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Abstract

The aim of this project is to formulate a mathematical model for the dynamics of dengue
virus disease transmission a case study of Mandera County Kenya.The compartmental
model with 5-sate variables was developed to show the relationships that exist between
the state variables.

The disease free equilibrium point was shown to be locally asymptotically stable when
the basic reproduction number is less than unity and unstable if its greater than unity, in
addition the global stability of the disease free equilibrium was determined by using the
Lyapunov function and it was discovered that the disease free was globally asymptotically
stable if the basic reproduction number is less or equal to unity.

The sensitivity index shows that the most sensitive parameters that a�ect the basic repro-
duction number are Nh and µv which has same degree of impact on R0. Matlab version
R2018a was used in performing the numerical simulations. We found out that the rate of
susceptible human decreases from the rate of 1 and attain equilibrium at the rate of 0.4
while the rate of infected human increased from 0 and attain the equilibrium at the rate
of 0.4.

The recovered human increased from 0 and attain equilibrium at the rate of 0.2. The
susceptible Mosquito decline from the rate 1 and attain equilibrium after attaining the
rate of 0.615 and �nally the infected Mosquito increased from the rate of 0 and attain the
equilibrium upon reaching the rate of 0.36.
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1 Introduction

1.1 Background

Dengue is a mosquito-borne viral infection that is usually found in tropical and sub-
tropical regions around the world. In recent years, transmission has increased pre-dominantly
in urban and semi-urban areas and has become a major public health concern[23].

There are four distinct but closely related serotypes of Virus that cause dengue (DEN-1,
DEN-2, DEN-3 and DEN-4) and recovery from an infection by one provides lifelong im-
munity against that particular serotype. However, cross-immunity to the other serotypes
a�er recovery is only partial and temporary. Subsequent infections by other serotypes
increase the risk of developing severe Dengue[3].

World Health Organization (WHO) reported that over 2.5 billion peaople around the globe
at risk of contacting dengue [23]. In addition WHO also estimated that there are approx-
imately 50-100 million Dengue infections worldwide.The number of cases are not only
increasing as the disease spreads to new areas,but explosive outbreaks are also occur-
ring.

The history of Dengue virus disease date back to 1968 when it first started in Surabaya,
East Java located in Indonesia [8]. There were 58 cases reported out of which 24 per-
ished in that outbreak. Further, since that time, dengue disease tends to spread to the
entire regions of Indonesia and by 1980 all provinces in Indonesia except East Timor have
contracted the disease. This situation is closely related to the increasing mobility of the
population and in line with the smooth transportation facilities. WHO revealed Indone-
sia as the country with the second highest dengue incidence in Southeast Asia with an
average of approximately 130,000 cases over the period 2004-2010 and a maximum of
150,000 cases in 2007 [22].

In Kenya the first dengue outbreak was reported in 1982 in the coastal region. Dengue
virus disease outbreak occurred almost 30 years later in the year 2011 in Mandera, north-
ern Kenya and subsequently in Mombasa city in the coastal region (2013–2014) [18].
Dengue fever (DF) is presently the world’s most important re-emerging arboviral disease
with over 50 per cent of the world’s population at risk of the disease and 50 per cent
residing in dengue endemic countries [24].
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In our world limited resources mathematical modeling is a powerful tool that is used to
test and compare di�erent intervention strategies that might be useful in controlling or
eliminating Dengue. The formulation of the model and the possibility of a simulation with
parameter estimation, allow tests for sensitivity and comparison of conjunctures[12]. In
the case of dengue fever, the mathematical models we have found in the literature pro-
pose compartmental dynamics with Susceptible, Exposed, Infective and Removed (im-
munised). In particular, SEIRS models[19] and SIR models[17] with only one virus or two
viruses acting simultaneously were considered [11].

1.2 Mode of transmission of Dengue Fever

Dengue is transmi�ed by species of mosquito known as Aedes aegypti, which transmit
the dengue virus from person to person.The vector become infected a�er the female
mosquito takes a blood meal from an infected human. Once the mosquito has been
infected the virus incubates inside the mosquito host for approximately 8-10 days [13].
Upon completion of the incubation period the infected mosquito is capable of transmit-
ting dengue to any human that it feeds on for the remainder of its life.

1.3 Symptoms of Dengue Fever

An individual infected with dengue virus exhibit the following symptoms.

• Fever

• Headache

• Muscle

• Joint pain

• Skin rashes

• Bleeding

1.4 Statement of the problem

Despite the documented presence of the species of Mosquito known as Aedes aegypti
that transmit dengue virus and the rapid increase of dengue cases reported in Africa,
most documented reports on dengue come from a small number of countries, with few
prospective and population based studies[16]. With many competing public health prob-
lems, the clinical presentation of dengue is non-specific and di�icult to distinguish from
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other causes of febrile illness, especially with dengue diagnostic assays not widely avail-
able [27]. Also, unlike many countries in Asia and Latin America, most African countries
lack systems of mandatory reporting of dengue cases [4].

In kenya despite reported cases of dengue in Mombasa,Mandera, Taita-Taveta and Urban
slums of Kibera located in Nairobi their is no study that has been done to model the
dynamics of Dengue virus disease transmission and this study aims at bridging the gap
by formulating a mathematical model to determine the Dynamics of dengue Virus disease
transmission in Mandera County.

1.5 Research Objectives

1.5.1 Objective of the Study

The general objective of this study is to develop and analyse a mathematical model for
the dynamics of dengue virus disease transmission in Mandera County Kenya.

1.5.2 Specific Objectives

The specific objective of this study are;

• To determine the stability of the disease free equilibrium point.

• To determine the basic reproduction number.

• To determine the most sensitive parameter to R0 .

• To obtain Numerical Simulation of the model variables.

• To give recommendations in mitigating dengue virus disease transmission.

1.6 Justification of the study

The study on the outbreak of Dengue virus disease among the residents living in Mandera
county has never been done before despite reported cases of the disease in that region,
Its against this backdrop we endeavour to model the dynamics of dengue virus disease
outbreak in Mandera county to establish the behaviour of the model parameters and
understand their meanings.
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2 Literature Review

2.1 Introduction

2.2 Mathematical Modeling of Dengue Virus

In the existing literature mathematical models are widely used in describing and analyz-
ing the behaviors of dengue virus disease transmission. Susceptible-Infected-Recovered(SIR)
model is commonly used in mathematical model simulations of an infectious disease epi-
demiology.

