was passed to the data to ascertain the stationarity. The ADF test in this
context test the null hypothesis that the first order LBW prevalence observations are not
stationary. The results from the test gave; ADF= -8.035 and a P-value=0.01 which signified
rejection of the null hypothesis.
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Figure 12. Plot of original low birthweight prevalence for the year 2006 to 2019.

Figure 13. Auto-correlation and partial autocorrelation plots of the original series..

4.9 Model identification: Box-Jenkins Approach.

The approach provided by Box-Jenkins described in chapter 3, was followed in identifying
the best model to fit the LBW prevalence data. A�er achieving stationarity in the data,
we obtained p and q of AR and MA models respectively by analyzing the ACF and PACF
plots of the stationary series. Below are the plots of the di�erenced series, Figure 15).



48

Figure 14. Di�erenced series of low birthweight prevalence

Figure 15. ACF and PACF plots of the di�erenced LBW prevalence series.

Inspecting both ACF and PACF graphs led to the following possible models to fit the data;
ARIMA (0,1,1)(0,1,1)12, ARIMA (1,1,0)(0,1,1)12, ARIMA (1,1,1)(1,1,1)12,
ARIMA (0,1,2)(0,1,1)12 , ARIMA (1,1,2)(0,1,1)12, ARIMA (2,1,1)(0,1,1)12, ARIMA
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(2,1,2)(0,1,1)12 and ARIMA (2,1,2)(1,1,1)12 . The best chosen model for estimation
had the least values in AIC, AICc and BIC as shown in Table 7.

Table 7. SARIMA models; AIC, AICc and BIC values.

Model AIC AICc BIC

ARIMA (0,1,1)(0,1,1)12 818.08 818.24 827.11

ARIMA (1,1,0)(0,1,1)12 856.82 856.98 865.85

ARIMA (1,1,1)(0,1,1)12 818.65 818.93 830.69

ARIMA (1,1,1)(1,1,1)12 820.58 820.99 835.63

ARIMA (0,1,2)(0,1,1)12 818.58 818.85 830.62

ARIMA (1,1,2)(0,1,1)12 818.18 818.59 833.23

ARIMA (2,1,1)(0,1,1)12 820.61 821.03 835.67

ARIMA (2,1,2)(0,1,1)12 820.18 820.77 838.24

ARIMA (2,1,2)(1,1,1)12 822.17 822.96 834.24

Based on the AIC, AICc and BIC values, the model with the least corresponding values
was ARIMA (0,1,1)(0,1,1)12 which was equivalent to the following form;

(1−Bm)D(1−B)d Zt = ΨQ(Bm)ρ(B)ε t

(1−B−B12 +B13) Zt = (1+ρB+ΨB12 +ρΨB13)εt (39)

From the equation 39 a simplified model that can be used for prediction takes the form.

Zt−Z(t−1)−Z(t−12)+Z(t−13) = εt +ρε(t−1)+Ψε(t−12)+Ψρε(t−13)

Zt = Z(t−1)+Z(t−12)−Z(t−13)+ εt +ρε(t−1)+Ψε(t−12)+Ψρε(t−13) (40)

4.10 Parameter estimation.

Having identified the SARIMA model, we then estimated the model parameters. The
method of maximum likelihood estimation was used in this the exercise. The estimated
parameter values MA1 =−0.8590,SMA1 =−0.9998 were both significant, Table 8

Hence the resulting fi�ed model is of the form;

Zt = Z(t−1)+Z(t−12)−Z(t−13)+ εt−0.8590 ε(t−1)−0.9998 ε(t−12)+0.8588 ε(t−13) (41)
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Table 8. Parameter estimates

Estimate Standard error p value

MA1 −0.8590 0.05659 2.2×10−16

SMA1 −0.9998 0.1304 1.779×10−14

4.11 Model Diagnostics.

In evaluating the validity of the model, residuals from the SARIMA fit were examined.
Herein, residuals are expected to be independent with no systematic pa�ern. A plot of
the model’s residuals Figure 16 showed no possible systematic trends.

Figure 16. A plot of the SARIMA model residuals

To examine for any serial dependencies in the error terms, we plo�ed the ACF and PACF,
Figure 17. Inspecting the plots, it was noted that all the spikes were not di�erent from
zero indicating absence of serial dependency in the residuals.

Ljung-Box statistic explained in chapter 3, was also applied to ascertain whether the
model’s residuals followed the white noise process. Implementing the test on R so�ware
yielded; Chi square= 0.9017, P-value= 0.3423. The null hypothesis of randomness was
upheld indicating a parsimonious model.

4.12 Predicted trend using ARIMA (0,1,1)(0,1,1)12.

From the estimated model 41, we predicted the prevalence of LBW in the next 24 months.
The table 9 shows the estimated values for ARIMA (0,1,1) (0,1,1)12. A plot of the out-
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Figure 17. Autocorrelation and partial autocorrelation plots for the residuals.

sample values, figure 18 seemingly followed the declining trend in the original series.

Figure 18. Estimated pa�ern using ARIMA (0,1,1)(0,1,1)12 for the period of 2020 and 2021
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Table 9. Forecasted values for ARIMA (0,1,1)(0,1,1)12 model

YEAR 2020 YEAR 2021

Month Estimate 95% CI Estimate 95% CI

January 12.7250 6.0712 19.3789 12.4623 4.9920 19.9325

February 11.8440 5.1244 18.5636 11.5812 4.0439 19.1184

March 11.6320 4.8472 18.4167 11.3692 3.7656 18.9728

April 13.1809 6.3317 20.0302 12.9181 5.2487 20.5876

May 11.6283 4.7152 18.5414 11.3655 3.6309 19.1002

June 12.5009 5.5326 19.4692 12.2381 4.4423 20.0340

July 12.0463 5.0155 19.0772 11.7835 3.9243 19.6428

August 10.7174 3.6246 17.8101 10.4546 2.5325 18.3766

September 11.8456 4.6914 18.9997 11.5828 3.5984 19.5672

October 9.5567 2.3416 16.7718 9.2939 1.2477 17.3402

November 11.5440 4.2685 18.8194 11.2812 3.1736 19.3888

December 12.2010 4.8656 19.5363 11.9382 3.7696 20.1067

4.13 Seasonal variation of LBW prevalence.

As defined earlier, seasonality is the periodic pa�ern that reoccurs at intervals of time
within the year. To evaluate the seasonal variations in LBW prevalence, we used the
Moving Average method as explained in section 3.14 to obtain the seasonal indices asso-
ciated with the months of the year.

