
LETTER • OPEN ACCESS

Spatial variation of fine particulate matter levels in Nairobi before and
during the COVID-19 curfew: implications for environmental justice
To cite this article: Priyanka N deSouza et al 2021 Environ. Res. Commun. 3 071003

 

View the article online for updates and enhancements.

This content was downloaded from IP address 197.136.71.17 on 17/08/2021 at 13:12

https://doi.org/10.1088/2515-7620/ac1214


Environ. Res. Commun. 3 (2021) 071003 https://doi.org/10.1088/2515-7620/ac1214

LETTER

Spatial variation of fine particulate matter levels in Nairobi before
and during the COVID-19 curfew: implications for environmental
justice

PriyankaNdeSouza1,2,∗ , PhoebeAtsienoOriama3, Peter P Pedersen4,5, SebastianHorstmann4,5,
LorenaGordillo-Dagallier4,5, CharlesNChristensen4,5, ChristophOFranck4,5, RichardAyah3 ,
RalphAKahn6 , JacquelineMKlopp7, Kyle PMessier8 andPatrick LKinney9

1 Department of Urban Studies and Planning,MIT, CambridgeMA02139,United States of America
2 WorldHealthOrganization, Geneva 1202, Switzerland
3 University ofNairobiMakerSpace, Nairobi, Kenya
4 Open-seneca, CambridgeCB3 0AS,United Kingdom
5 Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United
Kingdom

6 Climate andRadiation Laboratory, Earth ScienceDivision,NASAGoddard Space Flight Center, Greenbelt,MD,United States of America
7 Center for Sustainable Urban Development, Earth Institute, Columbia University 475 Riverside Dr Suite 520, New York NY 10115,
United States of America

8 National Institute of Environmental Health Sciences, Division of theNational Toxicology Program,United States of America
9 BostonUniversity School of PublicHealth, Boston,MA,United States of America
∗ Author towhomany correspondence should be addressed.

E-mail: desouzap@mit.edu

Keywords: environmental justice, particulatematter, Africa, air pollution, COVID-19

Supplementarymaterial for this article is available online

Abstract
The temporary decrease offine particulatematter (PM2.5) concentrations inmany parts of theworld
due to theCOVID-19 lockdown spurred discussions on urban air pollution and health.However
there has been little focus on sub-SaharanAfrica, as fewAfrican cities have air qualitymonitors and if
they do, these data are often not publicly available. Spatial differentials of changes in PM2.5

concentrations as a result of COVID also remain largely unstudied. To address this gap, we use a
serendipitousmobile air qualitymonitoring deployment of eight Sensirion SPS 30 sensors on
motorbikes in the city ofNairobi starting on 16March 2020, before a COVID-19 curfewwas imposed
on 25March and continuing until 5May 2020.We developed a random-forestmodel to estimate
PM2.5 surfaces for the entire city ofNairobi before and during theCOVID-19 curfew. The highest
PM2.5 concentrations during both periodswere observed in the poor neighborhoods of Kariobangi,
Mathare, Umoja, andDandora, located to the east of the city center. Changes in PM2.5 were
heterogeneous over space. PM2.5 concentrations increased during the curfew in rapidly urbanizing, the
lower-middle-class neighborhoods of Kahawa, Kasarani, andRuaraka, likely because residents
switched fromLPG to biomass fuels due to loss of income.Our results indicate that COVID-19 and
policies to address itmay have exacerbated existing air pollution inequalities in the city ofNairobi. The
quantitative results are preliminary, due to sampling limitations andmeasurement uncertainties, as
the available data came exclusively from low-cost sensors. This research serves to highlight that spatial
data that is essential for understanding structural inequalities reflected in uneven air pollution burdens
and differential impacts of events like the COVIDpandemic.With the help of carefully deployed low-
cost sensors with improved spatial sampling and at least one reference-qualitymonitor for calibration,
we can collect data that is critical for developing targeted interventions that address environmental
injustice in the African context.
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1. Introduction

A temporary decrease infine particulatematter (PM2.5, representing themass concentration of particles with
diameters<2.5μm) inmany cities due toCOVID-19 lockdownhas beenwell documented (Berman and
Ebisu 2020, Chen et al 2020, Venter et al 2020). The popular press termed these declines among the few ‘silver
linings’ during theCOVID-19 pandemic as ambient air pollution has been shown to causemany adverse health
effects (Di et al 2017,Heft-Neal et al 2018, deSouza et al 2020). Long-term exposure to PM2.5 concentrations has
been shown to be associatedwith an increased risk of COVID-19 death (Wu et al 2020). Because the vast
majority of cities in Africa do not have air qualitymonitoring networks, little has been done assessing how
COVID-19 has impacted air quality in these areas, despite air pollution levels increasing in cities across the
continent (Mbandi 2020).

