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Abstract

The object of the present paper is to study Lorentzian Para Sasakian manifolds admitting a
W3-curvature tensor. We have shown that a W3-�at LP-Sasakian manifold is an Einstein
manifold, a W3-symmetric and W3-�at LP-Sasakian manifold is a �at space, and a W3-semi-
symmetric LP-Sasakian manifold is a W3-symmetric manifold. We have also considered the
geometry of an LP-Sasakian manifold endowed with a conservative W3 curvature tensor
and shown that it is an Einstein manifold.
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1 Introduction

Curvature tensors are important structures in di�erential geometry used to define the
geometry of a manifold. In a Riemmanian manifold, the curvature of the space is described
by the Riemmanian curvature tensor. In general relativity theory, where the spacetime
is represented by a Lorentzian manifold, curvature tensors play a significant role in
determining the geometric and physical properties of the spacetime.

1.1 Di�erentiable manifolds

De�nition 1.1.1. Let V1 and V2 be open subsets of Rn and f : V1→V2 a homeomorphism.
We say f is of class Ck if all its partial derivatives of orders j ≤ k exist and are continous.

De�nition 1.1.2. A topological space M which is second countable and Hausdor� is called a
topological manifold if ∀p∈M, there exists an open neighbourhoodU ⊂M of p homeomorphic
to an open subset V ⊂ Rn. The dimension of M is n.

De�nition 1.1.3. Let x : U →V be a homeomorphism. Then the pair (U,x) is called a chart.
WhereU ⊂M (M a topological manifold) andV ⊂Rn. U is called a coordinate neighbourhood
of p ∈U and x(p) = (x1, ...,xn) ∈V the local coordinates of p.

De�nition 1.1.4. We call the set A containing the charts (Ui,xi) an atlas of class Ck if the
union of all the neighbourhoods ∪Ui = M and whenever Ui∩U j 6= O the function x j ◦ x−1

i :
xi(Ui∩U j)→ x j(Ui∩U j) is of class Ck.

An atlas is called complete if it is not contained in any other atlas of the same class.

De�nition 1.1.5. A topological manifold M is called di�erentiable if it is endowed with a
complete atlas A . It is called smooth if A is of class C∞.

De�nition 1.1.6. Let M and N be di�erentiable manifolds of classCk. A mapping f : M→N
is said to be di�erentiable of class Ca,a≤ k, if, for every chart (Ui,xi) of M and every chart
(Vj,y j) of N such that f (Ui)⊂Vj the mapping y j ◦ f ◦x−1

i : xi(Ui)→ y j(Vj) is di�erentiable
of class Ca.

The manifolds M and N are said to be di�eomorphic if f is a homeomorphism such that f
and f−1 are di�erentiable. By a di�erentiable function f of class Ck on M we shall mean a
di�erentiable mapping of class Ck from M into R. Let γ : (U ⊂R)→M be a di�erentiable
mapping of class Ck. We shall refer to the restriction of γ to the closed interval [a,b]⊂U
as a di�erentiable curve of class Ck on M.
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1.2 Tangent Vectors and Covectors

De�nition 1.2.1. Let γ(t) : [a,b]→M be a di�erentiable curve of class C1 and p ∈U ⊂M
such that γ(t0) = p. The tangent vector X to the curve γ(t) at p is the mapping X : C1(U ⊂
M)→ R de�ned as [10]

X f =
(

d f (γ(t))
dt

)
t0

.

The tangent vector X satisfies

1. X(α f +βg) = αX( f )+βX(g);

2. X( f g) = (X f )g(p)+ f (p)(Xg) ∀α,β ∈ R and ∀ f ,g ∈C1(U).

The set of all the tangent vectors to M at p denoted by TpM forms a vector space of
dimension n called the tangent space at p. We call the map X : M→ TpM a vector field if
for every p ∈M, X(p) is a vector in TpM. The dual vector space of TpM denoted by T ∗p M,
is called the covector space of M at p. A 1-form (di�erential form of degree 1) is thus an
assignment of a covector at each point p of M.

1.3 Tensors

De�nition 1.3.1. LetV be a vector space over a �eldF andV ∗ its dual space. We shall de�ne a
tensor of type (r,s) as a multilinear map T r

s : (V ∗× ...×V ∗)r−times×(V× ...×V )s−times→F .

The tensor T r
s is said to be of contravariant degree r and covariant degree s. We call the scalar

(r+ s) the rank of the tensor.

Given M as a di�erentiable manifold of dimension n, a tensor of type (r,s) at p ∈M is the
multilinear map T r

s : (T ∗p M× ...×T ∗p M)r−times× (TpM× ...×TpM)s−times→ R.

A tensor �eld of type (r,s) is the assignment of a tensor of type (r,s) to each point p ∈M.

Contraction is the process by which we set equal a contravariant index and a covariant index
of a tensor and sum over the common index thus reducing its rank by 2.

For example, an inner product g on a real vector spaceV is a (0,2) tensor or simply a covariant
tensor of degree 2 satisfying

1. g(u1,u2)≥ 0 and g(u1,u1) = 0 ⇐⇒ u1 = 0
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2. g(u1,u2) = g(u2,u1).

A tensor of type (r,s) is said to be symmetric if swapping any of its indices leaves it unchanged
and skew-symmetric if it only alters the sign of its components.

De�nition 1.3.2. A Riemannian manifold is a di�erentiable manifold with a smooth vector
�eld which assigns to each TpM an inner product g with properties (1) and (2) as de�ned
above. g is called the metric tensor.

1.4 Connections and curvature

De�nition 1.4.1. Given M a smooth manifold, we de�ne a connection or covariant di�eren-
tiation on M as the operator ∇ which maps a pair of smooth vector �elds X ,Y with domain
D into a smooth vector �eld ∇XY with the same domain.

The connection ∇ satisfies the following axioms

1. ∇X+Y Z = ∇X Z +∇Y Z

2. ∇ f XY = f ∇XY

3. ∇X(Y +Z) = ∇XY +∇X Z

4. ∇X( fY ) = (X f )Y + f ∇XY .
∀X ,Y,Z smooth vector fields with domain D and ∀ f smooth functions with the same
domain.

Having defined a connection, we say that a smooth vector field X is parallel transported
along a smooth curve γ if ∇T X = 0. Where T is the tangent field of γ . We then say γ is a
geodesic if it parallel transports its tangent vector field i.e. ∇T T = 0.

De�nition 1.4.2. Given two vector �elds X and Y , the Lie derivative or commutator of the
two �elds denoted by [X ,Y ] is a vector �elds de�ned by

[X ,Y ] = XY −Y X

De�nition 1.4.3. The torsion tensor of a connection is given as

T (X ,Y ) = ∇XY −∇Y X− [X ,Y ]

.
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A connection ∇ is said to be torsion free or symmetric if

∇XY −∇Y X = [X ,Y ]

.

De�nition 1.4.4. A connection ∇ is said to be a Riemannian connection if

1. ∇XY −∇Y X = [X ,Y ]

2. ∇X g = 0.

De�nition 1.4.5. Given a Riemannian connection ∇, we de�ne the Riemannian curvature
tensor as

R(X ,Y,Z) = ∇X ∇Y Z−∇Y ∇X −∇[X ,Y ]Z

It satisfies the following properties

1. R(X ,Y,Z) =−R(Y,X ,Z) (skew-symmetric)

2. R(X ,Y,Z)−R(Y,Z,X)−R(Z,X ,Y ) = 0 (Bianchi’s first identity)

3. (∇X R)(Y,Z,W )− (∇Y R)(Z,X ,W )− (∇ZR)(X ,Y,W ) = 0 (Bianchi’s second identity)

The tensor defined as
R(X ,Y,Z,W ) = g(R(X ,Y,Z),W )

satistifies the properties

1. R(X ,Y,Z,W ) =−R(Y,X ,Z,W )

2. R(X ,Y,Z,W ) =−R(X ,Y,W,Z)

3. Bianchi’s first and second identities

De�nition 1.4.6. The Ricci curvature tensor R(X ,Y ) is a (0,2) type tensor obtained by
contracting the Riemannian curvature tensor. In index notation

Ri j = gklRik jl

.
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De�nition 1.4.7. The scalar curvature tensor R is a (0,0) type tensor obtained by further
contracting the Ricci curvature tensor. In index notation

R = gi jRi j

Below we give the definitions of some significant curvature tensors.