Seasonal index in this context measures how much the average LBW prevalence of a
particular month tends to be above or below the trend. Based on the indices obtained
(figure 19), the month of April has the highest index (1.696) while the month of October
had the lowest seasonal index (-1.688). This indicated that the prevalence of LBW in
the month of April is expected to be above the seasons’ trend value by 1.696 and reduce
by 1.688 in the month of October. The months of January (0.663), April (1.696), June
(0.942), July (0.544), September (0.696) and December (0.252) had increased prevalence
from the expected rates, while the months of February (-0.303), March (-0.724), May (-
0.300), August (-1.158), October (-1.688) and November (-0.620) had LBW prevalence below
the trend values, Table 10

Notably, the seasonal index tends to rise above the expected values in the months of
December and January a�er the short rains in the months of October and November.
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The wet condition usually lead to an increased parasite density hence increased rates of
malaria infection during that period. The increased LBW rates in the months of Decem-
ber and January meant that the mothers were in their last trimester when the parasite
density increased during the short rainy season hence a negative impact on the baby’s
weight. During the long rains that are witnessed in April to June, a positive index implying
increased LBW prevalence was recorded in April, June and also in the month succeeding
the rainy season.

The lowest prevalence in the month of October can be a�ributed to the preceding dry
season of July to September where the parasite density was expected to decrease due to
unfavorable breeding grounds for malaria vectors.

Table 10. Monthly seasonal indices in prevalence of LBW. (Adj SV- Adjusted Seasonal variation)

Year Jan Feb Mar April May June July Aug Sept Oct Nov Dec
2007 0.448 -5.754 2.022 -3.559 0.439 1.872
2008 -4.847 4.131 -2.684 1.241 3.131 1.344 -2.119 -0.173 -2.358 -3.286 1.417 -1.785
2009 -0.120 1.182 0.165 6.360 -2.610 -3.734 3.019 -4.493 0.797 -1.614 -4.810 9.317
2010 9.418 -1.952 -1.928 -1.444 -2.349 -0.923 0.543 -0.273 1.423 -0.958 -0.438 0.467
2011 -0.106 -5.160 -4.904 5.209 1.759 2.341 1.219 0.362 2.790 -1.733 0.384 -5.048
2012 -1.437 -1.268 2.400 2.744 -1.233 1.902 -0.917 3.002 1.357 -0.575 1.001 -10.313
2013 -1.417 0.561 4.489 4.743 1.134 -3.434 0.217 -0.810 3.585 -4.384 -4.293 3.974
2014 2.953 -2.179 1.600 1.586 0.921 0.857 -0.304 -2.058 -0.427 -1.946 -0.581 2.777
2015 0.187 -2.026 -1.862 -0.002 -0.703 -1.289 4.392 -2.596 1.442 -0.077 -1.324 -1.090
2016 0.480 5.656 -0.697 -0.599 0.313 0.814 -1.487 0.276 -4.070 -0.109 3.788 0.129
2017 3.006 -4.257 -3.770 -0.550 -2.779 8.707 0.251 -0.570 0.387 -1.659 -1.560 -0.103
2018 0.873 0.924 -2.528 1.013 -0.014 1.396 0.954 -1.113 1.103 -0.661 -1.774 2.521
2019 -1.345 0.440 0.723 -0.254 -1.477 3.009 - - - - - -
SV 0.637 -0.329 -0.750 1.670 -0.326 0.916 0.518 -1.183 0.671 -1.713 -0.646 0.227
Adj SV 0.663 -0.303 -0.724 1.696 -0.300 0.942 0.544 -1.158 0.696 -1.688 -0.620 0.252
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Figure 19. seasonal indices for LBW prevalence.

4.14 Malaria endemicity.

As explained earlier in chapter 3, Brabin et al. (1999) described the metrics of evaluating
malaria transmission in Africa. Odds ratios of LBW risk among the primiparity group
signified risk to malaria while the low birthweight prevalence was a�ributed to the excess
risk from all other causes. In this section we considered using the odds ratios to examine
the dynamics of malaria transmission.

Figure 20 shows the whole region stratified into KHDSS North and KHDSS South. Re-
flecting on the whole region, higher odds of LBW among the primiparity was observed
in the year 2012 while the lowest was in 2008. In the year 2006 to 2008, the risk of LBW
was observed to decrease from (OR=1.73; CI 1.105 - 2.697 to OR=1.17; CI 0.847 - 1.634).
A slight increase was recorded in 2009 which later decreased in 2010. The OR begun to
rise in 2011 (OR=1.19; CI 0.918 - 1.542) to 2012 (OR=1.92; CI 1.509 - 2.444). In 2013 a drop
was observed which rose in 2014. Therea�er, a decreasing trend in 2014 (OR=1.781; CI
1.449 - 2.19) to 2017 (OR=1.227 CI 0.871 - 1.728) was remarked. It was during this period
when the change point had been identified in prevalence of LBW,(see 4.6). A rising risk
was later observed in 2018 and 2019.
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Figure 20. Changing OR for LBW associated to primiparity with reference to multiparity since
2006-2019.

In KHDSS North and KHDSS South, odds ratios seemingly assumed the same pa�ern.
The risk of LBW was higher in 2012 for both regions; Kilifi HDSS South (OR=2.3) , Kilifi
HDSS North (OR=1.9). In KHDSS South, the risk of LBW was observed to decline from
2006 to 2008 and later rose to 2012 upon which a decline was remarked therea�er. In
KHDSS North, the declining trend was seen to 2010 and later rose to 2012 a�er which a
downward trend in the risk of LBW was observed towards 2017. In both regions the risk
begun to rise from 2018 to 2019.

Turning the focus to how LBW exhibit itself in the di�erent months of the year, figure
21 , we could observe the lowest OR in February and quite higher in the month of June.
The month of February is characterized as among the dry seasons of the year while the
month of June is among the wet seasons.

Wet season in the region is experienced from the month of April through June and later in
the month of October and November while the rest of the months are characterized as dry
season. During the wet season the trend was observed to exhibit an upward trajectory; (
April, OR = 1.38, May, OR = 1.49 and June, OR = 1.80) and (October, OR = 1.50, November,
OR = 1.58).
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Figure 21. Changing risk of LBW among the primiparity in di�erent months of the year.

