

UNIVERSITY OF NAIROBI

PHYTOCHEMICAL ANALYSIS OF SELECTED *TEPHROSIA* SPECIES FOR ANTI-INFLAMMATORY PRINCIPLES

BY

OWOR RICHARD ORIKO

I80/50120/2015

A THESIS SUBMITTED IN FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF DOCTOR OF PHILOSOPHY IN CHEMISTRY OF THE UNIVERSITY OF NAIROBI

DECLARATION

I declare that this Ph.D. thesis is my original work and has not been submitted elsewhere for examination or award of a degree. Where other people's work has been used, this has properly been acknowledged and referenced as per the University of Nairobi's requirements.

Signature: Date: 10.05.2021

Owor Richard Oriko (180/50120/2015) Department of Chemistry University of Nairobi

This Ph.D. thesis is submitted to the University of Nairobi with our approval as research supervisors.

Supervisors	Signature	Date
Dr. Albert Ndakala Department of Chemistry University of Nairobi P.O Box 30197-00100 Nairobi Kenya andakala@uonbi.ac.ke	Malash	31.05.2021
Dr. Solomon Derese Department of Chemistry University of Nairobi P.O Box 30197-00100 Nairobi Kenya sderese@uonbi.ac.ke	(Thu)	.31052021
Dr. George O. Ong'amo School of Biological Sciences University of Nairobi P.O Box 30197-00100 Nairobi Kenya gongamo@unobi.ac.ke	Decificito	.3.1052021

DEDICATION

This worked is dedicated to my devoted wife Sophie Moreen Byantaka and my loving children (Annastashia Rashina Atono, Shadrick Oriko Owor and Richlene Oriko Siem)

ACKNOWLEDGEMENT

My profound gratitude goes to my supervisors: Dr. Albert Ndakala, Dr. Solomon Derese and Dr. George O. Ong'amo for their invaluable expertise, guidance and encouragement throughout my research. I extend special thanks to Prof. Abiy Yenesew, who although not my supervisor but has always been open to discussion and has offered me a lot of guidance throughout my studies. I extend my gratitude and appreciation to Prof. Dr. Dr. Michael Spiteller, INFU, TU Dortmund and his entire group particularly Dr. Kibrom Gebreheiwot Bedane and Dr. Sebastian Zühlke for hosting me in his laboratory for a nine-month research visit and guiding me in structure characterization and biological assay.

I would like to acknowledge support from the academic and technical staff of the Department of Chemistry, University of Nairobi for the assistance accorded to me whenever I needed it. My special thanks are due to my fellow Ph.D and MSc colleagues in the Natural Products Group of the University of Nairobi, who better understood my everyday struggles in the lab and were always willing to share constructive ideas with me, I owe my success to you all! Mr. Patrick Mutiso (University Herbarium, School of Biological Sciences, University of Nairobi) is acknowledged for the collection and authentication of the plants.

I am grateful to the German Academic Exchange Services (DAAD) for a doctoral scholarship which was offered through the Natural Products Research Network for Eastern and Central Africa (NAPRECA) and also funded my research visit to TU Dortmund, Germany. I am grateful to Busitema University for granting me a study leave which made my work easier.

Lastly, I am indebted to my family members ... words cannot appropriately express how your persistent prayers and encouragement have helped me to surmount the difficult moments. Above all, to the Almighty God for strength and wisdom.

ABSTRACT

Inflammation is a vital immune process in the restoration of inflamed tissues and it is regulated by mediators such as cytokines. However, dysregulation of inflammation is associated with the onset and development of chronic respiratory diseases and cancer. The management of inflammation and associated diseases using currently available anti-inflammatory drugs such as ibuprofen has been linked with adverse side effects. Thus, there is a need to develop alternative anti-inflammatory drugs. Plants of the genus Tephrosia Pers. (Fabaceae) have been used widely in ethnomedicine in the management of various ailments and they elaborate diversity of flavonoids. Although flavonoids are reported to have anti-inflammatory effects, little has been reported on the anti-inflammatory properties of flavonoids from the genus Tephrosia. Therefore, in this study selected Tephrosia species (T. linearis, T. hildebrandtii, T. vogelii, T. elata, and T. rhodesica) were phytochemically analyzed with the aims of identifying flavonoids with anti-inflammatory effects. The methanol-dichloromethane (1:1) crude extracts of these plants were fractionated on silica gel and purified using Sephadex LH-20, chromatotron and preparative HPLC. HRESIMS, ECD and NMR data were used to characterize the compounds. The anti-inflammatory activities of the isolated compounds as well as the crude extracts were evaluated for inhibition of cytokine production [interleukins (IL-1 β , IL-2, IL-6), interferon-gamma (IFN- γ), granulocyte-macrophage colony-stimulating factor (GM-CSF) and tumor necrosis factor-alpha (TNF-α)] from lipopolysaccharide (LPS)stimulated peripheral blood mononuclear cells (PBMCs). Ibuprofen was used as a standard drug for anti-inflammation. Overall, fifty-six (56) compounds were identified from the selected Tephrosia species, eleven of which were new compounds and one derivative was prepared. From the aerial parts of T. linearis, seven new flavonoids [lineaflavone A-D (1-4), 6methoxygeraldone (5), acetylobovatin (6) and 5-hydroxy-7-methoxysaniculamin A (7)] and seventeen known compounds (8-24) were isolated. From the aerial parts of T. hildebrandtii, a new flavone, hildeflavone (25) and ten known compounds (22, 26-34) were isolated. T. vogelii seedpods yielded two new isoflavones [vogelisoflavone A (35) and vogelisoflavone B (36)] and ten known compounds (34, 37-43). From the stem of T. elata one new isoflavone, elatisoflavone (44) and three known isoflavones (45-47) were isolated. Eleven known compounds (21, 23 and 48-56) were isolated from the extract of stem of T. rhodesica stem. Pyrazoisopongaflavone (57), a pyrazole derivative of isopongaflavone (38) was prepared. Lineaflavone B (2), luteolin (13), patuletin-3-O-rhamnoside (16), pisatin (30), vogelisoflavone B (36), isopongaflavone (38) and genistein (55) exhibited stronger anti-inflammatory activities

compared to the standard drug, ibuprofen. In synergetic studies, combinations of flavonoids showed superior anti-inflammatory activities over the individual flavonoids. The findings of this study imply that flavonoids from the genus *Tephrosia* could be used as templates for anti-inflammatory drug discovery.

LIST OF PUBLICATIONS FROM THIS THESIS

- Owor, R. O., Bedane, K. G., Openda, Y. I., Zühlke, S., Derese, S., Ong'amo, G., Ndakala, A., and Spiteller, M. (2020). Synergistic anti-inflammatory activities of a new flavone and other flavonoids from *Tephrosia hildebrandtii* vatke. *Natural Product Research*, 1-8.
- Owor, R. O., Bedane, K. G., Zühlke, S., Derese, S., Ong'amo, G. O., Ndakala, A., and Spiteller, M. (2020). Anti-inflammatory Flavanones and Flavones from *Tephrosia linearis*. *Journal of Natural Products*, 83(4), 996-1004.
- Owor, R. O., Derese, S., Bedane, K. G., Zühlke, S., Ndakala, A., and Spiteller, M. (2020). Isoflavones from the seedpods of *Tephrosia vogelii* and pyrazoisopongaflavone with anti-inflammatory effects. *Fitoterapia*, *146*, 104695.
- Owor, R. O., Derese, S., Bedane, K. G., Zühlke, S., Ndakala, A., and Spiteller, M. (2021). Anti-inflammatory and synergistic activities of flavonoids from two *Tephrosia* species. *Drafted manuscript, xxxxxx*.
- **5. Owor, R. O.**, Derese, S., Bedane, K. G., Zühlke, S., Ndakala, A., and Spiteller, M. (2021). Anti-inflammatory isoflavones from *Tephrosia elata*. *Drafted manuscript, xxxxxxx*

DECLARATION	II
DEDICATION	III
ACKNOWLEDGEMENT	IV
ABSTRACT	V
LIST OF PUBLICATIONS FROM THIS THESIS	VII
LIST OF TABLES	XIII
LIST OF FIGURES	XV
LIST OF SCHEMES	XVI
LISTS OF ABBREVIATIONS/ACRONYMS AND SYMBOLS	XVII
CHAPTER 1: INTRODUCTION	1
1.1: Background	1
1.2: Statement of the Problem	3
1.3: Objectives	4
1.3.1: General Objective	4
1.3.2: Specific Objectives	4
1.4: Justification and Significance	4
CHAPTER 2: LITERATURE REVIEW	6
2.1: Inflammation	6
2.1.1: Biosynthesis of Eicosanoids	6
2.1.2: Biosynthesis of Cytokines	7
2.2: Anti-inflammatory Drugs	9
2.2.1: Steroidal Anti-inflammatory Drugs	9
2.2.2: Nonsteroidal Anti-inflammatory Drugs (NSAIDs)	10
2.2.3: Anti-cytokine Drugs	10
2.3: Anti-inflammatory Flavonoids	11
2.4: Botany of the Genus Tephrosia	15
2.4.1: Tephrosia linearis	15
2.4.2: Tephrosia hildebrandtii	16
2.4.3: Tephrosia vogelii	17
2.4.4: Tephrosia elata	
2.4.5: Tephrosia rhodesica	
2.5: Traditional Uses of the Genus Tephrosia	19
2.6: Phytochemistry of the Genus Tephrosia	20
2.6.1: Chalconoids from the Genus Tephrosia	
2.6.2: Flavans of the Genus Tephrosia	
2.6.3: Flavanones	
2.6.4: Flavones and Flavonols of the Genus Tephrosia	
2.6.5: Isoflavonoids of the Genus Tephrosia	
2.7: Biological Activities of Compounds Isolated from the Genus Tephrosia	
CHAPTER 3: MATERIALS AND METHODS	42

TABLE OF CONTENTS

3.1 Column Chromatography	42
3.2 Preparative High-Performance Liquid Chromatography	42
3.3 High-Resolution Electron Spray Ionization Mass Spectrometry	42
3.4 Nuclear Magnetic Resonance Spectroscopy	43
3.5 Optical Rotation and Circular Dichroism	43
3.6: Plant Materials	43
3.7: Extraction and Isolation	44
3.7.1: The Aerial Parts of Tephrosia linearis	44
3.7.2: The Aerial Parts of Tephrosia hildebrandtii	45
3.7.3: The Seedpods of Tephrosia vogelii	46
3.7.4: The Stems of Tephrosia elata	46
3.7.5: The Stems of Tephrosia rhodesica	47
3.8: Synthesis of the Pyrazoline Derivative of Isopongaflavone	47
3.9: Anti-inflammatory Assay	48
CHAPTER 4: RESULTS AND DISCUSSION	50
4.1: Characterization of Compounds Isolated from Tephrosia linearis	50
4.1.1: Lineaflavone A (1)	50
4.1.2: Lineaflavone B (2)	
4.1.3: Lineaflavone C (3)	55
4.1.4: Lineaflavone D (4)	55
4.1.5: 6-Methoxygeraldone (5)	58
4.1.6: Acetylobovatin (6)	59
4.1.7: 5-Hydroxy-7-methoxysaniculamin A (7)	61
4.1.8: 7-O-Methyl-6-prenylnaringenin (8)	64
4.1.9: Erylivingstone I (9)	65
4.1.10: 6-C-Prenylapigenin (10)	67
4.1.11: 5,7,4',2"-Tetrahydroxy-6-[3"-methylbut-3"-enyl]flavone (11)	68
4.1.12: Apigenin (12)	70
4.1.13: Luteolin (13)	70
4.1.14: Geraldone (14)	73
4.1.15: Atalantoflavone (15)	74
4.1.16: Patuletin-3-O-rhamnoside (16)	75
4.1.17: Eupatolitin-3-O-rhamnoside (17)	77
4.1.18: Munduserone (18)	79
4.1.19: cis-12a-Hydroxymunduserone (19)	80
4.1.20: Rotenone (20)	81
4.1.21: 12a-Hydroxyrotenone (21)	83
4.1.22: Deguelin (22)	85
4.1.23: Tephrosin (23)	85
4.1.24: Maackiain (24)	88
4.2: Characterization of Compounds Isolated from <i>Tephrosia hildebrandtii</i>	90
4.2.1: Hildeflavone (25)	90
4.2.2: 5,7,3'-Trihydroxy-4'-methoxy-8-prenylisoflavone (26)	91
4.2.3: 5,3'-Dihydroxy-4'-methoxy-2",2"-dimethylpyrano[5",6":8,7]isoflavone (27)	92
4.2.4: 4'-Hydroxyemoroidocarpan (28)	95
4.2.5: Hildecarpin (29)	96

4.2.6: Pisatin (30)	
4.2.7: Pongachin (31)	
4.2.8: Emoroidenone (32)	
4.2.9: Desmoxyphyllin $A(33)$	
4.2.10: Pinoresinol (34)	
4.3: Characterization of Compounds Isolated from Tephrosia vogelii	
4.3.1: Vogelisoflavone A (35)	
4.3.2: Vogelisoflavone B (36)	
4.3.3: Onogenin (37)	
4.3.4: Isopongaflavone (38)	110
4.3.5: 4',7-Dihydroxy-3'-methoxyflavanone (39)	112
4.3.6: Trans-p-hydroxycinnamic Acid (40)	113
4.3.7: 2-Methoxygliricidol (41)	115
4.3.8: Dehydrorotenone (42).	116
4.3.9: 6a,12a-Dehvdro-α-toxicarol (43)	117
4.4: Characterization of Compounds Isolated from Tephrosia elata	
4.4.1: Elatisoflavone (44)	
4.4.2: Barbigerone (45)	
4.4.3: Calopogoniumisoflavone B (46)	
4.4.4: Jamaicin (47)	124
4.5: Characterization of Compounds Isolated from <i>Tephrosia rhodesica</i>	
4.5.1: 3-Methoxycoumestrol (48)	
4.5.2: Glabranin (49)	
4.5.3: 7-O-Methylglabranin (50)	
4.5.4: Liquiritigenin (51)	131
4.5.5: Naringenin (52)	131
4.5.6: Rhodiflavan C (53)	134
4.5.7: 3'-O-Methylorobol (54)	135
4.5.8: Genistein (55)	136
4.5.9: Edunol (56)	
4.6: Synthesis of Pyrazoisopongaflavone (57)	
4.7: Anti-inflammatory Activity	141
4.7.1: Activity of Compounds Isolated from Tephrosia linearis	141
4.7.2: Activity of Compounds Isolated from Tephrosia hildebrandtii	144
4.7.3: Activity of Compounds Isolated from Tephrosia vogelii	146
4.7.4: Activity of Compounds Isolated from Tephrosia elata	147
4.7.5: Activity of Compounds Isolated from Tephrosia rhodesica	149
4.7.6: Anti-inflammatory Activity of Pyrazoisopongaflavone (57)	150
4.7.7: Synergistic Anti-inflammatory Activities of the Isolated compounds	151
CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS	153
5.1: Conclusions	153
5.2: Recommendations	154
REFERENCE	155
APPENDIX A: SPECTRA FOR THE ISOLATED COMPOUNDS	193

Appendix A1: Spectra for compound 1	.194
Appendix A2: Spectra for compound 2	.198
Appendix A3: Spectra for compound 3	.202
Appendix A4: Spectra for compound 4	.206
Appendix A5: Spectra for compound 5	.210
Appendix A6: Spectra for compound 6	.214
Appendix A7: Spectra for compound 7	.218
Appendix A8: Spectra for compound 8	.222
Appendix A9: Spectra for compound 9	.225
Appendix A10: Spectra for compound 10	.228
Appendix A11: Spectra for compound 11	.231
Appendix A12: Spectra for compound 12	.234
Appendix A13: Spectra for compound 13	.237
Appendix A14: Spectra for compound 14	.240
Appendix A15: Spectra for compound 15	.243
Appendix A16: Spectra for compound 16	.246
Appendix A17: Spectra for compound 17	.249
Appendix A18: Spectra for compound 18	.252
Appendix A19: Spectra for compound 19	.255
Appendix A20: Spectra for compound 20	.258
Appendix A21: Spectra for compound 21	.261
Appendix A22: Spectra for compound 22	.264
Appendix A23: Spectra for compound 23	.267
Appendix A24: Spectra for compound 24	.270
Appendix A25: Spectra for compound 25	.273
Appendix A26: Spectra for compound 26	.277
Appendix A27: Spectra for compound 27	.280
Appendix A28: Spectra for compound 28	.283
Appendix A29: Spectra for compound 29	.286
Appendix A30: Spectra for compound 30	.289
Appendix A31: Spectra for compound 31	.292
Appendix A32: Spectra for compound 32	.295
Appendix A33: Spectra for compound 33	.298
Appendix A34: Spectra for compound 34	.301
Appendix A35: Spectra for compound 35	.304
Appendix A36: Spectra for compound 36	.307
Appendix A37: Spectra for compound 37	.310
Appendix A38: Spectra for compound 38	.313
Appendix A39: Spectra for compound 39	.316
Appendix A40: Spectra for compound 40	.319
Appendix A41: Spectra for compound 41	.322
Appendix A43: Spectra for compound 43	.328
Appendix A44: Spectra for compound 44	.331
Appendix A45: Spectra for compound 45	.334
Appendix A46: Spectra for compound 46	.337
Appendix A47: Spectra for compound 47	.340

Appendix A48: Spectra for compound 48	343
Appendix A49: Spectra for compound 49	346
Appendix A50: Spectra for compound 50	349
Appendix A51: Spectra for compound 51	352
Appendix A52: Spectra for compound 52	355
Appendix A53: Spectra for compound 53	358
Appendix A54: Spectra for compound 54	361
Appendix A55: Spectra for compound 55	364
Appendix A56: Spectra for compound 56	367
Appendix A57: Spectra for compound 57	370
APPENDIX B: DATA FOR ANTI-INFLAMMATORY ASSAY	373
APPENDIX C: EXTRACT OF FIRST PAGE OF PUBLICATIONS FROM THIS THI	ESIS
	382