C(X ,Y,Z,T ) = R(X ,Y,Z,T )− R
n(n−1)

[g(X ,T )g(Y,Z)−g(Y,T )g(X ,Z)] (1)

L(X ,Y,Z,T ) = R(X ,Y,Z,T )− 1
n−2

[g(Y,Z)Ric(X ,T )−g(X ,Z)Ric(Y,T )

+g(X ,T )Ric(Y,Z)−g(Y,T )Ric(X ,Z)] (2)

V (X ,Y,Z,T ) = R(X ,Y,Z,T )− 1
n−2

[g(X ,T )Ric(Y,Z)−g(Y,T )Ric(X ,Z)

+g(Y,Z)Ric(X ,T )−g(X ,Z)Ric(Y,T )]
R

(n−1)(n−2)
[g(X ,T )g(Y,Z)−g(Y,T )g(X ,Z)] (3)

W (X ,Y,Z,T ) = R(X ,Y,Z,T )+
1

n−1
[g(X ,Z)Ric(Y,T )−g(X ,T )Ric(Y,Z)] . (4)

These tensor are refered to as concircular, conharmonic, conformal and weyl projective tensor
respectively [15].

Pokhariyal and Mishra [23, 22], and Pokhariyal [18, 19, 21], have defined and studied new
curvature tensors as defined below.

W1(X ,Y,Z,T ) = R(X ,Y,Z,T )+
1

n−1
[g(X ,T )Ric(Y,Z)−g(Y,T )Ric(X ,Z)] (5)

W2(X ,Y,Z,T ) = R(X ,Y,Z,T )+
1

n−1
[g(X ,Z)Ric(Y,T )−g(Y,Z)Ric(X ,T )] (6)
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W3(X ,Y,Z,T ) = R(X ,Y,Z,T )+
1

n−1
[g(X ,Z)Ric(X ,T )−g(Y,T )Ric(X ,Z)] (7)

W4(X ,Y,Z,T ) = R(X ,Y,Z,T )+
1

n−1
[g(X ,Z)Ric(Y,T )−g(X ,Y )Ric(Z,T )] (8)

W5(X ,Y,Z,T ) = R(X ,Y,Z,T )+
1

n−1
[g(X ,Y )Ric(Z,T )−g(Y,T )Ric(Y,Z)] (9)

W6(X ,Y,Z,T ) = R(X ,Y,Z,T )+
1

n−1
[g(X ,T )Ric(Z,Y )−g(X ,Z)Ric(Y,T )] (10)

W7(X ,Y,Z,T ) = R(X ,Y,Z,T )+
1

n−1
[g(Y,Z)Ric(X ,T )−g(X ,T )Ric(Y,Z)] (11)

W8(X ,Y,Z,T ) = R(X ,Y,Z,T )+
1

n−1
[g(Z,T )Ric(X ,Y )−g(X ,T )Ric(Y,Z)] (12)

W9(X ,Y,Z,T ) = R(X ,Y,Z,T )+
1

n−1
[g(Z,T )Ric(X ,Y )−g(Y,Z)Ric(X ,T )] (13)

Where R(X ,Y,X ,T ) is the Riemann curvature tensor, g the metric tensor and Ric(X ,Y )
the Ricci tensor.
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2 Riemannian and Contact Manifolds

2.0.1 Riemannian Manifolds

Let TpM be tangent space at a point p of a di�erentiable manifold Mn. Let us single out in
Mn a real valued bilinear symmetric and positive definite function g on the ordered pair
of tangent vectors at each point p on Mn. Then Mn is called Riemannian manifold and g
is called the metric tensor of Mn.

g satisfies the following properties

1. g(X ,Y ) ∈ R

2. g(X ,Y ) = g(Y,X)

3. g(aX +bY,Z) = ag(X ,Z)+bg(Y,Z)

4. g(X ,X)> 0

The angle θ between two vectors is defined by

||X ||.||Y ||cosθ = g(X ,Y )

where
||X ||= g(X ,X)

Thus two vector X and Y are perpendicular if g(X ,Y ) = 0

A connection ∇ is said to be Riemannian if it satisfies

1. ∇ is symmetric
∇XY −∇Y X = [X ,Y ]

2. g is covariant constant with respect to ∇ which gives

∇X g = 0

and
g(∇XY,Z)+g(Y,∇X Z) = X(g(Y,Z))
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An a�ine connection ∇ is said to be metric if ∇X g = 0.

The Riemannian manifold is said to be Einsteinian manifold if

Ric(X ,Y ) = λg(X ,Y )

A Riemannian manifold is said to be flat if

R(X ,Y )Z = 0

The torsion tensor T is a vector valued linear function and is defined by

T (X ,Y ) = ∇XY −∇Y X− [X ,Y ]

if the torsion tensor vanished the connection is said to be torsin free or symmetric.

Riemannian curvature tensor

The curvature tensor with respect to the Riemannian connection is called the Riemannian
curvature tensor.

It is defined as
R(X ,Y )Z = ∇X ∇Y Z−∇Y ∇X −∇[X ,Y ]Z

Riemannian connection

Let X and Y be tangent vectors at p ∈Mn. Let A and B be C∞ vector fields about p and let
f be a C∞ real valued function about p, the we have

1. ∇X(A+B) = ∇X A+∇Y Z

2. ∇X+Y A = ∇X A+∇Y A

3. ∇ f XY = f ∇XY

4. ∇X f A = (X f )A+ f ∇X A
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Using ∇ we can define parallel vector fields along a curve and geodesics. Let r be a C∞

curve on Mn with tangent vector field X and let Y be a vector field that is parallel along r
if ∇XY = 0 along r.

The curve γ is geodesic if ∇rT = 0, that is, if its tangent T is parallel along γ . Thus
generalization of a definition of covariant di�erentiation or connection on C∞ manifold is
clear i.e. We merely need the existence of operator ∇ which satisfies all four condition of
above properties listed for ∇ and assigns to C∞ vector fields X and Y with domain D, a
C∞ field ∇XY on D.

Note that a manifold can have more than one connection.

Let us denote the dot or inner product of tangent vectors X and Y by

< X ,Y >= Σ
n
i=1XiYi

If X and Y are Cin f ty fields the < X ,Y > is also Cin f ty field and if D is the domain of
X ,Y and X ,Y are Cin f ty fields then we have

∇Y Z−∇ZY = [Y,Z]

and
X < Y,Z >=< ∇XY,Z >+< Y,∇X Z >

for every X at p in D.

A Riemannian manifold is a C∞ manifold M on which one has singled out a C∞ real valued,
bilinear, symmetric and positive definite function <,> on ordered pair of tangent vector
at each point. Thus if X ,Y and Z are in TpM then

1. < X ,Y >=< Y,X >

2. < X +Y,Z >=< X ,Z >+< Y,Z > and < aX ,Y >= a < X ,Y >

3. < X ,X >> 0 for all X 6= 0

4. If X and Y are C∞ fields with domain D then < X ,Y >p=< Xp,Yp > is a C∞ function
on D. If we replace the third property above with < X ,Y >= 0 for all X implied Y = 0
then Mn is a semi-Riemannian (or pseudo Riemannian) manifold. In either case the
function is inner product, metric tensor, the Riemannian metric or infinite semi metric
on Mn not the topological metric function.