Shortly a�er the long rainy season in June, the trend is observed to decline. The months
of January (OR=1.44) and February (OR=1.19) also recorded low values except for the
month of December (OR=1.65) which marks the beginning of the dry season a�er the
short rains of October and November.
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Table 11 shows the LBW prevalence of both parities and OR for LBW in babies born to
primiparity group for 16 locations in the two regions of Kilifi HDSS North and Kilifi HDSS
South,

Table 11. LBW prevalence of both primiparity and multiparity, OR for LBW in Primiparity with
reference to Multiparity for the period of 2006-2019

LBW prevalence Odds Ratio
Location Parity Number (%) OR 95 % CI
Kili� HDSS North
Kili� Primiparity 818 (15.20) 1.486 1.343 1.644
Township multiparity 924 (10.77)
Matsangoni Primiparity 89 (22.08) 1.343 0.976 1.849

multiparity 100 (17.39)
Ngerenya Primiparity 138 (18.80) 1.889 1.447 2.446

multiparity 125 (11.00)
Roka Primiparity 95 (15.83) 1.017 0.763 1.351

Multiparity 139 (15.64)
Gede Primiparity 6 (14.29) 1.314 0.328 5.271

multiparity 4 (12.50)
Sokoke Primiparity 52 (17.87) 1.414 0.919 2.130

multiparity 57 (13.35)
Takaungu / Primiparity 259 (19.65) 1.820 1.509 2.195
Mavueni multiparity 262 (11.86)
Tezo Primiparity 379 (17.11) 1.6656 1.432 1.937

multiparity 405 (10.95)
Kili� HDSS South
Banda ra Primiparity 40 (25.64) 1.468 0.895 2.408
Salam multiparity 42 (18.83)
Chasimba Primiparity 71 (18.25) 1.306 0.924 1.846

multiparity 84 (14.61)
Jaribuni Primiparity 15 (17.05) 1.758 0.792 3.902

multiparity 14 (10.69)
Junju Primiparity 198 (21.45) 1.404 1.125 1.753

multiparity 188 (16.26)
Kauma Primiparity 33 (18.97) 1.278 0.770 2.120

multiparity 41 (15.19)
Mtwapa Primiparity 120 (18.40) 1.091 0.834 1.428

multiparity 141 (17.13)
Ziani Primiparity 54 (19.01) 1.495 1.027 2.255

multiparity 69 (13.77)
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The prevalence of LBW among the primiparity ranged from 14.29 % in Gede location to
25.64 % in Banda ra Salam location, while among the multiparity group the prevalence
ranged from 10.69 % in Jaribuni location to 18.83 % in Banda ra Salam. The odds ratio
for LBW prevalence in the primiparity group in comparison to multiparity group ranged
from 1.014 in Roka location to 1.876 in Ngerenya location. Considering the OR value of
1.7, Brabin et al. (1999) as the cut-o� point to distinguish between malaria exposed popu-
lations, it was noted that three locations had an OR > 1.7. these included Jaribuni location
(OR=1.758), Ngerenya location (OR=1.889), and Takaungu/Mavueni location (OR=1.820)

It was further observed that, in an area suggestive of malaria transmission, (OR > 1.7)
the proportion of multiparity group having LBW babies was notably low while those of
primiparity were high; Jaribuni location (OR=1.758, LBW prevalence=10.69 %, 17.05 %),
Ngerenya location (OR=1.889, LBW prevalence = 11.00 %, 18.80 %) and Takaungu/Mavueni
location (OR=1.820, LBW prevalence =11.86 %, 19.65 % ), (Herein, the order of LBW preva-
lence are as multiparity and primiparity respectively).

Moreover, high proportions of multiparity group having LBW babies were observed in
some areas indicative of low transmission, (OR < 1.7). Some of these locations included
Junju (aOR = 1.404, LBW prevalence = 16.26), Matsangoni (aOR = 1.343, LBW prevalence
= 17.39 %) and Mtwapa (OR =1.091, LBW prevalence = 17.13).

In KHDSS North, odds of LBW was higher among the Primiparity as comapared to mul-
tiparity in Takaungu (OR=1.82) and Ngerenya (OR=1.88) locations while it was lower in
Roka location (OR=1.017). In KHDSS South, it was higher in Jaribuni (OR=1.758) while
lower in Mtwapa location (OR=1.091) .

4.15 Trend in Low Birthweight ratios of Primiparity in relation to
Multiparity.

In this section we analyze the trends in bi-monthly LBW ratios of primiparity in relation
to multiparity groups. (Bi-monthly ratios were chosen over the monthly ratios because
some months had zero counts in either the primiparity or the multiparity category hence
yielding zero or infinite ratios.)

Figure 22 indicate the pa�ern of LBW ratios in di�erent regions. A significant trend in
the ratios was observed in the whole region (Both South and North combined), p value
< 0.05. In KHDSS North and KHDSS South Mann-Kendall test indicated an insignificant
upward trajectory, p value > 0.05, Table 12.
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(a)

(b) (c)

Figure 22. Low Birthweight ratios of primiparity to multiparity in (a) Whole Region - KHDSS
North and South, (b) KHDSS South and (c) KHDSS South

Table 12. Trend significance of LBW ratios of primiparity in relation to multiparity.

Region Mann-Kendall Sen’s slope P-Value

Whole Region 0.0674 0.0027 0.015

Kili� HDSS North 0.080 0.001 0.297

Kili� HDSS South 0.0674 0.002 0.378
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4.16 Spatial distribution of Low birthweight cases.

In this section the analysis was a two step process: First, we mapped the LBW prevalence
in the geographical area with the aim of ge�ing a visual representation of the spatial
pa�ern in the data. Secondly, we used the Spatial Scan statistic to identify the local
clusters of low birthweight in the study area.

4.16.1 Mapping of Low Birthweight prevalence.

For the period of 2006-2019, Figure 23 An eyeballing indicated that a most likely cluster
of locations in the Southern region had high rates of LBW over time. These included
Mtwapa, Junju, ziani, Banda ra Salam, Chasimba and Kauma. In general, the trend of
LBW prevalence decreased from the period of 2006-2012 to the period of 2013-2019. In the
most recent year, (2019), a mostly likely cluster of locations with high rates was observed
in the southern region; Chasimba, Ziani, Banda ra Salam and Junju while a possible
cluster of locations with lower rates were observed in the Northern region.