Less studied as awhole are the differential changes in air pollution across space during theCOVID-19 crisis.
Worryingly, in the city ofNairobi, research has shown that despite various governmental interventions,∼90%of
residents interviewed in an informal settlement reported declines in income and being food insecure, and∼27%
of residents switched from liquefied petroleum gas (LPG) to cheaper kerosene/wood, likely resulting in
increased household air pollution (Shupler et al 2021). Thus, not all locations are likely to see declines infine
particulatematter. Such differentials need to be highlighted, asmany of these changes will likely persist after the
pandemic and should be addressed in a post-COVID recovery and rebuild phase. Research is also needed to
investigate whether the changes in pollution exacerbate existing inequalities in exposure to air pollution. Such
work can inform themodification of existing interventions and the appropriate prioritization of resources.

In theUnited States, the environmental justice (EJ)movement has highlighted the unequal distribution of
air pollution among different racial/ethnic and income groups (Miranda et al 2011, Bell and Ebisu 2012, Tessum
et al 2019). EJ advocates have highlighted the interconnections between poor air quality and vulnerability to
COVID-19 in theUS, and have demonstrated how the same structural forces that have rendered some
communitiesmore vulnerable to air pollution have also rendered them susceptible toCOVID-19 (Krieger 2020,
Tan et al 2021). The recognition that structural forces drive such environmental injustices has led to a
widespread recognition that purposeful action needed to be taken to afford all Americans (i) adequate protection
from environmental and health hazards and (ii) equal access to decision-making processes to assure a healthy
environment (https://www.epa.gov/environmentaljustice, Last accessed January 24, 2021). Although a similar
recognition of the effects of context-specific structural forces in African cities in producing an uneven
distribution of environmental hazards could spur the creation of effective policies, the use of the environmental
justice frame outside theUnited States has been limited.

A challenge to developing the EJ analytics in African cities is the lack of access to environmental,
demographic, and public health data. In addition,morework is required to develop a locally specific conceptual
framework to examine the relationship between environmental harms and structural forces inNairobi. Recent
research hasmade conceptual strides in incorporating EJ concerns into the policy-making process inNairobi.
For example, JenniferWillett has highlighted the lack of capacity of poor residents to adapt to environmental
degradation and the lack of consideration of these communities in urban development plans (Willett 2015).
KariukiMuigua and Francis Kariuki have argued that Kenyan laws that have led to disparities in access to and
control of natural resources have roots in colonial times (Muigua andKariuki 2015). They argue for adequate
provisions to be included to ensure laws and policies distribute environmental ills and goods equally.
Thilo Becker has shown that although transportation projects inNairobi had immense consequences for
environmental justice, the perception of environmental justice and the distributional impacts of these policies
were low among government agencies and donors (Becker 2012).

Research has shown that air pollution in certain poor neighborhoods inNairobi is amajor concern (Ngo et al
2015, Egondi et al 2016, deSouza et al 2017,West et al 2020). The origins of current informal settlements can be
traced to racial segregation during the colonial period. African residents were excluded by the colonial urban
planning framework (K’akumu andOlima 2007, Klopp 2012). Africans were forced to live in crowded housing
close to industrial facilities and factories inwhich theyworked. After independence, racial segregationwas
replaced by income-based segregation. The poorest residents continued to live in neighborhoods that remained
underserviced. Important sources of pollution in such locations are emissions from local industry, transport
emissions, the burning of biomass by residents tomeet their energy needs, and the burning of waste due to the
lack of provisions forwaste disposal by the city.

