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Abstract 

Mrima hill  is  an elliptical carbonatite plug area of approximately 2 km across, a gazetted forest 

reserve in Kwale county, bounded by 4° 29'l0"S; 39° 15 '10'’ E coordinates,  750 feet above the 

sea level. The hill is covered by deeply weathered materials. Rare earth elements, niobium, 

Monazite minerals and associated carbonatite rocks are known to exist in the area. The area is 

classified as a high background radiation. Applications of geological remote sensing and GIS for 

radioactive mineral mapping have not been fully integrated into the mineral exploration activities 

of the Geological Survey of Kenya. This study employed remote sensing and Geographic 

Information System (GIS) to map minerals in Mrima hill region in Kwale County, specifically 

radioactive minerals, as the area has been classified a high background radiation area. In this 

study, the data used was obtained from Earth explorer (https://earthexplorer.usgs.gov/) website, 

with spatial resolution of 30 m, and was processed for mineral spectral signatures by using 

ENVI5.3 and Arc Map 10.3 software by means of the color composite, band rationing, principal 

component analysis and supervised classification.Landsat-8 OLI imagery of Mrima hill was 

processed to enhance the geological features and mineral potential of the area. Band ratios 6/7, 

6/5, 4/2 were assigned to RGB. Band ratio 4/2 highlighted ferric ion minerals, 6/5 emphasized 

ferrous minerals, and 6/7 distinguished iron oxide minerals from carbonate minerals. In a second 

technique, band ratio 6/7 was replaced with 7/ 5 in order to accentuate clay minerals with high 

reflectance within band 7. Supervised classification training data were obtained using five 

classes for rocks associated with radioactive minerals (carbonatite, granites, sandstone, 

serpentine and shale). The classification using maximum likelihood classification was fairly 

accurate and matched the radiometric and geologic map of the area, also showing an alteration 

zone that coincided with the high dose rate areas. However, for areas covered by vegetation, 

botanical indicators of vegetation species associated with radioactive mineralization including, 

the Asparagus sp, Stanleya, Aster venustus, and Oryzopsisj species, from the Envi database, were 

used to map for the presence of radioactive minerals in the study area. The use of supervised 

classification method identified the following vegetation; big berry Manzanita, big sagebrush, 

Mormon tea, pynon pine, specifically as associated with radioactive minerals.  The classified 

image was finally validated using existing radiometric data of the study area. In conclusion, this 

study demonstrated the usefulness of applications of remote sensing to map minerals in general, 

for application in mineral exploration.  

https://earthexplorer.usgs.gov/
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 Chapter One: Introduction 

1.1 Background  

 

Majority of developing Nations depend on minerals to sustain their economies. Prior information 

of minerals occurrence, including their location maps and the geology of an area, is very useful 

for the exploration purposes. However, this requires a lot of investments in terms of time, money 

and even labor for exploration, especially in remote inaccessible areas. In this case therefore,  the 

use of remote sensing  not only for geological purposes,  but also to be available to potential 

investors for the purpose of mineral exploration is necessary(Rokos et al, 2000). In practice, 

remote sensing has the advantage of reducing the risks for investors in the mining sectors (Drury, 

2001) 

Remote sensing was used earlier, for the mapping of vegetation only, this is as a result of the 

sensors being designed for vegetation mapping only. (Langley et al, 2001; Jung et al, 2006). The 

reflectance of vegetation is high in the near infrared and high absorption in the red wavelength of 

the electromagnetic spectrum. Their comparison gives the status of the vegetation in an area.  

For mineral mapping, specific vegetation species are also used as indicators, for example, 

radioactive minerals, they include; big berry Manzanita, Mormon tea, and sagebrush are good 

absorbers of selenium and gypsum. In general, selenium and gypsum are found in uranium ores 

deposits, therefore, this vegetation are also used to indicate the presence of radioactive minerals. 

During the exploration of minerals, ground mineral mapping, depends on the data derived from 

the field and also on the laboratory tests of sampled specimen. The data from these fields is then 

analyzed for geological information. The use of remote sensing technology may not replace the 

level of accuracy, but however, provide information which is more cost effective, and the use of 

this technology, in areas which may not be accessible during ground explorations (Rajesh, 2004). 

In Kenya, the mineral deposits occur in different geological settings. Some deposits are 

associated with Paleocene rocks such as fluorite, diatomite, oil, gas, barite etc. Others are 

associated with Achaean craton such as gold, copper and nickel. Most of these deposits which 

are located within the Kenyan Neoproterozoic Mozambique belt have not been adequately 

studied. In order to study these mineral deposits more effectively, it is important to subdivide 

them to categories. The subdivision is based on several criteria such as the kind of mineral or 
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metal contained in the host rock or the shape or size of the deposits. Evans (1993) has classified 

mineral deposits into (1) mineral deposits that originate due to internal processes i.e. magmatic 

segregation, hydrothermal, lateral secretion and metamorphic processes; and (2) mineral deposits 

that originate due to surface processes i.e. mechanical accumulation, sedimentary precipitates, 

residual processes, secondary supergene enrichment and volcanic exhalative deposits. 

The coastal region of Kenya has been of most concern to researchers as a region of high 

background radiation. Mineralization studies conducted in the area such as the one by the 

Austromineral in collaboration with the Kenyan government found out the area to contain 

sediments having zircon ore and some concentrations of radioactive isotopes such as lead and 

zinc (Austromineral, 1978).  Areas around Mrima hill and Jombo were found to contain rare 

earth metals and niobium.  Gamma radiation levels are high around Mrima hill in addition to the 

cosmic content (Patel 1991a & b). This may expose the residents to high radiation beyond the 

world average limit of 2.4 mSv annually. A report by the radiation board of Kenya indicated 

patterns of high radioactivity in some areas of the south coast due to high levels of radiation from 

Mrima hill and this confirm the results by Patel (Patel, 1991b).  

Mrima hill is one of the regions with the highest level background radiation with some areas 

reporting external gamma exposure levels as high as 108 mSv/y (health research foundation, 

2000). These exposures are attributed to the radionuclide in the decay chain of 232Th and to 

some extent 238U. The geology of Mrima hill is characterized by carbonatite rock formation, 

which is generally associated with elevated concentration of 232Th. Besides, monazites and 

zircon, which naturally contain trace amounts of 238U and 232Th as well as phosphate ores 

commonly associated with radionuclide in the 238U decay series, are known to exist (Achola, 

S.O, 2009). 

Granite rocks are the possible source of uranium and thorium deposits and therefore the study of 

granites are important in identifying the candidate sites of these radioactive minerals. The 

following are the rocks which are associated with radioactive minerals; granite, basalt, biotite, 

limestone, sandstone, shale, bedded phosphate and coal rocks. However, radioactive minerals are 

rarely found in basalt, limestone, bedded gypsum, quartzite, and marble rocks. 

Uranium mineralization are also found in felsic igneous rocks, ferric iron and faulting. Hence, 

for the prospection of uranium, these geological features are employed. In areas such as Mrima 
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hill, the use of field work is impractical since these regions are inaccessible. The use of remote 

sensing use low spatial and spectral resolution data which enable mapping of minerals in 

inaccessible regions thus enables low cost of collection of data. 

The use of remote sensing in geological applications requires more spectral bands and smaller 

bandwidth. The information about minerals and rocks are found in the middle or shortwave and 

to some extent the thermal region of the spectrum than on the visible band.  

Multispectral sensors are useful when carrying out mineral mapping, for example, the shortwave 

Infrared bands on Landsat Thematic Mapper 5 and 7 are useful when carrying out discrimination 

between different types of minerals and rocks. This has led to the use of thematic mapper sensor 

of Landsat satellite in identifying different lithologies (Loughlin, 1991; Liu, 2007). Sensors such 

as ASTER have been used in discrimination of minerals and rocks. (Crosta and Filho, 2003). 

In general, metallic minerals are hosted in basement rocks and include occurrences of; gold, 

platinum, rare earth metals, zinc, iron, nickel while industrial minerals are hosted in Precambrian 

rocks. One of the important sources of uranium is granite rocks. There is relatively high 

concentration of uranium and thorium in these rocks as compared to other rocks (Pavlidou et al, 

2006). 

Therefore, using remote sensing has led to better understanding of naturally occurring 

radioactive minerals in terms of qualitative and quantitative analysis of minerals in applications 

in characterization of the geology for mineral content. This is because it provides information on 

rocks types which are found on the earth’s surface and its mineralogy. The interaction of rocks 

with electromagnetic radiation results in unique response for each rock. These results to unique 

spectral response for each mineral thus different mineral have a different spectral response. This 

can be discriminated from other rocks by the use of various image processing techniques and 

image classification techniques (Loughlin, 1991; Sabins, 1999; Kusky and Ramadan, 2002; 

Crosta and Filho, 2003; Gabr, 2010). 

This study was aimed in mapping radioactive minerals in Mrima hill, Kwale County, by the use 

of various remote sensing techniques, using their indicators; such as identifying the parent rock 

formations and botanical vegetation species associated with radioactive minerals. 
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1.2  Problem statement 

 

To map bedrock and identify presence of specific diagnostic minerals, it is possible to use remote 

sensing methods. Remote sensing is an additional tool for geologist to understand the overall 

lithological of an area and to define potential exploration target (Floyd F. Sabins 1986). 

The exploration of minerals usually requires intensive fieldwork for the purpose of knowing 

better the features associated with geology of the study area. Geological maps of the study areas 

provide useful datasets such that these maps help in focusing the exploration efforts in areas. The 

maps can also be used when planning land use and also predicting future explorations (Boleneus 

et al. 2001). Radioactive minerals pose great hazards because of their decay which emits harmful 

ionizing radiations. The degree of hazards, depends on their concentrations, the energy of 

radiations being emitted and the type of radiation or proximity to the organs of the body. 

In Kenya, there is insufficient use of modern mapping methods such as remote sensing for 

exploration of large areas to map promising zones for more detailed studies by ground follow up. 

So far, all the previous studies in the study area have been done using field exploration methods. 

It is hypothesized that remote sensing can be useful in geological mapping and exploration for 

rocks associated with radioactive minerals. Many common rocks forming mineral can be 

detected by remote sensing because they have diagnostic spectral signatures that allow mineral 

species identification. 

1.3   Justification and Significance of the Study 

 

Mrima hill has been classified as high radiation background area. However, most studies in the 

area have been conducted by field exploration. In particular, Patel and Mangala (1994) 

associated these high levels of radiation dose rate with the occurrence of thorium and uranium, 

while Patel (1991) associated, with presence of carbonatite rocks in the area. 

In most developing countries like Kenya, most of the geological studies such as minerals 

exploration are mostly done by field work. There is very little deployment of the aerial satellite 

mapping techniques for mineral exploration. The use of satellite technology in mapping the 

geology and also in mineral exploration is cost effective as it has been demonstrated elsewhere 
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and can be used in areas which are inaccessible (Rokos et al...2000). Also, these data can be 

incorporated with other database because of its digital nature. 

The study is expected to map potential mineralization zones in the study area. 

1.4  Objectives  

1.4.1  Overall Objective  

 

The overall objective of this study was to use remote sensing and Geographical Information 

System (GIS) techniques to map potential radioactive mineral areas in Mrima hill, Kwale 

County, Kenya. 

1.4.2 Specific Objectives 

 

a) Map rock types, mineral alteration, vegetation types and structure by use of Landsat 

data of the study area from Earth Explorer website    

(http://www.earthexplorer.usgs.gov/). 

b)  Delineate potential sites of radioactive minerals. 

c) Validate remote sensing results by the use of existing radiometric survey data of the 

study area. 

1.5  Scope and limitations of the study 

 

Mrima hill is located in Kwale county Kenya bounded by 4° 29'l0"S; 39° 15 '10'’ E coordinates. 