Anderson and May (1992) [2] gave a comprehensive survey on the use of mathematics to
study infectious diseases modeling, and since then there has been an increasing number
of mathematical epidemiology papers published. Many infectious diseases are spread by
biting insects and ticks or other organisms,collectively known as vectors, which transfer
pathogens between humans or other animals. The emergence or reemergence of such
vector-borne diseases seems especially to have stimulated recent interest. Rogers et al
[21] reviewed the early vector-borne disease models, and many other authors have stud-
ied various particular vector-borne diseases, such as malaria [15], West Nile virus [7] and
dengue fever [10].

The models by Derouich et al and by Syafruddin et al (2003)[9] are among the simplest
since both of them used S-I-R Ordinary di�erential equations models of one strain of
the virus and Iurii Bakach (2015) [3] used five di�erent models in his study on survey of
Mathematical Model of Dengue fever and observed that every Model was di�erent.The
model was used by Ganga Ram Phaijoo and Dil Bahadur Gurungs (2016) [25] in describ-
ing the transmission of dengue disease with constant human and vector populations.
They divided the Human population into three compartment susceptible, infected and
recovered and the Mosquito Population was divided into two compartment, susceptible
and infected compartment, they found out that for higher level of awareness the disease
was seen to a�ect less number of people and Large number of people is seen to be a�ected
from the disease when there is no awareness on dengue in the host population.

Chanpra sopchai et al (2017) [5] proposed a SEIR(susceptible-exposed-infected-recovered)
model for Thailand and the analysis was based on Routh-Hurwitz criteria to establish the
local asymptotic stability of the equilibrium points. They established two equilibrium
points a disease-free equilibrium point and an endemic equilibrium point. The disease-
free equilibrium point is locally asymptotically stable
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Esteva and Vargus (2021) proposed an SIR (susceptible-infected-recovery) model to de-
scribe the transmission of dengue disease with constant human and vector populations

2.2.1 SIR Model and Concepts

Infectious disease comprises of measles, chicken pox and to a deadly killer disease such
as Acquired immune deficiency syndrome(AIDS).Infectious disease dynamics has been
extensively studies for many years in the field of epidemiology.To model the progress
of an outbreak of an infectious disease in a large population it is necessary to rediuce
the population diversity a small number which corresponds to infectious disease under
consideration.

W. O. Kermack and A. G. McKendrick (1927) [14] did a study on infected humans who
were infected with a constagious disease. They used SIR model in their study and they
assumed that the population is constant and Incubation of an infectious agent is instant,
and the infection period is equal to the duration upon which the disease exist in the pop-
ulation, In addition they assumed that the population is homogeneous where no age,
spatial, or social structure is considered. In their Model they divided the population into
a number of compartments,each comprising of individuals that are similar in terms of
status with respect to the disease.The human population was divided into three com-
partment, susceptible human to the disease at time t abbreviated as (S), Infected human
with the disease at time t abbreviated as (I) and recovered individual from the disease at
time t(R).

Traditionally in the research areas of an infectious disease epidemiology the compart-
ments of host population is denoted as S(t),I(t) and R(t), respectively. The total population
of human is shown in Equation (1)

S+ I +R = N (1)

S I R
βSI γIγI

Figure 1. Diagrammatic representation of the Basic SIR model.

The model flow was considered as follows:Having compartmentalized the host popula-
tion, Kermack and McKendrick derived the following set of equations (2a),(2b) and (2c)
specified how the compartments size change over a period of time.
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dS
dt

=−λS (2a)

dI
dt

= λS− γI (2b)

dR
dt

=−γI (2c)

λ is the rate of an infection and is a measure of how quickly a susceptible humans get
infected. γ denoted the recovery rate and is a measure of how quickly the infected human
recover from the disease.

The model assume the population is homogeneous with the same probability of trans-
muting the disease. Infected individual makes contact With a susceptible Mosquito and
transmit the disease with λN per unit time. The proportion of contacts by an infected
human with a susceptible mosquito is given by S

N .

The rate of new infections is given us λN( S
N ), and the rate of individuals leaving the

susceptible class due to new infections is given us λN( S
N )I=λSI.

Equation (2b) shows the infected class leaving the susceptible class category, a proportion
of γ is exiting the infectious class and join the recovered class. These processes that occur
at the same time are called the Law of Mass, which is defined as the rate of contact
between two groups in a population is proportional to the size of each groups concerned.

If the SIR model is expanded to include births and deaths variables, then the model is as
shown in Equation (3a),(3b) and (3c)

dS
dt

= µN−λSI−µS (3a)

dI
dt

= λSI− γI−µI (3b)

dR
dt

= γI−µR (3c)

µ denotes the rate birth and mortality. The human recruitment rate due to birth is equal
to the natural mortality given by

µN = µ(S+ I +R) (4)

The model assume that the population is constant on the onset of the disease outbreak
since the time for change in population is much longer than the period under infection.
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2.2.2 SEIR Model

Incubation period occur when an individual human infected are unable to spread the
disease to the susceptible vector . During this period the individual is in the category
of compartment exposed denoted as (E). The diagram in Figure(2) is an extension of SIR
Model to include the exposed class category and the model is then refereed to as SEIR
Model.

