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Abstract

Background: Modelling longitudinal information and event time outcomes simultane-

ously helps in describing the progression of the disease over time. Past studies have mostly

applied standard Cox proportional hazards model to establish the association between

baseline CD4 count and time to wound healing following circumcision. However, Cox

proportional hazards model does not take into account the special features of biomark-

ers besides not utilizing the entire longitudinal history of measurements. Consequently,

results reported from Cox proportional hazards model could be biased or ine�cient. To

optimally investigate the association between CD4 count and time to wound healing, we

used a joint modelling framework. In this framework, we utilized patients’entire longitu-

dinal history of CD4 count, while also properly accounting for measurement error caused

by biological variation and missing measurements.

Methods: In the �rst step, we �tted a linear mixed e�ects model to describe the evolution

of square root CD4 count over time for each patient while adjusting for the priori selected

baseline covarites. In the second step, we used the estimated evolution (square root CD4

count) in the Cox proportional hazards model to determine its relationship with time

to wound healing. Some CD4 count values were missing for some patients at follow-

up visits. This is a missing data problem synonymous with longitudinal studies and we

assumed that the mechanism of missingness was missing at random (MAR), and thus, the

results reported from the joint models, are still valid under MAR.

Results: 115 out 119 patients completed their follow-up visits and their wounds were

certi�ed fully healed. Median time to wound healing was 49 days (IQR:49-63 ). There

was no association between the current true value of square root CD4 count and wound

healing time (p-value=0.536). However, for patients with the same current true value of

square root CD4 count at a given time point t, the log hazard ratio for a unit increase in

the rate of change in square root CD4 count trajectory was 1.514 (95% CI: 1.121; 1.908).

Conclusion: Circumcising HIV-positive patients with any level of square root CD4 count

is not harmful to their post-circumcision wound healing. However, patients with the same

current true level of square root CD4 count could exhibit di�erent slopes of the square

root CD4 count trajectory at the same time point t, leading to di�erent progression of

wound healing between them.
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1 Introduction

1.1 Rationale

In most clinical studies, patients are followed until a predefined end point is observed.
Research questions motivating joint modelling include:

1. Association between longitudinal information and time to an event.

2. Prediction of event based on longitudinal information.

3. Evaluating longitudinal information as a surrogate for event.

An example of the first case is in HIV/AIDS studies where a researcher could be interested
in assessing how strongly associated current true level of CD4 count is with the risk for
death (Mchunu, Mwambi, Reddy, Yende-Zuma, & Naidoo, 2020).

The rates of progression of medical conditions like HIV/AIDS do not just vary from one
patient to another. They also do change dynamically over time for the same patient
(Rizopoulos, 2012). Therefore, the true potential of a marker in describing progression
of a disease and its relationship with event outcome can only be shown when the whole
longitudinal history of the biomarker is incorporated into the analysis (Rizopoulos, 2012).
The motivation behind joint models is to pair the event-time submodel with a suitable
longitudinal submodel taking into account unique features of the marker: (Rizopoulos,
2012):

1. Measured with error due to biological variation.

2. Longitudinal information only intermi�ently observed (the complete history is not
available).

3. Existence of the biomarker is directly related to the event outcome/failure status.
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1.1.1 Survival Data

The primary aim of many clinical studies is to analyze times from origin until an oc-
currence of an event. Examples include time to wound healing following circumcision
(Rogers, Odoyo-June, Jaoko, & Bailey, 2013; Tshimanga et al., 2017) or time to rehospi-
talization (Njagi, Rizopoulos, Molenberghs, Dendale, & Willekens, 2013) amongst others.
Within survival analysis framework, the outcome variable is event time (failure time or
survival time) (Rizopoulos, 2012). The main distinguishing characteristics of survival anal-
ysis from other standard statistical techniques is censoring i.e., the time to an event of
interest is not fully observed for all patients under study (Rizopoulos, 2012) (Colle�, 2015;
Rizopoulos, 2012). Several types of censoring exist:

1. Location of the true event time with respect to the censoring time: right, le� and
interval.

2. Probabilistic relation between the true event time and the censoring time: informative
and non-informative

In our analysis, we assumed that censoring mechanism was non-informative right cen-
soring. Methods of analysing survival data can either be through a parametric model
typically Weibull, Gamma or Exponential distributed baseline hazard function or through
a semi-parametric Cox proportional hazards model (Colle�, 2015). Throughout our anal-
ysis, we applied Cox proportional hazards model to determine priori selected baseline
covariates (excluding CD4 count) associated with time to wound healing. In Section 3.2,
we have given an in-depth review of the Cox proportional hazards model.

1.1.2 Longitudinal Data

Longitudinal data refers to measurements on one or more variables that are repeatedly
collected over time for each subject (Verbeke, 1997). The key components of longitudinal
data are that the repeated measurements of a variable within a subject tend to be corre-
lated with each other. This means that there may be within-subject correlations. The sec-
ond component stems from inter-subject variability. This implies that the heterogeneity
between subject profiles and the measurements across subjects are o�en assumed to be
uncorrelated (Verbeke, 1997). The measurements between two subjects can be assumed
independent if the subjects are randomly selected. Further, there are some measurement
errors due to biological variation especially for biomarkers like CD4 count (Verbeke, 1997).
Longitudinal data can either be continuous (Verbeke, 1997) or discrete (Molenberghs &
Verbeke, 2006). In longitudinal studies, we expect positive correlation between repeat-
edly collected measurements from the same subject. This characteristic therefore makes
it inappropriate to analyse our data using classical regression models like the ordinary
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linear regeression models or generalized linear models that assume independence of ob-
servations (Rizopoulos, 2012). There are two popular methods for analysing longitudinal
continuous data: a generalized estimating equations model (GEEs) and mixed e�ects re-
gression (MER) (Garcia & Marder, 2017). We can model both time-independent covariates
and time-dependent covariates (e.g., CD4 count) when we use the two models. Besides
that, these two models can account for unbalanced and missing values in a covariate
without the need for imputing the missing values. Despite this, GEEs are not e�icient
when the missingness is as a result of missing at random (MAR). On the contrary, MER
models are e�icient provided that the mean and variance-covariance structure are cor-
rectly specified (Garcia & Marder, 2017; Fitzmaurice, Laird, & Ware, 2012). Because of this
flexibility, MERs are highly preferred to GEEs when analysing longitudinal data (Garcia
& Marder, 2017). In this study we have applied MER more specifically linear mixed e�ects
model to analyse CD4 count. Linear mixed e�ects model have been extensively discussed
in Section 3.3.

1.2 Background

Past clinical trials by Auvert et al. (2005); Bailey et al. (2007); Gray et al. (2007) reveled
that medical male circumcision (MMC) reduces HIV transmission among heterosexual
persons by approximately 50%-60%. In areas where male circumcision is less practiced
and epidemic mostly severe, medical male circumcision can be away of reducing HIV
epidemic (Halle� et al., 2008). Based on this strong and consistent evidence, in 2007 med-
ical male circumcision was proposed as one of the HIV prevention strategies by the Joint
United Nations Programme on HIV/AIDS (UNAIDS) together with the World Health Or-
ganisation (WHO) (Njeuhmeli et al., 2011). Previously before the era of test and treat, CD4
count threshold of less than 350 cells/µL had been the most popularly used biomarker for
initiation of antiretroviral therapy (ART) (Kigozi et al., 2014).

It is against this backdrop that Kigozi et al. (2014); Rogers et al. (2013); Tshimanga et al.
(2017) conducted 3 di�erent studies to investigate the relationship between CD4 count
and wound healing time following circumcision. However, Kigozi et al. (2014); Rogers
et al. (2013) relied on the Cox proportional hazards models approach to establish the
underlying association between wound healing time and baseline CD4 count. On the
other hand, Tshimanga et al. (2017) employed a binomial probability test to evaluate
equivalence of proportion of patients healed by baseline CD4 count ( < 500 cells/µL Vs.
≥ 500 cells/µL).

While applying these analyses methods in their studies, Kigozi et al. (2014); Rogers et al.
(2013); Tshimanga et al. (2017) only utilized CD4 count at baseline. By only utilizing the
baseline CD4 count, the true potential of CD4 count in describing the progression of the
disease and its relationship to wound healing was potentially not revealed.
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Thus, to optimally understand the association between CD4 count and wound healing
time, we used a joint modelling framework. In this framework, we will utilize patients’
entire longitudinal history of CD4 count, while also properly accounting for measurement
error due to biological variation and missing measurements.

1.3 Problem Statement

Three clinical studies done in the past reported consistent results on the association be-
tween CD4 count and time to wound healing among HIV positive men. A study con-
ducted in Uganda using surgical dorsal slit reported that the median time to wound
healing among HIV positive patients was 4 weeks. However, time to wound healing did
not vary based on the baseline CD4 count of either < 350 cells/µL or ≥ 350 cells/µL (p-
value>0.05) (Kigozi et al., 2014). Similarly, a Prepex study in Zimbabwe reported that the
median time to wound healing among HIV positive patients was 42 days. Still, time to
wound healing of patients with baseline CD4 count < 500 cells/µL was not di�erent from
the patients with baseline CD4 count ≥ 500 cells/µL (p = 0.66) (Tshimanga et al., 2017).
Lastly, a study in Kenya by Rogers et al. (2013) reported that wound healing time did not
vary by baseline CD4 count among HIV-positive patients (p = 0.20). Specifically Rogers
et al. (2013) found out that the mean wound healing time was 34.5 days for those with
CD4 count ≤ 350 cells/µL and 31.9 days for those with CD4 count > 350 cells/µL.