The hill rises to a height of approximately 750 feet above the coastal plain. It forms an elliptical 

carbonatite plug of approximately 2km across. The hill is covered by deeply weathered 

materials. The region has been previously, explored for niobium and rare earth elements 

(Coetzee and Edwards, 1959). There are reports of phosphates that occur in form of monazite 

and barium phosphate mineral being reported in the area. Also minor amounts of apatite have 

been reported in the area (Coetzee and Edwards, 1959). The soil of the area is mainly red loam 

though some parts have clay type of soil. 

According to (Patel, 1991), the area is described as a high natural background radiation area. 

Elemental analysis of carbonatite rock samples has shown elevated levels of thorium (Patel and 

http://www.earthexplorer.usgs.gov/
http://www.earthexplorer.usgs.gov/
http://www.earthexplorer.usgs.gov/
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Mangala, 1994).The main economic activities are subsistence farming. A significant portion of 

the study area is a government gazetted forest reserve.  

This study was limited to the use of the spectral data of the rocks and vegetation species 

available in ENVI 5.3 database, in identifying the rock formation lithology and vegetation 

species associated to radioactive minerals occurrence. The data used was Landsat 8 obtained on 

the 30th March, 2016.   

The results of this study were validated by the use of existing radiometric data of the study area 

(Kaniu, 2018).  
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Chapter Two: Literature Review 

2.1  Introduction 

 

Remote sensing is defined as the process of obtaining information about material of interest 

without being in physical contact with the material. The process involves analyzing the data 

acquired (Lillesand, 1999). 

The resulting imagery needs to be processed further and interpreted to give out useful 

information. This information can be useful in various sectors of economic development such as; 

agriculture, forestry, environment, and geography. Remote sensing is also useful in development 

projects; such construction and built industry, urban planning, land surface survey, etc. The aim 

is to find out information related to natural resources data on the earth’s surface (Lo et al, 1997).  

2.2  Remote Sensing for Geological mineral mapping 

 

Remote sensing techniques help in mapping of geology of an area therefore helping in mineral 

exploration. The localization of ore deposit is achieved by using the unique spectral response of 

the various minerals and rocks. 

The geological mapping by the use of remote sensing requires more spectral bands and smaller 

bandwidth in the electromagnetic spectrum. The information about minerals and rocks are found 

in the middle or shortwave and to some extent the thermal region of the spectrum than on the 

visible band.  

Satellites have been in continued launching starting with the launch of Landsat 1 in the year 

1972. In following years i.e. 1975, 1978 and 1982, Landsat 2, 3 and 4 were launched 

respectively. These satellites were operating in the near orbit. They carried the Multispectral 

Scanner Sensor with exception of Landsat 4 and 5 which had the thematic sensor and the 

multispectral scanner sensor. They were used to detect radiation reflected from the surface of the 

earth in the wavelength region comprising the visible and infrared bands. Table 2.1 shows the 

Landsat Multispectral Scanner Sensor and its primary use (source: www.usgs.gov). 

 

 

http://www.usgs.gov/
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Table2.1: Landsat 1-3 and Landsat 4-5 Multispectral Scanner Sensor and spectral bands and their 

applications. (Source: www.usgs.gov) 

Band 

designation in 

Landsat 1,2 

and 3 

Band designation in 

Landsat 4 and 5 

Spectral 

range(µm) 

Application  

4 1 0.5-0.6 Sediment-laden water 

delineates areas of shallow 

water  

5 2 0.6-0.7 Cultural features 

6 3 0.7-0.8 Vegetation boundary between 

land and water and landforms. 

7 4 0.8-1.1 Penetrates atmospheric haze 

best, emphasizes vegetation, 

the boundary between land and 

water and landforms. 

 

The launch of Landsat 7 was done April 1999 and on it carried the ETM+ sensor. It has eight 

bands which are the visible bands through to panchromatic bands. Landsat 7 has a scene size of 

170km by 185km. It provides all radiometric and geometric calibration needed in processing raw 

image data. 

Table 2.2 shows the Thematic Mapper and Enhanced Thematic Mapper plus sensors in Landsat 

4-5 and Landsat 7 and their applications in remote sensing.  
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Table2.2:  Landsat 4-5 Thematic Mapper and Landsat 7 Enhanced Thematic Mapper plus spectral 

bands and their applications (source: www.usgs.gov) 

Bands Spectral 

range(µm) 

Useful for mapping 

1 0.45-0.52 Differentiating soil from vegetation,   

2 0.52-0.60 Mapping plant vigor or health 

3 0.63-0.69 Used for discriminating vegetation slopes. 

4 0.77-0.90 Shoreline mapping  

5 1.55-1.75 Soil moisture content mapping  

6 10.40-12.50 Used for Thermal mapping  

7 2.09-2.35 Mapping of altered rocks and mineral deposits 

8(Landsat 7 only) 0.52-0.90 15m, sharper image definition 

 

On the 11th Feb 2013, the Landsat 8 satellite was launched containing two sensors on board i.e. 

the operational land imager (OLI) and Thermal Infrared (TIRS) sensors on it. The OLI sensor 

has nine spectral bands which range from visible through panchromatic to cirrus. The TIRS has 

two spectral bands. Landsat 8 has a scene size of 170km by 185km.  

The table 2.3 summarizes the spectral bands of Landsat 8 and their application. 
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Table2.3:  Landsat 8 spectral bands and their applications (source: www.usgs.gov) 

Bands  Spectral 

range(µm) 

Useful for mapping  

1 0.43 - 0.45 Aerosol mapping  

2 0.45-0.51 Mapping vegetation and soil 

3 0.53 - 0.59 Mapping plant vigor 

4 0.64 - 0.67 Distinguishing vegetation slopes 

5 0.85-0.88 Shoreline mapping and biomass 

6 1.57 - 1.65 Moisture content in soil and vegetation 

7 2.11 - 2.29 Alteration mapping of rocks  

8 0.50 - 0.68 15-meter resolution, image delineation  

9 1.36 - 1.38 Improved mapping of cirrus clouds 

10 10.60 – 11.19 Soil moisture thermal mapping 

11 11.5 - 12.51 Soil moisture thermal mapping 

 

Hekmati (2001) used ASTER data together with geological reports and maps in mapping 

uranium minerals in Northern Iraq. In his work, the ASTER data were processed using the 

ERDAS imagine v.9.1 software and Arc Gis v.9.1. He established that the area had high to 

medium radioactive minerals.  

Liu et al (2011) used ETM+ sensor in mapping gold minerals in the arid and semi-arid region of 

Shandong Province China. In his study, he used masking techniques to suppress the effects of 

vegetation and clouds cover and used Crosta techniques to identify gold minerals.   

Soe et al (2005) used ASTER and Landsat TM data in the mapping of iron oxide in the 

Tanintharyi coastal area, Southern Myanmar. The minerals were mapped by the use of color 

composite techniques in the area of interest. 

Hydrothermal zones have been identified using ASTER satellite data in Nevada USA. The zones 

are associated with copper and gold minerals. The techniques applied included; the use matched 

filtering method which identified the distribution of the alteration zones (Pour and 

Hashim 2012a). It was found out that the use the spectral reflectance gives good results in terms 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4320227/#CR115
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of the mineral ore deposit. The rocks were identified in zones such as the argillized, a silicified 

and an opalized zone. 

Dogan (2008) used remote sensing and GIS in Tokat province in Turkey to map different 

minerals such as ferrous and iron oxide minerals.  He used Landsat- ETM+ satellite images. 

NDVI was applied in mapping vegetation in the study area and the product masked out to avoid 

the incidence of wrong interpretation. Mapping of the ferrous and iron oxide minerals were done 

by applying the various remote sensing techniques in the study area. 

The use multispectral data were used in mapping of magnetized quartzite in Tamil Nadu coast 

(Chandrasekharet al., 2001). In this study he identified end members by and compared it with the 

spectral library obtained from the United States Geological Survey (USGS) spectral library. The 

end member was mapped by the use of the Spectral Angle Mapper technique. The accuracy of 

the results was done by carrying out ground survey and it was found out that the results were in 

agreement with the obtained results. 

Mapping of silicate and carbonates rocks has been done by the use of ASTER data (Yamaguchi 

et al., 1998). The capability of the sensor in ASTER in discriminating various rocks has been 

proved by several studies (Abdeen et al., 2001; 2002; Alimohammadi et al., 2015; Amer et al., 

2010). Various mining companies and geologist have used the applications for exploration.  

Wen and Han (2009) mapped copper deposits in Southwest China by the integration of data sets 

into a GIS and analyzed using the Arc-SDM software. Geophysical, geochemical Data, satellite 

datasets and deposits training data were used for the analysis. The use of evidence model was 

then used to generate the potential mapping region for cost-benefit exploration and 

characterization of such economic important minerals, ore deposits, and rock types 

2.3  Mineral Mapping using Remote Sensing Applications Techniques 

 

Mapping is a technique used in showing location with abundance of certain materials and 

produce maps of the same. Various methods have been used to discriminate the various rocks 

and minerals deposits by the use ASTER data. The methods include the use of spectral angle 

mapper, false color composite (Rajendran et al., 2013a; 2014; Rajendran and Nasir, 2015a), band 

ratios (Rajendran et al., 2012; Rajendran and Nasir 2014a; 2015b) and principal components 
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analysis (Rajendran 2016; Rajendran and Nasir 2015a; Rajendran et al., 2011; 2012; 2013a; 

2014).   

2.3.1  Band Ratio and Color Composite applications 

 

Increasing the contrast between bands and reducing effects due to topography, requires the use of 

band ratio technique. It is provided for by dividing one band by another. Huizhou (2013) used 

ASTER data in mapping minerals. In order to carry out discrimination of rocks in the area of 

study, the use color composite, band ratio, and principal component analysis were used to study 

the tectonic structure of the study area. Prospective maps were produced by the use of weighted 

overlay and logistic regression models. From the result, it showed that ASTER data was useful in 

mapping the alteration zones, where radioactive minerals are present as compared to non-

mineralized areas. 

The algorithms proposed by Cardoso Fernandes et al (2019) were applied to evaluate potential 

exploration of Li pegmatite occurrence by Santos et al (2019) in the pegmatite filed of São João 

Del Rei in Brazil. He used the techniques of band ratio and selective principal component 

analysis. The results showed that Li pegmatite was more accurate in São João than in Araçuaí, 

because the vegetation cover in the area negatively influenced the results as reported by Santos et 

al (2019). In the study area, the successful band ratio was the one as proposed based on the 

reference spectrum of lepidolite Li-bearing mica: Landsat-5 3/7, Landsat-8 4/7 and Sentinel-2 

4/7 Cardoso Fernandes et al (2019) .In general, the selective PCA presented the most accurate 

results as compared to the band ratio technique Santos et al (2019). Nevertheless, the results 

obtained were very significant, contributing to the state of the art of this field, since not only did 

it confirm the methodology proposed by Cardoso-Fernandes et al (2019) but also showed its 

ability to detect other pegmatite occurrences with Li potential besides the known target areas. 

Currently, field validation is in progress to check if Li mineralization is in fact present in the 

potential areas identified 

Ramadan et al (2013) used ETM+ of Landsat in exploring Uranium deposits by applying to it 

various remote sensing techniques using the ERDAS 8.3 software. The data obtained was 

processed by the use of false color composite and band ratio. The band ratio was used in 

discriminating different types of rocks and density slicing was used to convert the gray scale 
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images to the digital number. In the study, the ratio, 5/7 was applied in mapping clay alterations. 

Supervised classification was then used to identify the alteration zones. Processing Landsat 

images distinguished between different rocks and between alteration zones and non-mineralized 

zones. The presence of Uranium-bearing zones was found by carrying out the correlation of 

Uranium contour map and the band ratio images. 

Griffiths et al (1987) carried out Uranium mineralization using Landsat data and other satellite 

imagery for the generation of geological maps with structural and lithological information. The 

Landsat images were processed using false color composite, band ratio and the use of fieldwork. 

