

UNIVERSITY OF NAIROBI

SCHOOL OF COMPUTING AND INFORMATICS

A Microservices Based Student Industrial Attachment Information System Model

for Technical and Vocational Education and Training Institutions in Kenya

Student Name: Esadia Benard

Registration Number: P53/11300/2018

Supervisor: Professor Robert Oboko

A research project report submitted to the School of Computing and Informatics in

partial fulfillment of the requirements for a ward of the Degree of Master of

Science in Distributed Computing Technology of University of Nairobi, Nairobi,

Kenya

August 2021

i

Declaration

This research report is my original work and has not been presented for any award in any

other University.

Signature …………………………………… Date ……………………………………..

Student Name: Esadia Benard

Registration Number: P53/11300/2018

This research project report has been submitted for examination with my approval as

University of Nairobi Supervisor

Signature …………………………………… Date ……………………………………..

Professor Robert Oboko

School of Computing and Informatics

University of Nairobi

27/08/2021

sci
Stamp

ii

Abstract

Microservices is a software development technique-a sub type of the service oriented

architecture style that structures an application as a collection of autonomous, independent

and loosely coupled services that communicate using network lightweight communication

protocols. Lack of a system to automate Industrial Attachment activities in TVET

institutions was the driving force towards coming up with a microservices system that has

the benefits of being more resilient, fault tolerant and scalable. The study used descriptive

research design to identify user needs of the model. A questionnaire; an easy to use tool to

widely reach the identified sample was used in data collection. Data analysis was by simple

tabulation. Agile software development methodology was used to develop and implement

the model because of its iterative nature and customer engagement approach. The Security

service was implemented as SaaS using Okta Oauth 2.0 protocol, User Interface was

implemented as a microservice using React JavaScript library, the Attachment

microservice and Reports microservice were implemented using Python Django

framework and Django REST framework. The model was deployed using Docker compose

containers where users tested and validated it by performing assigned tasks. Locust load

testing tool was used to test the performance of the system when it was scaled horizontally.

The study used texts, and line charts to communicate and display the analyzed data. Testing

results shows the system implemented the user functional requirements and was easy to

learn & easy to use. The results confirmed that container platforms help in effectively

deploying microservices to achieve scalability. Properly scaled components leads to

improved system performance. The study recommends adoption of the system by TVET

institutions and further study to be done on API’s management in microservices.

iii

Table of Contents

DECLARATION ... I
ABSTRACT .. II
TABLE OF CONTENTS ... III
LIST OF FIGURES .. IV
LIST OF TABLES .. V
LIST OF ABBREVIATIONS ... VI
DEFINITION OF TERMS .. VII

CHAPTER ONE: INTRODUCTION .. 1

1.1 BACKGROUND OF THE STUDY ... 1
1.2 PROBLEM STATEMENT .. 3
1.3 OBJECTIVES .. 4
1.4 SIGNIFICANCE OF THE STUDY .. 4
1.5 SCOPE OF THE STUDY .. 5
1.6 THE ASSUMPTIONS OF THE STUDY .. 5

CHAPTER TWO: LITERATURE REVIEW .. 6

2.1 INTRODUCTION ... 6
2.2 INDUSTRIAL ATTACHMENT IN TVET INSTITUTIONS ... 6

2.2.1 Industrial Attachments Activities in TVET Institutions ... 6
2.2.2 Challenges associated with management of industrial attachment in TVET institutions 7

2.3 MICROSERVICE ARCHITECTURE .. 8
2.3.1 Monolith Application versus Microservices Based Application ... 8
2.3.2 Service Oriented Architecture Application versus Microservices Application10
2.3.3 Microservices Design Principles ..11
2.3.4 Microservices Decomposition Patterns ..11
2.3.5 Microservices Integration Patterns ..12
2.3.6 Security in Microservices ..12
2.3.7 Microservices and Containers ..13
2.3.8 Scaling in Microservices ...13
2.3.9 Challenges faced while using Microservices ...13

2.4 REVIEW OF RELATED SYSTEMS ..15
2.4.1 Monolith Systems ..15
2.4.2 SOA Systems ...16
2.4.3 Microservices Systems ..16

2.5 THE PROPOSED MODEL ..17

CHAPTER THREE: RESEARCH METHODOLOGY ..18

3.1 INTRODUCTION ..18
3.2 RESEARCH DESIGN ...18
3.3 DEVELOPING THE MODEL ..19

3.3.1 Software Development Methodology ..19
3.4 SYSTEM REQUIREMENTS GATHERING ..20

3.4.1 Target Population ...20
3.4.2 Sampling Procedure..20
3.4.3 Sample Size ...20

3.5 DATA COLLECTION INSTRUMENTS ...21
3.5.1 Questionnaire ..21
3.5.2 Secondary Data ...22
3.5.3 Validity and Reliability ...22

iv

3.6 DATA COLLECTION ..22
3.6.1 Administration of Questionnaires ..22
3.6.2 Documents Review ..23

3.7 DATA ANALYSIS ..23
3.7.1 Responses from Students: ...23
3.7.2 Responses from Lecturers ...24
3.7.3 Document Reviews ..25

3.8 SYSTEM REQUIREMENTS SPECIFICATION ...26
3.8.1 System Feasibility..26
3.8.2 System Analysis ...26
3.8.3 Use Case Diagram...29
3.8.4 Data Flow Diagram ..30

3.9 SYSTEM DESIGN ...32
3.9.1 Architectural Design ...32
3.9.2 Sequence Diagrams ..33
3.9.3 Database Design ...34
3.9.4 Program Design ..36
3.9.5 User Interface Design (Forms) ...38

3.10 SYSTEM IMPLEMENTATION ..40
3.10.1. Hardware Resources ..40
3.10.2 Software Resources ...40
3.10.3 Programming Tools ..41
3.10.4 Security Service Implementation ..42

3.11 SYSTEM TESTING ...42
3.11.1 System Scalability Testing ..42
3.11.2 System Validation Testing ..44

CHAPTER FOUR ...46

4.0 RESULTS AND DISCUSSIONS ..46

4.1 MODEL SCALABILITY AND LOAD TESTING ..46
4.2 MODEL VALIDATION TESTING RESULTS ..49

CHAPTER FIVE ...52

5.0 FINDINGS, CONCLUSIONS AND RECOMMENDATIONS ...52

5.1 FINDINGS ...52
5.2 LIMITATIONS OF THE RESEARCH ..53
5.3 CONCLUSIONS ..53
5.4 RECOMMENDATIONS FOR PRACTICE ..54
5.5 RECOMMENDATIONS FOR FURTHER RESEARCH ...54

APPENDICES ...55

I) REFERENCES ...55
II) RESEARCH QUESTIONNAIRES ..60
III) PROJECT SCHEDULE ...63
IV) PROJECT BUDGET ...63
V) SAMPLE USER INTERFACE ...64
VI) SAMPLE CODE ...66

List of Figures

Figure 1: Monolithic Architecture (Kanjilal , 2020) ... 8

Figure 2: Microservices Architecture (Kanjilal , 2020) .. 8

file:///E:/2021/UoN%20MSc/Post%20-%20M3/Presentation/P53-11300-2018%20Esadia%20Benard%2019.08.21.docx%23_Toc80341762
file:///E:/2021/UoN%20MSc/Post%20-%20M3/Presentation/P53-11300-2018%20Esadia%20Benard%2019.08.21.docx%23_Toc80341763

v

Figure 3: SOA vs Microservices Communication (Wittmer, 2021) .. 10

Figure 4: Agile software development cycle (Brush & Silverthorne, 2021). 19

Figure 5: Use Case Diagram.. 29

Figure 6: Context Diagram .. 30

Figure 7: Data Flow Diagram Level 1 ... 31

Figure 8: System Architectural Design ... 32

Figure 9: Authentication with Okta Sequence Diagram (Okta, 2021) .. 33

Figure 10: Attachment Microservice Sequence Diagram .. 33

Figure 11: Integration Sequence Diagram ... 34

Figure 12: Entity Relational Diagram ... 35

Figure 13: System Flowchart... 36

Figure 14: Design of ILO’s Page User Interface ... 38

Figure 15: Design of Admin’s Add User Page Interface ... 39

Figure 16: Design of Admin Attachment Opportunities Page User Interface 40

Figure 17: Django, Django Rest Framework, React Interactions .. 41

Figure 18: Dockerized Load Balancing Architecture (Maximilian , 2021) 42

Figure 19: Locust System Load Testing Interface... 46

Figure 20: Locust Load Test Results. Test 1 (system scaled at 3 instances) 47

Figure 21: Locust Load Testing Results. Test 2 (system scaled at 6 instances) 47

Figure 22: Locust Load Testing Tests1 and Test 2 Results. Test Charts 48

List of Tables
Table 1: Requirement before proceeding for Industrial Attachment ... 23

Table 2: Challenges faced while sourcing for Industrial Attachment ... 23

Table 3: Challenges faced by students on industrial attachment ... 23

Table 4: Industrial Attachment Activities ... 24

Table 5: Documents Awarded on Completing Industrial Attachment .. 24

Table 6: Trainers Industrial Attachment Challenges ... 24

Table 7: Documents used by the Industrial Attachment .. 25

Table 8: Industrial attachment Assessment Parameters .. 25

Table 9: Technologies used by Industrial Attachment Docket .. 25

Table 10: Measures to improve Industrial Attachment Operations ... 25

Table 11: Validation Test Tasks and Results for Admin ... 49

Table 12: Validation Test Tasks and Results for ILO ... 50

Table 13: Validation Test Tasks and Results for Students .. 51

Table 14 Validation Test Tasks and Results for Lecturers .. 51

file:///E:/2021/UoN%20MSc/Post%20-%20M3/Presentation/P53-11300-2018%20Esadia%20Benard%2019.08.21.docx%23_Toc80341764
file:///E:/2021/UoN%20MSc/Post%20-%20M3/Presentation/P53-11300-2018%20Esadia%20Benard%2019.08.21.docx%23_Toc80341765
file:///E:/2021/UoN%20MSc/Post%20-%20M3/Presentation/P53-11300-2018%20Esadia%20Benard%2019.08.21.docx%23_Toc80341766
file:///E:/2021/UoN%20MSc/Post%20-%20M3/Presentation/P53-11300-2018%20Esadia%20Benard%2019.08.21.docx%23_Toc80341767
file:///E:/2021/UoN%20MSc/Post%20-%20M3/Presentation/P53-11300-2018%20Esadia%20Benard%2019.08.21.docx%23_Toc80341768
file:///E:/2021/UoN%20MSc/Post%20-%20M3/Presentation/P53-11300-2018%20Esadia%20Benard%2019.08.21.docx%23_Toc80341769
file:///E:/2021/UoN%20MSc/Post%20-%20M3/Presentation/P53-11300-2018%20Esadia%20Benard%2019.08.21.docx%23_Toc80341770
file:///E:/2021/UoN%20MSc/Post%20-%20M3/Presentation/P53-11300-2018%20Esadia%20Benard%2019.08.21.docx%23_Toc80341771
file:///E:/2021/UoN%20MSc/Post%20-%20M3/Presentation/P53-11300-2018%20Esadia%20Benard%2019.08.21.docx%23_Toc80341772
file:///E:/2021/UoN%20MSc/Post%20-%20M3/Presentation/P53-11300-2018%20Esadia%20Benard%2019.08.21.docx%23_Toc80341773
file:///E:/2021/UoN%20MSc/Post%20-%20M3/Presentation/P53-11300-2018%20Esadia%20Benard%2019.08.21.docx%23_Toc80341774
file:///E:/2021/UoN%20MSc/Post%20-%20M3/Presentation/P53-11300-2018%20Esadia%20Benard%2019.08.21.docx%23_Toc80341775
file:///E:/2021/UoN%20MSc/Post%20-%20M3/Presentation/P53-11300-2018%20Esadia%20Benard%2019.08.21.docx%23_Toc80341776
file:///E:/2021/UoN%20MSc/Post%20-%20M3/Presentation/P53-11300-2018%20Esadia%20Benard%2019.08.21.docx%23_Toc80341777
file:///E:/2021/UoN%20MSc/Post%20-%20M3/Presentation/P53-11300-2018%20Esadia%20Benard%2019.08.21.docx%23_Toc80341778
file:///E:/2021/UoN%20MSc/Post%20-%20M3/Presentation/P53-11300-2018%20Esadia%20Benard%2019.08.21.docx%23_Toc80341779
file:///E:/2021/UoN%20MSc/Post%20-%20M3/Presentation/P53-11300-2018%20Esadia%20Benard%2019.08.21.docx%23_Toc80341781
file:///E:/2021/UoN%20MSc/Post%20-%20M3/Presentation/P53-11300-2018%20Esadia%20Benard%2019.08.21.docx%23_Toc80341782
file:///E:/2021/UoN%20MSc/Post%20-%20M3/Presentation/P53-11300-2018%20Esadia%20Benard%2019.08.21.docx%23_Toc80341783

vi

List of Abbreviations

API - Application Programming Interface

ESB - Enterprise Service Bus

HTTP - Hypertext Transfer Protocol

ILO - Industrial Liaison Officer

JSON - JavaScript Object Notation

REST - Representative State Transfer

SaaS - Software as a Service

SOA - Service Oriented Architecture

SOAP - Simple Object Access Protocol

SSO - Single Sign-On

TVET – Technical and Vocational Education and Training

WSDL - Web Service Definition language

WSGI - Web Server Gateway Interface

XML - Extensible Markup Language

YAML - Ain't Markup Language

vii

Definition of Terms

Docker: an open platform for packaging and running software applications in a loosely

isolated and secure computing environment called a container. A container is a runnable

instance of an image. An image is a script that packages an application stating the

applications pre-configured server environments.