The common limitation of these three studies was that only baseline CD4 count was uti-
lized. By only using the baseline CD4 count as opposed to the whole longitudinal history,
the opportunity to assess its trajectory over time and its relationship to wound healing
time was lost. In the present study, CD4 count was collected for every patient on the cir-
cumcision day and at subsequent weekly follow up visit until wound was certified to be
fully healed. Indeed, in many health research, the longitudinal biomarkers are recorded
together with event time of interest. If the biomarkers are repeatedly collected over time,
then it is most informative to utilize all the information collected when estimating the
model parameters. The present study sought to fill in these gaps by applying a joint mod-
elling framework. In the best of our knowledge, no published study in the past has applied
joint modelling technique to clearly understand the association between longitudinally
collected CD4 count and wound healing time following circumcision. Joint modelling
technique is an improvement over traditional Cox proportional hazards model because
it utilizes data from both longitudinal and survival processes simultaneously leading to
less biased estimates of the parameters.
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1.4 Objectives

1.4.1 Overall Objective

To determine the association between CD4 count and wound healing time in HIV positive
men following circumcision.

1.4.2 Specific Objectives

1. To determine the association between CD4 count and wound healing time, consider-
ing patients’ entire CD4 count longitudinal history.

2. To determine the association between the rate of change in CD4 count and wound
healing time.

1.5 Significance of Study

Our study reveals the relevance of the application of joint models to answer specific epi-
demiological questions in HIV research. It also paves way to explore other complex as-
sociation structures between longitudinal information and time to event outcomes in
medical male circumcision studies.

The remainder of our thesis is arranged as follows: In Chapter 2, we have reviewed the
joint modelling framework. Chapter 3 describes statistical methods on joint models. The
study then applies aforementioned methodologies to real HIV data in Chapter 4. Chapter
5 is a discussion of results and conclusions arrived at in the study.
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2 Literature Review

2.1 Preliminaries

Chapter 2 gives a review of the joint modelling framework, extensions, applications, un-
derlying assumptions, strengths and weaknesses.

2.1.1 Review of Joint Modelling

Joint models for longitudinal information and event time outcomes entails improving
inferences for event time outcomes while accounting for the longitudinal information
collected intermi�ently and with error (Njagi et al., 2013; Rizopoulos, 2012). Several stud-
ies in the past have mostly applied Cox proportional hazards model using the baseline
covariates. Such an approach is only reliable when we assume that the covariates re-
main constant during the study period. Unfortunately, this is an unlikely case especially
when dealing with biomarkers. Another approach commonly used is by incorporating the
longitudinal time-dependent outcome into the Cox model (Rizopoulos, 2010). But, one
needs to first determine whether the longitudinal covariate is an endogenous variable
(also known as internal) or an exogenous variable (also known as external) (Rizopoulos,
2012). Endogenous variables are subject dependent i.e., their future existence is directly
related to the failure status of the subject; are intermi�ently collected and contaminated
with error. However, measurement errors are not the distinguishing characteristics be-
tween endogenous and exogenous variables. This is because an exogenous variables like
air can also be error contaminated. The main distinguishing characteristic of the en-
dogenous variables is that thy are intermi�ently collected i.e., their complete history is
not available (Rizopoulos, 2012). This means that the levels of the biomarkers for a subject
are only known for particular times that a subject visits a study site to provide data, and
not in between the visit times. Endogenous variables include, for example, CD4 count for
HIV-positive patients, the prothrombin index for patients with liver cirrhosis and serum
creatinine level for patients with primary biliary cirrhosis (Rizopoulos, 2012).

Nonetheless, exogenous variables (e.g., air temperature) are not subject specific mean-
ing that their values are not a�ected by the subject’s failure status (Rizopoulos, 2012).
Their values can be predicted too, meaning that their values at any time point is known
infinitesimally before the same time point (Rizopoulos, 2012). In some instances the com-
plete history of external measurements are predetermined from the beginning of the
study.
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Therefore extended Cox models or time-dependent Cox models are only reliable when
dealing with exogenous time-dependent variables (Rizopoulos, 2012). This is because ex-
ogenous variables are neither intermi�ently collected nor subject dependent (Rizopoulos,
2012). The two approaches also lack the flexibility to incorporate measurement errors
synonymous with longitudinal outcomes. As a result, parameter estimates obtained tend
to be biased (Rizopoulos, 2012).

To address these limitations of the time-dependent Cox model and extended Cox model,
Fauce� and Thomas (1996); Tsiatis, Degru�ola, and Wulfsohn (1995); Wulfsohn and Tsi-
atis (1997) proposed a framework in joint models for repeated measures and event time
outcomes. In the last 20 years, joint models have grown in popularity (Alsefri, Sudell,
García-Fiñana, & Kolamunnage-Dona, 2020). This popularity has been occasioned by
the ability of joint models to give less biased results compared to other classical analysis
techniques used in survival analysis (Rizopoulos, 2012). Joint models give less biased esti-
mates of the parameters by accounting for the association between the repeated marker
and the survival process (Hickey, Philipson, Jorgensen, & Kolamunnage-Dona, 2016).

The development of joint models started o� as a simple LVCF (last value carried forward)
method, followed by the two-stage method and finally to the shared random e�ects
method (Henderson, Diggle, & Dobson, 2000; Lawrence Gould et al., 2015; Rizopoulos,
2012; Tsiatis & Davidian, 2004; Verbeke, Molenberghs, & Rizopoulos, 2010; Wulfsohn &
Tsiatis, 1997). Tsiatis and Davidian (2004) have given an in-depth look into the original
works on the approaches used in joint models for the repeated marker and survival pro-
cesses, including those of Henderson et al. (2000); Wang and Taylor (2001); Wulfsohn and
Tsiatis (1997), just to mention a few.

The assumption in the the basic joint models is that time to an endpoint of a particular
interest is dependant on the current true level of the repeated marker at the same time-
point t. However, it will not always be true that this form of association structure will al-
ways be the most appropriate for determining the association between the two processes
(Rizopoulos, 2012). We risk making incorrect inferences if we misspecify the parametriza-
tion structure between these two processes. To overcome this challenge, some alterna-
tive parametrization structures have been developed. They include: the time-dependent
slopes parametrization ; the shared random-e�ects parametrization; cumulative e�ects
parametrization; lagged e�ects parametrization and interaction e�ects parametrization
(see for example Cekic, Aichele, Brandmaier, Köhncke, and Ghisle�a (2019); He and Luo
(2016); Lawrence Gould et al. (2015); Papageorgiou, Mau�, Tomer, and Rizopoulos (2019);
Rizopoulos (2012)). Further, for highly nonlinear longitudinal profiles of subjects, it is
appropriate to use splines, or higher order polynomials to describe the evolution pa�erns
of individuals’ profiles (Fitzmaurice et al., 2012; Rizopoulos, 2012; Verbeke, 1997).
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To date, there have been myriad extensions of the standard joint models. Brown, Ibrahim,
and DeGru�ola (2005); R. Brown and G. Ibrahim (2003), for example broadened linear
growth curve models to less restrictive non-parametric models for the repeated biomark-
ers using cubic B-splines. M. Yu, Law, Taylor, and Sandler (2004) examined a cure model
in analysing survival data in the prostate cancer study. R. M. Elasho�, Li, and Li (2008);
Huang, Dagne, and Wu (2011) expanded the Cox proportional hazards model to com-
peting risks. Njagi et al. (2016) combined conjugate and normally distributed random
e�ects of repeated measures and event time outcomes in joint models to improve on
the model fitness. Baart, Boersma, and Rizopoulos (2019) extended the application of
joint models in case-cohort study design. Some recent applications of joint models in
HIV/AIDS include: Buta, Goshu, and Worku (2015); Dessiso and Goshu (2017); Erango,
Goshu, Buta, and Dessisoa (2017); Mchunu et al. (2020); Seyoum and Temesgen (2017);
Temesgen, Gurmesa, and Getchew (2018); T. Yu, Wu, and Gilbert (2019).

Recently, Rizopoulos has made good input in joint modeling framework, first by giv-
ing some detailed theoretical and practical overview of the joint modeling framework
(Rizopoulos, 2012) and then proceeding to develop two packages in R for fi�ing the joint
models: a Bayesian approach, JMbayes package (Rizopoulos, 2014) and a maximum like-
lihood approach, JM package (Rizopoulos, 2010).