S E I R
βSI αE γI

Figure 2. Diagrammatic representation of the SEIR model

Now considering a model which contains exposed compartment, an individual may leave
the exposed class due to an infection and join the infected class category.in their Model
the incubation period is assumed to be a random variable in the form of an exponential
distribution having a parameter α and all the other assumptions and parameter sets are
the similar based on the Model Equations (3a),(3b) and (3c). The SEIR model is given by
Equation (5a),(5b),(5c) and (5d)

dS
dt

= µN−λSI−µS (5a)

dE
dt

= λSI−αE−µE (5b)

dI
dt

= αE− γI−µI (5c)

dR
dt

= γI−µR (5d)

Since the Model assume total population is constant , we have the total population given
as;

S+E + I +R = N (6)

2.2.3 Force of Infection

In Equation (5a) λSI is the rate at which susceptible individuals contract the disease and
is refereed to as force of infection. For a bigger classes of an infection , it is imperative to
consider a force of infection that are independent on the absolute number of individual
who are infectious, but on their proportion with regards to the total human population
N, therefore we let F = λ

1
N
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Then Equation (5a),(5b),(5c) and (5d) becomes;

dS
dt

= µN−λS
1
N
−µS (7a)

dE
dt

= λS
1
N
−αE−µE (7b)

dI
dt

= αE− γI−µI (7c)

dR
dt

= γI−µR (7d)

The exposed class are non-infectious and therefore does not lead to the new infections
and do not a�ect in the decline of the susceptible class category. Their is a delay between
when an individual is infected and when they become infectious. The e�ect of the ex-
posed class category can be included into expressions for other class category, which will
then make the model simpler.

if we let u(t) to be the proportion of an infected human compartment at time t who are
non-infectious,Then the proportion of becoming ine�ective at infection duration t is given
by µu(t), and we have;

du
dt

=−µu(t),u(0) = 1 (8a)

The solution of (8a) is

u(t) = e−µt (9a)

if we assume that the incubation period is a constant τ . The individuals changing from
exposed to infected are given as τ days, and the recruitment number of infected at time
t is related to the number of susceptibles and infecteds at time (t), subject to surviving
the incubation period, whose proportion is given by e−µτ

Then Equation (7a),(7b), (7c) and (7d) becomes;
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dS
dt

= µN−λ
S(t)I(t)

N
−µS(t) (10a)

dI
dt

= e−µτ
λ

S(t− τ)I(t− τ)

N
− γI(t)−µI(t) (10b)

dR
dt

= γI(t)−µR(t) (10c)

This SEIR model plays an important role in the field of infectious disease epidemiology,
especially when the incubation period consume a lot of individual’s life span is put into
consideration.The SEIR model does not only consider the spread of an infectious disease
in human but also animals. Mosquito is a carrier that transmit infectious disease to hu-
man. The infectious disease transmi�ed by Mosquito to human comprises of Malaria,
Dengue fever and the west Nile Virus. Once the Mosquito become infected the disease
stays in their body for a long time and transmit the disease for the reminder of its life-
time. SEIR model is mainly used to help in the developments of Mosquito and human
interaction that results in the transmission of an infectious disease.
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3 Mathematical model formulation

3.1 Introduction.

In these chapter,we intends to come up with a compartmental diagram representing
the human and mosquito population, develop a mathematical model of the dynamics
of dengue fever transmission based on the compartmental diagram and formulate model
assumptions, define the variables and parameters of the model, check for the positivity
and boundedness of the model solution, determine the basic reproduction number and
finally the steady state will be analysed to determine the local and Global stability.

3.2 Model formulation and assumption

A�er reviewing the Mathematical models in the existing literature, these study intends
to use Susceptible, Infected, and Removed (SIR) model of infectious disease epidemiol-
ogy, which was adopted by [9, 20, 26] in order to formulate a mathematical model that
describes the dynamics of dengue virus disease transmission.

The populations is divided into two categories, a human population (Nh) and a vector
population ( Nv ). The human population (Nh ) is divided into three compartment:people
who may potentially get infected with dengue virus (susceptible; Sh ), people who are
infected with dengue (infected; Ih ) and people who have recovered (removed; Rh ). The
vector population of mosquitoes ( Nv ) is divided into two compartment: mosquitoes that
may potentially become infected with dengue virus (susceptible; Sv ) and mosquitoes that
are infected with dengue virus (infected; Iv ) and the mosquitos are the carriers of the four
viruses that cause Dengue fever but not negatively a�ected by it, and hence there is no
need to consider the recovered mosquito population.

The model assumptions are;

• The model assume that a number of human population have already been infected
by the virus while others have not been infected.

• The population is homogeneous with the same probability of transmi�ing the disease.

• The recruitment rate of both the Human and Mosquito population is equal to the
Mortality rate.
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• The mosquitoes and human populations birth enter into the susceptible class cate-
gory.

• The bite rate of an infected mosquito is higher than the suspected mosquito.

• Each of the recovered individual has the possibility of being reinfected and enter the
susceptible class category.

3.3 Compartmental Model of the dengue virus transmission.

Figure 3. SIR Model diagram of human and Mosquito population

Figure 3 shows the SIR model diagram of human and Mosquito population.

3.4 Model Equation

The Model equation was developed by modifying the model equations used by [26]. The
compartmental diagram in Figure 3 can be converted into a Mathematical model based
on the interaction between the host and vector model which is in the form of non-linear
di�erential equations as shown below.
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dSh

dt
= π1−

βvhb2

Nh
IvSh−µhSh +αRh (11a)

dIh

dt
=

βvhb2

Nh
IvSh− (µh + γh)Ih (11b)

dRh

dt
= γhIh− (µh +α)Rh (11c)

The vector population model becomes;

dSv

dt
= π2−

βhvb1

Nh
IhSv−µvSv (12a)

dIv

dt
=

βhvb1

Nh
IhSv−µvIv (12b)

with the condition;

Sh + Ih +Rh = Nh (13a)

Sv + Iv = Nv (13b)

The model for the human and Mosquito population can be combined to form Equations
(14a), (14b),(14c),(14d) and (14e) as shown below,

dSh

dt
= π1−

βvhb2

Nh
IvSh−µhSh +αRh (14a)

dIh

dt
=

βvhb2

Nh
IvSh− (µh + γh)Ih (14b)

dRh

dt
= γhIh− (µh +α)Rh (14c)

dSv

dt
= π2−

βhvb1

Nh
IhSv−µvSv (14d)

dIv

dt
=

βhvb1

Nh
IhSv−µvIv (14e)

3.5 Explanation of the Model Variable and Parameters

• For the human population:
The rate of change in the total host population which may easily be infected over the
time due to host population birth rate is π1. Deaths of the susceptible host are repre-
sented by µhSh. The rate of change in the number of the infected host depends on the
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host infected population. A death among the infected host population is represented
by µhIh, while members of the host population that recover their health a�er infec-
tion is γhIh. In addition, the total host population that has recovered Rh will change
according to changing times. The rate of changes for a healthy population is the
di�erence between the host that has recovered from an infection γhIh with the total
death in the number of healthy host population µhRh

• For the Mosquito population:
The rate of change in the total Mosquito population which may easily be infected
over time due to mosquito population birth rate is given by π2 The number of deaths
among the susceptible mosquito population is µvSv, while µvIv is the total mortality
of the infected mosquito population at any given time.