2006-2019 2006-2012 2013-2019 2019

0 6 12 18 243
Kilometers

±
Prevalence low birthweight

12.5 - 16.0
16.1 - 20.0
20.1 - 24.0

< 12.5

> 24.0

Figure 23. Spatial distribution Low birthweight prevalence in KHDSS
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4.16.2 Spatial Scan Statistic results

In the year 2019, SaTScan detected one significant cluster/hotspot in the southern region
(log likelihood ratio = 13.59, p value = 0.003), figure 24 . The cluster was centered at
3.793550 S, 39.703766 E and had a radius of 9.71 Km. It comprised of Junju, Banda ra
salam, Ziani and Chasimba locations. These locations compared well with the spatial
pa�ern described in figure 23 . The other identified clusters were insignificant, p value >
0.05.

Figure 24. Local clusters of high rates identified by SaTScan for the year 2019

Considering a three year period interval from 2006 then 2009,2012,2015 and 2018, Table
13, SaTScan identified five clusters of high rates in 2006, out of which one cluster centered
at 3.612337 S, 39.753371 E in Kilifi township was significant (log likelihood ratio = 5.58,
p value = 0.038). In 2009, two clusters with high rates were identified both in the north-
ern and southern part of KHDSS. A significant one centered at 3.8255785 S, 39.7764419 E
was located in the Southern region (log likelihood ratio = 17.43, p value = 0.0001) covering
Ziani, Chasimba, Takaungu, Mtwapa, junju and Banda ra Salam locations. In 2012, Roka,
Matsangoni and Gede locations in the Northern region formed a significant hotspot cen-
tered at 3.3379805 S, 39.937786 E (log likelihood ratio = 7.91, p value = 0.014). Both in 2015
and 2018 two clusters were identified, Table13 but non of them was significant.
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Table 13. Cluster of locations (and their significance) detected by Spatial Scan Statistic. Monte
Carlo simulation with 999 repetitions was used to evaluate the significance of the identified

clusters.

Year Cluster Radius Locations Observed Expected Relative Likelihood p value
(Km) cases cases Risk Ratio

2006 1 6.4 Kili� Township 11 4.02 2.9 5.583 0.038
2 1.37 Mtwapa 7 3.24 2.22 2.123 0.527
3 2.98 Chsimba 6 3.4 1.8 1.03 0.904
4 2.94 Tezo 22 18.08 1.26 0.560 0.991
5 3.4 Banda ra salam 3 1.77 1.78 27.3 0.995

2009 1 13.08 Banda ra salam,junju, 98 58.77 2.01 17.43 0.0001
chasimba, takaungu,

Ziani,Mtwapa
2 4.22 Ngerenya 10 6.73 1.5 0.857 0.999

2012 1 13.96 Roka, Gede, Matsangoni 34 17.14 2.00 7.91 0.014
2 9.65 Mtwapa,junju, Ziani 54 37.19 1.52 4.60 0.254

Banda ra salam
2015 1 10.77 junju,Takaungu, ziani 127 100.67 1.36 4.815 0.182

Jaribuni, Chasimba
Kauma,Banda ra salam

2 3.19 Sokoke 4 1.59 2.54 1.599 0.989
2018 1 4.85 Roka, matsangoni 24 14.8 1.64 2.89 0.82

2 3.3 Chasimba 17 9.87 1.74 2.59 0.885
2019 1 9.71 Junju,Chasimba, 60 30.92 2.05 13.59 0.0027

Ziani, Banda ra salam
2 0.37 Tezo 3 0.36 8.32 6.35 0.974
3 1.12 Kili� township 7 1.81 3.90 5.49 0.991
4 0.52 Takaungu 4 0.72 5.56 4.90 0.999
5 0.68 takaungu Mavueni 5 1.21 4.17 4.30 0.999
6 2.84 Ngerenya, Roka 19 9.96 2.00 4.250 0.999
7 2.11 Sokoke,Kili� Township 16 7.61 2.14 2.24 0.999

Ngerenya, Tezo
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5 Discussions, Conclusion, Limitations and
Recommendations

5.1 Overview.

The primary objective of the research was to evaluate trends in LBW over time so as to
explain the malaria transmission. This chapter thus presents a discussion on the results
obtained from the previous chapter. Therea�er, conclusions, limitations and recommen-
dations are documented.

5.2 Discussion.

5.2.1 Low birthweight prevalence.

LBW prevalence in the region was 14.23%, a statistic which was higher than the na-
tional prevalence (11.5%) and slightly below the global estimate of 15.5%. Other studies
in the country include a study in Olkalou District Hospital which reported a prevalence
of 12.3%, (Muchemi et al., 2015). Our obtained prevalence was lower than 15.0% preva-
lence recorded in a study in Nyanza provisional Hospital, (Were et al., 2002). Primigravids
registered a higher prevalence when compared to multigravida. The higher prevalence
among the primigravids was also in agreement with other studies, (Mutabingwa et al.,
2005). The higher prevalence can be a�ributed to their high susceptibility to malaria in-
fection, BRABIN (1991). The two regions; Kilifi HDSS North and Kilifi HDSS South also
had a significantly di�erent prevalence with South having a higher prevalence. That im-
plied that emphasis on LBW control mechanisms needed to be done on the southern part
of the region.

5.2.2 Trends and seasonal variation of low birthweight.

Low birthweight prevalence in both parities was observed to decline steadily from 2006
to 2008. Citing references from other studies done in the same area, Mogeni et al. (2016)
in their study had also reported a declining malaria positive fraction from mid-1990 to
almost zero by 2008, thus this could explain the drastic decrease in the LBW prevalence.
Increasing trend was later observed upto 2012 upon which a decline was noted.

In general, we found a significantly decreasing trend in LBW prevalence. On further
analysis using change-point techniques, we could realize a significant change-point at
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mid 2014. The low birthweight series before the change-point indicated a significant in-
creasing trend while the series a�er the changepoint indicated a decreasing insignificant
trend. Hence relying only on the general trend over time could be misleading. Between
July, 2012 and October, 2015, the government’s mass roll-out of bed nets aimed at achiev-
ing universal coverage, Kamau et al. (2017) may have had a substantial impact on malaria
prevention, hence the beginning of the downturn in mid-2014.