Microservice: a lightweight application, which provides a narrowed list of features with a

well-defined contract. It's a component with a single responsibility, which can be

developed and deployed independently and interacts with other components using network

communication mechanism.

Model: a sample, prototype, or a mock-up of a product built to experiment an idea.

SaaS: a cloud computing software delivery model that allows users to connect to and use

cloud-based applications over the internet.

Scalability: the ability of a device to adjust to the variations in the environment and meet

the impending varying needs mostly the growing amount of work.

Service: a module that supports a specific task or business goal and uses a simple, well-

defined interface, such as an application programming interface (API), to communicate

with other sets of services.

SOA: is a term that represents a model in which software automation logic is structured

into smaller, distinct components (units of logic). Together, these components make up an

entire software system.

SSO: A web session and web user verification service that authorises a user to use one set

of web login credentials (example is a name and password) to access numerous web

applications.

WSGI: Python Common Gateway Interface (CGI) standard that simplifies how to write a

python application in order to serve HTTP requests.

YAML: is a digestible, human-readable data-oriented / serialization language that is often

used for writing container configuration files.

1

CHAPTER ONE: INTRODUCTION

1.1 Background of the Study

The ever advancing Internet technology is continually calling for the need to find improved

ways of designing and implementing software systems. Customers’ needs that are always

changing are forcing organizations to adopt software applications that are quick to deploy,

easy to maintain and always available. While traditional architectures can still handle a lot

of this, as the code size grows, it reaches a point where, a more dynamic, scalable style of

application development is needed. One such approach is the microservices architecture

(Jeremy, 2021).

Microservices is a subset of Service Oriented Architecture (SOA) style of software

development that structures an application as a collection of loosely attached services. This

services are fine-grained, are independently deployed and use lightweight protocols to

communicate (Hardik, 2020). The services are smaller in scope, they have a single

responsibility and work together to form the entire system.

Microservices are the opposite of monolithic applications. A Monolith is made up of

software modules or components that are tightly coupled and cannot be executed

independently (Ziade, 2017). This makes it difficult to scale, maintain and reuse the

components. Microservices support use of various technology stack where different

platforms, programming languages and technologies can be used to develop different

services of the same application. Mordo (2021) explains that microservice writes only to

its own database, supports stateless interaction and can be deployed as multiple instances

mostly using containers or virtual machines in a data center.

Microservices approach allows building distributed applications that comprises of small,

autonomous components or services which interact with each other using Application

Programming Interfaces (APIs). The API’s have various message formats including

Extensible Markup Language (XML), JavaScript Object Notation (JSON) among others

(Jeremy, 2021). A number of communication protocols like Hypertext Transfer Protocol

(HTTP), Hypertext Transfer Protocol Secure (HTTPS), Simple Object Access Protocol

2

(SOAP), Representational State Transfer (REST), Remote Method Invocation (RMI) and

Advanced Message Queuing Protocol (AMQP) aid API’s interaction. These advantages

makes microservices one of the most searched for architectures that promises scalability

and agility of enterprise software (Hardik, 2020). Thus the need to design an Information

System using Microservices; a case of Student Industrial Attachment for Technical and

Vocational Education and Training (TVET) institutions in Kenya.

Industrial Attachment Training is a “work-based experience programme” that exposes

students to real-life organizational context. The work-based session has the main aim of

allowing students acquire industry knowledge, skills and attitudes under the supervision of

a professional who is a mentor and a coach. This formal placement of students in the

workplace is a mandatory academic requirement that takes approximately three to six

months to supplement classroom training (Mutiso, 2021).

TVET institutions have Industrial Liaison Office that coordinate industrial attachment

operations before, during and after the attachment ensuring that students are placed

appropriately, are assessed and appraised (Korir, 2021). Students are expected to keep a

daily log or portfolio of all the activities and lessons learnt during the attachment (Mutiso,

2021). The student is evaluated by both the industrial attachment supervisor and the

academic department assessor (KTTC, 2021). The exercise ends when the student submits

a written report detailing learnt experience to the academic department which compiles and

awards the student an attachment score.

3

1.2 Problem Statement

Implementing software system using Microservices Architecture has been trending as a

better option compared to SOA approach or even monolith architecture (Baboi, Iftene, &

Gîfu, 2019). Many institutions have monolith software systems that are struggling to keep

pace with the user expectation for interactive, rich and dynamic systems that are highly

available, scalable and easy to execute (Familiar, 2015). Baboi, Iftene, & Gîfu (2019)

observes that monolith applications have a large code base that keeps on growing and

becoming complex, are difficult to scale, are more susceptible to failures as debugging is

not easy and are harder to maintain or add new features thus the need to adopt the trending

microservices approach. SOA lost momentum to microservices because of it being

heavyweight, complex and having multiple processes that can reduce speed. While SOA

offers Enterprise Service Bus to manage communications, microservices offers a better

approach of smart endpoints and dumb pipes. To have systems that performs as per users

expectations, organizations are structuring their applications into Microservices

(Pachghare, 2016).

The management of Industrial Attachment docket in TVET Institutions in Kenya has not

fully embraced technological advancements (Yannuar , Hasan, Abdullah, Hakim, &

Wahyudin, 2018). This is despite the institutions having other information systems like

Students Management Information Systems, Fees Collection Systems and Library

Management Systems. The industrial attachment docket relies on manual reports like

student’s fees status and academic progress from these systems in order to execute its

activities. Student’s attachment records like Log Book and Attachment Report are

manually stored. The process, even with some form of automation makes most of the

institutions information disintegrated thus introduction of Microservices provides well

organized, comprehensive and handy information to monitor and supervise students on

industrial attachment.

Hymet & Arban (2020) cites the lack of a distributed industrial attachment management

system has created a communication gap among the stakeholders. For instance, businesses

/ companies used different sources to find students or announce industrial attachment posts,

4

training institutions didn’t have automated systems to aid students in applying for industrial

attachment, monitoring students learning experiences and student’s assessment was not

automated. The available systems used Ms Word, Excel and Access which have less user

functions for capturing, recording, finding, sharing, analyzing and producing output.

1.3 Objectives

The overall objective of this project was to investigate and evaluate how to use

microservices architecture in information systems for the management of students’

industrial attachment programme in TVET Institutions in Kenya.

The study specific objectives included:

1) To find out requirements of the new industrial attachment management system in

TVET institutions.

2) To provide a scalable means of monitoring and supervising students on industrial

attachment using microservices architecture.

3) To test and validate the performance of the developed microservices model.

1.4 Significance of the Study

This project report adds knowledge and understanding to the already existing literature on

how to design software systems using microservices architecture. This is a source of

literature for those intending to do further research on microservices architecture.

The study also generates insights and information to administrators, industrial

attachment organizations and training institutions on how to offer the best hands-on

experience to students undergoing industrial attachment exercise. This has resulted into

improved productivity, efficiency and proper timely decision making on matters

concerning industrial attachment.

The new system creates opportunities to expose students to the practical world to practice

the theory and technical skills learnt in the classroom. The system strengthens the student’s

supervision and assessment process on industrial attachment. This improves students’

5

competence, their qualifications and facilitates them to enter the job market after

graduating.

The system provides a foundation to integrate other information systems in TVET

institution to provide unified sharing of information. Prospective systems for integration

include student’s management system and KNEC student’s registration system.

1.5 Scope of the Study

The microservice based model for managing Industrial Attachment information in TVET

institutions in Kenya handles the following:

 Helps students secure and be placed on industrial attachment.

 Monitors and helps in supervising students’ daily learning activities during the

industrial attachment training period.

 Links TVET institutions and the industry for the purpose of developing competent

manpower.

 Maintains student’s industrial attachment records including award of scores.

1.6 The Assumptions of the study

The literature reviewed while doing the project are assumed to have been adequate to be

the groundwork of the arguments about the research project. Plagiarism as an issue was

adequately handled by citation and reference list.

It is also assumed that the sample population used answered the questionnaires correctly,

the data collected was analyzed accurately and with appropriate summaries, and research

tools and techniques were accurate for the study. Thus the study’s findings and conclusions

are accurate and correctly stated.

The study observed ethical issues before, during and after data collection. For instance the

researcher ensured confidentiality of the respondents over the information gathered. The

sampled institutions were notified of the exercise during data collection.

6

CHAPTER TWO: LITERATURE REVIEW

2.1 Introduction

An overview of industrial attachment as a compulsory academic exercise and the difficulty

experienced by handling manual disintegrated data in the industrial attachment docket are

discussed by this chapter. The inefficiencies of Monolith and SOA architectures are

conversed and the benefits of adopting Microservice-based system are also discussed.

2.2 Industrial Attachment in TVET Institutions

Industrial attachment is a compulsory academic requirement for students learning in TVET

institutions whose objective is to promote acquisition of practical work knowledge, ethics

and skills. Kiplagat, et al. (2016) and KTTC (2021) notes that most students gain a unique

experience to technology, work place ethics, morals & principles, and the organogram or

organizational chart through Industrial Attachment.

2.2.1 Industrial Attachments Activities in TVET Institutions

Sourcing for attachment places, placing students on industrial training, assessment of

students on industrial attachment plus linking institutions to workplaces are the major

activities of Industrial Attachment department in TVET institutions (Mutiso, 2021). The

department/section comprises of the Industrial Liaison Officer (ILO) as the head, members

who are representatives of various academic departments and the office administrative

staffs (KTTC, 2021). A student after having covered stipulated academic units in a given

area of study, he / she is required to apply for an industrial attachment place under the

guidance of the industrial liaison officer (NITA, 2021).

Once the student secures an attachment place he/she is given a posting letter (created using

MS Word) to be presented to the administration of the organisation offering the attachment.

The organisation should also do a letter to confirm the arrival of the student to the

organisation and commencement of the industrial training (KTTC, 2021).

During the training, students are required to update their logbooks with the learning

experiences acquired in their daily routines. The progress of the training is continually

monitored and supervised by the supervisor from the industry who makes comments in the

7

student’s logbooks (KTTC, 2021). An Assessor from the academic institution makes visits

to evaluate the student’s progress.

The Assessor is expected to compile the student’s final score using supervisor’s scores,

student’s logbook recordings, student’s industrial attachment report and his / her own

assessment comments (Korir, 2021). The ILO can award an Industrial Attachment

Certificate to signify completion of the training.