Table 1 shows the definition of variables of the dengue virus model while Table 2
shows the definition of the model parameters.

Variable Description

Sh Susceptible human at time t

Ih Infected human at time t

Rh Recovered Human at time t

Sv Susceptible Mosquito at time t

Iv Infected Mosquito at time t
Table 1. Variable defination

Model Parameter De�nation Units

Nh Total number of Human Population. Dimensionless

Nv Total number of Mosquitoes. Dimensionless

π1 Human recruitment rate Time

π2 Mosquito recruitment rate Time

µh Death rate for human population Time

µv Death rate for Mosquito population Time

γh Recovery rate of of an infected humans. Time

βvh probability of viral transmission from an infected Mosquito to susceptible human. Time

βhv probability of viral transmission from an infected human to a susceptible mosquito Time

b1 The bite rate by suceptible mosquito Time.

b2 infected mosquito bite rate Time.

α Decline rate in human imunity to desease Time
Table 2. Parameter Definition
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3.6 Positivity and Boundedness of a solution

Theorem 3.6.1. Let (Sh(t)>0, Ih(t)>0,Rh(t)>0,Sv(t)>0, Iv(t)>0) be the solution of the Model
Equations (14a),(14b),(14c),(14d) and (14e) on the compact set

ω =

{
(Sh, Ih,Rh,Sv, Iv) ∈ R5

+,ωh = Sh + Ih +Rh ≤ Nh ≤
π1

µh
,ωv = Sv + Iv ≤ Nv ≤

π2

µv

}
.

for all t>0. We show that all the feasible solutions are uniformly bounded in a proper subset
ω = ωh +ωv.Thus the set ω is positively invariant.

Proof. In order to show that the solutions are uniformly bounded in a proper subset
ω ,the model Equation (14a),(14b),(14c),(14d) and (14e) are divided into the human com-
partment Nh, and the mosquito compartment Nv

We let ωh =
{
(Sh, Ih,Rh) ∈ R3

+

}
be the solution of the system of the Model Equation (14a),(14b),(14c),(14d)

and (14e)

Obtaining the derivative of Nh along a solution path of the model Equations (14a),(14b),(14c),(14d)
and (14e) gives

dNh

dt
≤ π1−µh(Sh + Ih +Rh) (15a)

Simplifying Equation (15a) by using (13a) we obtain

dNh

dt
+µhNh ≤ π1 (16a)

The integrating factor for Equation (16a) is e
∫

µh dt

Multiplying both sides of Equation (16a) by e
∫

µh dt

e
∫

µh dt dNh

dt
+µhNhe

∫
µh dt ≤ π1e

∫
µh dt (17a)

We obtain;

d
dt
(Nhe

∫
µh dt)≤ π1e

∫
µh dt (18a)
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Integrating both sides of Equation (17a) we have;

Nhe
∫

µh dt ≤ π1

µh
e
∫

µh dt +C (19a)

C is the constant of integration. if Equation (19a) is divided by e
∫

µh dt

We obtain;

Nh ≤
π1

µh
+Ce

∫
−µh dt (20a)

By using the initial condition t=0, Nh(0) = Nho we get

Nho−
π1

µh
≤C (21)

Equating for the value of C obtained in (21) into Equation (20a) we get;

Nh ≤
π1

µh
+(Nho−

π1

µh
)e
∫
−µh dt (22)

By applying di�erential inequality theorem we obtain;

0≤ Nh ≤
π1

µh
as t→ ∞

This shows that Nh is bounded and all the feasible solutions of the human component of
the system of Equations (14a),(14b),(14c),(14d) and (14e) of the dengue fever model starting
in the region ωh approach,enter or stay in the region where;

ωh =

{
(Sh, Ih,Rh) ∈ R3

+ : Nh ≤
π1

µh

}
Similarly the feasible solution set for the mosquito population

ωv =

{
(Sv, Iv) ∈ R2

+ : Nv ≤
π2

µv

}
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It follows from above that Nh and Nv are positively bounded and all the possible solutions
of the model starting in ω will stay in the region ω = ωh x ωv for all t >0.Thus ω is
positively invariant and thus the system of Equation (14a),(14b),(14c),(14d) and (14e) of
the dengue fever model is biologically meaningful and mathematically well posed in the
domain ω

3.7 Stability Analysis

3.7.1 Desease Free Equilibrium

Total human population is given by

Nh = Sh + Ih +Rh (23)

Therefore on simplifying we obtain;

dNh

dt
= π1−µhNh (24a)

and the Mosquito population Nv calculated as

Nh = Sv + Iv (25)

On simplification we obtain;

dNv

dt
= π2−µvNv (26a)

The desease free equilibrium is obtained by se�ing the infectious and recovered classes
equal to zero (Ih,Rh,IV ) and substitute in the model of dengue fever.

dSh

dt
=

dIh

dt
=

dRh

dt
=

dSv

dt
=

dIv

dt
= 0 (27)

Thus the system reduces to;

π1−µhSh = 0 (28a)
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π2−µhSv = 0 (29a)

Disease free equilibrium(DFE) point is given by;

E0 = (Sh,0,0,Sv,0) =
(

π1

µh
,0,0,

π2

µv
,0
)

(30)

3.7.2 The Basic Reproduction number (R0)

R0 is defined as the expected number of secondary cases produced by a single (typical)
infection in a completely susceptible population [1]. The next generation matrix is a
systematic way to calculate R0. R0 is the spectral radius of the next generation matrix.
We calculate the basic reproduction of the system using the next generation operator
approach. To achieve that we form an equations using the infected class category from
the systems of the model of the dengue fever as shown in Equation (31a) and (31b) below;

dIh

dt
=

βvhb2

Nh
IvSh− (µh + γh)Ih (31a)

dIv

dt
=

βhvb1

Nh
IhSv−µvIv (31b)

We define the vector valued function f as the rate of appearance of new infection in the
human and vector model

f =


βvhb2

Nh
IvSh

βhvb1

Nh
IhSv

 (32)