If ∇ is C∞ connection in semi-Riemannian manifold Mn then ∇ is Riemannian connection
if it satisfies above properties.
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Properties of Riemannian curvature tensor

The Riemannian curvature tensor is linear over the ring of smooth functions and satisfies
below properties

1. R(X ,Y )Z =−R(Y,X)Z

2. R( f X ,Y )Z =− f R(Y,X)Z where f is a smooth function

Let us define
R′(X ,Y,Z,T ) = g(R(X ,Y )Z,T )

. Then R′ is skew symmetric in the first two slots and the last two slots. The Riemannian
curvature tensor R satisfies Bianchi’s first identity and Bianchi’s second identity.

Curvature Tensors

In a Riemannian manifold the Weyl projective tensor reduces to

W (X ,Y )Z = R(X ,Y )Z +
1

n−1
[Ric(X ,Z)Y −Ric(Y,Z)X ]

Conformal curvature tensor

The tensor C defined by

C(X ,Y )Z = R(X ,Y )Z +
1

n−2
[Ric(Y,Z)X−Ric(X ,Z)Y −g(X ,Z)QY +g(Y,Z)QX ]

+
r

(n−1)(n−2)
[g(Y,Z)X−g(X ,Z)Y ]

is the same for manifolds in conformal correspondence. This tensor is called the conformal
curvature tensor.

A manifold whose conformal curvature tensor vanished at every point is said to be
conformaly flat. A conformal curvature tensor C satisfies Bianchi’s first identity

C(X ,Y )Z +C(Y,Z)X +C(Z,X)Y = 0

Concircular curvature tensor
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The concircular curvature tensor is defined by

C̄(X ,Y )Z = R(X ,Y )Z− r
n(n−1)

[g(Y,Z)X−g(X ,Z)Y ]

Conharmonic curvature tensor

The conharmonic curvature tensor is defined by

L(X ,Y )Z = R(X ,Y )Z +
1

n−2
[Ric(Y,Z)X−Ric(X ,Z)Y +g(Y,Z)QX−g(X ,Z)QY ]

Riemannian curvature

Let X and Y be unit tangent vectors at a point p of Riemannian manifold Mn, these vector
determine a pensil of direction at p if the unit vectors along that direction are U then

U = f X +gY

where f ,g ∈ F

and

f 2 +g2 = 1

the geodesic of Mn whose unit tangent vector are U , generate a two dimensional sub
manifold of the tangent manifold T at p.

The gaussian curvature K(X ,Y ) at p of this two dimensional sub manifold was defined by
Riemannian as sectional curvature at p of Mn in direction of X and Y . Thus

K =
−K(X ,Y )

||X ||2||Y ||2[1− cos2θ ]

where θ is angle between X and Y .

A necessary and su�icient condition on Mn to be locally flat in the neighbourhood U of a
point p is that Riemannian curvature of Mn at p vanishes.

If the Riemannian curvature R of Mn at p of the direction X and Y then

R(X ,Y )Z = K[g(Y,Z)X−g(X ,Z)Y ] (14)
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contracting we get

Ric = K(n−1)g (15)

R = [K(n−1)]n (16)

contracting (16) we get
R = Kn(n−1)

hence a Riemannian manifold of constant curvature is an Einstein manifold.

Shur’s theorem

If a Riemannian curvature R of Mn at every point of neighbourhood U of Mn is independent
of the direction choosen then R is constant throughout the neighbourhood U provided
n > 2.

Pu�ing (14) and (16) together we get W = 0.

Conversely, if W = 0

R(X ,Y )Z =
1

n−1
[g(Y,Z)QX−g(X ,Z)QY ]

contracting above equation we get

Ric(Y,Z) =
r
n

g(Y,Z)

which sometimes expressed as RX = r
nX and pu�ing the two equations into the first one

we get
R(X ,Y )Z =

r
n(n−1)

[g(Y,Z)X−g(X ,Z)Y ]

which shows that a manifold is of constant Riemannian curvature. Hence a necessary and
su�icient condition for the manifold Mn to be of constant Riemannian curvature is the
Weyl projective curvatue tensor vanishing identically throughout Mn.

Similary the conformal curvature tensor vanished from a manifold with constant Rieman-
nian curvature.

Di�erence tensor of two connections

Consider a smooth manifold M and let ∇ and ¯nabla to be two connections on M. Then
for two vector fields X and Y on M, we define the di�erence tensor by

B(X ,Y ) = ∇̄XY −∇XY
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The tensor B(X ,Y ) is linear from the properties of a connection. Let f be C∞ function,
then

B(X , fY ) = (X f )Y + f ∇XY − (X f )Y − f ∇̄XY = f B(X ,Y )

If we decompose B(X ,Y ) into symmetric and skew symmetric pieces we have

B(X ,Y ) = S(X ,Y )+A(X ,Y )

where
S(X ,Y ) =

1
2
[B(X ,Y )−B(Y,X)]

is the symmetric part and

A(X ,Y ) =
1
2
[B(X ,Y )−B(Y,X)]

is the skew symmetric part.

Then we can express A in terms of torsion tensors T and T̄ of connections ∇ and ∇̄

respectively as follows

2A(X ,Y ) = B(X ,Y )−B(Y,X)

= ∇̄XY −∇XY − ∇̄Y X−∇Y X

= (̄T )(X ,Y )−T (X ,Y )+ [X ,Y ]− [X ,Y ]

= (̄T )(X ,Y )−T (X ,Y )

Theorem

The following statements are equivalent

1. The connections ∇ and ∇̄ have the same geodesic

2. B(X ,X) = 0 for all X

3. S = 0

4. B = A

Theorem

The connections ∇ and ∇̄ are equal if they have the same geodesic and the same torsion
tensors.
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Proof

That the first part implies the second is trivial. Conversely, if the geodesic are the same
then S = 0 and if the torsion tensors are equal then A = 0, hence B = 0 and ∇ = ∇̄.

Riemannian curvature tensor

The curvature tensor of conneciton ∇ is a linear transformation valued tensor R that
assigns to each pair of vector X and Y a linear transformation R(X ,Y ) of Mn into itself.
We define R(X ,Y )Z by imbedding X ,Y and Z in C∞ field about M and se�ing

R(X ,Y )Z = ∇X ∇Y Z−∇Y ∇X Z−∇[X ,Y ]Z (17)

Hence we notice that R(X ,Y ) =−R(Y,X) and if f is C∞ then

R( f X ,Y )Z = f ∇X ∇Y Z− (Y f )∇X Z− f ∇Y ∇X Z

+(Y f )∇X Z− f ∇[X ,Y ]Z

= f R(X ,Y )Z (18)

also

R(X ,Y )( f Z) = ∇X(Y f )X + f ∇Y Z−∇Y ((X f )Z− f ∇X Z)− ([X ,Y ] f )Z− f ∇[X ,Y ]Z

= (XY )( f Z)+(Y f )∇X Z +(X f )∇Y Z + f ∇X ∇Y Z− (Y X)( f Z)

− (X f )∇Y Z− (Y f )∇X Z− f ∇Y ∇X Z− ([X ,Y ] f )Z− f ∇[X ,Y ]Z

= f R(X ,Y )Z (19)

The linearity of R(X ,Y )Z with respect to addition in each slot is trivial to check. The
curvature of symmetric linear connection on Mn satisfies Bianchi’s identities

R(X ,Y )Z +R(Y,Z)X +R(Z,X)Y = 0 (20)

for all vector X ,Y,Z ∈Mn for which the le� hand side is defined to prove this, we recall
that for symmetric connection

∇AB−∇BA = [A,B]
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R(X ,Y )Z +R(Y,Z)X +R(Z,X)Y = ∇X [Y,Z]+∇Y [Z,X ]+∇Z[X ,Y ]

−∇[Y,Z]X−∇[Z,X ]Y −∇[X ,Y ]Z

= [X , [Y,Z]]+ [Y, [Z,X ]]+ [Z, [X ,Y ]]

= 0

by Jacobi identity.