2.2.2 Challenges associated with management of industrial attachment in TVET

institutions

 According to Aineah (2019), industrial attachment has a number of challenges affecting

its key participants. Students, hosting organisations and training institutions are victims of

this challenges. Placement of students to the industry is not that easy (KTTC, 2021). About

10% of the students usually end up being attached to organisations which are under

capacitated where they are exposed to competencies far from the area of specialization

(Aineah, 2019).

Most of the records generated in the process of attaching students are manually kept in files

by the ILO (Hasti, Lesari, & Gustiana, 2019). These includes student’s industrial

attachment qualification documents like copies of fees payment, academic progress and

insurance cover documents. Additionally, copies of attachment request letters, attachment

posting & confirmation letters and recommendation letters are also filed in cabinets.

Finally, student’s logbooks, student’s attachment reports, assessor’s reports and students’

scores are also kept in student’s individual folders. This makes it difficult to track the events

in the entire process leading to manually searching for files to come up with information.

Communication between the attachment organisation and training institution is largely

unstructured (e.g. through e-mails, letters, phone calls) characterised with manual way of

record keeping.

8

2.3 Microservice Architecture

Baboi, Iftene, and Gîfu, (2019) notes that the difficulties experienced by using monolithic

applications or SOA systems are paving way for software professionals to embrace

microservices as an approach to develop internet based applications.

2.3.1 Monolith Application versus Microservices Based Application

Kanjilal (2020) defines a monolith as an application that has a single-code base consisting

of tightly coupled units that are installed as a single component. Ideally it is made up of a

client user interface, Business unit and a Database unit as illustrated in the diagram below;

On the other hand Kanjilal (2020) explains that microservices delivers an application as a

collection of small, independent, loosely coupled services. Microservices divides an

application into small components that are independently functioning on their own and

interact with each other to make up the entire system as shown in the diagram below;

Baboi, Iftene and Gîfu (2019) prefers microservices applications whose services are

isolated from one another and execute independently of each other compared to monolith

applications whose modules are executed in a tightly coupled manner. This give an edge

to microservices as Wittmer (2021) terms them as more resilient and fault tolerant.

Because a monolith is a single unit with many interdependencies, one bug can bring down

Client Business Logic Data Access

Layer
Database

Figure 1: Monolithic Architecture (Kanjilal , 2020)

Client

Microservice

Microservice

Database

Database

Database

Figure 2: Microservices Architecture (Kanjilal , 2020)

Microservice

9

the entire application. Equally it is difficult to isolate the root cause of any problems that

might emerge, and also difficult to recover from failures since it means the entire monolith

application needs to be rebuilt. In contrast, a bug found in one microservice might not affect

other services in the application because the services are autonomous thus it is easy to

isolate a service, fix bugs in the service and redeploy the service.

In terms of agility, Yadav (2019) routes for Microservices as they support speedy

development, speedy feature enhancement and redeployment because the development

teams are usually divided into smaller teams probably each focusing on a single service.

On the other hand, Monolith applications are characterised with slow feature enhancements

and slow redeployment as mostly they have a huge code base, and the entire team can have

difficulty in understanding the single code base.

Microservices application allows heterogeneous technologies to be used in implementing

the individual services (Chandramouli, 2019). For instance each of the multiple services

can individually be developed using a unique programming language and a unique data

storage technology, whereas most of the monoliths are built using a single technology

stack. Microservices also accommodates different team member’s expertise in developing

applications unlike monoliths single technology stack.

Concerning data storage, Swathi and Rashmi (2020) expounds that most of the

microservices are designed to have their own databases as compared to a monolith

application which share a single database. This makes the application more open to

different database technologies. Database per service also allows faster development,

enhances loose coupling and forms a basis for building agile and scalable systems.

Chandramouli (2019) adds that monoliths have different interaction styles compared to

microservices. In monolith, each component is developed as procedure or function that

communicates using call statements. Microservices have services running in their own

distinct network nodes that communicate using APIs. Most of them use REST over HTTP

for asynchronous and synchronous communication (Pachghare, 2016). For payloads they

use XML or JSON with JSON being smaller in size and faster than XML. Both XML and

JSON support integration between various languages and heterogeneous systems.

10

2.3.2 Service Oriented Architecture Application versus Microservices Application

SOA applications and Microservices applications have similarities. Both architectures

consists of services which are smaller in scope and focuses on performing one particular

business process. Wittmer (2021) agrees that the two architectures are open as developers

have the leeway to use a platform and a programming language of their choice. They all

allow interoperability where SOA services interact using Enterprise Service Bus (ESB)

while Microservices communicate by Remote Procedure Call (RPC) across a network

(Chandramouli, 2019).

The two architecture also differ in certain aspects. Waseem, Liang and Márquez (2020),

Richards (2021) and Ghahrai (2017) in their articles agrees that the two architectures

contrast in service granularity and component sharing. For instance, microservices have

extremely smaller services that are constantly evolving thus fine-grained while SOA has

large services that are more stable and coarse grained. Microservices are more resilient,

easily deployed and are agile as compared to SOA services. Services in microservices are

autonomous and don’t share a common runtime environment as might be the case with

SOA. Wittmer (2021) explains the differences using the diagram below;

Wittmer (2021) further explains that microservices and SOA also differ in the ways they

communicate. Microservices uses smart endpoints (communication logic is part of the

Database
User Interface

Enterprise Service Bus

Service Service

Data Base

User Interface

Micro

service

Micro

service

Micro

service

Database Database

Figure 3: SOA vs Microservices Communication (Wittmer, 2021)

Database

SOA Microservices

11

service) and dump pipes (a messaging system that doesn’t have any business logic).

Conversely, SOA communicates via API (specified by Web Service Description Language

(WSDL)) and or Enterprise Service Bus (ESB). XML based WSDL is considered as a

heavy weight that embraces Simple Object Access protocol (SOAP) for communication

and has a directory (UDDI) for available services. ESB provides a single point where

communication messages are orchestrated which on the flipside can become a single point

where communication fails or happens slowly (Indrasiri & Siriwardena, 2018).

2.3.3 Microservices Design Principles

According to Chandramouli (2019), Ziade (2017), Pachghare (2016) and Newman (2015),

microservices have a number of design principles; i) an individual microservice should

allow scaling, upgrading, replication and deployment independent of other services, ii) A

microservice should have a single limited responsibility, iii) The microservices should be

stateless and fault tolerant, iv) Modularity: Each microservice represents a logically

cohesive, lightweight and independent business functionality with well-defined

boundaries. By design, microservices are highly granular, and independently built and

deployed, v) Stateless: Microservices provide stateless communication between the client

and the server and vii) Microservices should communicate with each other using network

calls known as smart endpoints and dumb pipes with preference to REST over HTTP.

2.3.4 Microservices Decomposition Patterns

According to Shivakumar (2019) in decomposing an application into microservices, loose

coupling, high functionality coherence and optimum granularity of services is required. A

number of ways of decomposing exists, some of them are;

Decomposition based on business capability: Create microservices based on business

capabilities. For instance, in an e-commerce solution, we can create services based on

business capabilities like service management, product promotions and order management

Decomposition based on sub-domain: The sub-domains of the core domain (business)

are identified and microservices created based on that. For instance, the order management

domain has sub-domains such as product catalog and inventory management.

12

Decomposition based on transaction: develop microservices based on the main

transactions of the application. For instance, the main transactions of an e-commerce

application are check-in/login, backup, checkout and search; we can create microservices

for these transactions (Indrasiri & Siriwardena, 2018).

Decomposition based on resources: We can create microservices based on nouns or

resources and define the operations. For instance, in an e-commerce solution, ‘products’ is

a resource and we can define and then list all products (GET /products), query particular

product (GET /product/{1}), delete a product (DELET / product/{}), insert product (PUT

/product/{}) (Shivakumar K. S., 2021).

2.3.5 Microservices Integration Patterns

Integration patterns describes the optimal ways to invoke multiple microservices,

microservice invocation sequence, data and resource security, data transformation and

responses for different clients (Lewis & Fowler, 2014). Newman (2015), notes that

database integration should be avoided, choreography should be preferred over

orchestration and REST should be considered over RPC for request/response integration.

A number of integration patterns are in use currently including;

API gateway pattern: An API gateway provides a centralized access point for invoking a

microservice handling security (such as authentication, authorization), governance (such

as logging service, monitoring service), request routing, load balancing, protocol

transformation, performance management, data transformation and the aggregation of

responses from multiple services (Pachghare, 2016) and (Shivakumar K. S., 2021).

Aggregation pattern: When a single microservice needs responses from multiple

microservices, a composite service can take the responsibility of aggregating the response.

User Interface composition pattern: The end user interface layer is laid out into various

sections, which individually invokes the corresponding microservice asynchronously.

2.3.6 Security in Microservices

In monolithic web applications, authentication happens with a login form, and once the

user is recognized, a cookie is set and used for all succeeding requests (Ziade, 2017). A

13

paper written by Shaik and Mane (2017) discloses Oauth 2.0 as the most popular protocol

for microservices verification and approval mechanism. The core idea of Oauth 2.0 is that

a centralized service is in charge of authenticating a caller, and can grant some access in

the form of codes or tokens called keys. The tokens can be used by users or services to

access a resource, as long as the service providing that resource accepts that token.

2.3.7 Microservices and Containers

According to Douglis and Nieh (2019), container technologies like Docker and

Orchestration systems like Kubernetes are the common infrastructure that supports

microservices. As Operating System virtualization platform, containers allow multiple

services to run in a single operating system and dynamically provision runtime resources.

Each microservice can be packed as a docker container (2019) using a docker file.

Docker has Docker Swam an equivalent of Kubernetes container orchestration technology.

Both platforms have embraced each other and are used to schedule, automate, deploy and

scale containerized applications. They use YAML; a human-readable digestible data-

serialization language to configure and deploy multiple containers.

2.3.8 Scaling in Microservices

Microservices systems can be scaled horizontally or vertically. An application whose

architecture can be scale by adding more runtime instances of its processes is said to be

horizontally scaled. This is usually achieved by virtual machines or containers which can

be configured to autonomously add more application instances to address system

performance needs. Vertical scalability comes in where a systems’ hardware resources are

added e.g. adding more memory and storage space, adding CPUs, adding input and output

devices in the name of improving system performance (Bradley, 2021). Vertical scalability

tends to be more expensive and has a finite scope of improvement compared to horizontal

scalability that has a lower risk of system downtime and hardware failures.

2.3.9 Challenges faced while using Microservices

Many organizations are used to the old-fashioned three-tier monolithic applications that

comprises of application tier, business tier and database/ storage tier. Most of them are

14

transitioning to the popular microservices architecture and are facing difficulties in tearing

down a large software application or even running microservices systems (Sengupta,

2021). They are struggling to determine: each microservices size, optimal boundaries and

connection points between each microservice and the framework to integrate the services.

Security is a challenge as deployment of microservices is often in distributed environments

which are security vulnerable points. This can lead to increased risk and loss of control and

visibility of application components. Each microservice communicates with others via

various API layers, making it even harder to test for these vulnerabilities in cloud

environments. Due to its distributed framework, setting up access controls plus permissions

and administering secured authentication to individual services poses not only a technical

challenge but also increases the attack surface greatly (Chandramouli, 2019).

The testing phase of any software development lifecycle (SDLC) is increasingly complex

for microservices-based applications. Given the standalone nature of each microservice,

you have to test individual services independently. Worsening this complexity,

development teams also have to factor in integrating services and their interdependencies

in test plans when they do some end-to-end tests while deploying the application (Ziade,

2017). Luckily, there are now many tools to facilitate deployments of applications that are

built with several components to help in the success and adoption of microservices.

Communication is also an issue as independently deployed microservices act as tiny

standalone applications that must interconnect with each other (Ziade, 2017). Inter Process

Communication (IPC) is applied for the communication among the services. Deciding a

better communication mechanism and messaging protocols remains a challenge.