LIST OF TABLES

Table 2.1: Anti-inflammatory Effects of flavonoids	12
Table 2.2: Chalconoids from the Genus Tephrosia	21
Table 2.3: Flavans of the Genus Tephrosia	24
Table 2.4: Flavanones of the Genus Tephrosia	26
Table 2.5: Flavones and Flavonols of the Genus Tephrosia	29
Table 2.6: Isoflavones Reported from the Tephrosia species	33
Table 2.7: Coumestans Reported from the Genus Tephrosia	35
Table 2.8: Pterocarpans Reported from the Genus Tephrosia	35
Table 2.9: Rotenoids Reported in the Genus Tephrosia.	36
Table 2.10: Biological Activities of Compounds Isolated from the Genus Tephrosia	38
Table 3.1: Plant collection and voucher details	44
Table 4.1: NMR Data for Compounds 1 and 2 in Acetone-d ₆ (600 MHz)	54
Table 4.2: NMR Data for Compounds 3 and 4 in Acetone-d ₆ (600 MHz)	57
Table 4.3: NMR Data for Compound 5 in Acetone-d6 (600 MHz)	59
Table 4.4: NMR Data for Compounds 6 and 7 in Acetone-d ₆ (600 MHz)	63
Table 4.5: NMR Data for Compounds 8 and 9 in Acetone-d ₆ (600 MHz	66
Table 4.6: NMR Data for Compounds 10 and 11 in Acetone-d ₆ (600 MHz)	69
Table 4.7: NMR Data for Compounds 12 and 13 in Acetone-d ₆ (600 MHz)	72
Table 4.8: NMR Data for Compound 14 in Acetone-d ₆ (600 MHz)	74
Table 4.9: NMR Data for Compound 15 in Acetone-d ₆ (600 MHz)	75
Table 4.10: NMR Data for Compounds 16 and 17 in Acetone-d ₆ (600 MHz)	78
Table 4.11: NMR Data for Compound 18 in Acetone-d ₆ (600 MHz)	80
Table 4.12: NMR Data for Compound 19 in Acetone-d6 (600 MHz)	81
Table 4.13: NMR Data for Compounds 20 and 21 in Acetone-d ₆ (600 MHz)	84
Table 4.14: NMR Data for Compounds 22 and 23 in Acetone-d ₆ (600 MHz)	87
Table 4.15: NMR Data for Compound 24 in Acetone-d6 (600 MHz)	89
Table 4.16: NMR Data for Compound 25 in Acetone-d6 (600 MHz)	91
Table 4.17: NMR Data for Compounds 26 and 27 in Acetone-d ₆ (600 MHz)	94
Table 4.18: NMR Data for Compound 28 in Acetone-d ₆ (600 MHz)	96
Table 4.19: NMR data for Compounds 29 and 30 in Acetone-d ₆ (600 MHz)	99
Table 4.20: NMR Data for Compounds 31 and 32 in Acetone-d ₆ (600 MHz)	102
Table 4.21: NMR Data for Compounds 33 and 34 in Acetone-d ₆ (600 MHz)	105
Table 4.22: NMR Data for Compounds 35 and 36 in Acetone-d ₆ (600 MHz)	108
Table 4.23: NMR Data for Compounds 37 and 38 in Acetone-d ₆ (600 MHz)	111

Table 4.24: NMR Data for Compounds 39 and 40 in Acetone-d ₆ (600 MHz)114
Table 4.25: NMR Data for Compound 41 in Acetone-d ₆ (600 MHz)116
Table 4.26: NMR Data for Compounds 42 and 43 in Acetone-d ₆ (600 MHz)119
Table 4.27: NMR Data for Compounds 44 and 45 in Acetone-d ₆ (600 MHz)122
Table 4.28: NMR Data for Compounds 46 and 47 in Acetone-d ₆ (600 MHz),125
Table 4.29: NMR Data for Compound 48 in Acetone-d ₆ (600 MHz),127
Table 4.30: NMR Data for Compounds 49 and 50 in Acetone-d ₆ (600 MHz),130
Table 4.31: NMR data for Compounds 51 and 52 in Acetone-d ₆ (600 MHz),133
Table 4.32: NMR Data for Compound 53 in Acetone-d ₆ (600 MHz)135
Table 4.33: NMR Data for Compounds 54 and 55 in Acetone-d ₆ (600 MHz)137
Table 4.34: NMR Data for Compound 57 in Acetone-d ₆ (600 MHz)139
Table 4.35: NMR Data for Compound 57 in Acetone-d ₆ (600 MHz)140
Table 4.36: The Percentage of Cytokine Release in Comparison to Lipopolysaccharide Control after Incubation with Compounds from <i>Tephrosia linearis</i>
Table 4.37: The Percentage of Cytokine Release in Comparison to Lipopolysaccharide Control after Incubation with Compounds from <i>Tephrosia hildebrandtii</i>
Table 4.38: The Percentage of Cytokine Release in Comparison to Lipopolysaccharide Control after Incubation with Compounds from <i>Tephrosia vogelii</i>
Table 4.39: The Percentage of Cytokine Release in Comparison to Lipopolysaccharide Control after Incubation with Compounds from <i>Tephrosia elata</i>
Table 4.40: The Percentage of Cytokine Release in Comparison to Lipopolysaccharide Control after Incubation with Compounds from <i>Tephrosia rhodesica</i>
Table 4.41: The Percentage of Cytokine Release in Comparison to Lipopolysaccharide Control after Incubation with combinations of isolated compounds
Table 5.1: Summary of the Compounds Characterized from the five <i>Tephrosia</i> species153

LIST OF FIGURES

Figure 2.1: Pathways for Biosynthesis of Prostaglandins and Cytokines9
Figure 2.2: Photograph of <i>Tephrosia linearis</i> 15
Figure 2.3: Photograph of <i>Tephrosia hildebrandtii</i>
Figure 2.4: Photograph of <i>Tephrosia vogelii</i>
Figure 2.5: Photograph of <i>Tephrosia elata</i>
Figure 2.6: Photograph of <i>Tephrosia rhodesica</i> 19
Figure 4.1: ECD spectrum of compound 6 60
Figure 4.2: ECD spectrum of compound 762
Figure 4.3: The LPS stimulated the secretion of the cytokines in comparison to untreated control cells and ibuprofen (mean \pm SD, n=3 for medium and n = 4 for LPS and ibuprofen)
Figure 4.4: The cytokine release after LPS stimulated PMBCs incubated with the crude extracts and isolated compounds from <i>Tephrosia linearis</i>
Figure 4.5: The cytokine release after LPS stimulated PMBCs incubated with the crude extracts and isolated compounds from <i>Tephrosia hildebrandtii</i>
Figure 4.6: The cytokine release after LPS stimulated PMBCs incubated with the crude extracts and isolated compounds from <i>Tephrosia vogelii</i>
Figure 4.7: The cytokine release after LPS stimulated PMBCs incubated with the crude extracts and isolated compounds from <i>Tephrosia elata</i>
Figure 4.8: IL-1β, IFN-γ, GM-CSF and TNF-α release after LPS stimulated PMBCs incubated with the crude extracts and isolated compounds from <i>Tephrosia rhodesica</i>
Figure 4.9: IL-1β, IFN-γ, GM-CSF and TNF-α release after LPS stimulated PMBCs incubated with the crude extracts and combinations of isolated compounds

LIST OF SCHEMES

Scheme 2.1: Basic Skeletons of Subclasses of Chalconoids	21
Scheme 2.2: Basic Skeletons of Subclasses of Flavans	23
Scheme 2.3: Basic Skeleton of Subclasses of flavanones	25
Scheme 2.4: Basic Skeletons of Flavones and Flavonols	29
Scheme 2.5: Basic Skeletons of Isoflavonoids	33
Scheme 4.1: Collision-Induced Dissociation (CID) Mass Fragments of Compound 1	52

LISTS OF ABBREVIATIONS/ACRONYMS AND SYMBOLS

¹³ C NMR	Carbon-13 Nuclear Magnetic Resonance
1D NMR	One-Dimensional Nuclear Magnetic Resonance
¹ H NMR	Proton Nuclear Magnetic Resonance
2D NMR	Two-Dimensional Nuclear Magnetic Resonance
AP-1	Activator Protein-1
CID	Collision-Induced Dissociation
COSY	Correlation Spectroscopy
COX	Cyclooxygenase
DMSO	dimethyl sulfoxide
ECD	Electronic Circular Dichroism
EtOAc	Ethyl acetate
EtOH	Ethanol
GM-CSF	Granulocyte-macrophage colony-stimulating factor
HMBC	Heteronuclear Multiple Bond Correlation
HPLC	High performance liquid chromatography
HRESIMS	High resolution Electron Spray Ionization Mass spectrometry
HSQC	Heteronuclear Single Quantum Coherence
IFN-γ	Interferon gamma
IL	Interleukin
iNOS	inducible nitric oxide synthase
LC-MS	Liquid Chromatography Mass Spectrometry
LPS	Lipopolysaccharide
MeOH	Methanol
MS	Mass Spectrometry

NF-kB	Nuclear Factor kappa-light-chain-enhancer of activated B cells.
NMR	Nuclear Magnetic Resonance
NO	Nitric oxide
NOESY	Nuclear Overhauser and Exchange Spectroscopy
NSAIDs	Nonsteroidal Anti-inflammatory Drugs
PG	Prostaglandin
PMBCs	Peripheral blood mononuclear cells
PrepHPLC	Preparative High-performance liquid chromatography
RP	Reverse Phase
TLC	Thin Layer Chromatography
TNF-α	Tumor necrosis factor alpha
UV	Ultra Violet
WHO	World Health Organization
μg	Microgramme
μL	Microlitre
d	doublet
dd	doublet of doublet
g	Gramme
Hz	Hertz
J	Coupling constant
kg	Kilogramme
m	Multiplet
m/z	Mass to charge ratio
mg	Milligramme
MHz	Mega Hertz

min	Minute	
mL	Millilitre	
ppm	Parts per million	
S	Singlet	
t	Triplet	
δ	Chemical shift	

CHAPTER 1: INTRODUCTION

1.1: Background

Medicinal plants have played a vital role since antiquity in the management and prevention of different illnesses (Hafidh *et al.*, 2009; Biljana, 2012; Sofowora *et al.*, 2013) as well as to relieve pain (Sayhan *et al.*, 2017). Medicinal plants play a crucial role in rural communities in developing countries where the healthcare systems are poorly developed (Strasser, 2003; WHO, 2008; Auditeau *et al.*, 2019; Mintah *et al.*, 2019). Thus, they are still of great value and part of the customs of many communities (Kokwaro, 2009; Mahomoodally, 2013) where they are administered in forms of decoctions and concoctions for oral administration or as a paste for skin surface applications (Tabuti *et al.*, 2003; Malik *et al.*, 2019).

Plants biosynthesize a large variety of compounds which are often referred to as natural products or sometimes as phytochemicals (Dewick, 2002; Yang *et al.*, 2018). These phytochemicals belong to different classes of compounds mainly; phenylpropanoids (flavonoids, coumarins, and lignans), alkaloids, terpenoids, and polyketides (Wink, 2015; Che *et al.*, 2017; Thirumurugan *et al.*, 2018). These compounds are used by the plants for defensive purposes, as attractants to pollinators and seed-dispersing agents. They also act as allelochemicals to suppress competing neighbouring plants (Dewick, 2002; Osbourn and Lanzotti, 2009). Throughout history, some phytochemicals have been used to make valuable products such as flavouring agents, fragrances, preservatives, repellents and drugs (Beattie, 2009; Osbourn and Lanzotti, 2009).

Compounds isolated from medicinal plants have either served as a source of new drugs or as templates for the development of new drugs against several diseases including inflammation and inflammatory-related diseases (Harvey, 2008; Cragg and Newman, 2013). For example, salicylic acid (**58**), obtained from the bark of *Salix alba* (Jones, 2011; Desborough and Keeling,

2017), served as a template for aspirin (**59**) which was the first non-steroidal anti-inflammatory drug (NSAID) (Rainsford, 1984; Mahdi *et al.*, 2006).

Inflammation is a two-phased (acute and chronic) reaction involving a variety of inflammatory cells that secrete mediators (vasoactive amines, eicosanoids and cytokines) (Abdulkhaleq et al., 2018; Poluha and Grossmann, 2018). Acute inflammation is triggered by the presence of harmful stimuli or injury (Chen et al., 2017). This phase involves recruitment of blood plasma and leukocytes (neutrophils and macrophages) into the inflamed tissue (de Oliveira et al., 2016). Generally, acute inflammation proceeds to chronic inflammation if the response is inefficient in clearing the stimuli or healing the damaged tissue (Beattie, 2009). However, chronic inflammation always happens in cohorts with chronic diseases (Yiu et al., 2018). Current anti-inflammatory drugs used to manage inflammation and related diseases target enzymes involved in the biosynthesis of eicosanoids particularly phospholipase A2 and cyclooxygenase in the arachidonic acid metabolism (Dhikav et al., 2003; Dinarello, 2010). However, these drugs are associated with adverse effects like gastrointestinal bleeding and peptic ulcer (Lichtenstein et al., 1995; Drini, 2017; Wong, 2019). Anti-inflammatory drugs targeting the suppression of cytokine have been pursued as alternatives in the treatment of inflammation and its associated diseases (Aggarwal et al., 2009; Leyva-López et al., 2016). Therefore, there is an effort to discover anti-inflammatory drugs which target cytokine production.

Flavonoids, secondary metabolites that occur in a wide range of plants have exhibited antiinflammatory activities (Abdallah *et al.*, 2015; Leyva-López *et al.*, 2016). For instance, the isoflavone genistein (**55**) reduces pro-inflammatory cytokine over-activation (Valsecchi *et al.*, 2008) while the flavanone naringenin (**52**) decreases the release of cytokines (Tsai *et al.*, 2012). Chrysin (**60**), kaempferol (**61**) and quercetin (**62**) exhibit anti-inflammatory properties by decreasing the production of inflammatory mediators (Ginwala *et al.*, 2019). There is an increasing amount of effort focused on flavonoids as potential anti-inflammatory agents targeting cytokines.

Since plants from the genus *Tephrosia* Pers. (Fabaceae) elaborate flavonoids (Touqeer *et al.*, 2013; Chen *et al.*, 2014), in this study, five *Tephrosia* species (*T. linearis*, *T. hildebrandtii*, *T. rhodesica*, *T. vogelii*, and *T. elata*) were phytochemically studied to identify flavonoids with anti-inflammatory properties.

1.2: Statement of the Problem

Prolonged use of the current anti-inflammatory drugs such as aspirin and ibuprofen for management of inflammation and associated chronic diseases (Dinarello, 2010; Durgaprasad *et al.*, 2013) has been linked to severe side effects most commonly gastrointestinal bleeding and peptic ulcer (Lichtenstein *et al.*, 1995; Dhikav *et al.*, 2003; Zarghi and Arfaei, 2011; Goldstein and Cryer, 2015; Wong, 2019). Therefore, there is a need to develop new anti-inflammatory drugs that are safe and effective. Plant secondary metabolites are increasingly being recognized as effective and safer alternatives to the current available anti-inflammatory

drugs. In this study, the potential of flavonoids from *Tephrosia* species was assessed for their anti-inflammatory effects.

1.3: Objectives

1.3.1: General Objective

The main objective of this study was to identify anti-inflammatory principles from *Tephrosia* species.

1.3.2: Specific Objectives

The study was structured based on the following specific objectives:

- i. To characterize isolated compounds from *T. linearis, T. hildebrandtii, T. rhodesica, T. vogelii* and *T. elata*.
- ii. To determine the anti-inflammatory effects of the crude plant extracts, the isolated compounds and their derivatives.
- iii. To determine the anti-inflammatory synergetic effects of the isolated compounds.

1.4: Justification and Significance

Although inflammation is a vital immune process in the restoration of tissue homeostasis, its dysregulation is linked to the pathogenesis of chronic diseases including cancer, respiratory and neurological diseases (Chen *et al.*, 2017; Yiu *et al.*, 2018). Sufficient evidence exists for the use of anti-inflammatory drugs for the treatment of chronic diseases but these drugs have adverse side effects (Lichtenstein *et al.*, 1995; Drini, 2017). Flavonoids have been attributed to possess anti-inflammatory properties with diverse modes of action (García-Lafuente *et al.*, 2009; Funakoshi-Tago *et al.*, 2011; Abdallah *et al.*, 2015; Leyva-López *et al.*, 2016; Chen *et al.*, 2019). Among these include the regulation of pro-inflammatory cytokines which have become an attractive therapeutic target for the management of inflammation (Leyva-López *et al.*).

al., 2016). Plants from the genus *Tephrosia* Pers. (Fabaceae) are known to elaborate several classes of flavonoids (Chen *et al.*, 2014; Muiva-Mutisya *et al.*, 2014; Atilaw *et al.*, 2017a; Atilaw *et al.*, 2017b; Muiva-Mutisya *et al.*, 2018). Moreover, crude extract of some *Tephrosia* species (*T. purpurea*, *T. maxima*, *T. vogelii* and *T. sinapou*) have shown anti-inflammatory activities (Adaudi *et al.*, 2009; Sandhya *et al.*, 2010; Valli *et al.*, 2011). But the phytochemicals responsible for the activities are yet to be identified. Therefore, in this study, the crude extracts, as well as flavonoids isolated from selected Tephrosia species, were evaluated to determine their anti-inflammatory activity and their potential for the development of anti-inflammatory drugs.

CHAPTER 2: LITERATURE REVIEW

2.1: Inflammation

Inflammation is an immune process triggered by the presence of pathogens in the body or tissue damage (Beattie, 2009; Chen *et al.*, 2017; Pahwa and Jialal, 2019). The inflammatory response involves the recruitment of blood plasma, platelets and leukocytes (neutrophils, mast cells and macrophages) into the inflamed tissue (Raghavendra *et al.*, 2015). In the acute phase, this process is manifested in form of swelling, pain, heat and loss of organ function (Sherwood and Toliver-Kinsky, 2004; Chen *et al.*, 2017). The inflammatory cells in this phase secrete shorted-lived mediators like histamine and prostaglandins (Abdulkhaleq *et al.*, 2018). However, if inflammation lingers for a long time, it becomes chronic (Pahwa and Jialal, 2019). Macrophages, neutrophils and lymphocytes in chronic inflammation are capable of sustaining the production of eicosanoids and cytokines for a long period (Selders *et al.*, 2017; Qu *et al.*, 2018).