There is little empirical work examining variation in air pollution acrossNairobi by neighborhood and
socioeconomic status. In higher-income cities in theUnited States, research has found that spatial patterns of
PM2.5 were associatedwith distance tomajor traffic routes, industrial sources, and in a few instances, residential
heating using biomass (Hankey andMarshall 2015,Messier et al 2018, Skiles et al 2018). Although the sources of
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air pollution inAfrican cities aremore varied and include industrial, transportation, household emissions, and
resuspended dust fromunpaved roads, whose importance varies by neighborhood, there have been relatively
few empirical studies of these patterns (Dionisio et al 2010a, 2010b, Rooney et al 2012).

We attempt tofill in this gap by developing concentrationmaps of PM2.5 over the entire city ofNairobi based
onmobilemonitoring using low-cost sensors by open-seneca10, in partnershipwith theUniversity ofNairobi
MakerSpace, betweenMarch 13, 2020, andMay 05, 2020. Coincidentally, themeasurements weremade before
aswell as during theCOVID-19 curfew imposed by the government between the hours 19:00–5:00 local time,
starting onMarch 25, 2020. As the curfew remained in place until the end of the deployment, we also evaluated
its impact on existing spatial inequalities in PM2.5 levels inNairobi.

To accomplish this, we estimated PM2.5 concentrations for each 100 m× 100 mgrid cell inNairobi using a
random-forest (RF)model over two periods: before and during theCOVID-19 curfew.We then describe the
spatial variation of PM2.5 by neighborhood.

2.Data andmethods

2.1.Mobilemonitoring platform
Open-seneca and theUniversity ofNairobiMakerSpace, with the support ofUNEnvironment andUNHabitat,
partneredwith theGetboda company11, a delivery, and transport service inNairobi that organizesmotorbike
(bodaboda) drivers in the city, tomake air qualitymeasurements.Monitors comprised of Sensirion SPS30
ParticulateMatter sensors that report PM1, PM2.5, and PM10 concentrations, Sensirion SHT31-D temperature,
and humidity sensors, and aUblox SAM-M8QGPS sensor weremounted on eightGetboda two-stroke engine
bodabodas. Figure 1 displays the location of themonitor on the bodaboda. Getboda provides an on-demand
service, sending drivers to help clients in different parts of the city. The company kept track of the different
bodabodas and sensors, reducing the effort required to coordinate the eight drivers and bikes. Getboda liaised
with theKenyan government to allow some drivers to operate at night/past the curfew as ‘essential workers.’
Therefore, wewere able to record air qualitymeasurements at night during the curfew. Figure S1 (available
online at stacks.iop.org/ERC/3/071003/mmedia) in the supplementary information (SI) shows the hours of
the day covered before and after the curfew.Ourmeasurements appear to be fairly well balanced in terms of
hours of the day. The bulk ofmeasurementsmade during both periodswere between noon and 8 pm local time.

Figure 1.Mobilemonitormounted on a bodaboda inNairobi. The license plate has been blocked out to protect the driver’s privacy.

10
https://open-seneca.org/.

11
https://www.getboda.co.ke/.
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Themorning peak is not captured in this campaign. Section S2.1 in the SI has a discussion on the difficulty of
accounting for self-emissions.

2.1.1. Particulatematter
PM2.5 wasmeasured using eight Sensirion SPS 30 sensors (costing∼40 $USD each). Formore details on the SPS
30 sensor refer to section S2.2 in the SI. Each sensor was deployed on a different bodaboda betweenMarch 17,
2020, andMay 05, 2020, in the city ofNairobi, specifically betweenMarch 17-March 29,March 30 - April 21,
April 25, andMay 5.Overall, 1,316,558measurements weremade over 39 unique days. 519,829measurements
weremade over 8 days before the curfew, and 658,062measurements weremade over 28 days during the curfew.

The eightmonitors were co-located before the experiment (March 13-March 15) and good agreement
(R2>0.8)was found among the collocated sensormeasurements. In the current study, we restrict our focus to
PM2.5.

2.2.Methods
Themethod presented in this section expands upon our earlier workwith low-cost particle counters deployed
on trash-trucks inCambridge,MA (deSouza et al 2020).