The image geological maps were completed based on the interpretation of the Landsat MSS and 

Red Blue Green (RGB) imagery as well as fieldwork. During fieldwork, some other minor 

minerals were observed and those which were most significant were observed in the low-grade 

metal sedimentary and metavolcanic rocks. 

Mshiu (2011) used Landsat 7 data to study the different rocks in Rongwe province in Tanzania. 

Landsat data was processed by the application of band ratio which is used for discriminating 

different rocks as different rocks have different spectral signatures. The color composite images 

clearly distinguished different rocks in the study area as it discriminated individual lithological 

units in the different rocks in the study area. 

Mineral exploration in Wadi Bidah mineral district in Saudi Arabia was explored by the use 

ASTER and ETM+ data (Volesky et al, 2003). Remote sensing data together with GIS were used 

to map out the lithology and mineral deposit areas. They used color composite images and band 

ratio to map the sulfide deposit area. The results indicated the presence of sulfide deposits rich in 

iron and hydrothermal areas all having unique spectral signatures.  

The use band ratio of 4/7, 4/6 and 4/10 using ASTER data were used to map lithological areas in 

Sinai, Egypt (Gad and Kusky 2007). Maps of the rock units were produced which consisted of 

iron formation rocks, granites volcanic rocks and migmatite. 

2.3.2  Principal Component Analysis applications 

 

The use of the PCA together with band rationing and edge enhancement techniques in image 

processing was used to determine Uranium-bearing dolomites (Raghu et al, 1989). The image 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4320227/#CR47
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data were digitally co-registered with the survey data using the ERDAS software. The 

interpretation of the satellite data Infrared Sensor (IRS) P6 LISS was carried out to delineate 

various landforms categories in conjunction with the survey data using the ERDAS software. 

Selected image subsets were prepared and supervised and unsupervised classification methods 

were applied to map various rocks in the study area using their spectral reflectance. Granite rocks 

were found to be source of Uranium in the study (Shalaby et al, 2009). 

The potential of using sentinel -2 multispectral instruments was applied by Cardoso-Fernandes et 

al (2018) to map Li in Fregeneda-Almendra Salamanca, Spain and Vila Nova de Foz Côa, 

Portugal. Several remote sensing techniques such as band ratio, principal component analysis 

were applied. The occurrence of iron oxide and clay mineral were predicted in the study area. 

Non altered and hydrothermally altered zones were also discriminated in the study area. Li 

bearing pegmatite was also mapped in the study area using supervised classification approach. 

The supervised classification method used the land cover spectral signature and performed both 

PCA and maximum likelihood algorithms. Considering the results given in this work, Cardoso-

Fernandes et al (2019) presented two new different approaches: (i) identification of hydrothermal 

alteration minerals associated with the Li-bearing pegmatite; and (cloud-free products, namely, 

Landsat-5 Thematic Mapper (TM), Landsat-8 Operational Land Imager (OLI) and Thermal 

Infrared Sensor (TIRS), ASTER, and Sentinel-2 MSI. The alteration mapping results differ from 

one image processing method to another Cardoso-Fernandes et al (2019). Supervised 

classification and principal component analysis were deployed in the Kalahari Desert in 

Namibia, in mapping the lithological units. The use of the ASTER data provided crucial 

information on the boundaries of the lithological units (Gomez et al., 2005, Singh and Harrison, 

1985). 

ASTER and Phased Array L-band Synthetic Aperture Radar (PALSAR) data have been used for 

mapping lithology and gold-related alteration zones in the Um Rus area, Central Eastern Desert 

of Egypt (Amer et al., 2012). Principal component analysis and band rationing were applied on 

VNIR + SWIR bands of ASTER to discriminate lithological units. Spectral Angle Mapper 

(SAM) and Spectral Information Divergence (SID) classification methods were used to detect 

alteration minerals consisting of silicate, calcite and clay minerals associated with mineralized 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4320227/#CR52
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4320227/#CR141
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4320227/#CR9
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granodiorite. Their field verification work indicated that the image processing methods were 

capable in lithological and alteration mineral mapping. 

Principal Component Analysis (PCA), Minimum Noise Fraction (MNF - Green et al., (1988) 

techniques have been applied to VNIR + SWIR ASTER data for lithological mapping in Muslim 

Bagh ophiolite complex, Pakistan. The PCA discriminated metamorphic sole, sheeted dike 

complex, basalt and cherts, diabase dikes and gabbro bodies. The MNF transformed data 

detected sedimentary units, metamorphic sole, laterite, depleted harzburgite and diabase 

dikes/sills (Khan et al., 2007). 

ASTER and Landsat data were used to map mineralized zones, whereby, Portable Infrared 

Minerals Analyzer (PIMA) was used, in measuring the spectral response of various rocks (Berhe, 

2005). The digital number were of the lithological units were used in image analysis. The 

principal component analysis was used to study the tectonic structure of the study area and the 

application of band ratio for lithological discrimination of different rocks. Landsat data was 

found to provide more information on the lithological remote sensing as compared to ASTER as 

Landsat is more effective when used during the dry season. ASTER data was useful in providing 

structural and terrain features that assist in geological mapping. 

The lithological mapping of gold in south Chocolate Mountains area, California, U.S.A were 

mapped by the use ASTER data (Zhang et al,.2007). In this study, various methods were used in 

extracting the information about the minerals. The maps derived from remote sensing methods 

were compared with maps derived from field work. He used principal component analysis 

together with maximum likelihood classification method, band ratio, and sub-pixel unmixing 

algorithms to detect significant alteration minerals. The use of the data was able to map the rocks 

which host gold minerals in the study area. 

Mapping of ophiolitic rocks in central eastern desert of Egypt (Amer et al., 2010) was done by 

the use of ASTER band ratio techniques. The ratios used included (2 + 4)/3, (5 + 7)/6 and 

(7 + 9)/8. The principal component analysis was then applied to discriminate the ophiolitic rocks 

and grey granite and pink granite. The field work data verified the accuracy of the result 

achieved.  

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4320227/#CR55
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4320227/#CR79
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4320227/#CR8
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The band ratio, principal component analysis were used to map Gypsum outcrops using ASTER 

imagery in Tuzgolu basin, south Ankara, Turkey (Oztan and Suzen 2011). The techniques used 

were able to map evaporates and defined sulfate index using the thermal bands of ASTER. The 

results of the methods have been proven in the field and through laboratory analysis (X-ray 

diffraction (XRD) and Analytical Spectral Devices (ASD)). 

2.3.3  Spectral Angle Mapper and Maximum Likelihood Classification applications 

 

This mapping technique involve the comparison of the image spectra with reference one and 

finding their similarity by the calculation of the angular distance between them. On the other 

hand, maximum likelihood classification is a mapping technique which determines the 

probability that a given pixel belong to a certain class. It is calculated based on the spectral 

distance of pixels which are close together. 

ASTER data was used in Alto Ligonha province Mozambique by Gemusse et al (2018) to map 

alteration minerals associated with Li bearing pegmatite. The satellite data was used to produce 

land cover maps using the spectral angle mapper classification technique. The technique was 

able to identify the spectral signatures of hydrothermal alteration of clay minerals (kaolin 

occurrences) which are associated with pegmatite Gemusse et al (2018).  

In the region of Alto Ligonha region, different satellite products (namely ASTER, Landsat-8, and 

Sentinel-2) and different remote sensing algorithms were compared to target Li pegmatite 

Gemusse et al (2019) The algorithms include three supervised classification methods—minimum 

distance, SAM, and ML and one unsupervised algorithm: k-means clustering. The land cover 

classifications maps were compared as well as the performance accuracy of each classifier. 

Contrary to expected, the minimum distance attained the best accuracy while ML showed the 

worst performance Gemusse et al (2019) Perhaps these results reflect the quality of the training 

data. Despite the disparity between the results obtained with the different classifiers, Gemusse et 

al (2019) stated that the classification maps show clay minerals, such as kaolinite and 

montmorillonite, resultant from pegmatite alteration. These maps were validated through field 

investigations, geological maps and previous works and reports Gemusse et al (2019). The 

authors also noted that the satellite product that achieves the best accuracy for the SAM and 

minimum distance algorithm was the Sentinel-2.  

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4320227/#CR105
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Multispectral data were used to map banded magnetite in Nadu coast in Indian Peninsula 

(Chandrasekharet al, .2001). In this study, various techniques were used in identifying the end 

members and the results compared with the spectral library obtained from the United States 

Geological Survey (USGS) spectral library. The spectral technique was then used to map the end 

members. The results were validated by the ground survey methods and it was found out that it 

was in agreement with the obtained remote sensing one.  

ASTER  data was used by Perrotta et al. (2005) to map Li bearing pegmatite in Vale do 

Jequitinhonha region, Brazil. In the study, the signatures of Li pegmatite were evaluated using 

the visible, near-infrared (VNIR), and SWIR data.  The spectral angle mapper classification 

technique was then used to classify the ASTER image in collaboration with the mixture-tuned 

matched filtering (MTMF), having the last supervised method outperform the first since SAM 

was also sensible to roads, agricultural fields, or areas around the main drainage lines. 

Lithological mapping of ultramafic complex in the Mordor Pound, NT, Australia (Rowan et 

al., 2005) was done by the use  ASTER band ratios and relative absorption band depth (RBD), 

Matched Filtering (MF) and Spectral Angle Mapper (SAM) methods. In the study, mafic 

ultramafic rocks, alluvial-colluvial deposits were discriminated and classified based on the 

absorption features of Al-OH and ferric-iron. Granitoids rocks were mapped by the use of 

ASTER data. The data was processed by the use of false color composite technique and band 

ratio technique. The supervised methods which involved the use of maximum likelihood 

classification and spectral angle mapper were then used to discriminate the rocks (Massironi et 

al., 2008). 

In Eastern Anti-Atlas, Morocco, the use ASTER data has been utilized in mapping granitoids in 

the Saghro massif region.  Remote sensing techniques such as false color composites (FCC), 

band ratios and principal component analysis (PCA) were employed to VNIR/SWIR and TIR 

data for detecting major lithological contacts and mineralized faults. The supervised maximum-

likelihood (MLL) classifications and spectral angle mapper (SAM) were carried out on 

VNIR + SWIR data for discriminating granitoids rocks (Massironi et al., 2008). 

Band ratios, certain color band combinations and the Spectral Angle Mapper (SAM) method 

have been used for mapping hydrothermal alteration minerals associated with Infiernillo 

porphyry copper deposit using ASTER data covering the San Rafale Massif, southern Mendoza 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4320227/#CR130
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4320227/#CR97
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4320227/#CR97
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Province, Argentina (Di Tommaso and Rubinstein 2007). The hydrothermal alteration anomalies 

for predicting Cu-Au mineral resources have been delineated using ASTER data covering Oyu 

Tolgoi, Mongolia (Yujun et al., 2007). Gold-related lithologic and alteration minerals have been 

detected using ASTER data in the south Chocolate Mountains area, California, USA (Zhang et 

al., 2007). 

2.4  Mineral exploration and radioactivity studies in Kenya 

 

There are wide ranges of minerals in Kenya ranging from soda ash in Lake Magadi to fluorspar 

in kerio valley. Other minerals include the gold in certain parts of western Kenya as well as in 

lamu. These deposits occur either as oxides (magnetite, hematite, martite, goethite and limonite); 

carbonates (siderite and ankerite) or sulphides (pyrite and Pyrrhotite). 

The activities due to quarrying and mining in Kenya account to less than one percent of the gross 

domestic product (GDP) with the majority of the contribution coming from the soda ash minerals 

(https://www.azomining.com/Article). 