The eicosanoids and cytokines initiate and regulate the inflammatory response and also contribute to its pathological manifestation (Voronov *et al.*, 1999; Sugimoto *et al.*, 2016). Their secretion from inflammatory cells (lymphocytes, neutrophils, mast cells, and macrophages) are triggered by pathogens, damaged tissue or biochemical imbalances (Parisi *et al.*, 2018; Yiu *et al.*, 2018). Eicosanoids are biosynthesized through the arachidonic acid pathway while cytokines through the nuclear factor κ B signaling pathway (Noverr *et al.*, 2003; Traish *et al.*, 2018).

2.1.1: Biosynthesis of Eicosanoids

Eicosanoids are oxylipins metabolized from arachidonic acid (Serhan *et al.*, 2010) and they are subdivided into prostanoids and leukotrienes based on the enzymes that mediate their biosynthesis (Goodman, 1996). The prostanoids, which are principally prostaglandins and

thromboxane are biosynthesized by cyclooxygenase (COX) while leukotrienes are products of lipoxygenase (LOX) (Ding *et al.*, 2003; Noverr *et al.*, 2003; Smyth and FitzGerald, 2010; Hanna and Hafez, 2018). Eicosanoids are only biosynthesized when required and their production depends on the availability of arachidonic acid (Goodman, 1996). When there is an infection or injury, arachidonic is released from phospholipids by phospholipase A₂ (PLA2) and metabolized to eicosanoids (Katayama and Lee, 2003; Norris and Carr, 2013; Weinberger *et al.*, 2015).

Prostaglandins (E₂, I₂, D₂ and F₂) are the most important mediators and they are biosynthesized from the oxidation of arachidonic acid by the action of cyclooxygenase enzymes (COX-1 and COX-2) (Willoughby *et al.*, 2000; Ding *et al.*, 2003; Botting and Ayoub, 2005; Monitto *et al.*, 2011). COX-1 is present in the majority of cells and is involved in the normal homeostatic system while COX-2 is expressed only during inflammation (Lone and Taskén, 2013). Consequently, COX-2 is used as a therapeutic target for the management of inflammation (Samad *et al.*, 2002; Turman and Marnett, 2010; Norris and Carr, 2013). Prostaglandins act on many cells and are responsible for the manifestation of hyperalgesia during inflammation (Pettipher, 1998; Ricciotti and FitzGerald, 2011). Incidentally, elevated levels of prostaglandins have been found in patients with asthma, arthritis and cancer (Steele *et al.*, 1999; Ricciotti and FitzGerald, 2011; Gomes *et al.*, 2018; Jo-Watanabe *et al.*, 2019; Rittchen and Heinemann, 2019).

2.1.2: Biosynthesis of Cytokines

Cytokines are proteins that mediate inflammation and the most important ones are tumor necrosis factor-*alpha* (TNF- α), interferons *gamma* (IFN- γ), interleukins (IL) and colony-stimulating factors (CSF) (Chen *et al.*, 2017; Ferreira *et al.*, 2018). They are secreted by a variety of cells (macrophages, lymphocytes, mast cells and endothelial cells) (Thèze, 1998;

Duque and Descoteaux, 2014; Turner *et al.*, 2014). Their biosynthesis during inflammation is initiated when normal tissue homeostasis is disturbed by either infection, injury or imbalance in biochemical composition in the body (Traish *et al.*, 2018). When such happen, the macrophages and lymphocytes detect the pathogens or tissue damage through pattern-recognition receptors for instance toll-like receptors (TLRs) present on their surface (Mogensen, 2009; Jang *et al.*, 2015; Kim *et al.*, 2016).

As illustrated in Figure 2.1, the TLRs recognize the pathogen-associated molecular patterns (PAMPs) such as lipopolysaccharide (LPS) of Gram-negative bacteria (Mogensen, 2009). Stimulated TLRs lead to downstream activation of transcription factor NF- κ B through several adaptor molecules (Agbeko and Peters, 2011; Oviedo-Boyso *et al.*, 2014). The activated NF- κ B translocates to the nucleus and binds with DNA to stimulate the production of the cytokines (Liu *et al.*, 2017). Further, pro-inflammatory cytokines have been shown to induce the production of cyclooxygenase enzyme and therefore, elevate the production of prostaglandins through "crosstalk" (LaPointe and Isenović, 1999; Yao and Narumiya, 2019). Likewise, prostaglandins influence cytokine secretion via prostaglandin E receptors (EP) which triggers downstream expression of cytokines.

Generally, cytokines upregulate inflammatory response intensifying widespread pain as well as prompting a sickness syndrome such as fever, anorexia and altered mood (Luheshi and Rothwell, 1996; Conti *et al.*, 2004; Zhang and An, 2007). For instance, the upregulation of proinflammatory cytokines during menstruation account for dysmenorrhea (menstrual cramps) and endometriosis (Ma *et al.*, 2013). Besides, the intensive release of cytokines has been associated with the pathogenesis of many diseases (Torres *et al.*, 2019) as is the case in coronavirus disease 2019 (COVID-19) patients who experience a cytokine storm (Tang *et al.*, 2020).

Figure 2.1: Pathways for Biosynthesis of Prostaglandins and Cytokines

2.2: Anti-inflammatory Drugs

Anti-inflammatory drugs are essentially used to decrease inflammatory response compared to analgesics such as opioids that block pain signals to the brain (Maroon *et al.*, 2010; Slater *et al.*, 2010). The anti-inflammatory drugs target either the biosynthesis of eicosanoids or cytokines (Ricciotti and FitzGerald, 2011). Drugs that target arachidonic acid metabolism are either steroidal or nonsteroidal. The anti-cytokines are mainly monoclonal antibodies.

2.2.1: Steroidal Anti-inflammatory Drugs

These drugs inhibit the arachidonic acid release from phospholipids which is the initial step in prostaglandin biosynthesis (Malcher-Lopes *et al.*, 2008; Szefel *et al.*, 2015). They are steroids and always are referred to as corticosteroids (or glucocorticoids) (Goppelt-Struebe *et al.*, 1989; Buttgereit *et al.*, 2013; de Kloet *et al.*, 2017). Prednisone (**63**), cortisone (**64**), hydrocortisone (**65**), dexamethasone (**66**) and methylprednisolone (**67**) are some of the typical examples

(Goppelt-Struebe *et al.*, 1989; Rainsford, 2007; Serhan *et al.*, 2010). Besides their use as antiinflammatory drugs, they are also used to manage inflammatory-related diseases such as rheumatoid arthritis and asthma (Barnes, 1998). However, their drawbacks are in their side effects such as high blood pressure, ulcers, cataracts, menstrual irregularity and obesity (Bond, 1977; Schäcke *et al.*, 2002; Brown, 2009; Saag and Furst, 2013; Oray *et al.*, 2016).

2.2.2: Nonsteroidal Anti-inflammatory Drugs (NSAIDs)

These drugs exhibit their therapeutic anti-inflammatory effects by inhibition of COX (Drini, 2017). They include aspirin (**59**), ibuprofen (**68**), diclofenac (**69**), naproxen (**70**) and Indocin (**71**) (Serhan *et al.*, 2010).

Prolonged use of NSAIDs has been associated with gastrointestinal injury and the toxicities are related to their inhibition of the COX-1 (Goldstein and Cryer, 2015). COX-2 selective drugs such as celecoxib (72) and rofecoxib (73) have been developed (Zarghi and Arfaei, 2011). However, they have been withdrawn because of their associated health risks such as stroke and thrombosis (Grosser *et al.*, 2006).

2.2.3: Anti-cytokine Drugs

Some drugs that prevent the expression and secretion of pro-inflammatory cytokines have been developed (Leyva-López *et al.*, 2016). They are mainly monoclonal antibodies such as adalimumab, etanercept and infliximab which are TNF- α inhibitors (Lis *et al.*, 2014; Menegatti *et al.*, 2019) and tocilizumab which is an IL-6 inhibitor (Venkiteshwaran, 2009). These drugs are also used to treat inflammatory-related diseases such as arthritis, Crohn's disease and depression (Oldfield *et al.*, 2009). There is an effort to discover anti-inflammatory drugs that target cytokines especially from natural products like flavonoids that have shown some anti-inflammatory properties (Aggarwal *et al.*, 2009; Leyva-López *et al.*, 2016).

64

ΟН νOΗ HO ... Н Ĥ Ē 0

66

71

2.3: Anti-inflammatory Flavonoids

Flavonoids are common in many plants especially as prominent constituents in fruits, vegetables, flowers and legumes (García-Lafuente et al., 2009; Kumar and Pandey, 2013b; Panche et al., 2016). Flavonoids are classified as chalcones, flavanones, flavanols, flavones, isoflavones, pterocarpans and rotenoids (Agrawal, 1989). Several biological activities have been ascribed to flavonoids including anti-inflammatory properties (Kumar and Pandey, 2013a; Panche *et al.*, 2016; Ruiz-Cruz *et al.*, 2017). Some flavonoids have been shown to exhibit their anti-inflammatory effects by attenuating the cytokines release in either *in vitro* or *in vivo* in animal models as shown in Table 2.1 (Attiq *et al.*, 2018; Tungmunnithum *et al.*, 2018).

Specifically, a biflavonoid isolated from *Sellaginella tamariscina* suppressed the NF-kB signalling pathway and downregulated the COX-2 production in TNF- α -activated A549 cells (Banerjee *et al.*, 2002). Flavonoids from *Chrozophora tinctoria* showed significant suppression of IL-1 β and IL-6 release from the phytohemagglutinin (PHA)-stimulated PMBCs (Abdallah *et al.*, 2015). *Broussonetia* flavonoids also showed anti-inflammatory properties by reducing the production of TNF- α and IL-6 from LPS-induced RAW 264.7 cells (Ryu *et al.*, 2019). Similarly, glycoside flavonoids from *Smilax glabra* exhibit anti-inflammatory effects by supressing NF-kB production (Shu *et al.*, 2018), while C-Geranyl flavonoids from *Palownia fortunei* showed anti-inflammatory activities by decreasing IL-6 and TNF- α release from LPS-treated cardiomyocytes (Zhang *et al.*, 2019a).

Although, little is known about the anti-inflammatory properties of the genus *Tephrosia*, some of the flavonoids such as apigenin (12) (Plioukas *et al.*, 2016), rutin (76) (Jain *et al.*, 2009) and quercetin (76) (Gómez-Garibay *et al.*, 2002) that have been isolated in the genus show anti-inflammatory activities.

No.	Flavonoid	Molecular target	Anti-inflammatory	Reference	
			Effect		
		TNF-α-activated	Reduced COX-2	(Banerjee	et
74	Amentoflavone	A549 cells.	release by inhibiting	al., 2002)	
			NF-κB.		

Table 2.1: Anti-inflammatory Effects of flavonoids

No.	Flavonoid	Molecular target	Anti-inflammatory	Reference
			Effect	
		Phytohemagglutinin-	Suppressed the	(Abdallah et
		stimulated PBMCs.	release of IL-1β, IL-	<i>al.</i> , 2015)
			6, and PGE ₂ .	
75	Apigenin-7- <i>O</i> -β-D-	LPS-RAW264.7	Decreased release of	(Ryu et al.,
	glucopyranoside	cells.	NO, <i>i</i> NOS, TNF- α ,	2019)
76	Rutin		and IL-6.	
		Rat platelets.	Inhibited	(Chang et al.,
77	Ochnaflavone		phospholipase A ₂	1994)
			(PLA2).	
12	Apigenin			
13	Luteolin			
78	Quercetin	LPS-stimulated	Inhibited the	(Hu <i>et al</i> .,
79	Acacetin	RAW 264.5 cells.	production of NO	2017)
80	Diosmetin		and <i>i</i> NOS.	
81	Bonanzin			
82	Artmetin			
83	Broussochalcone C	LPS-stimulated	Inhibited the release	(Rvu <i>et al.</i> ,
84	Broussoflavanonol A	RAW 264.7 cells	of TNF- α and IL-6.	2019)
85	Broussoflavonol B			,
86	5-hydroxy-6,8-			
	dimethoxyflavonone-			
	/- <i>O</i> -β-D-	TNF- α stimulated J-	Inhibited NF- κ B	(Shu et al., 2010)
	glucopyranosyl-	1/0 cells	production	2018)
	(1→0)-O-p-D-			
87	5 Hudrovy 3.8	TNE a stimulated I	Inhibited NE vP	(Shu at al
07	dimethoxyflavone-7-	170 cells	ninolicu NI-AD	$(3110 \ ei \ ai., 2018)$
	$O_{-\beta}$ -D-		production	2010)
	glucopyranosyl-			
	$(1 \rightarrow 6) - O - \beta - D$ -			
	glucopyranoside			
88	3.7-Dihvdroxy-8-	TNF-α stimulated J-	Inhibited NF- <i>k</i> B	(Shu <i>et al.</i> .
	methoxyflavone-6-	170 cells	production	2018)
	<i>Ο-β</i> -D-		1	,
	glucopyranosyl-			
	(1→6)- <i>O</i> -β-D-			
	glucopyranoside			
89	Paulownione D		G	
90	Paulownione E	LPS treated	Suppressed the	(Zhang et al.,
91	Paulownione F	cardiomyocytes	production of IL-0	2019a).
92	Paulownione G			

75 $R_1 = Glc; R_2 = H; R_3 = H$ **12** $R_1 = H; R_2 = H; R_3 = H$ **79** $R_1 = H; R_2 = H; R_3 = Me$ **13** $R_1 = H; R_2 = OH; R_3 = H$ **80** $R_1 = H; R_2 = OH; R_3 = Me$

76 $R_1 = R_2 = R_3 = R_7 = H$, $R_4 = (Glc)_2$, $R_5 = R_6 = OH$ **78** $R_1 = R_2 = R_3 = R_4 = R_7 = H$, $R_5 = R_6 = OH$ **81** $R_1 = R_2 = R_7 = H$, $R_3 = R_5 = R_6 = OMe$, $R_4 = Me$ **82** $R_1 = R_7 = H$, $R_2 = R_4 = Me$, $R_3 = R_5 = R_6 = OMe$ **85** $R_1 = R_3 = A$, $R_2 = R_7 = H$, $R_4 = Me$, $R_5 = R_6 = OH$ **87** $R_1 = OMe$, $R_2 = (Glc)_2$, $R_3 = R_5 = R_6 = R_7 = H$, $R_4 = Me$ **88** $R_1 = R_3 = H$, $R_2 = Glc$, $R_4 = Me$, $R_5 = R_7 = OMe$, $R_6 = OH$ **90** $R_1 = R_2 = R_4 = R_7 = H$, $R_3 = B$, $R_5 = R_6 = OH$

89 $R_1 = A$, $R_2 = R_3 = R_4 = H$, $R_5 = OH$ **91** $R_1 = R_2 = H$, $R_3 = B$, $R_4 = OMe$, $R_5 = OH$ **92** $R_1 = R_2 = H$, $R_3 = C$, $R_4 = R_5 = OH$

2.4: Botany of the Genus Tephrosia

The genus *Tephrosia* Pers. belongs to the subfamily Papilionoideae that is distinguished from other subfamilies in the family Fabaceae by the zygomorphic papilionoid (butterfly-like) flower (Taylor *et al.*, 2009). The genus is mainly distributed in the tropics and subtropics (Pedley, 2014). Plants in this genus are either annual/perennial herbs or soft woody shrubs (Agnew, 2013; Al-Ghamdi, 2013). It contains over 353 species all over the world with over 30 species occurring in Kenya (Atilaw *et al.*, 2017a). *T. linearis, T. hildebrandtii, T. vogelii, T. elata,* and *T. rhodesica* are the species under investigation and found in Kenya.

2.4.1: Tephrosia linearis

Tephrosia linearis (Willd.) Pers. (Figure 2.2) is a short-lived perennial plant that is commonly found growing in grassland and rocky bushy slopes mainly in areas with higher rainfall (Agnew, 2013).

Figure 2.2: Photograph of *Tephrosia linearis*

T. linearis is an erect herb that grows up to 130 cm tall with a densely pubescent stem. Its leaves are pinnated with 5-15 leaflets, the flowers are either pink or orange in a terminal and axillary stiff pedunculated pseudo-raceme of 6-10 nodes. The pods are pubescent and about 5 cm long

x 3 mm wide with 9-12 seeds (Gillett *et al.*, 1971). The plant is native to tropical and austral Africa and Madagascar. In Kenya, it is found in the highlands, western, central and coast regions (Agnew, 2013).

2.4.2: Tephrosia hildebrandtii

Tephrosia hildebrandtii Vatke Pers. (Figure 2.3) is a short-lived perennial plant that is commonly found growing in upland grassland and semi-evergreen bushland at altitudes of 1100-1900 m (Agnew, 2013).

Figure 2.3: Photograph of Tephrosia hildebrandtii

T. hildebrandtii is an erect herb that can grow up to a height of 100 cm (Lwande *et al.*, 1986b). Its stem is rather sparsely pubescent, appressed or spreading while the leaves are unifoliolate. The flowers are reddish-purple born at the upper leaf axils and also terminal pseudo-racemes. Its pods are about 6 cm long x 4 mm wide with approximately 8 seeds (Gillett *et al.*, 1971). It is native to Ethiopia, Kenya and Tanzania. In Kenya, it is found in the highland areas like Rift valley, Machakos, Nairobi and Kajiado (Agnew, 2013).

2.4.3: Tephrosia vogelii

Tephrosia vogelii Hook. f. Pers. (Figure 2.4) commonly called fish bean or fish-poison bean is native to tropical Africa and grows in a variety of habitats including savanna-like vegetation, grasslands, forest margins, wasteland and formerly cultivated fields (Mwaura *et al.*, 2013). It is a soft woody perennial plant with dense foliage and can grow up to 4 m tall (Agnew, 2013). Its stem is hairy while the leaves are arranged spirally with lateral leaflets (12-29) tomentose above and more densely beneath (Mwaura *et al.*, 2013). The flowers are white or pale violet borne at the terminal or axillary pseudo-racemes and fragrant when fresh. Its pods are about 110 x 13 x 4 mm with approximately 12-16 seeds (Gillett *et al.*, 1971). In Kenya, it is found in areas like Mt. Elgon, Trans Nzoia, Nakuru-Kisumu region, Kitale and Embu (Agnew, 2013).