2.2.1. Preprocessing: background standardization
To comparemeasurementsmade at the sameNairobi location on different days and at different times, we need
to correct for background aerosol PM2.5 concentrations over the study area. This is because such diurnal
regional variations, as well as regional changes over the days ofmeasurement, could obscure local changes in
PM2.5 concentrations.

In order to do this, we assume that background values vary temporally, by the hour, and fromday-to-day,
but not spatially over the region (this is in line with that of other research e.g Brantley et al (2014), Apte et al
(2017), etc). Essentially, we are assuming the background is due to transported aerosol from sources outside the
study region.We used a time-series, spline-of-minimums approach to estimate the background PM2.5 (Brantley
et al 2014). Formore details on this approach aswell as our assessment of the robustness of the background,
correction refers to section S2.3 in the SI.

After calculating the background PM2.5 concentrations, we performed a background time-of-day correction
or standardization using equations (1) and (2) to account for the period duringwhich the bodabodas operated:

= - +PM PM PM PM . 1c i OPC i bkg i bkg median2.5 , 2.5, , 2.5, , 2.5, , ( )

where PM OPC i2.5, , is the SPS30measurement for event i, PM bkg i2.5, , is the contemporaneous background value of
pollution over the entire region, and PM bkg median2.5, , is themedian of the PM bkg2.5, values on the day of
measurement, assessed during all hourswhenmeasurements weremade. By subtracting the time-of-day-
resolved regional background from the pollutionmeasurement, we can now compare background-corrected/
local PM2.5 concentrations over space.

When the background PM2.5measurement valuewas estimated to bemore than that of the concentration
measured, we applied amultiplicative background-correction factor:

= ´ ¸PM PM PM PM . 2c i OPC i bkg median bkg i2.5 , 2.5, , 2.5, , 2.5, , ( )

Unlike equation (1), this assures non-negative PM2.5c,i values, based on considering the background value
assessed during themeasurement hour as a fraction of the day’smedian background, thus reducing the
contribution of possiblemeasurement error due to treating the hourly value as an absolute quantity.

2.2.2. Developing ‘generalizable’ PM2.5 surfaces for Nairobi from the background-correctedmeasurements
Wedivided themobile-monitoring sampling area into grid-cells of 100 m× 100 m each. The number of 100 m
grid-cells in the entire sampling area ofNairobi was 65,594 cells.Wematched each of the background-corrected
PM2.5cmeasurements with the grid-cell inwhich it fell. This allowsmeasurementsmade in the same grid-cell to
be analyzed as a group. The 100 m length of each cell is small enough to capture pollutant-concentration
gradients but is not sofinely sliced thatGPS errors overwhelm the results. Therewere 3,151 grid-cells containing
measurements before, and 4,209 during the curfew.

We selected themedian as an outlier-resistantmetric of PM2.5c central tendency, as others have done, as the
generalizable PM2.5 concentration of the grid-cell for each time period: before and during theCOVID-19 curfew
(Hankey andMarshall 2015, Apte et al 2017, deSouza et al 2020). Henceforth, we use these aggregated PM2.5c

concentrations instead of the individualmeasurements of PM2.5c in our analysis, as they are less noisy.
We used bootstrap resampling procedures to quantify the effect of sample-to-sample variability and of the

sampling error on themedian PM2.5c concentrations. As ametric of precision, we used the ratio of the standard
error of themedian concentration to themedian concentration itself.We define a 100 mgrid-cell having a

4

Environ. Res. Commun. 3 (2021) 071003



‘stable’median if the normalized standard error of themedian concentrationwas less than 20%and the grid-cell
had been sampled onmore than one unique day.

We producedmaps of the generalizable PM2.5c concentrations formeasurements collected before and after
the curfew began.We produced amap of the fractional difference in PM2.5c before and after the start of the
curfew using the expression: ((PM2.5c,after−PM2.5c,before)/(PM2.5c,before+PM2.5c,after), for each 100 mgrid-cell,
which allows us to qualitatively compare changes inmeasured PM2.5 concentrations.We also only displaymaps
of generalizable PM2.5c concentrations formeasurements collected before and after the curfew began for grid-
cells with stablemedian concentrations.