Data storage and sharing amongst services also possess a challenge. As a principle, services

should be loosely coupled and independent of each other thus the emphasis on the principle

of each service should have its own database. Avoiding duplication of data while achieving

isolated microservices emerges as one of the challenges experienced in designing

microservices-based applications (Ziade, 2017).

https://www.bmc.com/blogs/it-teams/

15

2.4 Review of Related Systems

2.4.1 Monolith Systems

Juhana, et al (2017) designed an easily accessible Electronic Portfolio application that

automates students internship operations. The application documents students activities

while on internship and enhances students, trainer and coach online consultations. The

system is considered to be interactive, user-friendly and aids in monitoring/supervising

students on Internship. Deploying the application as a monolith that contains tightly

coupled components makes the system harder to scale and difficult to maintain and

accommodate the ever changing user requirements.

Hasti, Lesari and Gustiana (2019) developed a web-based internship application that offers

automated solutions to the difficulties experienced at each stage of the internship process

which includes student’s registration, applying for internship opportunities, selecting a

supervisor, internship assessment process and appraisal of student’s internship reports.

Object oriented approach was used to develop the prototype. User’s evaluation of the

system indicated that it minimized errors in the process of managing internship and

provided timely information. The authors proposed future studies to be done to integrate

the system with other systems so that the process of making reports is simplified.

A virtual conference paper written by Hymet and Arbana (2020) about the role of

Internship management systems in improving the relationship between stakeholders,

recommended a web-based internship dynamic platform based on the Model View

Controller (MVC) architecture and framework. The argument was that the MVC

framework provides components separation, reusability, storage and independence. The

new system offered simplified code development process, easier maintenance and more

resilience in terms of fault tolerance. The application aimed at reducing manual activities

and improving communication amongst stakeholders. The resultant system incorporated

storage of intern’s records in a database, checking of students internship progress and

created synergy between students, industry and educational institutions. Although MVC

framework divided the code into three components; Model, View, and Controller, it was

still a monolith with a single run time environment (Hoffman, 2021).

16

2.4.2 SOA Systems

Girsang, Jafar and Fajar (2018), designed a SOA based project management system that

integrated the software development stages of requirements elicitation, requirements

analysis, system design and implementation plus the operations of a company engaged in

Information Technology Consulting. SOA was the preferred approach as it has the benefits

of establishing reusable services with good integration mechanism, efficient application

development process and increasing collaboration between the developers and the

stakeholders of the application. The report recommends development of the remaining

business services and be integrated to the new system by bypassing the ESB to make the

company reap benefits of software scalability and agility.

The need for a flexible reusable system to adjust to continuous customer needs in a Toyota

automotive company production system drove Nugroho and Fajar (2019) to design a

system based on SOA. This architecture integrated two systems i.e. production system and

production support system that were based on different technology platforms, using

RESTful web services. XML and JSON were used in data sharing. This solved

communication problem between the two platforms, reusability of code was achieved and

system maintenance become easier too. Centralizing of data storage was seen as a

hindrance to achieving loosely coupled and independent services.

2.4.3 Microservices Systems

Shaik, Ramkumar, Hameed and Mohammed (2019), proposed a microservice based

architecture model for Oman’s National Health Record system that was initially designed

as a monolith. They acknowledge that microservices is a solution for a monolith system

that has a growing code base. To solve the complexity of large code base, loosely coupled

services were introduced to tap into distributed architecture benefits like high availability,

easy scalability, heterogeneity, interoperability, openness and reusability. The new system

was built as a cluster of microservices organized around business capabilities that were

deployed independently. The system decentralized the old systems data and the team

realized reduced deployment time for each service. The new model services were designed

to be consumed through APIs using REST protocol. An API gateway was implemented

between clients and the microservices cluster to act as a single entry point into the services

17

provided by the application. The API gateway was adopted by the team because its

implementation structures enhanced functions such as authentication, authorization, load

balancing, cache management and service level agreement (SLA) management.

Wu, Wan and Zhu (2018) presented a journal article detailing how they designed a

Microservices based Students WeChat system for Huaiyin Institute of Technology. The

article outlined shortcomings of monolith system as having a large code base with single

runtime environment, reliance on single technology stack and difficult to adapt and

incorporate new customer needs as the motivation to use microservices. They also argued

that Microservices were selected because they used lightweight communication protocols

like REST and HTTP unlike SOA which largely uses web services protocols like SAOP

and WSDL to interact. SOA was viewed as an avenue to achieving multiple systems

integration whereas microservices decomposed an application into multiple loosely

coupled, distributed and autonomous services and allowed systems integration. The new

system was divided into four independent service to facilitate maintainability and

scalability. The services were exposed as RESTful API interfaces that communicated using

JSON messaging format. Docker containers were incorporated in deploying the individual

services to achieve horizontal scalability autonomic computer system.

2.5 The Proposed Model

The proposed model handles industrial attachment operations by automating the processes

of attachment placement, monitoring & supervision, assessment & appraisal and data

storage. The model provides a coordinated way of students accessing the available

attachment opportunities, applying their preferred attachment places and allows admission

of students to their attachment places. Admitted students can record their daily learning

activities electronically and upload reports. The system also acts as a communication

platform between various stakeholders. The system allows the Industry trainer, coach &

mentor, to track and supervise the progress of the student at the work environment.

The new microservices system also allows the Industrial Liaison Officer to assess the

students on attachment by allocating assessors to evaluate the students in the field and

grade the final report of the students. The system has a report generation service to print

students’ industrial attachment nominal roll and a student can also print his/ her final score.

18

CHAPTER THREE: RESEARCH METHODOLOGY

3.1 Introduction

Descriptive research design was employed in coming up with the requirements of the new

system. Convenience sampling technique was used to select KTTC and NYSEI to represent

TVET institutions where stratified sample was used to draw a sample from which data was

collected. Data collection was by questionnaires & documents review methods and the

collected data was represented and analyzed using statistical methods. The microservices

model was developed by agile application development methodology using python

frameworks and JavaScript library. Docker containers were used to deploy and scale the

model. Nginx was configured as load balancer/reverse proxy and Locust load testing tool

was used to test system performance.

3.2 Research Design

Research design created a blue print within which data collection, data measurement and

data analysis was conducted (Kothari, 1985). Descriptive research design which

systematically described the state of affairs of the current system was used. The design

answered the what, when, where and how questions concerning the study. Descriptive

research design allowed gathering of in-depth data in a participant’s natural environment.

To successfully achieve the goals of research, a quantitative research approach was used

where numerical data was collected and analyzed (Bhandari, 2021). Quantitative research

allowed standardized data collection and generalizing of research findings. The data

produced was numerical and was analyzed using mathematical and statistical methods.

19

3.3 Developing the Model

3.3.1 Software Development Methodology

Agile Software Development Methodology was adopted to develop the microservice based

model. Agile methodology is fast, flexible, error-proof development methodology that

focuses on iteration to come up with software products (Ihor, 2021).

Agile has the advantage of creating a collaborative culture amongst teams allowing them

to work together and releases high-quality products making it suitable for microservices

development. The methodology has an ongoing testing process that allows continuous

change to improve the quality of the software product. The development cycle was split

into six stages; starting from concept identification, followed by inception and analysis,

then iteration/construction phase, release phase and finally production and retirement phase

(Brush & Silverthorne, 2021).

At the iteration/construction phase is where user requirements were transformed into a

working software artefact which was a basis for customer feedback. Multiple iterations

came up after another which led to improved quality software model that captured user’s

expectations.

Figure 4: Agile software development cycle (Brush & Silverthorne, 2021).

20

Inside an iteration flow, the following steps were followed; i) user requirements were

defined based on product backlog (list of items to be done), ii) the requirements were

implemented, iii) testing which involved quality assurance and user training was done, iv)

the working product was delivered and integrated to the entire system, v) stakeholders and

customers experience was recorded to be part of the next print requirements.

3.4 System Requirements Gathering

3.4.1 Target Population

Kumar R (2011), defines the study population as the people (individuals, groups and

communities) from whom information is collected. The targeted population included

students, trainers and industry representatives involved in industrial attachment training

docket of TVET institutions. A representative sample was drawn from the population to

take part in the investigation.

3.4.2 Sampling Procedure

Convenience sampling and stratified sampling technique were used. With convenience

sampling the researcher simply selected respondents who were convenient for the study

(Oates, 2006). Whilst the technique was treated with caution, convenience sampling is easy

to use, has fewer rules to follow and the study achieved the sample size needed in a

relatively fast and inexpensive way. Kenya Technical Trainers College (KTTC) and NYS

Engineering Institute (NYSEI) were selected to represent TVET institutions.

Using stratified random sampling method, members of the two institutions who had

experience with industrial attachment were divided into two groups; i) students and ii)

teaching staff. This was to remove biasness and ensure every subgroup is well presented

in the sample to achieve precise conclusions (Kothari, 1985).

3.4.3 Sample Size

Kothari (1985) defines sample size as the number of items to be nominated from the

universe to make a sample. The sample size was calculated using the formula:

 𝑛 =
𝑧2 𝑃(1−𝑃)

𝑑2 (Ali , 2014),

21

Where:

n: was the desired sample size

z: the standard normal deviate usually set at 1.96 (which corresponds to the 95%

confidence level)

p: the proportion in the target population to have specific characteristic. In this case

50% (or 0.50) was used there being no estimates of the target population

d: was the absolute precision or accuracy, normally set at 0.05

on calculation: 𝑛 =
1.962 0.5(1−0.5)

0.52

 𝑛 = 384, the desired sample size

3.5 Data Collection Instruments

3.5.1 Questionnaire

A questionnaire consists of a set of questions/prompts whose aim is to collect information

from the respondents (Oates, 2006). The reply from the questionnaires provided

information that was analysed and interpreted as results. Generalisations about the actions

or views of the larger population were made based on sample results.

The choice of the questionnaire was guided by the fact that the instrument could be mailed

through the internet and collectively administered or administered in public platform or

online platform (Kumar R. , 2011). This meant the instrument was more convenient and

less costly to administer since the intended respondents could easily be reached.

The questionnaire, which was largely closed ended for easier analysis of the collected data

was administered on online platform in line with COVID-19 protocols and also in person

to the respondents. The respondents were briefed and guided well in filling. Closed

questions which are factual in eliciting information were designed to be clear and easy to

enable respondents to take a shorter time in filling (Kumar R. , 2011).

22

3.5.2 Secondary Data

Oates (2006) acknowledges that documents or existing literature is a source of data just

like interviews, questionnaires, observations and other data collection instruments.

Organizational documents like sample attachment requests letters, sample attachment

posting letters, attachment log books, assessment forms and recommendation letters were

obtained from the two TVET institutions for the purpose of data collection.

Publications from academic literature like project reports, journals, conference papers, web

documents and software guides about designing and implementing microservices based

systems also came in handy. Other documents were obtained by visiting the library or

using the web (Oates, 2006). In text citations and reference list were used to acknowledge

the contribution of these documents in designing the proposed model.

According to Oates (2006), document based data has a number of advantages, for instance,

much of the documents can be obtained quickly, cheaply & conveniently. Documents are

always permanent in that other researchers can easily check and scrutinize them thus giving

credibility to the data collected.

3.5.3 Validity and Reliability

 According to Middleton (2020), how accurate a method measures what it is intended to

measure is called validity. High validity means results corresponds to real characteristics

in the universe. Reliability indicates the consistency a method measures something. The

questionnaires were pre-tested first for validity and reliability with six colleagues at

workplace and 18 students before being used to collect data. Errors were identified,

corrected and thereafter used for data collection.

3.6 Data Collection

3.6.1 Administration of Questionnaires

The study administered 384 questionnaires to 192 respondents from KTTC and 192

respondents from NYSEI. The response constituted 176 filled questionnaire which were

returned of which 122 were face to face and 54 were online questionnaires giving a 46%

23

response rate. This was done from a sample of teachers, and students from KTTC and

NYSEI between 7th May and 28th May 2021.

3.6.2 Documents Review

Organizational documents which included sample attachment requests letters, sample

attachment posting letters, attachment log books, assessment forms and recommendation

letters were obtained from the 2 TVET institutions for the purpose of data collection

between 7th May and 28th May 2021.