LBW prevalence among the primiparity was higher throughout the study period when
compared to that of multiparity. The pa�ern of the curve had similar properties to that
of the overall prevalence. The two regions (North and South of the KHDSS) showed sig-
nificant di�erences on the LBW prevalence. The Southern region of the HDSS depicted
a higher prevalence throughout the study period. Drawing much from (Mogeni et al.,
2016), the higher prevalence in the southern region could be explained by the findings
made by the authors that malaria parasites were consistently higher in the Southern re-
gion as compared to the Northern region. In addition, the low prevalence in the Northern
region could be explained by the rising prevalence on the use of ITN which by 2009 and
2013 it had risen to 55.9% and 82.6% respectively.

Low birthweight also varied with the months of the year. The seasonal variation of LBW
could be explained by the bimodal rainfall pa�ern experienced in the area. The region
experiences a period of long rainfall in April through June and short period of rains in
October and November. Positive seasonal indices ware recorded in the months of April,
June and also in the month preceding the rainy season, July, with the month of April
registering the highest index. The positive variations could be a�ributed to the increased
parasite density due to favorable climatic conditions for mosquito breeding which lead to
increased rate of malaria infection and a significant decrease in birthweights. The lowest
prevalence was recorded in the month of October which could be a�ributed to low trans-
mission of malaria due to the preceding dry season of July to September. The dry season
is unfavorable for mosquito breeding hence reduced rate of infection. The dry months
of December and January also had indices which were greater than the expected value
which implied increased rates of LBW. The increased rates could be perceived to mean
that, deliveries in the two months (December and January) were in their last trimester
during the period of short rains experienced in the months of October and November
which favored the multiplication of malaria vectors hence increased infection. Thus, the
e�ect of LBW was felt shortly during those two months. This situation was also pointed
out in a study by Co�rell et al. (2007) where they indicated that infection at the last stage
of the pregnancy was a risk factor for LBW.

On modeling the LBW prevalence using the SARIMA model we could identify SARIMA
(0,1,1)(0,1,1)12 had the minimum AIC and BIC values hence fi�ed the data well. We
then used the model to estimate the pa�ern of the prevalence in the next 24 months. It
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was clearly noticeable that the trend was expected to follow the downward pa�ern in the
original series.

5.2.3 Endemicity of malaria.

In this section, the aim was to evaluate malaria transmission using Low Birthweight. The
metrics used are as explained by (B. J. Brabin et al., 1999). Malaria risk was assessed using
the OR for LBW among the primiparity with reference to multiparity.

The odds ratios for LBW among the primiparity in KHDSS North and South were ob-
served to seemingly assume the same pa�ern in di�erent years except in 2010 where an
increase was noticeable in South while in the North a decline was noted. In both regions
a decline from 2006 to 2008 was remarked. It then rose slightly to 2009 and dropped in
2010, though the drop was only in the north and also in the whole region. The drop in
2006-2008 and then in 2010 was also in agreement with a studies done by (Macharia et al.,
2018) and (Snow et al., 2015) where they had reported significant decrease in P. falciparum
parasites prevalence during this period. (O’Meara et al., 2008) did also described a de-
clining incidence in hospital admissions for malaria from 2004-2007. This could further
be explained by the District Health Management free Insecticide Treated Nets campaign
of September 2006 that saw the coverage increase from 0.25 to 0.5 ITN per person across
Kilifi District, Okiro et al. (2007). From 2011, an up and down trajectory with increasing
trend was observed until 2014 when a noticeable decline was remarked all through to
2017. The same scenario was the case in Macharia et al. (2018) when a decline in pf PR
was observed a�er 2014. An increasing risk was then seen in the last two years of 2018
and 2019.

Malaria infections are influenced by the changing pa�erns of rainfall. In Kenya trans-
mission is expected to increase during the period of long rains(April to June) and during
the period of short downfall of rain in October through November. Other months are
characterized as dry season where transmission intensity is expected to fall. In the two
seasons, we observed the odds ratios to have an increasing trend shortly during the pe-
riod of long rainfall, a�er which a decline was observed from the month of July. Later
on, during the onset of the short rains in October, the trend was observed to rise again
to the month of December a�er which a decline was realized. In general the higher odds
of LBW among primiparity in relation to multiparity was experienced in June while the
lowest was in February.

The adjusted OR for LBW prevalence ranged from 1.017 in Roka location to 1.889 in
Ngerenya location. It was noted that locations suggestive of malaria transmission (i.e.
with primigravids having an odds Ratio > 1.7 for LBW) were Jaribuni, Ngerenya and
Takaungu/Mavueni. The remaining locations had an OR ≤ 0.7. It was further noted
that, the prevalence of LBW among multiparity was low in locations indicative of malaria
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transmission (OR > 1.7) while the prevalence among the primiparity in the same locations
was a bit high. This phenomenon indicated that the multiparity group had developed a
significant immunity against malaria infection while the primiparity’s immune system
was yet to develop hence rendered vulnerable to infection. The same scenario was re-
ported by (Rogerson et al., 2007) where multigravids developed immunity with successive
infected pregnancies.

High proportions of Multiparity who delivered LBW babies were observed in locations
suggestive of low malaria transmission, (OR < 1.7). These locations included Junju, Mat-
sangoni and Mtwapa. The higher proportions was explained by (B. J. Brabin et al., 1999)
as a situation that was the case in low malaria transmission areas since the group in
question was yet to develop the immunity against malaria.

5.2.4 Low Birthweight Ratio of Primiparity in relation to Multiparity.

As discussed in the previous section , malaria transmission was estimated by studying
the relationship between OR for LBW among the primiparous group with reference to
the multiparity. In this section we assessed the trend in LBW ratios of primiparity to
multiparity. A significant increasing trend in the odds of LBW among the primiparity
was recorded in the whole region, p value < 0.05. Both the two regions of KHDSS had
a relatively increasing trend in the ratios but was not statistically significant, p value >
0.05.

5.2.5 Mapping of low birthweight cases.

Mapping of significant clusters with high rates of LBW prevalence was aimed at inform-
ing the health stakeholders on the specific geographical locations that needed a priori-
tized course of action. Based on the most recent study period (2019), a significant hotspot
on the southern region of KHDSS was identified and this study recommended for pre-
ventive measures to the a�ected locations.

The presence of clusters identified by the SaTScan indicated a spatial heterogeneity of
LBW prevalence in the region. Identification of these clusters provides information of the
geographical areas that needed health interventions to cab the elevated risk of LBW.

In 2019 a significant pure spatial cluster covering Junju, Chasimba, Ziani and Banda ra
Salam locations was identified. In 2006 a significant cluster was identified at Kilifi Town-
ship. Three years later a highly significant cluster in the southern region was identified
which covered Ziani, Banda ra Salam Junju, Chasimba, Takauungu and Mtwapa. In 2012
Significant cluster was located at Roka, Gede and Maatsangoni locations.
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5.3 Conclusion.