Figure 2.4: Photograph of Tephrosia vogelii
2.4.4: Tephrosia elata

Tephrosia elata Deflers Pers. (Figure 2.5) is a short-lived bushy perennial plant that is commonly found growing in grasslands, formerly cultivated land fields, and thicket margins (Agnew, 2013). It is either an erect herb or soft woody shrub that can grow to the height of 150 cm. The stems are usually ridged and appressed strigose (Gillett *et al.*, 1971). Its leaves are pinnated with 15-21 leaflets, the flowers are either pink or purple in rather dense terminal racemes that are longer than their stalks (Gillett *et al.*, 1971). The pods are about 55x5mm which may be erect or bent upwards (Agnew, 2013). The plant is native to Ethiopia, Sudan, Kenya, Tanzania, Uganda, Zimbabwe, and the Arabian Peninsula. In Kenya, it is cosmopolitan and can be found in the western, central and coast regions (Agnew, 2013).

Figure 2.5: Photograph of Tephrosia elata

2.4.5: Tephrosia rhodesica

Tephrosia rhodesica Baker f. Pers. (Figure 2.6) is a short-lived perennial plant that is commonly found growing in grassland and rocky bushy slopes mainly in areas with higher rainfall (Agnew, 2013). The plant is a branching erect shrub and can grow to the height of 150 cm. The leaves are pinnate with 6-9 leaflets and the flowers are purple in terminal racemes. Its pods are

flat and bend upwards (Gillett *et al.*, 1971). The plant is native to tropical Africa including East Africa, Malawi, Zambia and South Africa. In Kenya, it is found in the Coast, Machakos, Magadi and Narok (Agnew, 2013).

Figure 2.6: Photograph of Tephrosia rhodesica

2.5: Traditional Uses of the Genus Tephrosia

Many *Tephrosia* species have been used traditionally in disease management and agricultural practices (Gachene and Wortmann, 2004). Their use varies from country to country and species to species. Notably, *T. linearis* leaf juice is traditionally used in Kenya to manage a broad spectrum of ailments in infants (Kokwaro, 1976; Kokwaro, 2009). In Uganda, the plant is used for treating swollen body parts (Oryema *et al.*, 2010) and managing premature ejaculation (Tabuti *et al.*, 2003). In Tanzania, *T. linearis* is used for treating cardiac palpitations (Chhabra and Mahunnah, 1994).

T. vogelii has multiple applications in ethnomedicine across East Africa. Its aqueous leaf extract is used to control ticks, lice and worms in livestock (Mwaura *et al.*, 2013; Dharani *et al.*, 2015).

The water extract of the plant is also used as an insecticide to control insect pests, mites and a rodenticide for mole-rats (Mwine *et al.*, 2011; Kisangau and Amri, 2012; Mkindi *et al.*, 2019). A hot water decoction of the leaf, stem bark and unripe fruit of *T. vogelii* is used to induce abortion (Dzenda *et al.*, 2007), while its macerated leaf is used as a purgative and emetic (Dafam *et al.*, 2014). The leaves of *T. vogelii* are also used as a fish poison for fishing (Tabuti *et al.*, 2003; Kerebba *et al.*, 2019).

T. purpurea has diverse applications in ethnomedicine. It is used as a fish poison for fishing and an antidote for snakebite (Heuzé *et al.*, 2018). It is also traditionally used for wound and ulcer treatment (Chinniah *et al.*, 2009). It is used as a purgative and medicine for stomach pains (Kokwaro, 2009)

The other *Tephrosia* species of relevant ethnomedical uses include *T. nana* which is used for the treatment of tuberculosis (Hamill *et al.*, 2003), *T. uniflora* used to manage snake bites (Abreu and Luis, 1996), *T. aequilata* is used to relieve abdominal pain, *T. bracteolata* used to treat syphilis in pregnant women (Williams, 2012), *T. noctiflora* used as a cough remedy and *T. villosa* used for liver and spleen pain management (Kokwaro, 2009).

2.6: Phytochemistry of the Genus Tephrosia

Over the years, efforts have been made to isolate and identify bioactive compounds of the plants of this genus. Several compounds have been isolated and characterized from the genus. The compounds are mainly flavonoids in the sub-classes: chalcononoids, flavans, flavanones, flavones, flavones, and isoflavonoids (isoflavones, pterocarpans, coumestans, and rotenoids) (Touqeer *et al.*, 2013; Chen *et al.*, 2014).

2.6.1: Chalconoids from the Genus Tephrosia

A chalconoid is a flavonoid with a 1,3-diphenylpropane skeleton that may have an olefinic bond, keto, or hydroxyl group (Agrawal, 1989; Dewick, 2002; Rauter *et al.*, 2018). They are

subclassified as chalcanes, α -chalcanols, β -chalcanols, chalcenes, β -chalcanones (dihydrochalcones), α -chalcanones, chalcones, β -chalconols and chalcan-1,3-diones as shown in Scheme 2.1 depending on the substitution pattern in the propane moiety.

Scheme 2.1: Basic Skeletons of Subclasses of Chalconoids

As shown in Table 2.2, over twenty chalconoids in the subclasses of chalcones, β -chalcanones, and β -chalconols have been reported in the genus *Tephrosia*.

No.	Chalconoid	Plant species (part)	References
93	Isoliquiritigenin	T. toxicaria (ST)	(Jang et al., 2003)
94	Tephrone	T. candida (SD)	(Chibber and Dutt, 1982)
95	Ovalichacone	T. candida (SD)	(Roy et al., 1986)
96	Spinochalcone A	T. spinosa (RT)	(Rao and Prasad, 1992b)
97	Candidachalcone	<i>T. candida</i> (AP)	(Hegazy et al., 2011)
98	(+)-Tephrosone	T. purpurea (AP)	(Chang et al., 2000)
99	(+)-Tepropurpurin	T. purpurea (AP)	(Chang et al., 1997)
100	Obovatachalcone	T. obovata (WP)	(Chen et al., 1978)
101	Spinochalcone C	T. spinosa (RT)	(Rao and Prasad, 1992a)
102	Spinochalcone B	T. spinosa (RT)	(Rao and Prasad, 1992b)
103	2',6'-Dihydroxy -3'-prenyl-4'-	T. major (RT, AP)	(Gómez-Garibay et al., 2002)
	methoxy-β-chalcone		
104	Purpurenone	T. purpurea (RT)	(Rao and Raju, 1984)
105	Praecansone A	T. praecans (SD)	(Camele et al., 1980)

Table 2.2: Chalconoids from the Genus Tephrosia

No.	Chalconoid	Plant species (part)	References
106	Praecansone B	T. praecans (SD)	(Camele et al., 1980)
107	Demethylpraecansone B	T. aequilata (RT)	(Tarus <i>et al.</i> , 2002)
108	Aequichalcone C	T. aequilata (RT)	(Atilaw et al., 2017a)
109	Pongamol	T. purpurea (SD)	(Chang et al., 1997)
110	O-Methylpongamol	T. purpurea (RT)	(Pelter et al., 1981)
111	Elatadihydrochalcone	T. elata (SD)	(Muiva et al., 2009)
112	Aequichalcone A	T. aequilata (RT)	(Atilaw et al., 2017a)
113	Aequichalcone B	T. aequilata (RT)	(Atilaw et al., 2017a)
114	Tunicatachalcone	T. tunicata (RT)	(Andrei et al., 2000)
234	2',6'-Dimethoxy-4',5'-(2",2"-	<i>T. pulcherrima</i> (RT)	(Ganapaty et al., 2008b)
	dimethyl)-pyranochalcone		
273	Tephrone	T. candida (SD)	(Chibber and Dutt, 1982)

Key: RT – roots, SD – seeds/seedpods, FL – flowers, AP – aerial parts, WP – whole plant

 $\begin{array}{l} \textbf{93} \ R_1 = R_2 = R_4 = R_7 = H, \ R_3 = R_5 = R_6 = OH \\ \textbf{94} \ R_1 = OH, \ R_2 = R_4 = H, \ R_3 = R_5 = OMe, \ R_6 = R_7 = OCH_2O \\ \textbf{95} \ R_1 = OH, \ R_2 = A, \ R_3 = R_5 = OMe, \ R_4 = R_6 = R_7 = H \\ \textbf{96} \ R_1 = R_6 = R_7 = H, \ R_2 = R_4 = A, \ R_3 = R_5 = OH \\ \textbf{97} \ R_1 = OMe, \ R_2 = R_7 = OH, \ R_3 = R_5 = R_6 = OH, \ R_4 = B \\ \textbf{273} \ R_1 = OH, \ R_2 = R_4 = H, \ R_3 = R_5 = OMe, \ R_6 = R_7 = OCH_2O \\ \end{array}$

 $\begin{array}{l} \textbf{100} \ R_1 = OH, \ R_2 = OMe, \ R_3 = H \\ \textbf{101} \ R_1 = OH, \ R_2 = R_3 = H \\ \textbf{104} \ R_1 = OMe, \ R_2 = R_3 = OH \\ \textbf{105} \ R_1 = R_2 = OMe, \ R_3 = OMe \\ \textbf{106} \ R_1 = R_2 = OMe, \ R_3 = OH \\ \textbf{107} \ R_1 = OH, \ R_2 = OMe, \ R_3 = OH \\ \textbf{234} \ R_1 = R_2 = OMe, \ R_3 = H \end{array}$

98 R₁ = H, R₂ = OH **99** R₁ = OMe, R₂ = OAc

108

109 R = H 110 R = Me

2.6.2: Flavans of the Genus Tephrosia

Flavans are 2-phenylchromane derivatives and they are subdivided into flavans, flavan-3-ols, flavan-4-ols and flavan-3,4-diols as shown in Scheme 2.2 (Agrawal, 1989; Dewick, 2002; Rauter *et al.*, 2018). A few of these classes of flavonoids have been reported in the genus *Tephrosia* as listed in Table 2.3.

Scheme 2.2: Basic Skeletons of Subclasses of Flavans

No.	Flavan	Plant source (part)	Reference
115	Tephrowatsin E	T. watsoniana (ST)	(Gómez et al., 1985b)
116	5,7-Dimethoxy-8- prenylflavan	T. madrensis (LF & FL)	(Gómez et al., 1983)
117	5-Hydroxy-7-methoxy- 8-prenyflavan	T. madrensis (LF & FL)	(Gómez et al., 1983)
118	Tephrowatsin D	T. watsoniana (ST)	(Gómez et al., 1985b)
119	Tephrowatsin A	T. watsoniana (ST)	(Gómez et al., 1985b)
120	Quercetol B	T. quercetorum (RT)	(Gomez-Garibay et al., 1988)
121	Nitenin	T. nitens	(Gomez et al., 1984)
122	Methylhildgardtol A	T. hildbrandtii (RT)	(Monache et al., 1986)
123	Hildgardtol A	T. hildbrandtii (RT)	(Monache et al., 1986)
124	Hildgardtol B	T. hildbrandtii (RT)	(Monache et al., 1986)
125	Methylhildgardtol B	T. hildbrandtii (RT)	(Monache et al., 1986)
126	Quercetol A	T. quercetorum (RT)	(Gomez-Garibay et al., 1988)
127	Tephrowatsin B	T. watsoniana (ST)	(Gómez et al., 1985b)
128	Hildgardtene	T. hildbrandtii (RT)	(Monache et al., 1986)
129	Tepicanol A	<i>T. tepicana</i> (RT & AP)	(Gómez-Garibay et al., 1997)
271	Rhodiflavan A	T. rhodesica (RT)	(Atilaw et al., 2020)
272	Rhodiflavan B	T. rhodesica (RT)	(Atilaw et al., 2020)

Table 2.3: Flavans of the Genus Tephrosia

Key: RT - roots, SD - seeds or seedpods, FL-flowers, AP - aerial parts, WP - whole plant

 $\begin{array}{l} \textbf{115} \ R_1 = R_4 = R_5 = H, \ R_2 = R_3 = OMe \\ \textbf{116} \ R_1 = A, \ R_2 = R_3 = OMe, \ R_4 = R_5 = H \\ \textbf{117} \ R_1 = A, \ R_2 = OMe, \ R_3 = OH, \ R_4 = R_5 = H \\ \textbf{118} \ R_1 = A, \ R_2 = R_3 = R_5 = OMe, \ R_4 = H \\ \textbf{119} \ R_1 = A, \ R_2 = R_3 = OMe, \ R_4 = OH, \ R_5 = H \\ \textbf{120} \ R_1 = A, \ R_2 = R_2 = R_3 = R_4 = OMe, \ R_5 = H \\ \textbf{121} \ R_1 = B, \ R_2 = R_3 = OMe, \ R_4 = R_5 = H \end{array}$

2.6.3: Flavanones

Flavanones have a 2-phenylchroman-4-one skeleton and some may possess a 3-hydroxy group (Agrawal, 1989; Dewick, 2002; Rauter *et al.*, 2018) as shown in Scheme 2.3. There are a number of this group of flavonoids that have been reported in *Tephrosia* species as listed in Table 2.4. The majority of these compounds have no substitution in ring B except a few like lupinifolin (148), lupinifolinol (150), tephrocandidins B (140) and 5-methyl ether citflavanone (157). Almost all flavanones reported in the genus are prenylated with prenylation occurring at either C-6 or C-8.

Scheme 2.3: Basic Skeleton of Subclasses of flavanones

NO	Flavanone	Plant source (part)	Reference
49	Glabranin	T. major (RT & AP)	(Gómez-Garibay et al., 2002)
50	7-Methylglabranin	T. villosa (RT)	(Jayaraman <i>et al.</i> , 1980)
130	Candidone	T. candida (ST, LF)	(Roy <i>et al.</i> , 1986)
131	7-Hydroxy-5-methoxy-8- prenylflavanone	T. vogelii (LF)	(Stevenson <i>et al.</i> , 2012)
132	Epoxycandidone	T. hamiltonii (WP)	(Falak and Shoeb, 1987)
133	Tephroleocarpin A	<i>T. leiocarpa</i> (RT)	(Go'mez-Garibay et al., 1991)
134	Falciformin	T. falciformis (SD)	(Khan et al., 1986)
135	Tephrowatsin C	T. watsoniana (ST)	(Gómez et al., 1985b)
136	Quercetol C	T. quercetorum (RT)	(Gomez-Garibay et al., 1988)
137	Z-Quercetol C	T. vogelii (LF)	(Stevenson et al., 2012)
138	Tephrocandidins A	T. candida (AP)	(Hegazy et al., 2011)
139	Tephrocandidins B	T. candida (AP)	(Hegazy et al., 2011)
140	Tephroleocarpin B	<i>T. leiocarpa</i> (RT)	(Go'mez-Garibay et al., 1991)
141	5-Methyl ether tephroleocarpin B	T. vogelii (LF)	(Stevenson et al., 2012)
142	Dehydroisoderricin	<i>T. purpurea</i> (RT)	(Rao and Raju, 1984)
143	5-Hydroxy-7-methoxy-8- [(<i>E</i>)-3-oxo-1- butenyl]flavanone	T. toxicaria (ST)	(Jang et al., 2003)
144	Spinoflavanone B	T. spinosa (RT)	(Rao and Prasad, 1992a)
145	Tephrorins A	T. purpurea (AP)	(Chang <i>et al.</i> , 2000)
146	Tephrorins B	T. purpurea (AP)	(Chang <i>et al.</i> , 2000)
147	Fulvinervin A	T. fulvinervis (SD)	(Venkata Rao et al., 1985)
148	Lupinifolin	T. lupinifolia (RT)	(Smalberger et al., 1974)
149	Mundulinol	T. subtriflora (AP)	(Muiva-Mutisya et al., 2018)
150	Lupinifolinol	T. lupinifolia (RT)	(Smalberger et al., 1974)
151	Fulvinervin B	T. fulvinervis (SD)	(Venkata Rao et al., 1985)
152	Isolonchocarpin	T. purpurea (SD)	(Gupta <i>et al.</i> , 1980)
153	5-Methoxyisolonchocarpin	T. emoroides (RT)	(Machocho et al., 1995)
154	Spinoflavanone A	T. spinosa (RT)	(Rao and Prasad, 1992a)
155	Obovatin	T. obovata (WP)	(Chen et al., 1978)
156	Obovatin methylesther	T. obovata (WP)	(Chen et al., 1978)
157	5-Methyl ether citflavanone	T. vogelii (LF)	(Stevenson et al., 2012)
158	3-Hydroxy-5-methoxy- 6",6"-dimethylpyrano- [2",3":7,8]-flavanone	T. vogelii (LF)	(Stevenson et al., 2012)
159	Lanceolatin B	T. purpurea (SD)	(Gupta <i>et al.</i> , 1980)
160	Rhodimer	T. rhodesica (RT)	(Atilaw <i>et al.</i> , 2020)

 Table 2.4: Flavanones of the Genus Tephrosia

NO	Flavanone	Plant source (part)	Reference
161	5-Methoxy-6",6"-dimethyl- 4",5"-dihydrocyclopropa- furano-[2",3":7,8]- flavanone	T. vogelii (LF)	(Stevenson et al., 2012)
162	Subtruflavanonol	T. subtriflora (AP)	(Muiva-Mutisya et al., 2018)
163	MS-II	T. subtriflora (AP)	(Muiva-Mutisya et al., 2018)
164	(-)-Purpurin	<i>T. purpurea</i> (SD)	(Gupta <i>et al.</i> , 1980)
165	(+)-Purpurin	<i>T. purpurea</i> (RT)	(Rao and Raju, 1984)
166	Maximaflavanone A	T. maxima (RT)	(Venkata Rao et al., 1994)
167	Isoglabratephrin B	<i>T. purpurea</i> (ST)	(Chen et al., 2015)
168	5,4'-Dihydroxy7-O-[(<i>E</i>)- 3,7-dimethyl-2,6- octadienyl]-flavanone	T. villosa (RT)	(Madhusudhana et al., 2010)
169	5,4'-Dihydroxy-7-O-[(<i>E</i>)- 3,7-dimethyl-2,6- octadienyl]-8-C-[(E)-3,7- dimethyl-2,6-octadienyl]- flavanone	T. villosa (RT)	(Madhusudhana et al., 2010)