3.7 Data Analysis

3.7.1 Responses from Students:

The study sampled students who had completed their industrial training exercise. A total

of 142 responses were received and their data was analyzed as follows.

i) The students listed the following as the requirement for them to proceed for Industrial

attachment

Requirement Frequency Percentage

Recommendation from the Head of Department 134 94%

Table 1: Requirement before proceeding for Industrial Attachment

ii) Challenges faced while sourcing for industrial attachment places

Challenge Frequency Percentage

Difficulty in identifying Attachment Places 109 75%

Poor tracking of outcomes from the applied sources 118 82%

Table 2: Challenges faced while sourcing for Industrial Attachment

iii) Challenges faced by students on industrial attachment

Challenge Frequency Percentage

Lack of official Communication link 123 86%

Manual way of record Keeping 138 97%

Table 3: Challenges faced by students on industrial attachment

24

iv) Industrial Attachment activities

The following was identified by the students as activities done during industrial

attachment:

Activity Frequency Percentage

Daily recording of learning activities 142 100%

Supervision/Mentoring by Industrial organization staff 141 100%

Assessment by industry supervisor and college assessors 139 98%

Table 4: Industrial Attachment Activities

v) The documents awarded on completing industrial attachment

Document Frequency Percentage

Clearance from the establishment 142 100%

Recommendation letter 139 98%

Table 5: Documents Awarded on Completing Industrial Attachment

3.7.2 Responses from Lecturers

The study received 34 questionnaires as responses from the ILO and teachers in order to

incorporate their views in the development of the model.

i) Challenges faced by Trainers while assessing students on industrial attachment

Challenge Frequency Percentage

Manual Keeping of Documents 34 100%

Poor means of communication between trainers,

students and the attached institutions

34 100%

Table 6: Trainers Industrial Attachment Challenges

ii) Documents used by the industrial attachment department

Document Frequency Percentage

Attachment Request Letter 34 100%

Log Book 34 100%

25

Document Frequency Percentage

Recommendation Letter 34 100%

Assessment Form 34 100%

Table 7: Documents used by the Industrial Attachment

iii) Industrial Attachment Assessment Parameters

Item Weighting Frequency Percentage

Up to date comprehensive well organized Log book 10 34 100%

Industry Supervisors Score 40 34 100%

Academic Institutions Assessor Score 20 34 100%

Final Attachment Report Score 20 34 100%

Table 8: Industrial attachment Assessment Parameters

vi) Technologies used by the industrial attachment department in its operations

Technology Description Frequency Percentage

Email Communication 33 99%

Ms Office Creating Documents 34 100%

WhatsApp/Instagram Communication 33 100%

Table 9: Technologies used by Industrial Attachment Docket

iv) Measures to improve operations of Industrial Attachment Docket

Item Frequency Percentage

Introduction of an interactive, high available system 34 100%

Table 10: Measures to improve Industrial Attachment Operations

3.7.3 Document Reviews

The study evaluated and gathered requirements from existing document’s that are used in

the attachment process. Sample of Attachment request letters, attachment placement letters,

log books, assessment forms and student log books provided important information in

coming up with the system requirements.

26

3.8 System Requirements Specification

3.8.1 System Feasibility

Feasibility study was done to measure how beneficial or practical the system will be to

TVET institutions once developed. This confirmed that the project was worth to develop

and implement and the benefits outweighed the expenses;

i) Operational Feasibility

This clearly revealed that the new system would solve the problems outlined and users

were ready and willing to embrace the new technology. Users of the system were literate

and already using other systems in place like student management information system. The

institutions have information technology staff ready to run and maintain the system.

ii) Technical Feasibility

It was established that the hardware and software resources for developing and deploying

the new model were readily available. TVET institutions have the necessary hardware and

software needed. The institutions have internet connection to acquire open source software

from the internet. Supporting infrastructure for the system is sufficient for deployment in

Kenya because of good internet connectivity.

iii) Economic Feasibility

This was conducted to determine the cost-effectiveness and cost benefit analysis of the

project. Development costs, installation costs and operational costs were estimated and the

benefits projected. It was concluded that once the system is implemented and operational,

more benefits were to be realized.

3.8.2 System Analysis

The data collected was then transformed into system requirements and the proposed

features were refined into data flow diagrams to best capture the functional requirements

of the system.

27

i) Functional Requirements

This is a level where system subtasks were identified and the relationship among them

defined. This ensured the subtasks were transformed into subsystems which collectively

acted to form the system. The following user’s functions were identified:

Admin

 Admit students due for attachment

 Add Users of the system

 View progress of students on industrial Attachment

 Create Attachment Sessions

Students

 Register for industrial attachment

 Check available training opportunities

 Apply for industrial attachment

 Record daily industrial training activities

 Upload an attachment report

 Check the industrial attachment score

Institutions Industrial Liaison Officer (ILO)

 Admit students due for attachment

 Maintain database of training partners

 Add Users of the system

 View progress of students on industrial Attachment

 Create Attachment Sessions

Industry Supervisor

 Register in the system

 Review students’ progress

 Score attachees/students

28

The Assessor / Lecturer

 Register into the system

 View student’s allocation details

 Add evaluation details

 Remark on students daily logs

ii) Non- Functional Requirements

Security

 The system must allow only authorized users to access services.

 The system is able to grant access to authenticated users based on their defined

roles and permissions.

Efficiency

 System activities will be ready to be viewed in time. The tasks will execute

within optimal time limits.

Usability

 Easy to use system with aesthetically pleasing, clear and consistent user

interface

Reliability

 Up-to-date information will be provided to users

 Users will do decision making effectively and produce valuable results

Scalability

 The system should be scalable, highly available and fault tolerant

 Supports loose coupling

Usability

 The user interface should be designed such that screens are similar therefore it

will be easy to use, easy to learn and easy to work on.

29

3.8.3 Use Case Diagram

The diagrams are made of actors and use cases enclosed by a system boundary (Dennis,

Wixom, & Roth, 2012). They aided in identifying and splitting the functionality of the

system. An actor represents various external people or entities that interact with the system.

Student

Register

User Login

Update Log Book

Admit Students to

Attachment Places

ILO

Industry

Supervisor

Assessor

Grade Students

Apply for Attachment

View Students Progress

Figure 5: Use Case Diagram

Admin

Create attachment

Sessions

30

3.8.4 Data Flow Diagram

i) Context Diagram

A context diagram shows the external agents interacting with the system and the data

flowing in and out of the system and the interactions

 Figure 6: Context Diagram

Assessment

Results

Microservices Based

Student Industrial

Attachment Information

System

ILO Student

Industry

Supervisor

Record Daily

Logs

Admit Students

on Attachment

Assess Learning Progress

31

ii) Data Flow Diagram Level 1

Data flow diagram level 1 enabled visualizing how data or information is passed between

elements of a system. The diagram clearly showed the main sub-processes and stores of

data that make up the system.

Figure 7: Data Flow Diagram Level 1

 Authenticate Users

1

Login Details D
Student

ILO

 Apply for

Attachment

2

Application

Details
D

 Record Daily

Learning Activities

3

Evaluate Students

4

Supervisor

Daily Logs D

Scores D

Assessor

32

3.9 System Design

This phase conceived system elements that realized system operation in terms of hardware,

software, and network infrastructure (Dennis, Wixom, & Roth, 2012). The different

interfaces of the components and the data that goes through the system was also designed.

The design activities included coming up with system architecture, data storage design,

process design, network design and user interface design.

3.9.1 Architectural Design

This provided system subsystems and depicted how various services interact as shown in

figure 8. The system has User interface Microservice implemented as docker image,

Security Service, Attachment Microservice implemented as docker image and Reports

Microservice implemented as docker image. Security service is implemented as Software

as a Service (SaaS) single sign on option from Okta.

User Interface Microservice (React

JavaScript Application)

Docker

Security Service

(Oauth2.0

Protocol)

Attachment Microservice

(Django Framework)

(Django Rest Framework)

Docker

Database

Tokens

Figure 8: System Architectural Design

Reports Microservice

(Django Framework)

(Django Rest Framework)

Docker

33

3.9.2 Sequence Diagrams

i) Security Service Sequence Diagram

ii) Attachment Microservice Sequence Diagram

Figure 9: Authentication with Okta Sequence Diagram (Okta, 2021)

Student

Attach Final

Report

Assign Learning

Activities

System ILO Supervisor Assessor

Apply for

Attachment

Application

Screen Attachment

Posting

Record Daily

Transactions
Comment on

progress

Score Progress

Score Progress

Figure 10: Attachment Microservice Sequence Diagram

34

iii) Integration Sequence Diagram

3.9.3 Database Design

Database Design included the steps that helped with creating, developing, updating,

deleting and maintaining organizations data storage management system (Naeem, 2021).

The design produced physical schema and logical schema of the database.

Logical schema employed Entity Relationship modelling that transformed the database

requirement through normalization process. Physical model took Object Relational

Mapping (ORM) programming technique to come up with a functional database

management system.

Actor

Middleware API Data Model

Initiate

Initialize
Initialize

Content URL

Figure 11: Integration Sequence Diagram

35

Comment

id BigAutoField

log_entry ForeignKey (id)

user ForeignKey (id)

comment_date DateTimeField

content TextField

User_display():string

Institution

id BigAutoField

address TextField

contacts TextField

name CharField

no_of_opportunities IntegerField

UploadedFile

id BigAutoField

file FileField

File_name():string

File_type:string

Application

id BigAutoField

ilo ForeignKey (id)

institution ForeignKey (id)

student ForeignKey (id)

supervisor ForeignKey (id)

end_date DateTimeField

start_date DateTimeField

Student_name():string

Institution_name():string

Supervisor_name():string

Ilo_name():string

Application

id BigAutoField

ilo ForeignKey (id)

institution ForeignKey (id)

student ForeignKey (id)

supervisor ForeignKey (id)

end_date DateTimeField

start_date DateTimeField

Student_name(): string

Institution_name(): string

Supervisor_name(): string

Ilo_name(): string

LogEntry

id BigAutoField

user ForeignKey (id)

date DateTimeField

notes TextField

Comments_count():string

User_display(): string

Attachment

id BigAutoField

ilo ForeignKey (id)

institution ForeignKey (id)

session ForeignKey (id)

student ForeignKey (id)

supervisor ForeignKey (id)

end_date DateTimeField

User CharField

start_date DateTimeField

status CharField

Authentication

id BigAutoField

FirstName CharField

LastName CharField

Email EmailField

Password CharField

Role CharField

Figure 12: Entity Relational Diagram

36

3.9.4 Program Design

Flowcharts and pseudocodes were used to guide in coming up with clear and concise

programming statements. Flowcharts showed pictorial representation of algorithms (Rai, 2021).

i) Overall System flowchart

Start

ILO

Authenticate Users

Algorithm

Implement Admin

Tasks Algorithm

 Implement Lecturers

Tasks Algorithm

Implement Student

Tasks Algorithm

Student

Admin

Lecturer

Implement

ILOs Tasks

Algorithm

Logout

Role =

Stop

Implement Supervisors

Tasks Algorithm

Supervisor

Figure 13: System Flowchart

37

Pseudocodes as a program design tool were used to describe the flow of logic in the

programs’ algorithms. Sample of the Pseudocodes used are as below;

ii) Authenticate Users Pseudocode

Begin

Display Login Form

If REGISTERED Then

 Fill Username and Password

 Click Login Button

 If CORRECT username And password Then

 Authorize user based on Role

 Login Successful

 Exit Login Page

Display User Page

 Else

 Display wrong username and or password

 Display Login Form

Else

 Display registration Form

 Fill Registration Details

 Save Details

 Display Login Form

 End if

Exit Login Form

 End

iii) Admin Page Pseudocode

Begin

 Display Admin Page

 Display dashboard commands

 Display Logout button / command

 Display Add User Command

 Display Add Attachment Institutions Command

 Display View Attachees progress Command

 Display Attachment Summary Report Command

End

iv) Logout Pseudocode

Begin

 Confirm logout

 Exit all processes

 Exit page

Display login page

End

38

v) Student Page Pseudocode

Begin

 Display student Page

 Display Dashboard Commands

 Display Logout Button / Command

 Display Apply for Attachment Command

 Display Add Daily Logs

 Display View supervisor’s comments

 Display Add Attachment Report

End

3.9.5 User Interface Design (Forms)

This described how users interact with the system; allowing the users to work thus the need

for it to have attractive layout design.