The only challenging task with joint models is that it can be very computationally cum-
bersome to obtain maximum likelihood estimates of the parameters as the number of
random e�ects increases (Bernhardt, Zhang, & Wang, 2015; Njagi et al., 2013; Rizopou-
los, Verbeke, & Lesa�re, 2009; Rizopoulos, 2012).
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3 Methodology

3.1 Introduction

Joint models is used primarily when the key interest is to explore the relationship of lon-
gitudinal and event time processes. The underlying idea is to connect the two processes
using a common latent structure (Sène, Bellera, & Proust-Lima, 2013). The discussions
on survival analysis, longitudinal analysis and joint models are in Sections 3.2, 3.3 and
3.4 respectively.

3.2 Survival Analysis

The goal of many longitudinal studies is to follow patients in the study until a pre-
specified endpoint is observed. Within the survival analysis, the key response or outcome
variable is event time outcome also known as survival time or failure time (Rizopoulos,
2012). Models applied in survival analysis can simultaneously analyse multiple indepen-
dent prognostic factors in addition to studying di�erences in treatments while controlling
for the heterogeneity and imbalanced baseline factors (Rizopoulos, 2012). Survival anal-
ysis relies on the distribution of survival times, and two ways of illustrating the survival
times are by either the survival function or the hazard function (Moore, 2016).

3.2.1 The Survival and Hazard Functions

Assuming T ∗ to be the true survival time, then we can write the survival function as:

S(t) = Pr(T ∗ > t) = 1−F(t) =
∫

∞

t
p(u) du, (3.2.1)

F(t) = p(T ∗ ≤ t),

where S(t) the probability of subject i surviving up to time-point t.

The hazard function, h(t) is defined as the instantaneous rate for an event occurring in
the time interval [t, t + dt) given the subject survives up to time t (Rizopoulos, 2012). We
can formulate it as follows:
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h(t) = lim
δ t→0

Pr(t ≤ T ∗ < t +δ t|T ∗ ≥ t)
δ t

, t > 0

= lim
δ t→0

Pr(t ≤ T ∗ < t +δ t)
δ tPr(T ∗ > t)

= lim
δ t→0

F (t +δ t)−F(t)
δ tPr(T ∗ > t)

=
f (t)
S(t)

(3.2.2)

Cumulative hazard function, H(t) is another major quantity in survival analysis. It de-
scribes the accumulated hazard up until time t. It can also be interpreted as the expected
observed events by time t (Rizopoulos, 2012). It is wri�en in the following:

H(t) =
∫ t

0
h(u) du (3.2.3)

The rest of the functions can be derived from S(t), h(t) or H(t):

h(t) =− d
dt

log
(
S(t)

)
H(t) =−log

(
S(t)

)
S(t) = exp

(
−H(t)

)
= exp

{
−
∫ t

0
h(u)du

} (3.2.4)

For Equation 3.2.1 or Equation 3.2.2 or any other characteristic of the survival time to hold,
we must take into consideration non-informative right censoring (Rizopoulos, 2012). We
begin by assuming that Ci is the censoring time for the ith individual in the study. Also
assume that δi is the event indicator expressed as:

δi =

{
1, event (T ∗i ≤Ci)

0, censored (T ∗i >Ci)

it then follows that the observed time for the ith individual is given by:

Ti = min(T ∗i ,Ci).
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3.2.2 Estimation of the Survival Function

To estimate the survival function, S(t), we use a Kaplan-Meier (K-M) estimate. K-M esti-
mator is a non-parametric statistical method of assessing the number of events occurring
at each particular time point. Let di represents the number of subjects with observed
event time ti for the ith observation and ri the number of subjects at risk before time ti,
then the K-M estimate is defined as:

Ŝ(t) =

1 i f t j < t1

∏
n
i=1

[
1− di

ri

]
i f ti ≤ t j ≤ tn

(3.2.5)

3.2.3 Cox Proportional Hazards Model

It is a popular semi-parametric regression model used in characterising the association
between survival times and baseline covariates (R. Elasho�, Li, et al., 2016). This model
allows us to test if survival times between two or more groups are di�erent a�er adjusting
for other covariates. The model also assumes that baseline covariates have multiplicative
e�ects on the risk of an event. Note that some books also refers Cox proportional hazards
models as relative risk regression model or relative hazards model since it assumes a
multiplicative e�ect of covariates on the hazard scale. For the ith subject, we formulate
the model as:

hi(t|wi) = h0(t)exp{γTwi}, (3.2.6)

where hi(t) denotes hazard of an event for patient i at time t, wT
i = (wi1,wi2, · · · ,wip) a

set of baseline covariates, γ the parameter vector of the baseline coariates and h0(t) the
unspecified baseline hazard.

We can further express exp(γT wi) as:

λi = γ1wi1 + γ2wi2 + · · ·+ γpwip,

where λi is the linear combination of the p covariates (Colle�, 2015).

The general Cox proportional hazard model can then be expressed in log scale as:

log
(
hi(t|wi)

)
= log

(
h0(t)

)
+ γ1wi1 + γ2wi2 + · · ·+ γpwip,

adjusted γ j explains the magnitude of adjustments in the log hazard for a unit increase in
w j holding other covariates constant. Consequently, exp(γ j) indicates the hazards ratio
at any time t for two groups of subjects. We can write it as follows:
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hi(t|wi)

hk(t|wk)
= exp

{
γ

T (wi−wk)
}

3.2.4 Estimating Parameters in Cox Proportional Hazards Model

Regression coe�icients of interest, namely γ , are estimated through a partial likelihood
function (R. Elasho� et al., 2016). The partial likelihood for γ according to Cox (1972) is
defined as:

L(γ) =
n

∏
1=1

exp(γT w(g))

∑l∈R(t(g)) exp(γT wi)
, (3.2.7)

where distinct n ordered observed failure times are expressed as: t1 < t2 < · · · < tn; w(g)
is the vector of the baseline covariates for subjects who fail at the gth ordered event time.
R(t(g)) is the risk set and denotes a set of subjects who are at risk at time t(g).

Subjects who have failure times constitute the product in the likelihood function in Equa-
tion 3.2.7. Subjects who are at risk only contribute to the denominator of the likelihood
function.

Assuming non-informative censoring, the likelihood function shown in Equation 3.2.7 can
take the form:

L(γ) =
n

∏
1=1

{ exp(γT wi)

∑l∈R(ti) exp(γT wi)

}δi
, (3.2.8)

Equation 3.2.8 can further be expressed as:

log L(γ) =
n

∑
i=1

δi

[
γ

T wi− log
{

∑
Tj≥Ti

exp(γT w j)
}]

(3.2.9)

MLE of the parameter γ can be computed by maximizing 3.2.9 using Newton-Raphson
procedure (Colle�, 2015).

3.3 Linear Mixed E�ects Model

Some literature refers to it as random-e�ects model since it extends from the classical
linear regression models by introducing the random e�ects terms in the model. LME is
used in modelling longitudinal information.

A general LME model for the normal longitudinal responses yi is expressed as:

yi = Xiβ +Zibi + εi, (3.3.1)
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where yi = (yi1,yi2, · · · ,yim)
T denotes a mi×1 vector of longitudinal information for sub-

ject i, β denotes a p× 1 vector of fixed parameters while Xi is a mi× p known design
matrix of explanatory variables. bi is a q×1 vector of random e�ects that completes the
characterization between subject variation. Further, Zi is a mi× q known design matrix
corresponding to random e�ects bi, with q ≤ p, and lastly εi = (εi1,εi2, · · · ,εimi)

T rep-
resents the mi×1 vector of measurement or sampling errors that completes the charac-
terization of within subject-variation. Further, let bi be multivariate normally distributed
with mean 0 and the covariance matrix D i.e., bi ∼ N(0,D), (Rizopoulos, 2012). The sam-
pling errors, εi(t), are also assumed to be independent of bi, normally distributed with
mean 0 and variance σ2Imi i.e., Cov(bi,εi) = 0 and εi ∼ N(0,σ2Imi).

Next, we let ∑i to represent the diagonal matrix, σ2Imi, with an mi×mi identity matrix,
Imi , the covariance of yi is then wri�en as follows:

Cov(yi)≡Vi = Cov(Zibi)+Cov(εi)

= ZiCovZT
i +Cov(εi)

= ZiDZT
i +σ

2Imi

= ZiDZT
i +Σi

Implying that
yi ∼ N

(
Xiβ ,ZiDZT

i +Σi
)

3.3.1 Estimating LME Models

To estimate the parameters in the LME, we will apply the the principles of maximum
likelihood. We let the marginal density of the observed outcome for the ith subject to be
expressed as:

p(yi) =
∫

p(yi|bi) p(bi) dbi.