2.2.3. Random-forest model (RF)
Themobilemonitoringmeasurements weremade on different street segments before and during theCOVID-
19 curfew.Moreover,measurements weremade in both time periods only in certain segments in the city. In
order to evaluate the spatial variation of PM2.5c concentrations before and during theCOVID-19 curfew, we
built a random forest (RF)model for each time period over the entire city.

RF is an ensemble learningmethod combining predictions frommany decision trees (Breiman 2001). Non-
parametricmachine learning algorithms, such as a random-forest, have been usedmore frequently in the last
years to estimate PM2.5c concentrations (Hu et al 2017, Brokamp et al 2018, Park et al 2020). Such techniques are
capable of handling nonlinear relationships and interactions between the covariates considered and have
generally shown comparable or superior performance to traditional statisticalmethods in previously published
studies. The advantage of anRFmodel in comparison to other non-parametric techniques such as neural
networks is that the RF also providesmetrics that capture the relative importance of the different independent
covariates considered in predicting the outcome. In this study, we report the top 10 covariates with the highest
permutation feature importance for eachRFmodel run. The permutation feature importance is defined as the
decrease in R2 of themodel when a single feature value is randomly shuffled. The random shuffle breaks the
relationship between the feature and target. The drop-inmodel score is thus indicative of howmuch themodel
depends on the feature.

In order to build the RFmodel (whichwill henceforth be referred to asModel 1), we drewbuffers of 100 m,
200 m, and 500 m radius around the center of each grid-cell in the sampling area inNairobi.We assigned the
average population density andmultidimensional poverty index (MPI), length of the different types of roads,
average travel friction or accessibility of an area, number ofmatatu stops, and number ofmatatu12 trips
associatedwith all the stops in each buffer as predictors in themodel.We also calculated the area of different
neighborhoodswithin the 100 mbuffer of each grid-cell as a predictor. A description of the sources of each of
these variables can be found in section S3 in the SI.We also used the Latitude and Longitude at the center of each
grid-cell as predictors.

We conducted a 10-fold cross-validation (CV) exercise to evaluate the performance of the RFmodel before
and during theCOVID-19 curfew. Formore details on theCV exercise refer to section S4 in the SI.We report the
rootmean squared error (RMSE), mean absolute error (MAE) andR2 for eachmodel to assessmodelfit. The
tunedmodels were then used to predict PM2.5c concentrations at each 100 mgrid-cell inNairobi for the two
periods. The ‘caret’ package in Rwas used tofit the random-forestmodel.

To test the robustness of the predicted surfaces to the choice ofmodel we also (i) interpolated PM2.5c surfaces
before and during theCOVID-19 curfew using a universal kriging approach (whichwill henceforth be referred
to asModel 2), (ii)Only used grid-cells for whichwe had stable PM2.5cmedian concentrations to run the RF
(whichwill henceforth be referred to asModel 3).We display the predicted surfaces of PM2.5c concentrations
using the three approaches before and during theCOVID-19 curfew.We calculated the fractional change in the
predicted PM2.5c concentrations before and during the curfew in a similarmanner to thewaywe calculated this
difference using the aggregatedmobilemeasurements alone and displayed thismetric for each of the three
models.We describe the locationswhere the predicted surfaces from themodels disagreemost to identify
locations inwhichmoremonitoringwould be required.

We used nonparametricWilcoxon-rank-sum tests to assess statistical differences between the predicted
distribution of PM2.5c concentrations from eachmodel before and during theCOVID-19 crisis for the entire city
ofNairobi, as well as for individual neighborhoods.We opted to use this non-parametric test as the distribution
of PM2.5c predictions was skewed, and according to the results from a Shapiro-Wilk test were not normally
distributed.We acknowledgewhile doing this, that ‘neighborhood’was used as a predictor in themodel, and
therefore our results reflect themodel structure.However, we present these results to examinewhich findings
were consistent across the threemodels.

All analyses were conducted in R (RCTeam2017).