ILO’s Page

Dashboard

 DashBoard

 Users ()

 Institutions (1)

 Applications ()

 Sessions ()

 Reports

 Dashboard

 20

Students

 5

Institutions

 5

Supervisors

Students Daily Log Activity

L
o

g
 E

n
tr

ie
s

Months

Figure 14: Design of ILO’s Page User Interface

39

Admin Add Users Page

Dashboard

 DashBoard

 Users ()

 Institutions (1)

 Applications ()

 Sessions ()

 Attachment()

 Reports

 Users ()

ID Name Email Actions

1 Benard Esadia benesadia2000@gmail.com Edit Delete

2 Ben Agingu benagingu@yahoo.com Edit Delete

Role

All
Search + Add User

Figure 15: Design of Admin’s Add User Page Interface

mailto:benagingu@yahoo.com

40

Admin Attachment Opportunities

3.10 System Implementation

3.10.1. Hardware Resources

The hardware resources that were used during the implementation are listed below:

 A computer with 8 GB RAM

 Internet Connection

3.10.2 Software Resources

The software requirements are as follows:

 Windows Operating System

 Pycharm JetBrains Programming Integrated Development Environment

 Visual Studio Code as a code editor

 Docker and Docker Compose as container management tools

 Python Django Framework

Dashboard

 DashBoard

 Users ()

 Institutions (1)

 Applications ()

 Sessions ()

 Reports

 Institutions ()

Search Institutions

ID Name No of

Opportunities

Address Contacts Actions

1
Liquid

Telecom
20 Nairobi 07268600 Edit Delete

+ Add Institution

Figure 16: Design of Admin Attachment Opportunities Page User Interface

41

 Python Django Rest Framework

 React JavaScript Library

3.10.3 Programming Tools

i) React JavaScript Framework

This is a JavaScript library for building interactive, responsive and lightweight user

interface frontends for REST API backend. The user interface consists of classes with

methods which are called by the engine when the page is created or updated. ReactJS is

based on the idea that the page can be decomposed into basic components, which are called

for rendering parts of the page (React, 2021).

ii) Python Django Rest Framework

The framework was used to build Web RESTful APIs. An API is a tool that allows one

piece of software to interact with another, but not users (Django, 2021). The application

endpoints were designed such that when accessed, they return JSON Data.

Serializers converted model instances to Python dictionaries, which are then rendered in

various API appropriate formats - like JSON or XML. Figure 17 below explains further.

Django

REST

Framework

React

Django

REST Framework serializes

data from the Django ORM, and

allows access/updates via

RESTful API

React can GET, POST,

DELETE, PUT data from the

database via the REST API

Django servers React as a

collection of static files when

someone visits the URL

Django ORM creates and manages

database models and queries

Figure 17: Django, Django Rest Framework, React Interactions

https://realpython.com/python-json/

42

3.10.4 Security Service Implementation

Okta as cloud SaaS identity provider was used to provide Single Sign-on to the system

microservices (Okta, 2021). The service provided three major kinds of authentication

including; i) the authentication API that controls access to other Microservices. The API

has user profile registration and password recovery function, ii) The Oauth 2.0 protocol

that has authorization rules and permission while accessing an API service and iii) The

OpenID Connect that conveys or passes information about verified users to a given web

application.

3.11 System Testing

3.11.1 System Scalability Testing

Locust as a load testing tool was configured to test the attachment microservice Application

Programming Interface as shown in figure 18. The tool supported executing tasks

distributed over multiple applications and simulated system users behavior simultaneously.

User’s behavior was defined in regular python code.

Application 1 Application 2 Application n

Locust

User Interface

Figure 18: Dockerized Load Balancing Architecture (Maximilian , 2021)

NGINX

Load Balancer

43

Docker provided an open isolated environment to implement the services as containers

(Docker , 2021). Docker’s lightweight feature made it easier to manage workloads during

runtime by scaling up or tearing down microservices to achieve the expected system

performance as simulated by locust load testing tool.

Docker compose allowed exposing the ports for services to an external load balancer called

Nginx (reverse proxy). As a load balancer, Nginx used a round-robin setup, wherein

workloads were equally passed among the nodes, one after the next. The configuration can

be visualized as shown in figure 18 above and the docker-compose YAML file below.

Docker Compose YAML file

version: '3'

services:

 ui:

 build:

 context: ./ui

 depends_on:

 - internsys-api

 links:

 - internsys-api:internsys-api

 volumes:

 - './ui/:/usr/src/app'

 command: bash -c 'npm start'

 ports:

 - 3001:3000

 internsys-api:

 build:

 context: ./internsys-api

 depends_on:

 - db

 links:

 - db:db

 volumes:

 - ./internsys-api/:/usr/src/app

 command: bash -c

 environment:

 - DB_ENGINE=django.db.backends.postgresql_psycopg2

 - DB_NAME=internsys

 - DB_USER=internsys

 - DB_PASS=32e3289u92u3JIJ8E29909II0JH

 - DB_HOST=db

 - DB_PORT=5432

 ports:

 - "8001"

 reports:

 build:

 context: ./reports

 depends_on:

https://whatis.techtarget.com/definition/round-robin

44

 - db

 - internsys-api

 links:

 - db:db

 volumes:

 - ./reports/:/usr/src/app

 command: bash -c

 environment:

 - DB_ENGINE=django.db.backends.postgresql_psycopg2

 - DB_NAME=internsys

 - DB_USER=internsys

 - DB_PASS=32e3289u92u3JIJ8E29909II0JH

 - DB_HOST=db

 - DB_PORT=5432

 ports:

 - "8002:8002"

 locust:

 build:

 context: ./internsys-api

 depends_on:

 - nginx

 links:

 - nginx:nginx

 volumes:

 - ./internsys-api/:/usr/src/app

 command: bash -c 'locust -f locustfile.py'

 ports:

 - 8089:8089

 db:

 image: postgres

 environment:

 - POSTGRES_DB=internsys

 - POSTGRES_PASSWORD=32e3289u92u3JIJ8E29909II0JH

 - POSTGRES_USER=internsys

 volumes:

 - ./postgres-data:/var/lib/postgresql/data

 nginx:

 image: nginx:latest

 volumes:

 - ./nginx.conf:/etc/nginx/nginx.conf:ro

 depends_on:

 - internsys-api

 ports:

 - "8001:80"

3.11.2 System Validation Testing

Software Validation is a system testing activity of a given application to ascertain that the

intended user requirements and business requirements have been achieved (O'Donnell,

45

2020). This is done by verifying system behavior and general features are being exposed

as per user expectations.

Using convenience sampling method, seventy-seven actual system users were identified

and worked on the system to test and confirm that it meets user expectations. The model

was hosted on NYSEI server on Monday 21st June 2021 to enable validation testing. Using

the institutes office computers and computer laboratory computers the users of the system

(Admin, ILO, Students, and Lecturers) were assigned specific tasks to perform using the

system. The sample constituted 2 Admins, 1 ILO, 8 Lecturers and sixty-six students.

46

CHAPTER FOUR

4.0 RESULTS AND DISCUSSIONS

4.1 Model Scalability and Load Testing

The first test was done by scaling the system to 3 instances using the command docker-

compose up --scale internsys-api=3. The test involved allowing the locust interface to

simulate 500 users using the system, then followed by simulation of 1000 users using the

system, 1500 users using the system, 2000 users using the system, and finally 2500 users

also using the system. NGNIX; the load balancer/ reverse proxy spawned 10 users per

second as shown in figure 19.

Figure 19: Locust System Load Testing Interface

The second test was done by scaling the system to 6 instances using the command docker-

compose up --scale internsys-api=6. The locust interface also simulated 500 users with

NGINIX spawning 10 users at a second. The number of users were also incrementally

changed to 1000, 1500, 2000, and 2500 during the test.

The 2 tests results were recorded as shown in the figure 20, figure 21 and figure 22 below;

47

4.1.2 Test 1 Results

4.1.2 Test 2 Results

 Figure 21: Locust Load Testing Results. Test 2 (system scaled at 6 instances)

Figure 20: Locust Load Test Results. Test 1 (system scaled at 3 instances)

48

4.1.3 Locust Load Testing Test1 and Test 2 Results Charts

Figure 22: Locust Load Testing Tests1 and Test 2 Results. Test Charts

49

Discussion

When the service was scaled to 3 instances Test1 results recorded 23.1 failure rate with

connection aborted error having 856 occurrences. When the service was scaled to 6

instances Test2 results captured 21.5 failure rate with connection aborted error having 808

occurrences. This shows the service failure rate is minimized by running more instances of

a service. This is in agreement with Baboi, Iftene, & Gîfu (2019) findings that

microservices creates scalable and fault tolerant information systems.

4.2 Model Validation Testing Results

i) Validation Testing Tasks and Results for Admin

The exercise was carried out in the ICT Technician office at NYSEI on Monday 21st June

2021. Two technicians worked on the system as Admins and performed the following tasks.

Task Instruction Expected Results Actual Results

1. Setting Up/Installing the System

on the Server’s

Success Success

2. Registering as first user Success Success

3. Create Attachment Sessions Success Success

4. Confirm attachment status Success Success

5. View students daily logs Success Success

6. Add users Success Success

7. Assign users roles Success Success

8. Logout Success Success

Table 11: Validation Test Tasks and Results for Admin

50

ii) Validation Testing Tasks and Results for ILO

A lecturer in charge of Industrial Attachment docket worked on the system as user role

ILO and performed the following tasks.

Task Instruction Expected Results Actual Results

1. Registering as first user Success Success

2. Create Attachment Sessions Success Success

3. Confirm attachment status Success Success

4. View students daily logs Success Success

5. Add users Success Success

6. Logout Success Success

Table 12: Validation Test Tasks and Results for ILO

iii) Validation Testing Tasks for students:

This was done on Monday 21st June 2021 from 2:00 PM to 4:00PM at NYSEI ICT

Computer Laboratory. A total of sixty-six students who had completed their industrial

attachment were randomly selected. Having their manual industrial attachment logbooks,

the students used the system by completing the following tasks.

Task Instruction Expected Results Actual Results

1. Register as a first user Success Success

2. Log into the system Success Success

3. Apply for industrial attachment Success Success

4. Confirm attachment status Success Success

5. Record at least 3 daily learning activities

(Guided by their Manual log books)

Success Success

51

Task Instruction Expected Results Actual Results

6. Upload a file (Scan any sketch in their log

book)

Success Success

7. View attachment grade Success Success

8. Logout Success Success

Table 13: Validation Test Tasks and Results for Students

iv) Validation Testing Tasks for lecturers

 Task Instruction Expected Results Actual Results

1. Register as a first user Success Success

2. Log into the system Success Success

3. View Students daily logs Success Success

4. Comment on students logs Success Success

5. Score students Success success

6. Logout Success Success

Table 14 Validation Test Tasks and Results for Lecturers

52

CHAPTER FIVE

5.0 FINDINGS, CONCLUSIONS AND RECOMMENDATIONS

5.1 Findings

The first objective was to to find out the requirements of the new industrial attachment

management system in TVET institutions. This objective was achieved and the

requirements of the new system which formed the basis for building the Microservices

model were identified using questionnaires and review of existing documents. The fact

finding process both from students and lecturers of TVET institutions revealed that the

business process was manual.

The second objective was to provide a scalable means of monitoring and supervising

students on industrial attachment using microservices architecture. Literature review

identified detailed coverage on how to build Microservices. Using agile software

development methodology, the microservices model was designed and implemented with

Oauth 2.0 protocol being adopted as security service, React JavaScript library built the user

interface microservice while python Django & Django Rest framework implemented the

attachment microservice and reports microservice. The study concurs with Swathi &

Rashmi (2020) that container platforms like Docker help in effectively deploying

microservices to achieve scalability.