If we assume independence across subjects, then the log-likelihood of the LME takes the
form:

l(θ) =
n

∑
i=1

log p(yi;θ)

= log
∫

p(yi|bi;β ,σ2)p(bi;θb) dbi,

(3.3.2)

where θ represents a full parameter vector decomposed into the sub vectors, θ T =(β T ,σ2,θ T
b ),

with θb = vech(D) and
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p(yi;θ) =−n
2

log(2π)− 1
2

n

∑
i=1

log|Vi|−
1
2

{ n

∑
i=1

(yi−Xiβ )
TV−1

i (yi−Xiβ )
}

(3.3.3)

|Vi| is the determinant of square matrix Vi. Minimizing Equation 3.3.4 is similar to maxi-
mizing the log-likelihood with respect to β

n

∑
i=1

(yi−Xiβ )
TV−1

i (yi−Xiβ ) (3.3.4)

We proceed with ge�ing an estimator of β that minimizes 3.3.4. It takes the form:

β̂ =
{ n

∑
i=1

(XTV−1
i Xi)

−1
} n

∑
i=1

(XTV−1
i yi) (3.3.5)

The formulation on equation 3.3.5 relies on the assumption that Vi, the covariance matrix,
is known (Fitzmaurice et al., 2012). When Vi is known, then for any selection of Vi the
GLS (generalise least squares) estimate of β is unbiased (Fitzmaurice et al., 2012): i.e.,

E(β̂ ) = β (3.3.6)

The sampling distribution of β̂ is multivariate normal with mean, β and covariance ma-

trix,
{

∑
n
i=1(X

TV̂−1
i Xi)

}−1
in substantially large samples (or asymptotically). The covari-

ance matrix of β̂ can be wri�en as:

Cov(β̂ ) =
{ n

∑
i=1

(XTV̂−1
i Xi)

}−1
(3.3.7)

However, we usually do not know Vi therefore we typically estimate Vi from the data
at hand (Fitzmaurice et al., 2012). To obtain the ML estimate of Vi, we maximize the
log-likelihood of l(θb,σ

2) for a given β value (Rizopoulos, 2012). Once we get the ML
estimate of Vi, we then proceed by substituting the estimate into the generalised least
squares (GLS) estimator of β given by 3.3.5 to obtain MLE of β :

β̂ =
{ n

∑
i=1

(XTV̂−1
i Xi)

−1
} n

∑
i=1

(XTV̂−1
i yi) (3.3.8)

Interestingly in large samples (or asymptotically) , the estimator of β that substitutes
the ML estimate of Vi has all the same properties as when Vi is actually known. That
is equations 3.3.6 and 3.3.7 hold (Fitzmaurice et al., 2012). However we risk ge�ing bi-
ased ML estimate of Vi under finite samples. Specifically, the diagonal elements of Vi are
underestimated under ML estimate in finite samples (Fitzmaurice et al., 2012).

In order to address the problem of ML estimator in a general case of multivariate regres-
sion when estimating matrixVi, we use restricted maximum likelihood (REML) estimation
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(Fitzmaurice et al., 2012; Verbeke, 1997). In REML estimation of Vi, the likelihood does not
contain β and is defined only in terms of Vi (Fitzmaurice et al., 2012; Rizopoulos, 2012).
When we maximize the slightly modified log-likelihood function we get:

l
(
θb,σ

2) = −n− p
2

log(2π)+
1
2

log

∣∣∣∣∣ n

∑
i=1

XT
i Xi

∣∣∣∣∣− 1
2

log

∣∣∣∣∣ n

∑
i=1

XT
i V−1

i Xi

∣∣∣∣∣
− 1

2

n

∑
i=1

{
log|Vi|+

(
yi−Xiβ̂

)T
V−1

i

(
yi−Xiβ̂

)}
∝−1

2

n

∑
i=1

log|Vi|−
1
2

n

∑
i=1

(
yi−Xiβ̂

)T
V−1

i

(
yi−Xiβ̂

)
− 1

2
log

∣∣∣∣∣ n

∑
i=1

XT
i V−1

i Xi

∣∣∣∣∣
The estimate V̂i obtained by maximization of the modified log-likelihood takes into ac-
count the fact that parameter β has also been estimated (Fitzmaurice et al., 2012). How-
ever, neither the MLE nor the REML estimator for the unique parameters in Vi has a
closed form solution hence need for numerical optimization algorithm (Rizopoulos, 2012).
The two frequently used numerical optimization algorithms are the E-M (Expectation-
Maximization) algorithm and the Newton-Raphson algorithm (Rizopoulos, 2012).

Generally, the restricted maximum-likelihood estimator is less seriously biased than the
maximum-likelihood estimator of Vi. It is therefore more appropriate to use REML for
estimation of Vi (Fitzmaurice et al., 2012). However, the di�erence between ML estimation
and REML estimation becomes less important when n is substantially larger than p i.e.
sample size is substantially larger than the dimension of β (Fitzmaurice et al., 2012).

3.4 Joint Modelling

In joint modelling, the survival submodel is coupled with the longitudinal submodel
through a shared latent structure (Njagi et al., 2013). In the next three sub-sections,
we will be looking into the survival submodel, the longitudinal submodel and finally the
joint model.

3.4.1 The Survival Submodel

For the ith subject, we assume that T ∗i and Ci are the true event time and censoring time
respectively. Also assuming that δi = I(T ∗i ≤Ci) is the event indicator and Ti = min(T ∗i ,Ci)

the observed time, then the relative risk model can be expressed as:

hi(t|Mi(t),wi) = h0(t)exp
{

γ
T wi +αmi(t)

}
, t>0, (3.4.1)
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where Mi(t) =
{

mi(s),0 ≤ s < t
}

denotes history of the true unobserved longitudinal
value up to time t; h0(·) indicates the unspecified baseline hazard function and wi is the
baseline covariates with associated vector of regression coe�icients γ . Finally α quantifies
the association between the longitudinal marker and the risk of an event.

Equation 3.4.1 is the basic joint model described by the current value parametrization.
The basic joint model can be extended to account for complex association structures. As
highlighted in Chapter 2, one of these complex association structures can be captured
through time-dependent slopes parametrization. The relative risk survival submodel for
the time-dependent slopes parametrization then takes the form:hi(t) = h0(t)exp

{
γT wi +α1mi(t)+α2m

′
i(t)
}
,

m
′
i(t) = d

dt mi(t).
(3.4.2)

Under time-dependent slopes parametrization, we allow hazard to depend on both the
current true level of the marker, mi(t) at time point t and its true rate of change, m

′
i(t) at

the same time point t. Time-dependent slopes parametrization is very useful for distin-
guishing between subjects who have, at a specific time point, same level of the marker
but who di�er in the slopes (e.g., the rate of change in the marker of one subject at a par-
ticular time point could be increasing while for the other subject it could be decreasing
at the same time point).

In joint modelling framework, it is advisable to use parametric but flexible models for
the baseline hazard. Leaving it unspecified could lead to the standard errors of the pa-
rameters being underestimated. More o�en, piecewise-constant and regression splines
options work e�iciently. The piecewise-constant model baseline risk function is wri�en
as (Rizopoulos, 2012):

h0(t) =
Q

∑
q=1

ξqI(vq−1 < t ≤ vq), (3.4.3)

where 0 = v0 < v1 < · · ·< vq represents a split of the time scale.

Under regression spline model, the log baseline risk function (log h0(t)) is extended into
B-spline basis functions for cubic spline, i.e., (Rizopoulos, 2012):

log h0(t) = γh0,0+
Q

∑
q=1

γh0,qBq(t,v), (3.4.4)

where Bq(t,v) denotes the q-th basis function of the spline with knots v1, · · · ,vQ and γh0

a vector of spline coe�icients. More literature on the the choice and usage of these these
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two baseline risk functions can be found in Rizopoulos (2012). In the present study we
have employed a piece-wise constant baseline risk function.

3.4.2 The Longitudinal Submodel

Since longitudinal measurements are error contaminated and collected intermi�ently at
some few time points ti j, we need to estimate the true unobserved measurement mi(t).
This is done by applying a suitable model to describe the evolution of the marker over time
for each subject. Assuming that longitudinal measurements are normally distributed, the
model takes the form:


yi(t) = mi(t)+ εi(t) = xT

i (t)β +zT
i (t)bi + εi(t),

bi ∼ N(0,D)

εi(t)∼ N(0,σ2)

εi(t) is independent of bi

(3.4.5)

with xT
i (t) the design matrix vector for the fixed e�ects β while zT

i (t) the design matrix
vector for the random e�ects bi. β is the parameter vector, εi(t) ∼ N(0,σ2). The mea-
surement error, εi(t), is assumed independent of the random e�ects bi, with bi ∼N(0,D).

Since survival function, Si(t) depends on the whole history of the biomarker, it is impor-
tant to correctly specify the time structure of the time in xi(t) and zi(t) and possibly the
interaction terms between the time structure and the baseline covariates. If subjects ex-
hibit highly non-linear longitudinal profiles, then consider using high-order polynomials
or splines.

3.4.3 Estimation of Joint Models

To estimate parameters in the joint models, these three methods can be applied: (Wu,
Liu, Yi, & Huang, 2012):

1. Two-stage methods

2. Bayesian Markov Chain Monte Carlo (MCMC) method

3. Likelihood methods

However, our current study strictly applied the likelihood methods to estimate parame-
ters.
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Two-stage methods

A two-stage method is designed as follows:

1. Step I: The estimates of the parameter and predictions are calculated for longitudinal
outcome without taking into account survival outcome.

