

University of Nairobi School of Physical Sciences Department of Physics

A HYBRID OF FUZZY LOGIC AND SLIDING MODE TECHNIQUES FOR PHOTOVOLTAIC MAXIMUM POWER POINT TRACKING SYSTEMS UNDER PARTIAL SHADING

by

ROBINSON NDEGWA GATHONI

Bsc (Physics-University of Nairobi), MSc (Physics-University of Nairobi), MSc (Satellite and Orbital Platforms-University of La Sapienza, Rome Italy)

Registration No. 180/51887/2017

A thesis Submitted in Fulfillment of the Requirements for the award of the Degree of Doctor of Philosophy in Physics of the University of Nairobi

November, 2020

Declaration

I declare that this thesis is my original work, and has not presented elsewhere for research. Where other people's research has been used, this has been properly noted and cited in keeping with the University of Nairobi 's requirements.

Robinson Ndegwa		
I80/51887/2017		
Department of Physics		
School of Physical Sciences		
University of Nairobi	meena	20/11/2020
Signature	the C	Date
This thesis is submitted for ϵ	examination with	our approval as research supervisors:
Dr. Elijah Ayieta		
University of Nairobi		
Department of Physics		

Department of Physics P.O. Box 30197 - 00100, Nairobi, Kenya ayietaeo@uonbi.ac.ke

Spice

Signature

Prof. Justus Simiyu

Maasai Mara University Department of Mathematics and Physical Sciences P.O. Box 861 - 20500, Narok, Kenya justus@mmarau.ac.ke

Signature

20/11/2020

Date...

.

Dedication

This thesis is dedicated to the family of Gathoni (mum, my wife and children, my brother's family) and my best friends who have shown me that shared information is a knowledge acquired. I thank and admire them for their continued support, encouragement, inspiration and unconditional love.

Acknowledgments

I would like to express my special gratitude and appreciation to the people below who shared their wholehearted advice for my research and proved to be a milestone contributors towards my project's success:

To my supervisors Prof. Justus Simiyu and Dr. Elijah Ayieta for their continued critical support and encouragement. Thank you for your commitment and devotion in ensuring this project has turned out to be a good quality work. To our competent Principal of the College of Biological and Physical Sciences, Prof. Bernard Aduda, who, despite his tight schedules, spent his time updating, correcting and providing technical advice for all the research papers that were published from this study, despite not having been included as one of the authors. To my former student Esther Ngugi of Solinc Kenya Ltd, for her support during data collection process. To my Physics department colleagues, who have helped me reach this point of my education in various ways.

Thanks to my friends who have been with me through thick and thin, encouraging me and showing support even in times of failure, and making sure I did not give up. To my family for standing and praying with me, our prayers have been answered. Above all, I would like to thank the All-Powerful God, the creator of all things, the giver of power and knowledge for having given me the courage to face all adversities and emerge victorious.

Abstract

Solar energy harvesting using photovoltaic (PV) modules have been one of the most common sources of renewable energy for several decades. These modules have been used as a source of electricity for households, industries, in stand-alone, and grid-connected solar plants. The modules consist of semi-conductor solar cells combined in series and parallel. In order to make a solar system, the modules are usually linked in series. The performance of a solar system is affected by environmental factors like varying radiance and temperatures, shadowing caused by high-rise buildings, birds, fog, trees and dust. Such varying environmental conditions affect a solar cell's efficiency. Nevertheless, given all the effort made to mitigate the impact of all these environmental threats, some of the natural occurrences such as varying radiance, clouds, dust, wind-speed and change in temperature, can not be done away with. To improve the efficiency of the entire solar system, power extraction must be optimized under all weather conditions.

Fuzzy logic and sliding mode techniques are efficient, fast and reliable methods of tracking the maximum power point that have been used in this study. The application of these two approaches substantially increases system efficiency for all environmental conditions including partial shading instances. The sliding mode technique is a very fast, stable and robust algorithm that work effectively under very stable weather condition while the fuzzy logic has been exploited under partial shading conditions. Both methods rely heavily on a good understanding of the characteristics of PV modules, which are studied using I-V, P-V or P-I curves. In this work, three new algorithms have been used to simulate and model the characteristics of a PV module.

The algorithms are based on a single diode equivalent circuit, which has been chosen due to the simplicity of simulation and modeling and provides a fast convergence time. The algorithms are classified according to the method of obtaining the best values of the unknown five parameters of the diode model. Ideality factor (A), saturation current (I_o) , photocurrent (I_{ph}) , series (R_s) and parallel (R_p) resistances are the five unknown parameters to be determined for characterization of a PV module using a diode model. These parameters have been extracted using the I-V curve's three critical points at short circuit point (SCP), open circuit point (OCP) and maximum power point (MPP). The first algorithm has been based on the choice of ideality factor below the optimal ideality factor (A_o) , such that $0 \le A \le A_o$, whereas the other parameters depends heavily on the choice of A. The second algorithm has been based on the choice of ideality factor in the neighborhood of A_o and the third algorithm has been based on $A \ge A_o$. The three methods have been utilized to characterize the solar module using I-V and P-V curves and have output power errors of less than 0.5%.

For proof of concept of the three algorithms, PV module with IEC61215 specifications have carefully selected from Kyocera- KC130CGT. Additional experimental work has been carried out at Solinc Kenya Ltd using Solinc 60Wp and 250Wp PV modules, similar to those mounted on the rooftop of the building in Chiromo at School of Physical Sciences.

Table of Contents

D	eclar	ation	i
D	edica	tion	ii
A	cknov	wledgemnts	iii
A	bstra	\mathbf{ct}	iv
Ta	able o	of Contents v	riii
Li	st of	Abbreviations	ix
Li	st of	Figures	xi
Li	st of	Tables	xii
1	Intr	oduction	1
	1.1	Background	1
	1.2	Statement of the Problem	3
	1.3	Objectives of the Study	4
	1.4	Justification and Significance of the Study	4
2	Lite	erature Review	6
	2.1	Stand-alone, Grid and Hybrid Photovoltaic systems	6
	2.2	Photovoltaic models	7
	2.3	Conventional Techniques for MPPT of a PV System	8
	2.4	Soft computing Techniques for MPPT of a PV System	9

3	The	eory	12
	3.1	A single diode equivalent circuit model	12
		3.1.1 Analysis of a PV model using the three crucial points from an I-V graph	13
		3.1.2 Analysis of the five-unknown parameters	14
		3.1.3 Improved analysis of I-V relationship using Newton-Raphson technique .	21
		3.1.4 I-V and P-V characterization using NOCT and actual irradiance	22
		3.1.5 PV MPPT based on boost converter model	24
		3.1.6 Sliding mode technique (SMT) for PV MPPT	27
		3.1.7 Fuzzy logic technique	31
4	Res	search Design and Methodology	35
	4.1	Introduction	35
	4.2	Photovoltaic model algorithms	36
		4.2.1 Algorithm for A, R_s and R_{sh} analyses	36
		4.2.2 Algorithm of five-model parameters for $A < A_o$	37
		4.2.3 Algorithm of five-model parameters for $A \ge A_o$	37
		4.2.4 Algorithm of five-model parameters for $1 \le A \le A_o \ldots \ldots \ldots \ldots$	37
		4.2.5 Photovoltaic PV model using Matlab	40
	4.3	Boost converter using MATLAB	40
4.4 Sliding mode based MPPT controller		Sliding mode based MPPT controller	43
	4.5	Fuzzy logic based MPPT controller	43
		4.5.1 Fuzzy logic designer	43
		4.5.2 Fuzzy membership functions (MFs) and rules	46
	4.6	Partial shading of a P-V system using MATLAB	46
5	Res	sult Analysis and Discussion	48
	5.1	Extraction of five-model parameter for $A \leq A_o \ldots \ldots \ldots \ldots \ldots$	50
	5.2	Analysis of I-V and P-V curves for $A \leq A_o$	53
	5.3	Extraction of five-model parameter for $A \ge A_o \ldots \ldots \ldots \ldots \ldots$	53
	5.4	Analysis of I-V and P-V curves for $A \ge A_o$	59
	5.5	Analysis of five-parameters using $0 \le A \le A_o$	59

	5.6	Comparison of extracted parameters with other approaches in literature for	
		KC130GT	65
	5.7	I-V and P-V curves for Solinc 60Wp, KC130GT and Solinc 250Wp modules using	
		the four approaches	65
	5.8	I-V and P-V characterization at ambient temperature, NOCT and actual irradiance	69
	5.9	I-V and P-V Curves under Partial Shading	72
6	Con	clusion and Recommendations	74
Re	References		90
A	open	dices	91

List of Abbreviations

A	Diode ideality factor	opt	Optimal
A_o	Optimal ideality factor	P_{max}	Maximum power (W)
D	Diode diffusion factor independent of temperature	q	Electron $charge(C)$
E_g	Band gap energy (eV)	R_s	Series resistance (Ω)
err	Error	R_{sh}	Shunt resistance (Ω)
Ι	Module output current (A)	s_a	Actual irradiance (W/m^2)
I_o	Saturation current (A)	s_{STC}	Irradiance at standard test condition
I_{mpp}	Maximum power point current (A)	STC	Standard test conditions
I_{ph}	Light-generated current (A)	T_a	Cell temperature (K)
I_{sc}	Short-circuit current (A)	T_{STC}	STC temperature (K)
J_o	Dark saturation current density	V	Module output voltage (V)
k	Boltzmann constant (JK^{-1})	V_{mpp}	Maximum power point voltage (V)
mpp	Maximum power point	V_{oc}	Open-circuit voltage (V)
N_s	Number of photovoltaic cells	IEC	International Electrotechnical Com-
NOCT	Nominal operating cell temperature		mission

List of Figures

3.1	A PV cell equivalent circuit using a single diode model	12
3.2	A PV system model connected to a DC-DC boost converter and MPPT controller	24
3.3	Duty cycle and sliding surface responses away from MPP	30
3.4	Fuzzy MPPT input and output variables	31
3.5	Duty cycle and sliding surface responses away from MPP	32
3.6	Fuzzy degree of membership versus input variable error e	33
3.7	Fuzzy degree of membership versus input variable change in error Δe	33
3.8	Fuzzy degree of membership versus input variable change in error Δe	34
4.1	A block diagram of the Photovoltaic solar system	35
4.2	An algorithm for evaluating the A, R_s and R_{sh} using I_{sc}, I_{mpp}, V_{mpp} and V_{oc} .	36
4.3	An algorithm for evaluating A_o , $A < A_o$, I_{ph} , I_o , R_{sh} and R_s	38
4.4	An algorithm for evaluating A_o , $A \ge A_o$, I_{ph} , I_o , R_{sh} and R_s	39
4.5	An algorithm for calculating current (I) using Newton-Raphson technique and	
	plotting IV and PV curves	41
4.6	Photovoltaic PV Model Using Matlab-Simulink	42
4.7	A DC-DC boost converter circuit using Matlab-Simulink	42
4.8	A Hall-effect current sensor and voltage drop circuit using Proteus Software	43
4.9	Sliding Mode Based MPPT Controller for Solar systems using Matlab	44
4.10	A Fuzzy Logic Based MPPT Controller using Matlab	44
4.11	A Fuzzy Logic Based MPPT Controller using Matlab	45
4.12	Fuzzy Logic Designer	45
4.13	Fuzzy Membership Functions (MFs) and Rules	46
4.14	Partial shading of a PV module using Matlab	47

4.15	A hybrid Fuzzy Logic sliding mode Based MPPT Controller using Matlab	47
5.1	I-V and P-V curves for Solinc 60W using Gsola XJCM-10A solar simulator	49
5.2	I-V and P-V curves for Solinc 250W using Gsola XJCM-10A solar simulator	49
5.3	A graph of ideality factor against saturation current (A)	50
5.4	A graph of R_{sh} versus R_s for Solinc 60Wp $\ldots \ldots \ldots$	51
5.5	A graph of R_{sh} versus R_s for KC130GT	52
5.6	A graph of R_{sh} versus R_s for Soline 250Wp	52
5.7	A graph of (a) current vs voltage (b) power vs voltage for Solinc 60Wp, $A \leq A_o$	54
5.8	A graph of (a) current vs voltage (b) power vs voltage for KC130GT, $A \leq A_o$	55
5.9	A graph of (a) current vs voltage (b) power vs voltage for Solinc 250Wp, $A \leq A_o$	56
5.10	A graph of R_{sh} versus R_s for Solinc 60Wp $\ldots \ldots \ldots$	57
5.11	A graph of R_{sh} versus R_s for KC130GT	58
5.12	A graph of R_{sh} versus R_s for Soline 250Wp	58
5.13	A graph of (a) current vs voltage (b) power vs voltage for Solinc 60Wp for $A \ge A_o$	60
5.14	A graph of (a) current vs voltage (b) power vs voltage for KC130GT for $A \ge A_o$	61
5.15	A graph of (a) current vs voltage (b) power vs voltage for Solinc 250Wp for $A \ge A_o$	62
5.16	A graph of (a) current vs voltage (b) power vs voltage for Solinc 60Wp, $0 \leq A \leq$	
	<i>A</i> _o	66
5.17	A graph of (a) current vs voltage (b) power vs voltage for KC130GT, $0 \leq A \leq A_o$	67
5.18	A graph of (a) current vs voltage (b) power vs voltage for Solinc 250Wp, 0 \leq	
	$A \leq A_o \ldots \ldots$	68
5.19	A graph of current versus voltage for KC130GT at different irradiance levels	70
5.20	A graph of power versus voltage for KC130GT at different irradiance levels	70
5.21	A graph of current versus voltage for KC130GT showing various temperatures	
	curves at $1000W/m^2$	71
5.22	A graph of power versus voltage for KC130GT showing various temperatures	
	curves at $1000W/m^2$	71
5.23	Graphs of current and power versus voltage for KC130GT showing local and	
	global MPPs	73

List of Tables

3.1	Fuzzy rules	34
5.1	Soline 60Wp, Kyocera KC130GT and Soline 250Wp photovoltaic modules data	
	at STC	48
5.2	Extracted parameters for Solinc 60Wp, Kyocera KC130GT and Solinc 250Wp $$	
	PV modules	50
5.3	Extracted parameters for Solinc 60Wp, Kyocera KC130GT and Solinc 250Wp $$	
	photovoltaic modules for $A \ge A_o$	57
5.4	Extracted parameters and simulated Data for Solinc 60 Wp \ldots \ldots \ldots	64
5.5	Extracted parameters and simulated data for KC130GT	64
5.6	Extracted parameters and simulated data for Solinc 250Wp	64
5.7	Extracted parameters and simulated data for KC130GT	65
5.8	Simulated data and extracted parameters values for $\rm KC130GT$ at air temperature	
	of $20^{\circ}C$ and NOCT of $47^{\circ}C$ and different irradiance levels $\ldots \ldots \ldots \ldots$	69
5.9	Simulated data and extracted model parameters values for KC130GT photo-	
	voltaic module at various air and NOCT temperatures for $1000W/m^2$ irradiance	
	level	72

Chapter 1

Introduction

1.1 Background

Solar photovoltaic (PV) modules have been used as a source of electricity for decades in areas without grid-connected power supplies. Using solar photovoltaic system as a source of energy is beneficial over fossil fuels since it has no environmental issues like atmospheric greenhouse gas emissions that result to acidic rain, depletion of ozone layers and global climate change (Dincer, 2000; Gunerhan *et al.*, 2008; Barreto, 2018; Ozturk and Dincer, 2019). Solar power is inexhaustible, and remains a major source of renewable energy (Twidell and Weir, 2015). Non-renewable energy sources such as oil , natural gas, coal and bituminous rocks emit air pollutants such as methane, carbon dioxide and nitrogen dioxide, and are the leading environmental threat to pediatric health and equity worldwide (Perera, 2018). PV solar system therefore remains a major source of clean energy which greatly supplements non-renewable sources (Bielecki *et al.*, 2020; Dixit, 2020; Liu *et al.*, 2020; Taghizadeh-Hesary *et al.*, 2019).

PV modules are composed of solar cells which convert solar energy to electricity (Sze and Ng, 2006; Mertens, 2018). Solar cells are connected in series and parallel to form a solar module that harvest useful energy (Würfel and Würfel, 2016). The solar cells are clustered together in series during the assembly process, and bypass diodes are added to solve one of the most common problems faced by solar systems where solar cells receive non-uniform irradiance and are partially shaded (Vemuru *et al.*, 2012; Robles-Campos *et al.*, 2019; Vieira *et al.*, 2020; Kruglykhin *et al.*, 2020). The major challenges solar modules face when partially shaded are that the cells under shadowing act as reverse biased diodes generating reverse voltages

(Hanitsch *et al.*, 2001). The reverse biased cells absorb power instead of producing it, that could contribute to heat dissipation. The heating causes thermal stress leading to hot spots in nearby cells (Silvestre and Chouder, 2008). Applying the by-pass diode to minimize the effect of partial shading, results in multiple maximum power points (MPPs) (Hu *et al.*, 2012; Mäki and Valkealahti, 2014; Ramyar *et al.*, 2016). The distinction of local and global maximum power points in partially shaded solar systems remains a research topic that has been explored in this research. This has been achieved by investigating the capabilities of the fuzzy logic and sliding mode techniques for maximum power point tracking (MPPT). The method of Fuzzy Logic can distinguish the local MPP from the global MPP and has been developed to trace the global MPP (Eydi *et al.*, 2020). However, the sliding mode technique fails to track the global MPP. These approaches depend on the characterization of solar system using current, voltage and power relationships.

Maximum power point (P_{mpp}) , short circuit current (I_{sc}) and open circuit voltage (V_{oc}) are main operating points that characterize the solar system graphically in I-V, P-V or P-I curve (Walker, 2001; Salam *et al.*, 2013). A clear understanding of the I-V and P-V characteristics is important before implementing an MPPT controller (Eltamaly and Abdelaziz, 2019; Ahmad *et al.*, 2019; Mikkili *et al.*, 2020). This helps to design the topology of a DC-DC converter whose duty cycle is powered by the MPPT controller's output (Raghavendra *et al.*, 2020). For stand-alone, grid and hybrid PV systems, the DC-DC converter interfaces the solar modules with a load that can be either a battery bank or a DC-AC inverter. An MPPT controller can be implemented using an embedded system based on either microcontrollers, field-programmable gate array (FPGA) or digital signal processor (DSP) (Fares *et al.*, 2013).

Solar system modeling and computer-aided simulations are important for understanding its characteristics, efficiency and performance, and for assessing the effects of solar irradiance and temperatures (Nguyen and Lehman, 2006; Dey *et al.*, 2016). Modeling and simulation are also critical for evaluating the efficiency of a PV system before its implementation. For PV solar installers who want to assess the performance and efficiency of different PV system before implementation, the first prerequisite is to have a reliable and efficient model that mimic the actual system (Seyedmahmoudian *et al.*, 2013).

A single diode equivalent circuit has been widely use to model the PV cells due to availability

of powerful analytical software such as open source GNU octave (Chin *et al.*, 2015). Several algorithms have been developed to determine the five-model parameters of a single diode (Jordehi, 2016). These methods can be classified as analytical methods (Chan and Phang, 1987), numerical methods (Ghani *et al.*, 2014) and metaheuristic methods using evolutionary algorithms and soft computing (Saha *et al.*, 2018). A fast and accurate analytical method for determining photovoltaic module parameters using a single diode mode has been applied in this work to characterize the PV modules before applying them in a standalone or grid- connected solar power plant.

In this research, a novel hybrid method that incorporates fuzzy logic (FL) and sliding mode algorithm to track the maximum power under partial shading is explored, which is a departure from conventional hybrid approaches based on modified hill climbing FL controller (HC-FLC) and adaptive perturb and observation (P&O-FLC) (Boukenoui and Mellit, 2019; Zou *et al.*, 2019).

1.2 Statement of the Problem

PV modules have become a common source of electric power, and have been used to produce grid-connected and stand-alone electricity to complement traditional power generation methods. Nevertheless, despite the abundance of solar energy worldwide, these have hardly been utilized especially in developing nations. The solar modules available on the market are in separate pieces and require skilled personnel to professionally install them. The standalone PV system consists of several modules, a battery pack, a wire harness and DC-AC inverter which is most commonly used for domestic use. The most suitable 1KW Solar Power System for domestic use would require four modules of 250 Watts, wire harness, deep cycle battery bank and powerful inverter. This is not affordable to most domestic users needing such a system. However, PV systems with sturdy MPPT boost efficiency in extracting output power by more than 70 percent. This is beneficial because there is less demand for more solar modules which leads to lower installation costs. Additionally, a PV system may be the best alternative to supplement traditional methods of generating power.

Partial shading of a PV device significantly reduces the output power from the PV system. The use of by- pass diodes to mitigate the partial shading effects generate multiple MPPs. These multiple MPPs are composed of several local MPPs and a single global MPP requiring MPPT controllers that can identify their various positions and pin the global one out. Conventional MPPT controllers can not differentiate the multiple MPPs and their operation in such a situation is impaired, resulting in a reduction of their performance to less than 70%. The hybrid Fuzzy-logic and sliding-mode controller presented in this work has been designed to separate the global MPP from the local MPPs in order to significantly improve the power efficiency up to 75 percent.

1.3 Objectives of the Study

The overall objective of this research has been to develop a hybrid Fuzzy-logic and slidingmode based MPPT for a PV system that is robust, efficient and stable compared with the conventional controllers under partial shading

The specific objectives of this study have been

- (i) To study and analyze the PV module's I-V and P-V characterization using mathematical models of diode equivalent circuit
- (ii) To apply the model in objective (i) above, to a hybrid Fuzzy-logic and sliding-mode based MPPT
- (iii) To simulate and design a boost converter for the above MPPT
- (iv) To assess the performance of the MPPT under partial shading

1.4 Justification and Significance of the Study

PV solar systems have been an efficient renewable electric power generator. The use of solar modules to transform solar radiation into electric power has been used to generate electricity in many situations where electricity is not available. Despite the availability of solar irradiation over a limited span of a day and varying irradiation levels, solar energy remains the main source of renewable power for grid-connected distribution and domestic applications.

The electric power produced by the solar modules is proportional to the solar irradiance levels. However, other factors such as atmospheric temperature and solar cell efficiency affect the production of power from solar system. Increased temperature in the atmosphere raises the surface temperature of the module and affects power output. The characteristic curves of current against voltage and power against voltage may be used to assess the performance of the PV system. The most important parameters from the curves are current and voltage at MPP, which have a specific point of operation. The direct transfer of solar energy is based on commercially off-the-shelf solar modules and solar rechargeable batteries connected directly to DC-AC inverters. In partially shaded conditions, these systems are less efficient, and very unstable. However, solar systems with an embedded MPPT improve efficiency in power harvesting.

Traditionally perturb-observe and hill-climbing MPPT algorithms have been the most utilized techniques due to their practicality in analogue and digital circuitry. The sliding mode technique has better and very high efficiency, and quick convergence time in an un-shaded environment. However, the technique fails to distinguish the local and global MPP under shaded environment. Soft computing algorithms are also emerging which have increased MPPT performance even under partial shading. Fuzzy logic is one of the most popular and powerful soft computing algorithms that track the global MPP efficiently when applied in partially shaded situations . A hybrid system incorporating Fuzzy logic and sliding mode techniques offers a fast, reliable and very stable MPPT controller in all weather conditions.

Chapter 2

Literature Review

2.1 Stand-alone, Grid and Hybrid Photovoltaic systems

Electric power consumption has greatly increased throughout the world due to population growth which has led to an expansion in the number of real estate and rapid industrial development Lu et al. (2019). This has given rise to alternative electric power sources other than the conventional centralized sources such as hydroelectric, geothermal, fossil fuels and nuclear power plants (Ebhota and Jen, 2020). Renewable energy sources such as solar, tidal energy, biomass, and wind have emerged as an alternative to supplement the rapid rise in demand for energy (García Vera et al., 2019). The declines in costs of production and improvements in efficiency for photovoltaic solar cells have resulted in an increase in their production, resulting in the availability of affordable and efficient solar modules (Raugei et al., 2012; Kittner et al., 2016; Brockway et al., 2019). Demand for stand-alone, grid-connected and hybrid photovoltaic solar systems is therefore rising exponentially (Yang et al., 2010; Goel and Sharma, 2017; Lasnier and Juen, 2017). The standalone system is an independent decentralized power source that is optimized to supply electricity for a local demand (Kaundinya et al., 2009). The hybrid system consists of two or more unrelated different sources of electric power, while in grid-connected systems, the excess electricity generated from standalone sources is pumped into national electricity supply lines (Meinhardt and Cramer, 2000).

Some of the factors affecting the use of PV systems include the availability of solar irradiation, effects of ambient condition, low power conversion efficiency and power versus current non-linearity (Meral and Dincer, 2011). Additionally, standalone systems use power storage batteries that raise installation costs and suffer from rapid power discharge (Bensaha *et al.*, 2020; Khatib and Muhsen, 2020). These drawbacks have attracted many research studies for modeling, simulating and analyzing solar photovoltaic (PV) modules before being mounted in a PV system facility, which helps to understand their behavior and characteristics in real environment (Jordehi, 2016; Abbassi *et al.*, 2018).

2.2 Photovoltaic models

A photovoltaic (PV) cell / module can be modeled using single diode, double diode and triple diode equivalent circuit in an effort to understand its non-linear current-voltage (I-V) and power-voltage (P-V) characteristics (Rauschenbach, 2012; Ogliari and Leva, 2019). The single-diode model (SDM) is less complex with five unknown parameters whereas the doublediode model is more complex, with seven unknown parameters (Khatibi *et al.*, 2019). The triple diode model (TDM) is a complex model with nine unknown parameters (Segev *et al.*, 2012; Qais *et al.*, 2020). The extraction of these unknown parameters has been a longstanding and common subject of research to this day.

For simplicity, mathematical characterization and modeling of a solar cell has been based on a single-diode equivalent circuit (Phang *et al.*, 1984b; Chan and Phang, 1987). The main purpose of modeling a solar module using a single diode equivalent circuit is to obtain optimum parameters so that the diode model matches the experimental data (Batzelis, 2019). In a single-diode model the main parameters to be determined are the photocurrent (I_{ph}), diode ideality factors (A), saturation current (I_0), series (R_s) and shunt (R_{sh}) resistances (De Soto *et al.*, 2006). There are several single-diode techniques that are based on five-, four- or threeparameter models Humada *et al.* (2016). These models have varying levels of accuracy and different mathematical derivations. In the four-parameter model, the shunt resistance is considered inherently high, and its contribution is ignored, whereas in the three-parameter model both series and shunt resistance are disregarded (Chenni *et al.*, 2007; Khezzar *et al.*, 2014). Neglecting the shunt resistance effects in the four-parameter model is a major drawback since the model fails to fit the experimental I–V curve when exposed to high temperature variations (Dongue *et al.*, 2012; Ma *et al.*, 2014). The five-parameter model is an all-inclusive approach which is superior than four and three parameter models in consideration of the fact that it take into account the parasitic effects of series and shunt resistances (Celik and Acikgoz, 2007).

Several methods for estimating the five-model parameters have been suggested, which can be classified according to analytical approaches, numerical approaches and metaheuristic approaches using soft-computing and evolution algorithms or their hybrids (Khan *et al.*, 2019). In this report, analytical and numerical approaches have been applied to arrive at fast, accurate and practical results for five-model parameters that are easily applicable for maximum power tracking analyses.

2.3 Conventional Techniques for MPPT of a PV System

Perturb and observe algorithm (P&O) is one of the conventional methods widely used in research and industrial solar PV MPPT due to its simplicity and ease of implementation, using both digital and analog technology (Liu and Lopes, 2004; Femia *et al.*, 2005; Abdel-Salam *et al.*, 2020). Despite its popularity, the technique fails to track MPP when solar irradiance fluctuates and it often oscillates near MPP even in steady state conditions leading to power losses. Modified P&O MPPT methods have been reported that tries to overcome these drawbacks and improve its efficiency (Belkaid *et al.*, 2017; Alik and Jusoh, 2017; Bhan *et al.*, 2019). Likewise, the P&O efficiency has been enhanced using variable step size approaches (Al-Diab and Sourkounis, 2010; Duan *et al.*, 2015; Dadfar *et al.*, 2020). Systems based on microcontrollers, FPGA and DSP that affected by the PV module's intrinsic capacitance have been used to instigate reliable P&O (Huynh and Cho, 1996; Hua *et al.*, 1998; Jiang *et al.*, 2005; Dadfar *et al.*, 2020).

Hill climbing (HC) algorithm is similarly common MPPT method which relies on DC-DC converter's duty-cycle perturbation (Xiao and Dunford, 2004; Bahari *et al.*, 2016; Ulinuha and Zulfikri, 2020). A hybrid of fuzzy logic and HC MPPT methods shows imperative performance in varying weather conditions (Alajmi *et al.*, 2010). An improved MPPT control strategy has been studied based on incremental conductance algorithms to increase the performance and economy of PV systems (Nafeh *et al.*, 1998; Shang *et al.*, 2020; Shengqing *et al.*, 2020). Other popular conventional MPPT techniques includes ripple correlation control (RCC) (Midya *et al.*, 1996; Krein, 1999; Esram *et al.*, 2006), extremum Seeking Control (ESC) (Bratcu *et al.*, 2008; Leyva *et al.*, 2006; Yau and Wu, 2011; Li *et al.*, 2011; Brunton *et al.*, 2010; Lei *et al.*, 2010; Leyva *et al.*, 2011), ESC based on sliding Mode (Yau *et al.*, 2013), ESC based on Newton-Like

(Zazo *et al.*, 2012; Li *et al.*, 2014), fractional open circuit voltage (FVOC) (Ahmad, 2010; Huang and Hsu, 2016; Noguchi *et al.*, 2002), fractional short circuit current (FSCC) (Noguchi *et al.*, 2002; Sher *et al.*, 2015; Sandali *et al.*, 2014; Owusu-Nyarko *et al.*, 2019) and sliding mode control (SMC) (De Soto *et al.*, 2006; Levron and Shmilovitz, 2013; Chaibi *et al.*, 2019; Bouchriha *et al.*, 2019; Zheng *et al.*, 2020). These methods have low convergence time, slow MPP tracking and speed high oscillations in the vicinity of MPP even in the static state (Walker *et al.*, 2011). The implementation of these conventional methods works well in a hybrid combination of soft computing techniques for monitoring MPP under partial shading (Ram *et al.*, 2017; Belhachat and Larbes, 2019).

2.4 Soft computing Techniques for MPPT of a PV System

Soft computing techniques for PV MPPT have been used to increase speed and efficiency and reduce computation requirement (De Brito *et al.*, 2012; Basha and Rani, 2020). Several comprehensive studies have been carried out to compare and contrast various soft computing methods showing their merits and demerits (Dileep and Singh, 2017; Eltamaly *et al.*, 2018; Hashim and Salam, 2019; Motahhir *et al.*, 2020b). These soft computing techniques have been grouped in to four categories (Bingöl and Özkaya, 2019). The first category has the methodology of artificial intelligence consisting of adaptive neural-fuzzy inference systems (ANFIS)(Otieno *et al.*, 2009; Li *et al.*, 2009; Al-Majidi *et al.*, 2019; Farah *et al.*, 2020), artificial neural network (ANN) (Elobaid *et al.*, 2015; Allahabadi *et al.*, 2019; Chouay and Ouassaid, 2019; Divyasharon *et al.*, 2019) and fuzzy logic (Takun *et al.*, 2010; Bendib *et al.*, 2014; Abd Alhussain and Yasin, 2020).

These various techniques have been rated according to the number of sensors, complexity, accuracy of tracking, economy, transient tracking speed and efficiency, and have been found to be superior to conventional methods (Dileep and Singh, 2017; Kolluru *et al.*, 2019; Basha and Rani, 2020; Ali *et al.*, 2020). The second group has evolutionary computation techniques with two distinct methodologies, the evolutionary algorithm and swarm intelligence. The evolutionary algorithm can be classified as genetic algorithm (Daraban *et al.*, 2014; Ibrahim *et al.*, 2019)

and differential evolution (Tajuddin et al., 2013; Zhang and Sui, 2020). The swarm intelligence techniques have several algorithms such as artificial bee colony algorithm (soufyane Benyoucef et al., 2015; Hassan et al., 2017; Motahhir et al., 2020a), ant colony optimization (Jiang et al., 2013; Titri et al., 2017; Priyadarshi et al., 2019; Kinattingal et al., 2020), bat algorithm (Titri et al., 2019; da Rocha et al., 2020; Amalo et al., 2020), cat swarm optimization (Nie et al., 2017; Guo et al., 2018; da Rocha et al., 2020), chicken swarm optimization Wu et al. (2018); Sharma et al. (2019) , cuckoo search algorithm (Nugraha et al., 2019; Mosaad et al., 2019; Abo-Elyousr et al., 2020; Basha et al., 2020), firefly algorithm (Mohanty et al., 2019; Huang et al., 2020), Grey wolf optimization (Atici et al., 2019; Debnath et al., 2020; Tjahjono et al., 2020) and particle swarm optimization (Beltran et al., 2019; Dharshan et al., 2020; Eltamaly et al., 2020). Category three has been identified as flower pollination algorithm (Yousri et al., 2019a,b) while the fourth category has been classified as Jaya algorithm (Huang et al., 2017, 2019).

The Solar PV system with by-pass diodes display multiple MPPs and one global MPP when subjected to partial shading conditions (Chin et al., 2011). In partial shading conditions, MPP tracking using traditional techniques track local MPP rather than global MPP (Psarros et al., 2014). Hence, the hybrid conventional MPPT techniques have been used to track global MPP under partial shading conditions (Saravanan and Babu, 2016). Some of the most common hybrid techniques include artificial neural network with P&O (ANN-P&O) (El-Helw et al., 2017), bat search algorithm with P&O (Bat-P&O) (Karagoz and Demirel, 2017), firefly algorithm with Incremental Conductance (INC-FFA) (Yetayew et al., 2016), Fireworks with P&O (FWA-P&O) (Manickam et al., 2016), fuzzy logic with modified hill climbing (Alajmi et al., 2010), fuzzy logic with P&O (Macaulay and Zhou, 2018; Mahdi et al., 2020), grey wolf with P&O (GWO-P&O) (Mohanty et al., 2016), particle swarm optimization with P&O (PSO-P&O)(Avila et al., 2017). Several authors have also reported hybrids of two soft computing techniques such as fish swarm with PSO (Duan et al., 2017; Mao et al., 2018), jaya algorithm with differential evolution (Java-DE) (Kumar et al., 2017b), PSO with shuffled frog leaping algorithm (PSO –SFLA) (Mao et al., 2017) and whale optimization with differential evolution (WODE) (Kumar et al., 2017a). Such algorithms have different speed of tracking and can be classified according to simplicity of implementation (Belhachat and Larbes, 2018).

Fuzzy sliding mode controller (FSMC) for Photovoltaic system has been studied using Mamdani and Takagi-Sugeno optimization processes (Yau and Chen, 2012; Derri *et al.*, 2016; Miqoi *et al.*, 2017; Zeb *et al.*, 2019). In these FSMC methods, the fuzzy logic approach has been applied to reduce the oscillation around the operating point to eliminate the chattering phenomena present in the sliding mode technique. The phenomenon of chattering leads to decreased photovoltaic system efficiency (Xu *et al.*, 2019). A sliding mode control method has also been exploited to develop an adaptive nonlinear controller that regulate the output voltage of DC-DC boost converter in Photovoltaic system (Subroto *et al.*, 2017; Bag *et al.*, 2018). The FSMC and adaptive SMC approaches require additional circuits compared to conventional SMCs that rely on equivalent control approaches to reduce chattering phenomena. The traditional first order SMC method for PV systems guarantee stability and robustness to load variations and change in weather (Chu and Chen, 2009; Garraoui *et al.*, 2015). The other advanced SMC types, such as terminal sliding mode control (TSMC), super twisting theorem (STT), and artificial intelligent (AI) algorithm-based SMC, are complex and need more computational power (Ahmad *et al.*, 2020).

In this study, a novel approach has been explored using a hybrid of fuzzy logic and conventional sliding mode control techniques. The fuzzy logic tracks global MPP under partially shaded conditions while the sliding mode control has fast convergence, reliability, robustness, high efficiency and stable performance under static conditions. Using a single diode model of a PV system, the current, voltage and power fluctuations at the MPP are first simulated. The error in power and change in the error become inputs to the fuzzy inference system. Based on the simulation results, the hybrid approach has fast convergence speed and high precision efficiency.

Chapter 3

Theory

3.1 A single diode equivalent circuit model

Figure 3.1 shows a single diode equivalent circuit with a current source connected to R_s and load in series, and parallel to both the diode and the shunt resistor R_{sh} .

Figure 3.1: A PV cell equivalent circuit using a single diode model

Using Kirchhoff's current law (KCL), the currents in the circuit can be related as

$$I_{ph} - I_D = I_{R_{sh}} + I_{R_s} \tag{3.1}$$

and using Kirchhoff's voltage law (KVL), the output voltage (V) can be expressed as

$$V = V_{ph} - V_{R_s} = V_{R_{sh}} - V_{R_s} = V_D - V_{R_s}$$
(3.2)

The Shockley's diode (Shockley, 1949) has an exponential current-voltage relation given as

$$I_D = I_o exp \frac{qV_D}{AkT} - I_o \tag{3.3}$$

Where, I_o is the diode saturation currents in micro-amperes.

Figure 3.1 can be mathematically defined through the combination of the three equations (3.1-3.3) to obtain

$$I = I_{ph} - I_o \left(exp \frac{q(V + IR_s)}{AkT} - 1 \right) - \frac{V + IR_s}{R_{sh}}$$
(3.4)

Where; k is the Boltzmann's Constant = $1.380649 \times 10^{-23} m^2 s^{-2} kg K^{-1}$, q is the charge of an electron = $1.602177 \times 10^{-19}C$ and T is the module surface temperature = 298.15K at STC.