Key: RT - roots, SD - seeds/seedpods, FL - flowers, AP - aerial parts, WP - whole plant

 R₁ = A, R₂ = R₄ = OH, R₃ = R₅ = H $R_1 = A$, $R_2 = OMe$, $R_3 = R_5 = H$, $R_4 = OH$ $R_1 = A$, $R_2 = R_4 = OMe$, $R_3 = R_5 = H$ $R_1 = A, R_2 = OH, R_3 = R_5 = H, R_4 = OMe$ R₁ = B, R₂ = R₄ = OMe, R₃ = R₅ = H R₁ = C, R₂ = OMe, R₄= OH, R₃ = R₅ = H $R_1 = C, R_2 = OMe, R_3 = R_4 = R_5 = H$ R₁ = D, R₂ = R₄ = OMe, R₃ = R₅ = H $R_1 = C$, $R_2 = R_4 = OMe$, $R_3 = R_5 = H$ $R_1 = E$, $R_2 = R_4 = OMe$, $R_3 = R_5 = H$ R₁ = E, R₂ = OH, R₄ = OMe, R₃ = R₅ = H R₁ = E, R₂ = R₅ = OH, R₃ = H, R₄ = OMe R₁ = F, R₂ = OMe, R₄ = OH, R₃ = R₅ = H 141 R₁ = F, R₂ = R₄ = OMe, R₃ = R₅ = H 142 R₁ = F, R₂ = OMe, R₃ = R₄ = R₅ = H $R_1 = G$, $R_2 = OMe$, $R_4 = OH$, $R_3 = R_5 = H$ R₁ = R₃ = A, R₂ = R₄ = OH, R₅ = H R₁ = I, R₂ = OMe, R₃ = R₄ = R₅ = H R₁ = J, R₂ = OH, R₃ = R₄ = R₅ = H R₁ = R₃ = H, R₂ = L, R₄ = R₅ = OH R₁ = K, R₂ = L, R₃ = H, R₄ = R₅ = OH

 $\begin{array}{l} \textbf{147} \ \textbf{R}_1 = \textbf{A}, \ \textbf{R}_2 = \textbf{OH}, \ \textbf{R}_3 = \textbf{R}_4 = \textbf{H} \\ \textbf{148} \ \textbf{R}_1 = \textbf{A}, \ \textbf{R}_2 = \textbf{R}_4 = \textbf{OH}, \ \textbf{R}_3 = \textbf{H} \\ \textbf{149} \ \textbf{R}_1 = \textbf{A}, \ \textbf{R}_2 = \textbf{R}_3 = \textbf{OH}, \ \textbf{R}_4 = \textbf{H} \\ \textbf{150} \ \textbf{R}_1 = \textbf{A}, \ \textbf{R}_2 = \textbf{R}_3 = \textbf{R}_4 = \textbf{OH} \end{array}$

 $\begin{array}{l} \textbf{151} \ R_1 = A, \ R_2 = OH, \ R_3 = R_4 = H \\ \textbf{152} \ R_1 = R_2 = R_3 = R_4 = H \\ \textbf{153} \ R_1 = R_3 = R_4 = H, \ R_2 = R_3 = OMe \\ \textbf{154} \ R_1 = A, \ R_2 = OH, \ R_3 = R_4 = H \\ \textbf{155} \ R_1 = H, \ R_2 = OH, \ R_3 = R_4 = H \\ \textbf{156} \ R_1 = H, \ R_2 = OMe, \ R_3 = R_4 = H \\ \textbf{157} \ R_1 = H, \ R_2 = OMe, \ R_3 = OH, \ R_4 = H \\ \textbf{158} \ R_1 = H, \ R_2 = OMe, \ R_3 = H, \ R_4 = OH \\ \textbf{158} \ R_1 = H, \ R_2 = OMe, \ R_3 = H, \ R_4 = OH \\ \textbf{158} \ R_1 = H, \ R_2 = OMe, \ R_3 = H, \ R_4 = OH \\ \textbf{166} \ R_1 = A, \ R_2 = R_3 = R_4 = H \end{array}$

Ö

159

2.6.4: Flavones and Flavonols of the Genus Tephrosia

Flavones are 2-phenylchromen-4-one derivatives while flavonols are 3-hydroxyflavones (Agrawal, 1989; Dewick, 2002; Rauter *et al.*, 2018) as shown in Scheme 2.4. Many flavones and few flavonols that have been reported from the genus *Tephrosia* are listed in Table 2.5. Substitution in ring B is very rare except oxygenation at C-3 and C-4 in very few compounds like quercetin (**170**), methyl quercetin (**171**), chrysoeriol (**172**) and glucosides (**186** – **189**).

Scheme 2.4: Basic Skeletons of Flavones and Flavonols

No.	Flavone	Plant source (part)	Reference
38	Isopongaflavone	T. bracteolata (SD)	(Khalid and Waterman, 1981)
170	Kaempferitrin	T. purpurea (ST)	(Gómez-Garibay <i>et al.</i> , 2002; Atilaw <i>et al.</i> , 2017b)
171	Methyl quercetin	T. watsoniana (ST)	(Gómez et al., 1985b)
172	Chrysoeriol	<i>T. toxicaria</i> (ST)	(Jang <i>et al.</i> , 2003)
173	trans-Tephrostachin	T. bracteolata (SD)	(Khalid and Waterman, 1981)
174	Emoroidone	T. emoroides (RT)	(Machocho et al., 1995)
175	(E)-5-Hydroxytephrostachin	<i>T. purpurea</i> (ST)	(Atilaw <i>et al.</i> , 2017b)
176	Lanceolatin A	<i>T. apollinea</i> (AP)	(Nenaah, 2014)
177	Z-Tephrostachin	T. vogelii (LF)	(Stevenson et al., 2012)
178	(<i>E</i>)-5-	<i>T. purpurea</i> (ST)	(Atilaw <i>et al.</i> , 2017b)
	Hydroxyanhydrotephrostachin		
179	trans-Anhydrotephrostachin	T. bracteolata (SD)	(Khalid and Waterman, 1981)
180	Purleptone	<i>T. purpurea</i> (ST)	(Atilaw et al., 2017b)
185	Terpurinflavone	<i>T. purpurea</i> (ST)	(Juma <i>et al.</i> , 2011)
181	Apollinine	T. apollinea (SD)	(Waterman and Khalid, 1980)
182	Tephroglabrin	<i>T. purpurea</i> (RT)	(Pelter <i>et al.</i> , 1981)
183	Hookerianin	T. hookeriana (SD)	(Prabhakar et al., 1996)
184	Tepurindiol	<i>T. purpurea</i> (RT)	(Pelter <i>et al.</i> , 1981)
186	6-Hydroxykaempferol-6-	<i>T. candida</i> (LF)	(Stevenson et al., 2012)
187	methyl ether-3- O - α - rhamnopyranosyl(1 \rightarrow 2)[α - rhamnopyranosyl(1 \rightarrow 6)]- β - galactopyranoside-7- O - α - rhamnopyranoside - 27 6-Hydroxykaempferol-6- methyl ether-3- O - α - rhamnopyranosyl(1 \rightarrow 6)- β - galactopyranoside-7- O - α - rhamnopyranoside -28	T. candida (LF)	(Stevenson <i>et al.</i> , 2012)

No.	Flavone	Plant source (part)	Reference	
188	6-Hydroxykaempferol-6-	<i>T. candida</i> (LF)	(Stevenson et al., 2012)	
	methyl ether 3-O-α-			
	rhamnopyranosyl($1 \rightarrow 2$)[α -			
	rhamnopyranosyl $(1\rightarrow 6)$]- β -			
	galactopyranoside -33			
189	6-Hydroxykaempferol-6-	<i>T. candida</i> (LF)	(Stevenson et al., 2012)	
	methyl ether-3- <i>O</i> -α-			
	rhamnopyranosyl $(1\rightarrow 2)$] $(3-O-$			
	E-feruloyl)-α-			
	rhamnopyranosyl($1\rightarrow 6$)]- β -			
	galactopyranoside -60			
190	Fulvinervin B	T. fulvinervis (SD)	(Venkata Rao et al., 1985)	
191	Fulvinervin C	T. fulvinervis (SD)	(Venkataratnam et al.,	
			1986)	
192	Pseudosemiglabrin	T. apollinea (WP)	(Ahmad, 1986)	
193	Pseudosemiglabrinol	T. apollinea (WP)	(Ahmad, 1986)	
194	(-)-Semiglabrin	T. semiglabrin (AP,	(Smalberger et al., 1973)	
		RT)		
195	(-)-Semiglabrinol	T. semiglabrin (AP,	(Smalberger et al., 1973)	
		RT)		
196	Glabratephrin	T. semiglabrin (AP)	(Vleggaar <i>et al.</i> , 1978)	
197	Isoglabratephrin	T. purpurea (AP)	(Hegazy <i>et al.</i> , 2009)	
198	Glabratephrinol	T. semiglabrin (SD)	(Vleggaar <i>et al.</i> , 1978)	
199	Kanjone	<i>T. purpurea</i> (SD)	(Gupta <i>et al.</i> , 1980)	
200	Tephropurpulin	<i>T. purpurea</i> (AP)	(Hegazy <i>et al.</i> , 2009)	
201	Tephrodin	T. purpurea (ST)	(Muiva-Mutisya <i>et al.</i> ,	
			2014)	
235	Kaempferol-3- <i>O</i> -β- _D -	T. calophylla (RT)	(Kishore <i>et al.</i> , 2003)	
	glucopyranoside	- ()		
268	Terpurlepflavone	<i>T. purpurea</i> (ST)	(Atilaw <i>et al.</i> , 2017b)	
269	Tachrosin	<i>T. purpurea</i> (ST)	(Atilaw <i>et al.</i> , 2017b)	

Key: RT-roots, SD-seeds/seedpods, FL-flowers, AP-aerial parts, ST- the stem, WP-whole

plant

170 R₁ = R₃ = R₆ = H, R₂ = R₅ = J, R₄ = R₇ = OH **171** R₁ = R₃ = H, R₂ = R₅ = R₆ = R₇ = OH, R₄ = OMe **172** R₁ = R₃ = R₅ = H, R₂ = R₄ = R₅ = R₇ = OH, R₆ = OMe **173** R₁ = A, R₂ = R₄ = OMe, R₃ = R₅ = R₆ = R₇ = H **174** R₁ = A, R₂ = OH, R₄ = OMe, R₃ = R₅ = R₆ = R₇ = H **176** R₁ = A, R₂ = OMe, R₄ = OH, R₃ = R₅ = R₆ = R₇ = H **177** R₁ = B, R₂ = OMe, R₄ = OMe, R₃ = R₅ = R₆ = R₇ = H **178** R₁ = C, R₂ = OMe, R₄ = OH, R₃ = R₅ = R₆ = R₇ = H **179** R₁ = C, R₂ = OMe, R₄ = OH, R₃ = R₅ = R₆ = R₇ = H **180** R₁ = D, R₂ = OMe, R₄ = OH, R₃ = R₅ = R₆ = R₇ = H **181** R₁ = E, R₂ = OMe, R₄ = OH, R₃ = R₅ = R₆ = R₇ = H **182** R₁ = F, R₂ = OMe, R₃ = R₄ = R₅ = R₆ = R₇ = H **183** R₁ = E, R₂ = OMe, R₃ = R₄ = R₅ = R₆ = R₇ = H **184** R₁ = G, R₂ = OMe, R₃ = R₄ = R₅ = R₆ = R₇ = H **185** R₁ = I, R₂ = OAC, R₃ = R₄ = R₅ = R₆ = R₇ = H **186** R₁ = R₆ = H, R₂ = J, R₃ = OMe, R₄ = R₇ = OH = R₅ = L **187** R₁ = R₆ = H, R₂ = R₄ = R₇ = OH, R₃ = OMe, R₅ = L **189** R₁ = R₆ = H, R₂ = R₄ = R₇ = OH, R₃ = OMe, R₅ = M **235** R₁ = R₃ = R₆ = H, R₂ = R₄ = R₇ = OH, R₃ = OMe, R₅ = N **269** R₁ = F, R₂ = R₄ = OMe, R₃ = R₅ = R₆ = R₇ = H

 $\begin{array}{l} \textbf{38} \ \textbf{R}_1 = \textbf{H}, \ \textbf{R}_2 = \textbf{OMe} \\ \textbf{190} \ \textbf{R}_1 = \textbf{C}, \ \textbf{R}_2 = \textbf{OH} \\ \textbf{191} \ \textbf{R}_1 = \textbf{A}, \ \textbf{R}_2 = \textbf{OH} \end{array}$

192 R = OAC 193 R = OH

195 R = OH

2.6.5: Isoflavonoids of the Genus Tephrosia

Isoflavonoids are commonly subclassified into isoflavones, isoflavans, isoflav-3-enes, coumestans, coumaronochromones, pterocarpans and rotenoids based on their structural skeleton as illustrated in Scheme 2.5 (Whitten *et al.*, 1997; Rauter *et al.*, 2018). The isoflavones that have been reported in several species of *Tephrosia* are listed in Table 2.6. The majority of the reported isoflavones lack C-5 oxygenation but *O*-prenylation is common. Very few coumestans have been reported from the genus as listed in Table 2.7. Pterocarpans especially those having a 6a,11a-dihydrobenzofurobenzopyran ring are common in the genus *Tephrosia* as listed in Table 2.8.

Rotenoids are isoflavonoids having an extra carbon in form of a methylene which bridges C-2-C-2' of an isoflavone skeleton via an epoxy residue (Abidi, 1987; Agrawal, 1989; Whitten *et al.*, 1997). Rotenoids are considered as 2-methylene-2'-epoxyisoflavonoids with a *cis*configuration at the fusion between B/C rings (Abidi, 1987). Several rotenoids have been reported in the genus as listed in Table 2.9.

Scheme 2.5: Basic Skeletons of Isoflavonoids

Table	e 2.6:	Isoflavones	Reported	from the	e Tephrosia	species

No.	Isoflavone	Plant species (part)	References
46	Calopogoniumisoflavone B	T. maxima (RT)	(Murthy and Rao, 1985)
55	Genistein	<i>T. toxicaria</i> (ST)	(Jang <i>et al.</i> , 2003)
202	Maximaisoflavone J	T. maxima (RT)	(Murthy and Rao, 1985)
203	Viridiflorin	T. viridiflora (RT & AP)	(Gómez et al., 1985a)
204	Maximaisoflavone H	T. maxima (RT)	(Rao and Murthy, 1985)
205	Maximaisoflavone C	T. maxima (AP)	(Rao <i>et al.</i> , 1984)
206	Maximaisoflavone E	T. maxima (AP, RT)	(Rao <i>et al.</i> , 1984)
207	Maximaisoflavone D	T. maxima (AP, RT)	(Rao <i>et al.</i> , 1984)
208	Maximaisoflavone F	T. maxima (AP, RT)	(Rao <i>et al.</i> , 1984)
209	7,8,6'-Trimethoxy-3',4'-	T. maxima (AP)	(Rao <i>et al.</i> , 1984)
	methylenedioxyisoflavone		
210	Maximaisoflavone G	T. maxima (AP, RT)	(Rao <i>et al.</i> , 1984)
211	6-Methoxy-7-hydroxy-3',4'-	T. maxima (AP)	(Rao <i>et al.</i> , 1984)
	methylenedioxyisoflavone		
212	7,6'-Trimethoxy-3',4'-	T. maxima (AP)	(Rao <i>et al.</i> , 1984)
	methylenedioxyisoflavone		
213	Maximaisoflavone B	T. maxima (RT)	(Rao and Murthy, 1985)
214	Maximaisoflavone A	T. maxima (AP)	(Rao <i>et al.</i> , 1984)
215	Pumilaisoflavone C	T. pumila (SD)	(Yenesew et al., 1989)
216	Pumilaisoflavone B	T. pumila (SD)	(Dagne <i>et al.</i> , 1988)
217	Derrone	T. purpurea (ST)	(Atilaw <i>et al.</i> , 2017b)
218	5,7-Di-O-prenylbiochanin A	<i>T. tinctoria</i> (ST)	(Khalivulla et al., 2008)
219	Pumilaisoflavone A	T. pumila (SD)	(Dagne <i>et al.</i> , 1988)
220	Warangalone	<i>T. elata</i> (RT)	(Lwande et al., 1985a)
221	Pumilaisoflavone D	T. pumila (SD)	(Yenesew <i>et al.</i> , 1989)
222	Elongatin	<i>T. viridiflora</i> (RT & AP)	(Smalberger et al., 1975)
223	Auriculatin	T. calophylla (RT)	(Ganapaty <i>et al.</i> , 2014)
224	Auriculasin	T. calophylla (RT)	(Ganapaty et al., 2014)
225	Isoauriculatin	T. calophylla (RT)	(Ganapaty et al., 2014)
226	Isoauriculasin	T. calophylla (RT)	(Ganapaty et al., 2014)
227	Pumilanol	T. pumila (RT)	(Ganapaty <i>et al.</i> , 2008a)

No.	Isoflavone	Plant species (part)	References		
237	7,4'-Dihydroxy-3',5'-	<i>T. purpurea</i> (WP)	(Chang et al., 2000)		
	dimethoxyisoflavone				
238	3'-Methoxydaidzein	T. purpurea (WP)	(Chang et al., 2000)		
Key: RT – roots, SD – seeds/seedpods, AP – aerial parts, ST – stem					