12
Mini-vanswhich serve as the dominant form of public transport inNairobi.
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3. Results

Wemapped the background-corrected generalizable PM2.5c before and during the curfew, as well as the
fractional difference in PM2.5c after the curfew began infigure S6. Fromfigures S6(b) and (c), we see that certain
roadswere sampled by the bodaboda drivers after the curfew began, but not before. 44.%of grid-cells (1399 out
of 3151)had stable PM2.5c before the curfew, and 38.0%of grid-cells (1600 out of 4209) had stable PM2.5c during
the curfew. Figures S7(b) and (c) display PM2.5c concentrations forwhich the aggregatemedianwas stable.

The 10-fold cross-validation approach for the RFmodel using data before and during theCOVID-19 curfew
yielded RMSEs (MAEs) of 13 μg m−3 (6 μg m−3) and 16 μg m−3 (6 μg m−3), respectively. The R2 values of the
cross-validatedmodels before and during theCOVID-19 curfewwere 0.95 and 0.93, respectively. The topfive
variables with the highest feature importance before the curfew in order of significance, greatest first, are (1)
Longitude, (2) area of land of unknown type in the 500 mbuffer of each grid-cell, (3) area of the Pangani
neighborhood in the 100 mbuffer of grid-cell, (4) the number ofmatatu trips in the 500 mbuffer of each cell,
and (5) area of the Lumumba neighborhood in the 100 mbuffer of each grid-cell. Lumumba and Pangani are
circled infigure 2(a) in pink. The topfive variables with the highest feature importance during theCOVID-19
curfew are: (1) the area ofUmoja in the 100 mbuffer of each grid-cell, (2) Longitude, (3) the area of Kikuyu
township (outsideNairobi to thewest labeled onfigure 2(a)) in the 100 mbuffer of each grid-cell, (4) the length
of dryweather roads in the 500 mbuffer of each cell, and (5) the area of Pangani in the 100 mbuffer of each cell.

The predicted estimates of PM2.5c before and during theCOVID-19 curfew, aswell as the fractional
difference between these two periods derived from the twoRFmodels, are displayed infigure 2. The
neighborhoods ofNairobi are labeled infigure 2. Themean PM2.5c concentration before theCOVID-19 curfew
was 23.5 μg m−3 (Median: 22.4 μg m−3).Mean concentration during theCOVID-19 curfewwas similar:
24.6 μg m−3 (Median: 20.5 μg m−3). AWilcoxon-rank-sum test revealed no statistically significant differences
between themedian PM2.5c concentrations inNairobi overall, before and during theCOVID-19 crisis for the
time period of this study.

Results from the RFmodel before and during theCOVID-19 curfew using grid-cells with stable PM2.5c

concentrations only (Model 2) are displayed infigure S8 in S6.2 in the SI. Results from the universal kriging
model (Model 3) are displayed infigure S9 in the SI and described in S6.3 in the SI. Although broadly similar
patterns of PM2.5c are observed in the densely sampled city center before and during theCOVID-19 curfew in all
threemodels, the patterns of PM2.5c in the outskirts ofNairobi varymarkedly acrossModels 1, 2, and 3. Because
of these differences, unlike in themainmodel,Wilcoxon-rank-sum tests revealed statistically significant
differences (Model 2finds a decrease andModel 3 finds an increase) in the predicted PM2.5c concentrations
before and during theCOVID-19 crisis. The inconsistencies acrossmodelsmake it impossible for us to robustly
describe overall changes in PM2.5c concentrations before and during theCOVID-19 crisis inNairobi.

However, certain consistencies in the neighborhood-specific spatial patterns of PM2.5c are observed across
all threemodels. Namely, during both time periods, in all threemodels, PM2.5c concentrations were higher in
places east of the city center in low-income neighborhoods such asKariobangi, Dandora, Umoja,Mathare and
the industrial area (Viwanda) compared towealthier areas to thewest of the central business district, such as
Muthaiga, wheremany embassies are located, and up-scale neighborhoods such asKilimani, Karura, and
Kitisuru (figure 3). These neighborhoods are circled infigure 2 (poor neighborhoods in red and thewealthier
neighborhoods in blue).We singled out these neighborhoods as theywere densely sampled in both time periods
during themobilemonitoring campaign.Wilcoxon-rank-sum tests revealed higher concentrations in
Kariobangi, Dandora, Umoja,Mathare, andViwanda compared to levels inMuthaiga, Kilimani, Karura, and
Kitisuru before and after the curfew began across all threemodels.