The research was directed primarily at testing whether odds ratio for LBW among the
primiparity with reference to multiparity could serve as a cheap and inexpensive tool to
define the transition of malaria risk. In that regard, this study has led to the understand-
ing of LBW prevalence pa�erns over time. Findings o�er information on the prevalent
trend of LBW to health professionals and also to organizations tracking the progress of
achieving the objective of reducing the prevalence of LBW by 30% by 2025. The general
prevalence of LBW in the region was detected to increase significantly between 2006 and
mid-2914 a�er which an insignificant decline was observed. A decreasing trend of LBW
prevalence was expected in the next 24 months beginning 2020.

The OR for LBW among the first pregnancies were in comparison with the changing
pa�erns of malaria transmission in di�erent time periods and also with the pa�erns in-
fluenced by either the dry or wet seasons of the year.

Hence OR for LBW in first pregnancies was suggestive of the prevalence of plasmodium
parasites, thus proposed as a cheap surveillance mechanism for malaria transition.

5.4 Limitations and caveats.

Part of the data collection process for May 2010 to December 2010 was a�ected by the
COVID-19 pandemic. Other unforeseen events included the Nurses strike from July 2017
to October 2017 which a�ected the smooth flow of the maternity services.

The analysis has utilized the multiplicative seasonal Auto-regressive Moving Average
model which assumes a Gaussian distribution of the data. The seasonal non-stationary
Low birthweight data with low or zero count in some months could lead to inaccu-
rate predictions from the transformed data. An alternative to multiplicative SARIMA
model is Generalized Multiplicative Seasonal Autoregressive Integrated Moving Average
(GSARIMA) model for Poisson and binomial distributed data.

Gestational age is one of the determinants of low birthweight. Our analysis lacked infor-
mation on this main predictor which could have helped understand the context of LBW
for every woman.

5.5 Recommendations.

Findings from this research suggested the following measures;
First, in order to realize a continually decreasing trend in the prevalence of LBW, the
study encouraged all expectant mothers to seek for antenatal care services during their
period of pregnancy.
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Secondly, prevalence of LBW was constantly high among the primiparity group, a condi-
tion which has been alluded to their susceptibility to malaria infection due to underlying
impaired immune system triggered by the pregnancy. The study recommends to the
health stakeholders to consider maximizing on community awareness to increase knowl-
edge on the available programs aimed at alleviating the deleterious e�ects of malaria
infection.

Thirdly, KHDSS North and KHDSS South showed a varying LBW prevalence which signi-
fied higher rate of malaria infection in South than North. The study recommended that
health interventions aimed at controlling malaria transmission be implemented in the
whole region with emphasis on the southern region.

Finally, as a cheap and simple tool to monitor the risk of malaria in a population, the study
proposes the use of odds ratios of LBW in primiparity with reference to multiparity.

5.6 Future Research

The current research was carried out in a region where malaria transmission is considered
to be stable. Areas of lower transmission may be considered by future research. Moreover,
the region under review was comparatively small, so the population need to be expanded.



69

Bibliography

Autino, B., Noris, A., Russo, R., and Castelli, F. (2012). Epidemiology of malaria in endemic
areas. Mediterranean journal of hematology and infectious diseases, 4(1).

Bahizire, E., Dramaix, M., Bigirinama, R., Balegamire, S., Balungu, Y., Meuris, S.,
D’Alessandro, U., and Donnen, P. (2018). Prevention against malaria before the first
antenatal visit and absence of anaemia at the first visit were protective from low
birth weight: results from a south kivu cohort, democratic republic of the congo.
Transactions of The Royal Society of Tropical Medicine and Hygiene, 112(8):383–392.

Beier, J. C., Killeen, G. F., and Githure, J. I. (1999). Entomologic inoculation rates and
plasmodium falciparum malaria prevalence in africa. The American journal of tropical
medicine and hygiene, 61(1):109–113.

Blanc, A. K. and Wardlaw, T. (2005). Monitoring low birth weight: an evaluation of in-
ternational estimates and an updated estimation procedure. Bulletin of the World
Health Organization, 83:178–185d.

Blencowe, H., Krasevec, J., de Onis, M., Black, R. E., An, X., Stevens, G. A., Borghi, E.,
Hayashi, C., Estevez, D., Cegolon, L., et al. (2019). National, regional, and worldwide
estimates of low birthweight in 2015, with trends from 2000: a systematic analysis.
The Lancet Global Health, 7(7):e849–e860.

BRABIN, B. (1991). An assessment of low birthweight risk in primiparae as an indicator
of malaria control in pregnancy. International journal of epidemiology, 20(1):276–283.

Brabin, B., Agbaje, S., Ahmed, Y., and Briggs, N. (1999). A birthweight nomogram for
africa, as a malaria-control indicator. Annals of Tropical Medicine & Parasitology,
93(sup1):S43–S57.

Brabin, B. J. (1983). An analysis of malaria in pregnancy in africa. Bulletin of the World
Health Organization, 61(6):1005.

Brabin, B. J. and Rogerson, S. J. (2001). The epidemiology and outcomes of maternal
malaria. In Malaria in Pregnancy, pages 44–71. CRC Press.

Cochrane, D. and Orcu�, G. H. (1949). Application of least squares regression to rela-
tionships containing auto-correlated error terms. Journal of the American statistical
association, 44(245):32–61.



70

Cot, M., Le Hesran, J. Y., Staalsoe, T., Fievet, N., Hviid, L., and Deloron, P. (2003). Mater-
nally transmi�ed antibodies to pregnancy-associated variant antigens on the surface
of erythrocytes infected with plasmodium falciparum: relation to child susceptibility
to malaria. American journal of epidemiology, 157(3):203–209.

Co�rell, G., Mary, J.-Y., Barro, D., and Cot, M. (2007). The importance of the period of
malarial infection during pregnancy on birth weight in tropical africa. The American
journal of tropical medicine and hygiene, 76(5):849–854.

Co�rell, G., Moussiliou, A., Luty, A. J., Cot, M., Fievet, N., Massougbodji, A., Deloron, P.,
and Tuikue Ndam, N. (2015). Submicroscopic plasmodium falciparum infections are
associated with maternal anemia, premature births, and low birth weight. Clinical
Infectious Diseases, 60(10):1481–1488.