2. Step II: The survival model is fi�ed by utilizing the predicted longitudinal values as
true covariates.

Whereas the two-stage approach is pre�y easy to be implemented with the existing so�-
ware, it o�en produces biased results (Wu et al., 2012) as shown in some simulation stud-
ies like Dafni and Tsiatis (1998); Sweeting and Thompson (2011); Tsiatis and Davidian
(2001). Following Wu et al. (2012), this approach leads to unbiased results because it does
not utilize information from the longitudinal and the survival process simultaneously in
each model fi�ing step.

Bayesian Markov Chain Monte Carlo (MCMC) method

Alternatively, a Bayesian method incorporates both types of outcomes and simultane-
ously estimates model parameters (Yang, Yu, & Gao, 2016). This method employs the
principle of Markov chain Monte Carlo (MCMC) sampling algorithms (Alsefri et al., 2020;
Yang et al., 2016). Alsefri et al. (2020) gave a comprehensive review on Bayesian MCMC
method under both univariate and multivariate joint models. Bayesian approach is more
flexible when it comes to parameter estimation. Also, estimates from Bayesian approach
are less biased as it utilizes related historical information (Alsefri et al., 2020). However,
overdependence on the prior specification can sometimes lead to invalid estimates (Yang
et al., 2016). Furthermore, autocorrelation and convergence can be a problem when han-
dling many parameters in complex models. Bayesian framework has recently been used
by Baart et al. (2019); Mau�, Steyerberg, Kardys, Boersma, and Rizopoulos (2020) in their
work.

Likelihood methods

Semi-parametric maximum likelihood method proposed by (Henderson et al., 2000; Hsieh,
Tseng, & Wang, 2006; Wulfsohn & Tsiatis, 1997) is the popular estimation method for joint
models (Rizopoulos, 2012). Within the likelihood method, we assume full conditional in-
dependence. This implies that the random e�ects represented by bi takes into account
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both the association between the longitudinal and time-to-event outcomes, and the cor-
relation between the repeated measures in the longitudinal process. We can illustrate the
joint distribution as follows:

p(Ti,δi,yi|bi;θ) = p(Ti,δi|bi;θ)p(yi|bi;θ) (3.4.6)

p(yi|bi;θ) = ∏
j

p
{

yi(ti j)|bi;θ
}

(3.4.7)

Further, assuming non-informative censoring and visiting processes (censoring, timing,
and measurement processes depend only on the observed history and latent random
e�ects and not on the future risk time itself), the log-likelihood contribution for the ith

subject is formulated as:

log p(Ti,δi,yi;θ) = log
∫

p(Ti,δi,yi,bi;θ) dbi

= log
∫

p(Ti,δi|bi;θ)
[
∏

j
p
{

yi(ti j)|bi;θ
}]

p(bi;θ) dbi,
(3.4.8)

with θ the parameter vector, yi the longitudinal information of the ith subject, δi the event
indicator, and

p(Ti,δi|bi;θ) = hi(Ti|Mi(Ti);θ)δiSi(Ti|Mi(Ti);θ)

=
[
h0(Ti)exp

{
γ

T wi +αmi(Ti)
}]δi

exp
(
−
∫ Ti

0

[
h0(t)exp

{
γ

T wi +αmi(t)
}]

dt
)
.

(3.4.9)

The joint density for the longitudinal outcome together with the random e�ects is of the
form:

p(yi|bi;θ)p(bi;θ) = ∏
j

p
{

yi(ti j)|bi;θ
}

p(bi;θ)

= (2πσ
2)−ni/2exp

{
− ‖yi−Xiβ −Zibi‖2

2σ2

}
× (2π)−qb/2det(D)−1/2exp

(
−bT

i D−1bi/2
)
,

where qb is the dimensionality of the random-e�ects vector, and ‖x‖ =
{

Σix2
i
}1/2 indi-

cates the Euclidean vector norm.
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Maximizing the log-likelihood function l(θ) = ∑i log p(Ti,δi,yi;θ) with respect to θ can
be achieved using either Expectation-Maximization (E-M) algorithm or the Newton-Raphson
(Rizopoulos, 2012). However, E-M algorithm has been traditionally advocated for in the
joint modelling literature (treating bi as missing data), mainly due to the closed-form
solution of the parameters (Rizopoulos, 2012). Unfortunately, the main weakness of the
E-M algorithm is slow convergence at the maximum (Rizopoulos, 2012).

Implementation of Expectation-Maximization Algorithm

Two steps exist in this process: the Expectation-step also known as the E-step and the
Maximization-step also known as the M-step (Rizopoulos, 2012). In the Expectation-step,
we fill the missing data using the observed data and current parameters estimates by con-
ditional expectation; in the Maximization-step, we maximize the conditional expectation
from step one. The observed log-likelihood function can be expressed as:

log(θ) =
n

∑
i=1
{log p(Ti,δi|bi;θ ,β )+ log p(yi|bi;θ)+ log p(bi;θ)}

In the E-step the expected value of the complete log-likelihood function given the condi-
tional distribution of bi is:

Q(θ |θ m)=
n

∑
i=1

∫
{log p(Ti,δi|bi;θ ,β )+ log p(yi|bi;θ)+ log p(bi;θ)}p(bi|Ti,δi,yi;θ

m) dbi,

The two integrals in Q(θ |θ m) need to be solved numerically using Gaussian quadrature
rules or Monte Carlo sampling.

For the M-step, closed-form solutions can be obtained for the variance and covariance
matrix of residuals and random e�ects respectively. However, the fixed e�ects for every
longitudinal model and parameters in the time-to-event model has to be solved numeri-
cally. The main steps for these parameters are as follows:

Step 1: Estimate the variance of residuals of each longitudinal model by closed form
expressions:

σ̂2 =
1

∑
n
i=1 ni

n

∑
i=1

(yi−Xiβ
m)T (yi−XT

i β
m−2ZT

i E(bi|Ti,δi,yi;θ
m)
)

+ tr(ZT
i ZiVar(bi|Ti,δi,yi;θ

m))+

E(bi|Ti,δi,yi;θ
m)T ZT

i ZiE(bi|Ti,δi,yi;θ
m)
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where tr is the trace function of a matrix, and E, the expectation function.

Step 2: Estimation of variance-covariance matrix of random e�ects bi by

D̂ =
1
n

n

∑
i

Var(bi|Ti,δi,yi;θ
m)

E(bi|Ti,δi,yi;θ
m)E(bi|Ti,δi,yi;θ

m)T

Step 3: Since the parameters of the event time model (θ) and score equations for the fixed
e�ect coe�icient (β ) lack closed form solutions, we proceed and implement the one-step
Newton-Raphson algorithm for these parameters:

β̂
m+1 = β̂

m−

(
∂S(β̂ m)

∂β

)−1

S(β̂ m),

θ̂
m+1 = θ̂

m−

(
∂S(θ̂ m)

∂θ

)−1

S(θ̂ m),

where β̂ m and θ̂ m are values of β and θ at the present iteration, and ∂S(β̂ m)
∂β

and ∂S(θ̂ m)
∂θ

are the corresponding blocks of the Hessian matrix (H-matrix) calculated at β̂ m and θ̂ m.
The score vector’s components then take the form:

S(β ) =
n

∑
i=1

1
σ2 XT

i
(
yi−XT

i β −ZT
i E(bi|Ti,δi,yi;θ

m)
)
+δiαxi(Ti)

− exp(γT wi)
∫ ∫ Ti

0
h0(u)αxi(s)exp

[
α{xT

i (s)β + zT
i (s)bi}

]
× p(bi|Ti,δi,yi;θ) du dbi,

Step 4: In this step, the survival model parameters could be updated too using the Newton-
Raphson algorithm. Similarly the baseline hazard function is estimated non-parametrically
using piecewise-constant function. Score equations used in the Newton-Raphson algo-
rithm are:
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S(γ) =
n

∑
i=1

wi

[
δi− exp(γT wi)

∫ ∫ Ti

0
h0(u)exp

[
α{xT

i (s)β + zT
i (s)bi}

]
× p(bi|Ti,δi,yi;θ) du dbi

]
,

S(α) =
n

∑
i=1

δi{(xT
i (Ti)β + zT

i (Ti)E(bi|Ti,δi,yi;θ
m)}

− exp(γT wi)
∫ ∫ Ti

0
h0(u)exp

[
α{xT

i (s)β + zT
i (s)bi}

]
× p(bi|Ti,δi,yi;θ) du dbi,

S(θh0) =
n

∑
i=1

δi
∂h0(s;θh0)

∂θ T
h0

− exp(γT wi)
∫ ∫ Ti

0

∂h0(Ti;θh0)

∂θ T
h0

exp
[
α{xT

i (s)β + zT
i (s)bi}

]
× p(bi|Ti,δi,yi;θ) du dbi.

The corresponding blocks of the H-matrix for ∂S(β̂ )
∂β

and ∂S(θ̂)
∂θ

can be calculated by central
di�erence approximation.