Evaluating the Jacobian matrix F for the rate of apperance of the new infection at the the
disease free equilibrium gives;

F =

 0
βvhb2

Nh
Sh

βhvb1

Nh
Sv 0

 (33)
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F =

 0
βvhb2

Nh

π1

µh
βhvb1

Nh

π2

µv
0

 (34)

The transfer of individual out of an infectious class is given by;

v =

(µh + γh)Ih

µvIv

 (35)

The Jacobian Matrix for the transfer of individual out of an infections class is given us;

V =

(µh + γh) 0

0 µv

 (36)

Ge�ing the inverse of V gives;

V− =
1

µv(µh + γh)

µv 0

0 (µh + γh)

 (37)

V− =


1

µh + γh
0

0
1
µv

 (38)

FV− =

 0
βvhb2π1

Nhµhµv
βhvb1π2

Nhµv(µh + γh)
0

 (39)



19

The Basic reproduction number R0 is the equal to the spectral radius(the greatest eigen-
value) of FV−  0−λ

βvhb2π1

Nhµhµv
βhvb1π2

Nhµv(µh + γh)
0−λ

 (40)

Hence;

λ
2−

βvhb2π1βhvb1π2

N2
h µhµ2

v (µh + γh)
= 0 (41)

The greatest eigenvalue will be the positive value of the square root and its the Basic
reproduction number R0;

R0 =

√
βvhb2π1βhvb1π2

N2
h µ2

v µh(µh + γh)
(42)

R0 is a measure of the average number of secondary dengue virus infections in human or
mosquito population caused by a single infective human or mosquito introduced into an
entirely susceptible population. The square root in the computation of the reproduction
number means that dengue virus transmission is a two step process where an infected
individual to infect another individual a mosquito must transmit the disease and our RO

is given us .

R0 =
βvhb2π1βhvb1π2

N2
h µ2

v µh(µh + γh)
(43)

3.8 Local Stability analysis of the Disease free equilibrium point

Theorem 3.8.1. The disease free equilibrium is locally asymptotically stable if R0 < 1 and
unstable if R0 > 1
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Proof. The Jacobian matrix for the Model Equation (14a),(14b),(14c),(14d) and (14e) is
given by;

J =



−βvhb2Iv

Nh
−µh 0 α 0

−βvhb2Sh

Nh
βvhb2Iv

Nh
−(µh +α) 0 0

βvhb2Sh

Nh

0 γh −(µh +α) 0 0

0
−βhvb1Sv

Nh
0

−βhvb1Ih

Nh
−µv 0

0
βhvb1Sv

Nh
0

βhvb1Ih

Nh
−µv


(44)

By evaluating the Jacobin Matrix at the disease free equilibrium values given by E0 =(
π1

µh
,0,0,

π2

µv
,0
)

, We obtain the matrix as shown below.

J =



−µh 0 α 0 −
βvhb2π1

Nhµh

0 −µh− γh 0 0
βvhb2π1

Nhµh

0 γh −(µh +α) 0 0

0
−βhvb1π2

Nhµv
0 −µv 0

0
βhvb1π2

Nhµv
0 0 −µv


(45)

We then compute the eigenvalues of the matrix evaluated at J(E0)

|J(E0)−λ I|= |(−µh−λ )|



−µh− γh−λ 0 0
βvhb2π1

Nhµh

γh −µh−α−λ 0 0
−βhvb1π2

Nhµv
0 −µv−λ 0

βhvb1π2

Nhµv
0 0 −µv−λ


| (46)

(−µh−λ )(−µv−λ )(−µh−α−λ )((−µh− γh−λ )(−µv−λ )−
βvhb2π1

Nhµh

βhvb1π2

Nhµv
= 0

(47a)
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The eigenvalues obtained from Equation (47a) is

λ1 =−µh (48a)

λ2 =−µv (48b)

λ3 =−µh−α (48c)

and the eigenvalue Equation is

λ
2 +(µh +µv + γh)λ +(µh + γh)µv−

βvhb2π1

Nhµh

βhvb1π2

Nhµv
= 0

λ
2 +(µh +µv + γh)λ +(µh + γh)µv(1−

βvhb2π1

Nhµh

βhvb1π2

Nhµv

1
µv(µh + γh)

) = 0

λ
2 +(µh +µv + γh)λ +(µh + γh)µv(1−R0) = 0 (49)

From the eigenvalue Equation (49) we obtain eigenvalues 4 and 5 as shown in Equation (50)

λ4,5 =
−(µh +µv + γh)±

√
(µh +µv + γh)2−4(µh + γh)µv(1−R0)

2
(50)

We analyse the sign of eigenvalues, since all the eigenvalues are negative as shown in
Equation (48a),(48b) and (48c) and when R0 < 1 the real part of eigenvalues 4 and 5 in
Equation (50) are negative and when R0 > 1 we have an eigenvalue with positive real
part hence the disease free equilibrium point is locally asymptotically stable when R0 < 1
and unstable when R0 > 1 This proves theorem 3.8.1.

3.9 Global Stability of the Disease free equilibrium point

Theorem3.9.1. ifR0 < 1 then the free disease equilibriumE0 =(S∗h,0,0,S
∗
v ,0)=

(
π1

µh
,0,0,

π2

µv
,0
)

in the global stage is asymptotically stable in the set ω

Proof. A Lyapunov functions constructed for the system is

M(t) = (Sh−S∗h lnSh)+ Ih +Rh +(Sv−S∗V lnSv)+ Iv (51)

The derivative of M(t) with respect to time that satis�es Equation (51) is
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M(t)
′
= S

′
h(1−

S∗h
Sh

)+ I
′
h +R

′
h +S

′
v(1−

S∗v
Sv
)+ I

′
v (52)

= π1−
βvhb2

Nh
IvSh−µhSh +αRh(1−

S∗h
Sh

) (53)

+
βvhb2

Nh
IvSh− (µh + γh)Ih + γhIh− (µh +α)Rh (54)

+π2−
βhvb1

Nh
IhSv−µvSv(1−

S∗v
Sv
)+

βhvb1

Nh
IhSv−µvIv (55)

= π1(1−
S∗h
Sh

)+µhS∗h(1−
Sh

S∗h
)−

βvhb2

Nh
IvSh (56)