3.1.1 Analysis of a PV model using the three crucial points from an I-V graph

The key points in an I-V curve on a PV model graph are the short circuit point (SCP), the maximum power point (MPP), and the open circuit point (OCP). The characteristic and operation of the photovoltaic cell/module can easily and generally be studied through these points. These cardinal points can be applied in equation (3.4). Therefore, the I-V analyzes can be performed as follows at each point:

(i) At short circuit, $I = I_{sc}, V = 0$; Thus equation (3.4) can be evaluated as

$$I_{sc} = I_{ph} - I_o \left(exp \frac{I_{sc} R_s}{AN_s V_t} - 1 \right) - \frac{I_{sc} R_s}{R_{sh}}$$
(3.5)

or

$$I_{ph} = I_{sc} + I_o \left(exp \frac{I_{sc} R_s}{AN_s V_t} - 1 \right) + \frac{I_{sc} R_s}{R_{sh}}$$
(3.6)

Where $V_t = \frac{kT}{q} = 0.0256926$ is the thermal voltage and N_s is the number of cells in series for a solar module.

(ii) At Open Circuit, $I = 0, V = V_{oc}$;

Similarly, equation (3.4) can be rewritten as

$$I_{ph} = I_o \left(exp \frac{V_{oc}}{AN_s V_t} - 1 \right) + \frac{V_{oc}}{R_{sh}}$$

$$(3.7)$$

(iii) At Maximum Power Point, $I = I_{mpp}, V = V_{mpp}$;

Again, substituting $I = I_{mpp}$ and $V = V_{mpp}$ in equation (3.4) gives

$$I_{mpp} = I_{ph} - I_o \left(exp \frac{V_{mpp} + I_{mpp}R_s}{AN_sV_t} - 1 \right) - \frac{V_{mpp} + I_{mpp}R_s}{R_{sh}}$$
(3.8)

The five unknown parameters can be evaluated and calculated using the experimental data in equations 3.6 -3.8.

3.1.2 Analysis of the five-unknown parameters

There are five unknown parameters in the transcendental equation (3.4) which must be determined. These parameters are ideality factor (A), saturation current (I_o), photocurrent (I_{ph}), series (R_s) and shunt (R_{sh}) resistances. The following sections 3.3.1 to 3.3.3 discuss a detailed analysis of I_{ph} , I_o and A. Section 3.3.4 discusses analysis of R_s and R_{sh} .

(I) Analysis of photocurrent (I_{ph})

The photocurrent (I_{ph}) can be calculated using equations (3.5), (3.6) or by rewriting equation (3.8) as

$$I_{ph} = I_{mpp} + I_o \left(exp \frac{V_{mpp} + I_{mpp}R_s}{AN_s V_t} - 1 \right) + \frac{V_{mpp} + I_{mpp}R_s}{R_{sh}}$$
(3.9)

(II) Analysis of saturation current (I_o)

The saturation current can be analyzed using three distinct approaches. First, by reevaluating equation (3.4) at short circuit point (SCP), open circuit point (OCP) and maximum power point (MPP). Second, by combining two equations that have derived at the three points. Third, by using the concept of an ideal diode, where the saturation current depend on diffusion of minority carriers from the neutral regions to the depletion region in the absence of irradiation (Rauschenbach, 1971; Castaner and Silvestre, 2002). Furthermore, the saturation current also depends on the parameters of the semiconductor cross-sectional area, the temperature and the intrinsic carrier concentration (Neville, 1995; Sze and Ng, 2006; Castaner and Silvestre, 2002). In addition, the intrinsic carrier concentration number depends on the semiconductor energy bandgap, the state conduction and valence band densities. These three approaches are discussed in the following sections.

(a) Analysis of saturation current (I_o) at short circuit point (SCP), maximum power point (MPP) and open circuit point (OCP)

(i) At the short circuit point, equation (3.5) can be rearranged to give

$$I_o = \frac{I_{ph}R_{sh} - I_{sc}R_{sh} - I_{sc}R_s}{R_{sh}\left(exp\left(\frac{I_{sc}R_s}{AN_sV_t}\right) - 1\right)}$$
(3.10)

(ii) At maximum power point, equation (3.8) can be reorganized to obtain

$$I_o = \frac{I_{ph}R_{sh} - I_{mpp}R_{sh} - V_{mpp} - I_{mpp}R_s}{R_{sh} \left(exp \frac{V_{mpp} + I_{mpp}R_s}{AN_s V_t} - 1\right)}$$
(3.11)

Assuming $R_s \approx 0$, $R_{sh} \approx \infty$ and $I_{ph} \approx I_{sc}$, then applying them in equation (3.11), gives

$$I_o = \frac{I_{sc} - I_{mpp}}{\left(exp\frac{V_{mpp}}{AN_sV_t} - 1\right)}$$
(3.12)

(iii) At the open circuit point, equation (3.7) can be rearranged to give

$$I_o = \frac{I_{ph}R_{sh} - V_{oc}}{R_{sh}\left(exp\left(\frac{V_{oc}}{AN_sV_t}\right) - 1\right)}$$
(3.13)

Again, assuming $R_{sh} \approx \infty$ and $I_{ph} \approx I_{sc}$, equation (3.13) yields

$$I_o = \frac{I_{sc}}{exp\left(\frac{V_{oc}}{AN_s V_t}\right) - 1} \tag{3.14}$$

 (b) Analysis of saturation current (I_o) calculation by combining two equations The saturation current can also be calculated by combining two of either equations (3.6), (3.7) or (3.9). Substituting equations (3.6) and (3.7) cancels I_{ph} as discussed by Sera *et al.* (2007), Hejri *et al.* (2013) and Atay and Eminoğlu (2019). Therefore, the saturation current can be derived as

$$[I_o]_{I_{sc},V_{oc}} = \frac{I_{sc}R_{sh} + I_{sc}R_s - V_{oc}}{R_{sh} \left[exp\left(\frac{V_{oc}}{AN_sV_t}\right) - exp\left(\frac{I_{sc}R_s}{AN_sV_t}\right) \right]}$$
(3.15)

Once more, taking $R_s \approx 0$ and $R_{sh} \approx \infty$, and applying in (3.15) gives

$$\left[I_{o_{opt}}\right]_{I_{sc},V_{oc}} = \frac{I_{sc}}{exp\left(\frac{V_{oc}}{AN_sV_t}\right)}$$
(3.16)

Similarly, equation (3.6) can be substituted with equation (3.9) at SCP and MPP to obtain

$$[I_o]_{I_{sc},P_{mpp}} = \frac{V_{mpp} + I_{mpp}R_{sh} + I_{mpp}R_s - I_{sc}R_s - I_{sc}R_{sh}}{R_{sh} \left[exp\left(\frac{I_{sc}R_s}{AN_sV_t}\right) - exp\left(\frac{V_{mpp} + I_{mpp}R_s}{AN_sV_t}\right) \right]}$$
(3.17)

Returning to $R_s \approx 0$ and $R_{sh} \approx \infty$, equation (3.17) reduces to

$$\left[I_{o_{opt}}\right]_{I_{sc},P_{mpp}} = \frac{I_{sc} - I_{mpp}}{exp\left(\frac{V_{mpp}}{AN_sV_t}\right)}$$
(3.18)

Finally, combining equations (3.7) and (3.9) at OCP and MPP, the saturation current formula can be derived as

$$[I_o]_{V_{oc},P_{mpp}} = \frac{V_{mpp} - V_{oc} + I_{mpp}R_{sh} + I_{mpp}R_s}{R_{sh} \left(exp\frac{V_{oc}}{AN_sV_t} - exp\frac{V_{mpp} + I_{mpp}R_s}{AN_sV_t}\right)}$$
(3.19)

Again, assuming $R_s \approx 0$ and $R_{sh} \approx \infty$, equation (3.19) can be rewritten as

$$\left[I_{o_{opt}}\right]_{V_{oc},P_{mpp}} = \frac{I_{mpp}}{exp\frac{V_{oc}}{AN_sV_t} - exp\frac{V_{mpp}}{AN_sV_t}}$$
(3.20)

(c) Analysis of saturation current as a function of bandgap energy

The saturation current densities for solar cells depend on the type of junction and for a

Schottky junction, the derivation reported by Ataboev et al. (2019) gives

$$J_o = qBN_V N_C \left[\frac{1}{N_A} \sqrt{\frac{D_n}{\tau_n}} + \frac{1}{N_D} \sqrt{\frac{D_p}{\tau_P}} \right] exp\left(\frac{-E_g}{kT}\right)$$
(3.21)

where, q is elementary charge, B is cross sectional area of solar cell, N_V , is the effective density of states in the valence band, N_C is the effective density of states in the conduction band, N_A is acceptor impurities concentration, D_n is electron diffusion coefficient, τ_n is electron (minority carrier) lifetime, N_D is donor impurities concentration, D_p is hole diffusion coefficient, τ_p is hole (minority carrier) lifetime, E_g is the energy bandgap, k is Boltzmann's constant and T is the cell surface temperature.

Equation (3.21) can be exploited for analysis of solar module's saturation current as explained by Chenni *et al.* (2007). Therefore,

$$I_o = I_{0_{STC}} \left[\frac{T}{T_{STC}} \right]^3 exp \frac{-qE_g}{AN_s k} \left[\frac{1}{T_{STC}} - \frac{1}{T} \right]$$
(3.22)

The $I_{0_{STC}}$ can be determined using equations (3.10) to (3.20) at a standard temperature of $25^{\circ}C$.

(III) Analysis of ideality factor (A) The ideality factor is one of the main parameters to be carefully calculated, since other unknown parameters depend heavily on it and vice versa. Starting with the optimal ideality factor, other ideality factor can be arbitrarily selected such that $0 \le A \le A_o$.

Assuming that the exponential term $\left(exp\left(\frac{I_{sc}R_s}{AN_sV_t}\right)\right)$ in equations (3.15) and (3.17) has insignificant value compared to other exponential terms. Therefore,

$$I_o = \frac{I_{sc}R_{sh} + I_{sc}R_s - V_{oc}}{R_{sh}exp\left(\frac{V_{oc}}{AN_sV_t}\right)}$$
(3.23)

and

$$I_o = \frac{I_{sc}R_s + I_{sc}R_{sh} - V_{mpp} - I_{mpp}R_{sh} - I_{mpp}R_s}{R_{sh}exp\left(\frac{V_{mpp} + I_{mpp}R_s}{AN_sV_t}\right)}$$
(3.24)

Equations (3.23) and (3.24) can be equated to obtain ideality factor A as

$$A = \frac{V_{oc} - V_{mpp} - I_{mpp}R_s}{N_s V_t \left[ln \left(\frac{I_{sc}R_{sh} + I_{sc}R_s - V_{oc}}{I_{sc}R_{sh} + I_{sc}R_s - I_{mpp}R_{sh} - I_{mpp}R_s - V_{mpp}} \right) \right]}$$
(3.25)

Again, the ideality factor can be determined using logarithms of equations (3.7) and (3.8)and after rearrangement to get

$$A = \frac{V_{oc} - V_{mpp} - I_{mpp} R_s}{N_s V_t \left[ln \left(\frac{I_{ph} + I_o - \frac{V_{oc}}{R_{sh}}}{I_{ph} + I_o - I_{mpp} - \frac{V_{mpp} + I_{mpp} R_s}{R_{sh}} \right) \right]}$$
(3.26)

Assuming $R_s \approx 0$ and $R_{sh} \approx \infty$ and substituting them in equations (3.25) and (3.26) yields

$$A = \frac{V_{oc} - V_{mpp}}{N_s V_t [ln(\frac{I_{sc} + I_o}{I_{sc} + I_o - I_{mpp}})]}$$
(3.27)

But in the denominator of (3.27), $I_{sc}{\gg}I_o$. Hence,

$$A_o = \frac{V_{oc} - V_{mpp}}{N_s V_t [ln(\frac{I_{sc}}{I_{sc} - I_{mpp}})]}$$
(3.28)

Where, A_o is the optimal ideality factor.

(IV) Shunt resistance (R_{sh}) and series resistance (R_s)

The series and shunt resistance can be analyzed at maximum power point as follows

$$R_{sh} = \frac{V_{mpp} + I_{mpp}R_s}{I_{ph} - I_{mpp} - I_o \left(exp(\frac{V_{mpp} + I_{mpp}R_s}{AN_sV_t}) - 1\right)}$$
(3.29)

In addition, the series and shunt resistance can also be analyzed by combination of equations (3.6) at SCP and (3.7) at OCP to obtain

$$R_{sh} = \frac{V_{oc} - I_{sc}R_s}{I_{sc} + I_o exp(\frac{I_{sc}R_s}{AN_sV_t}) - I_o exp(\frac{V_{oc}}{AN_sV_t})}$$
(3.30)

Likewise, the combination of equations (3.6) at SCP and (3.8) at MPP gives

$$R_{sh} = \frac{V_{mpp} + I_{mpp}R_s - I_{sc}R_s}{I_{sc} - I_{mpp} - I_o exp(\frac{V_{mpp} + I_{mpp}R_s}{AN_sV_t}) + I_o exp(\frac{I_{sc}R_s}{AN_sV_t})}$$
(3.31)

Further, combining equations (3.7) and (3.8) yields

$$R_{sh} = \frac{V_{oc} - V_{mpp} - I_{mpp}R_s}{I_{mpp} + I_o exp(\frac{V_{mpp} + I_{mpp}R_s}{AN_sV_t}) - I_o exp(\frac{V_{oc}}{AN_sV_t})}$$
(3.32)

The vanishing slopes at MPP, SCP and OCP can also be used to calculate R_s and R_{sh} resistances (Kennerud (1969); Phang *et al.* (1984a); Sera *et al.* (2007); Cubas *et al.* (2013); El Achouby *et al.* (2018)). The partial derivative of I with respect to V in I-V relationship has been applied in P-V relationship, since P depends on both I and V. Therefore, differentiating equation (3.4) with respect to V gives

$$\frac{\partial I}{\partial V} = -\frac{I_o}{AN_sV_t} \left\{ \left(1 + \frac{\partial I}{\partial V}R_s \right) exp\left(\frac{V + IR_s}{AN_sV_t} \right) \right\} - \frac{1}{R_{sh}} \left(1 + \frac{\partial I}{\partial V}R_s \right)$$
(3.33)

The slope at SCP gives

$$\left[\frac{\partial I}{\partial V}\right]_{I=I_{sc}} = -\frac{1}{R_{sh}} \tag{3.34}$$

and at OCP

$$\left[\frac{\partial I}{\partial V}\right]_{V=V_{oc}} = -\frac{1}{R_s} \tag{3.35}$$

At MPP, the slope with respect to voltage gives

$$\frac{\partial P}{\partial V} = \left(\frac{\partial I}{\partial V}\right)V + I = 0 \tag{3.36}$$

At MPP, $I = I_{mpp}$ and $V = V_{mpp}$. Replacing them in equation (3.33) and applying it in equation (3.36) yields

$$-\frac{I_{mpp}}{V_{mpp}} = -\frac{I_o}{AN_sV_t} \left\{ \left(1 - \frac{I_{mpp}}{V_{mpp}}R_s\right) exp\left(\frac{V_{mpp} + I_{mpp}R_s}{AN_sV_t}\right) \right\} - \frac{1}{R_{sh}} \left(1 - \frac{I_{mpp}}{V_{mpp}}R_s\right)$$
(3.37)

Equation(3.37) can be rearranged as follows

$$R_{sh} = \frac{V_{mpp} - I_{mpp}R_s}{I_{mpp} - \frac{I_o}{AN_sV_t} \left(V_{mpp} - I_{mpp}R_s\right) \exp\left(\frac{V_{mpp} + I_{mpp}R_s}{AN_sV_t}\right)}$$
(3.38)

(V) Evaluation and analysis of R_{sh} and R_s pairs

The R_{sh} and R_s pairs can be analytically calculated using MPP, SCP and OCP using either equations (3.29-3.32) or (3.38). These equations have unknown R_s , I_o and A on the R.H.S. The simplest approach of analyzing R_{sh} and R_s pairs is by applying equation (3.16) in to equation (3.32). This replaces I_o of equation (3.32) to get

$$R_{sh} = \frac{V_{oc} - V_{mpp} - I_{mpp}R_s}{I_{mpp} - I_{sc} + I_{sc}exp\left(\frac{V_{mpp} - V_{oc} + I_{mpp}R_s}{AN_sV_t}\right)}$$
(3.39)

The values of ideality factor can be arbitrarily selected in the proximity of A_o and applied in equation (3.39). There are three ways of choosing the ideality factor, either $A \approx A_o$, or $A \ge A_o$ or $0 \le A \le A_o$, provided R_s and R_{sh} are within the limits introduced by Villalva *et al.* (2009). These limits can be obtained using

$$R_{s_{max}} = \frac{V_{oc} - V_{mpp}}{I_{mpp}} \tag{3.40}$$

and

$$R_{sh_{min}} = \frac{V_{mpp}}{I_{sc} - I_{mpp}} - R_{s_{max}}$$
(3.41)

The ideality factor is selected to ensure that the simulated maximum power $(P_{mpp}(sim))$ corresponds to the maximum power obtained experimentally, $P_{mpp}(expt)=I_{mpp}V_{mpp}$. Where,

$$P_{mpp}(sim) = V_{mpp}(I_{ph} - I_o(exp\frac{V_{mpp} + I_{mpp}R_s}{AN_sV_t} - 1) - \frac{V_{mpp} + I_{mpp}R_s}{R_{sh}}) = P_{mpp}(expt) \quad (3.42)$$

It is possible to replace the value of I_{ph} in equation (3.42) with equation (3.6) by letting

the term $I_o exp\left(\frac{I_{sc}R_s}{AN_sV_t}\right) \approx 0$ since it has negligible value. Also, assuming $I_{sc} \gg I_o$ yields,

$$I_{ph} = I_{sc} + \frac{I_{sc}R_s}{R_{sh}} \tag{3.43}$$

Finally, I_o of equation (3.18) can be applied in equation (3.42) to give

$$P_{mpp}(sim) = V_{mpp}(I_{sc} + \frac{I_{sc}R_s}{R_{sh}} - (\frac{I_{sc} - I_{mpp}}{exp\frac{V_{mpp}}{AN_sV_t}})(exp\frac{V_{mpp} + I_{mpp}R_s}{AN_sV_t} - 1) - \frac{V_{mpp} + I_{mpp}R_s}{R_{sh}}) = P_{mpp}(expt)$$
(3.44)

Equations (3.39) and (3.44) has been be solved simultaneous using a open source GNU Octave software (see Appendix VIII). The values of A are selected sequentially until $(P_{mpp}(sim))$ matches $P_{mpp}(expt)$ or has an error margin of less than 0.5% (Carrero *et al.*, 2010).

Where,

$$P_{mpp}Error = \Delta P_{mpp}\% = \frac{P_{mpp} - I_{mpp}V_{mpp}}{I_{mpp}V_{mpp}} \times 100\%$$
(3.45)

3.1.3 Improved analysis of I-V relationship using Newton-Raphson technique

The derivations of the five-model parameters described in the previous section depend on SCP, MPP and OCP. However, the Newton-Raphson method has been applied to iteratively solve equation (3.4) in order to find all the points of an I-V plot. The technique is based on approximation of a given function f(I)=0 (Reis *et al.*, 2017).

Starting with a single-variable function f(I), equation (3.4) can be rearranged as

$$f(I) = I_{ph} - I_o \left[\exp\left(\frac{V + IR_s}{AN_sV_t}\right) - 1 \right] - \frac{V + IR_s}{R_{sh}} - I = 0$$
(3.46)

The partial derivative of equation (3.46) w.r.t I gives

$$\frac{\partial \left(f\left(I\right)\right)}{\partial I} = \frac{-I_{o}R_{s}}{AN_{s}V_{t}} \exp\left(\frac{V + IR_{s}}{AN_{s}V_{t}}\right) - \frac{R_{s}}{R_{sh}} - 1$$
(3.47)

Therefore, applying a linear approximation based on Newton-Raphson method, equations (3.46)

and (3.47) can be combined to give

$$I_{j+1} = I_j - \frac{f\left(I_j\right)}{\frac{\partial(f(I_j))}{\partial I}} = I_j - \frac{I_{ph} - I_o\left[exp\left(\frac{V+I_jR_s}{AN_sV_t}\right) - 1\right] - \frac{V+I_jR_s}{R_{sh}} - I_j}{\frac{-I_oR_s}{AN_sV_t}exp\left(\frac{V+I_jR_s}{AN_sV_t}\right) - \frac{R_s}{R_{sh}} - 1}$$
(3.48)

Where j represents the number of iterative process.

Equations (3.46-3.48) have been used to iteratively determine all current and voltage values. The *I* and *V* values are consequently applied in the following power equation given as

$$P = I_{ph}V - I_oV\left[exp\frac{V + IR_s}{AN_sV_t} - 1\right] - \frac{V^2}{R_{sh}} - VI\frac{R_s}{R_{sh}}$$
(3.49)

Finally, equations (3.46) and (3.49) are used for plotting IV and PV curves, respectively.

3.1.4 I-V and P-V characterization using NOCT and actual irradiance

The five-model parameters dependence on actual solar irradiation (s_a) and module's surface temperature T should be evaluated to reproduce a nominal operating condition (El Achouby *et al.*, 2018; Zaimi *et al.*, 2019).

At SCP,

$$I_{sc}(s_a, T) = \frac{s_a}{s_{STC}} \left[I_{sc_{STC}} + K_{I_{sc}} \left(T - T_{STC} \right) \right]$$
(3.50)

Where, $K_{I_{sc}}$ is the temperature coefficient of I_{sc} in $A/{}^{o}C$.

At MPP,

$$I_{mpp}(s_a, T) = \frac{s_a}{s_{STC}} \left[I_{mpp_{STC}} + K_{I_{mpp}} \left(T - T_{STC} \right) \right]$$
(3.51)

Where, $K_{I_{mpp}}$ is the temperature coefficient of I_{mpp} in $A/{}^{o}C$. $K_{I_{mpp}}$ is not included on the manufacturer's data sheet. This can be determined putting the data at STC and NOCT in to equation (3.51).

Solar modules with ISO/IEC standards has data profiles for STC at $1000W/m^2$ and nominal operation cell temperature (NOCT) values at $800W/m^2$ at $20^{\circ}C$ (McEvoy *et al.*, 2003; Schwingshackl *et al.*, 2013). The nominal operation cell temperature has been used to obtain the module temperature (T) using

$$T = T_a + \frac{[T_{NOCT} - 20]s_a}{800} \tag{3.52}$$

Where T_a is the ambient temperature.

Again at MPP,

$$V_{mpp}(s_a, T) = V_{mpp_{STC}} + K_{\nu, mpp} \left(T - T_{STC} \right) + \alpha_{\nu, mpp} \left(s_a - s_{STC} \right) + \beta_{\nu, mpp} \left(s_a - s_{STC} \right)^2 \quad (3.53)$$

Where, $\alpha_{V_{mpp}}$ and $\beta_{V_{mpp}}$ are coefficients of solar irradiance at MPP.

At OCP,

$$V_{oc}(s_a, T) = V_{oc_{STC}} + K_{\nu, oc} \left(T - T_{STC} \right) + \alpha_{\nu, oc} \left(s_a - s_{STC} \right) + \beta_{\nu, oc} \left(s_a - s_{STC} \right)^2$$
(3.54)

Where $\alpha_{V_{oc}}$, $\beta_{V_{oc}}$ are coefficients of solar irradiance at OCP.

Equations (3.53) and (3.54) are quadratic polynomials, which require careful determination of the polynomial coefficients of the second degree. In order to overcome this drawback, a simplified approach have been adopted in this work for determining $V_{oc}(s_a, T)$ and $V_{mpp}(s_a, T)$, where

$$V_{oc}(s_a, T) = A(s_a, T) N_s V_t(T) \left[ln \left(I_{sc}(s_a, T) \right) - ln \left(I_o(s_a, T) \right) \right]$$
(3.55)

and,

$$V_{mpp}\left(s_{a},T\right) = V_{oc}\left(s_{a},T\right) - A_{o}N_{s}V_{t}(T) \times \left[ln\left(\frac{I_{sc}\left(s_{a},T\right)}{I_{sc}\left(s_{a},T\right) - I_{mpp}\left(s_{a},T\right)}\right)\right]$$
(3.56)

These cardinal points can be used to extract the five-model parameters at different irradiance and temperature using the approaches presented in sections 3.1.1 to 3.1.3.

First, the saturation current dependence on module temperature can be achieved by rewriting equation (3.22) as

$$I_o(s_a, T) = I_{0_{STC}} \left[\frac{T}{T_{STC}} \right]^3 exp\left(-\frac{qE_g}{A(s_a, T)N_s k} \left[\frac{1}{T_{STC}} - \frac{1}{T} \right] \right)$$
(3.57)
Also equation (3.16) can be rewritten as

$$I_o = \frac{I_{sc}(s_a, T)}{exp\left(\frac{V_{oc}(s_a, T)}{A(s_a, T)N_s V_t(T)}\right)}$$
(3.58)

The I_o values of equation (3.57) have been compared with I_o of equation (3.58) for conformity. Second, I_{ph} depends on the surface temperature of the solar module and the solar irradiance (Sera *et al.*, 2007; Zaimi *et al.*, 2019), which can be deduced using

$$I_{ph}(s_a, T) = \frac{s_a}{s_{STC}} [I_{ph_{STC}} + K_I (T - T_{STC})]$$
(3.59)

Finally, $I_{mpp}(s_a, T)$, $V_{mpp}(s_a, T)$, $I_o(s_a, T)$ and $I_{ph}(s_a, T)$, of equations (3.51), (3.56), (3.58) and (3.59), respectively have been applied in equation (3.29) to get

$$R_{sh}(s_a, T) = \frac{V_{mpp}(s_a, T) + I_{mpp}(s_a, T)R_s(s_a, T)}{I_{ph}(s_a, T) - I_{mpp}(s_a, T) - I_o(s_a, T)\left(exp(\frac{V_{mpp}(s_a, T) + I_{mpp}(s_a, T)R_s(s_a, T)}{A(s_a, T)N_s V_t}) - 1\right)}$$
(3.60)

Th values of A, $R_s(s_a, T)$ and $R_{sh}(s_a, T)$ can be extracted through an iterative process presented in section 3.1.2 using equation 3.60.

3.1.5 PV MPPT based on boost converter model

Figure 3.2 shows a single diode equivalent circuit connected to a DC-DC boost converter and MPPT.

Figure 3.2: A PV system model connected to a DC-DC boost converter and MPPT controller

The DC-DC boost converter circuit consists of two capacitors C_{in} and C_{out} , an inductor (L), a diode D_2 , load resistance R_L and a MOSFET switch Q. The converter can be modeled using state space derivation. The dynamic model of a boost converter can be represented in two states, when the switch (Q) is on or off (Charaabi *et al.*, 2020). The current passes through the inductor and the switch when Q is ON, and can be evaluated as

MOSFET ON

$$\frac{\partial i_L}{\partial t} = \frac{V_{pv}}{L} \tag{3.61}$$

and

$$\frac{\partial V_{C_o}}{\partial t} = \frac{V_{C_o}}{C_o R} \tag{3.62}$$

Similarly using the state space representation,

$$\dot{X}_1 = A_1 x + B_1 u \tag{3.63}$$

Applying equations (3.61) and (3.62) in equation (3.63) gives

$$\begin{bmatrix} \dot{i}_L \\ \dot{V}_{C_o} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & \frac{-1}{R_L C_o} \end{bmatrix} \begin{bmatrix} i_L \\ V_{C_o} \end{bmatrix} + \begin{bmatrix} \frac{1}{L} \\ 0 \end{bmatrix} \begin{bmatrix} V_{pv} \end{bmatrix}$$
(3.64)

MOSFET OFF

The current passes through the inductor, $D_2 C_{out}$ and the load when Q is OFF, and can be evaluated as

$$\frac{\partial i_L}{\partial t} = \frac{V_{pv} - V_L}{L} \tag{3.65}$$

and

$$\frac{\partial V_{C_o}}{\partial t} = \frac{i_L}{C_o} - \frac{V_o}{CR_L} \tag{3.66}$$

Where, Vo is the output voltage and iL is the inductor current. In state space representation,

$$X_2 = A_2 x + B_2 u (3.67)$$

Again, applying equations 3.65 and 3.66 in equation 3.67 yields,

$$\begin{bmatrix} \dot{i}_L \\ \dot{V}_{C_o} \end{bmatrix} = \begin{bmatrix} 0 & \frac{-1}{L} \\ \frac{1}{C_o} & \frac{-1}{R_L C_o} \end{bmatrix} \begin{bmatrix} i_L \\ V_{C_o} \end{bmatrix} + \begin{bmatrix} \frac{1}{L} \\ 0 \end{bmatrix} \begin{bmatrix} V_{pv} \end{bmatrix}$$
(3.68)

Introducing the state space averaging method, the dynamic system state variables can be derived as

$$A = A_1 d + A_2 (1 - d)$$

$$B = B_1 d + B_2 (1 - d)$$

$$C = C_1 d + C_2 (1 - d)$$

$$D = D_1 d + D_2 (1 - d)$$

(3.69)

Therefore, equations 3.64 and 3.68 can be combined into one set of state equation to represent the entire dynamic of the system as

$$\begin{bmatrix} \dot{i}_L \\ \dot{V}_{C_o} \end{bmatrix} = \begin{bmatrix} 0 & \frac{-(1-d)}{L} \\ \frac{1-d}{C_o} & \frac{-1}{R_L C_o} \end{bmatrix} \begin{bmatrix} i_L \\ V_{C_o} \end{bmatrix} + \begin{bmatrix} \frac{1}{L} \\ 0 \end{bmatrix} \begin{bmatrix} V_{pv} \end{bmatrix}$$
(3.70)

The model can be written in compact form as

$$\dot{X} = (1-d)\dot{X}_1 + d\dot{X}_2 \tag{3.71}$$

Where

$$\dot{X} = \begin{bmatrix} \dot{i}_L & \dot{V} \end{bmatrix}^T \tag{3.72}$$

and

$$\dot{X}_1 = \left[\left(\frac{V_{pv}}{L} - \frac{V_{C_o}}{L} \right) \quad \left(\frac{i_L}{C_o} - \frac{V_{C_o}}{R_L C_o} \right) \right]^T \tag{3.73}$$

and

$$\dot{X}_2 = \left[\left(\frac{V_{pv}}{L} \right) \quad \left(-\frac{V_{Co}}{R_L C_o} \right) \right]^T \tag{3.74}$$

3.1.6 Sliding mode technique (SMT) for PV MPPT

Sliding mode technique guarantee robustness against various uncertainties caused by measurement error and external disturbances when obtaining duty cycle. The technique has two modes of operation, the approaching mode and the sliding mode. In approaching mode the sliding surface S = 0 is selected in such a way that the state of the system reaches the surface and persistently produces maximum power output. In sliding mode the system state is confined to the sliding surface and guided to a point of operation (Chu and Chen, 2009; Garraoui *et al.*, 2015). The sliding surface for PV system can be defined as

$$S(t,x) = \frac{\partial P_{pv}}{\partial I_{pv}} = \frac{(I_{pv}V_{pv})}{\partial_{pv}} = I_{pv}\left(\frac{\partial V_{pv}}{\partial I_{pv}} - \frac{V_{pv}}{I_{pv}}\right) = 0$$
(3.75)

From equation (3.75), the switching surface can be derived as

$$\left(\frac{\partial V_{pv}}{\partial I_{pv}} - \frac{V_{pv}}{I_{pv}}\right) = 0 \tag{3.76}$$

A simple sliding mode control design can be written as

$$d = d_{eq} + \xi sgn(S) \tag{3.77}$$

Where, d_{eq} is called equivalent control and ξ is a positive scaling constant.

The equivalent control ensures that every trajectory starting from the manifold S(x) = 0remains on it, and $\xi \text{sgn}(S)$ can be considered as the MPP tracking effort. In equations (3.71) and (3.75), the equivalent control can be calculated by obtaining the s-derivative as follows

$$\dot{s} = \begin{bmatrix} \frac{\partial S}{\partial X} \end{bmatrix}^T \dot{X} = \begin{bmatrix} \frac{\partial S}{\partial X} \end{bmatrix}^T (f(x) + g(x) d_{eq}) = 0$$
(3.78)

Therefore

$$d_{eq} = \frac{\left[\frac{\partial S}{\partial X}\right] f(x)}{\left[\frac{\partial S}{\partial X}\right] g(x)} = 1 - \frac{V_{pv}}{V_{C_o}}$$
(3.79)

But duty cycle $d \in 0, 1$, thus

$$d = \begin{cases} 1, & \text{if}, d_{eq} + \xi s \ge 0 \\ d_{eq} + \xi s, & \text{if}, 0 < d_{eq} + \xi s < 1 \\ 0, & \text{if}, d_{eq} + \xi s \le 0 \end{cases}$$
(3.80)

Using Lyapunov stability criterion

$$V = \frac{1}{2}S^2 \tag{3.81}$$

Its derivative gives

$$\dot{V} = S\dot{S} < 0 \tag{3.82}$$

This guarantee an asymptotic convergence to the sliding surface

From equations (3.75) and (3.78), the \dot{S} can written as

$$\dot{s} = \left[\frac{\partial S}{\partial X}\right]^T \dot{X} = \left(3 \times \frac{\partial R_{pv}}{\partial I_{pv}} + I_{pv} \times \frac{\partial^2 R_{pv}}{\partial I_{pv}^2}\right) \times \left(-\frac{V_C}{L}\left(1-d\right) + \frac{V_{pv}}{L}\right)$$
(3.83)

Where $R_{pv} = \frac{V_{pv}}{I_{pv}}$, so,

$$\frac{\partial R_{pv}}{\partial I_{pv}} = \frac{\partial}{\partial I_{pv}} \left[\frac{V_{pv}}{I_{pv}} \right] = \frac{1}{I_{pv}} \frac{\partial V_{pv}}{\partial I_{pv}} - \frac{V_{pv}}{I_{pv}^2}$$
(3.84)

and

$$\frac{\partial^2 R_{pv}}{\partial I_{pv}} = \frac{1}{I_{pv}} \frac{\partial^2 V_{pv}}{\partial I_{pv}^2} - \frac{1}{I_{pv}^2} \frac{\partial V_{pv}}{\partial I_{pv}} + \frac{2V_{pv}}{I_{pv}^3}$$
(3.85)

Assuming $R_s \approx 0$ and $R_{sh} \approx \infty$ and substituting them in equations (3.4), the PV characteristic equation can be defined as

$$V_{pv} = AN_s V_t ln\left(\frac{I_{ph} + I_o - I_{pv}}{I_o}\right)$$
(3.86)

Thus

$$\frac{\partial V_{pv}}{\partial I_{pv}} = -AN_s V_t \left(\frac{I_o}{I_{ph} + I_o - I_{pv}}\right) < 0 \tag{3.87}$$

Differentiating equation (3.87) gives

$$\frac{\partial^2 V_{pv}}{\partial I_{pv}^2} = -AN_s V_t \left(\frac{I_o}{\left(I_{ph} + I_o - I_{pv}\right)^2}\right) < 0$$
(3.88)

Both equations (3.87) and (3.88) are negative definite since they both have negative sign on the R.H.S and satisfy the Lyapunov stability criterion. Relating equations (3.83)-(3.85), (3.87)and (3.88), and applying them in equation (3.78) gives

$$\begin{bmatrix} \frac{\partial S}{\partial X} \end{bmatrix}^{T} = \left(3 \times \frac{\partial R_{pv}}{\partial I_{pv}} + I_{pv} \times \frac{\partial^{2} R_{pv}}{\partial I_{pv}^{2}} \right) = 3 \times \left(\frac{1}{I_{pv}} \frac{\partial V_{pv}}{\partial I_{pv}} - \frac{V_{pv}}{I_{pv}^{2}} \right) + I_{pv} \times \left(\frac{1}{I_{pv}} \frac{\partial^{2} V_{pv}}{\partial I_{pv}^{2}} - \frac{1}{I_{pv}^{2}} \frac{\partial V_{pv}}{\partial I_{pv}} + \frac{2V_{pv}}{I_{pv}^{3}} \right) \\ = \frac{1}{I_{pv}} \frac{\partial V_{pv}}{\partial I_{pv}} - \frac{V_{pv}}{I_{pv}^{2}} + \frac{\partial^{2} V_{pv}}{\partial I_{pv}^{2}} < 0 \quad (3.89)$$

Because equations (3.87) and (3.88) are definite negative, if $\frac{V_{pv}}{I_{pv}^2}$ is definite positive, then equation (3.89) is definite negative. The attainability of s=0 can be obtained through $\dot{V} = S\dot{S} < 0$. Three cases of equation (3.80) must be tested to test stability.

Case 1: 0 < d < 1,

$$\dot{x}_1 = \dot{i}_L = -\frac{V_{C_O}}{L} \left(1 - d\right) + \frac{V_{pv}}{L}$$
(3.90)

or

$$\dot{i}_L = -\frac{V_{C_O}}{L} \left(1 - d_{eq} - \xi s\right) + \frac{V_{pv}}{L}$$
(3.91)

or

$$\dot{i}_{L} = -\frac{V_{C_{O}}}{L} \left(1 - \left(1 - \frac{V_{pv}}{V_{C_{o}}} \right) - \xi s \right) + \frac{V_{pv}}{L}$$
(3.92)

Therefore,

$$\dot{i}_L = \frac{V_{C_O}}{L} \xi s \tag{3.93}$$

Also,

$$\dot{x}_2 = \dot{V}_{C_o} = \frac{(1-d)}{C_o} i_L - \frac{V_{C_o}}{R_L C_o} = \frac{(1-d_{eq}-\xi s)}{C_o} i_L - \frac{V_{C_o}}{R_L C_o}$$
(3.94)

From equations (3.89) and (3.93), the following conditions hold,

$$\begin{cases} s > 0, & \text{if, } \dot{s} = \begin{bmatrix} \frac{\partial S}{\partial X} \end{bmatrix}^T \dot{X} < o \\ s < 0, & \text{if, } \dot{s} = \begin{bmatrix} \frac{\partial S}{\partial X} \end{bmatrix}^T \dot{X} > o \end{cases}$$
(3.95)

It then follows from equation (3.95) that equation (3.82) is satisfied for 0 < d < 1.