 $R_1 = R_3 = R_5 = R_6 = R_8 = R_9 = H$, $R_2 = R_4 = R_7 = OH$ $R_2 = A$, $R_1 = R_3 = R_4 = R_5 = R_6 = R_8 = R_9 = H$, $R_7 = OMe$ $R_1 = R_6 = R_9 = H$, $R_2 = R_4 = R_7 = OH$, $R_3 = B$, $R_5 = R_8 = OMe$ $R_1 = R_2 = OCH_2O$, $R_3 = R_4 = R_5 = R_6 = R_8 = R_9 = H$, $R_7 = OMe$ $R_1 = R_3 = R_4 = R_6 = R_9 = H$, $R_2 = A$, $R_7 = R_8 = OCH_2O$ $R_1 = OMe$, $R_2 = OH$, $R_3 = R_4 = R_5 = R_8 = R_9 = H$, $R_6 = R_7 = OCH_2O$ $R_1 = R_2 = OCH_2O$, $R_3 = R_4 = R_5 = R_8 = R_9 = H$, $R_6 = R_7 = OCH_2O$ $R_1 = R_9 = OMe$, $R_2 = OH$, $R_3 = R_4 = R_5 = R_8 = H$, $R_6 = R_7 = OCH_2O$ $R_1 = R_2 = R_9 = OMe$, $R_3 = R_4 = R_5 = R_8 = H$, $R_6 = R_7 = OCH_2O$ $R_1 = R_3 = R_4 = R_5 = R_8 = H$, $R_3 = OH$, $R_6 = R_7 = OCH_2O$ $R_1 = R_4 = R_5 = R_8 = R_9 = H$, $R_2 = OH$, $R_3 = OMe$, $R_6 = R_7 = OCH_2O$ $R_1 = R_3 = R_4 = R_5 = R_8 = H$, $R_2 = R_9 OMe$, $R_6 = R_7 = OCH_2O$ $R_2 = A$, $R_1 = R_3 = R_4 = R_5 = R_8 = R_9 = H$, $R_6 = R_7 = OCH_2O$ $R_1 = R_2 = OCH_2O$, $R_3 = R_4 = R_5 = R_8 = R_9 = H$, $R_6 = R_7 = OCH_2O$ $R_1 = R_9 = H$, $R_2 = R_4 = R_7 = OH$, $R_3 = R_5 = B$, $R_6 = R_8 = OMe$ $R_1 = R_3 = R_4 = R_5 = R_9 = H$, $R_2 = R_7 = OH$, $R_6 = R_8 = OMe$ $R_1 = R_3 = R_4 = R_5 = R_8 = R_9 = H$, $R_2 = R_7 = OH$, $R_6 = R_8 = OMe$

219 $R_1 = R_3 = H$, $R_2 = OH$, $R_4 = R_6 = OMe$, $R_5 = C$ **220** $R_1 = B$, $R_2 = R_5 = OH$, $R_3 = R_4 = R_5 = R_6 = H$ **221** $R_1 = R_3 = H$, $R_2 = R_5 = OH$, $R_4 = R_6 = OMe$ **222** $R_1 = R_4 = H$, $R_2 = R_5 = OH$, $R_3 = R_6 = OMe$ **223** $R_1 = B$, $R_2 = R_3 = R_5 = OH$, $R_4 = R_6 = H$ **224** $R_1 = B$, $R_2 = R_4 = R_5 = OH$, $R_3 = R_6 = H$ **225** $R_1 = R_4 = R_6 = H$, $R_2 = R_3 = OH$, $R_5 = D$ **226** $R_1 = R_3 = R_6 = H$, $R_2 = R_4 = OH$, $R_5 = D$

46 $R_1 = H$, $R_2 = R_3 = OCH_2O$ **217** $R_1 = R_3 = OH$, $R_2 = H$

216

218

Table 2.7:	Coumestans	Reported	from the	Genus	Tephrosia
-------------------	------------	----------	----------	-------	-----------

No.	Coumestan	Plant species (part)	References
227	2-Methoxy-3,9-	T. hamiltonii (RT)	(Rajani and Sarma, 1988)
	dihydroxycoumestone		
228	Flemichaparin C	T. hamiltonii (RT)	(Rajani and Sarma, 1988)
229	Tephrosol	T. villosa (RT)	(Rao and
			Srimannarayana, 1980)
230	Tephcalostan D	T. calophylla (RT)	(Ganapaty <i>et al.</i> , 2009)
231	Tephcalostan C	T. calophylla (RT)	(Ganapaty <i>et al.</i> , 2009)
232	Tephcalostan B	T. calophylla (RT)	(Ganapaty <i>et al.</i> , 2009)
232	Tephcalostan	T. calophylla (WP)	(Kishore <i>et al.</i> , 2003)
239	3,9-Dihydroxy-8-	T. purpurea (WP)	(Chang et al., 1997)
	methoxycoumestan		

Key: RT – Roots, WP – whole plant

227 $R_1 = R_3 = OH$, $R_2 = OMe$, $R_4 = H$ **228** $R_1 = OMe$, $R_2 = H$, $R_3 = R_4 = OCH_2O$ **229** $R_1 = OH$, $R_2 = OMe$, $R_3 = R_4 = OCH_2O$ **239** $R_1 = R_3 = OH$, $R_2 = H$, $R_4 = OMe$

10010 = 00011 00000 00000 00000 00000000	Ta	b	le	2.8	8:	Pterocar	pans F	Repor	ted:	from	the	Genus	Te	phro	si	a
--	----	---	----	-----	----	----------	--------	-------	------	------	-----	-------	----	------	----	---

No.	Pterocarpan	Plant species (Part)	Reference
24	Maackiain	T. purpurea (WP)	(Chang et al., 1997)
30	Pisatin	T. bidwilli (SD)	(Ingham and Markham, 1980)
240	3-Hydroxy-4-methoxy-8,9- methylenedioxypterocarpan	T. purpurea (WP)	(Chang et al., 1997)
241	Medicarpin	T. purpurea (WP)	(Chang et al., 1997)
242	Methoxymaackiain	T. bidwilli (SD)	(Ingham and Markham, 1980)
243 244 245	Tephrocarpin Acanthocarpan 3,4-Dimethylenedioxy- pterocarpan	T. bidwilli (SD) T. bidwilli (SD) T. aequilata (RT)	(Ingham and Markham, 1980) (Ingham and Markham, 1980) (Tarus <i>et al.</i> , 2002)
246 247	Hildecarpin Emoroidocarpan	T. hildebrandtii (RT) T. emoroides (RT)	(Lwande <i>et al.</i> , 1986a) (Machocho <i>et al.</i> , 1995)

No.	Pterocarpan	Plant species (Part)	Reference
248	4'-Hydroxyemeroroidocarpan	<i>T. purpurea</i> (ST)	(Li et al., 2011)
249	Hildecarpidin	T. hildebrandtii (RT)	(Lwande et al., 1987)
250	Flemichaparin B	T. hamiltonii (RT)	(Rajani and Sarma, 1988)
251	3,4:8,9-Dimethylenedioxy-	T. aequilata (RT)	(Atilaw et al., 2017a)
	6a,11a-pterocarpene		
262	Rhodacarpin	T. rhodesica (RT)	(Atilaw et al., 2020)

KEY: ST - stems, WP - whole plant, SD - seeds/seedpods, RT - roots

$$A = \underbrace{\underbrace{}_{\xi}}_{\xi}$$
$$B = OH$$

251 $R_1 = R_2 = OCH_2O$

272

Table 2.9: Rotenoids Reported in the Genus Tephrosia.

241 $R_1 = R_3 = R_4 = H, R_2 = R_5 = OH, R_6 = OMe$ **242** $R_1 = OMe, R_2 = OH, R_3 = R_4 = H, R_5 = R_6 = OCH_2O$ **243** $R_1 = OMe, R_2 = R_4 = OH, R_3 = H, R_5 = R_6 = OCH_2O$ **244** $R_1 = R_2 = OCH_2O, R_3 = H, R_4 = OH, R_5 = R_6 = OCH_2O$ **244** $R_1 = R_2 = OCH_2O, R_3 = H, R_4 = OH, R_5 = R_6 = OCH_2O$

245 $R_1 = R_2 = OCH_2O$, $R_3 = R_4 = H$, $R_5 = R_6 = OCH_2O$ **246** $R_1 = H$, $R_2 = R_4 = OH$, $R_3 = OMe$, $R_5 = R_6 = OCH_2O$

No.	Rotenoid	Plant source (part)	Reference
18	Munduserone	T. fulvinervis (RT)	(Dagne et al., 1989)
20	Rotenone	T. pentaphylla (LV) T. pentaphylla (RT)	(Dagne et al., 1989)
22	Deguelin	T. fulvinervis (RT)	(Dagne et al., 1989)
23	Tephrosin	T. obovata (WP)	(Chen et al., 1958)
19	cis-12a-Hydroxymunduserone	T. fulvinervis (RT)	(Dagne et al., 1989)
42	Dehydrorotenone	T. villosa (SD)	(Krupadanam <i>et al.</i> , 1977a)
252	Sumatrol	T. pentaphylla (RT)	(Dagne et al., 1989)
21	cis-12a-Hydroxyrotenone	T. pentaphylla (RT)	(Dagne et al., 1989)

No.	Rotenoid	Plant source (part)	Reference
254	6a-Hydroxyrotenone	T. pentaphylla (RT)	(Dagne et al., 1989)
255	Villol	T. villosa (SD)	(Krupadanam <i>et al.</i> , 1977a)
256	Villosin	T. villosa (SD)	(Krupadanam <i>et al.</i> , 1977a)
257	6-Acetoxydihydrostemonal	T. pentaphylla (RT, LV)	(Dagne et al., 1989)
258	Dihydrostemonal	T. pentaphylla (RT, LV)	(Dagne et al., 1989)
259	9-Demethyldihydrostemonal	T. pentaphylla (SD)	(Dagne et al., 1989)
260	6-Hydroxy-α-toxicarol	T. villosa (RT)	(Muiva-Mutisya <i>et al.</i> , 2014)
261	4',5'-Dihydo-5',11-dihydroxy- 4'-methoxytephrosin	T. toxicaria (ST)	(Jang <i>et al.</i> , 2003)
262	α-toxicarol	T. pentaphylla (LV) T. fulvinervis (RT)	(Dagne et al., 1989)
263	Villosol	T. villosa (SD)	(Krupadanam <i>et al.</i> , 1977a)
264	Villosinol	T. villosa (SD)	(Krupadanam <i>et al.</i> , 1977a)
265	Villinol	T. villosa (SD)	(Krupadanam <i>et al.</i> , 1977a)
266	Villosone	T. villosa (SD)	(Krupadanam <i>et al.</i> , 1977a)
267	Rotenonone	T. villosa (SD)	(Krupadanam <i>et al.</i> , 1977a)

Key: RT - roots, SD - seeds/seedpods, LV - leaves, ST - the stem, WP - whole plant

255 $R_1 = R_2 = R_3 = OH$ **256** $R_1 = R_3 = OH, R_2 = H$

 $\begin{array}{l} \textbf{18} \ \textbf{R}_1 = \textbf{Me}, \ \textbf{R}_2 = \textbf{R}_3 = \textbf{R}_4 = \textbf{H} \\ \textbf{19} \ \textbf{R}_1 = \textbf{Me}, \ \textbf{R}_2 = \textbf{R}_4 = \textbf{H}, \ \textbf{R}_3 = \textbf{OH} \\ \textbf{257} \ \textbf{R}_1 = \textbf{Me}, \ \textbf{R}_2 = \textbf{R}_3 = \textbf{H}, \ \textbf{R}_4 = \textbf{OH} \\ \textbf{258} \ \textbf{R}_1 = \textbf{Me}, \ \textbf{R}_2 = \textbf{R}_4 = \textbf{OH}, \ \textbf{R}_3 = \textbf{H} \\ \textbf{259} \ \textbf{R}_1 = \textbf{R}_3 = \textbf{H}, \ \textbf{R}_2 = \textbf{R}_4 = \textbf{OH} \end{array}$

22 $R_1 = R_2 = R_3 = H$ **23** $R_1 = R_3 = H, R_2 = OH$ **260** $R_1 = R_3 = OH, R_2 = H$ **262** $R_1 = OH, R_2 = R_3 = H$

2.7: Biological Activities of Compounds Isolated from the Genus Tephrosia

Numerous flavonoids have been reported from the genus *Tephrosia* (Touqeer *et al.*, 2013; Chen *et al.*, 2014; Samuel *et al.*, 2019). However, just a few of the isolated compounds have been evaluated for their biological activities including anticancer, anti-plasmodial, anti-protozoal, anti-microbial and insecticidal (Table 2.10). Despite the reports that some of the crude extracts exhibited anti-inflammatory activities (Adaudi *et al.*, 2009; Sandhya *et al.*, 2010; Valli *et al.*, 2011), compounds isolated from this genus have not been assessed for their anti-inflammatory effects. However, compounds such as genistein (**55**) (Hämäläinen *et al.*, 2007), isoliquiritigenin (**93**) (Lee *et al.*, 2009), and chrysoeriol (**172**) (Wu *et al.*, 2020) isolated from other sources have shown significant anti-inflammatory activities.

No	Compound	Plant source	Activity	Reference
20	Rotenone	T. elata	antifeedant	(Bentley et al.,
				1987)
22	Deguelin	T. elata	Antiplasmodial	(Muiva et al., 2009)
23	Tephrosin	T. elata	Antifeedant	(Bentley et al.,
				1987)
24	Maackiain	T. purpurea	Cancer	(Chang et al., 2000)
			chemopreventive	
29	Hildecarpin	T. hildebrandtii	Antifeedant	(Lwande et al.,
			Antifungal	1986a)
31	Pongachin	T. pulcherrima	Antimicrobial	(Ganapaty et al.,
				2008b)

Table 2.10: Biological Activities of Compounds Isolated from the Genus Tephrosia

No	Compound	Plant source	Activity	Reference
32	Emoroidenone	T. emoroides	Antifeedant	(Machocho et al.,
				1995)
38	Isopongaflavone	T. elata	Antifeedant,	(Bentley et al.,
				1987)
		T. aquilata	Antiplasmodial	(Atilaw et al.,
				2017a)
53	Rhodiflavan C	T. rhodesica	Antiplasmodial	(Atilaw et al., 2020)
55	Genistein	T. toxicaria	Cancer	(Jang et al., 2003)
			chemopreventive	
93	Isoliquiritigenin	T. toxicaria	Cancer	(Jang et al., 2003)
			chemopreventive	
97	Candidachalcone	T. candida	Estrogenic	(Hegazy et al.,
				2011)
98	Tephrosone	T. purpurea	Cancer	(Chang et al., 2000)
			chemopreventive	
99	Tephropurpurin	T. purpurea	Cancer	(Chang et al., 2000)
			chemopreventive	
100	Obovatachalcone	T. aquilata	Antiplasmodial	(Atilaw et al.,
				2017a)
105	Praecansone A	T. praecans	Antibacterial	(Tarus et al., 2002)
		T. aquilata	Antiplasmodial	(Atilaw et al.,
				2017a)
106	Praecansone B	T. praecans,	Antibacterial	(Tarus et al., 2002)
		T. aquilata	Antiplasmodial	(Atilaw et al.,
				2017a)
107	Demethylpraecansone	T. aequilata	Antibacterial	(Tarus et al., 2002)
	В			
108	Aequichalcone C	T. aequilata	Antiplasmodial	(Atilaw et al.,
				2017a)
109	Pongamol	T. purpurea	Cancer	(Chang et al., 2000)
			chemopreventive	
111	Elatadihydrochalcone	T. elata	Antiplasmodial	(Muiva et al., 2009)

No	Compound	Plant source	Activity	Reference
112	Aequichalcone A	T. aequilata	Antiplasmodial	(Atilaw et al.,
				2017a)
113	Aequichalcone B	T. aequilata	Antiplasmodial	(Atilaw et al.,
				2017a)
119	Tephrowatsin A	T. rhodesica	Antiplasmodial	(Atilaw et al., 2020)
120	Quercetol B (9)	T. rhodesica	Antiplasmodial	(Atilaw et al., 2020)
128	Hildgardtene	T. emoriodes	antifeedant	(Machocho et al.,
				1995)
138	Tephrocandidins A	T. candida	Estrogenic	(Hegazy et al.,
				2011)
139	Tephrocandidins B	T. candida	Estrogenic	(Hegazy et al.,
				2011)
144	Spinoflavanone B	T. subtriflora	Antiplasmodial	(Muiva-Mutisya <i>et</i>
				al., 2018)
149	Mundulinol	T. subtriflora	Antiplasmodial	(Muiva-Mutisya <i>et</i>
				al., 2018)
156	Obovatin methyl ether	T. elata	Antiplasmodial	(Muiva et al., 2009)
			Piscicidal	(Chen et al., 1978)
159	Lanceolatin B	T. purpurea	Cancer	(Chang et al., 2000)
			chemopreventive	
162	Subtruflavanonol	T. subtriflora	Antiplasmodial	(Muiva-Mutisya <i>et</i>
				al., 2018)
163	MS-II	T. subtriflora	Antiplasmodial	(Muiva-Mutisya et
				al., 2018)
168	Purpurin	T. purpurea	Cancer	(Chang et al., 2000)
			chemopreventive	
172	Chrysoeriol	T. toxicaria	Cancer	(Jang et al., 2003)
			chemopreventive	
174	Emoroidone	T. emoroides	Antifeedant	(Machocho et al.,
				1995)
180	Purleptone	T. purpurea	Cytotoxicity	Atilaw et al., 2017
185	Terpurinflavone	T. purpurea	Antiplasmodial	Juma et al., 2011

No	Compound	Plant source	Activity	Reference
201	Tephrodin	T. purpurea	Antiplasmodial	(Muiva-Mutisya et
				al., 2014)
227	Pumilanol	T. pumila	Antiprotozoal	(Ganapaty et al.,
				2008a)
237	7,4'-Dihydroxy-3',5'-	T. purpurea	Cancer	(Chang et al., 2000)
	dimethoxyisoflavone		chemopreventive	
240	(-)-3-Hydroxy-4-	T. purpurea	Cancer	(Chang et al., 2000)
	methoxy-8,9-		chemopreventive	
	methylenedioxypteroca			
	rpan			
241	Medicarpin	T. purpurea	Cancer	(Chang et al., 2000)
			chemopreventive	
245	3,4-Dimethylenedioxy-	T. aequilata	Antifeedant	(Tarus et al., 2002)
	pterocarpan			
247	Emoroidocarpan	T. emoroides	Antifeedant	(Machocho et al.,
				1995)
251	3,4:8,9-	T. aequilata	Antiplasmodial	(Atilaw et al.,
	Dimethylenedioxy-			2017a)
	6a,11a-pterocarpene			
260	6-Hydroxyrotenone	T. rhodesica	Antiplasmodial	(Atilaw et al., 2020)
262	α-Toxicarol	T. toxicaria	Larvicidal	(Vasconcelos et al.,
				2009)
268	Terpurlepflavone	T. purpurea	Antiplasmodial	(Atilaw et al.,
			Cytotoxicity	2017b)
269	Tachrosin	T. purpurea	Antiplasmodial	(Atilaw et al.,
			Cytotoxicity	2017b)
270	Rhodiflavan A	T. rhodesica	Antiplasmodial	(Atilaw et al., 2020)
271	Rhodiflavan B	T. rhodesica	Antiplasmodial	(Atilaw et al., 2020)
272	Rhodacarpin	T. rhodesica	Antiplasmodial	(Atilaw et al., 2020)

CHAPTER 3: MATERIALS AND METHODS

3.1 Column Chromatography

Column chromatography was performed using Merck silica gel 60 (70-230 mesh) as a stationary phase and *n*-hexane or cyclohexane/ethyl acetate as a mobile phase while gel filtration chromatography was done using Sephadex LH-20 with dichloromethane/methanol (1:1) as mobile phase. TLC was carried out on pre-coated silica gel 60 PF₂₅₄₊₃₆₅ plates. Chromatotron 7924T (USA) was used for purification. Chromatographic spots were detected under a UV lamp (254 and 365 nm) or sprayed with 5% sulphuric acid in methanol.