During theCOVID-19 crisis, according toModel 1, PM2.5c concentrations appeared to decrease in the city
center. PM2.5c concentrations in the low-income neighborhoods ofUmoja, Dandora, andKariobangi increased.
The heaviest increases frombothfigure 2 appear to be in the rapidly urbanizing neighborhoods of Kahawa and
Kasarani in the upper north-east ofNairobi (figure 3).Wilcoxon-rank-sum tests indicate that these increases
were significant. Similar patterns and results were obtained frompredictionsmadewithModel 3 (figure 3).
However,Wilcoxon tests applied to results fromModel 2 revealed that the low-income neighborhoods of
Umoja, Dandora, andKariobangi as well as the rapidly growing locations of Kahawa andKasarani saw
significant decreases after the COVID-19 crisis began (figure 3). In all threeModels, the industrial area saw
significant decreases in PM2.5c concentrations during theCOVID-19 crisis (figure 3).

4.Discussion and conclusion

Differences in the spatial variation of PM2.5c before and during the curfewwere obtained from all threemodels
(figures 2, S8, and S9). Across predictions from each of the threemodels considered, the highest concentrations
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of PM2.5c were seen in certain poor neighborhoods in the locations east of the city center ofNairobi:Mathare,
Kariobangi, Umoja, andDandora in both time periods.

After the curfewwas imposed, all threemodels showeddecreases inPM2.5c levels in the industrial area:
Viwanda.However, themodels provided inconsistent information onoverall changes inPM2.5c concentrations,
particularly in the outskirts ofNairobi, indicating the need for additionalmonitoring in these locations to obtain a
robust understanding of the spatial variationof PM2.5c levels inNairobi.Noconclusions on the overall changes in
PM2.5c inNairobi can thus be drawn. Themodels also yielded inconsistent information on the changes inPM2.5c

after the curfewwas imposed in someof the poorer neighborhoods ofNairobi (Models 1 and2 yielded a significant
increase inPM2.5c concentrations in these neighborhoodswhileModel 3 indicated a significant decrease).

Figure 2. (a)The fractional change ((PM2.5cafter−PM2.5cbefore)/(PM2.5c,before+PM2.5c,after) in predicted PM2.5c after the curfewwas
imposed, fromMarch 25, 2020 -May 5, 2020, compared to predicted levels before. Estimated PM2.5c values for each 100 mgrid-cell in
Nairobi (b) before and (c) after the curfew in units ofμg m−3 using RFmodels. The poorer neighborhoods inNairobi are circled in red
and thewealthier neighborhoods are circled in blue. The neighborhoods of Lumumba and Pangani are circled infigure 2(a) in pink as
the area of these neighborhoods present in a grid cell are variables with high feature importance in themainRFmodel.
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The bodabodasmade few trips to the poorer parts ofNairobi and therefore, these areas were undersampled
and the ‘generalizable’median PM2.5c concentrations in these locations derived from themobilemonitoring
campaign had large errors (figure S7).Measurements in these areas were not used to generateModel 3. It is likely
that predictions fromModel 3 are not generalizable to these locations due to the particularities of sources and
patterns present in these neighborhoods.

Assuming that themeasurements in these locations, although noisy, captured overall spatial variations and
thatModels 1 and 2 are correct, a possible explanation for the increase observed in PM2.5c levels observed in the
densely populated, lower-middle-class neighborhoods of Kasarani andKahawa is thatmany residents had to
switch fromLPG to biomass fuel due to loss of income due to the crisis to satisfy their energy needs (Shupler et al
2021). This requires further exploration. The increase observed in PM2.5c concentrations in the poor
neighborhoods ofMathare, Kariobangi, Dandora, andUmoja indicates that COVID-19 policiesmay have
exacerbated existing spatial inequalities. This finding suggests the need to understand spatial inequalities better
and to use this knowledge to develop improved interventions to support themost vulnerable residents.