Docker compose tool was used to deploy the application on a single host by running the

services as multiple containers (Douglis & Nieh, 2019). NGINX was configured as a load

balancer and locust load testing tool was used to figure out system performance as the

number of users simultaneously accessed and transacted from the attachment microservice.

The testing results revealed that each microservice can be scaled by running several

instances in order to accommodate the increasing number of users. The results further

shows that more instances of the microservices improves system performance as more

instances take less time to respond to requests. The study is also in agreement with Wu,

Wan, & Zhu (2018) results developing information systems as that loosely coupled

microservices improves system scalability, availability and maintainability.

53

The third objective was to test and validate the performance of the developed model. The

new model was configured and users allowed to run a number of tasks. Based on the

analysis, all the users successfully accomplished the tasks. They managed to understand

the flow of the system without any guidelines. Most of them agreed that the system

user interface was friendly and interactive.

5.2 Limitations of the Research

The COVID-19 pandemic Ministry of Health protocols affected the time frame and costs

associated with the research. The limited time frame of six months affected aspects like

sample size, data analysis, data interpretation, prototype development and implementation.

The researcher being a student was tied to spend within the proposed budget which

impacted negatively during the actual study.

The study adopted descriptive research design which had its own weaknesses, it couldn’t

answer the question “why”. The design was used because of its ease of use and its

capability of describing a situation as it is in its natural environment. The research also

incorporated quantitative techniques to analyse data statistically.

The questionnaire as a data collection instrument had its limitations of responses being

biased based on users/respondents understanding. Reliability and validity testing of the

questionnaire could not completely eliminate respondent’s ignorance’s. While Locust

load testing tool provided statistics about successful and failed connections, it didn’t

capture some data such as lost and duplicate messages from the API calls.

5.3 Conclusions

The project findings reveals that currently, industrial attachment operations and processes

are largely manual, hence the need for a web based system that can be implemented at the

National level. The study also reveals that the introduction of microservices based model

improves the industrial attachment docket operations. Microservices are easily scaled using

containers, they can easily be replicated as demand increases. Scalability improves system

performance by increasing the system availability and resilience in handling its operations.

54

From the analysis of validation testing, it can be concluded that the system functions as

envisaged by users. Users were able to complete the task given successfully. The new

system is easy to navigate, interactive, fast loading and easy to understand.

5.4 Recommendations for Practice

It is recommended that the system be implemented at national level to handle industrial

attachment services in TVET institutions in Kenya.

The other existing information systems in TVET institutions like students management

information systems, Higher Education Loans Board management system and Kenya

National Examinations Exams registration systems to be converted into microservices and

provide an application programming interface to the Industrial attachment system.

5.5 Recommendations for Further Research

As highlighted by Bradley (2021), Microservices put a lot of pressure on APIs, further

studies are recommended to come up with a strong API management technology that can

be adopted by Microservices.

While designing the Microservices model, complexity was experienced in decomposing a

software application into smaller autonomous independent services. It was hard to

determine: Each microservices size, optimal boundaries and database sharing policy. The

study makes a second recommendation of further research be done on how to decompose

a system into microservices particularly database sharing options between services while

achieving the loose coupled, fine grained services.

The study used only docker compose container technology to scale the microservices to

multiple instances and Locust Load testing to test system performance with simulated user

behavior. It is recommended other container technology to be used with other open source

load testing tools to be used and compare the results.

55

APPENDICES

i) References

O'Donnell, C. (2020, 4 28). FDA Software Validation: Guide, Methods, Tools and Template.

Retrieved from The Datacor Blog: https://www.datacor.com/the-datacor-blog/fda-

software-validation

Aineah, A. (2019, 09 15). Challanges Students face in search for Instrial Attachment. Retrieved

from The Standard: https://www.standardmedia.co.ke › ... › Money & Careers

Ali , M. (2014). Sampling & Sample Size Estimation. Geneva Foundation for Medical Education

and Research (GFMER).

Baboi, M., Iftene, A., & Gîfu, D. (2019). Dynamic Microservices to Create Scalable and Fault

Tolerance Architecture. 23rd International Conference on Knowledge-Based and

Intelligent Information & Engineering Systems (pp. 1036-1044). Elsevier.

Bhandari, P. (2021, 15 2). An introduction to quantitative research. Retrieved from Scribbr:

https://www.scribbr.com/methodology/quantitative-research/

Bradley, T. (2021, 6 26). The challenges of scaling microservices. Retrieved from TechBeacon:

https://techbeacon.com/app-dev-testing/challenges-scaling-microservices

Brush, K., & Silverthorne, V. (2021, 04 26). TechTarget. Retrieved from Agile Software

Development: https://searchsoftwarequality.techtarget.com/definition/agile-software-

development

Casey, K. (2020, 2 10). Popular microservices testing tools developers should know about.

Retrieved from TechTarget: https://searchapparchitecture.techtarget.com/feature/Popular-

microservices-testing-tools-developers-should-know-about

Chandramouli, R. (2019). Security Strategies for Microservices-based Application Systems. Draft

NIST Special Publication 800-204.

Coelho, N. R. (2018). Security in Microservices Architectures. Centeris 2020. Vilamoura.

Dennis, A., Wixom, B. W., & Roth, R. M. (2012). System Analysis and Design. John Wiley &

Sons, Inc.

Django. (2021, 05 24). Django Rest Framework. Retrieved from https://www.django-rest-

framework.org/

Docker . (2021, 6 26). Docker Documentation. Retrieved from Docker overview:

https://docs.docker.com/get-started/overview/

Douglis, F., & Nieh, J. (2019). Microservices and Containers. IEEE Computer Society, 5 - 6.

Familiar, B. (2015). Microservicees, IoT, and Azure Leveraging DevOps and Microservice

Architecture to deliver SaaS Solutions. Apress.

Fatima , F., Javed , M., Amjad, F., & Ghanni, K. U. (2018). An Approach to Enhance Quality of

Rapid Application Development (RAD). Journal of American Science, pp 47-56.

56

Ghahrai, A. (2017, 4 19). Retrieved from Testing Microservices - A Beginner's Guide:

https://devqa.io/testing-microservices-beginners-guide/

Girsang, A. S., Jafar, F., & Fajar, A. N. (2018). Design Project Management System Based on

SOA Approach. International Conference on Computation in Science and Engineering

(pp. 1-10). IOP Publishing.

Hardik, S. (2020, 12 24). Best of 2020: When To Use – and Not To Use – Microservices.

Retrieved 03 12, 2021, from https://containerjournal.com/topics/container-

ecosystems/when-to-use-and-not-to-use-microservices/

Hasti, N., Lesari, S., & Gustiana, I. (2019). Web-Based Internship Information System. Web-

Based Internship Information System (pp. 1-6). IOP Publishing.

Hipschman, D. (2021, FEb 10). Python Microservices With gRPC. Retrieved 03 16, 2021, from

https://realpython.com/python-microservices-grpc/

Hoffman, J. (2021, 3 27). MVC vs. Microservices: Understanding their architecture. Retrieved

from WisdomPlexus: https://wisdomplexus.com/blogs/mvc-vs-microservices/

Hymet, M., & Arbana , K. (2020). Using Internship Management System to Improve the the

relationship between Internship Seekers, Employers and Educational Institutions.

Procededings of ENTRENOVA, Virtual Conference, (pp. 97-104). Zagreb.

Ihor, F. (2021, 4 26). Agile Software Development Lifecycle Phases Explained. Retrieved from

Relevant Software LLC: https://relevant.software/blog/agile-software-development-

lifecycle-phases-explained/

Indrasiri, K., & Siriwardena, P. (2018). Microservices for the Enterprise Designing, Developing,

and Deploying. San Jose: Apress.

Jaafar, A. N., Rohafauzi, S. b., Enzai, N., Fauzi, b. F., & Amron, M. (2018). Development of

internship monitoring and supervising web-based system. 2017 IEEE 15th Student

Conference on Research and Development (SCOReD), 193-197.

Jeremy, H. (2021, 3 26). Microservices vs Web Services . Retrieved from Dream Factory:

https://blog.dreamfactory.com/microservices-vs-web-services/#The-Web-Services-

Application-Architecture

Juhana, A., Abdullah, A. G., Somantri, M., Aryadi, S., Zakaria, D., & Arasid, W. (2017). E-

Portfolio Web-based for Students’ Internship Program Activites. IOP Conf. Series:

Materials Science and Engineering 306 (2018), (pp. 1-9).

Kamate, G., & Prasad, R. (2018). Docker & Containers, The Future of Microservices.

International Journal of Science and Research (IJSR), 23-25.

Kanjilal , J. (2020, 1 24). TechTarget. Retrieved from Pros and cons of monolithic vs.

microservices architecture: https://searchapparchitecture.techtarget.com/tip/Pros-and-

cons-of-monolithic-vs-microservices-architecture

Kiplagat, H., Khamasi, J. W., & Kareri, R. (2016). Students’ Experience of Industrial

Attachment: A Case of a Public University. Journal of African Studies in Educational

Management and Leadership, 7, 82-94.

57

Korir, j. (2021, 3 24). Industrial Liaisons Office. Retrieved from Kaiboi Technical Training

Institute: https://www.kaiboitech.ac.ke/index.php?title=Industrial%20Liaison%20Office

Kothari, R. C. (1985). Research Methodology Methods & Techniques (Second Revised Edition

ed.). New Delli: New Age International (P) Limited, Publishers.

KTTC. (2021, 3 19). Kenya Technical Trainers College- Industrial Liaison. Retrieved from

Kenya Technical Trainers College: https://www.kttc.ac.ke/non-academic/ilo

Kumar, R. (2011). Research Methodology a step-by-step guide for beginners (3rd Edition ed.).

London: Sage Publications.

Kumar, R. (2018, 8 13). Selecting the Right Database for Your Microservices. Retrieved 3 12,

2021, from https://thenewstack.io/selecting-the-right-database-for-your-microservices/

Lewis, J., & Fowler, M. (2014, 3 24). Microservices. Retrieved 3 2021, 2021, from

https://martinfowler.com/articles/microservices.html

Locust. (2021, 6 26). Locust Documentation. Retrieved from Locust: https://locust.io/

Maximilian , S. (2021, 6 28). How to Use Docker Compose to Run Multiple Instances of a

Service in Development. Retrieved from PSPDFKit GmbH: https://pspdfkit.com

Middleton, F. (2020, 6 26). Reliability vs validity: what’s the difference? Retrieved from Scribbr:

https://www.scribbr.com/methodology/reliability-vs-validity/

Mordo, A. (2021, 3 12). Best practices for scaling with DevOps and microservices. Retrieved

from https://techbeacon.com/app-dev-testing/best-practices-scaling-devops-microservices

Mugenda, O. M., & Mugenda, A. G. (1999). Research Methods: Quantitative and Qualitative

Approaches. Nairobi: Acts Press.

Mutiso, P. N. (2021, 3 25). Industrial Liaison Coordination Center. Retrieved from Rift Valley

Technical Training Institute – Eldoret: https://rvti.ac.ke/industrial-liaison-office/

Naeem, T. (2021, 05 26). All You Need to Know About Database Design. Retrieved from Astera:

https://www.astera.com/type/blog/all-you-need-to-know-about-database-design/

Newman, S. (2015). Building Microservices. O'reilly.

NITA. (2021, 3 19). NITA . Retrieved from Industrial Attachment: https://www.nita.go.ke/our-

services/industrial-attachment.html

Njoroge. (2002). Relationship between Mathematical Language and Students Republic of Kenya,

Central Bureau. Ministry of Planning and National Development: The population and

Housing. Nairobi. : Government Printer.

Nugroho, R. A., & Fajar, A. N. (2019). DEsigning Production SYstem Using Service Oriented

Architecture case study in Automotive Manufacturing. Journal of Theoretical and

Applied Information Technology, 2322-2333.

Oates, B. J. (2006). Researching Information Systems and Computing. London: Sage

Publications.

58

Okta. (2021, 04 29). Authenticatio | Okta Developer. Retrieved from Okta Developer:

https://developer.okta.com/docs/concepts/authentication/

Pachghare, V. K. (2016). Microservices Architecture for Cloud Computing. Journal of

Information Technology and Sciences, 1-13.