3.2 Preparative High-Performance Liquid Chromatography

Preparative HPLC was performed on a Shimadzu LC-20AP system equipped with a DGU-20A5R degassing unit, SPD-M20A detector and SIL-20ACHT autosampler. A C18 column (Nucleodur Polartec 5μ m, 10 x 125 mm or Phenomenex 10 μ m, 10 x 250 mm) was used for reverse-phase separation. Methanol/water in 0.1% formic acid was used as the mobile phase. The fractions were loaded in the range of 50-200 μ L as injection volume with a flow rate of 4 mL/min and the temperature was maintained at 25°C. The HPLC was operated using the LabSolution software system. The fractions were concentrated under reduced pressure on a rotary evaporator and appropriately combined after verification by LC-MS.

3.3 High-Resolution Electron Spray Ionization Mass Spectrometry

The HPLC–HRMSⁿ experiments were carried out on an LTQ Orbitrap spectrometer (Thermo Scientific, USA) equipped with a HESI-II source. The spectrometer was operated in positive mode with a nominal mass resolving power of 60,000 at m/z 400 with a scan rate of 1 Hz under the following parameters: spray voltage 6 kV, capillary temperature 300°C and tube lens 100 V. Argon served as collision gas and nitrogen was used as sheath gas (66 arbitrary units) and auxiliary gas (8 arbitrary units). All MSⁿ experiments were performed with collision-induced dissociation at 35 eV. The spectrometer was equipped with an Agilent 1200 HPLC system

(Santa Clara, USA) including a pump, PDA detector, column oven (30 °C) and auto-sampler (injection volume: $5 \,\mu$ L for Full scan, $7 \,\mu$ L for MSⁿ). The HPLC analyses were performed with a Luna C18 column (60 × 3 mm, 3 μ m particle size) from Phenomenex (Torrance, USA) with a water (+0.1% formic acid) (A) and methanol (+0.1% formic acid) (B) gradient (flow rate 360 μ L/min). The gradient was set as follows: linear gradient from 95% A to 100% B over 24 min, 100% B isocratic for 5 min, the system returned within 1 min to initial conditions of 95% A and was equilibrated for 5 min. All the samples were dissolved in methanol.

3.4 Nuclear Magnetic Resonance Spectroscopy

NMR spectra were recorded on a Bruker Advance III 600 MHz spectrometer equipped with a cryoprobe unit using standard pulse sequences and referenced with the TMS. The chemical shifts (δ) are expressed in parts per million (ppm) and coupling constants (*J*) in Hertz (Hz). COSY, NOESY, HSQC and HMBC experiments were acquired using the standard Bruker programs. All the experiments were performed in deuterated solvents and chemical shifts were calibrated relative to the solvent peaks.

3.5 Optical Rotation and Circular Dichroism

Optical rotation was determined using an Autopol IV automatic polarimeter. CD measurements were done on a Jasco J-715 spectrometer.

3.6: Plant Materials

Detailed information regarding the collection of *Tephrosia* species used in this study is presented in Table 3.1. The plants were authenticated by Mr. Patrick Mutiso of the University Herbarium, School of Biological Sciences, the University of Nairobi, where voucher specimens were deposited.

<i>Tephrosia</i> species	Plant part	Locality	Collection date	Voucher number
T. vogelii	Seedpods	Tororo, Uganda N0°39'37.2'' E034°12'5.6''	04.08.2016	ORO-2016/04
T. hildebrandtii	Aerial parts	Thika, Kenya S01°03'19.2" E037°14'10.4"	23.02.2017	ORO-2017/07
T. elata	Aerial parts	Thika, Kenya S01°03'20.5" E037°14'12.4"	23.02.2017	ORO-2017/08
T. rhodesica	Stems	Dzombo hills, Kwale county, Kenya S04°29'28.9" E039°15'16.3"	27.03.2018	ORO-2018/09
T. linearis	Aerial parts	Gongoni, Kwale county, Kenya S04°23'57.3" E039°27'17.4"	28.03.2018	ORO-2018/11

Table 3.1: Plant collection and voucher details

3.7: Extraction and Isolation

3.7.1: The Aerial Parts of Tephrosia linearis

The powder of *T. linearis* aerial parts (890 g) was extracted using dichloromethane/methanol (1:1). The concentrated extract (72.5 g) was partitioned between water and *n*-hexane to remove fats. The aqueous layer was further partitioned in ethyl acetate (EtOAc). The ethyl acetate portion was concentrated to provide a brown paste (18.4 g) that was then fractionated on silica gel using cyclohexane/ethyl acetate (EtOAc) in increasing polarity. The fraction that eluted at 5% EtOAc in cyclohexane was purified on Sephadex LH-20 using dichloromethane/methanol (1:1) followed by preparative HPLC (20:80, MeOH/H₂O-100% MeOH gradient elution for 50 min at a flow rate of 4 mL/min) yielding lineaflavone C (**3**) (1.1 mg). Similarly, the 10% EtOAc in cyclohexane fraction was purified using Sephadex LH-20 followed by preparative HPLC to give acetylobovatin (**6**) (1.0 mg). The 20% EtOAc in cyclohexane fraction was purified in a similar way to give maackiain (**24**) (11.5 mg), tephrosin (**23**) (5.3 mg), rotenone (**20**) (3.7 mg), deguelin (**22**) (6.3 mg) and 6-*C*-prenylapigenin (**10**) (18.2 mg). Fractions from 30% EtOAc in

cyclohexane were also purified on Sephadex LH-20 followed by preparative HPLC to give lineaflavone A (1) (24.3 mg), lineaflavone B (2) (5.3 mg), lineaflavone D (4) (1.9 mg), 6methoxygeraldone (5) (1.0 mg), 5-hydroxy-7-methoxysaniculamin A (7) (1.0 mg), 7-*O*methyl-6-prenylnaringenin (8) (2.3 mg), erylivingstone I (9) (1.5 mg), 5,7,4',2"-tetrahydroxy-6-[3"-methyl-3"-butenyl]-flavone (11) (8.8 mg), apigenin (12) (1.2 mg), atalantoflavone (15) (4.9 mg), geraldone (14) (1.0 mg), munduserone (18) (1.0 mg), *cis*-12a-hydroxymunduserone (19) (1.0 mg) and 12a-hydroxyrotenone (21) (3.3 mg). Purification of the 100% EtOAc fractions by preparative HPLC gave luteolin (13) (3.3 mg), patuletin 3-*O*-rhamnoside (16) (1.0 mg) and eupatolitin 3-*O*-rhamnoside (17) (16.5 mg).

3.7.2: The Aerial Parts of Tephrosia hildebrandtii

The powder of T. hildebrandtii aerial part (1.0 kg) was extracted using dichloromethanemethanol (1:1) to provide a dark brown paste (82.4 g). The crude extract (42.9 g) was fractionated on silica gel using cyclohexane-EtOAc in increasing polarity. The fraction that eluted with 30% EtOAc in cyclohexane was purified on Sephadex LH-20 using dichloromethane-methanol, (1:1) followed by Prep.-HPLC (20:80, MeOH/H2O-100% MeOH gradient elution for 50 min with flow rate of 4 mL/min) to give 5,7,3'-trihydroxy-4-methoxy-8-prenylisoflavone 5,3'-dihdroxy-4'-methoxy-2",2"-(26)(1.0)mg), dimethylpyrano[5",6":8,7]isoflavone (27) (1.1 mg), 4-hydroxyemoroidocarpan (28) (1.0 mg), pongachin (31) (1.6 mg), emoroidenone (32) (2.0 mg) and tephrosin (22) (1.8 mg). Similarly, the 50% EtOAc in cyclohexane fraction was purified using Sephadex LH-20 followed by Prep.-HPLC to give hildaflavone (25) (1.0 mg), desmoxyphyllin A (33) (1.0 mg), hildecarpin (29) (1.7 mg), pisatin (**30**) (1.6 mg) and pinoresinol (**34**) (1.2 mg).

3.7.3: The Seedpods of Tephrosia vogelii

The seedpods powder of T. vogelii (4.0 kg) was extracted using dichloromethane/methanol (1:1) to provide a dark brown paste (427.1 g). The concentrated extract was partitioned between water and *n*-hexane to remove fats. The aqueous layer was further partitioned in ethyl acetate (EtOAc). The ethyl acetate portion was concentrated to provide a brown paste (122.5 g) that was then fractionated on silica gel using *n*-hexane/EtOAc in increasing polarity. The fractions that eluted with 5-10% EtOAc in *n*-hexane were combined together and purified on Sephadex LH-20 using dichloromethane/methanol (1:1) followed by chromatotron (20:80, EtOAc/nhexane-100% EtOAc gradient elution) to give isopongaflavone (38) (54.7 mg), 6a,12adehydro-a-toxicarol (43) (2.4 mg) and dehydrorotenone (42) (20.1 mg). 15% EtOAc in nhexane fraction was purified on Prep.-HPLC (20:80, MeOH/H2O-100% MeOH gradient elution for 35 min) to give vogelisoflavone A (35) (3.3 mg), onogenin (37) (1.7 mg) and tephrosin (23) (1.5 mg). The fraction eluted at 20% was purified on Prep.-HPLC (75:25, MeOH/H₂O isocratic elution for 20 min) to give luteolin (13) (1.3 mg). 70% EtOAc in *n*-hexane fraction was purified on Prep.-HPLC (5:80, MeOH/H2O-100% MeOH gradient elution for 50 min) to give vogelisoflavone B (36) (2.3 mg), 4',7-dihydroxy-3'-methoxyflavanone (39) (1.2 mg), trans-p-hydroxycinnamic acid (40) (2.6 mg), 2-methoxygliricidol (41) (1.1 mg) and pinoresinol (34) (1.2 mg).

3.7.4: The Stems of Tephrosia elata

The powdered stem of *T. elata* (1.5 kg) was extracted using dichloromethane/methanol (1:1) to provide a dark brown paste (63.5 g). A portion (25.0 g) of the concentrated extract was partitioned between water and *n*-hexane to remove fats. The aqueous layer was further partitioned in EtOAc. The ethyl acetate portion was concentrated to provide a brown paste (10.1 g). It was then fractionated on silica gel using *n*-hexane/EtOAc/MeOH (6:3:1) and two major fractions were obtained. The second fraction was purified on Prep.-HPLC (35:80,

MeOH/H₂O-100% MeOH gradient elution for 50 min) to give elatisoflavone (**44**) (1.0 mg), barbigerone (**45**) (3.2 mg), calopogoniumisoflavone B (**46**) (1.0 mg) and jamaicin (**47**) (1.0 mg).

3.7.5: The Stems of Tephrosia rhodesica

The powdered stems of *T. rhodesica* (889 g) was extracted using dichloromethane/fractionated on silica gel using cyclohexane/EtOAc in increasing polarity. The fractions that eluted with 10% EtOAc in cyclohexane was purified on Sephadex LH-20 using dichloromethane/methanol (1:1) followed by Prep.-HPLC (20:80, MeOH/H₂O-100% MeOH gradient elution for 45 min) to give glabranin (**49**) (1.0 mg) and edunol (**56**) (2.8 mg). The 20% EtOAc in cyclohexane fraction was purified on Prep.-HPLC (20:80, MeOH/H₂O-100% MeOH gradient elution for 35 min) to give 3-methoxycoumestrol (**48**) (1.0 mg). The fraction eluted at 30% EtOAc in cyclohexane was purified on Prep.-HPLC (20:85, MeOH/H₂O -100% MeOH gradient elution for 50 min) to give rhodiflavan C (**53**) (1.0 mg), liquiritigenin (**51**) (1.0 mg), naringenin (**52**) (1.0 mg), 3'-*O*-methylorobol (**54**) (1.1 mg), genistein (**55**) (1.0 mg), 7-*O*-methylglabranin (**50**) (1.0 mg), tephrosin (**23**) (1.0 mg) and 12a-hydroxyrotenone (**21**) (1.2 mg).

3.8: Synthesis of the Pyrazoline Derivative of Isopongaflavone

Isopongaflavone, **38** (10 mg) was dissolved in ethanol (5 mL) and hydrazine monohydrate (0.5 mL) was added dropwise. The mixture was refluxed at 85°C for 10 hours with the progress of the reaction being monitored using LC-MS. The reaction mixture was concentrated *in vacuo*, diluted with water (100 mL) and extracted with dichloromethane (3 x 15 mL). The dichloromethane extract was purified using prep.-HPLC (20:85, MeOH/H₂O-100% MeOH gradient elution for 45 min) to give a pyrazole isopongaflavone derivative, pyrazoisopongaflavone (**57**) (6.98 mg, 67% yield).

3.9: Anti-inflammatory Assay

The anti-inflammatory assays were done in Pharmacelsus, Saarbrücken, Germany. They were conducted using peripheral blood mononuclear cells obtained from Immunospot (ePBMC®-Uncharacterized Cryopreserved Human PBMC) purchased from Cellular Technologies [C.T.L., Limited Ohio, USA, Appendix B2, (http://www.immunospot.com/CatalogueRetrieve.aspx?ProductID=10537096&A=SearchRes ult&SearchID=10324581&ObjectID=10537096&ObjectType=27)]. The pure compounds were dissolved in dimethyl sulfoxide (DMSO) to obtain 20 mM stock solutions while the crude plant extract was made as a 20 mg/mL stock solution. Ibuprofen was prepared as a stock solution of 20 mM in DMSO and was used as a positive control. Lipopolysaccharide (LPS) was dissolved in a cell culture medium at a concentration of 1 mg/mL. Pure compounds were tested at a concentration of 100 μ M, while the crude plant extract was used at a concentration of 100 μ g/mL. The final DMSO concentration was 0.5% in all the samples. The positive control, ibuprofen, was also used at 100 μ M and all samples were co-incubated with 10 μ g/mL LPS. PBMCs were the main source of cytokines [interleukins (IL-1β, IL-2, IL-6), interferongamma (IFN-y), granulocyte-macrophage colony-stimulating factor (GM-CSF) and tumor necrosis factor-*alpha* (TNF- α)] within the circulating blood. Due to the small amounts of cytokines released by PBMCs into the supernatant, a bead-based assay (ProcartaPlex, Luminex) was used to quantify the six cytokines in parallel within a 50 μ L sample using appropriate calibration standards. Human cryopreserved PBMCs were thawed according to the manufacturer's instructions. Three vials of cells from different donors were pooled. Cells were

washed, resuspended in RPMI 1640 containing 10% FBS, plated in 96-well round-bottom plates at 100,000 PBMCs/well and exposed to the test items at the concentrations stated above. Therefore, subsequent dilutions of stock solutions of the test items were prepared in a 96-well plate and transferred to the PBMCs containing wells. The cells were incubated for 24 hours at 37°C and 5% CO₂. The plates were then centrifuged for 3 min at 350 gyrations and the cell-free supernatant was collected and subjected to cytokine bead-array assay. The cytokine bead-array assay was conducted according to the manufacturer's instructions and read on a MagPix reader. For the dose-response relationship, absolute concentrations were calculated by the MagPix software using two separate calibration series as provided by the manufacturer. For negative control, cells were incubated only with a cell culture medium. As a positive control for inflammation, cells were incubated with 10 μ g/mL LPS, while as a positive control for anti-inflammation, cells were co-incubated with 10 μ g/mL LPS and 100 μ M ibuprofen.

CHAPTER 4: RESULTS AND DISCUSSION

In this study, five *Tephrosia* species (*T. linearis*, *T. hildebrandtii*, *T. vogelii*, *T. elata* and *T. rhodesica*) were phytochemically studied to identify secondary metabolites with antiinflammatory properties. Their crude extracts were subjected to chromatographic separations leading to the identification of fifty-six compounds. Their characterizations were based on UV, NMR and MS spectroscopic data. The structural elucidation and anti-inflammatory activities of the compounds from these five *Tephrosia* species are discussed in the following sections.

4.1: Characterization of Compounds Isolated from Tephrosia linearis

The following compounds were isolated from the aerial parts of *T. linearis*: seven new compounds; lineaflavone A (1), lineaflavone B (2), lineaflavone C (3), lineaflavone D (4), 6-methoxygeraldone (5), acetylobovatin (6) and 5-hydroxy-7-methoxysaniculamin A (7), together with eighteen other known compounds identified as 7-*O*-methyl-6-prenylnaringenin (8), erylivingstone I (9), 6-*C*-prenylapigenin (10), 5,7,4',2"-tetrahydroxy-6-[3"-methyl-3"-butenyl]-flavone (11), apigenin (12), luteolin (13), geraldone (14), atalantoflavone (15), patuletin 3-*O*-rhamnoside (16), eupatolitin 3-*O*-rhamnoside (17), munduserone (18), *cis*-12a-hydroxymunduserone (19), rotenone (20), 12a-hydroxyrotenone (21), deguelin (22), tephrosin (23) and (-)-maackianin (24).