+
βvhb2

Nh
IvSh(

S∗h
Sh

)−αRh(
S∗h
Sh

)++
βvhb2

Nh
IvSh−µhIh (57)

−µhRh +π2(1−
S∗v
Sv
)+µvS∗v(1−

Sv

S∗v
)−

βvhb2

Nh
IvSh (58)

+
βhvb1

Nh
IhSv(

S∗v
Sv
)+

βhvb1

Nh
IhSv−µvIv (59)

= π1(1−
S∗h
Sh

)+µhS∗h(1−
Sh

S∗h
) (60)

−αRh(
S∗h
Sh

)−µhRh +π2(1−
S∗v
Sv
) (61)

+µvS∗v(1−
Sv

S∗v
) (62)

+(
βvhb1

Nh
S∗v−µh)Ih +(

βhvb2

Nh
S∗h−µv)Iv (63)

Considering S∗h =
π1

µh
and S∗v =

π2

µv
Equation (52) can be compressed as;

M(t)′ = π1(2−
S∗h
Sh
− Sh

S∗h
)−αRh(

S∗h
Sh

)−µhRh +π2(2−
S∗v
Sv
− Sv

S∗v
) (64a)

=−π1
(Sh−S∗h)

2

ShS∗h
−αRh−π2

(Sv−S∗v)
2

SvS∗v
−µhRh (64b)

Equation (64) shows that M(t)′ ≤ 0 using Lyapunov method , the �nite sets applicable
for the solutions are those contained in the largest invariant set where Sh = S∗h, Rh = 0,
Sv = S∗v that is the singletone set

{
(S∗h, I

∗
h ,R
∗
h,S
∗
v , I
∗
v )
}

. This implies that the disease free
equilibrium is globaly asymptotically stable in ω . This proves theorem 3.9.1
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4 Numerical Simulation

4.1 Introduction

In this chapter we carried out the numerical simulations for the dynamics of the state
variables. The parameter values used in the simulations were obtained from the literature
while total human population was taken from the KNBS population projection of 2011
based on the fact that the outbreak of dengue fever was more severe in Mandera county
in the year 2011 and the total mosquito population was used as proxy variables from
[6]. The initial values of state variables were then assumed. We used Matlab R2018a to
generate the numerical simulations.The model equations are coded in Matlab together
with initial values and Parameters and the required output generated by representing the
human and vector compartments variables as a ratio of their populations respectively.The
findings were then discussed based on the results.

4.2 Variables/Parameter Values

Table 3 below shows the initial values of the state variables and parameters values used
in the model.The source of the initial values of Model parameters as obtained from the
literature was cited.
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Model Variables/Parameters Initial Values Source

Nh 1,165860. KNBS-2011 population projection

Sh 1,165859 Assumed

Ih 1 Assumed

Rh 0 Assumed

Nv 600 [6]

Sv 599 Assumed

Iv 1 Assumed

π1 46.63 Computed

π2 150 Computed

µh 0.00004 [3]

µv 0.25 [3]

γh 0.2857. WHO-2021

βvh 0.75 [3]

βhv 0.75 [3]

b1 0.5 [3]

b2 1 [3]

α 0.575000 [26]
Table 3. Variables/Parameter Values

4.3 Sensitivity Analysis of the Basic Reproduction Number

In this section we study how variation of the parameters in the expression of basic re-
production number can contribute to the change in the value of the basic reproduction
number hence a�ecting the spread of the disease. By definition, if we denote basic re-
production number by R0 , then the sensitivity is given by the scaled partial derivatives
with respect to the parameters appearing in the expression of R0 . That is,

sp =
∂R0

∂ p
× p

R0
(65)

where p is any parameter appearing in the expression of R0 and the scaling product p
R0

is
a normalization for the sensitivity sp. From the basic reproduction number which we have
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obtained, the parameters appearing in its expression are βvh ,b2,π1,βhv ,b1,π2,N2
h ,µ

2
v , and µh.

We carry out sensitivity analysis of these parameters to study the impact of their varia-
tions in the spread of the disease. Starting with βvh , we have

sβvh
=

∂R0

∂βvh

βvh

R0

=
b2π1βhvb1π2

N2
h µ2

v µh(µh + γh)
βvh

N2
h µ2

v µh(µh + γh)

βvhb2π1βhvb1π2
(66)

= 1

This implies that, a unit increase in the contact rate (βvh) would lead to a linear increase
in the value of the basic reproduction number.

Similarly, we obtain that sb2 = sπ1 = sβhv
= sb1 = sπ2 = 1. This means that, a unit increase

of any numerator parameter appearing in the expression of basic reproduction number
would lead to a linear increase in the basic reproduction number and thus increasing the
transmission of the disease. Similarly, a unit decrease in these values would lead to linear
decrease in the value of basic reproduction number and thus lowering the spread of the
disease.

Now, we perform sensitivity analysis of the denominator parameters appearing in the
expression of the basic reproduction number. We have;

sNh = −2
βvhb2π1βhvb1π2

N3
h µ2

v µh(µh + γh)
Nh

N2
h µ2

v µh(µh + γh)

βvhb2π1βhvb1π2
(67)

= −2

This means that a decrease in the population size of humans by 2 units would lead to
increased value of the basic reproduction number. Similarly, sµ2

v
= −2, meaning that is

decrease would lead to increased value of the basic reproduction number.

sµh = −
βvhb2π1βhvb1π2

N2
h µ2

v µ2
h (2µh + γh)

µh
N2

h µ2
v µh(µh + γh)

βvhb2π1βhvb1π2
(68)

= − µh + γh

2µh + γh
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This implies that decreasing µh which lead to increased basic reproduction number lead-
ing to more infections.

sγh =
βvhb2π1βhvb1π2

N2
h µ2

v µh(µh− γ2
h )

γh
N2

h µ2
v µh(µh + γh)

βvhb2π1βhvb1π2
(69)

= γh
µh + γh

µh− γ2
h

(70)

This means that an increase in γh will lead to an increase in the basic reproduction number.

The bar graph in Figure 4 shows the sensitivity index of the parameters a�ecting the basic
reproduction number(R0).

Figure 4. Sensitivity index against Parameters of the Basic Reproduction numbers.