If we define

Z < X ,Y >=< ∇ZX ,Y >+< X ,∇ZY > (21)

from all vectors X ,Y,Z with common domain, then using above definition we can define
a rank 4 convariant tensor called Riemann-Christo�el curvature tensor as

R′(X ,Y,Z,T ) =< X ,R(Z,T )Y > (22)

for all X ,Y,Z and T in the same domain

Thus from the above definition the following results arise

1. R′(X ,Y,Z,T ) =−R′(Y,X ,Z,T )

2. R′(X ,Y,Z,T ) =−R′(Y,X ,T,Z)

3. R′(X ,Y,Z,T ) = R′(Z,T,X ,Y )

Theorem Let Mn be a Riemann manifold, then there exists a unique torsion free connection
∇ such that

1. ∇ is symmetric

2. ∇X g = 0 for all X

Parallel translation preserves inner products, this connection is called the Riemannian or
Levi-Civita connection.

Proof
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Uniqueness from proposition we obtain

Xg(Y,Z)−g(∇XY,Z)−g(Y,∇X Z) = 0

using ∇ is torsion free this yields

1. Xg(Y,Z) = g(∇XY,Z)
= g([X ,Y ],Z)+g(Y,∇X Z)

cyclically permuting X ,Y and Z we get

2. Y g(Z,X) = g(∇XY,X)+g([Y,Z],X)+g(Z,∇Y X)

3. Zg(X ,Y ) = g(∇X Z,Y )+g([Z,X ],Y )+g(X ,∇ZY )

substituting (1) from (2) and (3) we get

2g(∇ZY,X) =−X < Y,Z >+Y < Z,X >+Z < X ,Y >

−< [Z,X ],Y >−< [Y,Z],X >+< [X ,Y ],Z >

The right hand of this last expression does not involve ∇, so we have a formula for g(∇ZY )
on X , as <,> is non singular i.e. The map TpM→ T ∗p M induced by g being an isomorphism
and X is arbitrary. ∇ZY is uniquely determined so ∇ is unique. If we define ∇ZY by using
the expression 2g above then ∇ is a connection and we find condition (1) and (2) of the
theorem satisfied.

2.0.2 Complex Manifolds

Complex manifold

An even dimensional di�erentiable manifold Mn, (n=2m), which can be endowed by a
system of complex coordinate neighbourhood (U,α) in such a way that in the intersection
U ∩U ′ of two complex coordinate patches (U,α), (U ′,α ′) such that α ′ ◦α is a complex
analytic function is called a complex manifold.

Almost complex manifold

If on an even dimensional di�erentiable manifold Mn of di�erentiability class Cr+1 there
extist a vector valued real linear function J of di�erentiability class Cr satisfying
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1. J2 + In = 0

2. X̄ +X = 0 where X̄ = JX

then Mn is said to be an almost complex manifold and J is said to be an almost complex
structure on Mn.

2.0.3 Contact Manifolds

Contact geometry is the study of a geometric structure on smooth manifolds given by a
hyperplane distribution in the tangent bundle and specified by a one-form, both of which
satisfy a ’maximum non-degeneracy’ condition called ’complete non-integrability’.

Contact geometry is in many ways an odd dimensional counter part of Symplectic ge-
ometry, which belongs to the even-dimensional world. Both Contact and Symplectic
geometry are motivated by the mathematical formulation of classical mechanics, where
one can consider either the even-dimensional phase space of a mechanical system or the
odd dimensional extended phase space that includes the time variable.

Contact geometry has broad applications in physics, e.g., geometrical optics, classical
mechanics, thermodynamics, geometric quantization and applied mathematics such as
control theory.

Contact manifolds are old dimensional manifolds which are studied using the complex
structure and the di�erential 1-form on the manifold. By giving additional structures to
the above one obtains almost Sasakian, quasi-Sasakian, Sasakian, almost cosymplectic,
cosymplectic, conformal K-contact, Kenmotsu and trans-Sasakian manifolds.We give the
basic definitions of these manifolds in this chapter.

De�nition 2.0.1. A 2n+1 dimensional smooth manifold M is called a contact manifold if
it has 1-form η such that η ∧ (dη)n 6= 0.

Additionally a contact manifold admits a vector field ξ , a tensor field φ of type (1,1) and
a Riemannian metric g such that

η(φ) = 1

φ
2X = X−η(X)ψ

g(X ,ξ ) = η(X)

g(X ,φY ) = dη(X ,Y )

A Contact metric manifold M is said to be Einstein manifold if its Ricci tensor Ric is of
the form Ric(X ,Y ) = ag(X ,Y ), where a is a constant and a contact metric manifold M is
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said to be η-Einstein if its Ricci tensor Ric is of the form

Ric(X ,Y ) = ag(X ,Y )+bη(X)η(Y )

where a and b are some smooth functions on M.

De�nition 2.0.2. A contact manifold is then a Sasakian manifold given that

(∇X φ)Y −g(X ,Y )ξ −η(Y )X

Therefore in a Sasakian manifold,

∇X ξ =−φX

R(X ,Y )ξ = η(Y )X−η(X)Y

De�nition 2.0.3. Given a contact manifold (M,g,η ,ξ ,φ), such that ξ is a Killing vector
�eld, that is ξ satis�es

g(∇X ξ ,Y )+g(X ,∇Y ξ ) = 0

then we call the manifold M a K-contact Riemannian manifold, where X and Y are arbitrary
vector �elds.

Note that in a K-contact Riemannian manifold

∇X ξ =−φX

A K-contact Riemannian manifold is a Sasakian manifold if

(∇X φ)Y = g(X ,Y )ξ −η(Y )X

De�nition 2.0.4. A contact metric manifold with structure tensors (φ ,ξ ,η ,g) in which the
vector �eld ξ is a conformal Killing vector �eld, if it satis�es,

g(∇X ξ ,Y )+g(X ,∇Y ξ ) = 2αg(X ,Y )

where α is a scalar, then M is called a conformal K-contact manifold.

So, in particular if α = 0, then M becomes K - contact manifold.
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De�nition 2.0.5. A Riemannian manifold of dimension (2n+1) is called an almost contact
manifold if it admits a 1-form η , a vector �eld ξ and a type (1,1) tensor φ such that

φ
2X =−X +η(X)ξ ,φξ = 0,η(ξ ) = 1,η(φX) = 0

g(X ,ξ ) = η(X)

g(φX ,φY ) = g(X ,Y )−η(X)η(Y )

g(φX ,Y ) =−g(X ,φY ),g(X ,X) = 0

(∇X η)Y = g(∇X ξ ,Y )

An almost contact manifold is to be

• a contact manifold if
dη(X ,Y )−Φ(X ,Y ) = g(X ,φY )

where Φ is called the fundamental two form of the manifold.

• K-contact manifold if it is contact and ξ is a Killing vector field

• Sasakian manifold if and only if it is a contact manifold satisfying

(∇X φ)Y = g(X ,Y )ξ −η(Y )X

De�nition 2.0.6. An almost contact metric manifold (M,φ ,ξ ,η ,g) is said to be an almost
co-symplectic manifold, if the fundamental 2-form Φ de�ned by

Φ(X ,Y ) = g(X ,ΦY )

and the 1-form η are closed, that is

dΦ = 0 and dη = 0

where d is the operator of exterior di�erentiation. If in an almost co-symplectic manifold,
the almost contact metric structure is normal then it is called co-symplectic.