Case 2: d =1,

$$\dot{x}_1 = \dot{i}_L = -\frac{V_{C_O}}{L} \left(1 - d\right) + \frac{V_{pv}}{L} = \frac{V_{pv}}{L} > 0$$
(3.96)

Two situations arise for $d = d_{eq} + \xi s = 1$,

(i) $d_{eq} = 1$:

If $d_{eq} = 1$, then from equation (3.79), $V_{pv} = 0$. Hence, looking at the operation of sliding surface and duty cycle in Figure 3.3, the system is operating on the L.H.S of MPP. The diagram demonstrates the operating schemes for both situations in equation (3.95). The sketch also demonstrates the operation schemes for both duty cycle and the sliding surface s.

Figure 3.3: Duty cycle and sliding surface responses away from MPP

(ii) $d_{eq} < 1$:

If $d_{eq} < 1$, then s > 0 implies that Lyapunov criterion equation (3.79) is satisfied. Therefore if d=1 the system is stable if only and only if $d_{eq} < 1$.

Case 3: d = 0,

If d = 0, then equation (3.77) implies

$$\dot{x}_1 = \dot{i}_L = -\frac{V_{C_O}}{L} \left(1 - d\right) + \frac{V_{pv}}{L} = -\frac{V_{pv}}{L} + \frac{V_{pv}}{L}$$
(3.97)

If duty cycle is zero the boost converter voltage output $V_o = V_C$ exceeds the solar (V_{pv}) voltage. This makes equation (3.97) negative definite, which results a positive definite \dot{s} . Again it is necessary to examine the two situation for d_{eq} when d=0 and $d_{eq} > 0$

i) $d_{eq} = 0$,

If $d_{eq} = 0$, then $V_{pv} = V_o$ implying that PV module is directly connected to the load.

Accordingly, the system is operating on the R.H.S of MPP where s > 0 duty should be increased thus contradicting the assumption that d = 0.

ii)
$$d_{eq} > 0$$

If $d_{eq} > 0$ and d = 0 then $d_{eq} = -\xi s$. This leads to s < 0 situation when d_{eq} is positive definite. In order to ensure that the controller does not saturate on the states d = 0 and d = 1, the positive scaling constant should be small. Considering the maximum absolute value $|s|_{max}$,

Therefore, $\xi \leq \frac{1}{|s|_{max}}$ Where,

$$|s|_{max} = \frac{\partial V_{pv}}{\partial I_{pv}} = -AN_s V_t \left(\frac{I_o}{I_{ph} + I_o - I_{pv}}\right) \approx R_L$$
(3.98)

3.1.7 Fuzzy logic technique

Fuzzy logic technique has been applied on the basis of Fuzzy set theory in PV MPPT controller under Partial Shading Condition (Won *et al.*, 1994; Verma *et al.*, 2020). A variable (e) has a certain degree of membership in the fuzzy set theory, and may be a member of one or more sets within a continuous range of 0 to 1. The Fuzzy logic has four interfaces demonstrated in Figure 3.4. These include the fuzzification interface, inference, rules (knowledge base) and defuzzification interface.

Figure 3.4: Fuzzy MPPT input and output variables

The inputs are translated into respective linguistic values within the fuzzification interface. These linguistic values form the membership functions which decide a variable 's range at a specific level. The steps involved in mapping a given input towards an output are formulated in fuzzy inference. This interface promotes identification of trends and provides a framework for decision making. Further, if-then rules and logical operations are implemented in the inference stage. The final part of the fuzzy logic consists of the defuzzifier, which transforms the fuzzy variables into output crisp sets. Fuzzy logic controller for PV system MPPT presented in this work has error (e(t)) and change of error $(\Delta e(t))$ inputs that constitutes fuzzy membership functions. The power derivative $\frac{\partial P}{\partial V}$ gives the error e at any instant n. Where,

$$e(t) = \frac{P_n(t) - P_{n-1}(t)}{V_n(t) - V_{n-1}(t)}$$
(3.99)

and

$$\Delta e(t) = e_n(t) - e_{n-1}(t) \tag{3.100}$$

The positive error (+e(t)) indicate that the controller is operating on R.H.S of MPP and negative error (-e(t)) reflects an increasing power on the L.H.S of MPP as illustrated in Figure 3.5. However, at MPP, $\frac{\partial P}{\partial V} = 0$, implying that the error e(t) = 0. If the controller is running on R.H.S, a negative value of Δe is needed to turn the operating point to the right to reach MPP and vice versa.

Figures 3.6 and 3.7 display the standardized MPPT membership function of error (e) and change in error (Δe) , the input variables in triangular form respectively.

Figure 3.5: Duty cycle and sliding surface responses away from MPP

Figure 3.8 represents the output membership function that gives the change in duty cycle. he change in duty cycle (ΔD) is used as the output which is used to switch the DC-DC converter on and off. As shown in figures 3.6-3.8, the fuzzy's input and output variables are translated to the linguistic variables such as NB (negative big), NS (negative small), ZE (zero),

Figure 3.6: Fuzzy degree of membership versus input variable error e

Figure 3.7: Fuzzy degree of membership versus input variable change in error Δe

Change in D

Figure 3.8: Fuzzy degree of membership versus input variable change in error Δe

PS (positive small) and PB (positive big) using simple fuzzy subsets. There are 25 fuzzy if-then rules summarized in Table 3.1. In order to maintain the PV system at global MPP, these rules are used to monitor the duty cycle of the DC-DC converter.

e Δe	NB	NS	ZE	PS	PB
NB	ZE	ZE	NB	NB	NB
NS	ZE	ZE	NS	NS	NS
ZE	NS	ZE	ZE	ZE	\mathbf{PS}
PS	\mathbf{PS}	PS	\mathbf{PS}	ZE	ZE
PB	PB	PB	PB	ZE	ZE

Table 3.1: Fuzzy rules

Chapter 4

Research Design and Methodology

4.1 Introduction

Figure 4.1 displays a block diagram of the PV system, which has been explored in this study. A DC-DC boost converter and a hybrid MPPT unit of Fuzzy logic and sliding controllers are interfaced with the solar system. The MPPT unit generate a control signal for pulse width modulation (PWM) that switch the converter ON and OFF. The boost converter amplifies the PV current and voltage which is supplied to a standalone system or grid-connected system with a DC-AC inverter. Modeling and simulations of PV MPPT systems have been implemented using both the datasheet and experimental data. The following section discusses the proposed use of Matlab Simulink and GNU Octave software to model a PV module.

Figure 4.1: A block diagram of the Photovoltaic solar system

4.2 Photovoltaic model algorithms

The novel single-diode-based algorithms presented in this work have a simple and quick procedure for extracting the five $A, I_o, I_{ph}, R_s, R_{sh}$ unknown parameters. Beginning with the algorithm for analyzing R_{sh} vs R_s relationship, three additional algorithms for $A < A_o$, $1 \le A \le A_o$ and $A \ge A_o$ are also provided.

4.2.1 Algorithm for A, R_s and R_{sh} analyses

The algorithm demonstrated in Figure (4.2) explains a simple novel procedure to test the relationship between A, R_s and R_{sh} of equation (3.39). The procedure was carried out using an efficient numerical analysis program based on an open source GNU-octave (Hansen, 2011).

Figure 4.2: An algorithm for evaluating the A, R_s and R_{sh} using I_{sc} , I_{mpp} , V_{mpp} and V_{oc}

4.2.2 Algorithm of five-model parameters for $A < A_o$

Figure 4.3 shows a simplified analytical procedure for extracting the unknown parameters of a five-parameter single diode model. The workflow starts with the initialization of the values of I_{sc} , I_{mpp} , V_{mpp} and V_{oc} from the datasheet profile or experimental data. Followed by calculations of A_o using equation (3.28), I_0 using equation (3.16), R_{sh} & R_s using equation (3.39) and I_{ph} using equation (3.43). Then P_{mpp} is calculated using equation (3.44), while error in P_{mpp} is equation calculated using (3.45). The algorithm evaluates if $\Delta P_{mpp} \leq 0.5\%$ & $\Delta V_{oc} \leq 0.1\%$, where A is adjusted in proximity of A_o for $A < A_o$ to maintain an acceptable error-margin. Finally the process end with I-V and P-V plots.

4.2.3 Algorithm of five-model parameters for $A \ge A_o$

The third new algorithm is based on $A \ge A_o$ for extraction of five unknown parameters for a single diode PV model. It only works with the values $A \ge A_o$, $R_s > 0$ of equation 3.29, which gives reliable positive values of R_sh . Figure 4.4 shows the flowchart for the second algorithm that has been used to extract A_o , A, I_o , I_{ph} , R_{sh} and R_s .

4.2.4 Algorithm of five-model parameters for $1 \le A \le A_o$

There are four most suitable data extraction approaches in this algorithm, where $1 \le A \le A_o$ is used for evaluating I and V using Newton-Raphson process. Such approaches are based on the choice of equations for calculating saturation current. Approach 1 is based on I_o currents that depend on A, I_{sc} , V_{oc} , R_s and R_{sh} using equations (3.13), (3.15) and (3.23). Approach 2 is based on the current of I_o which depends on A, I_{sc} , and V_{oc} and is determined using either equation (3.14) or (3.16). Approach 3 is based on I_o current of equation (3.19) at both V_{oc} and V_{mpp} and is dependent on R_s and R_{sh} resistances. Finally, approach 4 is based on I_o current given by equation (3.20) at both V_{oc} and V_{mpp} that is independent on R_s and R_{sh} resistances. However, with Io defined by equations (3.11 -3.12), (3.17-3.18) and (3.24) the data for both I and V are unsatisfactory.

These approaches can be implemented using the algorithm shown in Figure 4.5, which outlines all the steps needed to get the data to plot the I-V and P-V curves as follows.

• The process starts with initialization of I_{sc} , I_{mpp} , V_{mpp} , V_{oc} , N_s and V_t .

Figure 4.3: An algorithm for evaluating A_o , $A < A_o$, I_{ph} , I_o , R_{sh} and R_s

Figure 4.4: An algorithm for evaluating A_o , $A \ge A_o$, I_{ph} , I_o , R_{sh} and R_s

- Followed by setting the number of iterations, NiMax for current approximation and NvMax for voltage resolution plus precision description for R_s increment defined by Rsinc
- Then A, R_s and R_{sh} are estimated.
- Followed by calculation of I_o and I_{ph} for the first iteration
- The process is repeated severally for each iteration with an increment of R_s ($R_s = R_s + \text{Rsinc}$) until NiMax and NvMax are reached by solving equations (3.46-3.48)
- Then error in P_{mpp} is calculated followed by extraction of most acceptable values for A, R_s , R_{sh} , I_o and I_{ph}
- When the power error exceeds 0.5%, the cycle is repeated by entering a new ideality factor value.
- Eventually, the cycle finishes with plotting of I-V and P-V curves and I_{sc} , V_{oc} and V_{mpp} markers, if the power error is less than or equal to 0.5%

4.2.5 Photovoltaic PV model using Matlab

Figure 4.6 (a) displays a basic Model PV system using MATLAB Simulink. The model was used at constant irradiance and temperature at $1000W/m^2$ and $25^{\circ}C$ respectively to produce the I-V and P-V curves. Figure 4.6 (b) shows a simplified circuit with comprehensive relation of all PV system outputs. These were multiplexed into different outputs which are connected to the CRO shown in Figure 4.6 (c).

4.3 Boost converter using MATLAB

A boost converted is easily simulated using an inductor, a diode, a capacitor, a resistor and an IGBT transistor switch as shown in Figure 4.7. A controlled voltage source mimic a PV current and voltage source.

Figure 4.8 displays a hall effect current sensor calibration circuit using Proteus software and voltage sensor circuit with microcontroller based display unit. A hall-effect-based current sensor

Figure 4.5: An algorithm for calculating current (I) using Newton-Raphson technique and plotting IV and PV curves

Figure 4.6: Photovoltaic PV Model Using Matlab-Simulink

Figure 4.7: A DC-DC boost converter circuit using Matlab-Simulink

and voltage divide circuits between the PV system and the boost converter were implemented in the MPPT system.

Figure 4.8: A Hall-effect current sensor and voltage drop circuit using Proteus Software

4.4 Sliding mode based MPPT controller

Figure 4.9 shows an MPPT Controller based on sliding mode technique that has been implemented using Matlab-Simulink. The circuit has a PV system, current and voltage sensors, a single stage boost converter that step up the DC voltage and SMC implementation blocks.

4.5 Fuzzy logic based MPPT controller

Figure 4.10 represents simulation blocks in a Matlab Simulink for a Fuzzy logic controller that implements the Fuzzy Inference Method.

4.5.1 Fuzzy logic designer

In Matlab, the Fuzzy logic designer shown in Figure 4.12 allows the input and output membership functions to be easily modified. The error $\left(\frac{\partial P}{\partial V}\right)$ and error change in error (∂E) are the inputs and the fuzzy logic designer output gives the change in duty cycle.

Figure 4.9: Sliding Mode Based MPPT Controller for Solar systems using Matlab

Figure 4.10: A Fuzzy Logic Based MPPT Controller using Matlab

Figure 4.11: A Fuzzy Logic Based MPPT Controller using Matlab

Figure 4.12: Fuzzy Logic Designer

4.5.2Fuzzy membership functions (MFs) and rules

Fuzzy memberships are based on a multiple input single output (MISO) scheme with two e and de inputs, and one dD output. These appear as variables of the FIS in the membership editor shown in Figure 3.21.

(d) Output MF (dD)

Figure 4.13: Fuzzy Membership Functions (MFs) and Rules

Partial shading of a P-V system using MATLAB **4.6**

Figure 4.14 shows a P-V system implemented using Matlab Simulink which resembles an actual P-V plant with 12 modules. The plant has been divided into 3 groups each comprising 4 modules with incident irradiances of 1000 W / m^2 ,300 W / m^2 and 600 W / m^2 ,respectively. In addition, a combination of the Fuzzy logic and sliding mode controllers has been developed and tested, as shown in Figure 4.15.

Figure 4.14: Partial shading of a PV module using Matlab

Figure 4.15: A hybrid Fuzzy Logic sliding mode Based MPPT Controller using Matlab

Chapter 5

Result Analysis and Discussion

Table 5.1 provides a summary of data for the poly-crystalline Solinc 60Wp, Kyocera KC130GT and Solinc 250Wp solar modules. The N_s , I_{sc} , I_{mpp} , V_{mpp} , P_{mpp} , and V_{oc} values for Kyocera KC130GT was extracted from the datasheet profile. However, the I_{sc} , I_{mpp} , V_{mpp} , P_{mpp} , and V_{oc} values for Solinc 60Wp and Solinc 250Wp were experimental data extracted using the Gsola XJCM-10A solar simulator as shown in Figures 5.1 and 5.2.

		Solar Module	
Parameters	Solinc 60	KC130GT	Solinc 250
(Data Source)	(Simulator)	(Datasheet)	(Simulator)
P_{mpp} (W)	61.1922	130.064	253.34
$I_{mpp}(\mathbf{A})$	3.6247	7.39	8.9389
$V_{mpp}(\mathbf{V})$	16.8821	17.6	28.342
I_{sc} (A)	3.7997	8.02	9.5006
V_{oc} (V)	21.462	21.9	36.061
N_s	36	36	60
A_o	1.6554	1.8274	1.7705
$I_{o_{ont}}$	2.851E-06	1.893E-05	1.7367 E-05

Table 5.1: Solinc 60Wp, Kyocera KC130GT and Solinc 250Wp photovoltaic modules data at STC

The ideality factor optimal values (A_o) and saturation current optimal values (I_{oopt}) that are also listed in Table (5.1) have been calculated using equations (3.28) and (3.16), respectively. These optimum values set the upper bound for A_o and their respective I_o and give the best replica of I_{sc} , V_{oc} , I_{mpp} and V_{mpp} points in I-V and P-V curves.

Graphical analysis of ideality factor A with respect to saturation current have been accomplished using equation (3.27) that give A_o value at the y-axis intercept as illustrated in

Figure 5.1: I-V and P-V curves for Solinc 60W using Gsola XJCM-10A solar simulator

Figure 5.2: I-V and P-V curves for Solinc 250W using Gsola XJCM-10A solar simulator

Figure 5.3. The vertical-axis gives the optimal ideality factor values of 1.66, 1.83 and 1.77 for Solinc 60W, Kyocera KC130GT and Solinc 250W, respectively. These value agrees with the theoretical values shown in Table 5.1.

Figure 5.3: A graph of ideality factor against saturation current (A)

5.1 Extraction of five-model parameter for $A \leq A_o$

Table 5.2 gives a summary of extracted parameters for Solinc 60Wp, Kyocera KC130GT and Solinc 250Wp PV modules. The actual parameters have been extracted using algorithm shown in Figure 4.2. Figure 5.4 illustrates the relationship between R_{sh} and R_s using equation Table 5.2: Extracted parameters for Solinc 60Wp, Kyocera KC130GT and Solinc 250Wp PV modules

Parameters	Solinc 60Wp	KC130GT	Solinc 250Wp
A	1.607	1.81	1.729
R_s	0.8998	0.2025	0.5208
R_{sh}	585.014	486.498	123.026
I_o	2.8484E-06	1.8933E-05	1.7367 E-05
I_{ph}	3.8055	8.0233	9.5408
P_{mpp} (W)(Sim)	61.190	130.060	253.35
P_{mpp} (W) (expt)	61.192	130.064	253.34
Error $\%$ (W)	0.00360	0.00308	-0.00395

Figure 5.4: A graph of R_{sh} versus R_s for Solinc 60Wp

(3.39), for Solinc 60Wp. The ideality factor A=1.607 gives satisfactory values of $R_s = 0.8998\Omega$ and $R_{sh} = 585.014\Omega$, that are closer to the experimentally obtained results presented in Figure 5.1. The simulation has been done using arbitrarily selected range of R_s values from 0.75 Ω to 1 Ω . The R_s and R_{sh} data from the solar simulator has been used as the target point. From the graph, there are different values of R_s and R_{sh} pair that can be extracted in the neighborhood of solar simulator data. In Figure 5.4, R_s values below simulator data yield negative R_{sh} values. Figure 5.5 has been plotted using KC130GT datasheet values, in which the range of R_s values have been arbitrarily selected between 0.1 to 0.3 Ω . For KC130GT I-V plots, A = 1.81 produced

satisfactory values of $R_s = 0.2025\Omega$ and $R_{sh} = 486.498\Omega$, respectively.

Figure 5.6 shows the R_{sh} versus R_S between 0 and 1 Ω for Solinc 250Wp, where A = 1.729 provided $R_s = 0.5208\Omega$ and $R_{sh} = 123.0236\Omega$ that suit the simulator data.

The data in Table 5.2 has been used for plotting I-V and P-V curves. The curves have been plotted using GNU Octave open-source software code presented in appendix II.

Figure 5.5: A graph of R_{sh} versus R_s for KC130GT

Figure 5.6: A graph of R_{sh} versus R_s for Solinc 250Wp

5.2 Analysis of I-V and P-V curves for $A \leq A_o$

Figures 5.7-5.9 display the I-V and P-V characteristic curves for Solinc 60Wp, Kyocera KC130GT and Solinc 250Wp PV modules, respectively. In both the I-V and P-V curves, the values in Tables 5.1 for A_0 and I_{opt} have been used to draw the boundary curves by assuming that $I_{ph} \approx I_{sc}$, $R_s \approx o$ and $R_{sh} \approx \infty$. However, the values in Tables 5.2 have been used to draw the best fit graphs for each PV modules.

Figure 5.7 (a) displays the I-V relationship for Solinc 60Wp, where the cardinal points (I_{sc} , P_{mpp} and V_{oc}) have been marked with small circles. The curves for ideality factors $A_o = 1.6554$ and A = 1.607 merge at I_{sc} but differ substantially at P_{mpp} and V_{oc} respectively. This imply that ideality factor values between 1.607 and 1.6554 provide sufficient data when implemented in algorithm of Figure 4.3. A similar observation has been made in Figure 5.7 (b) which illustrates power against voltage relationship, where the A_o and A curves converge at the starting point but differ at P_{mpp} and V_{oc} . The zoomed parts illustrates the differences at both P_{mpp} and V_{oc} points.

For Kyocera KC130GT solar module, the I-V and P-V curves shown in Figures 5.8 (a) and (b) reveal $A_o = 1.8274$ and A = 1.81 lines diverging at P_{mpp} and V_{oc} as illustrated by the zoomed parts. However, the two lines intersect at zero point of Figure 5.8 (b) P-V curve.

Figures 5.9 (a) and (b) display similar results for Solinc 250Wp. In the I-V curve of Figure 5.9 (a), the lines for $A_o = 1.7705$ and A = 1.729 converge at I_{sc} and V_{oc} but differ slightly as illustrated in the zoomed part. Likewise, the lines converge at zero point and V_{oc} in P-V curve of Figure 5.9 (b). However, the lines in both I-V and P-V graphs diverge significantly at P_{mpp} . Therefore, since the P_{mpp} from experimental data is embedded on the A_o line, while A = 1.729 gives reasonable R_s and R_{sh} from equation (3.39), then choosing A between $A_o = 1.7705$ and A = 1.729 gives acceptable results.

5.3 Extraction of five-model parameter for $A \ge A_o$

The parameters extracted for Solinc 60Wp, Kyocera KC130GT and Solinc 250Wp photovoltaic modules are given in Table 5.3 for $A \ge A_o$. Figure 5.10 shows R_{sh} against R_s graph for Solinc 60Wp. The values for R_s and R_{sh} pair, has been determined using equation (3.29),

Figure 5.7: A graph of (a) current vs voltage (b) power vs voltage for Solinc 60Wp, $A \leq A_o$

Figure 5.8: A graph of (a) current vs voltage (b) power vs voltage for KC130GT, $A \leq A_o$

Figure 5.9: A graph of (a) current vs voltage (b) power vs voltage for Solinc 250Wp, $A \leq A_o$

while other parameters have been calculated using same equations as those used in section 5.2.

Table 5.3: Extracted parameters for Solinc 60Wp, Kyocera KC130GT and Solinc 250Wp photovoltaic modules for $A \ge A_o$

Parameters	Solinc 60Wp	KC130GT	Solinc 250Wp
A	1.978	1.98	1.92
$R_s(\Omega)$	0.8993	0.1912	0.2143
$R_{sh} (\Omega)$	7043.3234	996.8652	349.4125
I_o (A)	2.8414E-05	5.1377 E-05	4.8581E-05
I_{ph} (A)	3.8002	8.02154	9.50637
P_{mpp} (Sim)	61.193	130.060	253.350
P_{mpp} (expt)	61.192	130.064	253.340
Error $\%$ (W)	-0.00131	0.00308	-0.00395

Figure 5.10: A graph of R_{sh} versus R_s for Solinc 60Wp

The ideality factor of A = 1.978 gives values of $R_s = 0.8993\Omega$ and $R_{sh} = 7043.323\Omega$. The simulation has been done using GNU Octave open-source software code presented in Appendix VI using arbitrarily selected R_s values from 0.8 to 1 Ω . Figure 5.11 gives R_{sh} vs R_s curve for KC130GT, where the values of R_s have been chosen randomly between 0-0.4 Ω . For the KC130GT parameter A = 1.98 provided values of $R_s = 0.1912\Omega$ and $R_{sh} = 996.865\Omega$, respectively.

Figure 5.11: A graph of R_{sh} versus R_s for KC130GT

Figure 5.12: A graph of R_{sh} versus R_s for Solinc 250Wp

Figure 5.12 shows R_{sh} versus R_s for Soline 250Wp, between 0 and 1 Ω , where A = 1.92, $R_s = 0.2143\Omega$ and $R_{sh} = 349.413\Omega$ match the simulator results.

5.4 Analysis of I-V and P-V curves for $A \ge A_o$

Figures 5.13-5.15 show the characteristic curves for Solinc 60Wp, Kyocera KC130GT and Solinc 250Wp, respectively, for $A \ge A_o$.

The I-V curves shown in Figure 5.13 (a) and (b), for Solinc 60Wp, have been plotted using ideality factors of $A_o = 1.6554$ and A = 1.978. In Figure 5.13 (a) the lines representing the ideality factors $A_o = 1.6554$ and A = 1.978 merge only at I_{sc} but differ at P_{mpp} and V_{oc} . Similarly, in the P-V graph, the two lines meet at the starting point but differ notably at P_{mpp} and V_{oc} as illustrated in Figure 5.13 (b).

For the KC130GT PV module, the I-V and P-V curves shown in Figures 5.14 (a) and (b) consist of two lines for $A_o = 1.8274$ and A = 1.98 which diverge at P_{mpp} . The two lines, however, converge at both I_{sc} and V_{oc} with a small difference of 0.005V portrayed in the zoomed part.

Figures 5.15 (a) and (b) demonstrates similar results for Solinc 250Wp, where the lines for $A_o = 1.7705$ and A = 1.92 converge at I_{sc} and V_{oc} in I-V curve of Figure 5.15 (a) and converges at zero point and V_{oc} in P-V curve of Figure 5.15 (b). However, the lines conspicuously differ at P_{mpp} since the second live representing A = 1.92 has higher parasitic resistance values that reduce the output power.

5.5 Analysis of five-parameters using $0 \le A \le A_o$

Tables 5.4-5.6 give the five-model parameter data for Solinc 60Wp, Kyocera 130GT and Solinc 250Wp that have been obtained using four different approaches presented in algorithm 3 section 4.2.4. In addition, the simulated output power and errors are also reported in Tables 5.4-5.6 that represent how much the model's data deviate from the solar simulator's data shown in Figures 5.1 and 5.2. The following sections address the most feasible outcomes of the five-model parameters and provide more practical evidence for each approach that matches experimental results. Four approaches are listed here because they offer small percentage error.

Figure 5.13: A graph of (a) current vs voltage (b) power vs voltage for Solinc 60Wp for $A \geq A_o$

Figure 5.14: A graph of (a) current vs voltage (b) power vs voltage for KC130GT for $A \geq A_o$

Figure 5.15: A graph of (a) current vs voltage (b) power vs voltage for Solinc 250Wp for $A \geq A_o$

Approach 1

The data shown in the Tables 5.4-5.6 in rows 2-6 summarizes the A, I_{ph} , R_s , R_{sh} and I_o extracted parameters, while rows 7-10 give the P_{mpp} data from the simulator and model in algorithm 3 and the errors. Approach 1 data are presented in column 1 based on open and short circuit points, where I_o is determined using equations (3.13), (3.15) or (3.23). This approach gives credible [Rs, Rsh] pair from equation (3.29), when compared to the data obtained from solar simulator as shown in Figures 5.1 and 5.2.

Approach 2

The data shown in Tables 5.4-5.6 in column 2, have been extracted using approach 2 data where I_o has been calculated using either equations (3.14) or (3.16) that are independent of R_s , R_{sh} pair. This approach gives satisfactory $[R_s, R_{sh}]$ pair from equations (3.29), (3.30) (3.31), (3.32) and (3.38).

Approach 3

Again, the data shown in Tables 5.4-5.6 in column 3 have been obtained using approach 3 where I_o is determined using equation (3.19). This approach gives satisfactory $[R_s, R_{sh}]$ pair only from equations (3.29), (3.30), (3.31) and (3.38).

Approach 4

The fourth approach data is listed in column 4 o f Tables 5.4 and 5.6 for Solinc 60Wp, KC130GT and Solinc 250Wp. In this case, I_o is determined using equation (3.20) that is independent of R_s , R_{sh} pair. This approach gives satisfactory $[R_s, R_{sh}]$ pair only from equations (3.29), (3.30), (3.31) and (3.38).

Tables 5.4 - 5.6 give the extracted parameters and simulated data for Solinc 60Wp, KC130GT and Solinc 250Wp, respectively. The four approaches give appropriate percentage error for output power of less than 0.1 percent. The fourth method gives the least error of 0.0261 percent for Solinc 60Wp shown in Table 5.4 and 0.0479 % shown in Table 5.5 for KC130GT. However, the second approach gives the least output power error of 0.000042% for Solinc 250Wp. These data have been used to plot the I-V and P-V curves shown in Figures 5.14 - 5.16.

Parameters	Approach 1	Approach 2	Approach 3	Approach 4
A	0.5	0.5	0.5	0.5
$I_{ph}(A)$	3.8109	3.8096	3.8099	3.8108
$R_s(\Omega)$	0.8893	0.8893	0.8893	0.8893
$R_{sh}(\Omega)$	546.399	607.297	582.141	487.236
$I_o(A)$	1.9657 E-20	1.9974E-20	1.9821E-20	1.91E-20
$P_{mpp}(W)$ (Simulator)	61.1925	61.1925	61.1925	61.1925
$P_{mpp}(W)$ (model)	61.2122	61.2142	61.2132	61.2085
Error	0.0197	0.0216	0.0207	0.0160
ΔP_{mpp} Error	0.0322	0.0353	0.0338	0.0261

Table 5.4: Extracted parameters and simulated Data for Solinc $60 \mathrm{Wp}$

Table 5.5: Extracted parameters and simulated data for KC130GT $\,$

Parameters	Approach 1	Approach 2	Approach 3	Approach 4
A	1.14	1.14	1.14	1.14
$I_{ph}(A)$	8.033278	8.028423	8.029375	8.031727
$R_s(\Omega)$	0.2112	0.2112	0.2112	0.2112
$R_{sh}(\Omega)$	329.701	462.108	413.603	233.151
$I_o(A)$	7.5054 E-09	7.6567 E-09	7.6066 E-09	7.1768E-09
$P_{mpp}(W)$ (Simulator)	130.064	130.064	130.064	130.064
$P_{mpp}(W)$ (model)	130.162	130.200	130.187	130.126
Error	0.0978	0.1364	0.1235	0.0623
ΔP_{mpp} Error	0.0752	0.1049	0.0950	0.0479

Table 5.6: Extracted parameters and simulated data for Solinc 250Wp $\,$

Parameters	Approach 1	Approach 2	Approach 3	Approach 4
A	0.6	0.6	0.6	0.6
$I_{ph}(A)$	9.5513	9.6003	9.6003	9.5509
$\hat{R}_s(\Omega)$	0.5209	0.5208	0.5208	0.5209
$R_{sh}(\Omega)$	118.888	104.652	101.279	115.392
$I_o(A)$	1.073500E-16	1.110780E-16	1.077090E-16	1.045360E-16
$P_{mpp}(W)$ (Simulator)	253.3463	253.3463	253.3463	253.3463
$P_{mpp}(W)$ (model)	253.3466	253.3464	253.3465	253.3535
Error	0.000255	0.000106	0.000165	0.007146
ΔP_{mpp} Error	0.000101	0.000042	0.000065	0.002821

5.6 Comparison of extracted parameters with other approaches in literature for KC130GT

The results obtained using the three analytical methods presented in this work has been compared with the results published by Orioli and Di Gangi (2013), Kler *et al.* (2018) and Zaimi *et al.* (2019) for KC130GT. Compared to other reported methods, the extracted parameters shown in the Table 5.7 provide satisfactory results for R_s and I_{ph} . However, other parameters differ due to the variation in approaches of evaluating the ideality factor.

Parameter	А	$I_{ph}(\mathbf{A})$	$R_s\Omega$	$R_{sh}\Omega$	$I_o(\mathbf{A})$
Method 1 $A \leq A_O$	1.81	8.0233	0.2025	486.498	1.6710E-05
Method 2 $A \ge A_o$	1.98	8.0215	0.1912	996.865	5.1377 E-05
Method 3 $0 \le A \le A_o$	1.14	8.0333	0.2112	329.701	7.5054 E-09
Orioli and Di Gangi (2013) method	1.35	8.02	0.35	84.000	7.0700E-09
Kler <i>et al.</i> (2018) method	1.0352	8.0390	0.206	86.978	9.0742E-10
Zaimi et al. (2019) Method	1.036	8.0317	0.16902	116.979	9.3085E-10

Table 5.7: Extracted parameters and simulated data for KC130GT

5.7 I-V and P-V curves for Solinc 60Wp, KC130GT and Solinc 250Wp modules using the four approaches

Figure 5.16 (a) displays the current-voltage relationship for Solinc 60Wp, where the zoomed sections demonstrate the four approaches at short circuit point, maximum power point and open circuit point. The curves converge at maximum power point but vary significantly at short circuit point and at open circuit point. Figure 5.16 (b) shows the P-V curve for Solinc 60Wp.

Figure 5.17 (a) and (b) show the I-V and P-V relationships for KC130GT, where the zoomed parts also display the variances of the four approaches at the cardinal points. The curves converge at the maximum power point but differ at other points.

Figure 5.18 (a) and (b) display the I-V and P-V curves for Solinc 250Wp, where the zoomed parts also show the differences between the four approaches at short circuit and open circuit. However, the curves converge remarkably at the maximum power.

Figure 5.16: A graph of (a) current vs voltage (b) power vs voltage for Solinc 60Wp, $0 \leq A \leq A_o$

Figure 5.17: A graph of (a) current vs voltage (b) power vs voltage for KC130GT, $0 \leq A \leq A_o$

Figure 5.18: A graph of (a) current vs voltage (b) power vs voltage for Solinc 250Wp, $0 \leq A \leq A_o$

5.8 I-V and P-V characterization at ambient temperature, NOCT and actual irradiance

The Kyocera KC130GT has the ISO / IEC specification and has been selected to demonstrate the effects of irradiance and temperature on a single diode model's key parameters. The datasheet gives temperature coefficient of V_{oc} as $-0.0821V/^{o}C$ and temperature coefficient of I_{sc} as $-0.00318A/^{o}C$, that have been used as starting conditions to evaluate other parameters at various irradiances and temperatures.

Table 5.8 contains the calculated parameters and simulated values for the three cardinal point at irradiance of 200, 400, 600, 800 and $1000W/m^2$. These values have been extracted using equations (3.50) to (3.60) and have been applied to plot I-V and P-V curves at various irradiance as shown in Figures 5.19 and 5.20. The simulated values for I_{sc} , I_{mpp} , V_{mpp} , and V_{oc} at 800 and $1000W/m^2$ match the datasheet values and all values at 200, 400, 600, 800 and $1000W/m^2$ a agrees with the values reported by Zaimi *et al.* (2019).

Table 5.9 give the calculated parameters and simulated values for the three cardinal point at different temperatures of 20, 25, 30, 35 and $50^{\circ}C$. These values have also been applied to plot I-V and P-V curves at various temperatures shown in Figures 5.21 and 5.22.

Table 5.8: Simulated data and extracted parameters values for KC130GT at air temperature of $20^{\circ}C$ and NOCT of $47^{\circ}C$ and different irradiance levels

Irradiance (W/m^2)	1000	800	600	400	200
$I_{sc}(A)$	8.0900	6.4720	4.8540	3.2360	1.6180
$I_{mpp}(A)$	7.420	5.936	4.452	2.968	1.484
V_{mpp} (V)	15.748	15.451	15.068	14.528	13.606
$V_{oc}(V)$	20.268	19.971	19.588	19.049	18.126
A	1.34	1.32	1.29	1.26	1.1
$I_o(A)$	1.968E-06	1.567 E-06	1.112E-06	7.930E-07	1.008E-07
$I_{ph}(A)$	8.096	6.518	4.894	3.239	1.637
$\dot{R}_s(\Omega)$	0.158	0.201	0.301	0.362	1.151
$R_{sh}(\Omega)$	756.718	234.393	447.274	890.984	516.337
$P_{mpp}(W)$	116.845	91.712	67.079	43.887	20.190
$P_{mpp}(W)(sim)$	116.842	91.711	67.078	43.881	20.190
Error	0.003173	0.000625	0.000669	0.005988	0.000138
$\Delta P_{mpp}\%$	0.00272	0.00068	0.00100	0.01364	0.00068

Figure 5.19: A graph of current versus voltage for KC130GT at different irradiance levels

Figure 5.20: A graph of power versus voltage for KC130GT at different irradiance levels

Figure 5.21: A graph of current versus voltage for KC130GT showing various temperatures curves at $1000 W/m^2$

Figure 5.22: A graph of power versus voltage for KC130GT showing various temperatures curves at $1000 W/m^2$

Table 5.9: Simulated data and extracted model parameters values for KC130GT photovoltaic module at various air and NOCT temperatures for $1000W/m^2$ irradiance level

Temperature (^{o}C) NOCT (^{o}C)	20 53 75	25 58 75	$30 \\ 63 75$	$35 \\ 68.75$	40 73 75	$45 \\ 78 75$	50 83 75
T (Kelvin)	326.9	331.9	336.9	341.9	346.9	351.9	356.9
$I_{sc}(A)$	8.1114	8.1273	8.1432	8.1591	8.1750	8.1909	8.2068
$I_{mpp}(A)$	7.4288	7.4356	7.4423	7.4491	7.4558	7.4626	7.4693
V_{mpp} (V)	15.177	14.754	14.330	13.905	13.480	13.055	12.629
V_{oc} (V)	19.764	19.389	19.014	18.638	18.261	17.883	17.504
А	1.33	1.3	1.29	1.27	1.22	1.21	1.18
$I_o(A)(\times 10^{-6})$	3.5102	3.3329	3.9687	4.2352	3.1804	3.8383	3.3742
$I_{ph}(A)$	8.1176	8.1357	8.2258	8.255	8.1895	8.2079	8.2289
$R_s(\Omega)$	0.165	0.182	0.202	0.224	0.237	0.248	0.279
$R_{sh}(\Omega)$	928.065	625.585	234.484	309.163	832.145	691.047	666.96
$P_{mpp}(W)$	112.7463	109.7048	106.6482	103.5797	100.5042	97.4242	94.33
$P_{mpp}(W)(sim)$	112.7598	109.7099	106.6482	103.5799	100.5208	97.4693	94.393
Error	0.0134	0.0050	0.000016	0.000151	0.01658	0.04503	0.06333
$\Delta P_{mpp}\%$	0.0119	0.004595	0.000015	0.000146	0.0165	0.0462	0.0671

5.9 I-V and P-V Curves under Partial Shading

The incident of partial shading has been simulated using Matlab Simulink of Figure 4.14, where the first four solar modules have been subject to an irradiance of $1000W/m^2$. The next set of four modules have been subjected to an irradiance of $300W/m^2$ and the last set of four modules have been subjected to an irradiance of $600W/m^2$.