4.4 Simulations of model state variables

The simulations on Figure 6,7,8,10 and 11 shows the variation of the model state variables
for a period of 100 days upon which the equilibrium point is achieved.

4.5 Discussions

The graph given in Figure 5 shows the dynamics of transmission of dengue virus disease
in population. It shows the rate at which susceptible humans decrease over time due to
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infections. As the susceptible humans decline in number, infected individuals increase,
and the recovered individuals increases simultaneously. Initially, we have only 1 infected
individual, this individual starts spreading the disease in the population un-noticeably,
however, when the number of infectious individuals start to increase in the population,
we are clearly able to see how susceptible humans reduce rapidly because we have more
people who are infectious. Having high number of infected individuals in the population
increases the transmission of dengue virus disease because the chances of vector com-
ing into contact with infected individuals are increased.As humans get infected, a�er
some times they recover. This explains why the rate of recovered humans increased over
time.Since we assumed demographic turn over, a�er a while we obtain an endemic equi-
librium, where the number of susceptible individuals, infected, and recovered individuals
remain constant as time changes

As the number of susceptible Mosquito come into contact with infected human the sus-
ceptible mosquito get infected and decrease over time as shown in Figure 10 this expains
why the rate of infected mosquitos increases over time as shown in Figure 11

Figure 6 shows separately what happens to the susceptible humans over time, Figure
7 shows the dynamics of the infected humans over time, how initially they increase,
then a�er an outbreak we have the equilibrium. Figure 8 shows the dynamics of the
recovered individuals. Initially no one is recovered from the disease. A�er sometime,
when infections start to increase, more people start recovering. They increase until we
obtain an equilibrium.

Figure 9 shows the dynamics of the vectors. The number of infected individuals depends
on the number of infectious vectors. When we have high number of infectious vectors,
we have higher number of infected humans and vise verser.
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Figure 5. Rate of Susceptible, infected and recovered Human Population over time

Figure 6. Rate of Susceptible Human Population with time
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Figure 7. Rate of Infected Human population over time

Figure 8. Variation of recovered human population over time
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Figure 9. Variation of susceptible and Infected vector over time

Figure 10. Variation of susceptible vector over time
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Figure 11. Variation of infected vector over time
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5 Conclusion & Recommendation

5.1 Introduction

In this chapter the conclusions are obtained from the findings and the recomendation
therein given at the end of the chapter. The recommendations will include policy and
further research recommendations.

5.2 Conclusion

In this study a mathematical model for the dynamics of dengue virus disease transmission
is formulated and analysed at the disease free equilibrium points. We derived the basic
reproduction number using the next generation matrix as the dominant eigenvalue of the
Jacobian matrix of the infectious clases of Infected humans and infected vectors It was
discovered that when R0 < 1 then the disease free equilibrium is both locally and globally
stable.

Numerical analysis shows that the rate of susceptible humans to dengue fever infections
decreases from 1 and a�ain equilibrium when they a�ain the rate of 0.4. The decline
is a�ributed to the number of susceptible becoming infected with the dengue virus.The
increase in infected humans is due new infections on susceptible humans, which leads
to their decrease in number because they are added to the infectious stage. In addition,
the growth of the infected vectors as well as recovered humans becoming susceptible
contribute to this increase since we assumed the bite rate by an infected mosquito is
higher than the susceptible mosquito, the infected human a�ain equilibrium when they
a�ain the rate of 0.4.

The increase in the number of recovered humans is as result of the infected human leav-
ing the infectious stage a�er some duration and Joining the recovered class, where we
assumed that recovery rate is higher than natural mortality of the human population.

The decrease in susceptible mosquitoes is as result of an infection by the the infected hu-
mans. As the infected human increases, more susceptible mosquitoes come into contact
with infected humans which makes them get infections and this explains why the graph
of infected vectors increases.

Therefore, in conclusion, since we have seen that the number of infections depend on the
interactions between mosquitoes and human beings, measures need to be put into place
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to control these interactions. Some of the measures that can be put into place include en-
suring that everyone sleeps under treated mosquito net, or reducing the population of the
mosquitoes by constructing good drainage systems which would ensure that mosquitoes
have no breading sites, hence leading to the decline of their population.

5.3 Recommendation

Dengue can be seen to pose a challenge in Mandera, Northern part of Kenya. Thus their
is need to safeguard against Mosquito by sleeping under the treated mosquito net since
the disease is spread by Mosquito, In addition a proper drainage system need to be put
in place to allow the rain water to follow so as to mitigate against swampy areas where
the mosquito breads.

5.4 Future Work

Accurately projecting the future of dengue under the context of climate change would
help governments and public health o�icials take timely and preemptive actions to pro-
tect the public from dengue in the future.

There is a greater need to look at more prevention measures and control measures while
clearly educating the public on the same. Furthermore, there should be in-communication
between the reseachers and policy makers to ensure that there is more positive goodwill
even the public domain.There is also a need for the study to be carried out to study the
impact of the implemented control measures in the spread of the disease.

There is need for researchers to collect primary data from the field and draw accurate
results based on the data collected .There is need to also look into to other demographic
parameters such as age structure and population density as well as other regions of Kenya
where dengue infection is prevalent.



34

Bibliography

[1] Roy M Anderson and Robert M May. Infectious diseases of humans: dynamics and
control. Oxford university press, 1992.

[2] Roy M Anderson and M Robert. May. infectious diseases of humans: dynamics and
control. Wiley Online Library, 1:3, 1992.

[3] Iurii Bakach. A survey of mathematical models of dengue fever. 2015.

[4] Mark E Bea�y, Amy Stone, David W Fitzsimons, Je�rey N Hanna, Sai Kit Lam,
Sirenda Vong, Maria G Guzman, Jorge F Mendez-Galvan, Sco� B Halstead,
G William Letson, et al. Best practices in dengue surveillance: a report from the
asia-pacific and americas dengue prevention boards. PLoS Negl Trop Dis, 4(11):e890,
2010.

[5] P Chanprasopchai, P Pongsumpun, and IM Tang. E�ect of rainfall for the dynamical
transmission model of the dengue disease in thailand. comput. math methods med.
2017, 2541862, 2017.