Ochieng (1993) described large bodies of titanium-vanadium-magnetite bearing layered norite-

gabbro suite to the S.E. of Mt. Kenya in Marimanti area. He analyzed the ilmenomagnetite and 

found it to contain between 31.2 and 58.61% Iron oxide (Fe2O3), 14.2 to 35.16% titanium 

dioxide (TiO2) and 0.84 to 0.88% Vanadium oxides.  

The Bukura and Mbesa massive sulphides described by Ichang’i (1983) are examples of 

hydrothermal deposits. Ichang’i observed that, the ore consisted of pyrite, pyrrhotite, 

chalcopyrite and sphalerite. He suggested that hydrothermal fluids associated with the adjacent 

Mumias Granite were responsible for the mineralization. 

Huddleston (1954) described the Bukura massive sulphide, as extending to an area more than 

one and a half kilometres. He estimated that the ore reserve was about 17 million tones down to a 

depth of 90 meters but suggested that it may exceed this figure, since lateral extensions are 

known to exist.  

The coastal parts of Kenya have sedimentary iron-manganese deposits especially in the Kilifi 

area. Schissel and Aro (1992), referred to the Wilson cycle plate subduction of the early 

Proterozoic and the amalgamation of a Proterozoic supercontinent from 2000 to 1800 Ma to 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4320227/#CR41
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4320227/#CR165
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4320227/#CR167
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propose a tectonic setting of the large sedimentary basins, which host large resources of iron and 

manganese in the very large Superior-type banded iron-formations. They deduced that this 

tectonic setting is consistent with the favored geological model in which huge iron and 

manganese deposits form. These deposits form on shallow continental margin shelves. Their 

continuous lateral bands also support a stable tectonic setting. Thoeliites within-plates may occur 

at continental margins near spreading centres (Nyamai et al., 2003). Pohl and Horkel (1980) 

suggested that the magnetite deposit in Kurase group is a metamorphosed submarine exhalative 

mineralization associated with basic volcanics. Hydrothermal fluids have formed mineral 

deposits in this group. 

There have been surveys conducted in Mrima hill to monitor the levels of radioactivity. High 

radiation levels were reported by Mangala (1987) in Mrima hill about 30km south of Kwale 

town. He attributed the levels to be due to thorium and uranium occurrence in the area. Titanium 

was also reported as one of the major constituents in rocks samples from Mrima Hill; the 

concentrations levels were observed to be in the range of 1- 9% with a mean value of 4.7% for 

most samples analyzed. 

The Radiation Protection Board (RPB, 1999) reported high radioactivity patterns in the south 

Coast area due to the high radiation from Mrima hill. The report confirmed the results by Patel 

(Patel, 1991b). The Board carried out external radiation measurements at Mrima hill and also 

along the roads that were graveled using radioactive materials from Mrima hill. Surveying was 

also conducted in places such as Mombasa islands for the purpose of comparison. The radiation 

levels in this place was found to be low approximately 90 Bq/kg of Th-232 as compared to other 

places such as Likoni areas on the LungaLunga highway, the stretch from Msambweni to Kenya 

- Tanzania border point, where along this stretch, an average activity of 600 Bq/kg of Th-232 

was recorded on the tarmac 15 mm deep, and as high as 1200 Bq/kg (Th-232) at the base gravel, 

500 cm deep. 

 

2.5 Summary of Literature Review in this study 

 

The studies reviewed various remote sensing techniques used in geological mineral mapping; 

band ratio, color composite, the use of principal component analysis, the use of classified method 
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in mapping such as SAM and maximum likelihood. Some of the minerals identified using the 

above techniques include iron oxide in Tanintharyi coastal area in southern Myanmar. The study 

used, ASTER and Landsat data were used and the minerals were identified by the use of colour 

composite technique. Copper mineralization was mapped in Cuprite district in Nevada by the use 

matched filtering technique. The study used ASTER data and the results indicated hydrothermal 

alteration mineral zones. Iron deposits were identified by the use band ratio using ASTER and 

Landsat data in Wadi Bidah district, Saudi Arabia. The study results indicated the presence of 

sulphide deposits and zones of hydrothermal alteration. 

Granite rocks were found to be a source of uranium by the use principal component analysis in 

Northern Iraq by the use of satellite infrared sensor data. Maximum likelihood classification 

technique was used in identifying Gabbro, carbonate, granite and mafic rocks in Allaqi-Heiani 

Suture in southern Egypt. The use of spectral angle mapper technique identified granitoids rocks 

for mineralized zones in Saghro Massif, eastern Morocco. Felsic rocks were mapped by the use 

band ratio techniques in Broken Hill, Australia, using ASTER very near infrared and shortwave 

infrared bands. 

In general, mapping of minerals using remote sensing techniques require more spectral bands 

and smaller bandwidth. This is because, the information about minerals and rocks are found in 

the middle or shortwave and to some extent, the thermal region of the electromagnetic spectrum. 

Recent satellite launches, for example Landsat 8 have more bands as compared to earlier 

satellites, thereby enabling more information about minerals and rocks formations on the earth’s 

surface. 

Mapping of minerals at local scale, indicate the occurrence of minerals such as; pyrite, 

chalcopyrite limestone in Kenya. Titanium/magnetite has been mapped in S.E of Mt Kenya. 

The sulphides ore has been observed to contain pyrite, pyrrhotite and sphalerite deposits in 

Bukura. The iron- manganese deposits have been identified in Kilifi area, in the coastal part of 

Kenya. This is attributed to the occurrence of early Proterozoic and amalgamation of Proterozoic 

supercontinent from 2000 to 1800 Ma to propose a tectonic setting of the large sedimentary basin 

which host large resources of iron and manganese. 
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The high radiation levels at Mrima hill have been attributed to thorium and uranium occurrence 

in the area. Titanium was also reported as one of the major constituents of the rock samples in 

Mrima hill.  

In general, most mineral exploration activities in Kenya, has been done mainly through field 

work. The mineral exploration through thick weathered environment is usually a challenging 

task. The use of remote sensing techniques has been proved to be effective techniques in 

mapping minerals in other parts of the world, in areas not accessible. Applications of geological 

remote sensing and GIS for radioactive mineral mapping are not fully integrated into the 

activities of the Geological Survey of Kenya. This research aimed at the application of remote 

sensing to map radioactive minerals in Mrima hill Kwale County. There are possibilities that the 

area contains so many unexplored minerals.  
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Chapter Three: Theoretical Principles of Remote Sensing Techniques 

 

3.1  Natural Radioactive Minerals and occurrence 

 

Radioactive minerals contain radioactive nuclide in uranium, thorium and potassium (Sabins, 

1997). The level of radioactivity of these minerals depends on concentration of natural 

radioactive nuclides. The emission of gamma, alpha and beta particles from unstable isotopes 

cause the radioactivity of these minerals.  

Some of the minerals bearing uranium and thorium include; autunite, bassetite, carnotite, 

monazite, among others. In general, radioactive minerals are classified into two groups; 

syngeneic or epigenetic (Lambert, 1994). Syngenetic are minerals in which the minerals ore, are 

part of the rock, while epigenetic are minerals, in which they are formed by the addition of 

radioactive minerals to the host rock. 

In granite rocks, the natural radioactive elements are found in the fine volcanic particles. They 

contain the highest concentration of radioactive minerals. The pegmatite rocks are one type in 

which these minerals occur. These rocks normally contain the rare earth minerals in addition, 

such as monazite that host uranium and thorium. It is also in pegmatite where uranium and 

thorium minerals such as uraninite and thorianite form. The rocks such as conglomerate and 

sandstone are due to weathering, erosion or deposition from sedimentary. These rocks normally 

have a high concentration of radioactive elements (Wildeet al 2013). Most of the uranium mines 

are normally in sandstone or conglomerate. Apatite hosts both uranium and thorium in its 

structure. The hydrocarbons in coal sometimes host these radioactive minerals. Coal and 

phosphate sometimes may contain enough uranium to be considered low grade uranium ore 

deposits.  
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3.2  Interaction of electromagnetic radiation for minerals and rocks identification 

 

Rocks are assemblages of minerals and in turn, comprise different molecules and elements. The 

components of rocks and minerals include; silicon, aluminum, iron, calcium, sodium, among 

many others. The spectra signature of minerals is dominated by the effects of less- common ions 

and the molecular structures in which they are bonded (Drury, 1993). The different types of 

rocks and minerals have different spectral signatures thus different curves. These form the basis 

under which they are identified using remote sensing techniques.  

3.2.1  Spectral characteristics of minerals 

 

The absorption features in the reflectance spectra data are caused by two major types of 

interactions between photons and crystal lattices of minerals, called electronic transition and 

vibrational processes. The electronic transition includes crystal field effects and charge- transfer 

while the vibrational processes embrace overtones and combination tones (Drury, 1993). Figure 

3.1 shows the reflectance spectra curves of some iron-bearing minerals.  
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Figure 3.1: Spectra curves of clay and iron-bearing minerals (www.usgs.gov/speclib). 

 

The absorption and reflection at various wavelength regions are represented by the troughs and 

peaks as shown in figure 3.1. These are caused by effects such as lattice distortion. The distortion 

is caused by effect of charge transfer and crystal field effect. These are normally common in 

minerals such as iron oxide bearing minerals. Minerals which have absorption at 1.9µm normally 

contain water but a spectrum that has a 1.4 µm but no 1.9 µm absorption indicates that only 

hydroxyl is present.  
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3.2.2  Spectral characteristics of rocks 

 

Rock’s spectral characteristics normally depend on the composite of their minerals. It also 

depends on other factors such as the environment, the content of water as well as surface 

condition.  Different rocks have different spectra curves. Figure 3.2 shows the reflectance spectra 

of specific igneous rocks. 

 

Figure 3.2: spectra curves of igneous rocks. (Source:  JPL spectral library.) 

Rocks which have low content of iron, Mg as well as significant content of silica show relatively 

high reflectance and they include rocks such as granite and felsic. They have high absorption in 
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the 0.9µm wavelength range due to iron content. The water content cause absorption in the 

wavelength ranges of 1.4, 1.9, 2.2 and 2.3 µm. Water, OH – carbon dioxide influences the 

spectral features of rocks such as the sedimentary rocks. For sandstone, the presence of fluid 

inclusions and calcareous cement, cause absorption bands at 1.4, 1.9, 2.2 and 2.3µm. (Lei, 1999). 

The plot of the spectral reflectance of vegetation associated with radioactive minerals is as 

shown in figure 3.3 
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Figure 3.3:  Reflectance spectra curves of vegetation associated with radioactive minerals. (Source:  

JPL spectral library). 
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3.3 Remote Sensing Minerals Mapping Techniques 

 

The satellite download data contain errors related to the atmosphere, sensors or even the 

platform. Before carrying out spectral analysis of these data, these errors have to be corrected. 

The process of correcting out these errors before spectral analysis of the data is called 

preprocessing. The atmospheric errors can be corrected by a technique available in the ENVI 5.3 

software called Fast Line-of-sight Atmospheric Analysis of Hypercube (FLAASH) using a 

standard equation given by: 
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Where L =solar wavelength range,  =surface reflectance of the pixel, s = spherical albedo of the 

atmosphere e = surface reflectance average of the pixel and the surrounding environment, , L = 

backscattered radiation by the atmosphere, A and B are coefficients which depend on atmospheric 

and geometric conditions. 

By applying the above method available in ENVI software, the errors due to atmospheric can be 

corrected prior to spectral analysis. The errors due to the sensor can be corrected by applying the 

radiometric calibration module available in the ENVI software. 

The techniques which have been applied remotely in mapping minerals include; principal 

component analysis, color composite, spectral angle mapper, band ratio and maximum likelihood 

The spectral dimensionality of the data may be achieved by applying the method known as the 

minimum noise fraction, which maps the majority of the material of interest in the pixels. 