To get a solution of the expected likelihood function, a pseudo-adaptive Gaussian-Hermit
quadrature rule can be utilized in approximating the integrals Rizopoulos (2012). The
Expectation-step and the Maximization-step iterate to a pre-specified convergence crite-
rion.
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4 Results

4.1 Introduction

The sections in this chapter are divided as follows: Section 4.2 gives a description of the
data used in the study. In Section 4.3, we present the results on the demographic, clinical
and behavioral characteristics of patients enrolled in the study. Section 4.4 are results for
longitudinal analysis of CD4 count using LME model. Section 4.5 are results for time to
wound healing using Cox proportional hazards model. In Section 4.6, we give results on
joint modelling of the two processes. We used the JM package (Rizopoulos, 2010) to fit
the joint models. Other analyses were also done using R so�ware, version 3.5.2.

4.2 Data description and study population

These data were from a prospective cohort study conducted in Kisumu by Nyanza Repro-
ductive Health Society (NRHS). The study’s goals were:- (i)- to determine complete wound
healing time. (ii)- document any adverse events as a result of Prepex circumcision. (iii)-
to study evolution of CD4 counts, viral loads and viral shedding in time following Prepex
circumcision. Each of the 119 patients was planned for a return visit a�er every 7 days
post-circumcision until wound was certified fully healed.

4.3 Demographic, clinical and behavioral characteristics

The mean age of patients in the Prepex study was 35.8 years (95% CI: 34.48 , 37.14) and
about three quarter (73.11%) of them reported to be on antiretroviral treatment (ART).
The mean CD4 count at baseline visit was 482.3 cells/µL (95% CI: 437.98-526.63) and the
median was 437 cells/µL (IQR:298-596). 79.99% of the patients were married and only
2.52% reported not having education. Majority of patients (93.28%) reported having al-
lergy. 82.35% of patients reported to have had sex in the 6 months preceding circumcision
out of which 69.39% (68/98) used condoms at their last sexual intercourse. In addition,
8.51% (8/94) of patients had 2 or more sexual partners in the 6 months preceding circum-
cision. Finally, 15 (12.61%) patients reported consistent alcohol use for 3 or more days
before circumcision. The baseline characteristics of patients enrolled into the study are
as shown in Table 1 and Table 2.



24

4.4 Longitudinal Analysis: modelling CD4 count

CD4 count for all patients was measured at baseline visit (circumcision visit) and at sub-
sequent common weekly follow-up visits until wound was certified fully healed. If values
on CD4 count were missing for any follow-up visit, then it was considered as missing at
random (MAR). Hence, our analysis was based on the available data and the results are
still valid under MAR.

Since our longitudinal analysis was done using LME for continuous outcome variable,
there was need therefore for CD4 count values to be normally distributed. We checked
for normality of CD4 count values by plo�ing histograms and overlaid normal curves for
the original CD4 count values, square root transformed values and log transformed val-
ues. CD4 count values generated from square root function exhibited normal distribution
compared to either log transformed values or original values. We therefore considered
square root CD4 counts in our subsequent analyses. Figure 1, Figure 2 and Figure 3 show
histogram results for the original CD4 count values, square root transformed values and
log transformed values respectively.

Figure 1. Histogram for CD4
count (cells/µL)

Figure 2. Histogram for square
root CD4 count (cells/µL)

Figure 3. Histogram for Log
CD4 count (cells/µL)

4.4.1 Exploring individual profiles and the mean structure

As illustrated in Figure 4, the individual profile plots for 15 randomly selected patients
show that there is heterogeneity at baseline among patients enrolled in the study with
respect to the square root CD4 count. Further, there is variability within and between
patients over time with respect to square root CD4 count. Therefore, there is need to
consider a suitable random e�ects structure in our analysis of square root CD4 count.

The average evolution is important as it describes how the profile for subjects being stud-
ied evolves over time and the results of the exploration helps in determining the best
choice for a fixed-e�ects structure for the LME model (Fitzmaurice et al., 2012; Verbeke,
1997). Figure 5 shows the average profile plot with respect to square root CD4 count over
time. From the average profile plot, we see that the square root CD4 count presents a
quadratic trajectory over time in weeks. This is further tested in Section 4.4.2 whether or
not we need the quadratic time e�ect in our model.
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Figure 4. Individual profile plots (n=15) Figure 5. Mean structure

4.4.2 Tests for need for random e�ects

Random e�ects bi denotes the variability in subject-specific intercepts and slopes, not ex-
plained by the explanatory variables in the model (Verbeke, 1997). It is important there-
fore to conduct a test on whether or not we should retain the random e�ects in our
model. In this study, we conducted a hypothesis test in a hierarchial way by dropping
one random e�ect from the model at a time starting from the highest-order time e�ect
(Drikvandi, Verbeke, Khodadadi, & Partovi Nia, 2013; Verbeke, 1997). The results of the
maximized log-likelihood is given in Table 3.

The main interest is to test for the need for the random slope for the quadratic time
e�ect in the model as exhibited in Figure 5. The LR statistic for testing 2 versus 3 random
e�ects is a mixture of chi-square test with equal weights 0.5 (χ2

2 and χ2
3 ) (Drikvandi et al.,

2013; Verbeke, 1997). The p-value under REML of the LR test is smaller than 0.0001 and
therefore the random slope for the quadratic time e�ect is retained in the model. Table
4 shows the likelihood ratio statistics for comparing 2 versus 3 random-e�ects.

4.4.3 Linear Mixed Model Results

The most satisfactory LME model to use in describing the average change in square root
CD4 count over time was therefore one with the random intercept, linear and quadratic
time e�ects according to the results obtained in Section 4.4.2. The next step was to fit a
saturated model with all the explanatory variables of interest. Table 5 gives us the results
of the saturated LME model.

To improve the overall fitness of the model, we used a step-wise method. First, we
dropped the most insignificant terms in the complex (saturated) model and sequentially
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selected the term for which its removal had the least damaging e�ect on the model and
the process terminated when any further elimination led to a poorer fit.

The AIC (Akaike information criterion) decreased from 5979.97 to 5959.33 a�er dropping
all the statistically insignificant terms, which implies a be�er model fit. Table 6 illustrates
the results of the final model fi�ed under REML estimation method with all the terms be-
ing statistically significant (p-value<0.05). The average square root CD4 count at baseline
for those without allergy was 20.69. For those with allergy, it was more by 3.74.

Figure 6 shows the results of the estimated square root CD4 count over time for patients
in each allergy arm. Patients with allergy (coded as 1) had consistently higher estimated
square root CD4 count than patients without allergy (coded as 0).

Figure 6. Estimated square root CD4 count over time

4.5 Survival analysis: modelling time to wound healing

Out of the 119 patients enrolled into the study, 115 (96.64%) were certified fully healed
during follow up visit while only 4 (3.36%) were lost to follow up. The overall median
complete wound healing time was 49 days (IQR:49-63 ). Figure 7 is a Kaplan-Meir plot
for time to wound healing.
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Figure 7. K-M plot for time to wound healing

To determine e�ects of demographic, behavioral and clinical characteristics on the risk
for wound healing, we applied Cox proportional hazards models. We presented hazard
ratios (HR) alongside their corresponding 95% CI (confidence intervals). The propor-
tional hazards assumption was checked graphically besides doing a formal test on the
Schoenfeld residuals (Colle�, 2015; Moore, 2016).

To asses proportional hazards assumption graphically, we first plo�ed log(-log(survival
function)) against the log of time for di�erent priori selected covariates and the plots
checked for parallelism (Moore, 2016). Figure 8, clearly shows that the log-log plots for
marital status, antiretroviral treatment (ART) status, allergy and sex in the past 6 months
cross more than once. Indeed, there is a problem deciding “how parallel is parallel using
this approach (Moore, 2016). Also, we lack a clear way to assess statistical significance
(Colle�, 2015). There is need therefore to conduct a formal statistical test to aid in good
judgement.

Our next step was to plot Schoenfeld residuals against time by baseline covariates to ex-
amine the assumption of proportionality of the hazards. Figure 9 are plots for Schoenfeld
residuals against time. The dashed lines represent ± 2 standard-error bands around the
smoothing spline fits to the plots. There is no evidence of pa�ern of Schoenfeld residuals
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with time. Consequently, the assumption of proportional hazards holds in all the baseline
covariates.

We further validated our results by testing for the correlation between the Schoenfeld
residuals and time-to-event. A correlation value of 0 implies that the model has met the
proportional hazards assumption. Otherwise, the assumption has been violated. We uti-
lized the function "cox.zph" from the R survival package to conduct a test for each of the
baseline covariates individually and globally (model with all the covariates) (Moore, 2016;
Cekic et al., 2019). The proportional hazards assumption is supported by a statistically
insignificant relationship between residuals and time, and violated by a significant rela-
tionship. The results in Table 7 shows no enough proof to suggest that the assumption
has been violated by any of the covariates.

Since no covariate violated the proportional hazards assumption, we proceeded to the
next step of fi�ing Cox proportional hazards models with the baseline covariates.