De�nition 2.0.7. A generalized Sasakian space form is an almost contact metric manifold
whose curvature tensor R is given by

R(X ,Y )Z = f1 [g(Y,Z)X−g(X ,Z)Y ]

f2 [g(X ,φZ)φY −g(Y,φZ)φX +2g(X ,φY )φZ]

f3 [g(X ,Z)η(Y )ξ −g(Y,Z)η(X)ξ +η(X)η(Z)Y −η(Y )η(Z)X ]

where f1, f2, and f3, are di�erentiable functions on the manifold.
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De�nition 2.0.8. An almost contact metric manifold is referred to as a Kenmotsu manifold
if it satis�es

(∇X φ)Y =−g(X ,φY )ξ −η(Y )φX

(∇X ξ ) = X−η(X)ξ

(∇X η)Y = g(X ,Y )−η(X)η(Y )

De�nition 2.0.9. Let M be an n dimensional manifold admitting a type (1,1) tensor φ ,
1-form η , vector �eld ξ and a Riemannian metric g. Then M is said to be para-contact if

φ
2X = X−η(X)ξ ,φξ = 0,η(ξ ) = 1,η(φX) = 0

g(X ,ξ ) = η(X)

g(φX ,φY ) = g(X ,Y )−η(X)η(Y )

If in addition to the above properties M satisfies

dη = 0,∇X ξ = φX

(∇X φ)Y =−g(X ,Y )ξ −η(Y )X +2η(X)η(Y )ξ

then it is called a Para-Sasakian (P-Sasakian) manifold. A P-Sasakian manifold is then
called Special Para-Sasakian (SP-Sasakian) manifold if

(∇X η)Y =−g(X ,Y )+η(X)η(Y )

De�nition 2.0.10. Let M be an n dimensional manifold admitting a (1,1) type tensor �eld φ ,
vector �eld ξ , 1-form η and a Lorentzian metric g. The we call M a Lorentzian Para-Sasakian
(LP-Sasakian) manifold if it satis�es

φ
2X = X +η(X)ξ ,φξ = 0,η(ξ ) =−1,η(φX) = 0

g(X ,ξ ) = η(X)

g(φX ,φY ) = g(X ,Y )+η(X)η(Y )

(∇X φ)Y = g(X ,Y )ξ +η(Y )X +2η(X)η(Y )ξ

∇X ξ = φX
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3 Literature Review

The concept of curvature arises naturally in the study of curves and surfaces in Euclidean
space. For instance, in R3, we can define various forms of curvatures of a given surface.
Such as the principal curvatures k1,k2, the mean curvature H = k1+k2

2 and the Gaussian
curvature K = k1k2. Of equal importance is the sign of these curvatures, since it shows how
a surface is oriented at a particular point. Given a point p on a surface S, one can think of
the principal curvatures as the maximum and minimum rates S bends at p respectively.
However, these forms of curvature except for the Gaussian curvature are extrinsic in the
sense that they are defined in terms of the ambient space around the surface S. Intrinsic
quantities are those defined completely using parameters only on the surface S. Studies
have shown that the two forms of describing quantities are equivalent.

However, in describing quantities intrinsically, we require notions of length and angles
similar to those of Euclidean spaces. This was addressed by Riemann by introducing the
so called Riemannian manifolds. He developed the notion of curvature in an abstract
way which is now referred to as Riemann curvature tensor. The same can be defined on
semi-Riemannian manifolds. Due to the complexity of the Riemann curvature tensor, other
curvature tensors have been defined some been derived from it, like the Ricci curvature
and Weyl curvature tensor. The geometric properties of curvature tensors have been
studied extensively on various types of manifolds.

The study and classification of Riemann manifolds as symmetric spaces was pioneered by
E. Cartan during the late 1920′s. He showed that a Riemann manifold is locally symmetric
if ∇R = 0. He also studied semi symmetric Riemannian spaces. i.e. R(X ,Y ).R = 0. A
classification of semi symmetric Riemannian spaces was given by Szabo [33].

Since then, many authors have studied this notion of local symmetry and have come up
with weaker versions of it. For instance, Walker [35] in 1950 studied recurrent spaces
where the Riemann curvature tensor satisfies

Rhi jk,l = Rhi jkλl

where λl is a non-zero vector and comma denotes covariant derivative. This were originally
considered by Ruse [26]. Motivated by this result, Pa�erson [17] has studied a Ricci-
Recurrent spaces which are Riemann spaces whose Ricci tensor satisfies

Ri j 6= 0, Ri j,k = Ri jλk
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for some non-zero vector λk. It follows that a Recurrent space is a Ricci-Recurrent space
but the converse is not true in general.

If the Weyl curvature tensor satisfies the recurrence relation above, the space is known as
a conformally recurrent and they were introduced by Adati and Miyazawa [2] in 1967.
On the other hand, Chaki and Gupta [12] had studied conformally symmetric manifolds
in 1963.

In literature there exist two distinct notions of pseudo symmetric manifolds. One intro-
duced by Chaki [3] in 1987 and the other by Deszcz [5] in 1992. According to Chaki [3],
a non-flat semi-Riemannian manifold (M,g) of dimension greater than one is pseudo
symmetric if

(∇X R)(Y,Z)W = 2A(X)R(Y,Z)W +A(Y )R(X ,Z)W

+A(Z)R(Y,X)W +A(W )R(Y,Z)X

+g(R(Y,Z)W,X)ρ,

where A is a non-zero 1-form, ρ is a vector field defined by

g(X ,ρ) = A(X),∀X

and ∇ denotes the operator of covariant di�erentiation with respect to the metric tensor g.
The 1-form A is called the associated 1-form of the manifold. If A = 0, then the manifold
reduces to a symmetric manifold in the sense of E. Cartan. In 1989, Tamassy and Binh [11]
introduced weakly symmetric and weakly projectively symmetric Riemannian manifolds.
On the analogy, these notions of symmetry, recurrency, weak symmetry and pseudo
symmetry have been studied and loosened in various directions by many authors.

S. Tanno [34] in 1969 gave a classification of connected almost contact Riemannian
manifolds whose automorphism groups have the maximum dimension. Inspired by the
results of S. Tanno, Kenmotsu [9] in 1972 studied one of the classes given by S. Tanno
and showed that the structure of such manifolds is not Sasakian. Such a structure is
usually called a Kenmotsu structure. He proved that if a Kenmotsu manifold satisfies
the condition R(X ,Y ).R = 0, then the manifold is of constant negative curvature −1. In
1976, Sato [27] introduced and studied the notion of an almost para-contact structure on
a Riemannian manifold. The Adati and Matsumoto [1] defined and studied a P-Sasakian
manifold and an SP-Sasakian manifold which are considered as special cases of an almost
para-contact manifold. The authors showed that a conformally symmetric P-Sasakian
manifold of dimension n, n > 3, is conformally flat.

The authors Sinha and Sai Prasad [30] in 1995 defined a class of almost para-contact
metric manifolds namely Para-Kenmotsu and Special Para-Kenmotsu manifolds. Recently
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in 2013, Satyanarayana and Sai Prasad [28] have considered the P-Kenmotsu manifoldin
which R(X ,Y ).C = 0 where C is the conformal curvature tensor and R(X ,Y ).C acts as
a derivation of the tensor algebra at each point of the manifold for tangent vectors X
and Y . They showed that a conformally symmetric P-Kenmotsu manifold (M,g), n > 3
is an SP-Kenmotsu manifold. The same authors in 2015 considered the properties of the
Weyl projective curvature tensor on a P-Kenmotsu manifold. They showed that a semi-
symmetric P-Kenmotsu manifold is of constant curvature and hence is an SP-Kenmotsu
manifold [29]. Additionally, they proved that a Weyl projectively semi-symmetric P-
Kenmotsu manifold is projectively flat.