Rai, P. (2021, 05 12). Program Design Tools. Retrieved from

https://prajwalrai.com.np/algorithm-and-flowchart-introduction/

React. (2021, 05 18). A JavaScript library for building user interfaces. Retrieved from React:

https://reactjs.org/

Richards, M. (2021, 3 12). Microservices vs. Service-Oriented Architecture. Retrieved from

https://www.oreilly.com/library/view/microservices-vs-service-

oriented/9781491975657/ch01.html

Sarlan, A., Ahmad, F. W., Jolonius, J. N., & Samsudin, N. (n.d.). Online Web-based Industrial

Internship System. 1st International Malaysian Educational Technology Convention, (pp.

194-200).

Schroeder, D. A. (n.d.). Microservice Architectures. Elsenheinmerstr 55A. Retrieved from

www.codecentric.de

Sengupta, S. (2021, 1 20). Challenges of Microservices & When To Avoid Them. Retrieved from

DEVOPs Blog: https://www.bmc.com/blogs/microservices-challenges-when-to-avoid/

Shaik, K. S., Ramkumar, Hameed, S. S., & Mohammed, S. (2019). Microservice Based

Architecture Model for EHR Systems of MOH Hospitals - Sultanate of Oman.

International Journal of Contemporary Research in Computer Science and Technology

(IJCRCST), 8-13.

Shaik, N. S., & Mane, B. S. (2017). Authentic Techniques Of Authentication In Microservices.

International Journal of Current Advanced Research, 3342-3345.

Shivakumar, K. S. (2021, 3 19). Microservices Architecture for Modern Digital Platforms.

Retrieved from Mindtree: https://www.mindtree.com/about/resources/microservices-

architecture-solutions-modern-digital-platforms

Shivakumar, S. K. (2019). Miccroservices rchitecture for Modern Digital Platforms. A white

paper . Mindtree Limited.

Singh, A. (2019, 12 6). What Is Rapid Application Development (RAD)? Retrieved from

Capterra: https://blog.capterra.com/what-is-rapid-application-development/

Sommerville, I. (2016). Software Engineering (Tenth Edition ed.). Edinburgh Gate: Pearson

Education Limited.

surendra, s. (n.d.). Analysis and Design of Internship Report and Thesis Mentoring Management

System. Retrieved from

https://www.academia.edu/5254885/Analysis_and_Design_of_Internship_Report_and_T

hesis_Mentoring_Management_System

59

Swathi, & Rashmi, R. (2020). Microservice Architectural Style. International Research Journal

of Engineering and Technology (IRJET), 8.

Tanenbaum, A. S., & Steen, v. M. (2016). A brief introduction to distributed systems. In

“Distributed Systems, Principles and (pp. 967-1009). Springerlink.com.

Velez, G. (2019). Kubernetes vs. Docker: A Primer. Container Journal.

Waseem, M., Liang, P., & Márquez, G. (2020). Testing Microservices Architecture-Based

Applications: A Systematic Mapping Study.

Wasson, C. S. (2006). System Analysis, Design,and Development Concepts, Principles, and

Practices. Hoboken, New Jersey: A John Wiley & Sons, Inc.,.

Wittmer, P. (2021, 3 29). Service-oriented architectures are like microservices in that they’re

both a collection of services focused on performing one specific function. Retrieved from

Tiempo Development: https://www.tiempodev.com/blog/microservices-vs-soa/

Wu, S., Wan, X., & Zhu, Q. (2018). Design of WeChat Service System Based on Microservice

Architecture. IOP Conf. Series: Journal of Physics: Conf. Series 1069 (2018) (pp. 1-8).

IOP Publishing.

Yadav, S. (2019, 5 21). Introduction to Microservices Architecture vs SOA vs Monolithic.

Retrieved from The Geek Stuff: https://www.thegeekstuff.com/2019/05/intro-to-

microservices/

Yannuar , Y., Hasan, B., Abdullah, A., Hakim, D. L., & Wahyudin, D. (2018). Design and

implementation of web-based internship information system at vocational school. IOP

Conference Series: Materials Science and Engineering. IOP.

Ziade, T. (2017). Python Microservices Development. Birmingham: Packt Publishing Ltd.

60

ii) Research Questionnaires

a) Students Questionnaire

This is a research questionnaire on a Microservices based Student Industrial Attachment

Information System Model for TVET institutions in Kenya. The findings will help improve

the current industrial attachment system by developing a new system.

For closed questions, kindly put a check (√) in the appropriate box as applicable to you.

Please write your answers in the space provided for open questions.

Department …………………Year of Study……………… Date …………………………

1. What are the requirements one needs before proceeding for industrial attachment?

Item Yes No

Studied and Passed given academic units

Recommendation from Head of Department

Insurance Cover

Any Other

2. What are some of the challenges faced while sourcing for industrial attachment

places?

Item Yes No

Difficulty in identifying industrial attachment places

Lack of common place to coordinate applications

Poor tracking of outcomes from the applied sources

Any Other

3. What are some of the challenges faced while on industrial attachment?

Item Yes No

Lack of common communication link

Manual way of keeping records

Any Other

61

4. What are the daily activities followed while on Industrial Attachment?

Item Yes No

Adherence to the attachment institutions policies

Daily recording of learning activities

Supervision by organization Staff

Assessment by college assessors

Any Other

5. What are the documents awarded by the organization on completion of the

attachment?

Item Yes No

Clearance from the establishment

Receiving a recommendation letter

Any Other

Thanks in advance.

b) TVET Institutions Trainer Questionnaire

This is a research questionnaire on a Microservices based Student Industrial Attachment

Information System Model for TVET institutions in Kenya. The findings will help improve

the current industrial attachment system by developing a new system.

For closed questions, kindly put a check (√) in the appropriate box as applicable to you.

Please write your answers in the space provided for open questions.

Department …………………Position/Designation……………… Date ……………

1. What are some of the challenges faced by Trainers while assessing students in various

attachment institutions?

Item Yes No

Poor record keeping of students documents

Poor record keeping of assessment document

Poor means of communication between Attached institutions

Any Other

2. What are some of the important documents used in the industrial attachment docket?

62

Item Yes No

Registration form

Attachment Request letter

Posting Letter

Log Book

Recommendation Letter

Assessment Form

Any other

6. What technologies are used while on industrial attachment? What is the purpose of

each technology?

Item Yes No Purpose

Email

Ms Word/Excel/Access

WhatsApp/Instagram

Any Other Technology

3. Kindly fill how the final attachment grade is calculated

Item Percentage Remarks

Up to date well organized Log book

Industry Supervisors Score

Academic Institutions Assessor Score

Final Attachment Report Score

Any Other

4. What are some of the measures you propose to improve the functions of industrial

Attachment docket?

Item Yes No

Introduction of an interactive, high available web based system

Any other

5. What is the minimum number of hours a student is supposed to be exposed to

workplace training? _____________

Thanks in advance.

63

iii) Project Schedule

Activity
Months

March April May June July

Proposal Drafting 1 Month

Data Collection and

Analysis
 1 Month

Prototype Design 1 Month

Prototype

Implementation
 1 month

System Testing 1 Month

Documentation 5 months

iv) Project Budget

Description Unit Price Cost (Ksh)

Computer System 80,000 80,000

Accessories 7,000 7,000

Subscription fee to journals and e-books 15,000 15,000

Data collection 10,000 10,000

Journal Paper Publications 10,000 10,000

Overheads 8,000 8,000

Total 130,000

64

v) Sample User Interface

a) Attachment Microservice Endpoints (Error Page)

b) Report Microservice Endpoint (Error Page)

65

c) Authentication Service User interface

d) Admin User Interface Dashboard

66

e) Student User Interface

vi) Sample Code

a) User interface docker file

FROM node:14

RUN mkdir -p /usr/src/app

WORKDIR /usr/src/app

COPY package.json package-lock.json ./

COPY . ./

RUN echo n | npm install

RUN echo n | npm install --save react-rte-image

RUN echo n | npm install --save react-rte-material

RUN echo n | npm install --save react-rte

EXPOSE 3000

67

b) Dockerfile at the backend

FROM python:3

RUN mkdir -p /usr/src/app \

 && apt-get -y update \

 && pip install -U pip

WORKDIR /usr/src/app

COPY requirements.txt ./

RUN pip install --no-cache-dir -r requirements.txt

EXPOSE 8001

c) Sample ReactJS Useraction.tsx file

import { ReducerAction } from "../types";

import {

 FETCH_USERS_FAILURE,

 FETCH_USERS_REQUEST,

 FETCH_USERS_SUCCESS,

} from "./userTypes";

import http from "../../components/common/api-axios";

import { USERS_URL } from "../../components/common/constants";

import store from "../store";

export const fetchUsersRequest = (): ReducerAction => {

 return {

 type: FETCH_USERS_REQUEST,

 };

};

export const fetchUsersSuccess = (payload: object): ReducerAction => {

 return {

 type: FETCH_USERS_SUCCESS,

 payload: payload,

 };

};

export const fetchUsersFailure = (error: string): ReducerAction => {

 return {

 type: FETCH_USERS_FAILURE,

 payload: error,

 };

};

68

export const fetchUsers = (query: string = "") => {

 return (dispatch: Function) => {

 dispatch(fetchUsersRequest());

 http

 .get(`${USERS_URL}?${query}`, {

 headers: {

 "Content-Type": "application/json",

 Authorization: store.getState().auth["accessToken"],

 },

 })

 .then((response) => dispatch(fetchUsersSuccess(response.data)))

 .catch((error) => dispatch(fetchUsersFailure(error.message)));

 };

};

export const deleteUser = (id:string) => {

 return http

 .delete(`${USERS_URL}${id}`, {

 headers: {

 "Content-Type": "application/json",

 Authorization: store.getState().auth["accessToken"],

 },

 })

};

d) Sample Serializer.py file

from rest_framework import serializers

from rest_framework.exceptions import ValidationError

from applications.models import Application

class ApplicationSerializer(serializers.ModelSerializer):

 student_name = serializers.ReadOnlyField()

 institution_name = serializers.ReadOnlyField()

 supervisor_name = serializers.ReadOnlyField()

 ilo_name = serializers.ReadOnlyField()

 class Meta:

 model = Application

 fields = (

 "id",

 "student",

 "session",

 "session_name",

 "supervisor",

 "ilo",

 "institution",

 "start_date",

69

 "end_date",

 "status",

 "student_name",

 "institution_name",

 "supervisor_name",

 "ilo_name",

 "display_name",

)

e) Authentication.py file

import requests

from okta_jwt.jwt import validate_token

from rest_framework.authentication import BaseAuthentication

from rest_framework.exceptions import AuthenticationFailed

from authentication.models import User

ISSUER = "https://dev-43093150.okta.com/oauth2/default"

USER_INFO_URL = "https://dev-43093150.okta.com/oauth2/default/v1/userinfo"

CLIENT_ID = "0oatrrh375vmuEMJ59l5d6"

AUDIENCE = "api://default"

class OktaAuthentication(BaseAuthentication):

 def authenticate(self, request):

 access_token = request.META.get("HTTP_AUTHORIZATION")

 if not access_token:

 return None

 try:

 payload = validate_token(access_token, ISSUER, AUDIENCE, [CLIENT_ID])

 email = payload["sub"]

 user, created = User.objects.get_or_create(email=email,

username=email)

 # If user has just been created or they don't have a profile setup,

 # call the userinfo endpoint to retrieve their profile

 if created or not user.name:

 self.fetch_user_profile(access_token, user)

 return user, None

 except Exception as e:

 raise AuthenticationFailed(str(e))

 def fetch_user_profile(self, access_token, user):

 try:

 headers = {

 "Content-Type": "application/json",

 "Authorization": "Bearer {}".format(access_token), }

 response = requests.post(USER_INFO_URL, headers=headers)

 user_dict = response.json()

 user.name = user_dict.get("name")

 user.save()

 except Exception as e:

 print(str(e))