Figure 5.23 shows I-V and P-V curves for KC130GT module under partial shading condition, where the modules partially received different irradiance of $1000W/m^2$, $300W/m^2$ and $600W/m^2$. The curves show multiple maximum power points. The maximum power point with the highest value, marked with a red circular marker, shows the global MPP. The other maximum points represent the local MPPs, which give less output power. Tracking of global MPP has been targeted using the Fuzzy logic controller similar to the work reported by Zou *et al.* (2019). However, the sliding mode technique fails to track global MPP as suggested by Levron and Shmilovitz (2013).

Figure 5.23: Graphs of current and power versus voltage for KC130GT showing local and global MPPs

Chapter 6

Conclusion and Recommendations

Throughout this work, the simulation and modeling of the characteristics of three different low-, medium- and high-power PV modules under various environmental conditions has been successfully accomplished. The study of photovoltaic systems has been carried out using a single diode model where three algorithms have been developed to extract its unknown parameters. The first two algorithms have been based on the threshold value of the ideal factor where the actual ideality factor has been chosen in the vicinity of the optimum value. Choosing the ideal factor close to its optimum value makes the process easy to execute and improves processing speed.

The first algorithm where A has been selected near A_o such that A is slightly less than A_o , the method gave output powers of 61.193W for Solinc 60Wp, 130.06W for KC130GT and 253.35W for Solinc 250Wp, with errors of 0.0036%, 0.00308% and -0.00395%, respectively. The second algorithm where A has been selected slightly above A_o , gave simulated output power of 61.193 for Solinc 60Wp, 130.06W for KC130GT and 253.35W for Solinc 250Wp, with errors of -0.00131%, 0.00308% and -0.00395%, respectively. The third algorithm is an improved Newton–Raphson numerical analysis method in which four separate approaches of deriving the unknown parameters have been used to obtain the preliminary data, and the Newton-Raphson method is henceforth used to estimate the most viable voltage and current values for I-V and P-V plots. The four approaches gave simulated output powers of 61.2122W,612142W, 61.612085W for Solinc60Wp, 130.162W,130.200W,130.187W and 130.126W for KC130GT and 253.3466W, 253.3465W and 253.3535W for Solinc 25Wp. These four approaches gave negligible power errors of lees than 0.02% for Solinc 60Wp, less than 0.2% for KC130GT

and less than 0.002% for Solinc 250Wp. The third algorithm has less percentage compared to the first two algorithms. However the first two algorithm have less computational time since there fewer steps involved in their implementation.

The effects of temperature change and irradiance on model parameter have also been studied, in order to minimize the error commonly introduced when estimating the first and second order current and voltage coefficients. Simple procedures of arriving at the best five-model parameters at nominal cell operating temperature and actual irradiance have been introduced that depend on the short circuit current coefficient. There are new formulation of obtaining the V_{oc} and V_{mpp} at various irradiances and temperatures. This has been driven by the fact that the five extracted parameters depend on the three cardinal points, which are prone to errors when estimating the current and voltage coefficients. Such new methods include a reliable and clear analytical approach to determine the characteristics of I-V and P-V at all weather conditions. The new approach gave output powers of 20.19W at $200W/m^2$, 43.881W at $400W/m^2$, 67.078W at $600W/m^2$, 91.711W at $800W/m^2$ and 116.842W at $1000W/m^2$ at NOCT temperature of $47^{\circ}C$ for KC130GT. These values correspond to the change of irradiance at constant temperature.

Fuzzy logic and sliding mode MPPT controllers have also been studied and simulated. The Matlab-Simulink based systems that mimic an actual plant demonstrate the versatility of a high efficiency hybrid system that can work efficiently under all weather conditions, including partial shading instances. However, due to facility constraints, the MPPT model has not been implemented in an actual plant and remains to be research work for further studies. The system would require the use of powerful embedded system that can easily be implemented using FPGA, microcontroller or DSP chips.

References

- Abbassi, R., Abbassi, A., Jemli, M., and Chebbi, S. (2018). Identification of unknown parameters of solar cell models: A comprehensive overview of available approaches. *Renewable and Sustainable Energy Reviews*, 90:453–474.
- Abd Alhussain, H. and Yasin, N. (2020). Improved efficiency of photovoltaic module based on fuzzy logic MPPT technique. *MS&E*, 745(1):012006.
- Abdel-Salam, M., El-Mohandes, M. T., and El-Ghazaly, M. (2020). An efficient tracking of mpp in PV systems using a newly-formulated P&O-MPPT method under varying irradiation levels. Journal of Electrical Engineering & Technology, 15(1):501–513.
- Abo-Elyousr, F. K., Abdelshafy, A. M., and Abdelaziz, A. Y. (2020). MPPT-based particle swarm and cuckoo search algorithms for PV systems. In *Modern Maximum Power Point Tracking Techniques for Photovoltaic Energy Systems*, pages 379–400. Springer.
- Ahmad, F. F., Ghenai, C., Hamid, A. K., and Bettayeb, M. (2020). Application of sliding mode control for maximum power point tracking of solar photovoltaic systems: A comprehensive review. Annual Reviews in Control.
- Ahmad, J. (2010). A fractional open circuit voltage based maximum power point tracker for photovoltaic arrays. In 2010 2nd International Conference on Software Technology and Engineering, volume 1, pages V1–247. IEEE.
- Ahmad, R., Murtaza, A. F., and Sher, H. A. (2019). Power tracking techniques for efficient operation of photovoltaic array in solar applications-a review. *Renewable and Sustainable Energy Reviews*, 101:82–102.
- Al-Diab, A. and Sourkounis, C. (2010). Variable step size P&O MPPT algorithm for PV systems. In 2010 12th International Conference on Optimization of Electrical and Electronic Equipment, pages 1097–1102. IEEE.
- Al-Majidi, S. D., Abbod, M. F., and Al-Raweshidy, H. S. (2019). Design of an efficient maximum power point tracker based on anfis using an experimental photovoltaic system data. *Electronics*, 8(8):858.
- Alajmi, B. N., Ahmed, K. H., Finney, S. J., and Williams, B. W. (2010). Fuzzy-logic-control approach of a modified hill-climbing method for maximum power point in microgrid standalone photovoltaic system. *IEEE transactions on power electronics*, 26(4):1022–1030.
- Ali, A., Almutairi, K., Malik, M. Z., Irshad, K., Tirth, V., Algarni, S., Zahir, M., Islam, S., Shafiullah, M., Shukla, N. K., et al. (2020). Review of online and soft computing maximum power point tracking techniques under non-uniform solar irradiation conditions. *Energies*, 13(12):3256.

- Alik, R. and Jusoh, A. (2017). Modified perturb and observe (P&O) with checking algorithm under various solar irradiation. *Solar Energy*, 148:128–139.
- Allahabadi, S., Iman-Eini, H., and Farhangi, S. (2019). Neural network based maximum power point tracking technique for PV arrays in mobile applications. In 2019 10th International Power Electronics, Drive Systems and Technologies Conference (PEDSTC), pages 701–706. IEEE.
- Amalo, K. A., Birninkudu, S. I., Bukata, B. B., Salawudeen, A. T., and Ahmad, A. A. (2020). Cultured bat algorithm for optimized MPPT tracking under different shading conditions. In 2020 International Conference in Mathematics, Computer Engineering and Computer Science (ICMCECS), pages 1–8. IEEE.
- Ataboev, O. K., Kabulov, R. R., Matchanov, N. A., and Egamov, S. R. (2019). Influence of temperature on the output parameters of a photovoltaic module based on amorphous hydrogenated silicon. *Applied Solar Energy*, 55(3):159–167.
- Atay, B. K. and Eminoğlu, U. (2019). A new approach for parameter estimation of the singlediode model for photovoltaic cells/modules. Turkish Journal of Electrical Engineering & Computer Sciences, 27(4):3026–3039.
- Atici, K., Sefa, I., and Altin, N. (2019). Grey wolf optimization based MPPT algorithm for solar PV system with sepic converter. In 2019 4th International Conference on Power Electronics and their Applications (ICPEA), pages 1–6. IEEE.
- Avila, E., Pozo, N., Pozo, M., Salazar, G., and Domínguez, X. (2017). Improved particle swarm optimization based MPPT for PV systems under partial shading conditions. In 2017 IEEE Southern Power Electronics Conference (SPEC), pages 1–6. IEEE.
- Bag, A., Subudhi, B., and Ray, P. K. (2018). An adaptive sliding mode control scheme for grid integration of a PV system. CPSS Transactions on Power Electronics and Applications, 3(4):362–371.
- Bahari, M. I., Tarassodi, P., Naeini, Y. M., Khalilabad, A. K., and Shirazi, P. (2016). Modeling and simulation of hill climbing MPPT algorithm for photovoltaic application. In 2016 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), pages 1041–1044. IEEE.
- Barreto, R. A. (2018). Fossil fuels, alternative energy and economic growth. *Economic Modelling*, 75:196–220.
- Basha, C. and Rani, C. (2020). Different conventional and soft computing MPPT techniques for solar PV systems with high step-up boost converters: A comprehensive analysis. *Energies*, 13(2):371.
- Basha, C. H., Bansal, V., Rani, C., Brisilla, R., and Odofin, S. (2020). Development of cuckoo search MPPT algorithm for partially shaded solar PV sepic converter. In *Soft Computing* for Problem Solving, pages 727–736. Springer.
- Batzelis, E. (2019). Non-iterative methods for the extraction of the single-diode model parameters of photovoltaic modules: A review and comparative assessment. *Energies*, 12(3):358.
- Belhachat, F. and Larbes, C. (2018). A review of global maximum power point tracking techniques of photovoltaic system under partial shading conditions. *Renewable and Sustainable Energy Reviews*, 92:513–553.

- Belhachat, F. and Larbes, C. (2019). Comprehensive review on global maximum power point tracking techniques for PV systems subjected to partial shading conditions. *Solar Energy*, 183:476–500.
- Belkaid, A., Colak, I., and Kayisli, K. (2017). Implementation of a modified P&O-MPPT algorithm adapted for varying solar radiation conditions. *Electrical Engineering*, 99(3):839–846.
- Beltran, A., Hughes, C., and Das, S. (2019). Improved maximum power point tracking of partially shaded PV arrays using particle swarm optimization with zone initialization. In 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC), pages 0663–0667. IEEE.
- Bendib, B., Krim, F., Belmili, H., Almi, M., and Boulouma, S. (2014). Advanced fuzzy MPPT controller for a stand-alone PV system. *Energy Procedia*, 50(2014):383–392.
- Bensaha, A., Benkouider, F., and Cheknane, A. (2020). Design and size optimization of the PV modules for stand-alone photovoltaic systems. In *ICREEC 2019*, pages 167–172. Springer.
- Bhan, V., Hashmani, A. A., and Shaikh, M. M. (2019). A new computing perturb-andobserve-type algorithm for MPPT in solar photovoltaic systems and evaluation of its performance against other variants by experimental validation. *Scientia Iranica*, 26(Special Issue on machine learning, data analytics, and advanced optimization techniques in modern power systems [Transactions on Computer Science & Engineering and Electrical Engineering (D)]):3656–3671.
- Bielecki, A., Ernst, S., Skrodzka, W., and Wojnicki, I. (2020). The externalities of energy production in the context of development of clean energy generation. *Environmental Science* and Pollution Research, pages 1–25.
- Bingöl, O. and Ozkaya, B. (2019). A comprehensive overview of soft computing based MPPT techniques for partial shading conditions in PV systems. *Mühendislik Bilimleri ve Tasarım Dergisi*, 7(4):926–939.
- Bouchriha, I., Ghanem, A. B., and Nouri, K. (2019). MPPT control of a photovoltaic system based on sliding mode control. In 2019 International Conference on Advanced Systems and Emergent Technologies (IC_ASET), pages 12–16. IEEE.
- Boukenoui, R. and Mellit, A. (2019). Applications of improved versions of fuzzy logic based maximum power point tracking for controlling photovoltaic systems. In *Solar Photovoltaic Power Plants*, pages 143–164. Springer.
- Bratcu, A. I., Munteanu, I., Bacha, S., and Raison, B. (2008). Maximum power point tracking of grid-connected photovoltaic arrays by using extremum seeking control. *Journal of Control Engineering and Applied Informatics*, 10(4):3–12.
- Brockway, P. E., Owen, A., Brand-Correa, L. I., and Hardt, L. (2019). Estimation of global final-stage energy-return-on-investment for fossil fuels with comparison to renewable energy sources. *Nature Energy*, 4(7):612–621.
- Brunton, S. L., Rowley, C. W., Kulkarni, S. R., and Clarkson, C. (2010). Maximum power point tracking for photovoltaic optimization using ripple-based extremum seeking control. *IEEE transactions on power electronics*, 25(10):2531–2540.
- Carrero, C., Rodriguez, J., Ramirez, D., and Platero, C. (2010). Simple estimation of PV modules loss resistances for low error modelling. *Renewable Energy*, 35(5):1103–1108.

- Castaner, L. and Silvestre, S. (2002). *Modelling photovoltaic systems using PSpice*. John Wiley and Sons.
- Celik, A. N. and Acikgoz, N. (2007). Modelling and experimental verification of the operating current of mono-crystalline photovoltaic modules using four-and five-parameter models. *Applied energy*, 84(1):1–15.
- Chaibi, Y., Salhi, M., and El-Jouni, A. (2019). Sliding mode controllers for standalone PV systems: Modeling and approach of control. *International Journal of Photoenergy*, 2019.
- Chan, D. S. and Phang, J. C. (1987). Analytical methods for the extraction of solar-cell singleand double-diode model parameters from IV characteristics. *IEEE Transactions on Electron devices*, 34(2):286–293.
- Charaabi, A., Barambones, O., Zaidi, A., and Zanzouri, N. (2020). A novel two stage controller for a DC-DC boost converter to harvest maximum energy from the PV power generation. In *Actuators*, volume 9, page 29. Multidisciplinary Digital Publishing Institute.
- Chenni, R., Makhlouf, M., Kerbache, T., and Bouzid, A. (2007). A detailed modeling method for photovoltaic cells. *Energy*, 32(9):1724–1730.
- Chin, C. S., Neelakantan, P., Yang, S. S., Chua, B. L., and Tze Kin Teo, K. (2011). Effect of partially shaded conditions on photovoltaic array's maximum power point tracking. International Journal of Simulation-Systems, Science & Technology, 12(3).
- Chin, V. J., Salam, Z., and Ishaque, K. (2015). Cell modelling and model parameters estimation techniques for photovoltaic simulator application: A review. *Applied Energy*, 154:500–519.
- Chouay, Y. and Ouassaid, M. (2019). An experimental artificial neural network based mpp tracking for solar photovoltaic systems. In International Conference Europe Middle East & North Africa Information Systems and Technologies to Support Learning, pages 533–542. Springer.
- Chu, C.-C. and Chen, C.-L. (2009). Robust maximum power point tracking method for photovoltaic cells: A sliding mode control approach. *Solar Energy*, 83(8):1370–1378.
- Cubas, J., Pindado, S., and Farrahi, A. (2013). New method for analytical photovoltaic parameter extraction. In 2013 International Conference on Renewable Energy Research and Applications (ICRERA), pages 873–877. IEEE.
- da Rocha, M. V., Sampaio, L. P., and da Silva, S. A. O. (2020). Comparative analysis of MPPT algorithms based on bat algorithm for PV systems under partial shading condition. Sustainable Energy Technologies and Assessments, 40:100761.
- Dadfar, S., Samad, S., and Nakamura, H. (2020). Variable step size perturb and observe MPPT controller by applying θ -modified krill herd algorithm-sliding mode controller to increase accuracy in photovoltaic system. *Journal of Cleaner Production*, page 122243.
- Daraban, S., Petreus, D., and Morel, C. (2014). A novel MPPT (maximum power point tracking) algorithm based on a modified genetic algorithm specialized on tracking the global maximum power point in photovoltaic systems affected by partial shading. *Energy*, 74:374– 388.
- De Brito, M. A. G., Galotto, L., Sampaio, L. P., e Melo, G. d. A., and Canesin, C. A. (2012). Evaluation of the main MPPT techniques for photovoltaic applications. *IEEE transactions* on industrial electronics, 60(3):1156–1167.

- De Soto, W., Klein, S. A., and Beckman, W. A. (2006). Improvement and validation of a model for photovoltaic array performance. *Solar energy*, 80(1):78–88.
- Debnath, D., Soren, N., Pandey, A. D., and Barbhuiya, N. H. (2020). Improved grey wolf assists MPPT approach for solar photovoltaic system under partially shaded and gradually atmospheric changing condition. *International Energy Journal*, 20(1).
- Derri, M., Bouzi, M., Lagrat, I., and Baba, Y. (2016). Fuzzy sliding mode control for photovoltaic system. International Journal of Power Electronics and Drive Systems, 7(3):964.
- Dey, B. K., Khan, I., Mandal, N., and Bhattacharjee, A. (2016). Mathematical modelling and characteristic analysis of solar PV cell. In 2016 IEEE 7th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), pages 1–5. IEEE.
- Dharshan, B., Rajasekar, N., and Sankarkumar, R. S. (2020). Adaptability analysis of particle swarm optimization variants in maximum power tracking for solar PV systems. In *Intelligent Computing Techniques for Smart Energy Systems*, pages 397–409. Springer.
- Dileep, G. and Singh, S. (2017). Application of soft computing techniques for maximum power point tracking of SPV system. *Solar Energy*, 141:182–202.
- Dincer, I. (2000). Renewable energy and sustainable development: a crucial review. *Renewable and sustainable energy reviews*, 4(2):157–175.
- Divyasharon, R., Banu, R. N., and Devaraj, D. (2019). Artificial neural network based MPPT with cuk converter topology for PV systems under varying climatic conditions. In 2019 IEEE International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS), pages 1–6. IEEE.
- Dixit, S. (2020). Solar technologies and their implementations: A review. *Materials Today: Proceedings*.
- Dongue, S. B., Njomo, D., Tamba, J. G., and Ebengai, L. (2012). Modeling of electrical response of illuminated crystalline photovoltaic modules using four-and five-parameter models. *International Journal of Emerging Technology and Advanced Engineering*, 2(11):612–619.
- Duan, Q., Leng, J., Duan, P., Hu, B., and Mao, M. (2015). An improved variable step PO and global scanning MPPT method for PV systems under partial shading condition. In 2015 7th international conference on intelligent human-machine systems and cybernetics, volume 1, pages 382–386. IEEE.
- Duan, Q., Mao, M., Duan, P., and Hu, B. (2017). An intelligent algorithm for maximum power point tracking in photovoltaic system under partial shading conditions. *Transactions of the Institute of Measurement and Control*, 39(2):244–256.
- Ebhota, W. S. and Jen, T.-C. (2020). Fossil fuels environmental challenges and the role of solar photovoltaic technology advances in fast tracking hybrid renewable energy system. *International Journal of Precision Engineering and Manufacturing-Green Technology*, 7(1):97–117.
- El Achouby, H., Zaimi, M., Ibral, A., and Assaid, E. (2018). New analytical approach for modelling effects of temperature and irradiance on physical parameters of photovoltaic solar module. *Energy conversion and management*, 177:258–271.
- El-Helw, H. M., Magdy, A., and Marei, M. I. (2017). A hybrid maximum power point tracking technique for partially shaded photovoltaic arrays. *IEEE access*, 5:11900–11908.

- Elobaid, L. M., Abdelsalam, A. K., and Zakzouk, E. E. (2015). Artificial neural network-based photovoltaic maximum power point tracking techniques: a survey. *IET Renewable Power Generation*, 9(8):1043–1063.
- Eltamaly, A. M. and Abdelaziz, A. Y. (2019). Modern Maximum Power Point Tracking Techniques for Photovoltaic Energy Systems. Springer.
- Eltamaly, A. M., Al-Saud, M., Abokhalil, A. G., and Farh, H. M. (2020). Simulation and experimental validation of fast adaptive particle swarm optimization strategy for photovoltaic global peak tracker under dynamic partial shading. *Renewable and Sustainable Energy Reviews*, 124:109719.
- Eltamaly, A. M., Farh, H. M., and Othman, M. F. (2018). A novel evaluation index for the photovoltaic maximum power point tracker techniques. *Solar Energy*, 174:940–956.
- Esram, T., Kimball, J. W., Krein, P. T., Chapman, P. L., and Midya, P. (2006). Dynamic maximum power point tracking of photovoltaic arrays using ripple correlation control. *IEEE Transactions on power electronics*, 21(5):1282–1291.
- Eydi, M., Hosseini Sabzevari, S. I., and Ghazi, R. (2020). A novel strategy of maximum power point tracking for photovoltaic panels based on fuzzy logic algorithm. *Advances in Electrical and Electronic Engineering*, 18(1):1–10.
- Farah, L., Haddouche, A., and Haddouche, A. (2020). Comparison between proposed fuzzy logic and anfis for MPPT control for photovoltaic system. *International Journal of Power Electronics and Drive Systems*, 11(2):1065.
- Fares, A. M., Zalam, B. A. A., El Nashar, S. G., and Aka, H. (2013). Comparison between different algorithms for maximum ppt in photovoltaic systems and its implementation on microcontroller. *Journal of Energy Technologies and Policy*, 3(5):62–72.
- Femia, N., Petrone, G., Spagnuolo, G., and Vitelli, M. (2005). Optimization of perturb and observe maximum power point tracking method. *IEEE transactions on power electronics*, 20(4):963–973.
- García Vera, Y. E., Dufo-López, R., and Bernal-Agustín, J. L. (2019). Energy management in microgrids with renewable energy sources: A literature review. *Applied Sciences*, 9(18):3854.
- Garraoui, R., Hamed, M. B., and Sbita, L. (2015). A robust optimization technique based on first order sliding mode approach for photovoltaic power systems. *International Journal of Automation and Computing*, 12(6):620–629.
- Ghani, F., Rosengarten, G., Duke, M., and Carson, J. (2014). The numerical calculation of single-diode solar-cell modelling parameters. *Renewable Energy*, 72:105–112.
- Goel, S. and Sharma, R. (2017). Performance evaluation of stand alone, grid connected and hybrid renewable energy systems for rural application: A comparative review. *Renewable* and Sustainable Energy Reviews, 78:1378–1389.
- Gunerhan, H., Hepbasli, A., and Giresunlu, U. (2008). Environmental impacts from the solar energy systems. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 31(2):131–138.
- Guo, L., Meng, Z., Sun, Y., and Wang, L. (2018). A modified cat swarm optimization based maximum power point tracking method for photovoltaic system under partially shaded condition. *Energy*, 144:501–514.

- Hanitsch, R., Schulz, D., and Siegfried, U. (2001). Shading effects on output power of grid connected photovoltaic generator systems. *Rev. Energ. Ren.: Power Engineering*, pages 93–99.
- Hansen, J. S. (2011). GNU Octave: Beginner's Guide: Become a Proficient Octave User by Learning this High-level Scientific Numerical Tool from the Ground Up. Packt Publishing Ltd.
- Hashim, N. and Salam, Z. (2019). Critical evaluation of soft computing methods for maximum power point tracking algorithms of photovoltaic systems. *International Journal of Power Electronics and Drive Systems*, 10(1):548.
- Hassan, S., Abdelmajid, B., Mourad, Z., Aicha, S., and Abdenaceur, B. (2017). An advanced MPPT based on artificial bee colony algorithm for MPPT photovoltaic system under partial shading condition. *International Journal of Power Electronics and Drive Systems*, 8(2):647.
- Hejri, M., Mokhtari, H., Azizian, M. R., and Söder, L. (2013). An analytical-numerical approach for parameter determination of a five-parameter single-diode model of photovoltaic cells and modules. *International Journal of Sustainable Energy*, 35(4):396–410.
- Hu, Y., Chen, H., Xu, R., Yu, D., and Li, R. (2012). Maximum power point tracking under shadowed conditions. In *Zhongguo Dianji Gongcheng Xuebao(Proceedings of the Chinese Society of Electrical Engineering)*, volume 32, pages 14–26. Chinese Society for Electrical Engineering.
- Hua, C., Lin, J., and Shen, C. (1998). Implementation of a dsp-controlled photovoltaic system with peak power tracking. *IEEE Transactions on Industrial Electronics*, 45(1):99–107.
- Huang, C., Wang, L., Long, H., Luo, X., and Wang, J.-H. (2019). A hybrid global maximum power point tracking method for photovoltaic arrays under partial shading conditions. *Optik*, 180:665–674.
- Huang, C., Zhang, Z., Wang, L., Song, Z., and Long, H. (2017). A novel global maximum power point tracking method for PV system using jaya algorithm. In 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2), pages 1–5. IEEE.
- Huang, Y.-P. and Hsu, S.-Y. (2016). A performance evaluation model of a high concentration photovoltaic module with a fractional open circuit voltage-based maximum power point tracking algorithm. *Computers & Electrical Engineering*, 51:331–342.
- Huang, Y.-P., Huang, M.-Y., and Ye, C.-E. (2020). A fusion firefly algorithm with simplified propagation for photovoltaic MPPT under partial shading conditions. *IEEE Transactions on Sustainable Energy*.
- Humada, A. M., Hojabri, M., Mekhilef, S., and Hamada, H. M. (2016). Solar cell parameters extraction based on single and double-diode models: A review. *Renewable and Sustainable Energy Reviews*, 56:494–509.
- Huynh, P. and Cho, B. H. (1996). Design and analysis of a microprocessor-controlled peakpower-tracking system [for solar cell arrays]. *IEEE Transactions on Aerospace and Electronic* Systems, 32(1):182–190.
- Ibrahim, A. E., Nor, N. M., Nawi, I. B. M., Mohd, F. R., and Mohd, K. N. (2019). Genetic algorithm to improve power output of photovoltaic system under partial shaded condition. *International Journal of Power Electronics and Drive Systems*, 10(4):2182.

- Jiang, J.-A., Huang, T.-L., Hsiao, Y.-T., Chen, C.-H., et al. (2005). Maximum power tracking for photovoltaic power systems. Tankang Journal of Science and Engineering, 8(2):147.
- Jiang, L. L., Maskell, D. L., and Patra, J. C. (2013). A novel ant colony optimization-based maximum power point tracking for photovoltaic systems under partially shaded conditions. *Energy and Buildings*, 58:227–236.
- Jordehi, A. R. (2016). Parameter estimation of solar photovoltaic PV cells: A review. *Renewable and Sustainable Energy Reviews*, 61:354–371.
- Karagoz, M. and Demirel, H. (2017). A novel MPPT method for PV arrays based on modified bat algorithm with partial shading capability.
- Kaundinya, D. P., Balachandra, P., and Ravindranath, N. H. (2009). Grid-connected versus stand-alone energy systems for decentralized power—a review of literature. *Renewable and Sustainable Energy Reviews*, 13(8):2041–2050.
- Kennerud, K. L. (1969). Analysis of performance degradation in CdS solar cells. IEEE Transactions on aerospace and electronic systems, (6):912–917.
- Khan, M. F. N., Ali, G., Khan, A. K., et al. (2019). A review of estimating solar photovoltaic cell parameters. In 2019 2nd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), pages 1–6. IEEE.
- Khatib, T. and Muhsen, D. H. (2020). Optimal sizing of standalone photovoltaic system using improved performance model and optimization algorithm. *Sustainability*, 12(6):2233.
- Khatibi, A., Razi Astaraei, F., and Ahmadi, M. H. (2019). Generation and combination of the solar cells: A current model review. *Energy Science & Engineering*, 7(2):305–322.
- Khezzar, R., Zereg, M., and Khezzar, A. (2014). Modeling improvement of the four parameter model for photovoltaic modules. *Solar Energy*, 110:452–462.
- Kinattingal, S., Simon, S. P., Nayak, P. S. R., et al. (2020). MPPT in PV systems using ant colony optimisation with dwindling population. IET Renewable Power Generation, 14(7):1105–1112.
- Kittner, N., Gheewala, S. H., and Kammen, D. M. (2016). Energy return on investment (eroi) of mini-hydro and solar PV systems designed for a mini-grid. *Renewable Energy*, 99:410–419.
- Kler, D., Rana, K., and Kumar, V. (2018). A nonlinear pid controller based novel maximum power point tracker for PV systems. *Journal of the Franklin Institute*, 355(16):7827–7864.
- Kolluru, V. R., Patjoshi, R. K., and Panigrahi, R. (2019). A comprehensive review on maximum power tracking of a photovoltaic system under partial shading conditions. *International Journal of Renewable Energy Research (IJRER)*, 9(1):175–185.
- Krein, P. T. (1999). Ripple correlation control, with some applications. In ISCAS'99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI (Cat. No. 99CH36349), volume 5, pages 283–286. IEEE.
- Kruglykhin, P., Gusev, A., and Kievets, A. (2020). The effect of partial shading on the i–v photovoltaic cell characteristics. In *AIP Conference Proceedings*, volume 2212, page 020030. AIP Publishing LLC.

- Kumar, N., Hussain, I., Singh, B., and Panigrahi, B. K. (2017a). MPPT in dynamic condition of partially shaded PV system by using WODE technique. *IEEE Transactions on Sustainable Energy*, 8(3):1204–1214.
- Kumar, N., Hussain, I., Singh, B., and Panigrahi, B. K. (2017b). Rapid MPPT for uniformly and partial shaded PV system by using jayade algorithm in highly fluctuating atmospheric conditions. *IEEE Transactions on Industrial Informatics*, 13(5):2406–2416.
- Lasnier, F. and Juen, W. Y. (2017). The sizing of stand-alone photovoltaic systems using the simulation technique. *International Energy Journal*, 12(1).
- Lei, P., Li, Y., Chen, Q., and Seem, J. E. (2010). Extremum seeking control based integration of MPPT and degradation detection for photovoltaic arrays. In *Proceedings of the 2010 American Control Conference*, pages 3536–3541. IEEE.
- Levron, Y. and Shmilovitz, D. (2013). Maximum power point tracking employing sliding mode control. *IEEE Transactions on Circuits and Systems I: Regular Papers*, 60(3):724–732.
- Leyva, R., Alonso, C., Queinnec, I., Cid-Pastor, A., Lagrange, D., and Martinez-Salamero, L. (2006). MPPT of photovoltaic systems using extremum-seeking control. *IEEE transactions* on aerospace and electronic systems, 42(1):249–258.
- Leyva, R., Artillan, P., Cabal, C., Estibals, B., and Alonso, C. (2011). Dynamic performance of maximum power point tracking circuits using sinusoidal extremum seeking control for photovoltaic generation. *International Journal of Electronics*, 98(4):529–542.
- Li, C.-h., Zhu, X.-j., Cao, G.-y., Hu, W.-q., Sui, S., and Hu, M.-r. (2009). A maximum power point tracker for photovoltaic energy systems based on fuzzy neural networks. *Journal of Zhejiang University-Science A*, 10(2):263–270.
- Li, H., Peng, J., Liu, W., Huang, Z., and Lin, K.-C. (2014). A newton-based extremum seeking MPPT method for photovoltaic systems with stochastic perturbations. *International Journal* of Photoenergy, 2014.
- Li, X., Li, Y., Seem, J. E., and Lei, P. (2011). Maximum power point tracking for photovoltaic systems using adaptive extremum seeking control. In *Dynamic Systems and Control Conference*, volume 54754, pages 803–810.
- Liu, F., Tait, S., Schellart, A., Mayfield, M., and Boxall, J. (2020). Reducing carbon emissions by integrating urban water systems and renewable energy sources at a community scale. *Renewable and Sustainable Energy Reviews*, 123:109767.
- Liu, X. and Lopes, L. A. (2004). An improved perturbation and observation maximum power point tracking algorithm for PV arrays. In 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No. 04CH37551), volume 3, pages 2005–2010. IEEE.
- Lu, L., Weng, Q., Xie, Y., Guo, H., and Li, Q. (2019). An assessment of global electric power consumption using the defense meteorological satellite program-operational linescan system nighttime light imagery. *Energy*, 189:116351.
- Ma, T., Yang, H., and Lu, L. (2014). Development of a model to simulate the performance characteristics of crystalline silicon photovoltaic modules/strings/arrays. *Solar Energy*, 100:31–41.
- Macaulay, J. and Zhou, Z. (2018). A fuzzy logical-based variable step size P&O MPPT algorithm for photovoltaic system. *Energies*, 11(6):1340.

- Mahdi, A., Mahamad, A., Saon, S., Tuwoso, T., Elmunsyah, H., and Mudjanarko, S. (2020). Maximum power point tracking using perturb and observe, fuzzy logic and anfis. SN Applied Sciences, 2(1):89.
- Mäki, A. and Valkealahti, S. (2014). Differentiation of multiple maximum power points of partially shaded photovoltaic power generators. *Renewable energy*, 71:89–99.
- Manickam, C., Raman, G. P., Raman, G. R., Ganesan, S. I., and Chilakapati, N. (2016). Fireworks enriched P&O algorithm for GMPPT and detection of partial shading in PV systems. *IEEE Transactions on Power Electronics*, 32(6):4432–4443.
- Mao, M., Duan, Q., Duan, P., and Hu, B. (2018). Comprehensive improvement of artificial fish swarm algorithm for global MPPT in PV system under partial shading conditions. *Transac*tions of the Institute of Measurement and Control, 40(7):2178–2199.
- Mao, M., Zhang, L., Duan, Q., Oghorada, O., Duan, P., and Hu, B. (2017). A two-stage particle swarm optimization algorithm for MPPT of partially shaded PV arrays. *International Journal* of Green Energy, 14(8):694–702.
- McEvoy, A., Markvart, T., Castañer, L., Markvart, T., and Castaner, L. (2003). Practical handbook of photovoltaics: fundamentals and applications. Elsevier.
- Meinhardt, M. and Cramer, G. (2000). Past, present and future of grid connected photovoltaicand hybrid-power-systems. In 2000 Power Engineering Society Summer Meeting (Cat. No. 00CH37134), volume 2, pages 1283–1288. IEEE.
- Meral, M. E. and Dincer, F. (2011). A review of the factors affecting operation and efficiency of photovoltaic based electricity generation systems. *Renewable and Sustainable Energy Reviews*, 15(5):2176–2184.
- Mertens, K. (2018). Photovoltaics: fundamentals, technology, and practice. John Wiley & Sons.
- Midya, P., Krein, P. T., Turnbull, R. J., Reppa, R., and Kimball, J. (1996). Dynamic maximum power point tracker for photovoltaic applications. In *PESC Record. 27th Annual IEEE Power Electronics Specialists Conference*, volume 2, pages 1710–1716. IEEE.
- Mikkili, S., Bollipo, R. B., and Bonthagarla, P. K. (2020). A critical review on PV MPPT techniques: Classical, intelligent and optimization. *IET Renewable Power Generation*.
- Miqoi, S., El Ougli, A., Boutouba, M., and Tidhaf, B. (2017). Fuzzy sliding mode control for maximum power point tracking of a photovoltaic pumping system. *Journal of Electrical Systems*, 13(1):95–114.
- Mohanty, M., Selvakumar, S., Koodalsamy, C., and Simon, S. (2019). Global maximum operating point tracking for PV system using fast convergence firefly algorithm. *Turkish Journal* of Electrical Engineering & Computer Sciences, 27(6).
- Mohanty, S., Subudhi, B., and Ray, P. K. (2016). A grey wolf-assisted perturb & observe MPPT algorithm for a PV system. *IEEE Transactions on Energy Conversion*, 32(1):340–347.
- Mosaad, M. I., abed el Raouf, M. O., Al-Ahmar, M. A., and Banakher, F. A. (2019). Maximum power point tracking of PV system based cuckoo search algorithm; review and comparison. *Energy Procedia*, 162:117–126.

- Motahhir, S., Chouder, A., El Hammoumi, A., Benyoucef, A. S., El Ghzizal, A., Kichou, S., Kara, K., Sanjeevikumar, P., and Silvestre, S. (2020a). Optimal energy harvesting from a multistrings PV generator based on artificial bee colony algorithm. *IEEE Systems Journal*.
- Motahhir, S., El Hammoumi, A., and El Ghzizal, A. (2020b). The most used MPPT algorithms: Review and the suitable low-cost embedded board for each algorithm. *Journal of cleaner* production, 246:118983.
- Nafeh, A. E.-S. A., Fahmy, F. H., Mahgoub, O. A., and El-Zahab, E. M. A. (1998). Developed algorithm of maximum power tracking for stand-alone photovoltaic system. *Energy Sources*, 20(1):45–53.
- Neville, R. C. (1995). Solar energy conversion: the solar cell. Elsevier.
- Nguyen, D. D. and Lehman, B. (2006). Modeling and simulation of solar PV arrays under changing illumination conditions. In 2006 IEEE Workshops on Computers in Power Electronics, pages 295–299. IEEE.
- Nie, X., Wang, W., and Nie, H. (2017). Chaos quantum-behaved cat swarm optimization algorithm and its application in the PV MPPT. Computational Intelligence and Neuroscience, 2017.
- Noguchi, T., Togashi, S., and Nakamoto, R. (2002). Short-current pulse-based maximumpower-point tracking method for multiple photovoltaic-and-converter module system. *IEEE Transactions on Industrial electronics*, 49(1):217–223.
- Nugraha, D. A., Lian, K.-L., et al. (2019). A novel MPPT method based on cuckoo search algorithm and golden section search algorithm for partially shaded PV system. Canadian Journal of Electrical and Computer Engineering, 42(3):173–182.
- Ogliari, E. and Leva, S. (2019). Computational Intelligence in Photovoltaic Systems. MDPI.
- Orioli, A. and Di Gangi, A. (2013). A procedure to calculate the five-parameter model of crystalline silicon photovoltaic modules on the basis of the tabular performance data. *Applied Energy*, 102:1160–1177.
- Otieno, C. A., Nyakoe, G. N., and Wekesa, C. W. (2009). A neural fuzzy based maximum power point tracker for a photovoltaic system. In *AFRICON 2009*, pages 1–6. IEEE.
- Owusu-Nyarko, I., Elgenedy, M. A., and Ahmed, K. (2019). Combined temprature and irradiation effects on the open circuit voltage and short circuit current constants for enhancing their related PV-MPPT algorithms. In 2019 IEEE Conference on Power Electronics and Renewable Energy (CPERE), pages 343–348. IEEE.
- Ozturk, M. and Dincer, I. (2019). Comparative environmental impact assessment of various fuels and solar heat for a combined cycle. *International Journal of Hydrogen Energy*, 44(10):5043– 5053.
- Perera, F. (2018). Pollution from fossil-fuel combustion is the leading environmental threat to global pediatric health and equity: solutions exist. *International journal of environmental research and public health*, 15(1):16.
- Phang, J., Chan, D., and Phillips, J. (1984a). Accurate analytical method for the extraction of solar cell model parameters. *Electronics Letters*, 20(10):406–408.