Analysis of the end members can be done by other techniques, which include; spectral angle 

mapping and spectral unmixing. Spectral unmixing is important when a pixel contains many 

objects which result into different response for the pixel and therefore it’s needed in breaking 

these materials into their distinct constituents and their relative proportion in a pixel. 
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3.3.1  Color composite 

 

This technique uses the idea of combining the information in the multispectral datasets so that it 

can be visible. The human eye can be able to see the reflectance from the combination of the red, 

green and blue portion in the electromagnetic spectrum. The combination of band 3, 2, and 1 in 

the Landsat TM sensor are for the true color. Any combination displayed as RGB apart from the 

true color is called false color composite (Ahmed, et al., 2014). This technique is the basis for 

other remote sensing techniques in image processing. 

3.3.2  Band ratio 

 

This is an image processing technique which involves one band divided by another one, based on 

the materials spectral characteristics in the study area. This result is the ratio of the spectral 

reflectance of one band to a spectral reflectance of another band. Materials on the surface of the 

earth which are similar can give different brightness values due to factors, such as; slope, 

seasonal changes, and illumination angle from the sun. This can influence the viewer to give out 

false interpretations. To minimize such factors which lead to false interpretation, band ratio is 

used because it minimizes the effects of these environmental conditions (Jensen and Lulla, 

1987). The band ratio can also provide additional information which cannot be found in a single 

band display. This is helpful when discriminating between the soils and vegetation (Satterwhite 

et al., 1984). In the study, the band ratios method to identify rocks types and minerals was 

employed (Gad and Kusky 2007).  

3.3.3  Principal Component Analysis 

 

Principal component analysis (PCA) is a linear transformation to reduce such information 

redundancy in multispectral images; which decorrelates multivariate input data by rotating 

and/or translating the axes of its original space, so that the data can be exemplified without 

correlation in a new space that should be capable to identify different features and surface types 

easier. Different bands of multispectral data are often correlated and thus contain similar 

information i.e. have similar visual appearances. This correlation means that there is redundancy 

of information. The principal components (PC) transformation is used, to reduce this data 

redundancy, by compressing multispectral data sets and calculating a new coordinate system 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4320227/#CR47
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(Sabins, 1999). The application of the PC on the present data is to compress all of the 

information contained in an original n-channel (band) data set, into fewer number of channels or 

components, that could be displayed separately as single stretched PC-images, or as component 

in color composite PC-image (Vincent, 1997).  

The equation 3.1 is used in projecting the n spectral bands into final n principal components: 
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3.2 

Where: 

k  is the thk principal component value for a given pixel, )(iDN  is the digital number of the thi  

spectral band for a given pixel and ika give the projection coefficients calculated by the principal 

component algorithm for projecting digital numbers from the n spectral bands onto the n 

principal component vectors.  

 The data from the above equation is then translated into a new origin along the major axis. The 

variances obtained from the principal components are called eigenvalues (E. Chuviecoet al.., 

2010). The remaining variance decreases as the principal component increases. The variances 

add up to 100% of all the principal components, but it's only the first three components which 

provide most of the information.  

3.3.4  Crosta technique 

 

This is the method whereby the spectral bands are reduced in the input of principal component; 

therefore, making sure that some materials are not mapped out thereby increasing the chances of 

mapping the materials of interest. The method is effective when the knowledge of the materials 

to be mapped is well known. Raw data is used while performing these techniques without any 

corrections such as radiometric corrections. 

The eigenvector signs and magnitude, provides the spectral information of rocks, soils mapped 

into each principal component.  
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3.3.5  Spectral unmixing 

 

Spectral unmixing is the procedure by which the measured spectrum of a mixed pixel is 

decomposed into a collection of constituent spectra, or endmember, and a set of corresponding 

fractions, or abundances, that indicate the proportion of each endmember present in the pixel. 

Endmember normally correspond to familiar macroscopic objects in the scene, such as water, 

soil, metal, vegetation, etc. This involves the use of the module available in the ENVI software 

known as Spectral Hourglass scheme (Kruse et al., 2003). The method is used to reduce the data 

in terms of the dimensionality. It is done by starting with the minimum noise fraction method 

and then followed by the use of the index purity mapping technique in order to determine the 

purest pixel in the image. A tool in the ENVI software known as n-Dimensional-Visualizer tool 

(n-D-Vis) is then used to extract the end member. The final step involves comparing the end 

member with those from the USGS spectral libraries and then the application of spectral angle 

mapper technique (Kruse et al., 1993).  The method is applied when dealing with hyperspectral 

data sets and may not be useful when it comes to multispectral datasets. 

3.3.6 Supervised classification 

 

This is a method which is used to get the information from images obtained from remote sensing 

datasets. It involves sufficient knowledge of known pixel. This process of generating parameters 

to be used is called training. 

Training sites involve areas which represent known land cover category that appear uniformly in 

the image.  The mean and variances for each are calculated from all the pixels in the study area. 

They do have steps of operations which must be followed when carrying out this method of 

classification. The steps include Training sites definition; Signatures extraction, and Image 

classification. 

These training sites are worked on by digitized features. More training sites produce better 

results and this increases the accuracy of the image classified and also the interpretation of the 

results. More training sites are normally selected. The statistical characterization of the 

information is normally created after the training site areas have been digitized. The most 

commonly used supervised classification methods are discussed in the subsections below. 
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3.3.6.1  Maximum likelihood 

 

This is the technique used to classify image which involves the calculation that a given pixel 

belongs to a particular class using probability.  It is calculated on the basis that the spectral 

distance of pixels, which are close together. These pixels are classified together based on the 

statistical distribution. The probability threshold must be specified in order for the pixels to be 

classified to a particular class less all pixels will be classified. The pixels with the highest 

probability will then be assigned to a particular class. The geological mapping has been 

effectively mapped using this method (Gomez, 2005; Massironi, 2008). Maximum Likelihood 

Classification (MLC) assumes a multivariate normal distribution for the individual class 

signatures. 

3.3.6.2 Spectral angle mapper 

 

This is the method of classification whereby the angles between the image pixel and the region 

of interest data are compared. The calculation of the angular distance between the end member 

and the image determines their similarity. Those pixels which are similar are classified together 

as one class (Yuhas et al, 1992; Kruse et al, 1993).  The smallest angle between the pixels 

indicates very close resemblance to the reference spectra. The equation describing the process is 

shown in equation 3.3: 

𝛼 = 𝑐𝑜𝑠−1
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                                              3.3 

 

Where: nb the number of bands in the image, t  pixel spectrum, r  reference spectrum and𝛼 

spectral angle. 

 



32 
 

Chapter Four: Materials and Methods 

4.1  Introduction 

 

The chapter describes the study area, the remote sensing data and software used, various remote 

sensing techniques used in mapping types of rocks in the study, and the data validation process 

applied.  

4.2 Study area Description  

 

The case study lies on the coastal part of Kenya located at 4° 29'l0"S; 39° 15 '10'’ E coordinate 

south in Msambweni constituency, Kwale County. It is approximately at a distance of 80km 

south-west of the port city of Mombasa. It forms a small elliptical hill that rises some 750 feet 

above the coastal plain. The area forms a Centre for alkaline igneous complex and it is covered 

by ferruginous residual deposits, which are as a result of much weathering. The area lies south of 

the equator and its climate is influenced by the monsoon winds. The amount of rainfall received 

in the area annually ranges from 965mm to 1270mm. The area receives two rainfall patterns 

which include two long and Shorty rainy seasons. This is attributed to the monsoon winds 

experienced in the area.  

The study area is characterized by high temperatures with an annual average of 27.90 C. The 

month of February is the hottest month while July is the coolest month with an average 

temperature of 22.70C. The area is covered majorly by Dovyalis keniensis E. V.genus which 

contains 18 species (Sleumer,1975). Some of the species include the Asparagus sp which 

contains vegetation such as Mormon tea, sagebrush and pynon pine, which are all associated 

with radioactive mineralization (Gillman, 1949). The area is characterized by a number of rock 

formations such as sedimentary, alkaline, Duruma sandstone and igneous series. It is rich in Fe, 

Mn, and rare earth metals which are associated with U and Th bearing minerals namely monazite 

(Horkel et al, 1984, Mangala, 1987). 

Figure 4.1 and 4.2 shows the location and geology of the area of study (Kaniu & Angeyo, 2018). 

https://link.springer.com/article/10.1007/s12225-017-9723-4#CR10
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Figure 4.1:  A map of Mrima hill in Kwale county showing the area of study(Kaniu, 2018) 
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Figure 4.2: Geology of Mrima hill Kwale County from (Kaniu, 2018) 
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4.3 Satellite data and software 

 

Landsat 8 acquired on 30th March 2016 was used in this study. The orthorectified scenes were 

acquired from the NASA’s Earth Explorer web portal (http://earthexplorer.usgs.gov/).  

In principle, Landsat 8 data image consist of OLI sensor and TIRS that has a total of eleven (11) 

bands; seven (7) in the visible and near infrared, two (2) in the thermal infrared region, one (1) 

panchromatic channel and one (1) cirrus channel. The spatial resolution is 30m for visible bands, 

15m for panchromatic band and 100m for the thermal bands. Landsat 8 images, approximately 

952-962 megabytes, were obtained in file format (TIFF) on diverse dates between 15th January 

and 30th March, 2016. The Landsat data file has data in radiance format, but was later converted 

to reflectance format, the appropriate format, where materials on the surface of the earth interact 

with the electromagnetic radiation is recorded by the sensor onboard Landsat 8 satellite. Total of 

six (6) Landsat 8 images data were downloaded, but only one, which was collected on 30th 

March, 2016 was used in this study, because it had the minimum cloud cover, minimum noises 

and artifacts.  

Table 3.1.Shows the description of the study location, in terms of the paths and rows, which are 

specific of the area and the corresponding coordinates, and when accessed. To retrieve the 

spectral responses of materials on the surface of the earth, the satellite image capture dates were 

carefully chosen to correspond to the period when the cloud cover was low and the vegetation 

density was minimum during the dry season. Mrima hill is sub-tropical region and has dense 

vegetation and receives high rainfall, characterized by two distinct long and short rainy seasons. 

Table 4.1. Path and row coordinates and the dates of the Landsat OLI scenes used 

Location Path  Raw  coordinates Date 

(day/month/year) 

Mrima hill 166 63 4° 29'lO"S; 

 39° 15 '10'’ E 

 30/03/2016  

 

 

 

http://earthexplorer.usgs.gov/


36 
 

ENVI software version 5.3 and ArcGIS version 10.3 were used to extract spectral information of 

various materials on the earth’s surface, such as; lithology, hydrothermal alteration, and 

structure, through digital image processing; preprocessing, image enhancement, and 

classification of remote sensing data. The software was purchased from ESRI, a local company 

which specializes in spatial satellite software and products.  

 

4.4 Remote sensing data processing techniques  

 

Figure 4.1 shows the sequential steps followed to extract the spectral information of materials of interest:  

a) Removal of clouds by the application of the Preprocessing procedure. 

b) Image enhancement for identification of rocks and minerals in the study area;  

c) Performing maximum likelihood classification (MLC) method –for identification of rocks and 

vegetation associated with radioactive minerals in the study area, and  

d) Validation of the results using existing; radiometric and geological data of the study area. 
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Figure4. 2. Steps and coupled methodology for radioactive minerals retrieval. 
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4.4.1  Landsat data preprocessing  

 

The Landsat 8 acquired on March, 2016which contain eleven (11) spectral bands were analyzed 

for surface earth information. 

The acquired Landsat 8 images were first converted into an image (.img) file format. In general, 

prior to data analysis, these image data were corrected for errors related to the atmosphere, 

sensors or even the platform; mounting of the sensor in the satellite platform, view angle of the 

sensor, and other artifacts.  