In 1970 Pokhariyal and Mishra [23] introduced new tensor fields, called W2 and E-tensor
fields, in a Riemannian manifold, and studied their physical and geometric properties.
Pokhariyal [20] then considered these tensor fields in a Sasakian manifold. Later, in 1986,
Matsumoto, Ianus and Mihai [8] studied the same tensor fields in a P-Sasakian manifold.
In a recent study, U. C. De and Sarkar have studied a P-Sasakian manifold admi�ing a
W2-curvature tensor. They have shown that among others, a W2-symmetric P-Sasakian
manifold is of constant curvature, hence it is an SP-Sasakian manifold [4].

The curvature tensors introduced by Pokhariyal and Mishra have also been studied in
Kenmotsu manifolds and spacetimes. For instance, Yildiz and De [36] have studied
Kenmotsu manifolds admi�ing a W2-curvature tensor. In their study they have shown
that a W2-semisymmetric Kenmotsu manifold is an Einstein manifold. The authors Singh,
S. K. Pandey and G. Pandey have also conducted similar studies [25]. Mallick and De [13]
have studied spacetimes admi�ing W2-curvature tensor in 2014.

In line with the W2-curvature tensor, Pokhariyal [18], [19], [21], has introduced new
tensor fields W3 to W9 and obtained their properties. In [6] the authors have studied
the W3-curvature tensor on relativistic spacetimes. More recently, Njori, Moindi and
Pokhariyal [16] have considered W6-curvature tensor on Kenmotsu manifold admi�ing
semi-symmetric metric connection. The authors have also investigated the geometrical
relationship between W6-curvature tensor and W8-curvature tensor in Kenmotsu manifold.
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4 A study of W3-curvature tensor in Lorentzian Para
Sasakian Manifolds

4.1 Introduction

Pokhariyal [24] defined the W3-curvature tensor and studied its physical and geometrical
properties in a Riemannian manifold. This tensor is defined as

W3(X ,Y,Z,T ) = R(X ,Y,Z,T )

+
1

n−1
[g(Y,Z)Ric(X ,T )−g(Y,T )Ric(X ,Z)] (23)

where R is the Riemannian curvature tensor of type (0,4), g is the Riemannian metric and
Ric is the Ricci tensor of type (0,2). The tensor W3(X ,Y,Z,T ) is skew-symmetric in Z,T
and does not satisfy the cyclic property. That is

W3(X ,Y,Z,T ) =−W3(X ,Y,T,Z) (24)

and

W3(X ,Y,Z,T )+W3(Y,Z,X ,T )+W3(Z,X ,Y,T ) 6= 0 (25)

We can express this tensor in index notation as

W3i jkl = Ri jkl +
1

n−1
[g jkRil−g jlRik] (26)

In 2018, the authors S.K. Moindi, F. Njui and G.P. Pokhariyal [31] have studied the
geometrical properties of W3-curvature tensor in a K-contact Riemannian manifold. On
the other hand, S.O. Pambo, S.K. Moindi and B.M. Nzimbi [32] have studied η-Ricci solition
on W3-semi symmetric LP-Sasakian manifolds. Recently, H. A. Donia, S. Shenawy and A.
A. Syied [7] have considered the role of W3-curvature tensor on relativistic space-times.

Motivated by the above results, in this paper we will investigate certain curvature proper-
ties of LP-Sasakian manifolds admi�ing W3-curvature tensor.

4.2 Preliminaries

A manifold Mn of dimension n is called an LP-Sasakian manifold if it admits a tensor field
φ of type (1,1), a contravariant vector field ξ , a 1-form η and a Lorentzian metric g which
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satisfy the following properties [14]

η(ξ ) =−1, (27)

φ
2X = X +η(X)ξ , (28)

g(φX ,φY ) = g(X ,Y )+η(X)η(Y ), (29)

g(X ,ξ ) = η(X), ∇X ξ = φX , (30)

(∇X φ)(Y ) = g(X ,Y )ξ +η(Y )X +2η(X)η(Y )ξ , (31)

where ∇ denotes the operator of covariant di�erentiation with respect to the Lorentzian
metric g.

Given that Mn is an LP-Sasakian manifold with the structure (φ ,ξ ,η ,g), we can deduce
the following [14] .

g(R(X ,Y )Z,ξ ) = η(R(X ,Y )Z) = g(Y,Z)η(X)−g(X ,Z)η(Y ), (32)

R(ξ ,X)Y = g(X ,Y )ξ −η(Y )X), (33)

R(X ,Y )ξ = η(Y )X−η(X)Y, (34)

R(ξ ,X)ξ = X +η(X)ξ , (35)

Ric(X ,ξ ) = (n−1)η(X), (36)

Ric(φX ,φY ) = Ric(X ,Y )+(n−1)η(X)η(Y ) (37)

for any vector fields X ,Y,Z.

We shall use the above results in the following sections.

4.3 W3-flat LP-Sasakian manifold

De�nition 4.3.1. An LP-Sasakian manifold is said to be �at if R(X ,Y )Z = 0.

De�nition 4.3.2. An LP-Sasakian manifold is called W3-�at if the curvature tensor W3

vanishes everywhere i.e. W3(X ,Y )Z = 0.

Theorem 4.3.3. A W3-�at LP-Sasakian manifold is an Einstein manifold.

Proof
From 23, if

W ′3(X ,Y,Z,U) = 0 (38)

=⇒ R(X ,Y,Z,U) =
1

n−1
[g(Y,U)Ric(X ,Z)

−g(Y,Z)Ric(X ,U)] (39)
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Taking contraction over X and U we have

Ric(Y,Z) =
1

n−1
[Ric(Y,Z)−g(Y,Z)r] (40)

Ric(Y,Z) =
−r

n−2
g(Y,Z) (41)

Hence the theorem. Here r denotes the scalar curvature.

4.4 W3-symmetric LP-Sasakian manifold

De�nition 4.4.1. An LP-Sasakian space is called symmetric if ∇U R(X ,Y )Z = 0.

De�nition 4.4.2. An LP-Sasakian space is called W3-symmetric if ∇UW3(X ,Y )Z = 0

Theorem 4.4.3. A W3-symmetric and W3-�at LP-Sasakian manifold is a �at space.

Proof
If Mn is a W3-symmetric LP-Sasakian manifold, then we have

∇UW3(X ,Y )Z =W ′3(X ,Y,Z,U) = 0 (42)

=⇒ R(X ,Y,W3(Z,U,V ))−W3(R(X ,Y,Z),U,V )

−W3(Z,R(X ,Y,U),V )−W3(Z,U,R(X ,Y,V )) = 0 (43)

Expanding the terms in the above expression we get

g(R(X ,Y,W3(Z,U,V )),ξ ) = R′(X ,Y,W3(Z,U,V ),ξ )

= g(X ,ξ )g(Y,W3(Z,U,V ))−g(Y,ξ )g(X ,W3(Z,U,V ))

= η(X)W ′3(Y,Z,U,V )−η(Y )W ′3(X ,Z,U,V ) (44)
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g(W3(R(X ,Y,Z),U,V ),ξ ) =W ′3(R(X ,Y,Z),U,V,ξ )

= R(R(X ,Y,Z),U,V,ξ )+
1

n−1
[g(U,V )Ric(R(X ,Y,Z),ξ )

−g(U,ξ )Ric(R(X ,Y,Z),V )]

= R(R(X ,Y,Z),U,V,ξ )+
1

n−1
[g(U,V )(n−1)g(R(X ,Y,Z),ξ )

−g(U,ξ )(n−1)g(R(X ,Y,Z),V )]

= R(R(X ,Y,Z),U,V,ξ )+ [g(U,V )R′(X ,Y,Z,ξ )

−η(U)R′(X ,Y,Z,V )]

= g(R(X ,Y,Z),ξ )g(U,V )−g(U,ξ )g(R(X ,Y,Z),V )

+g(U,V )R′(X ,Y,Z,ξ )−η(U)R′(X ,Y,Z,V )