- Phang, J. C. H., Chan, D. S. H., and Phillips, J. R. (1984b). Accurate analytical method for the extraction of solar cell model parameters. *Electronics Letters*, 20(10):406–408.
- Priyadarshi, N., Ramachandaramurthy, V. K., Padmanaban, S., and Azam, F. (2019). An ant colony optimized MPPT for standalone hybrid PV-wind power system with single cuk converter. *Energies*, 12(1):167.
- Psarros, G., Batzelis, E., and Papathanassiou, S. (2014). Analysis of local mpps on the PV curve of a partially shaded PV string. *EU PVSEC*, pages 3383–3389.
- Qais, M. H., Hasanien, H. M., and Alghuwainem, S. (2020). Parameters extraction of three-diode photovoltaic model using computation and harris hawks optimization. *Energy*, 195:117040.
- Raghavendra, K. V. G., Zeb, K., Muthusamy, A., Krishna, T., Kumar, S., Kim, D.-H., Kim, M.-S., Cho, H.-G., and Kim, H.-J. (2020). A comprehensive review of DC–DC converter topologies and modulation strategies with recent advances in solar photovoltaic systems. *Electronics*, 9(1):31.
- Ram, J. P., Babu, T. S., and Rajasekar, N. (2017). A comprehensive review on solar PV maximum power point tracking techniques. *Renewable and Sustainable Energy Reviews*, 67:826–847.
- Ramyar, A., Iman-Eini, H., and Farhangi, S. (2016). Global maximum power point tracking method for photovoltaic arrays under partial shading conditions. *IEEE Transactions on Industrial Electronics*, 64(4):2855–2864.
- Raugei, M., Fullana-i Palmer, P., and Fthenakis, V. (2012). The energy return on energy investment (eroi) of photovoltaics: Methodology and comparisons with fossil fuel life cycles. *Energy Policy*, 45:576–582.
- Rauschenbach, H. S. (1971). Electrical output of shadowed solar arrays. *IEEE Transactions* on Electron Devices, 18(8):483–490.
- Rauschenbach, H. S. (2012). Solar cell array design handbook: The principles and technology of photovoltaic energy conversion. *Springer Science and Business Media*.
- Reis, L., Camacho, J., and Novacki, D. (2017). The newton raphson method in the extraction of parameters of PV modules. In *Proceedings of the International Conference on Renewable Energies and Power Quality (ICREPQ'17), Malaga, Spain*, pages 4–6.
- Robles-Campos, H. R., Azuaje-Berbecí, B. J., Scheller, C. J., Angulo, A., and Mancilla-David, F. (2019). Detailed modeling of large scale photovoltaic power plants under partial shading conditions. *Solar Energy*, 194:485–498.
- Saha, C., Agbu, N., Jinks, R., and Huda, M. (2018). Review article of the solar PV parameters estimation using evolutionary algorithms. *MOJ Solar and Photoenergy Systems*, 2(2):66–78.
- Salam, Z., Ahmed, J., and Merugu, B. S. (2013). The application of soft computing methods for MPPT of PV system: A technological and status review. *Applied energy*, 107:135–148.
- Sandali, A., Oukhoya, T., and Cheriti, A. (2014). Modeling and design of PV grid connected system using a modified fractional short-circuit current MPPT. In 2014 International Renewable and Sustainable Energy Conference (IRSEC), pages 224–229. IEEE.

- Saravanan, S. and Babu, N. R. (2016). Maximum power point tracking algorithms for photovoltaic system-a review. *Renewable and Sustainable Energy Reviews*, 57:192–204.
- Schwingshackl, C., Petitta, M., Wagner, J. E., Belluardo, G., Moser, D., Castelli, M., Zebisch, M., and Tetzlaff, A. (2013). Wind effect on PV module temperature: Analysis of different techniques for an accurate estimation. *Energy Procedia*, 40:77–86.
- Segev, G., Mittelman, G., and Kribus, A. (2012). Equivalent circuit models for triple-junction concentrator solar cells. *Solar Energy Materials and Solar Cells*, 98:57–65.
- Sera, D., Teodorescu, R., and Rodriguez, P. (2007). PV panel model based on datasheet values. In 2007 IEEE international symposium on industrial electronics, pages 2392–2396. IEEE.
- Seyedmahmoudian, M., Mekhilef, S., Rahmani, R., Yusof, R., and Renani, E. T. (2013). Analytical modeling of partially shaded photovoltaic systems. *Energies*, 6(1):128–144.
- Shang, L., Guo, H., and Zhu, W. (2020). An improved MPPT control strategy based on incremental conductance algorithm. Protection and Control of Modern Power Systems, 5(1):1–8.
- Sharma, A., Pachauri, R., Sharma, A., and Raj, N. (2019). Extraction of the solar PV module parameters using chicken swarm optimization technique. In 2019 Women Institute of Technology Conference on Electrical and Computer Engineering (WITCON ECE), pages 45–48. IEEE.
- Shengqing, L., Fujun, L., Jian, Z., Wen, C., and Donghui, Z. (2020). An improved MPPT control strategy based on incremental conductance method. *Soft Computing*, pages 1–8.
- Sher, H. A., Murtaza, A. F., Noman, A., Addoweesh, K. E., Al-Haddad, K., and Chiaberge, M. (2015). A new sensorless hybrid MPPT algorithm based on fractional short-circuit current measurement and P&O MPPT. *IEEE Transactions on sustainable energy*, 6(4):1426–1434.
- Shockley, W. (1949). The theory of p-n junctions in semiconductors and p-n junction transistors. Bell System Technical Journal, 28(3):435–489.
- Silvestre, S. and Chouder, A. (2008). Effects of shadowing on photovoltaic module performance. Progress in Photovoltaics: Research and applications, 16(2):141–149.
- soufyane Benyoucef, A., Chouder, A., Kara, K., Silvestre, S., *et al.* (2015). Artificial bee colony based algorithm for maximum power point tracking (MPPT) for PV systems operating under partial shaded conditions. *Applied Soft Computing*, 32:38–48.
- Subroto, R. K., Ardhenta, L., and Maulana, E. (2017). A novel of adaptive sliding mode controller with observer for DC/DC boost converters in photovoltaic system. In 2017 5th International Conference on Electrical, Electronics and Information Engineering (ICEEIE), pages 9–14. IEEE.
- Sze, S. M. and Ng, K. K. (2006). *Physics of semiconductor devices*. John wiley & sons.
- Taghizadeh-Hesary, F., Yoshino, N., and Inagaki, Y. (2019). Empirical analysis of factors influencing the price of solar modules. *International Journal of Energy Sector Management*.
- Tajuddin, M. F. N., Ayob, S. M., Salam, Z., and Saad, M. S. (2013). Evolutionary based maximum power point tracking technique using differential evolution algorithm. *Energy and Buildings*, 67:245–252.

- Takun, P., Kaitwanidvilai, S., and Jettanasen, C. (2010). Maximum power point tracking using fuzzy logic control for photovoltaic systems. In World Congress on Engineering 2012. July 4-6, 2012. London, UK., volume 2189, pages 986–990. International Association of Engineers.
- Titri, S., Kaced, K., and Larbes, C. (2019). Maximum power point tracking based on the bio inspired bat algorithm. In *International Conference in Artificial Intelligence in Renewable Energetic Systems*, pages 22–29. Springer.
- Titri, S., Larbes, C., Toumi, K. Y., and Benatchba, K. (2017). A new MPPT controller based on the ant colony optimization algorithm for photovoltaic systems under partial shading conditions. *Applied Soft Computing*, 58:465–479.
- Tjahjono, A., Anggriawan, D. O., Habibi, M. N., and Prasetyono, E. (2020). Modified grey wolf optimization for maximum power point tracking in photovoltaic system under partial shading conditions. *International Journal on Electrical Engineering and Informatics*, 12(1):94–104.
- Twidell, J. and Weir, T. (2015). Renewable energy resources. Routledge.
- Ulinuha, A. and Zulfikri, A. (2020). Enhancement of solar photovoltaic using maximum power point tracking based on hill climbing optimization algorithm. In *Journal of Physics: Conference Series*, volume 1517, page 012096.
- Vemuru, S., Singh, P., and Niamat, M. (2012). Modeling impact of bypass diodes on photovoltaic cell performance under partial shading. In 2012 IEEE International Conference on Electro/Information Technology, pages 1–5. IEEE.
- Verma, P., Garg, R., and Mahajan, P. (2020). Asymmetrical interval type-2 fuzzy logic control based MPPT tuning for PV system under partial shading condition. *ISA transactions*.
- Vieira, R. G., de Araújo, F. M., Dhimish, M., and Guerra, M. I. (2020). A comprehensive review on bypass diode application on photovoltaic modules. *Energies*, 13(10):2472.
- Villalva, M. G., Gazoli, J. R., and Ruppert Filho, E. (2009). Comprehensive approach to modeling and simulation of photovoltaic arrays. *IEEE Transactions on power electronics*, 24(5):1198–1208.
- Walker, G. (2001). Evaluating MPPT converter topologies using a matlab PV model. *Journal* of Electrical and Electronics Engineering, Australia, 21(1):49.
- Walker, S., Sooriyaarachchi, N., Liyanage, N., Abeynayake, P., and Abeyratne, S. (2011). Comparative analysis of speed of convergence of MPPT techniques. In 2011 6th International Conference on Industrial and Information Systems, pages 522–526. IEEE.
- Won, C.-Y., Kim, D.-H., Kim, S.-C., Kim, W.-S., and Kim, H.-S. (1994). A new maximum power point tracker of photovoltaic arrays using fuzzy controller. In *Proceedings of 1994 Power Electronics Specialist Conference-PESC'94*, volume 1, pages 396–403. IEEE.
- Wu, Z., Yu, D., and Kang, X. (2018). Application of improved chicken swarm optimization for MPPT in photovoltaic system. Optimal Control Applications and Methods, 39(2):1029–1042.
- Würfel, P. and Würfel, U. (2016). *Physics of solar cells: from basic principles to advanced concepts.* John Wiley & Sons.
- Xiao, W. and Dunford, W. G. (2004). A modified adaptive hill climbing MPPT method for photovoltaic power systems. In 2004 IEEE 35th annual power electronics specialists conference (IEEE Cat. No. 04CH37551), volume 3, pages 1957–1963. Ieee.

- Xu, D., Dai, Y., Yang, C., and Yan, X. (2019). Adaptive fuzzy sliding mode command-filtered backstepping control for islanded PV microgrid with energy storage system. *Journal of the Franklin Institute*, 356(4):1880–1898.
- Yang, B., Li, W., Zhao, Y., and He, X. (2010). Design and analysis of a grid-connected photovoltaic power system. *IEEE transactions on power electronics*, 25(4):992–1000.
- Yau, H.-T. and Chen, C.-L. (2012). Fuzzy sliding mode controller design for maximum power point tracking control of a solar energy system. *Transactions of the Institute of Measurement* and Control, 34(5):557–565.
- Yau, H.-T., Lin, C.-J., and Wu, C.-H. (2013). Sliding mode extremum seeking control scheme based on pso for maximum power point tracking in photovoltaic systems. *International Journal of Photoenergy*, 2013.
- Yau, H.-T. and Wu, C.-H. (2011). Comparison of extremum-seeking control techniques for maximum power point tracking in photovoltaic systems. *Energies*, 4(12):2180–2195.
- Yetayew, T. T., Jyothsna, T., and Kusuma, G. (2016). Evaluation of incremental conductance and firefly algorithm for PV MPPT application under partial shade condition. In 2016 IEEE 6th International Conference on Power Systems (ICPS), pages 1–6. IEEE.
- Yousri, D., Babu, T. S., Allam, D., Ramachandaramurthy, V., Beshr, E., Eteiba, M., et al. (2019a). Fractional chaos maps with flower pollination algorithm for partial shading mitigation of photovoltaic systems. *Energies*, 12(18):3548.
- Yousri, D., Babu, T. S., Allam, D., Ramachandaramurthy, V. K., and Etiba, M. B. (2019b). A novel chaotic flower pollination algorithm for global maximum power point tracking for photovoltaic system under partial shading conditions. *IEEE Access*, 7:121432–121445.
- Zaimi, M., El Achouby, H., Ibral, A., and Assaid, E. (2019). Determining combined effects of solar radiation and panel junction temperature on all model-parameters to forecast peak power and photovoltaic yield of solar panel under non-standard conditions. *Solar Energy*, 191:341–359.
- Zazo, H., Del Castillo, E., Reynaud, J. F., and Leyva, R. (2012). MPPT for photovoltaic modules via newton-like extremum seeking control. *Energies*, 5(8):2652–2666.
- Zeb, K., Islam, S. U., Din, W. U., Khan, I., Ishfaq, M., Busarello, T. D. C., Ahmad, I., and Kim, H. J. (2019). Design of fuzzy-pi and fuzzy-sliding mode controllers for single-phase two-stages grid-connected transformerless photovoltaic inverter. *Electronics*, 8(5):520.
- Zhang, P. and Sui, H. (2020). Maximum power point tracking technology of photovoltaic array under partial shading based on adaptive improved differential evolution algorithm. *Energies*, 13(5):1254.
- Zheng, D., Li, J., Wu, W., Yu, H., Du, J., Sun, W., Xiao, S., and Shao, Z. (2020). The study for MPPT of photovoltaic system based on terminal sliding mode control method. *E&ES*, 467(1):012089.
- Zou, Y., Yan, F., Wang, X., and Zhang, J. (2019). An efficient fuzzy logic control algorithm for photovoltaic maximum power point tracking under partial shading condition. *Journal of the Franklin Institute*.

Appendix I

Ideality factor vs saturation current code (Figure 5.3)

```
clc
1
  clear
2
  output_precision (15)
3
  T=298;
  k=1.38065*10^{(-23)};
  q=1.6022*10^{(-19)};
6
  Vth = (k^*T)/q
  %ideality factor (A) vs Satution Current (Io)
8
  Ippt = [3.5719 \ 7.39 \ 8.9389];
9
  Vppt=[17 \ 17.6 \ 28.342];
10
II Isc = [3.8008 \ 8.02 \ 9.5006];
12 Voc = \begin{bmatrix} 21.462 & 21.9 & 36.061 \end{bmatrix};
  Nsc = [36 \ 36 \ 60];
  c={ 'g ', 'b ', 'r '};
  for i = [1 \ 2 \ 3];
15
  Io = [0:0.001:0.1];
16
  n=(Voc(i)-Vppt(i))./((log(Isc(i)+Io)-log(Isc(i)+Io-Ippt(i)))*Nsc(i)*
17
     Vth);
18 figure 1
  plot(Io,n, c(i),"linewidth", 1.5)
19
  hleg=legend('Solinic 60Wp', 'KC130GT', 'Solnic 250W', "location","
20
     southeast");
  legend boxoff
21
  set (hleg, "fontsize", 18);
22
23 set (gca, "linewidth", 2)
24 set (gca, "fontsize", 18)
_{25} xlim ([0, 0.1]);
  ylim ([1.6, 2]);
26
  xlabel('Saturation Current (n)', "fontsize", 20);
27
  ylabel('Ideeality Factor', "fontsize", 20);
28
  hold on;
29
  clear n;
30
  end
31
```

Appendix II

 R_{sh} against R_s Code for $A \leq A_o$ (Figure 5.4)

```
clc
  clear
2
3 output_precision (8)
  Ippt=3.6247;
  Vppt=16.8821;
5
  Isc=3.7997;
6
  Voc=21.5948;
  Nsc=36;
  T=298.15;
9
  k=1.3806503*10^{(-23)};
  q=1.6021764*10^{(-19)};
11
  Vth = (k T)/q
  no = (\text{Voc-Vppt}). / (\text{Nsc*Vth*log}(\text{Isc.}/(\text{Isc-Ippt})))
13
I_{14} I_{0} = I_{sc} / (exp(V_{oc.} / (n_{v}^{*}V_{th}^{*}N_{sc})))
_{15} n=1.607
  Rsr = [0:0.0001:1];
16
<sup>17</sup> B=Rsr. * Ippt;
<sup>18</sup> C=Vppt+(Rsr.*Ippt);
19|D = Io^* \exp(C. / (n^* Nsc^* Vth));
_{20} F=Io*exp(Voc./(n*Nsc*Vth));
<sup>21</sup> num=Voc - Vppt - B;
_{22} den = Ippt+D-F;
  Rsr;
23
<sup>24</sup> Rshr=num. / den;
25 figure
<sup>26</sup> plot (Rsr, Rshr, "g", "linewidth", 2)
hleg = legend('n = 1.607');
  legend boxoff
28
  set (hleg, "fontsize", 20);
29
  set (gca, "linewidth", 1.5)
set (gca, "fontsize", 20)
30
31
  xlim ([0.75, 1]);
32
xlabel('R_s(\Omega)', "fontsize", 20);
  ylabel ('R_{sh} (\Omega)', "fontsize", 20);
34
  hold
35
  Rshr = (Voc - Vppt - (Rsr. * Ippt)). / (Ippt + (Io * exp((Vppt + (Rsr. * Ippt))). / (n*
36
      Nsc*Vth))) - (Io*exp(Voc./(n*Nsc*Vth))));
```

```
37 figure
 plot(Rsr, Rshr, "g", "linewidth", 2)
38
 hleg = legend('n = 1.607');
39
40 legend boxoff
 set (hleg, "fontsize", 20);
41
 set(gca, "linewidth", 1.5)
set(gca, "fontsize", 20)
42
43
_{44} xlim ([0.75, 1]);
  xlabel('R_s(\Omega)', "fontsize", 20);
45
  ylabel('R_{sh}}(\Omega)', "fontsize", 20);
46
47 hold
  plot (0.8993, 505.013218, 'o', 'LineWidth', 2, 'MarkeRsrize', 6, 'Color', 'g'
48
     )
 Rsr=0.8998
49
  Rshr = (Voc - Vppt - (Rsr. * Ippt)) . / (Ippt + (Io * exp((Vppt + (Rsr. * Ippt))) . / (n*
50
     Nsc^*Vth))) - (Io^*exp(Voc./(n^*Nsc^*Vth))))
 Io = Isc / (exp(Voc./(n*Vth*Nsc)))
51
_{52} Iph=Isc+(Isc*Rsr)./Rshr
```

Appendix III

I-V Curve Code for $n \leq A_o$ (Figure 5.7 (a))

```
clc
      clear
  2
      T=298.15;
      k=1.3806503*10^{(-23)};
      q=1.6021764*10^{(-19)};
  5
      Vth = (k^*T)/q
  6
  _{7} Ippt=3.6247;
      Vppt=16.8821;
  8
      Isc=3.7997:
  9
      Voc=21.5948;
10
11 | Nsc = 36;
_{12} V= [0:0.1:1000];
n = [1.6554 \ 1.607];
I_{14} Io= [2.8481E-06 \ 1.8624E-06];
_{15} Iph=[3.7997 3.80554];
_{16} Rshr = \begin{bmatrix} 64437.533 & 585.0140 \end{bmatrix};
      Rsr = [0.001 \ 0.8998];
17
|_{18}| c = \{ k', k - i \};
19 for i = [1 \ 2];
      I = Iph(i) + Io(i) - Io(i) * exp((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * (I * Rsr(i))) - ((V + (I * Rsr(i)))) / (n(i) * (I * Rsr(i))) - ((V + (I * Rsr(i)))) / (n(i) * (I * Rsr(i))) - ((V + (I * Rsr(i)))) / (n(i) * (I * Rsr(i))) - ((V + (I * Rsr(i)))) - ((V + (I * Rsr(i))
20
                  Rsr(i)))./Rshr(i));
       figure (4)
21
22 plot (V, I, c{i}, "linewidth", 1.5);
_{23} hleg = legend('n_o=1.6554', 'n=1.607', "location", "southwest");
24 set (hleg, "fontsize", 13);
<sup>25</sup> legend boxoff
_{26} axis ( [0 23 0 4]);
      set(gca, "linewidth", 1.5)
27
      set (gca, "fontsize", 14)
28
29 xlabel('Voltage in volts', "fontsize", 20);
      ylabel('Current in Amperes', "fontsize", 20);
30
_{31} % grid minor on;
32 hold on;
33 clear I;
34 end
_{35} figure (4)
```

```
<sup>36</sup> plot ([0 Vppt Voc], [Isc Ippt 0], 'o', 'LineWidth', 2, 'MarkeRsrize', 6, '
                    Color', 'k')
<sup>37</sup> rectangle ("position", [16, 3.4, 2.8, 0.4], "linestyle", "--");
<sup>38</sup> rectangle ("position", [21, 0, 1.4, 0.2],"linestyle","--");
       line([17 15.4], [3.4 3], "linewidth", 1.5)
39
40 line ([20.9 19.4], [0.2 0.8], "linewidth", 1.5)
       axes ('position', [0.35,0.55,0.3,0.28]);
41
_{42} for i = [1 \ 2];
_{43} R=15<V & V<23;
       I = Iph(i) + Io(i) - Io(i) * exp((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * (I * Rsr(i))) - ((V + (I * Rsr(i)))) / (n(i) * (I * Rsr(i))) - ((V + (I * Rsr(i)))) / (n(i) * (I * Rsr(i))) - ((V + (I * Rsr(i)))) / (n(i) * (I * Rsr(i))) - ((V + (I * Rsr(i)))) - ((V + (I * Rsr(i))
44
                    Rsr(i)))./Rshr(i));
        plot(V(R), I(R), c\{i\}, "linewidth", 1.5);
45
        set (gca, "xlim", [16 18.4], "ylim", [3.4 3.8])
46
        set (gca, 'XTick', 16:0.4:18.4)
47
       set(gca, "linewidth", 1.5)
48
       set (gca, "fontsize", 13)
49
       hold on;
50
51 grid on;
       clear I;
52
53 end
_{54} figure (4)
<sup>55</sup> plot ([0 Vppt Voc], [Isc Ippt 0], 'o', 'LineWidth', 2, 'MarkeRsrize', 6, '
                    Color ', 'k')
        axes ('position', [0.53, 0.25, 0.25, 0.24]);
56
       for i = [1 \ 2];
57
       R=15<V & V<23;
58
       I = Iph(i) + Io(i) - Io(i) * exp((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i))) / (n(i) * (I * Rsr(i))) - ((V + (I * Rsr(i)))) / (n(i) * (I * Rsr(i))) - ((V + (I * Rsr(i)))) / (n(i) * (I * Rsr(i))) - ((V + (I * Rsr(i)))) / (n(i) * (I * Rsr(i))) - ((V + (I * Rsr(i)))) - ((V + (I * Rsr(i)))
59
                    Rsr(i)))./Rshr(i));
        plot(V(R), I(R), c\{i\}, "linewidth", 1.5);
60
        set (gca, "xlim", [21.5 21.9], "ylim", [0 0.001])
61
        set (gca, 'XTick', 21.5:0.2:21.9)
62
63 set (gca, "linewidth", 1.5)
       set(gca, "fontsize", 13)
64
65 hold on;
66 grid on;
67 clear I;
68 end
_{69} figure (4)
<sup>70</sup> plot ([0 Vppt Voc], [Isc Ippt 0], 'o', 'LineWidth', 2, 'MarkeRsrize', 6, '
                     Color', 'k')
```
Appendix IV

P-V curve code for $A \leq A_o$ (Figure 5.9 (b))

```
_{1} clc
  clear
  T=298.15;
  k=1.3806503*10^{(-23)};
  q=1.6021764*10^{(-19)};
5
  Vth = (k^*T)/q
6
  Nsc = 36;
  V = [0:0.1:1000];
8
  n = [1.6554 \ 1.607];
9
10 Io= [2.8481E-06 1.8624E-06];
_{11} [Iph=[ 3.7997 3.80554 ];
  Rshr = [64437.533 585.0140];
_{13} Rsr = [0.001 0.8998];
_{14} c={ 'k ', 'g '};
<sup>15</sup> for i = [1 \ 2];
<sup>16</sup> I=Iph(i)+Io(i)-Io(i)*exp((V+(I.*Rsr(i)))./(n(i)*Vth*Nsc))-((V+(I.*
     Rsr(i)))./Rshr(i));
  P = V.*I;
17
  figure (2)
18
  plot(V,P, c\{i\}, "linewidth", 1.5);
19
  hleg = legend('n_0=1.6554', 'n=1.607', "location", "northwest");
20
  set (hleg, "fontsize", 13);
21
22 legend boxoff
  axis([0 \ 23 \ 0 \ 65]);
23
  set(gca, "linewidth", 1.5)
24
  set(gca, "fontsize", 14)
25
  xlabel('Voltage in volts', "fontsize", 20);
26
  ylabel('Power in watts', "fontsize", 20);
27
  hold on;
28
29 clear I;
  end
30
<sup>31</sup> rectangle ("position", [16.5, 59.5, 3, 4],"linestyle","--");
  rectangle ("position", [21.2, 0, 1, 4], "linestyle", "--");
32
<sup>33</sup> line ([17 18], [42 59.5], "linewidth", 1.5)
<sup>34</sup> line ([21.2 19.8], [4 12], "linewidth", 1.5)
<sup>35</sup> axes ('position', [0.55, 0.44, 0.2, 0.2]);
_{36} for i=[1 2];
```

```
_{37} R=10<V & V<23;
      I=Iph(i)+Io(i)-Io(i)*exp((V+(I.*Rsr(i)))./(n(i)*Vth*Nsc))-((V+(I.*
38
                   Rsr(i)))./Rshr(i));
_{39}|P = V.*I;
       plot(V(R), P(R), c\{i\}, "linewidth", 1.5);
40
       set (gca, "xlim", [16 20], "ylim", [55 63.5])
41
      set(gca, "linewidth", 1.5)
set(gca, "fontsize", 13)
42
43
      hold on;
44
       grid on;
45
      clear I;
46
      end
47
      axes ('position', [0.5, 0.17, 0.3, 0.2]);
48
       set(gca, "linewidth", 1.5)
49
      for i = [1 \ 2];
50
_{51} R=10<V & V<22;
       I = Iph(i) + Io(i) - Io(i) * exp((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * (I * Rsr(i))) - ((V + (I * Rsr(i)))) / (n(i) * (I * Rsr(i))) - ((V + (I * Rsr(i)))) / (n(i) * (I * Rsr(i))) - ((V + (I * Rsr(i)))) / (n(i) * (I * Rsr(i))) - ((V + (I * Rsr(i)))) - ((V + (I * Rsr(i))
52
                   Rsr(i)))./Rshr(i));
      P = V. *I;
53
      plot(V(R), P(R), c\{i\}, "linewidth", 1.5);
54
      set (gca, "xlim", [21.5 22], "ylim", [0 0.001])
55
      set (gca, "linewidth", 1.5)
56
       set(gca, "fontsize", 13)
57
       hold on;
58
59 grid on;
      clear I;
60
      end
61
```

Appendix V

 R_{sh} against R_s Code for $A \ge A_o$ (Figure 5.8)

```
clc
  clear
3 output_precision (8)
  Ippt=3.6247;
  Vppt=16.8821;
5
  Isc=3.7997;
  Voc=21.5948;
  Nsc=36;
  T=298.15;
|_{10}| k=1.3806503*10^{(-23)};
  q=1.6021764*10^{(-19)};
11
_{12} Vth=(k*T)/q
|_{13}| no =(Voc-Vppt)./(Nsc*Vth*log(Isc./(Isc-Ippt)))
I_{14} I_{0} = I_{sc} / (exp(V_{oc.} / (n_{v}^{*}V_{th}^{*}N_{sc})))
_{15} n=1.978
  Rsr = [0: 0.0001:1];
16
  Rshr=(Vppt+Ippt*Rsr)./(Isc-Ippt-(Io*(exp((Vppt+Ippt*Rsr)./(n*Nsc*Vth
17
     ))-1)));
18 figure
<sup>19</sup> plot (Rsr, Rshr, "g", "linewidth", 2)
_{20} hleg = legend ('n= 1.978');
21 legend boxoff
  set (hleg, "fontsize", 20);
22
|_{23}| set (gca, "linewidth", 1.5)
24 set (gca, "fontsize", 20)
_{25} xlim ([0.8, 1]);
  xlabel('R_s(\Omega)', "fontsize", 20);
26
  ylabel('R_{sh}}(\Omega)', "fontsize", 20);
27
28 hold
  plot (0.8993, 505.013218, 'o', 'LineWidth', 2, 'MarkeRsrize', 6, 'Color', 'g'
29
     )
  Rsr=0.8993
30
  Rshr=(Vppt+Ippt*Rsr)./(Isc-Ippt-(Io*(exp((Vppt+Ippt*Rsr)./(n*Nsc*Vth
31
     ))-1)))
  Io = Isc / (exp(Voc. / (n*Vth*Nsc)))
32
<sup>33</sup> Iph=Isc+(Isc*Rsr)./Rshr
```

Appendix VI

I-V Curve Code for $A \ge A_o$ (Figure 5.11 (a))

```
clc
      clear
  2
      T=298.15;
      k=1.3806503*10^{(-23)};
      q=1.6021764*10^{(-19)};
  5
      Vth = (k^*T)/q
  6
  _{7} Ippt=3.6247;
      Vppt=16.8821;
  8
      Isc=3.7997:
  9
      Voc=21.5948;
10
11 | Nsc = 36;
_{12} V= [0:0.1:1000];
n = [1.6554 \ 1.978];
I_{14} Io= [2.8481E-06 \ 2.8414E-05];
_{15} Iph=[3.7997 3.8002];
_{16} Rshr = [64437.533 \ 7043.3234];
      Rsr = [0.001 \ 0.8993];
17
|_{18}| c = \{ k', k - i \};
<sup>19</sup> for i = [1 \ 2];
      I = Iph(i) + Io(i) - Io(i) * exp((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * (I * Rsr(i))) - ((V + (I * Rsr(i)))) / (n(i) * (I * Rsr(i))) - ((V + (I * Rsr(i)))) / (n(i) * (I * Rsr(i))) - ((V + (I * Rsr(i)))) / (n(i) * (I * Rsr(i))) - ((V + (I * Rsr(i)))) - ((V + (I * Rsr(i))
20
                  Rsr(i)))./Rshr(i));
       figure(4)
21
_{22} plot (V, I, c{i}, "linewidth", 1.5);
_{23} hleg = legend ('n_o=1.6554', 'n=1.978', "location", "southwest");
24 set (hleg, "fontsize", 13);
25 legend boxoff
_{26} axis ( [0 23 0 4]);
      set(gca, "linewidth", 1.5)
27
      set (gca, "fontsize", 14)
28
29 xlabel('Voltage in volts', "fontsize", 20);
      ylabel('Current in Amperes', "fontsize", 20);
30
_{31} % grid minor on;
32 hold on;
33 clear I;
34 end
_{35} figure (4)
```

```
<sup>36</sup> plot ([0 Vppt Voc], [Isc Ippt 0], 'o', 'LineWidth', 2, 'MarkeRsrize', 6, '
                    Color', 'k')
<sup>37</sup> rectangle ("position", [16, 3.4, 2.8, 0.4], "linestyle", "--");
<sup>38</sup> rectangle ("position", [21, 0, 1.4, 0.2],"linestyle","--");
       line([17 15.4], [3.4 3], "linewidth", 1.5)
39
40 line ([20.9 19.4], [0.2 0.8], "linewidth", 1.5)
       axes ('position', [0.35,0.55,0.3,0.28]);
41
_{42} for i = [1 \ 2];
_{43} R=15<V & V<23;
       I = Iph(i) + Io(i) - Io(i) * exp((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * (I * Rsr(i))) - ((V + (I * Rsr(i)))) / (n(i) * (I * Rsr(i))) - ((V + (I * Rsr(i)))) / (n(i) * (I * Rsr(i))) - ((V + (I * Rsr(i)))) / (n(i) * (I * Rsr(i))) - ((V + (I * Rsr(i)))) / (n(i) * (I * Rsr(i))) - ((V + (I * Rsr(i)))) / (n(i) * (I * Rsr(i))) - ((V + (I * Rsr(i)))) - ((V + (I * Rsr(i))))) - ((V + (I * Rsr(
44
                    Rsr(i)))./Rshr(i));
        plot(V(R), I(R), c\{i\}, "linewidth", 1.5);
45
        set (gca, "xlim", [16 18.4], "ylim", [3.4 3.8])
46
        set(gca, 'XTick', 16:0.4:18.4)
47
       set (gca, "linewidth", 1.5)
48
       set (gca, "fontsize", 13)
49
       hold on;
50
51 grid on;
       clear I;
52
53 end
_{54} figure (4)
       plot ([0 Vppt Voc], [Isc Ippt 0], 'o', 'LineWidth', 2, 'MarkeRsrize', 6, '
55
                    Color', 'k')
        axes ('position', [0.53, 0.25, 0.25, 0.24]);
56
       for i = [1 \ 2];
57
       R=15 < V \& V < 23;
58
       I = Iph(i) + Io(i) - Io(i) * exp((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i))) / (n(i) * (I * Rsr(i))) - ((V + (I * Rsr(i)))) / (n(i) * (I * Rsr(i))) - ((V + (I * Rsr(i)))) / (n(i) * (I * Rsr(i))) - ((V + (I * Rsr(i)))) / (n(i) * (I * Rsr(i))) - ((V + (I * Rsr(i)))) - ((V + (I * Rsr(i)))
59
                    Rsr(i)))./Rshr(i));
        plot(V(R), I(R), c\{i\}, "linewidth", 1.5);
60
        set (gca, "xlim", [21.5 21.9], "ylim", [0 0.001])
61
        set (gca, 'XTick', 21.5:0.2:21.9)
62
63 set (gca, "linewidth", 1.5)
       set (gca, "fontsize", 13)
64
65 hold on;
66 grid on;
67 clear I;
68 end
_{69} figure (4)
<sup>70</sup> plot ([0 Vppt Voc], [Isc Ippt 0], 'o', 'LineWidth', 2, 'MarkeRsrize', 6, '
                     Color', 'k')
```

Appendix VII

P-V Curve Code for $A \ge A_o$ (Figure 5.11 (b))

```
_{1} clc
      clear
  2
      T=298.15;
      k=1.3806503*10^{(-23)};
      q=1.6021764*10^{(-19)};
  5
      Vth = (k^*T)/q
  6
      Ippt=3.6247;
  7
      Vppt=16.8821;
  8
      Isc=3.7997;
  9
10 | \text{Voc}=21.5948;
<sup>11</sup> Pmpp=Ippt*Vppt
_{12} Nsc = 36;
_{13} V= [0:0.1:1000];
n_{14} = [1.6554 \ 1.978];
I_{15} Io= [2.8481E-06 \ 2.8414E-05];
_{16} Iph= [3.7997 3.8002];
_{17} Rshr = [64437.533 7043.3234];
      Rsr = [0.001 \ 0.8993];
18
19 = \{ k', k' = 0 \};
_{20} for i = [1 \ 2];
      I = Iph(i) + Io(i) - Io(i) * exp((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i))) / (n(i) * (I * Rsr(i))) - ((V + (I * Rsr(i)))) / (n(i) * (I * Rsr(i))) - ((V + (I * Rsr(i)))) / (n(i) * (I * Rsr(i))) - ((V + (I * Rsr(i)))) / (n(i) * (I * Rsr(i))) - ((V + (I * Rsr(i)))) - ((V + (I * Rsr(i)))
21
                 Rsr(i)))./Rshr(i));
_{22}|P = V.*I;
      figure (2)
23
      plot(V,P, c{i}, "linewidth", 1.5);
24
      hleg = legend('n_0=1.6554', 'n=1.978', "location", "northwest");
25
26 set (hleg, "fontsize", 13);
      legend boxoff
27
      axis([0 \ 23 \ 0 \ 65]);
28
      set(gca, "linewidth", 1.5)
29
      set(gca, "fontsize", 14)
30
      xlabel('Voltage in volts', "fontsize", 20);
31
      ylabel('Power in watts', "fontsize", 20);
32
33 hold on;
34 clear I;
35 end
_{36} figure (2)
```

```
<sup>37</sup> plot ([0 Vppt Voc], [0 Pmpp 0], 'o', 'LineWidth', 2, 'MarkeRsrize', 5, '
                     Color', 'k')
       rectangle ("position", [16, 58, 3, 5], "linestyle", "--");
38
39 rectangle ("position", [21.2, 0, 1, 4], "linestyle", "--");
       line([17 18], [42 58],"linewidth", 1.5)
40
41 line ([21.2 19.8], [4 12], "linewidth", 1.5)
       axes ('position', [0.55, 0.44, 0.25, 0.2]);
42
_{43} for i = [1 \ 2];
_{44} R=10<V & V<23;
        I = Iph(i) + Io(i) - Io(i) * exp((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * (I * Rsr(i))) - ((V + (I * Rsr(i)))) / (n(i) * (I * Rsr(i))) - ((V + (I * Rsr(i)))) / (n(i) * (I * Rsr(i))) - ((V + (I * Rsr(i)))) / (n(i) * (I * Rsr(i))) - ((V + (I * Rsr(i)))) / (n(i) * (I * Rsr(i))) - ((V + (I * Rsr(i)))) / (n(i) * (I * Rsr(i))) - ((V + (I * Rsr(i)))) - ((V + (I * Rsr(i))))) - ((V + (I * Rsr(
45
                    Rsr(i)))./Rshr(i));
        P = V. *I;
46
        plot(V(R), P(R), c\{i\}, "linewidth", 1.5);
47
        set (gca, "xlim", [16 19], "ylim", [58 63.5])
48
       set(gca, 'XTick', 16:0.5:19)
set(gca, "linewidth", 1.5)
49
50
        set(gca, "fontsize", 13)
51
<sup>52</sup> hold on;
        grid on;
53
       clear I;
54
       end
55
_{56} figure (2)
        plot ([0 Vppt Voc], [0 Pmpp 0], 'o', 'LineWidth', 2, 'MarkeRsrize', 5, '
57
                     Color', 'k')
        axes ('position', [0.5, 0.17, 0.3, 0.2]);
58
        set(gca, "linewidth", 1.5)
59
       for i=[1 \ 2];
60
_{61} R=10<V & V<22;
       I = Iph(i) + Io(i) - Io(i) * exp((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * Vth * Nsc)) - ((V + (I * Rsr(i)))) / (n(i) * (I * Rsr(i))) - ((V + (I * Rsr(i)))) / (n(i) * (I * Rsr(i))) - ((V + (I * Rsr(i)))) / (n(i) * (I * Rsr(i))) - ((V + (I * Rsr(i)))) / (n(i) * (I * Rsr(i))) - ((V + (I * Rsr(i)))) - ((V + (I * Rsr(i))
62
                    Rsr(i)))./Rshr(i));
       P = V. *I;
63
        plot(V(R), P(R), c\{i\}, "linewidth", 1.5);
64
        set (gca, "xlim", [21.5 22], "ylim", [0 0.001])
65
        set (gca, 'XTick', 21.5:0.5:22)
66
        set(gca, "linewidth", 1.5)
67
        set(gca, "fontsize", 13)
68
       hold on;
69
        grid on;
70
71 clear I;
72 end
_{73} figure (2)
        plot ([0 Vppt Voc], [0 Pmpp 0], 'o', 'LineWidth', 2, 'MarkeRsrize', 5, '
74
                     Color', 'k')
```