 

The atmospheric errors were corrected by a technique available in the ENVI 5.3 software, Fast 

Line-of-sight Atmospheric Analysis of Hypercube (FLAASH).The errors due to the sensor were 

corrected by applying the radiometric calibration module available in the ENVI software, 

whereby satellite data is converted into reflectance from the initial format in radiance, in 

addition, to characterize the various materials under study. 

Cloud covers were found in the Thermal Infrared (TIR) region by first converting the digital 

number values to temperature brightness values using the ENVI software.  

The dark parts were found to correspond to cloudy areas in this study. It was found to contain the 

lowest temperatures values. Based on this variation in temperatures, threshold was determined, 

less than 240K for this study, classified as the dark part, and then was masked out, but replaced 

by searching out an image which is cloud free in the same pixel. The dark pixels were replaced 

and then assigned new values based on the mean TIR band image. The temperature differences 

enabled to clearly distinguish between the cloudy and non- cloudy TIR bands in the study area. 

This was done using Matlab algorithm.  

4.4.2 Vegetation analysis: Calculation of Normalized Difference Vegetation Index (NDVI) 

 

The interpretation of multispectral images for geological information is impeded by vegetation 

cover especially in densely vegetated area. To get the geological information, it’s important to 

remove vegetation component by suppressing them. For this study the forced invariance 

technique which is embedded in ENVI software to suppress the vegetation component was 

employed (Crippen and Blom, 2001). 
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The process involved approaching the following steps which included masking out barren or 

sparsely vegetated area by the use of Normalized Difference Vegetation Index, application of 

forced invariance technique in subtracting the spectral response of vegetation only in vegetated 

areas; and lastly the combination of the processed vegetated areas with the barren area. 

In order to mask vegetation in Landsat 8 images, calculation of the vegetation index is done. The 

index applied includes the NDVI and was used to determine the threshold value to mask 

vegetation. 

 

The NDVI is defined as;  

Re

Re

NIR d
NDVI

NIR d





       (4.1) 

 

here NIR is the Digital Number value of Near-Infrared band, and Red is the DN value of the red 

band radiation. The threshold NDVI value used to mask vegetation in the study area was 0.25 

which is the NDVI value range for shrubs and grasses in the study area. 

4.4.3 Rocks and Minerals Identification in the Study Area: Band Ratios 

 

This method of image processing technique involved division of one band by another band of the 

material of interest (Sabins, 1999). For examples rocks such as; alkali granite, sandstone, 

serpentine and carbonates which are all associated with radioactive minerals. The result is a 

spectral ratio one band to another band. 

This method is used to identify certain materials such as minerals or rocks which cannot be 

observed by a single band. This method involves selecting a band with high reflectance for 

minerals or rocks as a numerator divided by the one with the lowest reflectance as the 

denominator. The bands are put as input in the ENVI module. The ENVI band ratio interface 

module has for input, has the option of eleven bands, each band is assigned a certain wavelength 

range in the electromagnetic spectrum for a single material identification. For example, band 4 

has a wavelength range of between 0.64 - 0.67 µm, where iron oxide has high reflectance. The 

iron oxide was mapped by the use 4/2 ratio since it has high reflectance in band 4 while it also 

has high absorption in band 2. On the other hand, the ratio 6/7 was used in mapping clay 
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minerals because clay minerals have high reflectance in band 6 while also having high 

absorption in band 7. 

The following ratios were used in discriminating the rocks and minerals of interest using Landsat 

8 data; (6/7, 6/5, 4/2), (6/4, 4/2, 7/3 Cardoso-Fernandes et al (2018) 

4.4.4 Rocks and Minerals Identification in the Study Area: False color composite 

 

The combination of the three primary colors was applied to highlight the geological features in 

the area of study. The features included; the structural features, the vegetation cover, sedimentary 

and igneous rocks. 

For lithological mapping, the following color combination were used ;( 5, 6, 4), (7, 6, 5), (7, 6, 

2). The bands were applied by individually inputting the 8-bit gray scale reflectance bands into 

the ENVI band combination interface module. The bands were selected based on the known 

mineral absorption and reflectance features. 

4.4.5 Minerals Identification: Principal Component Analysis 

 

The seven reflectance bands of Landsat 8 data were used to carry the procedure of principal 

component. This method was used in highlighting the minerals of interest in the case study. The 

first three principal components generated, accounted for more than 95 % of the variance in the 

original data Bands of multispectral data. The redundancy of data was reduced by applying this 

method on the multispectral data. The signs and loadings of the eigenvectors indicate the spectral 

information of minerals in the study area. In this study, the principal components were 

determined by the use of MATLAB algorithm for mineral identification (Appendix 1) 

4.4.5.1 Minerals Identification: Crosta Techniques 

 

This method is used whereby the spectral bands are reduced for the input of principal 

component, thereby increasing the chances of mapping the materials of interest. For clay 

minerals, band 2, band 5, band 6 and band7 were used while for iron oxide minerals, band 2, 

band 4, band 5 and band 6 were used. The signs and values of the eigenvector loadings which 

were generated by Matlab algorithm provide the spectral information; reflectance and absorption 

about these minerals (appendix 1). 
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4.5 Classifications of rocks and vegetation 

 

The process of assigning pixels which are unknown to a particular class depending on their 

properties is known as image classification (Ahmed, et al., 2014). Two major types of 

classification include; the supervised and unsupervised classification methods. In the 

unsupervised classification, the software analyses an image without the user providing sample 

classes, the user can specify the algorithm the software will use as well as the number of the 

output classes. In supervised classification, the user provides the training data and directs the 

software to use these training sites as references for the classification of all other pixels in the 

image. 

4.5.1  Maximum likelihood classifier for rocks and vegetation classification 

 

The rocks are classified into different classes based on the spectral distance of pixels which are 

closest. In the study area, the remote sensing data was classified using Region of Interest (ROI) 

of the spectral signatures of the rocks types available in the ENVI 5.3 software spectral library 

database for the following rocks; alkali granite, sandstone, serpentine, shale and carbonate rocks. 

For rocks identified, high probability threshold for each class was set at 0.7 for optimal input in 

the ENVI interface module. The probability values were determined by varying the input values 

for between 0.1 to 1.0, to obtain optimized output.  

This method of image classification depends on determining the probability that a given pixel 

belongs to a certain class of material of interest in the study area. 

The procedure was repeated for classification of vegetation associated with radioactive minerals. 

The vegetation plant species used in this study included; bigberry manzanita, sagebrush, 

Mormon tea and pynon pine.  

4.5.2  Spectral angle mapper for rocks and vegetation classification 

 

The Spectral Angle Mapper technique was applied whereby the angle between the spectra and 

reference was calculated. The principle for this image classification technique is that, the smaller 

the angle between the image spectra and the reference spectra, the closer the resemblance of the 
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materials of interest. Reference spectra available in spectral libraries and or from field 

observations were used in this study (Kruse et al., 1993).  

The SAM classification enhances the target reflectance characteristics and also has the ability to 

discriminate different rock types. The reference spectra selected for training data include; alkali 

granite, basalt, sandstone, quartz monzonite, shale and marble rocks which were obtained from 

ENVI 5.3 software spectral library. A single value for maximum angle in radians was set for all 

classes by default, according to the rock types of the training data input. 

4.6 Validation of the Remote Sensing Data of the Study Area 
 

The results were validated by using existing radiometric data and geological map of the study 

area by overlaying with classified image of rocks and minerals of the study area using QGIS 

software. Overlay is a GIS operation that superimposes multiple data sets (representing different 

themes) together for the purpose of identifying relationships between them. An overlay creates a 

composite map by combining the geometry and attributes of the input data sets.  

The software i.e. QGIS, is an open source which is used in viewing, editing and analyzing 

geospatial data. The user normally edits, analyze the spatial information as well as export 

graphical maps. The software support data in raster and vector layers. 

Prior to overlaying of the data, the geological and radiometric maps of the study area were first 

georeferenced, so that all of them are in the same georeferencing system. We used the 

interpolated radiometric data of the study area for validation with the botanical indicators. 

 

 

 

 

 

https://www.tandfonline.com/doi/full/10.1080/24749508.2019.1585657
http://wiki.gis.com/wiki/index.php/GIS
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Chapter Five: Results and Discussion 

 

5.1 Introduction 

 

This chapter present results of the Landsat 8 data where several image processing techniques 

were used to delineate mineralization and rock types; iron oxide, clay, hydroxyl, ferrous, granite, 

sandstone, serpentine, and carbonates rocks and discusses the validation of the result.  

5.2  Rocks and Minerals: Band Ratios results 

Figure 5.1: shows the various types of minerals in the study area using the band ratio Landsat 

OLI ratio image (6/7, 4/2, 6/5 in RGB).  

Figure 5.2: shows the different types of rocks in the area of study associated with radioactive 

minerals using the band ratio of Landsat OLI ratio image (6/4, 7/3, 4/2 in RGB). 

The different types of rocks and minerals were processed and interpreted in the study area using 

the multispectral images of Landsat 8 data. For iron oxide minerals, bands 2 and 4 were used to 

identify them. The minerals in iron oxide include; jarosite, hematite and limonite minerals. These 

minerals show in band 4 to have high reflectance and band 2 having high absorption.  On the 

other hand, the use bands 6 and band 7 identified clay and carbonate minerals. This is because 

they exhibit highest reflectance and absorption in band 6 and 7 respectively (Han et al., 2015). 

Altered rock were identified in the area by the use of 4 /2, 7/3, 6/4 ratios 

In general, the band rationing enhances materials of interest on the surface of the earth which 

otherwise couldn’t be seen by raw bands. It is therefore useful in hydrothermal mapping of 

alteration zones of minerals (Di Tommaso. 2007; Rockwell et al. 2008; Pour and Hashim. 2011). 

For example, iron oxide minerals in the area were identified by the use of 4/2 ratio because of the 

high reflectance of the mineral in the red region of the electromagnetic while it also has high 

absorption in the blue region. On the other hand,  6/7 ratio  was used in mapping clay, kaolinite 

and montmorillonite minerals because of its reflection properties in band 6 and the high 

absorption in band 7 respectively. The ferrous minerals were identified using the ratio 6/5 

because of their high reflectance in band 6 and very high absorption in band 5 (Gupta, 2003). 
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Figure 5.1:  Landsat OLI ratio image (6/7, 4/2, 6/5 in RGB)  

The ratio of 6/4, 7/3, 4/2 for Landsat 8 was used to highlight different rocks in the study area. 

This is because Serpentine rock exhibit high reflectance in band 6 due to the minerals contained 

in it while high absorption in band 4. Granite, on the other hand, has high spectral reflectance in 

band 7 and high absorption in band 3. Carbonates have high reflectance in band 4 with 

significantly high absorption in band 2. Therefore, the ratio 6/4 represents serpentine rocks while 

granite rocks are represented by the ratio 7/3 and carbonate rocks by 4/2. The color composite of 

these ratios shows serpentine rocks represented by the cyan pixels. Granite rocks are represented 
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by yellow pixels while the carbonates are represented by the magenta pixels as shown in figure 

5.5. 

The band rationing technique is important in highlighting the hydrothermal alteration of rocks. 

This is because they provide more information about certain features which cannot be seen by 

using the raw bands (Di Tommaso. 2007; Rockwell et al. 2008; Pour and Hashim. 2011).The 

technique employs the arithmetic combination of the different bands based on the absorption and 

emission of the materials under study (Drury 2001). The technique effectively reduces the 

correlation of inter bands in the multispectral data (Drury 1993). 

 

Figure 5.2: Landsat OLI ratio image (6/4, 7/3, 4/2 in RGB) for the study area 
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5.3 Rocks and Minerals: False color composite results 

 

Figure 5.3 and 5.4shows the identified mineralized areas in the study area using FCC Landsat 

OLI image (bands 5, 6, 4; 7, 6, 5 in RGB). 

Figure 5.5: shows identified different types of rocks associated with radioactive minerals in the 

study area using FCC Landsat OLI image (bands 7, 6, 2 in RGB). 