= g(U,V )R′(X ,Y,Z,ξ )−η(U)R′(X ,Y,Z,V )

+g(U,V )R′(X ,Y,Z,ξ )−η(U)R′(X ,Y,Z,V )

= 2[g(U,V )R′(X ,Y,Z,ξ )−η(U)R′(X ,Y,Z,V )] (45)

g(W3(Z,R(X ,Y,U),V,ξ ) =W ′3(Z,R(X ,Y,U),V,ξ )

= R(Z,R(X ,Y,U),V,T ) =
1

n−1
[g(R(X ,Y,U),V )Ric(Z,ξ )

−g(R(X ,Y,U),ξ )Ric(Z,V )]

= g(Z,ξ )g(R(X ,Y,U),V )−g(Z,V )g(R(X ,Y,U),ξ )

+
1

n−1
[R′(X ,Y,U,V )(n−1)g(Z,ξ )−R′(X ,Y,U,ξ )(n−1)g(Z,V )]

= g(Z,ξ )R′(X ,Y,U,V )−g(Z,V )R′(X ,Y,U,ξ )

+g(Z,ξ )R′(X ,Y,U,V )−g(Z,V )R′(X ,Y,U,ξ )

= η(Z)R′(X ,Y,U,V )−g(Z,V )R′(X ,Y,U,ξ )

+η(Z)R′(X ,Y,U,V )−g(Z,V )R′(X ,Y,U,ξ )

= 2[η(Z)R′(X ,Y,U,V )−g(Z,V )R′(X ,Y,U,ξ )] (46)
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g(W3(Z,U,R(X ,Y,V ),ξ ) =W ′3(Z,U,R(X ,Y,V ),ξ )

= R′(Z,U,R(X ,Y,V ),ξ )+
1

n−1
[g(U,R(X ,Y,V ))Ric(Z,ξ )

−g(U,ξ )Ric(Z,R(X ,Y,V ))]

= g(Z,ξ )g(U,R(X ,Y,V ))−g(Z,R(X ,Y,V ))g(U,ξ )

+
1

n−1
[R′(X ,Y,V,U)(n−1)g(Z,ξ )−g(U,ξ )(n−1)g(Z,R(X ,Y,V ))]

= g(Z,ξ )R′(X ,Y,V,U)−g(U,ξ )R′(X ,Y,V,Z)

+g(Z,ξ )R′(X ,Y,V,U)−g(U,ξ )R′(X ,Y,V,Z)

= η(Z)R′(X ,Y,V,U)−η(U)R′(X ,Y,V,Z)

+η(Z)R′(X ,Y,V,U)−η(U)R′(X ,Y,V,Z)

= 2[η(Z)R′(X ,Y,V,U)−η(U)R′(X ,Y,V,Z)] (47)

Using 44, 45, 46 and 47 in 43 we have

η(X)W ′3(Y,Z,U,V )−η(Y )W ′3(X ,Z,U,V )

−2[g(U,V )R′(X ,Y,Z,ξ )−η(U)R′(X ,Y,Z,V )]

−2[η(Z)R′(X ,Y,U,V )−g(Z,V )R′(X ,Y,U,ξ )]

−2[η(Z)R′(X ,Y,V,U)−η(U)R′(X ,Y,V,Z)] = 0 (48)

In a W3-flat manifold, W ′3 = 0, hence the first two terms vanish. Coe�icients of η(Z) and
η(U) vanish due to R′ begin skew-symmetric with respect to the last two variables. We
thus have

2[g(Z,V )R′(X ,Y,U,ξ )−g(U,V )R′(X ,Y,Z,ξ )] = 0 (49)

Since g(U,V ) 6= g(Z,V ) 6= 0 for arbitrary vectorsU,V,Z, this implies that ifW3 is symmetric
then

R′(X ,Y,Z,ξ ) = 0 (50)

. This completes the proof.

4.5 W3-semi-symmetric LP-Sasakian manifold.

De�nition 4.5.1. An LP-Sasakian manifold is called semi-symmetric if R(X ,Y )R(U,V )Z =

0.
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De�nition 4.5.2. An LP-Sasakianmanifold is calledW3-semi-symmetric ifR(X ,Y )W3(U,V )Z =

0.

Theorem 4.5.3. A W3-semi-symmetric LP-Sasakian manifold is a W3-symmetric manifold.

Proof
Taking the inner product

g(R(X ,Y )W3(U,V )Z,ξ ) = R′(X ,Y,W3(U,V,Z),ξ ) = 0 (51)

g(X ,ξ )g(Y,W3(U,V,Z))−g(X ,W3(U,V,Z))g(Y,ξ ) = 0

η(X)W ′3(U,V,Z,Y )−η(Y )W ′3(U,V,Z,X) = 0 (52)

Since η(X) and η(Y ) are non-zero, =⇒ W ′3 = 0. i.e.

∇UW3(X ,Y )Z =W ′3(X ,Y,Z,U) = 0

Hence a W3-semi-symmetric LP-Sasakian manifold is a W3-symmetric manifold.

4.6 W3-recurrent LP-Sasakian manifold

De�nition 4.6.1. An LP-Sasakian manifold is called recurrent if (∇U R′)(X ,Y,Z,ξ ) =
B(U)R′(X ,Y,Z,ξ ). Where B(U) is the associated recurrence parameter.

De�nition 4.6.2. An LP-Sasakian manifold is called Ricci recurrent if (∇U Ric)(X ,Y ) =
B(U)Ric(X ,Y ). Where B(U) is the associated recurrence parameter.

De�nition 4.6.3. An LP-Sasakian manifold is called W3-recurrent if (∇UW ′3)(X ,Y,Z,ξ ) =
B(U)W ′3(X ,Y,Z,ξ ). Where B(U) is the associated recurrence parameter.

Theorem 4.6.4. If an LP-Sasakian manifold is W3-recurrent and Ricci recurrent, then for the
same recurrence parameter, it is a recurrent manifold.
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Proof

(∇UW ′3)(X ,Y,Z,ξ ) = B(U)W ′3(X ,Y,Z,ξ )

B(U)W ′3(X ,Y,Z,ξ ) = (∇U R′)(X ,Y,Z,ξ )+
1

n−1
[g(Y,Z)(∇U Ric)(X ,ξ )

−g(Y,ξ )(∇U Ric)(X ,Z)]

B(U)W ′3(X ,Y,Z,ξ ) = (∇U R′)(X ,Y,Z,ξ )+
B(U)

n−1
[g(Y,Z)Ric(X ,ξ )

−g(Y,ξ )Ric(X ,Z)]

(∇U R′)(X ,Y,Z,ξ ) = B(U){W ′3(X ,Y,Z,ξ )− 1
n−1

[g(Y,Z)Ric(X ,ξ )

−g(Y,ξ )Ric(X ,Z)]}
(∇U R′)(X ,Y,Z,ξ ) = B(U)R′(X ,Y,Z,ξ )

Hence the theorem.
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5 On the geometry of Lorentzian Para Sasakian
Manifolds with Conservative and Irrotational
W3-curvature tensor

In chapter four we have studied the geometrical properties of W3(X ,Y )Z curvature tensor
in Lorentzian Para Sasakian manifold and proved some important results. The present
chapter deals with the conservativeness of W3(X ,Y )Z and irrotationality of R(X ,Y )Z in
the same manifold.

It consists of two sections, in the first section we consider the vanishing of the divergence of
W3(X ,Y )Z i.e. (div W3)(X ,Y )Z = 0 and show that the manifold defines Einstein structure
and the space is of constant scalar curvature.

In the second section we consider a Lorentzian Para Sasakian manifold which admits
irrotational R(X ,Y )Z curvature tensor. It is shown that if (curl R)(X ,Y )Z = 0, then the
manifold is an Einstein manifold.