Appendix VIII

I-V curve code for $0 \le A \le A_o$ (Figure 5.14 (a))

```
clc
  clear all
2
  output_precision (8)
  Ippt=3.6247;
  Vppt=16.8821;
5
6 | Iscn=3.7997;
  vocstc=21.5948;
7
  Nsc = 36;
8
  Pmax_e = Vppt^*Ippt;
9
_{10} Kv = -0.123 * vocstc;
  Ki = -0.00318*Iscn;
11
  T=298.15;
|_{13}| k=1.3806503*10^{(-23)};
  q=1.6021764*10^{(-19)};
14
  Vth = (k^*T)/q;
15
_{16} %Method 1
_{17} Rsrinc=0.0001;
18 to 1=0.001;
  n_{top}=100;
_{20} nimax=2;
_{21} Rsr_max=(vocstc-Vppt)./Ippt;
22 Rshr_min=Vppt/(Iscn-Ippt)-Rsr_max;
<sup>23</sup> Rshr=Rshr_min;
<sup>24</sup> perror=Inf;
_{25} ni=0;
_{26} Rsr=0.8891;
a=0.5;
  while (perror; to1) & (Rshr; 0) & (ni<nimax)
28
_{29} Iph=(Rsr+Rshr)/Rshr*Iscn;
_{30} ni=ni+1 ;
  Isc=Iscn;
31
<sup>32</sup> Voc=vocstc;
33 A=a ;
_{34} Io=(Iph*Rshr-Voc)./(Rshr*(exp(Voc/(n*Nsc*Vth))-1));%method 1
  Rsr=Rsr+Rsrinc;
35
  Rshr=(Vppt+Ippt*Rsr)./(Iph-Ippt-(Io*(exp((Vppt+Ippt*Rsr)./(n*Nsc*Vth
36
     ))-1)));
```

```
37 clear V
 clear I
38
_{39} V=0: vocstc / n_top: 23;
_{40} I=zeros(1, size(V, 2));
  for w=1: size (V, 2)
41
 x(w) = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr
42
     I(w);
  while (abs(x(w)); 0.001)
43
  x(w) = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr
44
     I(w);
  x \lim (w) = -Io^*Rsr/Vth/Nsc/n^*exp((V(w)+I(w)^*Rsr)./Vth/Nsc/n) - Rsr/Rshr - 1
45
  I_{-}(w) = I(w) - x(w) / x lin(w);
46
  I(w) = I_{-}(w);
47
 end
48
 end
49
_{50}|P = (Iph - Io^*(exp((V+I.*Rsr)/Vth/Nsc/n) - 1) - (V+I.*Rsr)/Rshr).*V;
_{51}|Pmax_m = max(P)|
 perror = (Pmax_m - Pmax_e);
52
 end
53
_{54} figure (3)
55 hold on
_{56} axis ( [0 23 0 4]);
  plot (V, I, 'LineWidth', 1, "k") %
57
_{58} %Method 2
  Rsrinc=0.0001;
59
 to1=0.001;
60
n_{-}top=100;
_{62} nimax=2;
<sup>63</sup> Rsr_max=(vocstc-Vppt)./Ippt;
 Rshr_min=Vppt/(Iscn-Ippt)-Rsr_max;
64
<sup>65</sup> Rshr=Rshr_min;
 perror=Inf;
66
n_{67} ni=0;
 Rsr=0.8891;
68
a=0.5;
  while (perror; to1) & (Rshr; 0) & (ni < nimax)
70
  Iph=(Rsr+Rshr)/Rshr*Iscn;
71
 ni=ni+1;
72
  Isc=Iscn;
73
  Voc=vocstc:
74
75
  Io=Isc./exp(Voc./(n*Nsc*Vth));%method 2
76
  Rsr=Rsr+Rsrinc;
77
  Rshr=(Vppt+Ippt*Rsr)./(Iph-Ippt-(Io*(exp((Vppt+Ippt*Rsr)./(n*Nsc*Vth
78
     ))-1))); % equation 27
  clear V
79
  clear I
80
 V=0: vocstc/n_top: 23;
81
 I = zeros(1, size(V, 2));
82
```

```
|_{83}| for w=1: size (V, 2)
  x(w) = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr
84
      I(w);
  while (abs(x(w)); 0.001)
85
  x(w) = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr
86
      I(w);
  x \ln (w) = -Io^*Rsr/Vth/Nsc/n^*exp((V(w)+I(w)^*Rsr)./Vth/Nsc/n) - Rsr/Rshr - 1
87
  I_{-}(w) = I(w) - x(w) / x lin(w);
88
  I(w) = I_{-}(w);
89
  end
90
  end
91
P_{92}|P = (Iph - Io^*(exp((V+I.*Rsr)/Vth/Nsc/n) - 1) - (V+I.*Rsr)/Rshr).*V;
_{93}|Pmax_m = max(P)|
  perror = (Pmax_m - Pmax_e);
94
  end
95
  figure (3)
96
97 hold on
  axis([0 \ 23 \ 0 \ 4]);
98
  plot (V, I, 'LineWidth', 1, "r") %
99
  %Method 3
100
_{101} | Rsrinc=0.0001;
102 to 1=0.001;
  n_{top}=100;
103
104 nimax=2;
  Rsr_max=(vocstc-Vppt)./Ippt;
105
  Rshr_min=Vppt/(Iscn-Ippt)-Rsr_max;
106
<sup>107</sup> Rshr=Rshr_min;
108 perror=Inf;
109 ni=0;
  Rsr=0.8891;
n=0.5;
  while (perror; to1) & (Rshr; 0) & (ni<nimax)
112
III3 Iph=(Rsr+Rshr)/Rshr*Iscn;
  ni=ni+1;
114
  Isc=Iscn;
115
  Voc=vocstc;
117
  Io=(Vppt-Voc+Ippt*Rshr+Ippt*Rsr)./(Rshr*(exp(Voc./(n*Nsc*Vth))-exp((
118
      Vppt+Ippt*Rsr)./(n*Nsc*Vth))))
  % method 3
119
  Rsr=Rsr+Rsrinc;
120
  Rshr=(Vppt+Ippt*Rsr)./(Iph-Ippt-(Io*(exp((Vppt+Ippt*Rsr)./(n*Nsc*Vth
121
      ))-1)));
  clear V
122
123 clear I
_{124} V=0: vocstc / n_top: 23;
_{125} | I=zeros (1, size (V, 2));
126 for w=1: size (V, 2)
```

```
x(w) = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr
      I(w);
   while (abs(x(w)); 0.001)
128
  x(w) = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr
129
      I(w);
   x \ln (w) = -Io^* Rsr / Vth / Nsc / n^* exp((V(w) + I(w)^* Rsr)) / Vth / Nsc / n) - Rsr / Rshr - 1
130
  I_{-}(w) = I(w) - x(w) / clin(w);
131
  I(w) = I_{-}(w);
132
  end
133
  end
134
  P = (Iph - Io^{*}(exp((V+I.*Rsr)/Vth/Nsc/n) - 1) - (V+I.*Rsr)/Rshr).*V;
_{136} Pmax_m = max(P)
   perror = (Pmax_m - Pmax_e);
137
  end
138
  figure (3)
139
  hold on
140
  axis([0 \ 23 \ 0 \ 4]);
141
  plot (V, I, 'LineWidth', 1, "g") %
142
  %Method 4
143
  Rsrinc=0.0001;
144
145 to 1=0.001;
_{146} n_top=1000;
  nimax=2;
147
148 Rsr_max=(vocstc-Vppt)./Ippt;
  Rshr_min=Vppt/(Iscn-Ippt)-Rsr_max;
149
  Rshr=Rshr_min;
150
  perror=Inf;
151
152 | ni=0;
_{153} Rsr=0.8891;
  n=0.5;
154
  c = \{ w', w', w', w', w' \};
155
  for i = [1 \ 2 \ 3 \ 4];
156
  while (perror; to1)&&(Rshr; 0)&&(ni<nimax)
157
  Iph = (Rsr + Rshr) / Rshr * Iscn;
158
  ni=ni+1;
159
  Isc=Iscn;
160
  Voc=vocstc;
161
162
  Io=Ippt./(exp(Voc./(n*Nsc*Vth)) - exp(Vppt./(n*Nsc*Vth))) %Method 4
163
   Rsr=Rsr+Rsrinc;
164
  Rshr=(Vppt+Ippt*Rsr)./(Iph-Ippt-(Io*(exp((Vppt+Ippt*Rsr)./(n*Nsc*Vth
165
      ))-1)));
   clear V
166
   clear I
167
  V=0: vocstc/n_top: 23;
168
  I = zeros(1, size(V, 2));
  for w=1: size (V, 2)
170
  x(w) = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr
171
      I(w);
```

```
_{172} while (abs(x(w)); 0.001)
  x(w) = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr
173
      I(w);
  x \lim (w) = -Io * Rsr / Vth / Nsc / n * exp ((V(w) + I(w) * Rsr) . / Vth / Nsc / n) - Rsr / Rshr - 1
174
  I_{-}(w) = I(w) - x(w) / x lin(w);
175
  I(w) = I_{-}(w);
176
  end
177
  end
178
P = (Iph - Io^*(exp((V+I.*Rsr)/Vth/Nsc/n) - 1) - (V+I.*Rsr)/Rshr).*V;
  Pmax_m = max(P)
180
  perror = (Pmax_m - Pmax_e);
181
  end
182
_{183} figure (3)
  hold on
184
  set(gca, "linewidth", 1.5)
185
   set(gca, "fontsize", 14)
186
  xlabel('Voltage [V]', "fontsize", 20);
187
  ylabel('Current [A]', "fontsize", 20);
188
  axis ([0 23 0 4]);
189
   plot (V, I, c(i), 'LineWidth', 1.5, 'Color', 'b') %
190
  hleg=legend ('Approach 1', 'Approach 2', 'Approach 3', 'Approach 4',"
191
      location", "southwest");
   set (hleg, "fontsize", 14);
192
  legend boxoff
193
  %plot([0 Vppt vocstc], [Iscn Ippt 0], 'o', 'LineWidth', 2, 'MarkeRsrize
      ',5, 'Color', 'b')
  box
195
  end
196
  figure (3)
197
   plot ([0 Vppt vocstc], [Iscn Ippt 0], 'o', 'LineWidth', 2, 'MarkeRsrize'
198
      ,5, 'Color', 'b')
  rectangle ("position", [16, 3.4, 2, 0.4], "linestyle", "--");
199
   rectangle ("position", [21, 0, 1.4, 0.2], "linestyle", "--");
200
  box
201
```

Appendix IX

P-V curve code for $0 \le A \le A_o$ (Figure 5.14 (b))

```
clc
1
  clear all
2
 output_precision (8)
3
 Ippt=3.6247;
  Vppt=16.8821;
5
 Iscn=3.7997;
6
  vocstc=21.5948;
7
 Nsc = 36;
8
 Pmax_e = Vppt^*Ippt;
9
_{10}|T=298.15;
 k=1.3806503*10^{(-23)};
11
 q=1.6021764*10^{(-19)};
_{13} Vth=(k*T)/q
14 %Method 1
_{15} Rsrinc=0.0001;
16 to 1=0.001;
n_{17} n_top=100;
18 nimax=2;
 Rsr_max=(vocstc-Vppt)./Ippt;
20 Rshr_min=Vppt/(Iscn-Ippt)-Rsr_max;
 Rshr=Rshr_min;
21
 perror=Inf;
22
n_{23} ni=0;
_{24} Rsr=0.8891;
n=0.5;
  while (perror; to1) & (Rshr; 0) & (ni < nimax)
26
 Iph=(Rsr+Rshr)/Rshr*Iscn;
27
 ni=ni+1;
28
 Isc=Iscn;
29
 Voc=vocstc;
30
31
 Io=(Iph*Rshr-Voc)./(Rshr*(exp(Voc/(n*Nsc*Vth))-1));
32
 Rsr=Rsr+Rsrinc;
33
 Rshr=(Vppt+Ippt*Rsr)./(Iph-Ippt-(Io*(exp((Vppt+Ippt*Rsr)./(n*Nsc*Vth
34
     ))-1)));
 clear V
35
36 clear I
```

```
_{37} V=0: vocstc / n_top: 34;
|_{38}| I=zeros (1, size (V, 2));
  for w=1: size (V, 2)
39
  x(w) = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr
40
     I(w);
  while (abs(x(w)); 0.001)
41
  x(w) = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr
42
     I (w);
  x \lim (w) = -Io^* Rsr / Vth / Nsc / n^* exp((V(w) + I(w)^* Rsr)) / Vth / Nsc / n) - Rsr / Rshr - 1
43
  I_{-}(w) = I(w) - x(w) / clin(w);
44
  I(w) = I_{-}(w);
45
  end
46
  end
47
_{48}|P = (Iph - Io^*(exp((V+I.*Rsr)/Vth/Nsc/n) - 1) - (V+I.*Rsr)/Rshr).*V;
_{49}|Pmax_m = max(P)|
  perror = (Pmax_m - Pmax_e);
50
51
  end
  figure (4)
52
53 hold on
_{54} axis ( [0 23 0 65]);
<sup>55</sup> plot (V,P, 'LineWidth ', 1.5, "k") %
_{56} %Method 2
_{57} Rsrinc=0.0001;
to1=0.001;
  n_{top}=100;
59
60 nimax=2;
61 Rsr_max=(vocstc-Vppt)./Ippt;
<sub>62</sub> Rshr_min=Vppt/(Iscn-Ippt)-Rsr_max;
_{63} Rshr=Rshr_min;
  perror=Inf;
64
_{65} ni=0;
  Rsr=0.8891;
66
n=0.5;
  while (perror; to1)&&(Rshr; 0)&&(ni<nimax)
68
  Iph=(Rsr+Rshr)/Rshr*Iscn;
69
_{70} ni=ni+1 ;
  Isc=Iscn;
71
  Voc=vocstc;
72
73
  Io=Isc./exp(Voc./(n*Nsc*Vth));
74
  Rsr=Rsr+Rsrinc;
75
  Rshr=(Vppt+Ippt*Rsr)./(Iph-Ippt-(Io*(exp((Vppt+Ippt*Rsr)./(n*Nsc*Vth
76
     ))-1)));
  clear V
77
  clear I
78
_{79} V=0: vocstc / n_top: 34;
_{80} | I=zeros (1, size (V, 2));
|_{s_1}| for w=1: size (V, 2)
```

```
|x(w)| = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr
      I(w);
  while (abs(x(w)); 0.001)
83
  x(w) = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr
84
      I(w);
   x \ln (w) = -Io^* Rsr / Vth / Nsc / n^* exp((V(w) + I(w)^* Rsr)) / Vth / Nsc / n) - Rsr / Rshr - 1
85
  I_{-}(w) = I(w) - x(w) / clin(w);
86
  I(w) = I_{-}(w);
87
  end
88
  end
89
  P = (Iph - Io^{*}(exp((V+I.*Rsr)/Vth/Nsc/n) - 1) - (V+I.*Rsr)/Rshr).*V;
90
  Pmax_m = max(P)
91
  perror = (Pmax_m - Pmax_e);
92
  end
93
_{94} figure (4)
  hold on
95
  axis([0 \ 23 \ 0 \ 65]);
96
  plot (V,P, 'LineWidth', 1.5, "r") %
97
  %Method 3
98
  Rsrinc=0.0001;
99
100 to 1=0.001;
n_{101} = 100;
102 nimax=2;
Rsr_max = (vocstc - Vppt). / Ippt;
  Rshr_min=Vppt/(Iscn-Ippt)-Rsr_max;
104
105 Rshr=Rshr_min;
106 perror=Inf;
107 | ni=0;
108 Rsr=0.8891;
a=0.5;
while (perror; to1)\&\&(Rshr; 0)\&\&(ni < nimax)
IIII | Iph=(Rsr+Rshr)/Rshr*Iscn;
112 ni=ni+1 ;
|ISC=Iscn;
  Voc=vocstc;
114
115 A=a;
  Io=(Vppt-Voc+Ippt*Rshr+Ippt*Rsr)./(Rshr*(exp(Voc./(n*Nsc*Vth)))-exp((
116
      Vppt+Ippt*Rsr)./(n*Nsc*Vth))))
  Rsr=Rsr+Rsrinc;
117
  Rshr=(Vppt+Ippt*Rsr)./(Iph-Ippt-(Io*(exp((Vppt+Ippt*Rsr)./(n*Nsc*Vth
118
      ))-1)));
  clear V
119
120 clear I
_{121} V=0: vocstc / n_top: 34;
_{122} | I=zeros (1, size (V, 2));
  for w=1: size (V, 2)
  x(w) = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr
124
      I(w);
```

```
while (abs(x(w)); 0.001)
```

```
x(w) = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr
126
      I(w);
   x \lim (w) = -Io^*Rsr/Vth/Nsc/n^*exp((V(w)+I(w)^*Rsr)./Vth/Nsc/n) - Rsr/Rshr - 1
127
   I_{-}(w) = I(w) - x(w) / clin(w);
128
  I(w) = I_{-}(w);
129
  end
130
  end
131
_{132}|P = (Iph - Io^*(exp((V+I.*Rsr)/Vth/Nsc/n) - 1) - (V+I.*Rsr)/Rshr).*V;
_{133} Pmax_m = max(P)
  perror = (Pmax_m - Pmax_e);
134
  end
135
  figure (4)
136
  hold on
137
  axis([0 \ 23 \ 0 \ 65]);
138
   plot (V,P, 'LineWidth', 1.5, "g") %
139
  %Method 4
140
_{141} | Rsrinc=0.0001;
  to1=0.001;
142
_{143} n_top=100;
_{144} nimax=2;
_{145} Rsr_max=(vocstc-Vppt)./Ippt;
146 Rshr_min=Vppt/(Iscn-Ippt)-Rsr_max;
  Rshr=Rshr_min;
147
  perror=Inf;
148
  ni=0;
149
  Rsr=0.8891;
  a=0.5;
151
  c = \{ w', w', w', w', w' \};
152
  for i = [1 \ 2 \ 3 \ 4];
   while (perror; to1) & (Rshr; 0) & (ni < nimax)
154
_{155} | Iph=(Rsr+Rshr) / Rshr*Iscn;
  ni=ni+1;
156
  Isc=Iscn;
157
  Voc=vocstc;
158
159 A=a;
  Io=Ippt./(exp(Voc./(n*Nsc*Vth)) - exp(Vppt./(n*Nsc*Vth)))
160
   Rsr=Rsr+Rsrinc;
161
  Rshr=(Vppt+Ippt*Rsr)./(Iph-Ippt-(Io*(exp((Vppt+Ippt*Rsr)./(n*Nsc*Vth
162
      ))-1)));
   clear V
163
  clear I
164
_{165} V=0: vocstc / n_top: 34;
_{166} | I=zeros (1, size (V, 2));
   for w=1: size (V, 2)
167
  x(w) = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr
168
      I(w);
   while (abs(x(w)); 0.001)
169
  x(w) = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr
170
      I(w);
```

```
|x| \ln (w) = -Io^* Rsr / Vth / Nsc / n^* exp((V(w) + I(w)^* Rsr) . / Vth / Nsc / n) - Rsr / Rshr - 1
   I_{-}(w) = I(w) - x(w) / clin(w);
172
_{173} I (w)=I_(w);
  end
174
175 end
_{176}|P = (Iph - Io^*(exp((V+I.*Rsr)/Vth/Nsc/n) - 1) - (V+I.*Rsr)/Rshr).*V;
|_{177}| Pmax_m = max(P)
   perror = (Pmax_m - Pmax_e);
178
  end
179
_{180} figure (4)
  hold on
181
|_{182} set (gca, "linewidth", 1.5)
  set(gca, "fontsize", 14)
xlabel('Voltage [V]', "fontsize", 20);
ylabel('Power [W]', "fontsize", 20);
183
184
185
   axis([0 \ 23 \ 0 \ 65]);
186
   plot (V, P, c(i), 'LineWidth', 1.5, 'Color', 'b') %
187
   hleg = legend('Approach 1', 'Approach 2', 'Approach 3', 'Approach 4',"
188
      location", "northwest");
   set (hleg, "fontsize", 14);
189
  legend boxoff
190
  %plot([0 Vppt vocstc], [Iscn Ippt 0], 'o', 'LineWidth', 2, 'MarkeRsrize
191
       ', 5, 'Color', 'b')
192 box
  end
193
  figure (4)
194
   plot ([0 Vppt vocstc], [0 Pmax_e 0], 'o', 'LineWidth', 2, 'MarkeRsrize',
195
      5, 'Color', 'b')
   rectangle ("position", [16.5, 59.5, 1, 4], "linestyle", "--");
196
   rectangle ("position", [21.2, 0, 1, 4], "linestyle", "--");
197
  box
198
```

Appendix X

Data Analysis Code for KC130GT at Various Irradiances (Table 5.7)

clc clear all output_precision(8) T=298.15;Ta=302.15; 5 Iscn = 8.02;6 vocstc = 21.9; Ippt = 7.39;Vppt = 17.6; $Pmax_e = Vppt^*Ippt;$ $_{11}$ Kv = -0.0821; $_{12}$ Ki = 0.00318; $_{13}$ Nsc = 36; $_{14}|T=298.15;$ $_{15}$ k=1.3806503*10⁽⁻²³⁾; $q=1.6021764*10^{(-19)};$ $Vth = (k^*T)/q$ 17 $_{18}$ Gn=1000; $_{19}$ G=1000 $_{20}$ n=1.34; Ion=Iscn/(exp(vocstc/(n*Vth*Ns)))21 Voc=(log(Iscn) - log(Ion))*(n*Vth*Ns)22 $_{23}$ Ta=320.15; $_{24}$ dT=Ta-T; $_{25}$ Isc=(Iscn+Ki*dT)*G/Gn Vth1=(k*Ta)/q26 $_{27}$ Eg=1.12; $_{28}$ n=1.34; $Ion1=Ion*[Ta/T]^{3}(exp(q*Eg/(k*n)*((1/T)-(1/Ta))))$ 29 Voc=(log(Isc) - log(Ion1))*(n*Vth1*Nsc)30 Io=Isc/(exp(Voc/(n*Vth1*Ns)))31 $Voc2=vocstc+Kv*dT+(1.1811e-3*(G-Gn))+(-1.8544e-6*(G-Gn)^2)$ 32 Ki=0.00135; 33 $_{34}$ Ippt1=(Ippt+Ki*dT)*G/Gn |no=(vocstc-Vppt)./(Vth*Nsc*log(Iscn./(Iscn-Ippt)));

```
_{36} Vppto=Voc-(no*Vth1*Nsc*log(Isc/(Isc-Ippt1)))
  Vppt4=Vppt+(-140e-3*dT)+(-9.6801e-5*(G-Gn))+(-2.73215e-6*(G-Gn)^2)
37
 Ion3=Isc/(exp(Voc/(n*Vth1*Nsc)))
38
39 %@800
_{40} G=800
_{41} n=1.34;
 Ta=320.15;
42
_{43} dT=Ta-T;
 Isc = (Iscn + Ki^*dT)^*G/Gn
44
  Vth1=(k^{*}Ta)/q
45
_{46} Eg=1.12;
 n=1.34;
47
|_{48} Ion=Iscn/(exp(vocstc/(n*Vth*Ns)))
 Ion1=Ion*[Ta/T]^{3}(exp(q*Eg/(k*n)*((1/T)-(1/Ta))))
49
  Voc=(\log(Isc) - \log(Ion1)) * (n*Vth1*Ns)
50
 Voc2=vocstc+Kv^*dT+(1.1811e-3^*(G-Gn))+(-1.8544e-6^*(G-Gn)^2)
51
_{52} Io=Isc / (exp (Voc/(n*Vth1*Ns)))
_{53} Ki= 0.00135;
 Ippt1=(Ippt+Ki*dT)*G/Gn
54
_{55} no=(vocstc-Vppt)./(Vth*Nsc*log(Iscn./(Iscn-Ippt)));
 Vppto=Voc-(no*Vth1*Nsc*log(Isc/(Isc-Ippt1)))%equation 26
56
  Vppt4=Vppt+(-140e-3*dT)+(-9.6801e-5*(G-Gn))+(-2.73215e-6*(G-Gn)^2)
57
  Ion3=Isc/(exp(Voc/(n*Vth1*Nsc)))
58
59
 %@600
60
 G=600
61
_{62} n=1.34;
 Ta=320.15;
63
_{64} dT=Ta-T;
 Isc = (Iscn + Ki^*dT)^*G/Gn
65
  Vth1=(k^{*}Ta)/q
66
_{67} Eg=1.12;
_{68} n=1.34;
 Ion=Iscn/(exp(vocstc/(n*Vth*Ns)))
69
 Ion1=Ion*[Ta/T]^{3}(\exp(q*Eg/(k*n)*((1/T)-(1/Ta))))
70
 Voc=(log(Isc) - log(Ion1))*(n*Vth1*Ns)
71
_{72} Voc2=vocstc+Kv*dT+(1.1811e-3*(G-Gn))+(-1.8544e-6*(G-Gn)^2)
 Io=Isc/(exp(Voc/(n*Vth1*Ns)))
73
_{74} Ki= 0.00135;
<sup>75</sup> Ippt1=(Ippt+Ki*dT)*G/Gn
_{76} no=(vocstc-Vppt)./(Vth*Ns*log(Iscn./(Iscn-Ippt)));
 Vppto=Voc-(no*Vth1*Ns*log(Isc/(Isc-Ippt1)))%equation 26
77
  Vppt4=Vppt+(-140e-3*dT)+(-9.6801e-5*(G-Gn))+(-2.73215e-6*(G-Gn)^2)
78
79 %@400
80 G=400
n=1.34;
 Ta=320.15;
82
dT=Ta-T;
 Isc = (Iscn + Ki^*dT)^*G/Gn
84
 Vth1=(k^{*}Ta)/q
85
```

```
_{86} Eg=1.12;
  n=1.34;
87
  Ion=Iscn/(exp(vocstc/(n*Vth*Ns)))
88
  Ion1=Ion*[Ta/T]^{3}(exp(q*Eg/(k*n)*((1/T)-(1/Ta))))
89
  Voc=(log(Isc) - log(Ion1))*(n*Vth1*Ns)
90
  Voc2 = vocstc + Kv^* dT + (1.1811e - 3^* (G-Gn)) + (-1.8544e - 6^* (G-Gn)^2)
91
  Io=Isc/(exp(Voc/(n*Vth1*Ns)))
92
  Ki= 0.00135;
93
  Ippt1=(Ippt+Ki*dT)*G/Gn
94
  no=(vocstc-Vppt)./(Vth*Ns*log(Iscn./(Iscn-Ippt)));
95
  Vppto=Voc-(no*Vth1*Ns*log(Isc/(Isc-Ippt1)))%equation 26
96
  Vppt4=Vppt+(-140e-3*dT)+(-9.6801e-5*(G-Gn))+(-2.73215e-6*(G-Gn)^2)
97
  %@200
98
  G=200
99
100 n=1.34;
101 Ta=320.15;
102 dT = Ta - T;
|_{103}| Isc=(Iscn+Ki*dT)*G/Gn
  Vth1=(k^{*}Ta)/q
104
105 | Eg=1.12;
106 n=1.34;
|Ion=Iscn/(exp(vocstc/(n*Vth*Nsc))))
108 Ion1=Ion* [Ta/T] 3*(\exp(q*Eg/(k*n)*((1/T)-(1/Ta))))
  Voc=(\log(Isc) - \log(Ion1)) * (n*Vth1*Nsc)
109
  Voc2=vocstc+Kv^*dT+(1.1811e-3^*(G-Gn))+(-1.8544e-6^*(G-Gn)^2)
110
  Io=Isc/(exp(Voc/(n*Vth1*Nsc)))
111
_{112} Ki= 0.00135;
_{113} Ippt1=(Ippt+Ki*dT)*G/Gn
no=(vocstc-Vppt)./(Vth*Ns*log(Iscn./(Iscn-Ippt)));
<sup>115</sup> Vppto=Voc-(no*Vth1*Ns*log(Isc/(Isc-Ippt1)))%equation 26
  Vppt4=Vppt+(-140e-3*dT)+(-9.6801e-5*(G-Gn))+(-2.73215e-6*(G-Gn)^2)
116
```

Appendix XI

Data Analysis Code for KC130GT at Various Temperatures Table 5.8)

clc clear all 2 output_precision(8) 3 Iscn = 8.02;vocstc = 21.9; 5Ippt = 7.39; 6 Vppt = 17.6; $Pmax_e = Vppt^*Ippt;$ Kv = -0.0821;Ki = 0.00318; $_{11}$ Nsc = 36; $_{12}$ T=298.15; $|_{13}| k=1.3806503*10^{(-23)};$ $q=1.6021764*10^{(-19)};$ 14 $Vth = (k^*T)/q;$ 15 $_{16}$ Gn=1000; Ta= 20 17 $_{18}$ G=1000; n=1.14;Ion=Iscn/(exp(vocstc/(n*Vth*Nsc)));20 Voc=(log(Iscn) - log(Ion))*(n*Vth*Nsc);21 $_{22}$ Ta=326.9; dT=Ta-T; $Isc = (Iscn + Ki^*dT)^*G/Gn$ 24 $Vth1=(k^{*}Ta)/q;$ 25 $_{26}|Eg=1.12;$ $_{27}$ n=1.14; Ion1=Ion* $[Ta/T]^{3}(\exp(q*Eg/(k*n)*((1/T)-(1/Ta))));$ 28 $Voc=(\log(Isc) - \log(Ion1)) * (n*Vth1*Nsc)$ 29 Io=Isc/(exp(Voc/(n*Vth1*Nsc)));30 $Voc2=vocstc+Kv^*dT+(1.1811e-3^*(G-Gn))+(-1.8544e-6^*(G-Gn)^2)$ 31 $_{32}$ Ki= 0.0025; $_{33}$ Ippt1=(Ippt+Ki*dT)*G/Gn |no=(vocstc-Vppt)./(Vth*Nsc*log(Iscn./(Iscn-Ippt)));³⁵ Vppto=Voc-(no*Vth1*Nsc*log(Isc/(Isc-Ippt1)))

```
_{36} Vppt4=Vppt+(-140e-3*dT)+(-9.6801e-5*(G-Gn))+(-2.73215e-6*(G-Gn)^2)
 Ion3=Isc/(exp(Voc/(n*Vth1*Nsc)));
37
38 Ta=25
_{39} G=1000;
_{40} n=1.34;
 Ion=Iscn/(exp(vocstc/(n*Vth*Nsc)));
41
  Voc=(log(Iscn) - log(Ion))*(n*Vth*Nsc);
42
 Ta=331.9;
43
_{44} dT=Ta-T;
_{45} Isc=(Iscn+Ki*dT)*G/Gn
_{46} Vth1=(k*Ta)/q;
 Eg=1.12;
47
_{48} n=1.14;
 Ion1=Ion*[Ta/T]^{3}(exp(q*Eg/(k*n)*((1/T)-(1/Ta))));
49
  Voc=(\log(Isc) - \log(Ion1))^*(n^*Vth1^*Nsc)
50
_{51} Io=Isc / (exp (Voc/(n*Vth1*Nsc)));
 Voc2=vocstc+Kv^*dT+(1.1811e-3^*(G-Gn))+(-1.8544e-6^*(G-Gn)^2)
52
_{53} Ki= 0.0025;
<sub>54</sub> Ippt1=(Ippt+Ki*dT)*G/Gn
_{55} no=(vocstc-Vppt)./(Vth*Nsc*log(Iscn./(Iscn-Ippt)));
_{56} Vppto=Voc-(no*Vth1*Nsc*log(Isc/(Isc-Ippt1)))
 Vppt4=Vppt+(-140e-3*dT)+(-9.6801e-5*(G-Gn))+(-2.73215e-6*(G-Gn)^2)\%
57
     Zaimi et al 2019
  Ion3=Isc/(exp(Voc/(n*Vth1*Nsc)));
58
 Ta= 30
59
_{60} G=1000 ;
n=1.14;
_{62} Ion=Iscn/(exp(vocstc/(n*Vth*Nsc)));
 Voc=(log(Iscn) - log(Ion))*(n*Vth*Nsc);
63
 Ta=336.9;
64
dT=Ta-T;
_{66} | Isc=(Iscn+Ki*dT)*G/Gn
  Vth1=(k^{*}Ta)/q;
67
68 Eg=1.12;
n=1.14;
_{70} Ion1=Ion* [Ta/T] ^3* (exp(q*Eg/(k*n)*((1/T)-(1/Ta))));
 Voc=(log(Isc) - log(Ion1))*(n*Vth1*Nsc)
71
  Io=Isc/(exp(Voc/(n*Vth1*Nsc)));
72
_{73} Voc2=vocstc+Kv*dT+(1.1811e-3*(G-Gn))+(-1.8544e-6*(G-Gn)^2)
 Ki = 0.0025;
74
<sub>75</sub> Ippt1=(Ippt+Ki*dT)*G/Gn
_{76} no=(vocstc-Vppt)./(Vth*Nsc*log(Iscn./(Iscn-Ippt)));
_{77} Vppto=Voc-(no*Vth1*Nsc*log(Isc/(Isc-Ippt1)))
_{78} Vppt4=Vppt+(-140e-3*dT)+(-9.6801e-5*(G-Gn))+(-2.73215e-6*(G-Gn)^2)
  Ion3=Isc/(exp(Voc/(n*Vth1*Nsc)));
79
80 Ta=35
_{81} G=1000 :
n=1.34;
|\text{Ion}=\text{Iscn}/(\exp(\text{vocstc}/(n^*\text{Vth}^*\text{Nsc})));
|Voc=(log(Iscn) - log(Ion))*(n*Vth*Nsc);
```

```
_{85} Ta=341.9;
  dT=Ta-T;
86
  Isc = (Iscn + Ki^*dT)^*G/Gn
87
  Vth1=(k^{*}Ta)/q;
88
  Eg=1.12;
89
_{90} n=1.34;
  Ion1=Ion*[Ta/T]^{3} (exp(q*Eg/(k*n)*((1/T)-(1/Ta))));
91
  Voc=(\log(Isc) - \log(Ion1)) * (n*Vth1*Nsc)
92
  Io=Isc/(exp(Voc/(n*Vth1*Nsc)));
93
  Voc2=vocstc+Kv^*dT+(1.1811e-3^*(G-Gn))+(-1.8544e-6^*(G-Gn)^2)
94
  Ki = 0.0025;
95
  Ippt1=(Ippt+Ki*dT)*G/Gn
96
  no=(vocstc-Vppt)./(Vth*Nsc*log(Iscn./(Iscn-Ippt)));
97
  Vppto=Voc-(no*Vth1*Nsc*log(Isc/(Isc-Ippt1)))
98
  Vppt4=Vppt+(-140e-3*dT)+(-9.6801e-5*(G-Gn))+(-2.73215e-6*(G-Gn)^2)
99
I_{100} Ion 3=Isc / (exp (Voc / (n*Vth1*Nsc)));
  Ta=40
101
102 | G = 1000;
n=1.34;
I_{104} Ion=Iscn/(exp(vocstc/(n*Vth*Nsc)));
  Voc=(\log(Iscn) - \log(Ion)) * (n*Vth*Nsc);
105
106 Ta=346.9
107 dT = Ta - T;
  Isc = (Iscn + Ki^*dT)^*G/Gn
108
109 Vth1=(k*Ta)/q;
110 \text{ Eg}=1.12;
n=1.34;
112 Ion1=Ion* [Ta/T] 3*(\exp(q*Eg/(k*n)*((1/T) - (1/Ta))));
|Voc=(log(Isc) - log(Ion1))*(n*Vth1*Nsc)
I_{114} Io=Isc / (exp (Voc / (n*Vth1*Nsc)));
  Voc2=vocstc+Kv^*dT+(1.1811e-3^*(G-Gn))+(-1.8544e-6^*(G-Gn)^2)
_{116} Ki= 0.0025;
_{117} Ippt1=(Ippt+Ki*dT)*G/Gn
<sup>118</sup> no=(vocstc-Vppt)./(Vth*Nsc*log(Iscn./(Iscn-Ippt)));
119 Vppto=Voc-(no*Vth1*Nsc*log(Isc/(Isc-Ippt1)))
  Vppt4=Vppt+(-140e-3*dT)+(-9.6801e-5*(G-Gn))+(-2.73215e-6*(G-Gn)^2)
120
I_{121} Ion3=Isc/(exp(Voc/(n*Vth1*Nsc)));
  Ta=45
123 G=1000;
_{124} n=1.34;
  Ion=Iscn/(exp(vocstc/(n*Vth*Nsc)));
|126| Voc=(log(Iscn) - log(Ion))*(n*Vth*Nsc);
127 Ta=351.9;
_{128} dT=Ta-T;
  Isc = (Iscn + Ki^*dT)^*G/Gn
129
_{130} Vth1=(k*Ta)/q;
_{131} Eg=1.12;
_{132} n=1.34;
133 Ion1=Ion* [Ta/T] 3*(\exp(q*Eg/(k*n)*((1/T) - (1/Ta))));
|_{134}| Voc=(log(Isc) - log(Ion1))*(n*Vth1*Nsc)
```

```
I_{135} Io=Isc / (exp (Voc / (n*Vth1*Nsc)));
  Voc2=vocstc+Kv^*dT+(1.1811e-3^*(G-Gn))+(-1.8544e-6^*(G-Gn)^2)
136
  Ki = 0.0025;
137
_{138} Ippt1=(Ippt+Ki*dT)*G/Gn
  no=(vocstc-Vppt)./(Vth*Nsc*log(Iscn./(Iscn-Ippt)));
139
  Vppto=Voc-(no*Vth1*Nsc*log(Isc/(Isc-Ippt1)))
140
  Vppt4=Vppt+(-140e-3*dT)+(-9.6801e-5*(G-Gn))+(-2.73215e-6*(G-Gn)^2)
141
|_{142} Ion 3=Isc / (exp (Voc / (n*Vth1*Nsc)));
  Ta=50
143
_{144} G=1000;
n=1.34;
  Ion=Iscn/(exp(vocstc/(n*Vth*Nsc)));
146
  Voc=(log(Iscn) - log(Ion))*(n*Vth*Nsc);
147
  Ta=356.9;
148
_{149} dT=Ta-T;
  Isc = (Iscn + Ki^*dT)^*G/Gn
150
  Vth1=(k^{*}Ta)/q;
151
_{152} Eg=1.12;
n=1.34;
  Ion1=Ion*[Ta/T]^{3} (exp(q*Eg/(k*n)*((1/T)-(1/Ta))));
154
  Voc=(\log(Isc) - \log(Ion1)) * (n*Vth1*Nsc)
155
  Io=Isc/(exp(Voc/(n*Vth1*Nsc)));
156
  Voc2=vocstc+Kv^*dT+(1.1811e-3^*(G-Gn))+(-1.8544e-6^*(G-Gn)^2)
157
  Ki = 0.0025;
158
_{159} Ippt1=(Ippt+Ki*dT)*G/Gn
  no=(vocstc-Vppt)./(Vth*Nsc*log(Iscn./(Iscn-Ippt)));
160
  Vppto=Voc-(no*Vth1*Nsc*log(Isc/(Isc-Ippt1)))
161
_{162} Vppt4=Vppt+(-140e-3*dT)+(-9.6801e-5*(G-Gn))+(-2.73215e-6*(G-Gn)^2)
  Ion3=Isc/(exp(Voc/(n*Vth1*Nsc)));
163
```