De Beaudrap, P., Turyakira, E., Nabasumba, C., Tumwebaze, B., Piola, P., Boum II, Y., and
McGready, R. (2016). Timing of malaria in pregnancy and impact on infant growth
and morbidity: a cohort study in uganda. Malaria journal, 15(1):92.

Desai, M., Gutman, J., Taylor, S. M., Wiegand, R. E., Khairallah, C., Kayentao, K., Ouma,
P., Coulibaly, S. O., Kalilani, L., Mace, K. E., et al. (2016). Impact of sulfadoxine-
pyrimethamine resistance on e�ectiveness of intermi�ent preventive therapy for
malaria in pregnancy at clearing infections and preventing low birth weight. Clinical
Infectious Diseases, 62(3):323–333.

Desai, M., Ter Kuile, F. O., Nosten, F., McGready, R., Asamoa, K., Brabin, B., and Newman,
R. D. (2007). Epidemiology and burden of malaria in pregnancy. The Lancet infectious
diseases, 7(2):93–104.

Eisele, T. P., Larsen, D., and Steketee, R. W. (2010). Protective e�icacy of interventions for
preventing malaria mortality in children in plasmodium falciparum endemic areas.
International journal of epidemiology, 39(suppl_1):i88–i101.

Ekvall, H. (2003). Malaria and anemia. Current opinion in hematology, 10(2):108–114.

Gülmezoglu, A. and Garner, P. (1998). Malaria in pregnancy in endemic areas (cochrane
review). The Cochrane Library, (3).

Guya�, H. L. and Snow, R. W. (2004). Impact of malaria during pregnancy on low birth
weight in sub-saharan africa. Clinical microbiology reviews, 17(4):760–769.

Kamau, A., Nyaga, V., Bauni, E., Tsofa, B., Noor, A. M., Bejon, P., Sco�, J. A. G., and
Hammi�, L. L. (2017). Trends in bednet ownership and usage, and the e�ect of
bednets on malaria hospitalization in the kilifi health and demographic surveillance
system (khdss): 2008–2015. BMC infectious diseases, 17(1):720.



71

Kayentao, K., Garner, P., van Eijk, A. M., Naidoo, I., Roper, C., Mulokozi, A., MacArthur,
J. R., Luntamo, M., Ashorn, P., Doumbo, O. K., et al. (2013). Intermi�ent preventive
therapy for malaria during pregnancy using 2 vs 3 or more doses of sulfadoxine-
pyrimethamine and risk of low birth weight in africa: systematic review and meta-
analysis. Jama, 309(6):594–604.

KMIS (2015). Kenya malaria indicator survey 2015 [mis22]
h�ps://dhsprogram.com/pubs/pdf/mis22/mis22.pdf.

Kramer, M. S. (1987). Determinants of low birth weight: methodological assessment and
meta-analysis. Bulletin of the world health organization, 65(5):663.

Kulldor�, M. (1997). A spatial scan statistic. Communications in Statistics-Theory and
methods, 26(6):1481–1496.

Macharia, P. M., Giorgi, E., Noor, A. M., Waqo, E., Kiptui, R., Okiro, E. A., and Snow,
R. W. (2018). Spatio-temporal analysis of plasmodium falciparum prevalence to un-
derstand the past and chart the future of malaria control in kenya. Malaria journal,
17(1):340.

Menendez, C. (1995). Malaria during pregnancy: a priority area of malaria research and
control. Parasitology today, 11(5):178–183.

Metgud, C. S., Naik, V. A., and Mallapur, M. D. (2012). Factors a�ecting birth weight of a
newborn–a community based study in rural karnataka, india. PloS one, 7(7):e40040.

Mmbando, B. P., Cole-Lewis, H., Sembuche, S., Kamugisha, M., Theander, T., Lusingu,
J., and Lemnge, M. (2008). Risk factors for low birth-weight in areas with varying
malaria transmission in korogwe, tanzania: implications for malaria control. Tanza-
nia Journal of Health Research, 10(3):137–143.

Mogeni, P., Williams, T. N., Fegan, G., Nyundo, C., Bauni, E., Mwai, K., Omedo, I., Nju-
guna, P., Newton, C. R., Osier, F., et al. (2016). Age, spatial, and temporal variations
in hospital admissions with malaria in kilifi county, kenya: a 25-year longitudinal
observational study. PLoS medicine, 13(6):e1002047.

Muchemi, O. M., Echoka, E., and Makokha, A. (2015). Factors associated with low birth
weight among neonates born at olkalou district hospital, central region, kenya. Pan
African Medical Journal, 20(1).

Mutabingwa, T. K., Bolla, M. C., Li, J.-L., Domingo, G. J., Li, X., Fried, M., and Du�y, P. E.
(2005). Maternal malaria and gravidity interact to modify infant susceptibility to
malaria. PLoS Med, 2(12):e407.

Nosten, F., McGready, R., and Mutabingwa, T. (2007). Case management of malaria in
pregnancy. The Lancet infectious diseases, 7(2):118–125.



72

Nosten, F., Ter Kuile, F., Maelankirri, L., Decludt, B., and White, N. (1991). Malaria during
pregnancy in an area of unstable endemicity. Transactions of the Royal Society of
Tropical Medicine and Hygiene, 85(4):424–429.

Okiring, J., Olwoch, P., Kakuru, A., Okou, J., Ochokoru, H., Ochieng, T. A., Kajubi, R.,
Kamya, M. R., Dorsey, G., and Tusting, L. S. (2019). Household and maternal risk
factors for malaria in pregnancy in a highly endemic area of uganda: a prospective
cohort study. Malaria journal, 18(1):144.

Okiro, E. A., Hay, S. I., Gikandi, P. W., Sharif, S. K., Noor, A. M., Peshu, N., Marsh, K.,
and Snow, R. W. (2007). The decline in paediatric malaria admissions on the coast
of kenya. Malaria journal, 6(1):151.

O’Meara, W. P., Bejon, P., Mwangi, T. W., Okiro, E. A., Peshu, N., Snow, R. W., Newton,
C. R., and Marsh, K. (2008). E�ect of a fall in malaria transmission on morbidity and
mortality in kilifi, kenya. The lancet, 372(9649):1555–1562.

Ouma, P., Van Eijk, A. M., Hamel, M. J., Parise, M., Ayisi, J. G., Otieno, K., Kager, P. A.,
and Slutsker, L. (2007). Malaria and anaemia among pregnant women at first ante-
natal clinic visit in kisumu, western kenya. Tropical Medicine & International Health,
12(12):1515–1523.