First, we assessed each of the priori selected explanatory variables on their own using
an un-adjusted Cox proportional hazards model to establish the reduction in −2 log
likelihoods when compared to a null model. Baseline covariates significantly reducing
the model deviance (p-value<0.05) were then included in the adjusted Cox proportional
hazards model. Explanatory variables that failed to meet this set condition were dropped
from the model. Only marital status was at the borderline statistical significance (p-
value=0.046) while the rest of the baseline covariates were insignificantly associated with
wound healing. The results are illustrated in Table 8 and Table 9.

4.6 Joint model results

We utilized the piecewise constant baseline risk function in our joint modelling frame-
work (Rizopoulos, 2010, 2012). Since marital status was at borderline statistical signifi-
cance, we never considered it in our joint modelling framework. This is mainly because
of the convergence issues we were ge�ing while running our joint models. We there-
fore considered a survival submodel without any of the baseline covariates in our joint
modelling framework.

4.6.1 The current value parametrization

Table 10 shows the results of the joint models under current value and time-dependent
slopes parametrization. The estimate of α is 0.028. This can further be expressed in
hazard ratio as: exp(0.028)=1.028. Implying, a 2.8% higher hazard of wound healing at any
time for a unit increase in the current true value of square root CD4 count at the same
time point. However, the relationship between square root CD4 count and the hazard of
wound healing was statistically insignificant at 0.05 level of significance, (p-value=0.536).
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Hence, the hazard of wound healing at a given time point was not significantly associated
with the true level of square root CD4 count at that time point.

4.6.2 The time-dependent slopes parametrization

The rate of change in square root CD4 count at a given time point, t was a much more
important predictor of hazard of wound healing than the current true value of square root
CD4 count at that same time point, t. Specifically, for patients with the same current true
level of square root CD4 count, the log hazard ratio for a unit increase in the current slope
of square root CD4 count trajectory was 1.514 (95% CI: 1.121; 1.908). Still under time-
dependent slopes association, the association between the current true level of square
root CD4 count and the hazard of wound healing was statistically insignificant, -0.08
(95% CI: -0.197; 0.029). Results are shown in Table 10.
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Table 1. Demographic, clinical and behavioral characteristics

Baseline characteristics n (%)

Ethnicity

Luo 119 (100.00)

Marital Status

Married 94 (78.99)

Not married 25 (21.02)

Highest education level

None 3 (2.52)

Primary 55(46.22)

Secondary 49 (41.18)

Post-secondary 12 (10.08)

ART at baseline

No 32 (26.89)

Yes 87 (73.11)

Reported allergy at baseline

No 111 (93.28)

Yes 8 (6.72)

Past 6 months sexual intercourse

No 21 (17.65)

Yes 98 (82.35)

Past 6 months sexual partners

None 21 (17.65)

One 87 (73.11)

Two 9 (7.56)

Three or more 2 (1.68)

Ever used a condom

No 18 (15.13)

Yes 76(63.87)

Missing 25(21.01)

Condom use at last sex

No 28 (23.53)

Yes 66 (55.46)

Missing 25(21.01)

Alcohol consumption (days per week)

None 71 (59.66)

Less than or one 25 (21.01)

One to two 10 (8.40)

Three or more 15 (12.61)



31

Table 2. Descriptive statistics

Demographic/

Clinical characteristic Mean 95% CI Median IQR

Lower Upper 25% 75%

Bound Bound

Age 35.81 34.48 37.14 36 30 42

Weight 62.22 60.52 63.91 61 56 65.7

CD4 count 482.30 437.98 526.63 437 298 596

Table 3. LME models with the associated log-likelihood value

Random e�ects ML REML

M1: 3 random e�ects −2954.28 −2952.99

M2: 2 random e�ects −2968.87 −2970.60

∗
3 random e�ects constitute random intercept; linear and quadratic slope

∗
2 random e�ects constitute random intercept and linear slope

Table 4. Mixture of chi-square test for comparing random-e�ects models

Hypothesis −2ln(λN) Asymptotic null p-value

distribution

∗
M2 versus M1 35.22 χ2

2:3 <0.0001

∗
REML estimation
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Table 5. Saturated LME model

E�ect Estimate SE p-value

Intercept 17.713 4.768 0.000

Time −0.543 8.257 0.948

Time
2

0.297 4.103 0.942

Age 0.036 0.069 0.598

ART-Yes 1.420 1.087 0.194

Weight 0.011 0.050 0.824

Married-Yes −0.194 1.299 0.882

Allergies-Yes 2.714 1.901 0.156

Past 6 months

sexual intercourse-Yes −0.757 1.377 0.584

Frequent alcohol

use-Yes 0.599 0.985 0.544

Highest education

level-Primary 1.122 3.039 0.713

Highest education

level-Post-Primary −0.120 3.084 0.969

Time:Age −0.069 0.121 0.565

Time
2
:Age 0.020 0.060 0.743

Time:ART-Yes −0.228 1.953 0.907

Time
2
:ART-Yes −0.478 0.997 0.632

Time:Weight 0.014 0.090 0.879

Time
2
:Weight −0.004 0.046 0.924

Time:Married-Yes 3.856 2.350 0.101

Time
2
:Married-Yes −1.759 1.207 0.145

Time:Allergies-Yes 0.871 3.307 0.792

Time
2
:Allergies-Yes −0.059 1.644 0.971

Time:Past 6 months

sexual intercourse-Yes −5.112 2.524 0.043

Time
2
:Past 6 months

sexual intercourse-Yes 3.238 1.308 0.014

Time:Frequent alcohol

use-Yes 0.797 1.718 0.643

Time
2
:Frequent alcohol

use-Yes −0.503 0.858 0.558

Time:Highest education

level-Primary 0.762 4.978 0.878

Time:Highest education

level-Post-Primary 1.698 5.032 0.736

Time
2
:Highest education

level-Primary 0.010 2.358 0.997

Time
2
:Highest education

level-Post-Primary −0.589 2.376 0.804
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Table 6. Final LME model

E�ect Estimate SE p-value

Intercept 20.689 0.493 0.000

Time −1.493 0.671 0.026

Time
2

0.920 0.300 0.002

Allergies-Yes 3.740 1.169 0.002

∗
Note: Model reduction is based on step-wise procedure

Table 7. An investigation to the proportional hazards assumption

E�ect rho chi-square p-value

Age 0.140 3.790 0.052

ART −0.040 0.098 0.754

Weight 0.011 0.374 0.541

Married 0.031 1.405 0.236

Allergies 0.074 0.644 0.422

Past 6 months sexual intercourse 0.025 0.474 0.491

Frequent alcohol consumption −0.088 0.427 0.513

Highest education level −0.073 0.645 0.724

Global −0.071 6.479 0.691

Table 8. Model selection

E�ect -2 log L̂ p-value

null 868.903

Age 866.988 0.166

ART 867.707 0.274

Weight 868.890 0.909

Married 864.612 0.046

Allergies 868.899 0.949

Past 6 months sexual intercourse 866.705 0.138

Frequent alcohol use 868.489 0.520

Highest education level 866.736 0.141
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Table 9. An unadjusted Cox proportional hazards model

E�ect Estimate HR (95% CI)

Age −0.018 0.982 (0.958-1.007)

ART-Yes −0.239 0.787 (0.517-1.199)

Weight 0.001 1.001 (0.980-1.023)

Married-Yes −0.504 0.604 (0.384-0.951)

Allergies-Yes 0.023 1.024 (0.498-2.103)

Past 6 months sexual intercourse-Yes −0.401 0.669 (0.403-1.112)

Frequent alcohol use-Yes −0.123 0.884 (0.608-1.286)

Highest education level-Primary 0.662 1.940 (0.604-6.229)

Highest education level-Post-Primary 0.460 1.585 (0.496-5.067)

Table 10. Joint model results

Current value parameterization

E�ect Estimate SE z p-value

Longitudinal Process

β0 20.690 0.491 42.124 < 0.0001

Time −1.571 0.685 −2.292 0.0219

Time
2

0.978 0.316 3.091 0.0020

Allergies-Yes 3.727 1.157 3.220 0.0013

Event Process

Assoct 0.028 0.045 0.620 0.5356

Time-dependent slopes parameterization

E�ect Estimate SE z p-value

Longitudinal Process

β0 20.301 0.412 49.283 < 0.0001

Time −0.923 0.688 −1.341 0.1798

Time
2

0.665 0.309 2.152 0.0314

Allergies-Yes 5.126 0.436 11.759 < 0.0001

Event Process

Assoct −0.084 0.058 −1.457 0.1450

Assoct.s 1.514 0.201 7.551 < 0.0001
∗
Note: Estimates are based on the piecewise constant baseline risk function
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5 Discussion and Conclusion

5.1 Discussion

This study demonstrated the usefulness of joint models to establish the association be-
tween longitudinal information and time to event outcomes. Prior to the current study,
there was no published work on joint modelling of CD4 count and wound healing time
in HIV-positive men following circumcision.