Appendix XII

I-V Curve Code for KC130GT at Various Irradiances (Figure 5.17)

```
clc
  clear all
  output_precision(8)
3
 sa= 1000 %Irradiance=1000W/m2, Ta=20^oC TNOCT=^oC, Tcell=320.15K
  Iscn = 8.09;
5
 Ippt= 7.4197;
6
  Vppt = 15.7475;
  vocstc = 20.2681;
8
 Pmax_e = Vppt^*Ippt;
9
 Nsc = 36;
_{11}|T=320.15;
|_{12}|k=1.3806503*10^{(-23)};
|_{13}|_{q=1.6021764*10^{(-19)};}
_{14} Vth=(k*T)/q;
_{15} Rsrinc=0.001;
16 to 1=0.001;
n_{17} = 100;
18 nimax=2;
<sup>19</sup> Rsr_max=(vocstc-Vppt)./Ippt;
20 Rshr_min=Vppt/(Iscn-Ippt)-Rsr_max;
_{21} Rshr=Rshr_min;
<sup>22</sup> perror=Inf;
_{23} ni=0;
_{24} Rsr=0.156;
_{25} A=1.34;
<sup>26</sup> while (perror; to1)&&(Rshr; 0)&&(ni<nimax)
_{27} Iph=(Rsr+Rshr)/Rshr*Iscn;
_{28} ni=ni+1 ;
_{29} Isc=Iscn;
30 Voc=vocstc;
 Io=Isc./exp(Voc./(n*Nsc*Vth));
31
 Rsr=Rsr+Rsrinc;
32
 Rshr=(Vppt+Ippt*Rsr)./(Iph-Ippt-(Io*(exp((Vppt+Ippt*Rsr)./(n*Nsc*Vth
33
     ))-1)));
34 clear V
```

```
35 clear I
_{36} V=0: vocstc / n_top: 23;
_{37} I=zeros (1, size (V, 2));
|_{38}| for w=1: size (V, 2)
  x(w) = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr
39
      I (w) :
  while (abs(x(w)); 0.001)
40
  x(w) = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr
41
      I(w);
  x \ln (w) = -Io^*Rsr/Vth/Nsc/n^*exp((V(w)+I(w)^*Rsr)./Vth/Nsc/n) - Rsr/Rshr - 1
42
  I_{-}(w) = I(w) - x(w) / x lin(w);
43
  I(w) = I_{-}(w);
44
  end
45
  end
46
_{47}|P = (Iph - Io*(exp((V+I.*Rsr)/Vth/Nsc/n) - 1) - (V+I.*Rsr)/Rshr).*V;
_{48}|\operatorname{Pmax}_{m} = \max(P);
  perror = (Pmax_m - Pmax_e);
49
  end
50
  figure (12)
51
52 box
53 hold on
  axis([0 \ 25 \ 0 \ 10]);
54
  plot (V, I, 'LineWidth', 2, "k")
55
56 box
  sa= 800 %Irradiance=1000W/m^2, Ta=20^{\circ}oC TNOCT=^{\circ}oC, Tcell=320.15K
57
_{58} | Iscn = 6.472;
_{59} Ippt= 5.9358;
_{60} Vppt= 15.4505;
_{61} vocstc= 19.9712;
_{62} Pmax_e = Vppt*Ippt;
_{63} Nsc = 36;
  T=320.15;
64
_{65} k=1.3806503*10<sup>(-23)</sup>;
  q=1.6021764*10^{(-19)};
66
  Vth = (k^*T)/q;
67
_{68} | Rsrinc=0.001;
_{69} to 1=0.001;
n_{top}=100;
_{71} nimax=2;
<sup>72</sup> Rsr_max=(vocstc-Vppt)./Ippt;
<sup>73</sup> Rshr_min=Vppt/(Iscn-Ippt)-Rsr_max;
<sup>74</sup> Rshr=Rshr_min;
_{75}|perror=Inf;
  ni=0;
76
_{77} Rsr=0.20;
_{78} A=1.32;
<sup>79</sup> while (perror; to1) & (Rshr; 0) & (ni<nimax)
  Iph=(Rsr+Rshr)/Rshr*Iscn;
80
_{81} ni=ni+1 ;
```

```
|_{82}| Isc=Iscn;
  Voc=vocstc;
83
  Io=Isc./exp(Voc./(n*Nsc*Vth));%method 2
84
  Rsr=Rsr+Rsrinc;
85
  Rshr=(Vppt+Ippt*Rsr)./(Iph-Ippt-(Io*(exp((Vppt+Ippt*Rsr)./(n*Nsc*Vth
86
      )) - 1))); % equation 27
   clear V
87
  clear I
88
  V=0: vocstc/n_top: 23;
89
  I = zeros(1, size(V, 2));
90
  for w=1: size(V, 2)
91
  x(w) = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr
92
      I(w);
  while (abs(x(w)); 0.001)
93
  x(w) = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr
94
      I(w):
   x \ln (w) = -Io^* Rsr / Vth / Nsc / n^* exp((V(w) + I(w)^* Rsr)) / Vth / Nsc / n) - Rsr / Rshr - 1
95
  I_{-}(w) = I(w) - x(w) / x lin(w);
96
  I(w) = I_{-}(w);
97
  end
98
  end
99
  P = (Iph - Io^{*}(exp((V+I.*Rsr)/Vth/Nsc/n) - 1) - (V+I.*Rsr)/Rshr).*V;
100
  Pmax_m = max(P);
101
  perror = (Pmax_m - Pmax_e);
102
  end
103
_{104} figure (12)
105 box
106 hold on
107 | axis( 0 25 0 10 );
  plot (V, I, 'LineWidth', 2, "r")
108
109 box
110 sa= 600 %Irradiance=1000W/m2, Ta=20^oC TNOCT=^oC, Tcell=320.15K
|111| Iscn= 4.854;
_{112} | Ippt= 4.4518;
_{113} Vppt= 15.0677;
114 vocstc= 19.5883;
_{115} Pmax_e = Vppt*Ippt;
_{116} Nsc = 36;
|_{117}|T=320.15;
|_{118}| k=1.3806503*10^{(-23)};
|q=1.6021764*10^{(-19)};
  Vth = (k^*T)/q;
120
|_{121}| Rsrinc=0.001;
122 to 1=0.001;
n_{123} n_top=100;
124 nimax=2;
|_{125}| Rsr_max=(vocstc-Vppt)./Ippt;
126 Rshr_min=Vppt/(Iscn-Ippt)-Rsr_max;
127 Rshr=Rshr_min;
```

128 perror=Inf; ni=0;129 Rsr=0.3; 130 $_{131}$ A=1.29; while (perror; to1)&&(Rshr; 0)&&(ni<nimax) 132 $_{133}$ Iph=(Rsr+Rshr)/Rshr*Iscn; ni=ni+1; 134 135 Isc=Iscn; 136 Voc=vocstc; Io=Isc./exp(Voc./(n*Nsc*Vth));%method 2 137 Rsr=Rsr+Rsrinc; 138 Rshr=(Vppt+Ippt*Rsr)./(Iph-Ippt-(Io*(exp((Vppt+Ippt*Rsr)./(n*Nsc*Vth 139))-1))); % equation 27 clear V 140 clear I 141 $_{142}$ V=0: vocstc / n_top: 23; I = zeros(1, size(V, 2));143 for w=1: size (V, 2)144 $x(w) = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr$ 145 I (w); while (abs(x(w)); 0.001)146 $x(w) = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr$ 147I (w); $x \ln (w) = -Io^* Rsr / Vth / Nsc / n^* exp((V(w) + I(w)^* Rsr) . / Vth / Nsc / n) - Rsr / Rshr - 1$ 148 $I_{-}(w) = I(w) - x(w) / x lin(w);$ 149 $I(w) = I_{-}(w);$ 150end 151152 end $_{153}|P = (Iph - Io^*(exp((V+I.*Rsr)/Vth/Nsc/n) - 1) - (V+I.*Rsr)/Rshr).*V;$ $Pmax_m = max(P);$ 154 $perror = (Pmax_m - Pmax_e);$ 155end 156 $_{157}$ figure (12) 158 box hold on 159 $axis([0 \ 25 \ 0 \ 10]);$ 160 plot (V, I, 'LineWidth', 2, "b") %% 161 162 box sa= 400 %Irradiance=1000W/m2, Ta=20^oC TNOCT=^oC, Tcell=320.15K 163 Iscn=3.236;164 $_{165}$ Ippt=2.968; $_{166}$ Vppt=14.528; $_{167}$ vocstc=19.0487; $Pmax_e = Vppt^*Ippt;$ 168 $_{169}$ Nsc = 36; $_{170}$ T=320.15; $|_{171}|k=1.3806503*10^{(-23)};$ $q=1.6021764*10^{(-19)};$ 172 $_{173}$ Vth=(k*T)/q;

```
|_{174}| Rsrinc=0.001;
  to1=0.001;
175
  n_{top}=100;
176
177 nimax=2;
  Rsr_max=(vocstc-Vppt)./Ippt;
178
  Rshr_min=Vppt/(Iscn-Ippt)-Rsr_max;
179
180 Rshr=Rshr_min;
181 perror=Inf;
182 ni=0;
  Rsr=0.36;
183
_{184} A=1.26;
  while (perror; to1)&&(Rshr; 0)&&(ni<nimax)
185
  Iph=(Rsr+Rshr)/Rshr*Iscn;
186
  ni=ni+1;
187
| Isc=Iscn;
  Voc=vocstc;
189
  Io=Isc./exp(Voc./(n*Nsc*Vth));%method 2
190
  Rsr=Rsr+Rsrinc;
191
  Rshr=(Vppt+Ippt*Rsr)./(Iph-Ippt-(Io*(exp((Vppt+Ippt*Rsr)./(n*Nsc*Vth
192
      ))-1))); % equation 27
  clear V
193
  clear I
194
195 | V=0: vocstc / n_top: 34;
  I = zeros(1, size(V, 2));
196
  for w=1: size (V, 2)
197
  x(w) = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr
198
      I(w);
  while (abs(x(w)); 0.001)
199
  x(w) = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr
200
      I(w);
   x \ln (w) = -Io^* Rsr / Vth / Nsc / n^* exp((V(w) + I(w)^* Rsr)) / Vth / Nsc / n) - Rsr / Rshr - 1
203
   I_{-}(w) = I(w) - x(w) / x lin(w);
202
  I(w) = I_{-}(w);
203
  end
204
  end
205
  P = (Iph - Io^*(exp((V+I.*Rsr)/Vth/Nsc/n) - 1) - (V+I.*Rsr)/Rshr).*V;
206
  Pmax_m = max(P);
207
  perror = (Pmax_m - Pmax_e);
208
  end
209
<sup>210</sup> figure (12)
211 box
212 hold on
_{213} axis ( 0 25
                 0 \ 10 );
  plot(V, I, 'LineWidth', 2, "g")
214
215 box
a_{216} sa 200 % Irradiance = 1000 W/m2, Ta=20° oC TNOCT=° oC, Tcell=320.15 K
_{217} | Iscn=1.618;
_{218} | Ippt=1.4839;
_{219} Vppt=13.606;
```

```
vocstc = 18.126;
220
       Pmax_e = Vppt^*Ippt;
221
      Nsc = 36;
222
      T=320.15;
223
       k=1.3806503*10^{(-23)};
224
      q=1.6021764*10^{(-19)};
225
       Vth = (k^*T)/q;
226
      Rsrinc=0.001;
227
      to1=0.001;
228
      n_{top}=100;
229
_{230} nimax=2;
       Rsr_max=(vocstc-Vppt)./Ippt;
231
      Rshr_min=Vppt/(Iscn-Ippt)-Rsr_max;
232
      Rshr=Rshr_min;
233
      perror=Inf;
234
      ni=0;
235
       Rsr=1.15;
236
_{237}|A=1.1;
       while (perror; to1)&&(Rshr; 0)&&(ni<nimax)
238
      Iph=(Rsr+Rshr)/Rshr*Iscn;
239
       ni=ni+1;
240
_{241} | Isc=Iscn;
      Voc=vocstc;
242
       Io=Isc./exp(Voc./(n*Nsc*Vth));%method 2
243
<sup>244</sup> Rsr=Rsr+Rsrinc;
       Rshr=(Vppt+Ippt*Rsr)./(Iph-Ippt-(Io*(exp((Vppt+Ippt*Rsr)./(n*Nsc*Vth
245
                )) - 1))); % equation 27
       clear V
246
      clear I
247
_{248} V=0: vocstc/n_top: 34;
       I = zeros(1, size(V, 2));
249
       for w=1: size (V, 2)
250
       x(w) = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr
251
                I(w);
       while (abs(x(w)); 0.001)
252
       x(w) = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr - Io^{*}(exp((V(w)+I(w)*Rsr)/Rshr - Io^{*}(exp((W(w)+I(w)*Rsr)/Rshr - Io^{*}(exp((W(w)+I(w)+I(w)*Rsr)/Rshr - Io^{*}(exp((W(w)+I(w
253
                I(w);
        x \ln (w) = -Io^* Rsr / Vth / Nsc / n^* exp((V(w) + I(w)^* Rsr) . / Vth / Nsc / n) - Rsr / Rshr - 1
254
       I_{-}(w) = I(w) - x(w) / x lin(w);
255
       I(w) = I_{-}(w);
256
       end
257
      end
258
      P = (Iph - Io^*(exp((V+I.*Rsr)/Vth/Nsc/n) - 1) - (V+I.*Rsr)/Rshr).*V;
259
       Pmax_m = max(P);
260
       perror = (Pmax_m - Pmax_e);
261
      end
262
      figure (12)
263
      box
264
265 hold on
```

```
_{266} axis ( \begin{bmatrix} 0 & 25 & 0 & 10 \end{bmatrix} );
   plot (V, I, 'LineWidth', 2, "c") %
267
  box
268
  sa=200; \ \% Irradiance=1000 W/m^2, Ta=20^{\circ}oC TNOCT=^{\circ}oC, Tcell=320.15 K
269
  Iscn=1.618;
270
_{271} | Ippt=1.4839;
  Vppt=13.606;
272
  vocstc = 18.126;
273
  Pmax_e = Vppt^*Ippt;
274
  Nsc = 36;
275
  T=320.15;
276
  k=1.3806503*10^{(-23)};
277
  q=1.6021764*10^{(-19)};
278
  Vth = (k^*T)/q;
279
  Rsrinc=0.001;
280
  to1=0.001;
281
  n_{top}=100;
282
_{283} nimax=2;
  Rsr_max=(vocstc-Vppt)./Ippt;
284
  Rshr_min=Vppt/(Iscn-Ippt)-Rsr_max;
285
  Rshr=Rshr_min;
286
  perror=Inf;
287
  ni=0;
288
  Rsr=1.15;
289
_{290}|A=1.1;
  c = \{ w', w', w', w', w', w', w' \};
291
  for i = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix};
292
   while (perror; to1)&&(Rshr; 0)&&(ni<nimax)
293
  Iph=(Rsr+Rshr)/Rshr*Iscn;
294
  ni=ni+1;
295
   Isc=Iscn;
296
  Voc=vocstc;
297
  Io=Ippt./(exp(Voc./(n*Nsc*Vth)) - exp(Vppt./(n*Nsc*Vth))); %Method 4
298
  Rsr=Rsr+Rsrinc;
299
  Rshr=(Vppt+Ippt*Rsr)./(Iph-Ippt-(Io*(exp((Vppt+Ippt*Rsr)./(n*Nsc*Vth
300
      )) - 1))); % equation 27
   clear V
301
   clear I
302
  V=0: vocstc / n_top: 23;
303
  I = zeros(1, size(V, 2));
304
   for w=1: size (V, 2)
305
  x(w) = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr
306
      I(w);
   while (abs(x(w)); 0.001)
307
   x(w) = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr
308
      I (w);
   x \ln (w) = -Io^*Rsr/Vth/Nsc/n^*exp((V(w)+I(w)^*Rsr)./Vth/Nsc/n) - Rsr/Rshr - 1
309
  I_{-}(w) = I(w) - x(w) / x lin(w);
310
_{311}|I(w)=I_{-}(w);
```

```
312 end
  end
313
_{314}|P = (Iph - Io^*(exp((V+I.*Rsr)/Vth/Nsc/n) - 1) - (V+I.*Rsr)/Rshr).*V;
_{315} Pmax_m = max(P);
  perror = (Pmax_m - Pmax_e);
316
  end
317
<sup>318</sup> figure (12)
319 box
320 hold on
  set(gca, "linewidth", 1.5)
321
  set (gca, "fontsize", 14)
322
  xlabel('Voltage [V]', "fontsize", 20);
323
  ylabel('Current [A]', "fontsize", 20);
324
  axis([0 \ 25 \ 0 \ 10]);
325
  plot (V, I, 'LineWidth', 2, "c") % %
326
  hleg = legend ('Sa=1000W/m<sup>2</sup>2', 'Sa=800W/m<sup>2</sup>2', 'Sa=600W/m<sup>2</sup>2', 'Sa=400W/m
327
      ^2', 'Sa=200W/m^2', "location", "northeast");
  set (hleg, "fontsize", 15);
328
  legend boxoff
329
  box
330
  end
331
_{332} figure (12)
  plot ([0 15.748 20.268], [8.090 7.420 0], 'o', 'LineWidth', 2, '
333
      MarkeRsrize', 6, 'Color', 'k')
  box
334
  figure (12)
335
  plot ([0 15.451 19.971], [6.472 5.936 0], 'o', 'LineWidth', 2, '
336
      MarkeRsrize', 5, 'Color', 'r')
  box
337
  figure (12)
338
   plot ([0 15.068 19.588], [4.8540 4.452 0], 'o', 'LineWidth', 2, '
339
      MarkeRsrize', 5, 'Color', 'b')
  box
340
  figure (12)
341
   plot([0 14.528 19.049], [3.2360 2.968 0], 'o', 'LineWidth', 2, '
342
      MarkeRsrize', 5, 'Color', 'g')
  box
343
  figure (12)
344
  plot ([0 13.606 18.126], [1.618 1.484 0], 'o', 'LineWidth', 2, '
345
      MarkeRsrize', 5, 'Color', 'c')
  box
346
```

Appendix XIII

P-V Curve Code for KC130GT at Various Irradiances (Figure 5.18)

```
clc
  clear all
2
  output_precision(8)
3
 sa= 1000 %Irradiance=1000W/m2, Ta=20^oC TNOCT=^oC, Tcell=320.15K
  Iscn = 8.09;
5
 Ippt= 7.4197;
6
  Vppt = 15.7475;
  vocstc = 20.2681;
8
 Pmax_e = Vppt^*Ippt;
9
_{10} Nsc = 36;
_{11}|T=320.15;
|_{12}|k=1.3806503*10^{(-23)};
|_{13}|_{q=1.6021764*10^{(-19)};}
_{14} Vth=(k*T)/q;
_{15} Rsrinc=0.001;
16 to 1=0.001;
n_{17} = 100;
18 nimax=2;
<sup>19</sup> Rsr_max=(vocstc-Vppt)./Ippt;
20 Rshr_min=Vppt/(Iscn-Ippt)-Rsr_max;
_{21} Rshr=Rshr_min;
<sup>22</sup> perror=Inf;
_{23} ni=0;
_{24} Rsr=0.156;
_{25} A=1.34;
<sup>26</sup> while (perror; to1)&&(Rshr; 0)&&(ni<nimax)
_{27} Iph=(Rsr+Rshr)/Rshr*Iscn;
_{28} ni=ni+1 ;
_{29} Isc=Iscn;
30 Voc=vocstc;
 Io=Isc./exp(Voc./(n*Nsc*Vth));
31
 Rsr=Rsr+Rsrinc;
32
 Rshr=(Vppt+Ippt*Rsr)./(Iph-Ippt-(Io*(exp((Vppt+Ippt*Rsr)./(n*Nsc*Vth
33
     ))-1)));
34 clear V
```

```
35 clear I
_{36} V=0: vocstc / n_top: 23;
_{37} I=zeros (1, size (V, 2));
|_{38}| for w=1: size (V, 2)
  x(w) = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr
39
      I (w) :
  while (abs(x(w)); 0.001)
40
  x(w) = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr
41
      I(w);
  x \ln (w) = -Io^*Rsr/Vth/Nsc/n^*exp((V(w)+I(w)^*Rsr)./Vth/Nsc/n) - Rsr/Rshr - 1
42
  I_{-}(w) = I(w) - x(w) / x lin(w);
43
  I(w) = I_{-}(w);
44
  end
45
  end
46
_{47}|P = (Iph - Io*(exp((V+I.*Rsr)/Vth/Nsc/n) - 1) - (V+I.*Rsr)/Rshr).*V;
_{48}|\operatorname{Pmax}_{m} = \max(P);
  perror = (Pmax_m - Pmax_e);
49
  end
50
  figure (12)
51
  box
52
53 hold on
  axis ([0 23 0 135]);
54
  plot (V,P, 'LineWidth', 2, "k")
55
56 box
  sa= 800 %Irradiance=1000W/m^2, Ta=20^{\circ}oC TNOCT=^{\circ}oC, Tcell=320.15K
57
_{58} | Iscn = 6.472;
_{59} Ippt= 5.9358;
_{60} Vppt= 15.4505;
_{61} vocstc= 19.9712;
_{62} Pmax_e = Vppt*Ippt;
_{63} Nsc = 36;
  T=320.15;
64
  k=1.3806503*10^{(-23)};
65
  q=1.6021764*10^{(-19)};
66
  Vth = (k^*T)/q;
67
_{68} Rsrinc=0.001;
  to1=0.001;
69
n_{top}=100;
_{71} nimax=2;
<sup>72</sup> Rsr_max=(vocstc-Vppt)./Ippt;
<sup>73</sup> Rshr_min=Vppt/(Iscn-Ippt)-Rsr_max;
<sup>74</sup> Rshr=Rshr_min;
_{75}|perror=Inf;
  ni=0;
76
_{77} Rsr=0.20;
_{78} A=1.32;
<sup>79</sup> while (perror; to1) & (Rshr; 0) & (ni<nimax)
  Iph=(Rsr+Rshr)/Rshr*Iscn;
80
_{81} ni=ni+1 ;
```

```
|_{82}| Isc=Iscn;
  Voc=vocstc;
83
  Io=Isc./exp(Voc./(n*Nsc*Vth));%method 2
84
  Rsr=Rsr+Rsrinc;
85
  Rshr=(Vppt+Ippt*Rsr)./(Iph-Ippt-(Io*(exp((Vppt+Ippt*Rsr)./(n*Nsc*Vth
86
      )) - 1)));
   clear V
87
  clear I
88
  V=0: vocstc/n_top: 23;
89
  I = zeros(1, size(V, 2));
90
  for w=1: size (V, 2)
91
  x(w) = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr
92
      I(w);
  while (abs(x(w)); 0.001)
93
  x(w) = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr
94
      I (w);
   x \ln (w) = -Io^* Rsr / Vth / Nsc / n^* exp((V(w) + I(w)^* Rsr)) / Vth / Nsc / n) - Rsr / Rshr - 1
95
  I_{-}(w) = I(w) - x(w) / x lin(w);
96
  I(w) = I_{-}(w);
97
  end
98
  end
99
  P = (Iph - Io^{*}(exp((V+I.*Rsr)/Vth/Nsc/n) - 1) - (V+I.*Rsr)/Rshr).*V;
100
  Pmax_m = max(P);
101
  perror = (Pmax_m - Pmax_e);
102
  end
104 figure (12)
105 box
106 hold on
107 | axis( \begin{bmatrix} 0 & 23 & 0 & 135 \end{bmatrix});
  plot (V,P, 'LineWidth', 2, "r")
108
109 box
110 sa= 600 %Irradiance=1000W/m2, Ta=20^oC TNOCT=^oC, Tcell=320.15K
|111| Iscn= 4.854;
_{112} | Ippt= 4.4518;
_{113} Vppt= 15.0677;
114 vocstc= 19.5883;
  Pmax_e = Vppt^*Ippt;
115
_{116} Ns = 36;
|_{117}|T=320.15;
|_{118}| k=1.3806503*10^{(-23)};
  q=1.6021764*10^{(-19)};
119
  Vth = (k^*T)/q;
120
|_{121}| Rsrinc=0.001;
122 to 1=0.001;
n_{123} n_top=100;
124 nimax=2;
|_{125}| Rsr_max=(vocstc-Vppt)./Ippt;
126 Rshr_min=Vppt/(Iscn-Ippt)-Rsr_max;
127 Rshr=Rshr_min;
```

128 perror=Inf; ni=0;129 Rsr=0.3; 130 $_{131}$ A=1.29; while (perror; to1)&&(Rshr; 0)&&(ni<nimax) 132 $_{133}$ Iph=(Rsr+Rshr)/Rshr*Iscn; ni=ni+1; 134 135 Isc=Iscn; Voc=vocstc; 136 Io=Isc./exp(Voc./(n*Nsc*Vth));%method 2 137 Rsr=Rsr+Rsrinc; 138 Rshr=(Vppt+Ippt*Rsr)./(Iph-Ippt-(Io*(exp((Vppt+Ippt*Rsr)./(n*Nsc*Vth 139))-1))); % equation 27 clear V 140 clear I 141 $_{142}$ V=0: vocstc / n_top: 23; I = zeros(1, size(V, 2));143 for w=1: size (V, 2)144 $x(w) = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr$ 145 I(w); while (abs(x(w)); 0.001)146 $x(w) = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr$ 147I (w); $x \ln (w) = -Io^* Rsr / Vth / Nsc / n^* exp((V(w) + I(w)^* Rsr) . / Vth / Nsc / n) - Rsr / Rshr - 1$ 148 $I_{-}(w) = I(w) - x(w) / x lin(w);$ 149 $I(w) = I_{-}(w);$ 150 end 151152 end $_{153}|P = (Iph - Io^*(exp((V+I.*Rsr)/Vth/Nsc/n) - 1) - (V+I.*Rsr)/Rshr).*V;$ $Pmax_m = max(P);$ 154 $perror = (Pmax_m - Pmax_e);$ 155end 156figure (12) box 158 hold on axis ([0 23 0 135]); 160 plot (V, P, 'LineWidth', 2, "b") %% 161 162 box sa= 400 %Irradiance=1000W/m2, Ta=20^oC TNOCT=^oC, Tcell=320.15K 163 Iscn=3.236;164 $_{165}$ Ippt=2.968; $_{166}$ Vppt=14.528; $_{167}$ vocstc=19.0487; $Pmax_e = Vppt^*Ippt;$ 168 $_{169}$ Ns = 36; T=320.15; $|_{171}|k=1.3806503*10^{(-23)};$ $q=1.6021764*10^{(-19)};$ 172 $_{173}$ Vth=(k*T)/q;
```
|_{174}| Rsrinc=0.001;
  to1=0.001;
175
  n_{top}=100;
176
177 nimax=2;
  Rsr_max=(vocstc-Vppt)./Ippt;
178
  Rshr_min=Vppt/(Iscn-Ippt)-Rsr_max;
179
180 Rshr=Rshr_min;
181 perror=Inf;
182 ni=0;
  Rsr=0.36;
183
_{184} A=1.26;
  while (perror; to1)&&(Rshr; 0)&&(ni<nimax)
185
  Iph=(Rsr+Rshr)/Rshr*Iscn;
186
  ni=ni+1;
187
  Isc=Iscn;
188
  Voc=vocstc;
189
  Io=Isc./exp(Voc./(n*Nsc*Vth));%method 2
190
  Rsr=Rsr+Rsrinc;
191
  Rshr=(Vppt+Ippt*Rsr)./(Iph-Ippt-(Io*(exp((Vppt+Ippt*Rsr)./(n*Nsc*Vth
192
      ))-1)));
  clear V
193
  clear I
194
195 | V=0: vocstc / n_top: 23;
  I = zeros(1, size(V, 2));
196
  for w=1: size (V, 2)
197
  x(w) = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr
198
      I(w);
  while (abs(x(w)); 0.001)
199
  x(w) = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr
200
      I(w);
   x \ln (w) = -Io^* Rsr / Vth / Nsc / n^* exp((V(w) + I(w)^* Rsr)) / Vth / Nsc / n) - Rsr / Rshr - 1
203
   I_{-}(w) = I(w) - x(w) / x lin(w);
202
  I(w) = I_{-}(w);
203
  end
204
  end
205
  P = (Iph - Io^*(exp((V+I.*Rsr)/Vth/Nsc/n) - 1) - (V+I.*Rsr)/Rshr).*V;
206
  Pmax_m = max(P);
207
  perror = (Pmax_m - Pmax_e);
208
  end
209
<sup>210</sup> figure (12)
211 box
212 hold on
_{213} axis ( 0 23
                 0 \ 135);
  plot (V,P, 'LineWidth', 2, "g")
214
215 box
a_{216} sa 200 % Irradiance = 1000 W/m2, Ta=20° oC TNOCT=° oC, Tcell=320.15 K
_{217} | Iscn=1.618;
_{218} | Ippt=1.4839;
_{219} Vppt=13.606;
```

```
vocstc = 18.126;
220
       Pmax_e = Vppt^*Ippt;
221
      Ns = 36;
222
      T=320.15;
223
      k=1.3806503*10^{(-23)};
224
      q=1.6021764*10^{(-19)};
225
       Vth = (k^*T)/q;
226
      Rsrinc=0.001;
227
      to1=0.001;
228
      n_{top}=100;
229
_{230} nimax=2;
      Rsr_max=(vocstc-Vppt)./Ippt;
231
      Rshr_min=Vppt/(Iscn-Ippt)-Rsr_max;
232
      Rshr=Rshr_min;
233
      perror=Inf;
234
      ni=0;
235
      Rsr=1.15;
236
_{237}|A=1.1;
       while (perror; to1)&&(Rshr; 0)&&(ni<nimax)
238
      Iph = (Rsr + Rshr) / Rshr * Iscn;
239
      ni=ni+1;
240
_{241} | Isc=Iscn;
      Voc=vocstc;
242
      Io=Isc./exp(Voc./(n*Nsc*Vth));%method 2
243
<sup>244</sup> Rsr=Rsr+Rsrinc;
       Rshr=(Vppt+Ippt*Rsr)./(Iph-Ippt-(Io*(exp((Vppt+Ippt*Rsr)./(n*Nsc*Vth
245
                )) - 1))); % equation 27
       clear V
246
      clear I
247
_{248} V=0: vocstc/n_top: 34;
       I = zeros(1, size(V, 2));
249
       for w=1: size (V, 2)
250
      x(w) = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr
251
                I(w);
       while (abs(x(w)); 0.001)
252
      x(w) = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr - Io^{*}(exp((V(w)+I(w)*Rsr)/Rshr - Io^{*}(exp((W(w)+I(w)*Rsr)/Rshr - Io^{*}(exp((W(w)+I(w)+I(w)*Rsr)/Rshr - Io^{*}(exp((W(w)+I(w
253
                I(w);
       x \ln (w) = -Io^* Rsr / Vth / Nsc / n^* exp((V(w) + I(w)^* Rsr) . / Vth / Nsc / n) - Rsr / Rshr - 1
254
       I_{-}(w) = I(w) - x(w) / x lin(w);
255
       I(w) = I_{-}(w);
256
      end
257
      end
258
      P = (Iph - Io^*(exp((V+I.*Rsr)/Vth/Nsc/n) - 1) - (V+I.*Rsr)/Rshr).*V;
259
      Pmax_m = max(P);
260
      perror = (Pmax_m - Pmax_e);
261
      end
262
      figure (12)
263
      box
264
265 hold on
```

```
axis ([0 23 0 135]);
266
   plot (V,P, 'LineWidth', 2, "c") %
267
  box
268
  sa=200; \ \% Irradiance=1000 W/m^2, Ta=20^{\circ}oC TNOCT=^{\circ}oC, Tcell=320.15 K
269
  Iscn=1.618;
270
_{271} | Ippt=1.4839;
  Vppt=13.606;
272
  vocstc = 18.126;
273
  Pmax_e = Vppt^*Ippt;
274
  Ns = 36;
275
  T=320.15;
276
  k=1.3806503*10^{(-23)};
277
  q=1.6021764*10^{(-19)};
278
  Vth = (k^*T)/q;
279
  Rsrinc=0.001;
280
  to1=0.001;
281
  n_{top}=100;
282
_{283} nimax=2;
  Rsr_max=(vocstc-Vppt)./Ippt;
284
  Rshr_min=Vppt/(Iscn-Ippt)-Rsr_max;
285
  Rshr=Rshr_min;
286
  perror=Inf;
287
  ni=0;
288
  Rsr=1.15;
289
_{290}|A=1.1;
  c = \{ w', w', w', w', w', w', w' \};
291
  for i = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix};
292
   while (perror; to1)&&(Rshr; 0)&&(ni<nimax)
293
  Iph=(Rsr+Rshr)/Rshr*Iscn;
294
  ni=ni+1;
295
  Isc=Iscn;
296
  Voc=vocstc;
297
  Io=Ippt./(exp(Voc./(n*Nsc*Vth)) - exp(Vppt./(n*Nsc*Vth))); %Method 4
298
  Rsr=Rsr+Rsrinc;
299
  Rshr=(Vppt+Ippt*Rsr)./(Iph-Ippt-(Io*(exp((Vppt+Ippt*Rsr)./(n*Nsc*Vth
300
      )) - 1))); % equation 27
   clear V
301
  clear I
302
  V=0: vocstc / n_top: 23;
303
  I = zeros(1, size(V, 2));
304
  for w=1: size (V, 2)
305
  x(w) = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr
306
      I(w);
   while (abs(x(w)); 0.001)
307
  x(w) = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr
308
      I (w);
   x \ln (w) = -Io^*Rsr/Vth/Nsc/n^*exp((V(w)+I(w)^*Rsr)./Vth/Nsc/n) - Rsr/Rshr - 1
309
  I_{-}(w) = I(w) - x(w) / x lin(w);
310
_{311}|I(w)=I_{-}(w);
```

```
312 end
  end
313
_{314}|P = (Iph - Io^*(exp((V+I.*Rsr)/Vth/Nsc/n) - 1) - (V+I.*Rsr)/Rshr).*V;
_{315} Pmax_m = max(P);
  perror = (Pmax_m - Pmax_e);
316
  end
317
<sup>318</sup> figure (12)
319 box
320 hold on
  set(gca, "linewidth", 1.5)
321
  set (gca, "fontsize", 14)
322
  xlabel('Voltage [V]', "fontsize", 20);
323
  ylabel('Power [W]', "fontsize", 20);
324
  axis ([0 23 0 135]);
325
  plot (V, P, 'LineWidth', 2, "c") % %
326
  hleg = legend ('Sa=1000W/m<sup>2</sup>2', 'Sa=800W/m<sup>2</sup>2', 'Sa=600W/m<sup>2</sup>2', 'Sa=400W/m
327
      ^2', 'Sa=200W/m^2', "location", "northwest");
  set (hleg, "fontsize", 15);
328
  legend boxoff
329
  box
330
  end
331
_{332} figure (12)
  plot ([0 15.748 20.268], [0 116.845 0], 'o', 'LineWidth', 2, 'MarkeRsrize
333
      ', 6, 'Color', 'k')
  box
334
  figure (12)
335
  plot ([0 15.451 19.971], [0 91.712]
                                            0 ], 'o', 'LineWidth', 2, '
336
      MarkeRsrize', 6, 'Color', 'r')
  box
337
  figure (12)
338
   plot([0 15.068 19.588],[0 67.079 0], 'o', 'LineWidth',2, 'MarkeRsrize'
339
      ,6, 'Color', 'b')
  box
340
  figure (12)
341
  plot ([0 14.528 19.049], [0 43.887 0], 'o', 'LineWidth', 2, 'MarkeRsrize
342
      ', 6, 'Color', 'g')
  box
343
  figure (12)
344
345 plot ([0 13.606 18.126], [0 20.213 0], 'o', 'LineWidth', 2, '
      MarkeRsrize', 6, 'Color', 'c')
346 box
```