Peters, P. J., Thigpen, M. C., Parise, M. E., and Newman, R. D. (2007). Safety and toxicity
of sulfadoxine/pyrimethamine. Drug safety, 30(6):481–501.

Robert, B., Alec, I., and Thomson, P. (2004). The world health report: 2004: changing
history.

Rogerson, S. J. (2017). Management of malaria in pregnancy. The Indian journal of medical
research, 146(3):328.

Rogerson, S. J., Hviid, L., Du�y, P. E., Leke, R. F., and Taylor, D. W. (2007). Malaria in
pregnancy: pathogenesis and immunity. The Lancet infectious diseases, 7(2):105–117.

Sen, P. K. (1968). Estimates of the regression coe�icient based on kendall’s tau. Journal
of the American statistical association, 63(324):1379–1389.

Shulman, C., Marshall, T., Dorman, E., Bulmer, J., Cu�s, F., Peshu, N., and Marsh, K.
(2001). Malaria in pregnancy: adverse e�ects on haemoglobin levels and birth-
weight in primigravidae and multigravidae. Tropical Medicine & International Health,
6(10):770–778.

Snow, R., Peshu, N., Forster, D., Mwenesi, H., and Marsh, K. (1992). The role of shops in the
treatment and prevention of childhood malaria on the coast of kenya. Transactions
of the Royal Society of Tropical Medicine and Hygiene, 86(3):237–239.



73

Snow, R. W., Kibuchi, E., Karuri, S. W., Sang, G., Gitonga, C. W., Mwandawiro, C., Bejon,
P., and Noor, A. M. (2015). Changing malaria prevalence on the kenyan coast since
1974: climate, drugs and vector control. Plos one, 10(6):e0128792.

Steketee, R. W., Wirima, J. J., Hightower, A. W., Slutsker, L., Heymann, D. L., and Breman,
J. G. (1996). The e�ect of malaria and malaria prevention in pregnancy on o�spring
birthweight, prematurity, and intrauterine growth retardation in rural malawi. The
American journal of tropical medicine and hygiene, 55(1_Suppl):33–41.

Unger, H. W., Rosanas-Urgell, A., Robinson, L. J., Ome-Kaius, M., Jally, S., Umbers, A. J.,
Pomat, W., Mueller, I., Ka�enberg, E., and Rogerson, S. J. (2019). Microscopic and
submicroscopic plasmodium falciparum infection, maternal anaemia and adverse
pregnancy outcomes in papua new guinea: a cohort study. Malaria journal, 18(1):302.

Walker, P. G., ter Kuile, F. O., Garske, T., Menendez, C., and Ghani, A. C. (2014). Esti-
mated risk of placental infection and low birthweight a�ributable to plasmodium
falciparum malaria in africa in 2010: a modelling study. The Lancet Global Health,
2(8):e460–e467.

Wardlaw, T. M. (2004). Low birthweight: country, regional and global estimates. Unicef.

Were, F., Mukhwana, B., and Musoke, R. (2002). Neonatal survival of infants less than
2000 grams born at kenya�a national hospital. East African medical journal, 79(2):77–
79.

WHO (2019). World malaria report 2019. geneva: World health organization; 2019.


	Abstract
	Declaration and Approval
	Dedication
	List of Figures
	List of Tables
	Abbreviations.
	Acknowledgments
	INTRODUCTION
	Backgroud
	Statement of the problem.
	Objectives
	Main objective.

	Significance of the study
	Structure of the thesis.

	LITERATURE REVIEW
	Overview
	Low birthweight
	Malaria
	Malaria during pregnancy.
	Endemicity of Malaria and LBW.
	Anemia and malaria
	Malaria in pregnancy: The situation in Kenya
	Strategies to prevent malaria in pregnancy
	Insecticide treated nets
	Intermittent preventive treatment in pregnancy (IPTp)
	Effective case management


	MATERIAL AND METHODS
	Overview
	Study Design.
	Study area.
	Study population
	Ethical Approval
	Data extraction.
	Inclusion criteria.
	Statistical data analysis.
	Mann-Kendall (MK) test for trend.
	Change point analysis (CPA)
	Change point detection.

	Concept of time series.
	Time series components.
	Trend component.
	Seasonal variations.
	Cyclical fluctuation:
	Irregular variation.
	Time series decomposition.
	Differencing
	Stationarity.
	Autocorrelation function (ACF)
	Partial autocorrelation function (PACF)
	Cochrane-Orcutt method.

	Time series models
	Autoregressive (AR) model.
	Moving Average (MA) model
	Autoregressive Moving Average model (ARMA) 
	Auto-regressive integrated moving average model (ARIMA)
	Seasonal Autoregressive integrated moving average (SARIMA) model.

	Box-Jenkins model building steps.
	Model identification.
	Parameter estimation.
	Maximum likelihood estimation (MLE).
	Diagnostic check of the model
	Forecasting

	Analysis of Seasonal variation.
	Malaria endemicity.
	Spatial Pattern analysis.
	Cluster analysis.
	Spatial autocorrelation.
	Spatial pattern detection.
	Spatial scan Statistic.


	DATA ANALYSIS AND RESULTS
	Introduction
	Demographic characteristics
	Birthweight.
	Low birthweight.
	Low birthweight trends. 

	Trend significance and change point analysis of LBW prevalence.
	Mann-Kendall trend outcome.
	Change point analysis (CPA).

	Interaction between trend and change point.
	Time series modelling.
	Stationarity of the LBW prevalence data.
	Model identification: Box-Jenkins Approach.
	Parameter estimation.
	Model Diagnostics.
	Predicted trend using ARIMA (0,1,1) (0,1,1)12.
	Seasonal variation of LBW prevalence.
	Malaria endemicity.
	Trend in Low Birthweight ratios of Primiparity in relation to Multiparity.
	Spatial distribution of Low birthweight cases.
	Mapping of Low Birthweight prevalence.
	Spatial Scan Statistic results


	Discussions, Conclusion, Limitations and Recommendations
	Overview.
	Discussion.
	Low birthweight prevalence.
	Trends and seasonal variation of low birthweight.
	Endemicity of malaria.
	Low Birthweight Ratio of Primiparity in relation to Multiparity.
	Mapping of low birthweight cases.

	Conclusion.
	Limitations and caveats.
	Recommendations.
	Future Research

	Bibliography