This mapping technique employs the known spectral characteristics of minerals and rocks in 

relation to the bands selected. Three bands were used for lithological and alteration mapping in 

the case study. For carbonates and clay minerals, they have high absorption in band 7 and high 

reflectance in band 6. On the other hand, iron oxide minerals have high reflectance in band 4. 

Therefore, the band combination used to map these minerals was; band5, band 6 and band 4in 

RGB (Figure 5.3). The color composite of (5, 6, and 4) in RGB, therefore, highlights clay 

minerals in cyan while iron oxide minerals are highlighted by the red. The vegetation was 

masked out through the NDVI process by setting a threshold value of 0.25 and are therefore, 

shown by the black pixels in the image.  
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Figure 5.3: FCC Landsat OLI image (bands 5, 6, 4 in RGB) in the case study. 

 

The combinations of bands 7, 6 and 5 for Landsat 8 in RGB were used to highlight the clay 

minerals by the yellow pixels since band 7 reacts to moisture contents and it’s used in detecting 

hydrous minerals such as clay minerals. The bluish pixels represent the iron minerals because 

they have high reflectance in band 6 as shown in figure 5.4. 
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Figure 5.4: FCC Landsat OLI image (bands 7, 6, 5 in RGB) of the study area 

 

The rocks associated with radioactive minerals were discriminated using the combination of 7, 6, 

and 2 for Landsat 8 data. This is because the granite rocks have high reflectance in band 7 while 

serpentine rocks have high reflectance in band 6. Therefore the combination of 762 in RGB show 

granite rocks represented by the white pixels while serpentine rocks are represented by the 

yellow pixels and the carbonates rocks by the red pixels as shown in figure 5.5.  
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Figure 5.5: FCC for rocks Landsat OLI image (bands 7, 6, 2 in RGB) of the study area. 

Good results of lithological mapping were achieved by the use of the color composite technique. 

Minerals such as jarosite, hematite, and limonite were mapped by using band 4 since they have 

high reflectance in this band. Clay minerals on the other hand, have high absorption in band 7 

and high reflectance in band 6 (Han et al., 2015). Minerals such as alunite, and clay minerals 

such as illite, kaolinite and montmorillonite have distinctive absorption features at 2.20µm and 

low absorption at 1.6µm, hence, were calculated to map clay deposits in the study area.  
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5.4  Principal Component Analysis results 

 

Figure 5.6 and 5.7 shows the results for iron oxide and clay minerals using PC4 and PC 2 

images.  

The principal component in this study was used to identify the minerals of interest by examining 

their eigenvector loadings. The iron oxide minerals that were identified were designated by 

bright pixels while the clay minerals were identified by the dark pixels as shown in figure 5.6 

and 5.7. 

 PC transformation was applied to Landsat OLI image of the study area whose statistical 

analysis, eigenvalues, and eigenvector loadings were tabulated in table 5.1. 

Table 5.1: Principal Component Analysis of OLI data 

 PC1 PC2 PC3 PC4 PC5 PC6 PC7 

BAND1    0.3469    -0.0565    -0.5073     0.3572     0.4014   -0.1138    -0.5634 

BAND2    0.3171    -0.0782    -0.4347     0.1736 0.1077 -0.1190     0.8053 

BAND3    0.2979    -0.0964    -0.2891    -0.0668    -0.4928     0.7501    -0.0916 

BAND4    0.2674    -0.2341    -0.2097    -0.5155    -0.4523    0.5791    -0.1552 

BAND5    0.6209     0.7101     0.2881    -0.1524 0.0611    -0.0174     0.0022 

BAN6    0.3989    -0.4353     0.5406     0.5345 -0.2433    -0.1192    -0.0078 

BAND7    0.2726    -0.4825     0.2257    -0.5130     0.5630     0.2456     0.0393 

Variance 

% 

92.3573 

 

   4.9614 

 

    1.9279 

 

    0.3225 

 

   0.2739 

 

0.1108  0.0463 

 

Cumulative 

% 

92.3573 97.3187 99.2466 99.5691 99.843 99.9538 100 

 

PC 1, PC2 and PC 3 accounts for 99.2466% of the total variance (table 5.1).The information 

about the minerals of interest is mostly found in these three PCs; PC1 and combined PC2and 

PC3, represents topography and vegetation of the study area, respectively.  
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In order to increase the probability  of mapping iron oxide and clay bearing minerals, a 

combination of bands ( 2, 4,5 and  6) and (2, 5, 6 and 7), were selected respectively on the basis 

of high reflectance and high absorption for both iron oxide and clay minerals.  

Table 5.2 shows the loadings of bands 4 and 2 on PC4, which are positive (reflectance) and 

negative (absorption), respectively for iron-oxides minerals. The iron oxide minerals were 

represented by dark pixels in PC4. 

Table 5.2:  Crosta Technique for Iron minerals 

 

 PC1 PC2 PC3 PC4 VARIANCE% 

BAND2 0.4969     0.7394     0.0304    -0.4532 95.1129 

BAND4 0.4198     0.2141    -0.4075     0.7822     3.2504 

 

BAND5 0.6267    -0.3772     0.6718     0.1169     1.3085 

BAND6 0.4291   -0.5149    -0.6178    -0.4112     0.3281 

 

On the other hand, hydroxyl-bearing minerals were highlighted as dark pixels in PC3 images 

because the eigenvector loadings of band 5 and band 6 were negative (absorption) and positive 

(reflectance) respectively. In order to enhance both iron oxides and the hydroxyl-bearing 

minerals, their respective PCs were made negative (DN multiplied by -1), such that these 

alteration minerals were mapped in brighter pixels as shown in figure 5.6 and 5.7. 
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Figure 5.1: the PC4 image of iron minerals, with the bright pixels showing the areas of iron 

minerals. 
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Figure 5.2: PCA2 image for clay minerals with dark pixels representing the clay minerals in the 

study area 

In general, this technique utilizes the generalized reflectance curve of the material of interest, 

such as alteration zones of minerals in which bands are considered in the choice of the best 

Principal Component, based on their respective eigenvector loadings. For instance, to determine 

which PC best represent iron-bearing minerals depends on the eigenvector values of bands 4 and 

2 in a Landsat OLI dataset. Likewise, the clay minerals are controlled by the eigenvector values 
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of bands 6 and 7 references to their generalized reflectance spectra curve of the USGS Library of 

minerals. 

The signs (+/-) of the eigenvector value loadings are being considered in the process because 

they determine which component of interest (Fe oxide or clay) would be represented as bright or 

dark pixels in the image (E. Chuvieco et al.., 2010). In selecting the optimum principal 

component, the two loadings should always be different in signs. 

The PCA was employed on selective bands and therefore, materials such as vegetation were not 

mapped and materials such as minerals were highlighted into a single PC. The PCs were selected 

based on the eigenvector loadings with the highest PCs being selected. For example, according to 

Crosta (2003), the high reflected and low reflected materials of interest bands and the 

corresponding eigenvectors loadings are checked to determine the PCA which has the needed 

information. 

5.5 Rocks: Spectral Angle Mapper Results 

 

Figure 5.8: shows the Spectral angle mapper classification results for rocks associated with 

radioactive minerals in the study area. 

The results show that most of these rocks; granites, serpentine, carbonates, shale and sandstone 

identified in the study area were found at the edges of the hill (figure 5.8).The area was not 

covered by any vegetation and therefore, the signal response from the rocks could easily be 

recorded. However, the areas which had vegetation were masked out and are represented by the 

dark pixels. 
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Figure 5.3: Spectral angle mapper classification for rocks associated with radioactive minerals in 

the study area. 

In general, Spectral angle mapper classification was effective in mapping out the rocks 

associated with radioactive minerals in the study area. It was found out that alkali granite, 

sandstone, shale and carbonates rocks were identified in the study area. This is due to the fact 

that radioactive minerals; U, Th and rare earth metals are usually found in the sedimentary, 

metamorphic and magmatic rocks (Pavlidou et al, 2006) and are concentrated in acidic volcanic 

and plutonic rocks. 

 

5.6 Rocks and Vegetation: Maximum Likelihood Classification Results 

 

Figure 5.9 and 5.10 shows the results of Maximum Likelihood classification for rocks and 

botanical indicators for radioactive minerals in the study area. 

The results obtained show that most of the rocks identified in the study area; granites, sandstone, 

carbonates and serpentine were located at the edges of the hill (figure 5.9). The areas where these 
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rocks were located were not covered by vegetation therefore; they had high probability of being 

classified since their signals could easily be recorded.   

 

Figure 5.4: Maximum Likelihood classification for rocks associated with radioactive minerals in the 

study area. 

Areas which were covered by vegetation could not be classified for rocks identification. The 

botanical method was used whereby the spectral signatures of vegetation associated with 

radioactive minerals were mapped. The vegetation used in this study were from Astragalus 

species, Stanleya, Aster venustus, Oryzopsisj species and they included Mormon tea, big berry 

Manzanita, big sagebrush, and pynon pine. This vegetation are bio indicators of selenium. 
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Figure 5.5: Maximum likelihood classification of vegetation associated with radioactive minerals 

 

The geobotanical method was used in identifying radioactive minerals in the study area. These 

plants are bio indicators for radioactive minerals (Trelease and Beath, 1949).  

In general, most uranium ores contain sulfides. Therefore gypsum is also a good indicator of 

uranium deposits. The distribution of sulfur and calcium absorbing plants indicate the presence 

of gypsum in the soil. Plants that require large amounts of these elements for their growth are 

indicators of radioactive minerals in the study area. Both of these indicators i.e. sulfur and 

selenium are normally found in the sedimentary, alkali granite, metamorphic and magmatic rocks 

but their concentration vary. 
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5.7 Validation of Remote Sensing Results using Existing Radiometric Survey Data: 

Comparison 
 

The validity of the remote sensing results was determined by comparison of this data with the 

results of existing radiometric and geological data of the study area. 

Figures 5.6a and 5.6b, 5.7a, 5.7b shows the remote sensing results of the study area using band 

ratio technique for rocks and minerals overlay over   gamma dose rate and geological map of 

Mrima hill. 

The comparison indicated similarity of minerals alteration zones and rocks for; clay, iron oxide, 

ferrous and hydroxyl minerals and granite, serpentine, carbonates and sandstone rocks for the 

location of threshold dose rate of over 600nGy/hr as shown by figure5.6a, 5.6b, 5.7a and 5.7b. 

 

 

Figure 5.6a:  Band ratio image of alteration mineral zones overlaid over   gamma dose rate 

geological map of Mrima hill adapted from (Kaniu and Angeyo 2018) 
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Figure 5.6b: Band ratio image of alteration mineral zones overlaid over gamma dose rate 

topographical map of Mrima hill adapted from (Kaniu and Angeyo, 2018) 
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Figure 5.7a: Maximum likelihood classified image of rocks associated with radioactive minerals 

overlaid over gamma dose rate topographical map of Mrima hill adapted from (Kaniu, 

2018). 
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Figure 5.7b: Maximum likelihood classified image of rocks associated with radioactive minerals 

overlaid over gamma dose rate geological map of Mrima hill adapted from (Kaniu,2018). 

In general, it was found out that the location for alteration minerals zones and rocks coincided 

with high radiation background areas. 

It is observed that in Mrima hill, the hotspots were found in the crest of the hill and in the 

southern part of the hill. This is associated with colluvium and residual soils as well as 

carbonatite rocks according to the geology of the area (JICA, 1993). The eastern and northern 

part of the hill has low dose and are associated with sands, sandstone, shale and siltstones 

(Kaniu, 2017).  These indicate the weathering of soil in the foothills of Mrima hill (Baker, 1993).  