[6] Edith Chepkorir, Joel Lutomiah, James Mutisya, Francis Mulwa, Konongoi Limbaso,
Benedict Orindi, Rosemary Sang, et al. Vector competence of aedes aegypti popu-
lations from kilifi and nairobi for dengue 2 virus and the influence of temperature.
Parasites & vectors, 7(1):1–8, 2014.

[7] Gustavo Cruz-Pacheco, Lourdes Esteva, Juan Antonio Montaño-Hirose, and Cristo-
bal Vargas. Modelling the dynamics of west nile virus. Bulletin of mathematical
biology, 67(6):1157–1172, 2005.

[8] Lestari K Epidemiologi Dan Pencegahan Demam. Berdarah dengue (dbd) di indone-
sia, 2007.

[9] M Derouich, A Boutayeb, and EH Twizell. A model of dengue fever. BioMedical
Engineering OnLine, 2(1):1–10, 2003.

[10] Lourdes Esteva and Cristobal Vargas. Analysis of a dengue disease transmission
model. Mathematical biosciences, 150(2):131–151, 1998.

[11] Zhilan Feng and Jorge X Velasco-Hernández. Competitive exclusion in a vector-host
model for the dengue fever. Journal of mathematical biology, 35(5):523–544, 1997.

[12] Herbert W Hethcote. The mathematics of infectious diseases. SIAM review,
42(4):599–653, 2000.



35

[13] Denise J Jamieson, Timothy M Uyeki, William M Callaghan, Dana Meaney-Delman,
and Sonja A Rasmussen. What obstetrician–gynecologists should know about ebola:
a perspective from the centers for disease control and prevention. Obstetrics & Gy-
necology, 124(5):1005–1010, 2014.

[14] William Ogilvy Kermack and Anderson G McKendrick. Contributions to the math-
ematical theory of epidemics. ii.—the problem of endemicity. Proceedings of the
Royal Society of London. Series A, containing papers of a mathematical and physical
character, 138(834):55–83, 1932.

[15] Jacob C Koella. On the use of mathematical models of malaria transmission. Acta
tropica, 49(1):1–25, 1991.

[16] Jacqueline Kyungah Lim, Sultani Hadley Matendechero, Neal Alexander, Jung-Seok
Lee, Kang Sung Lee, Suk Namkung, Esther Andia, Noah Oyembo, Sl-Ki Lim, Henry
Kanyi, et al. Clinical and epidemiologic characteristics associated with dengue fever
in mombasa, kenya. International Journal of Infectious Diseases, 100:207–215, 2020.

[17] Esteva Lourdes and Vargas Cristobal. Analysis of a dengue transmission model.
Mathemat Biosci, 150:131–51, 1998.

[18] Joel Lutomiah, Roberto Barrera, Albina Makio, James Mutisya, Hellen Koka, Samuel
Owaka, Edith Koskei, Albert Nyunja, Fredrick Eyase, Rodney Coldren, et al. Dengue
outbreak in mombasa city, kenya, 2013–2014: entomologic investigations. PLoS
neglected tropical diseases, 10(10):e0004981, 2016.

[19] Elizabeth AC Newton and Paul Reiter. A model of the transmission of dengue fever
with an evaluation of the impact of ultra-low volume (ulv) insecticide applications on
dengue epidemics. The American journal of tropical medicine and hygiene, 47(6):709–
720, 1992.

[20] N Nuraini, E Soewono, and KA Sidarto. Mathematical model of dengue disease
transmission with severe dhf compartment. Bulletin of the Malaysian Mathematical
Sciences Society, 30(2), 2007.

[21] DW Onstad, DJ Rogers, and R Killick-Kendrick. The dynamics of vector-transmi�ed
diseases in human communities: Discussion. Philosophical Transactions of the Royal
Society of London Series B, 321(1207):537–539, 1988.

[22] World Health Organization et al. Global strategy for dengue prevention and control
2012-2020. 2012.

[23] World Health Organization et al. Dengue and severe dengue fact sheet.
World Health Organization, Geneva, Switzerland. Available at h�p://www. who.
int/mediacentre/factsheets/fs117/en, 2016.



36

[24] World Health Organization, Special Programme for Research, Training in Tropi-
cal Diseases, World Health Organization. Department of Control of Neglected Trop-
ical Diseases, World Health Organization. Epidemic, and Pandemic Alert. Dengue:
guidelines for diagnosis, treatment, prevention and control. World Health Organiza-
tion, 2009.

[25] Ganga Ram Phaijoo, Dil Bahadur Gurung, et al. Mathematical study of dengue
disease transmission in multi-patch environment. Applied Mathematics, 7(14):1521,
2016.

[26] Wahidah Sanusi, Nasiah Badwi, Ahmad Zaki, Sahlan Sidjara, Nurwahidah Sari,
Muhammad Isbar Pratama, and Syafruddin Side. Analysis and simulation of sirs
model for dengue fever transmission in south sulawesi, indonesia. Journal of Ap-
plied Mathematics, 2021.

[27] Fred Were. The dengue situation in africa. Paediatrics and international child health,
32(sup1):18–21, 2012.


	Abstract
	Declaration and Approval
	Dedication
	List of Figures
	List of Tables
	Acknowledgments
	Introduction
	Background
	Mode of transmission of Dengue Fever
	Symptoms of Dengue Fever
	Statement of the problem
	Research Objectives
	Objective of the Study
	Specific Objectives

	Justification of the study

	Literature Review
	Introduction
	Mathematical Modeling of Dengue Virus
	SIR Model and Concepts
	SEIR Model
	Force of Infection


	Mathematical model formulation
	Introduction.
	Model formulation and assumption
	Compartmental Model of the dengue virus transmission.
	Model Equation
	Explanation of the Model Variable and Parameters
	Positivity and Boundedness of a solution
	Stability Analysis
	Desease Free Equilibrium
	The Basic Reproduction number (R0)

	Local Stability analysis of the Disease free equilibrium point
	Global Stability of the Disease free equilibrium point

	Numerical Simulation
	Introduction
	Variables/Parameter Values
	Sensitivity Analysis of the Basic Reproduction Number
	Simulations of model state variables
	Discussions

	Conclusion & Recommendation
	Introduction
	Conclusion
	Recommendation
	Future Work

	Bibliography