Appendix IX

I-V Curve Code for KC130GT at various temperatures (Figure 5.19)

clc clear all output_precision (8) 3 Ta=20 %@1000W/m2 20oC Iscn =8.1114;Ippt= 7.4288; 6 Vppt = 15.177;vocstc = 19.764;8 $Pmax_e = Vppt^*Ippt;$ 9 Ns = 36; $_{11}|T=326.9;$ $|_{12}|k=1.3806503*10^{(-23)};$ $|_{13}|_{q=1.6021764*10^{(-19)};}$ $_{14}$ Vth=(k*T)/q; $_{15}$ Rsrinc=0.001; 16 to 1=0.001; $n_{17} = 100;$ 18 nimax=2; ¹⁹ Rsr_max=(vocstc-Vppt)./Ippt; 20 Rshr_min=Vppt/(Iscn-Ippt)-Rsr_max; $_{21}$ Rshr=Rshr_min; ²² perror=Inf; $_{23}$ ni=0; $_{24}$ Rsr=0.163; $_{25}$ A=1.33; ²⁶ while (perror; to1)&&(Rshr; 0)&&(ni<nimax) $_{27}$ Iph=(Rsr+Rshr)/Rshr*Iscn; $_{28}$ ni=ni+1 ; $_{29}$ Isc=Iscn; 30 Voc=vocstc; Io=Isc./exp(Voc./(n*Nsc*Vth));31 Rsr=Rsr+Rsrinc; 32 Rshr=(Vppt+Ippt*Rsr)./(Iph-Ippt-(Io*(exp((Vppt+Ippt*Rsr)./(n*Nsc*Vth 33))-1))); 34 clear V

```
35 clear I
_{36} V=0: vocstc / n_top: 23;
_{37} I=zeros (1, size (V, 2));
_{38} for w=1: size (V, 2)
  x(w) = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr
39
      I(w);
  while (abs(x(w)); 0.001)
40
  x(w) = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr
41
      I(w);
  x \ln (w) = -Io^*Rsr/Vth/Nsc/n^*exp((V(w)+I(w)^*Rsr)./Vth/Nsc/n) - Rsr/Rshr - 1
42
  I_{-}(w) = I(w) - x(w) / x lin(w);
43
  I(w) = I_{-}(w);
44
  end
45
  end
46
_{47}|P = (Iph - Io*(exp((V+I.*Rsr)/Vth/Nsc/n) - 1) - (V+I.*Rsr)/Rshr).*V;
_{48}|\operatorname{Pmax_m} = \max(P);
  perror = (Pmax_m - Pmax_e);
49
  end
50
  figure (12)
51
52 box
53 hold on
_{54} axis ( [0 25 0 10]);
  plot (V, I, 'LineWidth', 2, "r") % %
55
56 box
  Ta=25 % @1000W/m2 25oC
57
_{58} | Iscn = 8.1273;
<sup>59</sup> Ippt= 7.4356;
_{60} Vppt= 14.754;
_{61} vocstc= 19.389;
_{62} Pmax_e = Vppt*Ippt;
_{63} T=331.9;
  Rsrinc=0.001;
64
to1=0.001;
n_{top}=100;
_{67} nimax=2;
<sup>68</sup> Rsr_max=(vocstc-Vppt)./Ippt;
  Rshr_min=Vppt/(Iscn-Ippt)-Rsr_max;
69
70 Rshr=Rshr_min;
<sup>71</sup> perror=Inf;
n_{1} = 0;
_{73} Rsr=0.18;
_{74} A=1.3;
<sup>75</sup> while (perror; to1) & (Rshr; 0) & (ni<nimax)
  Iph=(Rsr+Rshr)/Rshr*Iscn;
76
77 ni=ni+1 ;
  Isc=Iscn:
78
  Voc=vocstc;
79
  Io=Isc./exp(Voc./(n*Nsc*Vth));
80
  Rsr=Rsr+Rsrinc;
81
```

```
Rshr=(Vppt+Ippt*Rsr)./(Iph-Ippt-(Io*(exp((Vppt+Ippt*Rsr)./(n*Nsc*Vth
82
      ))-1)));
  clear V
83
  clear I
84
  V=0: vocstc/n_top: 23;
85
  I = zeros(1, size(V, 2));
86
  for w=1: size (V, 2)
87
  x(w) = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr
88
      I(w);
   while (abs(x(w)); 0.001)
89
  x(w) = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr
90
      I(w);
   x \ln (w) = -Io^*Rsr/Vth/Nsc/n^*exp((V(w)+I(w)^*Rsr)./Vth/Nsc/n) - Rsr/Rshr - 1
91
  I_{-}(w) = I(w) - x(w) / x lin(w);
92
  I(w) = I_{-}(w);
93
  end
94
  end
95
  P = (Iph - Io^{*}(exp((V+I.*Rsr)/Vth/Nsc/n) - 1) - (V+I.*Rsr)/Rshr).*V;
96
  Pmax_m = max(P);
97
   perror = (Pmax_m - Pmax_e);
98
  end
99
  figure (12)
100
  hold on
101
_{102} axis ( [0 25 0 10]);
  plot (V, I, 'LineWidth', 2, "k") % %
104 box
  Ta =30 \% @1000W/m2 30oC
105
106 | Iscn=8.1432;
_{107} | Ippt= 7.4423;
  Vppt = 14.330;
108
_{109} vocstc=19.014;
_{110} Pmax_e = Vppt*Ippt;
111 T=336.9;
|_{112}| Rsrinc=0.001;
113 to 1=0.001;
n_{114} n_top=100;
  nimax=2;
115
116 Rsr_max=(vocstc-Vppt)./Ippt;
  Rshr_min=Vppt/(Iscn-Ippt)-Rsr_max;
117
<sup>118</sup> Rshr=Rshr_min;
119 perror=Inf;
120 ni=0;
|_{121} Rsr=0.201;
_{122} A=1.29;
while (perror; to1)\&\&(Rshr; 0)\&\&(ni < nimax)
_{124} Iph=(Rsr+Rshr)/Rshr*Iscn;
125 ni=ni+1 ;
  Isc=Iscn;
126
<sup>127</sup> Voc=vocstc;
```

```
Io=Isc./exp(Voc./(n*Nsc*Vth));
128
   Rsr=Rsr+Rsrinc;
129
   Rshr=(Vppt+Ippt*Rsr)./(Iph-Ippt-(Io*(exp((Vppt+Ippt*Rsr)./(n*Nsc*Vth
130
      ))-1)));
   clear V
  clear I
132
  V=0: vocstc/n_top: 23;
133
  I = zeros(1, size(V, 2));
134
   for w=1: size (V, 2)
135
  x(w) = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr
136
      I(w);
   while (abs(x(w)); 0.001)
  x(w) = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr
138
      I(w);
   x \ln (w) = -Io^*Rsr/Vth/Nsc/n^*exp((V(w)+I(w)^*Rsr)./Vth/Nsc/n) - Rsr/Rshr - 1
139
   I_{-}(w) = I(w) - x(w) / x lin(w);
140
  I(w) = I_{-}(w);
141
  end
142
143 end
|_{144}|P = (Iph - Io^*(exp((V+I.*Rsr)/Vth/Nsc/n) - 1) - (V+I.*Rsr)/Rshr).*V;
_{145}|\operatorname{Pmax}_{m} = \max(P);
   perror = (Pmax_m - Pmax_e);
146
  end
147
_{148} figure (12)
149 hold on
_{150} axis ( \begin{bmatrix} 0 & 25 & 0 & 10 \end{bmatrix} );
   plot (V, I, 'LineWidth', 2, "c") % %
151
152 box
  Ta=35 % @1000W/m2 35oC
  Iscn=8.1591;
154
_{155} | Ippt=7.4491;
  Vppt=13.905;
156
_{157} vocstc=18.638;
_{158} Pmax_e = Vppt*Ippt;
_{159} T=341.9;
  Rsrinc=0.001;
160
  to1=0.001;
161
|_{162}| n_t op = 100;
163 nimax=2;
|_{164} Rsr_max=(vocstc-Vppt)./Ippt;
165 Rshr_min=Vppt/(Iscn-Ippt)-Rsr_max;
166 Rshr=Rshr_min;
167 perror=Inf;
   ni=0;
168
169 | \text{Rsr}=0.223;
_{170}|A=1.27;
  while (perror; to1)&&(Rshr; 0)&&(ni<nimax)
171
  Iph=(Rsr+Rshr)/Rshr*Iscn;
172
173 ni=ni+1 ;
```

```
|_{174}| Isc=Iscn;
  Voc=vocstc;
175
  Io=Isc./exp(Voc./(n*Nsc*Vth));
176
  Rsr=Rsr+Rsrinc;
177
  Rshr=(Vppt+Ippt*Rsr)./(Iph-Ippt-(Io*(exp((Vppt+Ippt*Rsr)./(n*Nsc*Vth
178
      )) - 1))); % equation 27
   clear V
179
  clear I
180
  V=0: vocstc / n_top: 23;
181
  I = zeros(1, size(V, 2));
182
  for w=1: size (V, 2)
183
  x(w) = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr
184
      I(w);
   while (abs(x(w)); 0.001)
185
  x(w) = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr
186
      I (w);
   x \ln (w) = -Io^* Rsr / Vth / Nsc / n^* exp((V(w) + I(w)^* Rsr)) / Vth / Nsc / n) - Rsr / Rshr - 1
187
   I_{-}(w) = I(w) - x(w) / x lin(w);
188
  I(w) = I_{-}(w);
189
  end
190
  end
191
  P = (Iph - Io^{*}(exp((V+I.*Rsr)/Vth/Nsc/n) - 1) - (V+I.*Rsr)/Rshr).*V;
192
  Pmax_m = max(P);
193
  perror = (Pmax_m - Pmax_e);
194
  end
195
  figure (12)
196
  hold on
197
  axis([0 \ 25 \ 0 \ 10]);
198
  plot (V, I, 'LineWidth', 2, "g")
199
  box
200
  Ta=40 %@1000W/m2 40oC
201
  Iscn =8.1750;
202
  Ippt= 7.4558;
203
  Vppt=13.480;
204
  vocstc = 18.261;
205
  Pmax_e = Vppt^*Ippt;
206
  T=346.9;
207
_{208} | Rsrinc=0.001;
  to1=0.001;
209
_{210} n_top=100;
_{211} nimax=2;
212 Rsr_max=(vocstc-Vppt)./Ippt;
Rshr_min=Vppt/(Iscn-Ippt)-Rsr_max;
  Rshr=Rshr_min;
214
<sup>215</sup> perror=Inf;
216 ni=0;
_{217} Rsr=0.235;
_{218}|A=1.22;
<sup>219</sup> while (perror; to1) & (Rshr; 0) & (ni < nimax)
```

```
_{220} Iph=(Rsr+Rshr)/Rshr*Iscn;
  ni=ni+1;
221
_{222} | Isc=Iscn;
<sup>223</sup> Voc=vocstc;
  Io=Isc./exp(Voc./(n*Nsc*Vth));
224
  Rsr=Rsr+Rsrinc;
225
  Rshr=(Vppt+Ippt*Rsr)./(Iph-Ippt-(Io*(exp((Vppt+Ippt*Rsr)./(n*Nsc*Vth
226
      ))-1))); % equation 27
   clear V
227
  clear I
228
  V=0: vocstc / n_top: 23;
229
  I = zeros(1, size(V, 2));
230
  for w=1: size (V, 2)
231
  x(w) = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr
232
      I(w);
   while (abs(x(w)); 0.001)
233
  x(w) = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr
234
      I(w);
   x \ln (w) = -Io^*Rsr/Vth/Nsc/n^*exp((V(w)+I(w)^*Rsr)./Vth/Nsc/n) - Rsr/Rshr - 1
   I_{-}(w) = I(w) - x(w) / x lin(w);
236
  I(w) = I_{-}(w);
237
  end
238
  end
239
_{240}|P = (Iph - Io^*(exp((V+I.*Rsr)/Vth/Nsc/n) - 1) - (V+I.*Rsr)/Rshr).*V;
  Pmax_m = max(P);
241
  perror = (Pmax_m - Pmax_e);
242
  end
243
<sup>244</sup> figure (12)
  hold on
245
  axis ([0 25 0 10]);
246
  plot (V, I, 'LineWidth', 2, "m")
247
  box
248
  Ta=45 %@1000W/m2 45oC
249
  Iscn = 8.1909;
250
_{251} | Ippt= 7.4626;
  Vppt = 13.055;
252
  vocstc = 17.883;
253
_{254} Pmax_e = Vppt*Ippt;
  T=351.9;
255
  Rsrinc=0.001;
256
  to1=0.001;
257
_{258} n_top=100;
_{259} nimax=2;
  Rsr_max=(vocstc-Vppt)./Ippt;
260
  Rshr_min=Vppt/(Iscn-Ippt)-Rsr_max;
261
  Rshr=Rshr_min;
262
  perror=Inf;
263
  ni=0;
264
_{265} Rsr=0.246;
```

```
_{266} A=1.21;
   while (perror; to1)&&(Rshr; 0)&&(ni<nimax)
267
  Iph=(Rsr+Rshr)/Rshr*Iscn;
268
  ni=ni+1;
269
  Isc=Iscn;
270
  Voc=vocstc;
271
  Io=Isc./exp(Voc./(n*Nsc*Vth));
272
  Rsr=Rsr+Rsrinc;
273
  Rshr=(Vppt+Ippt*Rsr)./(Iph-Ippt-(Io*(exp((Vppt+Ippt*Rsr)./(n*Nsc*Vth
274
      )) - 1))); % equation 27
  clear V
275
  clear I
276
  V=0: vocstc / n_top: 23;
277
  I = zeros(1, size(V, 2));
278
  for w=1: size (V, 2)
279
  x(w) = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr
280
      I(w);
   while (abs(x(w)); 0.001)
281
  x(w) = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr
282
      I (w);
   x \ln (w) = -Io^* Rsr / Vth / Nsc / n^* exp((V(w) + I(w)^* Rsr) . / Vth / Nsc / n) - Rsr / Rshr - 1
283
   I_{-}(w) = I(w) - x(w) / x lin(w);
284
  I(w) = I_{-}(w);
285
  end
286
  end
287
  P = (Iph - Io^{*}(exp((V+I.*Rsr)/Vth/Nsc/n) - 1) - (V+I.*Rsr)/Rshr).*V;
288
_{289} Pmax_m = max(P);
  perror = (Pmax_m - Pmax_e);
290
  end
291
  figure (12)
292
293 hold on
  axis([0 \ 25 \ 0 \ 10]);
294
  plot (V, I, 'LineWidth', 2, "--k") % %
295
  box
296
  Ta=50 \ \%@1000W/m2 \ 50oC
297
  Iscn = 8.2068;
298
  Ippt= 7.4693;
299
  Vppt=12.629;
300
  vocstc = 17.504;
301
  Pmax_e = Vppt^*Ippt;
302
_{303} T=356.9;
  Rsrinc=0.001;
304
  to1=0.001;
305
  n_{top}=100;
306
_{307} nimax=2;
  Rsr_max=(vocstc-Vppt)./Ippt;
308
309 Rshr_min=Vppt/(Iscn-Ippt)-Rsr_max;
  Rshr=Rshr_min;
310
311 perror=Inf;
```

```
n_{12} n_{1} = 0;
  Rsr=0.277;
313
_{314} A=1.18;
  c = \{ w', w', w', w', w', w', w', w', w' \};
315
  for i = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \end{bmatrix};
316
  while (perror; to1) & (Rshr; 0) & (ni<nimax)
317
_{318} Iph=(Rsr+Rshr)/Rshr*Iscn;
319 ni=ni+1 ;
_{320} | Isc=Iscn;
  Voc=vocstc;
321
I_{322} Io=Ippt./(exp(Voc./(n*Nsc*Vth))-exp(Vppt./(n*Nsc*Vth)));
  Rsr=Rsr+Rsrinc;
323
  Rshr=(Vppt+Ippt*Rsr)./(Iph-Ippt-(Io*(exp((Vppt+Ippt*Rsr)./(n*Nsc*Vth
324
      ))-1)));
   clear V
325
  clear I
326
  V=0: vocstc/n_top: 23;
327
  I = zeros(1, size(V, 2));
328
   for w=1: size (V, 2)
329
  x(w) = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr
330
      I(w);
   while (abs(x(w)); 0.001)
331
   x(w) = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr
332
      I(w);
   x \lim (w) = -Io^*Rsr/Vth/Nsc/n^*exp((V(w)+I(w)^*Rsr)./Vth/Nsc/n) - Rsr/Rshr - 1
333
   I_{-}(w) = I(w) - x(w) / x lin(w);
334
   I(w) = I_{-}(w);
335
  end
336
  end
337
  P = (Iph - Io^*(exp((V+I.*Rsr)/Vth/Nsc/n) - 1) - (V+I.*Rsr)/Rshr).*V;
338
_{339}|Pmax_m = max(P);
   perror = (Pmax_m - Pmax_e);
340
  end
341
<sup>342</sup> figure (12)
343 box
  hold on
344
   set(gca, "linewidth", 1.5)
345
  set(gca, "fontsize", 14)
346
   xlabel('Voltage [V]', "fontsize", 20);
347
   ylabel('Current [A]', "fontsize", 20);
348
   axis([0 \ 25 \ 0 \ 10]);
349
   plot (V, I, 'LineWidth', 2, "b") % %
350
  hleg = legend ('Ta=20^{\circ}oC', 'Ta=25^{\circ}oC', 'Ta=30^{\circ}oC', 'Ta=35^{\circ}oC', 'Ta=40^{\circ}oC
351
       ', 'Ta=45°oC', 'Ta=50°oC', "location", "northeast");
  set (hleg, "fontsize", 15);
352
  legend boxoff
353
354 box
  end
355
_{356} figure (12)
```

```
<sup>357</sup> plot ([0 15.177 19.764], [8.1114 7.4288 0], 'o', 'LineWidth', 2, '
      MarkeRsrize', 5, 'Color', 'r')
  box
358
  figure (12)
359
  plot([0 14.754 19.389], [8.1273 7.4356 0], 'o', 'LineWidth', 2, '
360
     MarkeRsrize', 5, 'Color', 'k')
  box
361
  figure (12)
362
  plot ([0 14.330 19.014], [8.1432 7.4423 0], 'o', 'LineWidth', 2, '
363
      MarkeRsrize', 5, 'Color', 'c')
  box
364
  figure (12)
365
  plot ([0 13.905 18.638], [8.1591 7.4491 0], 'o', 'LineWidth', 2, '
366
      MarkeRsrize', 5, 'Color', 'g')
  box
367
  figure (12)
368
  plot ([0 13.480 18.261], [8.1750 7.4558 0], 'o', 'LineWidth', 2, '
369
      MarkeRsrize', 5, 'Color', 'm')
  box
370
  figure (12)
371
  plot ([0 13.055 17.883], [8.1909 7.4626 0], 'o', 'LineWidth', 2, '
372
      MarkeRsrize', 5, 'Color', 'k')
  box
373
  figure (12)
374
375 box
  plot ([0 12.629 17.504], [8.2068 7.4693 0], 'o', 'LineWidth', 2, '
376
      MarkeRsrize', 5, 'Color', 'b')
  box
377
```

Appendix XV

P-V Curve Code for KC130GT at various temperatures (Figure 5.20)

clc clear all output_precision (8) 3 Ta=20 %@1000W/m2 20oC Iscn =8.1114;Ippt= 7.4288; 6 Vppt = 15.177;vocstc = 19.764;8 $Pmax_e = Vppt^*Ippt;$ 9 Nsc = 36; $_{11}|T=326.9;$ $|_{12}|k=1.3806503*10^{(-23)};$ $|_{13}|_{q=1.6021764*10^{(-19)};}$ $_{14}$ Vth=(k*T)/q; $_{15}$ Rsrinc=0.001; 16 to 1=0.001; $n_{17} = 100;$ 18 nimax=2; ¹⁹ Rsr_max=(vocstc-Vppt)./Ippt; 20 Rshr_min=Vppt/(Iscn-Ippt)-Rsr_max; $_{21}$ Rshr=Rshr_min; ²² perror=Inf; $_{23}$ ni=0; $_{24}$ Rsr=0.163; $_{25}$ A=1.33; ²⁶ while (perror; to1)&&(Rshr; 0)&&(ni<nimax) $_{27}$ Iph=(Rsr+Rshr)/Rshr*Iscn; $_{28}$ ni=ni+1 ; $_{29}$ Isc=Iscn; 30 Voc=vocstc; Io=Isc./exp(Voc./(n*Nsc*Vth));31 Rsr=Rsr+Rsrinc; 32 Rshr=(Vppt+Ippt*Rsr)./(Iph-Ippt-(Io*(exp((Vppt+Ippt*Rsr)./(n*Nsc*Vth 33))-1))); 34 clear V

```
35 clear I
_{36} V=0: vocstc / n_top: 23;
_{37} I=zeros (1, size (V, 2));
|_{38}| for w=1: size (V, 2)
  x(w) = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr
39
      I (w):
  while (abs(x(w)); 0.001)
40
  x(w) = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr
41
      I(w);
  x \ln (w) = -Io^*Rsr/Vth/Nsc/n^*exp((V(w)+I(w)^*Rsr)./Vth/Nsc/n) - Rsr/Rshr - 1
42
  I_{-}(w) = I(w) - x(w) / x lin(w);
43
  I(w) = I_{-}(w);
44
  end
45
  end
46
_{47}|P = (Iph - Io*(exp((V+I.*Rsr)/Vth/Nsc/n) - 1) - (V+I.*Rsr)/Rshr).*V;
_{48}|\operatorname{Pmax}_{m} = \max(P);
  perror = (Pmax_m - Pmax_e);
49
  end
50
  figure (12)
51
  box
52
53 hold on
  axis ([0 23 0 135]);
54
  plot (V, P, 'LineWidth', 2, "r") % %
55
56 box
  Ta=25 % @1000W/m2 25oC
57
_{58} | Iscn = 8.1273;
<sup>59</sup> Ippt= 7.4356;
_{60} Vppt= 14.754;
_{61} vocstc= 19.389;
_{62} Pmax_e = Vppt*Ippt;
_{63} T=331.9;
  Rsrinc=0.001;
64
to1=0.001;
n_{top}=100;
_{67} nimax=2;
<sup>68</sup> Rsr_max=(vocstc-Vppt)./Ippt;
  Rshr_min=Vppt/(Iscn-Ippt)-Rsr_max;
69
70 Rshr=Rshr_min;
<sup>71</sup> perror=Inf;
n_{1} = 0;
_{73} Rsr=0.18;
_{74} A=1.3;
<sup>75</sup> while (perror; to1) & (Rshr; 0) & (ni<nimax)
  Iph=(Rsr+Rshr)/Rshr*Iscn;
76
77 ni=ni+1 ;
  Isc=Iscn:
78
  Voc=vocstc;
79
  Io=Isc./exp(Voc./(n*Nsc*Vth));
80
  Rsr=Rsr+Rsrinc;
81
```

```
Rshr=(Vppt+Ippt*Rsr)./(Iph-Ippt-(Io*(exp((Vppt+Ippt*Rsr)./(n*Nsc*Vth
82
      ))-1)));
  clear V
83
  clear I
84
  V=0: vocstc/n_top: 23;
85
  I = zeros(1, size(V, 2));
86
  for w=1: size(V, 2)
87
  x(w) = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr
88
      I(w);
   while (abs(x(w)); 0.001)
89
  x(w) = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr
90
      I(w);
   x \ln (w) = -Io^*Rsr/Vth/Nsc/n^*exp((V(w)+I(w)^*Rsr)./Vth/Nsc/n) - Rsr/Rshr - 1
91
  I_{-}(w) = I(w) - x(w) / x lin(w);
92
  I(w) = I_{-}(w);
93
  end
94
  end
95
  P = (Iph - Io^{*}(exp((V+I.*Rsr)/Vth/Nsc/n) - 1) - (V+I.*Rsr)/Rshr).*V;
96
  Pmax_m = max(P);
97
   perror = (Pmax_m - Pmax_e);
98
  end
99
  figure (12)
100
  hold on
101
102 | axis([0 23 0 135]);
  plot (V, P, 'LineWidth', 2, "k") % %
104 box
  Ta =30 \% @1000W/m2 30oC
105
106 | Iscn=8.1432;
_{107} | Ippt= 7.4423;
  Vppt = 14.330;
108
_{109} vocstc=19.014;
_{110} Pmax_e = Vppt*Ippt;
111 T=336.9;
|_{112}| Rsrinc=0.001;
113 to 1=0.001;
n_{114} n_top=100;
  nimax=2;
115
116 Rsr_max=(vocstc-Vppt)./Ippt;
  Rshr_min=Vppt/(Iscn-Ippt)-Rsr_max;
117
<sup>118</sup> Rshr=Rshr_min;
119 perror=Inf;
120 ni=0;
|_{121}| Rsr=0.201;
_{122} A=1.29;
while (perror; to1)\&\&(Rshr; 0)\&\&(ni < nimax)
_{124} Iph=(Rsr+Rshr)/Rshr*Iscn;
125 ni=ni+1 ;
126 Isc=Iscn;
<sup>127</sup> Voc=vocstc;
```

```
Io=Isc./exp(Voc./(n*Nsc*Vth));
128
  Rsr=Rsr+Rsrinc;
129
  Rshr=(Vppt+Ippt*Rsr)./(Iph-Ippt-(Io*(exp((Vppt+Ippt*Rsr)./(n*Nsc*Vth
130
      ))-1)));
   clear V
  clear I
132
  V=0: vocstc/n_top: 23;
133
  I = zeros(1, size(V, 2));
134
  for w=1: size (V, 2)
135
  x(w) = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr
136
      I(w);
   while (abs(x(w)); 0.001)
  x(w) = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr
138
      I(w);
   x \ln (w) = -Io^*Rsr/Vth/Nsc/n^*exp((V(w)+I(w)^*Rsr)./Vth/Nsc/n) - Rsr/Rshr - 1
139
   I_{-}(w) = I(w) - x(w) / x lin(w);
140
  I(w) = I_{-}(w);
141
  end
142
143 end
|_{144}|P = (Iph - Io^*(exp((V+I.*Rsr)/Vth/Nsc/n) - 1) - (V+I.*Rsr)/Rshr).*V;
_{145}|\operatorname{Pmax}_{m} = \max(P);
  perror = (Pmax_m - Pmax_e);
146
  end
147
_{148} figure (12)
149 hold on
150 | axis( 0 23 0 135 );
  plot (V,P, 'LineWidth', 2, "c") % %
151
152 box
  Ta=35 % @1000W/m2 35oC
  Iscn=8.1591;
154
_{155} | Ippt=7.4491;
  Vppt=13.905;
156
_{157} vocstc=18.638;
_{158} Pmax_e = Vppt*Ippt;
_{159}|T=341.9;
  Rsrinc=0.001;
160
  to1=0.001;
161
|_{162}| n_t op = 100;
163 nimax=2;
|_{164} Rsr_max=(vocstc-Vppt)./Ippt;
165 Rshr_min=Vppt/(Iscn-Ippt)-Rsr_max;
166 Rshr=Rshr_min;
167 perror=Inf;
  ni=0;
168
169 | \text{Rsr}=0.223;
_{170}|A=1.27;
  while (perror; to1)&&(Rshr; 0)&&(ni<nimax)
171
  Iph=(Rsr+Rshr)/Rshr*Iscn;
172
173 ni=ni+1 ;
```

```
|_{174}| Isc=Iscn;
  Voc=vocstc;
175
  Io=Isc./exp(Voc./(n*Nsc*Vth));
176
  Rsr=Rsr+Rsrinc;
177
  Rshr=(Vppt+Ippt*Rsr)./(Iph-Ippt-(Io*(exp((Vppt+Ippt*Rsr)./(n*Nsc*Vth
178
      )) - 1)));
   clear V
179
  clear I
180
  V=0: vocstc / n_top: 23;
181
  I = zeros(1, size(V, 2));
182
  for w=1: size (V, 2)
183
  x(w) = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr
184
      I(w);
   while (abs(x(w)); 0.001)
185
  x(w) = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr
186
      I (w);
   x \ln (w) = -Io^* Rsr / Vth / Nsc / n^* exp((V(w) + I(w)^* Rsr)) / Vth / Nsc / n) - Rsr / Rshr - 1
187
   I_{-}(w) = I(w) - x(w) / x lin(w);
188
  I(w) = I_{-}(w);
189
  end
190
  end
191
  P = (Iph - Io^{*}(exp((V+I.*Rsr)/Vth/Nsc/n) - 1) - (V+I.*Rsr)/Rshr).*V;
192
  Pmax_m = max(P);
193
  perror = (Pmax_m - Pmax_e);
194
  end
195
  figure (12)
196
  hold on
197
  axis ([0 23 0 135]);
198
  plot (V,P, 'LineWidth', 2, "g")
199
  box
200
  Ta=40 %@1000W/m2 40oC
201
  Iscn =8.1750;
202
  Ippt= 7.4558;
203
  Vppt= 13.480;
204
  vocstc = 18.261;
205
  Pmax_e = Vppt^*Ippt;
206
  T=346.9;
207
_{208} | Rsrinc=0.001;
  to1=0.001;
209
_{210} n_top=100;
_{211} nimax=2;
212 Rsr_max=(vocstc-Vppt)./Ippt;
Rshr_min=Vppt/(Iscn-Ippt)-Rsr_max;
  Rshr=Rshr_min;
214
<sup>215</sup> perror=Inf;
216 ni=0;
_{217} Rsr=0.235;
_{218}|A=1.22;
<sup>219</sup> while (perror; to1) & (Rshr; 0) & (ni < nimax)
```

```
Iph = (Rsr + Rshr) / Rshr * Iscn;
220
  ni=ni+1;
221
  Isc=Iscn;
222
<sup>223</sup> Voc=vocstc;
  Io=Isc./exp(Voc./(n*Nsc*Vth));
224
  Rsr=Rsr+Rsrinc;
225
  Rshr=(Vppt+Ippt*Rsr)./(Iph-Ippt-(Io*(exp((Vppt+Ippt*Rsr)./(n*Nsc*Vth
226
      ))-1))); % equation 27
   clear V
227
  clear I
228
  V=0: vocstc / n_top: 23;
229
  I = zeros(1, size(V, 2));
230
  for w=1: size (V, 2)
231
  x(w) = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr
232
      I(w);
   while (abs(x(w)); 0.001)
233
  x(w) = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr
234
      I(w);
   x \ln (w) = -Io^*Rsr/Vth/Nsc/n^*exp((V(w)+I(w)^*Rsr)./Vth/Nsc/n) - Rsr/Rshr - 1
   I_{-}(w) = I(w) - x(w) / x lin(w);
236
  I(w) = I_{-}(w);
237
  end
238
  end
239
_{240}|P = (Iph - Io^*(exp((V+I.*Rsr)/Vth/Nsc/n) - 1) - (V+I.*Rsr)/Rshr).*V;
  Pmax_m = max(P);
241
  perror = (Pmax_m - Pmax_e);
242
  end
243
<sup>244</sup> figure (12)
  hold on
245
  axis ([0 23 0 135]);
246
  plot (V,P, 'LineWidth', 2, "m")
247
  box
248
  Ta=45 %@1000W/m2 45oC
249
  Iscn = 8.1909;
250
_{251} | Ippt= 7.4626;
  Vppt = 13.055;
252
  vocstc = 17.883;
253
_{254} Pmax_e = Vppt*Ippt;
  T=351.9;
255
  Rsrinc=0.001;
256
  to1=0.001;
257
_{258} n_top=100;
_{259} nimax=2;
  Rsr_max=(vocstc-Vppt)./Ippt;
260
  Rshr_min=Vppt/(Iscn-Ippt)-Rsr_max;
261
  Rshr=Rshr_min;
262
  perror=Inf;
263
  ni=0;
264
_{265} Rsr=0.246;
```

```
_{266} A=1.21;
   while (perror; to1) & (Rshr; 0) & (ni<nimax)
267
  Iph=(Rsr+Rshr)/Rshr*Iscn;
268
  ni=ni+1;
269
  Isc=Iscn;
270
  Voc=vocstc;
271
  Io=Isc./exp(Voc./(n*Nsc*Vth));
272
  Rsr=Rsr+Rsrinc;
273
  Rshr=(Vppt+Ippt*Rsr)./(Iph-Ippt-(Io*(exp((Vppt+Ippt*Rsr)./(n*Nsc*Vth
274
      )) - 1))); % equation 27
  clear V
275
  clear I
276
  V=0: vocstc / n_top: 23;
277
  I = zeros(1, size(V, 2));
278
  for w=1: size (V, 2)
279
  x(w) = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr
280
      I(w);
   while (abs(x(w)); 0.001)
281
  x(w) = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr
282
      I (w);
   x \ln (w) = -Io^* Rsr / Vth / Nsc / n^* exp((V(w) + I(w)^* Rsr) . / Vth / Nsc / n) - Rsr / Rshr - 1
283
   I_{-}(w) = I(w) - x(w) / x lin(w);
284
  I(w) = I_{-}(w);
285
  end
286
  end
287
  P = (Iph - Io^{*}(exp((V+I.*Rsr)/Vth/Nsc/n) - 1) - (V+I.*Rsr)/Rshr).*V;
288
_{289} Pmax_m = max(P);
  perror = (Pmax_m - Pmax_e);
290
  end
291
  figure (12)
292
293 hold on
  axis ([0 23 0 135]);
294
  plot (V,P, 'LineWidth', 2, "--k") % %
295
  box
296
  Ta=50 \ \%@1000W/m2 \ 50oC
297
  Iscn = 8.2068;
298
  Ippt= 7.4693;
299
  Vppt=12.629;
300
  vocstc = 17.504;
301
  Pmax_e = Vppt^*Ippt;
302
_{303} T=356.9;
  Rsrinc=0.001;
304
  to1=0.001;
305
  n_{top}=100;
306
_{307} nimax=2;
  Rsr_max=(vocstc-Vppt)./Ippt;
308
309 Rshr_min=Vppt/(Iscn-Ippt)-Rsr_max;
  Rshr=Rshr_min;
310
311 perror=Inf;
```

```
n_{12} n_{1} = 0;
  Rsr=0.277;
313
_{314} A=1.18;
  c = \{ w', w', w', w', w', w', w', w', w' \};
315
  for i = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \end{bmatrix};
316
<sup>317</sup> while (perror; to1) & (Rshr; 0) & (ni<nimax)
_{318} Iph=(Rsr+Rshr)/Rshr*Iscn;
319 ni=ni+1 ;
_{320} | Isc=Iscn;
  Voc=vocstc;
321
I_{322} Io=Ippt./(exp(Voc./(n*Nsc*Vth))-exp(Vppt./(n*Nsc*Vth)));
  Rsr=Rsr+Rsrinc;
323
  Rshr=(Vppt+Ippt*Rsr)./(Iph-Ippt-(Io*(exp((Vppt+Ippt*Rsr)./(n*Nsc*Vth
324
      ))-1)));
   clear V
325
  clear I
326
  V=0: vocstc/n_top: 23;
327
  I = zeros(1, size(V, 2));
328
   for w=1: size (V, 2)
329
  x(w) = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr
330
      I(w);
   while (abs(x(w)); 0.001)
331
   x(w) = Iph - Io^{*}(exp((V(w)+I(w)*Rsr)/Vth/Nsc/n) - 1) - (V(w)+I(w)*Rsr)/Rshr
332
      I(w);
   x \lim (w) = -Io^*Rsr/Vth/Nsc/n^*exp((V(w)+I(w)^*Rsr)./Vth/Nsc/n) - Rsr/Rshr - 1
333
   I_{-}(w) = I(w) - x(w) / x lin(w);
334
   I(w) = I_{-}(w);
335
  end
336
  end
337
  P = (Iph - Io^*(exp((V+I.*Rsr)/Vth/Nsc/n) - 1) - (V+I.*Rsr)/Rshr).*V;
338
_{339}|Pmax_m = max(P);
   perror = (Pmax_m - Pmax_e);
340
  end
341
<sup>342</sup> figure (12)
343 box
  hold on
344
   set(gca, "linewidth", 1.5)
345
  set(gca, "fontsize", 14)
346
   xlabel('Voltage [V]', "fontsize", 20);
347
   ylabel('Power [W]', "fontsize", 20);
348
   axis ([0 23 0 135]);
349
   plot (V,P, 'LineWidth', 2, "b") % %
350
  hleg = legend ('Ta=20^{\circ}oC', 'Ta=25^{\circ}oC', 'Ta=30^{\circ}oC', 'Ta=35^{\circ}oC', 'Ta=40^{\circ}oC
351
       ', 'Ta=45°oC', 'Ta=50°oC', "location", "northwest");
  set (hleg, "fontsize", 15);
352
  legend boxoff
353
354 box
  end
355
_{356} figure (12)
```

```
<sup>357</sup> plot ([0 15.177 19.764], [0 112.746 0], 'o', 'LineWidth', 2, '
      MarkeRsrize', 5, 'Color', 'r')
  box
358
  figure (12)
359
  plot ([0 14.754 19.389], [0 109.701 0], 'o', 'LineWidth', 2, '
360
     MarkeRsrize', 5, 'Color', 'k')
  box
361
  figure (12)
362
  plot ([0 14.330 19.014], [0 106.646 0], 'o', 'LineWidth', 2, '
363
      MarkeRsrize', 5, 'Color', 'c')
  box
364
  figure (12)
365
  plot ([0 13.905 18.638], [0 103.581 0], 'o', 'LineWidth', 2, '
366
      MarkeRsrize', 5, 'Color', 'g')
  box
367
  figure (12)
368
  plot ([0 13.480 18.261], [0 100.507 0], 'o', 'LineWidth', 2, '
369
      MarkeRsrize', 5, 'Color', 'm')
  box
370
  figure (12)
371
  plot ([0 13.055 17.883], [0 97.423 0], 'o', 'LineWidth', 2, '
372
      MarkeRsrize', 5, 'Color', 'k')
  box
373
  figure (12)
374
375 box
  plot ([0 12.629 17.504], [0 94.329 0], 'o', 'LineWidth', 2, '
376
      MarkeRsrize', 5, 'Color', 'b')
  box
377
```