‘Longitude’ had the greatest feature importance in the RFmodel (Model 1) before the curfew and is second-
highest during the curfew. This is also the case for the RFmodel run on only stable PM2.5c concentrations
(Model 2). East of the city center is low-lying,Marshy, andprone toflooding. The1927 colonialmasterplanof
Nairobi explicitly states that topography andwindpatternswere key considerations in siting theWhiteHighlands
to thenorthwest of the city. Industrial sites, factories, and theAfrican settlementswere located in the east. It is likely
that the combination of topography,meteorology, andplanning reinforced eachother to produce the current
spatial distributionof PM2.5c inNairobi.Whenwe compare the prediction results from theRFmodel and the
kriging approach,wefind large discrepancies inPM2.5c in the under-sampled neighborhoods ofRuai andKaren,
for example. This indicates that sufficientmeasurements are lacking for these neighborhoods.

Although this experiment yielded several useful insights about the neighborhood-specific spatial variation in
PM2.5c concentration inNairobi before and during theCOVID-19 crisis, it has several limitations.We highlight
these limitations here and discuss how theymight be overcome in future experiments.

One, themobilemeasurements used to generate predicted surfaces forNairobi weremade on roads,mostly
during the timewhenmovementwas allowed in the city. It is possible that during the curfew hours, PM2.5c levels
were very different. Thus, themobilemonitoringmeasurementsmay not have been temporally representative of
values in the locations ofmonitoring. In future experiments, we hope to use vehicular fleets that are on the road
at all hours of the day.

Figure 3.Boxplots of predicted PM2.5c concentrations for different sublocations inNairobi before and after the curfew began for (A):
Model 1, (B):Model 2, (C):Model 3. Boxes represent the 25th to 75th percentile, central dark line themedian, bars outside the box
represent 1.5 x interquartile range, and the circles are the outliers.
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Two, the experiment started onMarch 16, 2020. Thefirst COVID-19 case inNairobiwas identifiedonMarch
13, 2020. In the interim, as news of the virushad spread fromother countries,manybusinesses started operating
remotely, andpeople started leaving the city for their family homes in rural areas. Thus, it is possible that even
before theCOVID-19 curfewhad started, activitywas reduced in anticipationof a lockdown.Therefore, the ‘before
curfew’ time period of this studymight not truly be representative of conditions during business as normal.

Three, as highlighted in theResults andDiscussion, the bodabodas traveled to certain parts of the citymore than
others (figure S6). Thismeans that certain parts of the citywere sampledmore thanothers. The predicted surfaces of
PM2.5cwegeneratedwere sensitive to the exclusionof data in undersampledneighborhoods. In future experiments,
weneed to improve the sampling ofNairobi to obtain robust results about the spatial patterns of PM2.5c levels.

Four-manyof the covariates used in theRFmodelwere basedondata collected in previous years. Several
covariates had a relatively coarse resolution. For example, the data on the poverty index at a 1 km× 1 kmresolution
was for the year 2008, and the land-usemapwasproduced in2010.There is thus anurgent need todevelopopen
data for the city ofNairobi to further understand intra-city variations of air pollution andother phenomena.

Five, an important limitation of this experiment is that we used low-cost sensors that produced noisy
measurements, so the PM2.5 concentrations produced are indicative only.Mass sensitivity of the SPS 30 sensors
ranges somewhat across the span of detectable particle sizes but is greatest between 0.3 and 1.3μm,which is a key
range formotor vehicle exhaust near roadways. The error in the reported PM2.5 concentrations will vary
somewhat depending on the aerosol size distribution at eachmoment in time.However, previous studies (as
mentioned in section S2.2 in the SI), have shown high reliability between sensors. Our experiment thus allows us
to compare the signal fromour devices over space. In future experiments, it is important to calibrate such
sensors carefully before deploying them. This was not possible for the current experiment, as the data from
Nairobi’s referencemonitor operated by theKenyanMeteorological Department (KMD) is not publicly
available (deSouza 2020). There is thus a need for the government to establish a reference air qualitymonitoring
system that provides high-quality data to residents, which can also be used by researchers.

Despite these limitations, this paper represents thefirst effort tomap out the spatial differences in PM2.5 in
Nairobi and to expand upon the environmental justice implications of PM2.5 levels inNairobi, as well as to
discuss the disproportionate impact COVID-19 had on air quality levels across the city. It discusses ways in
which future experiments could build on the research design presented to obtain robust insights into
neighborhood-specific PM2.5 concentrations.
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