5.1 Lorentzian Para Sasakian manifold satisfying (div W3)(X ,Y )Z = 0

Given that

W3(X ,Y )Z = R(X ,Y )Z +
1

n−1
[g(Y,Z)QX−S(X ,Z)Y ] (53)

where Q is the symmetric endomorphism of the tangent space at every point and S is the
Ricci tensor of type (0,2).

Di�erentiating (53) covariantly, we have

(∇UW3)(X ,Y )Z = (∇U R)(X ,Y )Z +
1

n−1
[g(Y,Z)(∇U Q)(X)− (∇U S)(X ,Z)Y ] (54)

Contracting equation (54), we obtain

(div W3)(X ,Y )Z = (∇X S)(Y,Z)− (∇Y S)(X ,Z)+
1

n−1
[g(Y,Z)dr(X)− (∇X S)(Y,Z)]

(div W3)(X ,Y )Z =
n−2
n−1

(∇X S)(Y,Z)− (∇Y S)(X ,Z)+
1

n−1
g(Y,Z)dr(X) (55)
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Let us suppose that (div W3)(X ,Y )Z = 0, then equation (55) becomes

n−2
n−1

(∇X S)(Y,Z)− (∇Y S)(X ,Z) =− 1
n−1

g(Y,Z)dr(X) (56)

Pu�ing X = ξ in (56), we get

n−2
n−1

(∇ξ S)(Y,Z)− (∇Y S)(ξ ,Z) =− 1
n−1

g(Y,Z)dr(ξ ) (57)

Using (30) and the fact that Lξ S = 0, the first term in the le� hand side of equation (57)
can be expressed as

(∇ξ S)(Y,Z) = ∇ξ S(Y,Z)−S(∇ξY,Z)−S(Y,∇ξ Z)

= ∇ξ S(Y,Z)−S([ξ ,Y ]+∇Y ξ ,Z)+S(Y, [ξ ,Z]+∇Zξ )

= ∇ξ S(Y,Z)−S([ξ ,Y ],Z)−S(∇Y ξ ,Z)−S(Y, [ξ ,Z])−S(Y,∇Zξ )

= (Lξ S)(Y,Z)−S(∇Y ξ ,Z)−S(Y,∇Zξ )

=−S(φY,Z)−S(Y,φZ)

=−S(φY,Z)+S(φY,Z),φ is skew symmetric

= 0 (58)

We can also expand the second term and using (??) and (36), to get

(∇Y S)(ξ ,Z) = ∇Y S(ξ ,Z)−S(∇Y ξ ,Z)−S(ξ ,∇Y Z)

= ∇Y [(n−1)g(ξ ,Z)]−S(φY,Z)− (n−1)g(ξ ,∇Y Z)

= (n−1)[g(∇Y ξ ,Z)+g(ξ ,∇Y Z)]−S(φY,Z)− (n−1)g(ξ ,∇Y Z)

= (n−1)g(φY,Z)−S(φY,Z) (59)

Lastly

g(Y,Z)dr(ξ ) = 0,since dr(ξ ) = 0 (60)

Now using equations (58), (59) and (60) in (57), we obtain

S(φY,Z) = (n−1)g(φY,Z) (61)

Replacing Z with φZ in (61), leads to

S(φY,φZ) = (n−1)g(φY,φZ)

=⇒ S(Y,Z) = (n−1)g(Y,Z) (62)
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which on contracting yields r = n(n−1).

This leads to the following theorem

Theorem 5.1.1. If (div W3)(X ,Y )Z = 0 in a Lorentzian para sasakian manifold Mn, then
the manifold is Einstein and it is of constant scalar curvature n(n−1).

5.2 Lorentzian Para Sasakian manifold satisfying (curl R)(X ,Y )Z = 0

The rotation (curl) of the curvature tensor R(X ,Y )Z on a Riemannian manifold is given by

(curl R)(X ,Y )Z = (∇U R)(X ,Y )Z− (∇X R)(U,Y )Z +(∇Y R)(U,X)Z

− (∇ZR)(X ,Y )U (63)

By virtue of Bianchi’s second identity

(∇U R)(X ,Y )Z +(∇X R)(Y,U)Z +(∇Y R)(U,X)Z = 0 (64)

equation (63) reduces to

(curl R)(X ,Y )Z =−(∇ZR)(X ,Y )U (65)

If the curvature tensor is irrotational then (curl R)(X ,Y )Z = 0 and thus

(∇ZR)(X ,Y )U = 0 (66)

which implies

∇ZR(X ,Y )U = R(∇ZX ,Y )U +R(X ,∇ZY )U +R(X ,Y )∇ZU (67)

Pu�ing U = ξ in (67) we have

∇ZR(X ,Y )ξ = R(∇ZX ,Y )ξ +R(X ,∇ZY )ξ +R(X ,Y )∇Zξ (68)

Using (30) and (34) in (68) obtain

∇Z[η(Y )X−η(X)Y ] = η(Y )∇ZX−η(∇ZX)Y +η(∇ZY )X−η(X)∇ZY

+R(X ,Y )φZ (69)
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Simplifying the above equation we get

g(Y,φZ)X−g(X ,φZ)Y = R(X ,Y )φZ (70)

Replacing φZ by Z in the above equation it reduces to

R(X ,Y )Z = g(Y,Z)X−g(X ,Z)Y (71)

Contracting this equation leads to the following thorem

Theorem 5.2.1. If the curvature tensor in Lorentzian Para Sasakian manifold is irrotational,
then the manifold is Einstein and it is of constant scalar curvature n(n-1)
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6 Conclusion

6.1 Conclusion

The W3-curvature tensor is symmetrical in its last pair of variables. The above propeties are
of interest especially in the study of electromagnetism and the theory of general relativity.

In particular the Rainich conditions for existence of non- null electro variance can be
obtained by the contracted part of this tensor. Thus we can use W3(X ,Y,Z,T ) in place of
Weyl projective tensor in the study of physical significance and geometry of manifolds.

6.2 Future Research

According to Pokhariyal, [18], W3(X ,Y,Z,T ) can be broken down into two parts

α(X ,Y,Z,T ) =
1
2
[W3(X ,Y,Z,T )−W3(X ,Y,Z,T )] (72)

and

β (X ,Y,Z,T ) =
1
2
[W3(X ,Y,Z,T )+W3(X ,Y,Z,T )] (73)

which are respectively skew-symmetric and symmetric in X ,Y .

From (23), it follows that

α(X ,Y,Z,T ) = R(X ,Y,Z,T )+
1

2(n−1)
[g(Y,Z)Ric(X ,T )

−g(Y,T )Ric(X ,Z)−g(X ,Z)Ric(Y,T )+g(X ,T )Ric(Y,Z)] (74)

and

β (X ,Y,Z,T ) =
1

2(n−1)
[g(Y,Z)Ric(X ,T )−g(Y,T )Ric(X ,Z)

+g(X ,Z)Ric(Y,T )−g(X ,T )Ric(Y,Z)] (75)

From (74), we see that α(X ,Y,Z,T ) possesses all the symmetric and skew symmetric
properties of R(X ,Y,Z,T ) as well as the cyclic property

α(X ,Y,Z,T )+α(Y,Z,X ,T )+α(Z,X ,Y,T ) = 0 (76)
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.

The author studied the geometric and physical properties of these tensors in a Riemannian
manifold and showed that the contracted part of α(X ,Y,Z,T ) does not vanish in an
Einstein space. Thus it is not possible to extend the Pirani formalism of gravitational wave
to the Einstein space with the help of α(X ,Y,Z,T ). He further showed that the vanishing
of β (X ,Y,Z,T ) is the necessary and su�icient condition for a space to be Einstein space.

Therefore one can explore the geometric and physical significance of W3(X ,Y,Z,T ) and
its symmetric and skew symmetric parts in other manifolds to unearth properties which
help study the geometry of those manifolds.
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