Figure 5.8 and 5.9 show the results of Maximum Likelihood classification of remote sensing data 

of vegetation associated with radioactive minerals overlay over interpolated gamma dose rate 
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map of Mrima hill. In these figures the existing radiometric data , was obtained from the 

southern part of the hill , however, radiometric data used  for comparison with remote sensing 

data, had been interpolated to include areas that were inaccessible during the field survey(Kaniu, 

2018). 

Figure 5.8 shows the results of Maximum Likelihood classification of remote sensing data of 

vegetation associated with radioactive minerals overlaid over gamma dose rate map of Mrima 

hill. 

The following vegetation; bigberry manzanita, sagebrush, Mormon tea and pynon pine were 

identified in the study area, to grow in areas with a threshold gamma dose rate of above 

1200nGy/hr (figure 5.8). 

When the same remote sensing data image was overlaid over radiometric data surveyed by Patel, 

(1991), the results indicated that the botanical indicator  plants; bigberry manzanita, sagebrush, 

Mormon tea and pynon pine,  were mostly concentrated in areas with a threshold dose rate of 

over 1386 nGy/hr (figure 5.9). 

In addition, Sagebrush was dominant in areas with dose rate of above 800nSv/hr (gate 11, figure 

5.10); Bigberry Manzanita was dominant in regions with dose rate of between 200nSv/hr and 

800nSv/hr (gate 9, figure 5.10) while pynon pine was mostly found in region with dose rate of 

50nSv/hr to 200nSv/hr (gate 16, figure 5.10). 

The study area is considered to be hotspot and the high dose rate is attributed to the underlying 

geology of the area (Kaniu, 2017).The higher than the world average dose rate reported in other 

studies, has been attributed to the geological setting and presence of heavy mineral deposits for 

example, monazite (Veiga et al., 2006). 

In general, selenium is found in areas with high background radiation and is highly associated 

with the botanical indicators for radioactive minerals (Trelease and Beath, 1949). 

Plant communities may be definitive in outlining particular rock units such as limestone, 

sandstone, halite, or ultra basic rocks (Nicolls et al. 1965). 
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Figure 5.8: Maximum Likelihood classified image of vegetation associated with radioactive 

minerals overlaid over interpolated gamma dose rate map of Mrima hill adapted from 

(Kaniu, 2018). 
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Figure 5.9: Maximum Likelihood classified image of vegetation associated with radioactive 

minerals overlaid over gamma dose rate map of Mrima hill adapted from (Patel, 1991). 
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Figure 5.10: Maximum Likelihood classified image of vegetation associated with radioactive 

minerals overlaid over gamma dose rate map of Mrima hill adapted from (Ian, 2019) 

5.8 Summary of the Findings of Remote Sensing Mapping Techniques 

Radioactive minerals are effectively mapped using various remote sensing techniques depending 

on how effectively the spectral signatures of rocks and minerals are differentiated. Thus, each of 

the rock types has unique spectral signatures.  

The color composite of 5, 6, and 4 in RGB identified altered zones of clay minerals and are 

separated from iron oxide minerals and carbonate minerals respectively. The technique helped in 

enhancing the geological features Bedini (2009). 

As shown in figure 5.1, the altered clay and carbonatite minerals are identified as cyan and 

yellow pixels. This is because the clay and carbonatite minerals have high absorption in band 7 

Clay and carbonatite minerals have high absorption in band 7 and high reflectance in band 6. 
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Therefore, clay and carbonate minerals have the same absorption and reflectance bands hence 

can be used to map both of them (Van der Meer, 2004; Zaini et al., 2016) 

The band ratio of 6/4, 7/3, and 4/2 were used to identify the following rocks; granites, serpentine, 

sandstone, shale and carbonates, in the study area. This is because,  granite rocks have high 

reflectance in band 7 of Landsat 8 and high absorption in band 3,  while carbonates have high 

reflectance in band 4 and high absorption in band 2. The rocks are identified by the yellow, cyan, 

red, pink colors (figure 5.5).  

The supervised classification method, which used training data for identification of rocks and 

vegetation, associated with radioactive minerals, were able to map following the rocks in the 

study area; granite, carbonates, sandstone and serpentine (figure 5.8 and 5.9). The following 

botanical indicators; bigberry manzanita, sagebrush, Mormon tea and pynon pine were identified 

in the study area (figure 5.10). 

The validation with the existing radiometric data of the study area revealed that the areas with 

high dose rates coincided well with rocks and vegetation associated with radioactive minerals in 

the study area. The high dose rate is attributed to the underlying geology of the study area which 

is considered as hotspot as it contains masked radioactive minerals.  
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Chapter six: Conclusion and Recommendations 

6.1  Conclusion 

 

The use of Landsat 8 OLI datasets in image processing was useful in identification of rocks and 

vegetation associated with radioactive minerals and delineation of alteration zones in the study 

area. The selection of band combination performed was based on the characteristics of spectral 

of the material under study. The use of band ratio techniques (Vincent, 1997, Chica-Olmo et al., 

2002; Gad and Kusky 2007) enabled lithologic and hydrothermal alteration mapping based on 

diagnostic spectral signatures of iron, clay and hydroxyl minerals. Generally, the band ratios R 

(4, 2), R (6, 5), and R (6, 7) were utilized for mapping ferric, ferrous, and clay minerals, 

respectively. The alteration zones in the study area were mapped by the use of Crosta technique. 

The image analysis techniques which included spectral angle mapper, maximum likelihood were 

able to map rocks associated with radioactive minerals in the study area. This was possible in 

areas which were not covered by vegetation as these signatures were possible to be recorded by 

the sensor on Landsat 8. Areas which were covered by vegetation made it difficult to map the 

spectral reflectance of rocks associated with radioactive minerals. Botanical methods were 

employed whereby vegetation indicators for radioactive minerals were used.  

Using the radiometric survey data for data validation, showed that maximum likelihood 

classification was the most effective method for mapping both rocks and vegetation associated 

with radioactive minerals in the study area. 
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6.2 Recommendations 

The application of remote sensing for mapping radioactive minerals in Mrima hill Kwale County 

has been successful in mapping alteration zones and rocks associated with these radioactive 

minerals. Consequently, the following is recommended for adoption, following the findings of 

this study: 

1) Application of remote sensing  in  other areas characterized by high radioactivity; 

2) To use remote sensing technology in mapping other minerals in remote areas of poor 

accessibility.  

For further research, the following is recommended: 

1) Integration with other mineral exploration methods, such as geochemistry and 

geophysics, will improve the results of the present exploration approach; 

2) To use remote sensing data with high spectral and spatial resolution;  
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Appendix 1: MATLAB scripts for Principal Component Analysis for seven Bands of 

Landsat OLI data  

 

Image=double (imread ('C: \Program Files\MATLAB\LANDSAT 

IMAGES\mrimamaskedimage.tif')); 

X = reshape (image, [], 7); 

band2=image (: 1); 

band3=image (: 2); 

band4=image (: 3); 

band5=image (: 4); 

band6=image (: 5); 

band7=image (: 6); 

m2=mean2 (band2 (:)) 

m3=mean2 (band3 (:)) 

m4=mean2 (band4 (:)) 

m5=mean2 (band5 (:)) 

m6=mean2 (band6 (:)) 

m7=mean2 (band7 (:)) 

s2=std2 (band2) 

s3=std2 (band3) 

s4=std2 (band4) 

s5=std2 (band5) 

s6=std2 (band6) 

s7=std2 (band7) 
1 of 4 



78 
 

v2=var (band2 (:)) 

v3=var (band3 (:)) 

v4=var (band4 (:)) 

v5=var (band5 (:)) 

v6=var (band6 (:)) 

v7=var (band7 (:)) 

Disp ('..........................................................................'); 

Covariance=cov(X) 

 [v, D]=eig (covariancen) 

k=corrcoef(X) 

Coeff =pca(X) 

transformed=X*coeff 

imagepc1=reshape(transformed(:,1),size(image,1),(size(image,2))); 

imagepc2=reshape(transformed(:,2),size(image,1),(size(image,2))); 

imagepc3=reshape(transformed(:,3),size(image,1),(size(image,2))); 

imagepc4=reshape(transformed(:,4),size(image,1),(size(image,2))); 

imagepc5=reshape(transformed(:,5),size(image,1),(size(image,2))); 

imagepc6=reshape(transformed(:,6),size(image,1),(size(image,2))); 

imagepc7=reshape(transformed(:,7),size(image,1),(size(image,2))); 

Figure, imshow (imagepc1, []) 

title ('PCA 1') 

Figure, imshow (imagepc2, []) 

2 of 4 
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title ('PCA 2') 

Figure, imshow (-imagepc3, []) 

title ('PCA 3') 

Figure, imshow (imagepc4, []) 

title ('PCA 4') 

Figure, imshow (imagepc5, []) 

title ('PCA 5') 

Figure, imshow (imagepc6, []) 

title ('PCA 6') 

Figure, imshow (imagepc7, []) 

title ('PCA 7') 

[COEFF, latent, explained] = pcacov(X) 

mapcaplot(X) 

Figure, imshow (pca(X)) 

Matlab scripts for Crosta techniques for alteration of mineral zones 

Image=double (imread ('C: \Program Files\MATLAB\LANDSAT IMAGES\mrimanew.tif')); 

X = reshape (image, [], 4); s1=std2(X) 

v1=var(X (:)) 

Covariancen=cov(X) 

[V, D]=eig (covariancen) 

k=corrcoef(X) 

Coeff =pca(X) 

Transformed=X*coeff 
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imagepc1=reshape(transformed(:,1),size(image,1),(size(image,2))); 

imagepc2=reshape(transformed(:,2),size(image,1),(size(image,2))); 

imagepc3=reshape(transformed(:,3),size(image,1),(size(image,2))); 

imagepc4=reshape(transformed(:,3),size(image,1),(size(image,2))); 

Figure, imshow (imagepc1, []) 

title ('PCA 1') 

Figure, imshow (imagepc2, []) 

title ('PCA 2') 

Figure, imshow (imagepc3, []) 

title ('PCA 3') 

Figure, imshow (imagepc4, []) 

title ('PCA 4') 

FCCimage = cat (3, imagepc1, imagepc2, imagepc4) 

Figure 

Imshow (FCCimage) 

[COEFF, latent, explained] = pcacov(X) 
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List of definitions of terminologies 

 

Absorption band-A range of wavelength in the electromagnetic spectrum within which radiant 

energy is absorbed by a substance 

Albedo- The earth’s albedo is a measure of how much incident radiation is reflected 

False color- A color imaging process which produces an image that does not correspond to the 

true color of the scene. 

Geographic information system- A combination of mutually referring data sets of various 

kinds of position and the necessary software to visualize this database. 

Image enhancement- The improvements of image to facilitate better information or further 

digital processing o develop a specific theme or to highlight certain features in an image. 

Multispectral-In remote sensing the term implies two or more broad spectral bands in which a 

sensor detects radiation. 

Pixel size- Refers to the dimension of one detector pixel of an array. 

Preprocessing- Commonly used to describe the correction and processing of sensor data prior to 

information extraction. 

Radioactivity- It is an effect exhibited by certain types of matter of emitting energy and 

subatomic particles spontaneously. 

Reflectance- Refers to the fraction of the total radiant flux incident upon a surface that is 

reflected. 

Spatial resolution- Defines the minimum separation between two measurements in order for a 

sensor to be able to discriminate between them. 

Spectral resolution- Refers to the resolving power of a system in terms of wavelength. 
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Radiometric resolution –Refers to the resolving power of a system in terms of the signal 

energy, intensity and power. 

Spectral signature- The response of electromagnetic radiation to particular object in the target 

area. 

Swath- Width of the imaged scene in the spectral direction. 

Vegetation index- A mathematical algorithm of reflection values in different spectral bands, 

used to estimate vegetation characteristics. 

Vidicon –A generic name for a camera tube of normal light sensitivity.  

 

 

 

 

 

 

 

 

 

 