The linear mixed e�ect model was used to characterise CD4 count while Cox proportional
hazards model was used to model time to wound healing. To estimate the joint model
parameters, we chose a piecewise constant baseline risk function. In the current study,
we have only studied the association between a single event time outcome (wound heal-
ing time) and a single longitudinal outcome (CD4 count). Some CD4 count values were
missing for some patients at follow-up visits. This is a missing data problem synonymous
with longitudinal studies and we assumed that the missingness mechanism was missing
at random (MAR). Thus, the results obtained from the joint models, are still valid under
MAR.

Previous studies on wound healing time following circumcision have mainly focused on
using Cox proportional hazards model to investigate the association between CD4 count
and time to wound healing. The present study however applied a joint modelling frame-
work.

Linear mixed model with random intercept, linear and quadratic slope produced a be�er
model fit to describe the average evolutions in square root CD4 count over time. Our
choice of the mean structure in the LME model aligns with Temesgen et al. (2018).

Only allergy was significantly associated with CD4 count in the current study. Our results
contradict those obtained by Temesgen et al. (2018) and Mchunu et al. (2020). Temesgen
et al. (2018) for instance reported that weight and functional status were significantly
associated with CD4 count. In addition, Mchunu et al. (2020) reported that gender, age,
log viral load and square root CD8 count were significantly associated with CD4 count.
However, our current results might not be comparable to the results reported by these two
studies because of other reasons like dissimilarities in characteristics of the population
being studied and di�erences in the mean structures used in the LME models. Unlike our
choice of LME model which also had a quadratic time e�ect, Mchunu et al. (2020) applied
a linear mixed e�ect model with only a random intercept and a linear time e�ect.
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In the Cox proportional hazards model, our results showed that only marital status was
associated with wound healing time. This was at borderline statistical significance (p-
value=0.046). On the contrary, Feldblum et al. (2016) identified older persons (25+ years),
adverse events and lesser pain during device removal to be significantly associated with
slow wound healing. Consistent with our results, Rogers et al. (2013) reported that age
and alcohol frequency were not significantly associated with time to wound healing.
Nevertheless, Rogers et al. (2013) identified early post-operative infection and evidence
of tight sutures to be associated with slow wound healing. Unlike our study, Kigozi
et al. (2014) reported that alcohol use among HIV-positive patients with CD4 counts
≥ 350 cells/µL was associated with wound healing at the 4th week of follow up visit (p-
value=0.044). Nonetheless, our insignificant results on the association between wound
healing time and baseline covariates (excluding marital status) echo the results obtained
by Kigozi et al. (2014). Lastly, baseline ART status was not significantly associated with
wound healing time in the current study and it is consistent with the insignificant results
reported by Tshimanga et al. (2017).

Again our results on the association between baseline covariates and time to wound
healing may not be fully comparable to other similar circumcision studies because of
the di�erences in the study designs, circumcision device, definition of complete wound
healing, population characteristics and the statistical analysis techniques employed. For
example, Feldblum et al. (2016) enrolled 427 HIV-uninfected men aged 18–49 years in a
prospective cohort study and further grouped them as either healed or not healed by
day 42. They later on applied a logistic model in their analysis to determine statistically
significant relationships between baseline factors and wound healing time. Additionally,
Rogers et al. (2013) age-matched 108 HIV-positive men with the 215 HIV-negative men
and therefore the Cox proportional hazards model results reported were based on the
age-matched analysis of 108 HIV-positive men and 215 HIV-negative men. However, the
current study enrolled 119 HIV-positive men aged 18-49 years and circumcised them us-
ing a non-surgical device (Prepex). We later on applied a Cox proportional hazards model,
a clear departure from the aforementioned methods used by Feldblum et al. (2016); Rogers
et al. (2013).

There was no significant association between the current true level of square root CD4
count and hazard of wound healing as shown in both current value and time-dependent
slopes parameterization. However under, time-dependent slopes parametrization, hazard
of wound healing was associated with the rate of change in square root CD4 count. In-
deed patients with the same current true level of square root CD4 count at a given point
in time t, could experience di�erent rate of change in square root CD4 count at the same
time point t leading to di�erent progression of their wound healing.

A surgical dorsal slit study in Uganda among HIV positive patients found no significant
association between CD4 count and wound healing time among patients aged≥ 12 years
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old (Kigozi et al., 2014). Similarly in Zimbabwe, a Prepex study among HIV-positive pa-
tients reported no significant association between CD4 count and wound healing time
(Tshimanga et al., 2017). In addition, a study of forceps-guided method in Kenya re-
ported no significant di�erence in wound healing time by baseline CD4 count among
HIV-positive patients (p-value=0.20) (Rogers et al., 2013). These studies however em-
ployed di�erent analyses approaches. Kigozi et al. (2014) and Rogers et al. (2013) used the
Cox proportional hazards model in order to arrive at their conclusions while Tshimanga
et al. (2017) used a binomial probability test to evaluate equivalence of proportion of pa-
tients healed by baseline CD4 count (< 500 cells/µL Vs. ≥ 500 cells/µL).

The irregular evolution of square root CD4 count over time could be as a result of other
factors like a rise in the viral load in HIV positive-patients few weeks a�er their circum-
cision. A study done by Baeten et al. (2010) reported that the viral load substantially
increased in the forth week post-circumcision among HIV-positive patients that were
ART-naive. Unfortunately in our study, we did not study the association between viral
load and time to wound healing and its association to CD4 count. It would be important
therefore to extend this study in future by including viral load in the analysis. Another
biomarker of interest would be penile viral shedding. According to JUNE (2014), penile
viral shedding peaked at the first week post-circumcision then declined to undetectable
levels by the the sixth week post-circumcision. Therefore penile viral shedding too would
o�er some good insight for the irregularity in evolution of square root CD4 count over
time.

5.2 Conclusion

We met all the objectives of the study. We found no significant association between
current true level of square root CD4 count and wound healing time. However, the rate
of change in square root CD4 count was a strong predictor of hazard of wound healing.
In summary, circumcising HIV-positive patients with any level of square root CD4 count
is not harmful to their post-circumcision wound healing. However, patients with the
same current true level of square root CD4 count could exhibit di�erent slopes of the
square root CD4 count trajectory at the same time point leading to di�erent progression
of wound healing between them. The irregular trajectory in square root CD4 count could
be as a result of other biomarkers like penile viral shedding and viral load that o�en rise
in the first few weeks a�er circumcision.

5.3 Study Limitations

There were missing data in CD4 count and some baseline covariates. The assumption
was that the data were missing at random (MAR). These results are therefore only valid
under MAR.
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5.4 Future Research

The present study only considered one biomarker, CD4 count. It would be important
to consider other biomarkers like viral load and penile viral shedding and analyse them
jointly, taking into account their association structures. Since missing data in other co-
variates was challenging to handle in our study, future studies should consider imputing
them using a multiple imputation technique which is compatible with a joint model for
longitudinal and time to event data. Lastly, future studies should also consider doing
some sensitivity analysis to determine how departures from MAR assumption influence
parameter estimates.
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A R codes used in the analysis of the data

A.1 Final linear mixed e�ects model

LMFit <- lme(SQRTCD4 (TIME+I(TIME2))+factor(ALLERGIES),
random = (TIME+I(TIME2)) | SUBJECT,
data = datalong, control=ctrl)

summary(LMFit)

A.2 Final Cox proportional hazards model

CoxFit <- coxph(Surv(DURATION, STATUS)∼ 1,
data = datacox2,x = TRUE)

summary(CoxFit)

A.3 Current value parametrization

jointFit1 <- jointModel(LMFit, CoxFit, method = "piecewise-PH-aGH",
timeVar = "TIME", verbose = TRUE,
iter.EM = 500)

summary(jointFit1)
exp(confint(jointFit1,parm="Event"))

A.4 Time-dependent slopes parametrization

dform <- list(fixed = I(2*TIME)
,indFixed = 3:4, random = I(2*TIME), indRandom =2:3)

jointFit2 <- update(jointFit1, parameterization = "both",
derivForm = dform)

summary(jointFit2)
confint(jointFit2,parm="Event")
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B Figures

B.1 Kaplan-Meier curves and log(-log(survival)) curves

(a) KM plot: marital status (b) Log (-log(survival)): marital status

(c) KM plot: ART status (d) Log (-log(survival)): ART status

(e) KM plot: Allergies (f) Log (-log(survival)): Allergies

(g) KM plot: Past 6 months sexual
intercourse

(h) Log (-log(survival)): Past 6 months
sexual intercourse

Figure 8. Kaplan-Meier curves and log(-log(survival)) curves
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B.2 Schoenfeld residual plots

(a) Schoenfeld residual plot: marital status (b) Schoenfeld residual plot: weight

(c) Schoenfeld residual plot: ART status (d) Schoenfeld residual plot: allergies

(e) Schoenfeld residual plot: Past 6 months
sexual intercourse

(f) Schoenfeld residual plot: frequent alcohol
use

(g) Schoenfeld residual plot: highest
education level (h) Schoenfeld residual plot: age

Figure 9. Schoenfeld residual plots
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