4.1.1: Lineaflavone A (1)

Compound **1** was isolated as a pale-yellow paste. Its molecular formula was deduced as C₂₇H₂₈O₅ based on the HRESIMS molecular ion $[M+H]^+$ at *m/z* 433.2011 (calcd for C₂₇H₂₉O₅, 433.2010) and $[M+Na]^+$ at *m/z* 455.1828 (calcd for C₂₇H₂₈O₅Na 455.1829) together with ¹³C NMR data (Table 4.1 and Appendix A1). A flavone skeleton was evident from the UV (λ_{max} 252, 300, and 336 nm) and NMR data [δ_{H} 6.69 (H-3); δ_{C} 161.4 (C-2), 109.0 (C-3), and 176.6 (C-4)] (Table 4.1 and Appendix A1) (Mabry *et al.*, 1970; Agrawal, 1989). The ¹H NMR data

also exhibited signals for a methoxy group (δ_H 3.87, δ_C 62.9), a dimethylpyran ring [(*cis*olefinic protons at $\delta_{\rm H}$ 5.93, 6.77 (d, J = 10.1 Hz) and methyl protons at $\delta_{\rm H}$ 1.42 (s, 6H)] and a *trans*-olefinic 3-methoxy-3-methylbut-1-enyl group [olefinic protons at $\delta_{\rm H}$ 6.86, 6.63 (d, J =16.7 Hz)] (Atilaw et al., 2017b)]. The ¹H NMR further revealed signals for sets of mutually coupled protons resonating at $\delta_{\rm H}$ 8.05 (2H, m), 7.60 (2H, m) and 7.61 (1H, m) assigned to ring B (Prabhakar et al., 1996; Atilaw et al., 2017b). The MS data (Scheme 4.1 and Appendix A1) of 1 showed fragments of 64 Da (2xCH₃OH) in the positive-ion mode confirming the occurrence of two methoxy groups in the compound. Further, loss of 42 Da (C_3H_6), 54 Da (C_4H_6) , and 66 Da (C_5H_6) from $[M+H-64]^+$ ion in the MS³ spectrum was ascribed to the prenyl and dimethylpyran moieties (Xu et al., 2012). The absence of substitution in ring B was further evident from the retro-Diels Alder MS fragmentations of the C-ring (Ma et al., 1997) yielding m/z 249 indicating a loss of C₈H₆ and also m/z 233 for loss of C₉H₆O₂. This implied that ring A was completely substituted. The HMBC correlations of the proton at $\delta_{\rm H}$ 6.77 (H-4") with C-5 and C-7 and $\delta_{\rm H}$ 5.93 (H-5") with C-6 allowed the placement of the 2,2-dimethylpyran ring at C-6/7. HMBC correlations of $\delta_{\rm H}$ 6.86 (H-1"") with C-7 and C-9 supported the placement of the trans-olefinic 3-methoxy-3-methylbut-1-enyl substituent at C-8. The placement of the methoxy group ($\delta_{\rm H}$ 3.87) at C-5 was established based on its HMBC correlation. Therefore, compound 1 was characterized as 5-methoxy-2",2"-dimethylpyrano[5",6":6,7]-8-(E-3-methoxy-3methylbut-1-enyl)flavone. This is a new compound and was given the trivial name lineaflavone A.

Scheme 4.1: Collision-Induced Dissociation (CID) Mass Fragments of Compound 1 4.1.2: Lineaflavone B (2)

This compound was isolated as a yellow paste. It had a molecular formula of $C_{26}H_{26}O_5$ from HRESIMS data [molecular ion $[M+H]^+$, m/z 419.1853 (calcd for $C_{26}H_{27}O_5$, 419.1853) and the $[M+Na]^+$ ion at m/z 441.1673 (calcd for $C_{26}H_{26}O_5Na$, 441.1672)] and ¹³C NMR data (Table 4.1 and Appendix A2). The NMR data of **2** showed similarity with those of **1**. The only discrepancy was in the nature of the prenyl substituent at C-8. The prenyl substituent in **2** has a hydroxy group at C-3^{III} instead of a methoxy group and a *cis*-olefinic double bond (J = 12.1 Hz) rather than *trans* as in **1** (Hegazy *et al.*, 2011; Stevenson *et al.*, 2012). The NOESY correlation between H-1^{III} and H-2^{III} confirmed the *cis*-configuration. Consistent with this, its MS showed neutral losses of 18 Da (H₂O) and 32 Da (CH₃OH) confirming the presence of the hydroxy group and one methoxy group, instead of two methoxy groups as in compound **1**. Therefore, compound **2** was characterized as 5-methoxy-2^{II},2^{III}-dimethylpyrano[5^{II},6^{III}:6,7]-8-(Z-3-

hydroxy-3-methylbut-1-enyl)flavone. This new compound was given the trivial name lineaflavone B.

		1			2	
Position	δ	$\delta_{\rm H}$, mult. (<i>J</i> in Hz)	НМВС	δc	δ _H , mult. (<i>J</i> in Hz)	НМВС
2	161.4			161.2		
3	109.0	6.69, s	C-2, C-4, C-10, C-1'	100.4	6.67, s	C- 2, C-4, C-10, C-1'
4	176.6			176.9		
5	154.7			154.6		
6	113.7			113.0		
7	156.1			155.0		
8	111.4			113.2		
9	156.4			156.3		
10	113.3			112.9		
1'	132.8			132.6		
2'/6'	127.0	8.05, m	C-2, C-2'/6', C-4'	127.0	8.06, m	C-2'/6', C-4', C-2
3'/5'	130.0	7.60, m	C-1', C-3'/5'	129.8	7.56, m	C-1', C-3'/5'
4'	132.2	7.61, m	C-2'/6'	132.1	7.57, m	C-2'/6'
2"	78.8			78.7		
3"	131.7	5.93, d (10.1)	C-6, C-2", C-2"-Me ₂	131.6	5.87, d (10.1)	C-6, C-2", C-2"-Me ₂
4"	116.9	6.77, d (10.1)	C-5, C-6, C-7, C-2"	116.9	6.75, d (10.1)	C-5, C-6, C-7, C-2"
2"-Me ₂	28.4	1.53, s	C-2", C-3", C-2"-Me	28.7	1.49, s	C-2", C-3", C-2"-Me
1'''	118.1	6.86, d (16.7)	C-8, C-7, C-9, C-2''', C-3'''	116.0	6.13, d (12.1)	C-8, C-7, C-9, C-2"', C-3"'
2""	142.1	6.63, d (16.7)	C-8, C-3"', C-3"'-Me ₂	144.6	6.09, d (12.1)	C-8, C-3"', C-3"'-Me ₂
3'''	76.0			71.8		
3'''-Me ₂	26.4	1.42, s	C-2"', C-3"', C-3"'-Me	30.2	1.21, s	C-2"', C-3"', C-3"'-Me
5-OMe	62.9	3.87, s	C-5	62.8	3.86, s	C-5
3'''-OMe	50.6	3.26, s	C-3'''			

 Table 4.1: NMR Data for Compounds 1 and 2 in Acetone-d₆ (600 MHz)

4.1.3: Lineaflavone C (3)

Compound **3** was obtained as a yellow paste. Its molecular formula, C₂₅H₂₂O₄, was established from its HRESIMS [molecular ion [M+H]⁺ at *m/z* 387.1591 (calcd for C₂₅H₂₃O₄, 387.1591) and the [M+Na]⁺ peak at *m/z* 409.1408 (calcd for C₂₅H₂₂O₄Na 409.1410)] and NMR data (Table 4.2 and Appendix 3). A 5-hydroxyflavone derivative was evident from the UV (λ_{max} 230 and 280 nm) and NMR [δ_{H} 6.89 (H-3) and 13.55 (5-OH); δ_{C} 164.1 (C-2), 106.4 (C-3) and 183.8 (C-4)] (Mabry *et al.*, 1970). The NMR data of **3** showed close relation with those of **1**. The notable differences were the occurrence of a hydroxy group at C-5 in **3** rather than a methoxy group in **1** and the nature of the prenyl residue at C-8. The prenyl group in compound **3** had olefinic methylene (δ_{H} 5.13, 5.14 (brs), δ_{C} 117.3) instead of a methoxy group at C-3''' in **1**. The MS² of the compound in the positive-ion mode was dominated by neutral losses of 42 Da (C₃H₆), 54 Da (C₄H₆) and 70 Da (C₃H₆+CO). This confirmed the presence of prenyl and dimethylpyran substituents (Xu *et al.*, 2012). Thus, compound **3** was characterized as 5hydroxy-2'',2''-dimethylpyrano[5'',6'':6,7]-8-(*E*-3-methylbuta-1,3-dienyl)flavone. This is a new compound that was given the trivial name lineaflavone C.

4.1.4: Lineaflavone D (4)

Compound 4 was obtained as a yellow paste. The HRESIMS [molecular ion $[M+H]^+$ at m/z 401.1747 (calcd. for C₂₆H₂₅O₄, 401.1747) and $[M+Na]^+$ at m/z 423.1567 (cacld. C₂₆H₂₄O₄Na, 423.1567)] was consistent with a molecular formula of C₂₆H₂₄O₄. The UV (λ_{max} at 232, 284

and 342 nm) and NMR data (Table 4.2 and Appendix A4) showed that the compound is a flavone derivative (Agrawal, 1989). The ¹H, ¹³C NMR and MS data of **4** are closely related to compound **3**; the difference was in the presence of a methoxy group (δ_H 3.88 and δ_C 62.9) at C-5 in this compound rather than the hydroxy group in **3**. Its MS² in positive ion mode was dominated by neutral losses of 32 Da (CH₃OH) confirming the presence of a methoxy group. Therefore, compound **4**, was characterized as 5-methoxy-2",2"-dimethylpyrano[5",6":6,7]-8-(*E*-3-methylbuta-1,3-dienyl)flavone, a new compound given the trivial name lineaflavone D.

3				4		
Position	δc	$\delta_{\rm H}$, mult. (<i>J</i> in Hz)	HMBC	δ	$\delta_{\rm H}$, mult. (<i>J</i> in Hz)	НМВС
2	164.1			161.5		
3	106.4	6.89, s	C-2, C-4, C-10, C-1'	109.0	6.70, s	C-2, C-4, C-10, C-1'
4	183.8			176.7		
5	156.3			154.7		
6	106.2			113.7		
7	158.0			156.3		
8	106.3			111.5		
9	155.1			156.5		
10	106.1			113.4		
1'	132.4			132.7		
2'/6'	127.4	8.11, m	C-2, C-2'/6', C-4'	127.0	8.05, m	C-2, C-2'/6', C-4'
3'/5'	130.1	7.65, m	C-1', C-3'/5'	130.0	7.61, m	C-1', C-3'/5'
4'	132.9	7.64, m	C-2'/6'	132.3	7.60, m	C-2'/6'
2"	79.5			79.0		
3"	129.3	5.84, d (10.1)	C-6, C-2", C-2"-Me ₂	131.7	5.94, d (10.1)	C-6, C-2", C-2"-Me ₂
4"	115.9	6.72, d (10.0)	C-5, C-6, C-7, C-2"	116.8	6.77, d (10.1)	C-5, C-6, C-7, C-2"
2"-Me ₂	28.5	1.56, s	C-2", C-3", C-2"-Me	28.4	1.55, s	C-2", C-3", C-2"-Me
1""	118.2	6.93, d (16.5)	C-7, C-8, C-9, C-2''', C-3'''	118.5	6.99, d (16.5)	C-7, C-8, C-9, C-2''', C-3'''
2""	136.0	7.45, d (16.5)	C-8, C-3''', C-4''', C-5'''	136.8	7.49, d (16.5)	C-8, C-3''', C-4''', C-5'''
3""	143.9			143.9		
4""	117.3	5.14, br s	C-2''', C-5'''	118.0	5.17, br s	C-2''', C-5'''
5""	18.3	2.07, s	C-2''', C-3''', C-4'''	18.3	2.07	C-2''', C-3''', C-4'''
5-OH		13.55, s	C-5, C-6, C-10			
5-OMe				62.9	3.88, s	C-5

 Table 4.2: NMR Data for Compounds 3 and 4 in Acetone-d₆ (600 MHz)

4.1.5: 6-Methoxygeraldone (5)

This was isolated as a yellow paste. Its molecular formula was deduced as C17H14O6, based on the HRESIMS [molecular ion $[M+H]^+$ at m/z 315.0863 (calcd for C₁₇H₁₅O₆, 315.0863) and the $[M+Na]^+$ peak at m/z 337.0684 (calcd for C₁₇H₁₄O₆Na, 337.0683)] and NMR data (Table 4.3) and Appendix A5). The UV data (λ_{max} 218, 224 and 342 nm) and NMR data [δ_{H} 6.66 (s, H-3); $\delta_{\rm C}$ 163.4 (C-2), 105.6 (C-3) and 177.0 (C-4)] were typical of a flavone (Table 4.3 and Appendix A5) (Mabry et al., 1970; Agrawal, 1989). Further, the NMR data exhibited the presence of two methoxy groups (δ_H 3.97, δ_C 56.5 and δ_H 4.00, δ_C 56.5). The MS³ spectrum of the compound was dominated by losses of 15 Da (CH₃), thus supporting the presence of methoxy groups. The ¹H NMR disclosed signals for two aromatic singlets at $\delta_{\rm H}$ 7.46 and 7.11 and a set of ABX coupled protons [$\delta_{\rm H}$ 7.00 (d, J = 8.3 Hz), 7.58 (dd, J = 8.3, 2.1 Hz and 7.62 (d, J = 2.1 Hz)]. HMBC correlations of the proton at δ_H 7.46 with C-7, C-9 and C-4 placed it at C-5. Further, this proton ($\delta_{\rm H}$ 7.46) showed a NOESY correlation with the methoxy proton at $\delta_{\rm H}$ 3.97 that allowed the placement of the methoxy group at C-6. This implied the other singlet proton at δ_H 7.11 could only be at C-8 and the ABX system was in ring B. Two ABX protons at $\delta_{\rm H}$ 7.58 (dd, J = 8.3, 2.1 Hz) and 7.62 (d, J = 2.1 Hz) showed HMBC correlation with C-2 which placed them at C-6' and C-2', respectively, and their coupling partner ($\delta_{\rm H}$ 7.00) at C-5'. The hydroxy group proton at $\delta_{\rm H}$ 8.38 showed HMBC correlation with C-5', C-4' and C-3' which allowed for the placement of the hydroxy group at C-4' and the methoxy group ($\delta_{\rm H}$ 4.00) at C-3'. This was supported by the NOESY correlation of H-2' ($\delta_{\rm H}$ 7.62) with the methoxy protons (($\delta_{\rm H}$ 4.00). Thus, compound 5 was characterized as 7,4'-dihydroxy-6,3'-dimethoxyflavone. This is a new compound and was given the trivial name 6-methoxygeraldone by comparison with geraldone (14) (Lopes et al., 1979).

		5	
Position	δ _C	$\delta_{\rm H}$, mult. (<i>J</i> in Hz)	HMBC
2	163.4		
3	105.6	6.66, s	C-2, C-4, C-10, C-1'
4	177.0		
5	105.3	7.46, s	C-4, C-6, C-7, C-9
6	147.3		
7	153.1		
8	104.1	7.11, s	C-6, C-7, C-10
9	153.3		
10	117.7		
1'	124.4		
2'	110.2	7.62, d (2.1)	C-2, C-4', C-3', C-6'
3'	148.8		
4'	150.8		
5'	116.3	7.00, d (8.3)	C-1', C-3'
6'	120.8	7.58, dd (8.3, 2.1)	C-2, C-2', C-4'
6-OMe	56.5	3.97, s	C-6
3'-OMe	56.5	4.00, s	C-3'
4'-OH		8.38	C-3', C-4', C-5'

Table 4.3: NMR Data for Compound 5 in Acetone-d₆ (600 MHz)

4.1.6: Acetylobovatin (6)

Compound **6** was isolated as an off-white paste. The molecular formula was deduced as $C_{22}H_{20}O_6$ from the HRESIMS [molecular ion $[M+H]^+$ at m/z 381.1333 (calcd for $C_{22}H_{21}O_6$, 381.1333) and a $[M+Na]^+$ peak at m/z 403.1161 (calcd for $C_{22}H_{20}O_6Na$, 403.1152)] and ¹³C NMR data (Table 4.4 and Appendix A6). The UV (λ_{max} 224, 272, 296 and 358 nm) and NMR data [δ_H 5.68 (dd, J = 12.7, 3.1 Hz, H-2), 2.90 (dd, J = 17.1, 3.2 Hz, H-3_{eq}), 3.22 (dd, J = 17.1, 12.7 Hz, H-3_{ax}) and 12.24 (OH-5); δ_C 80.2 (C-2), 43.4 (C-3) and 197.4 (C-4)] showed the presence of a 5-hydroxyflavanone skeleton (Agrawal, 1989). A modified 2,2-dimethylpyran ring was evident in the NMR spectra [*cis*-olefinic protons at δ_H 6.68, 5.58 (d, J = 10.2 Hz, 1H),

a methyl group $\delta_{\rm H}$ 1.45 (s, 3H), oxymethylene protons $\delta_{\rm H}$ 4.09, 4.25 (d, J = 11.7 Hz, 2H) and an acetyl group [δ_H 1.97 (s, 3H), δ_C 20.6, 170.6 (C=O)]. HMBC correlation of the oxymethylene protons at $\delta_{\rm H}$ 4.09 with C-2", C-3", 2"-CH₃ and C=O allowed the placement of the acetyl group at 2"-CH₂. The presence of the acetyl group and the pyran ring was further supported by MS³ data that showed fragments of 18 Da (H₂O), 28 Da, (CO), 60 Da (CH₃COOH), 70 Da (C₃H₆, CO) and 104 Da (C₈H₈) (Xu et al., 2012). The NMR data showed signals for an unsubstituted ring B [($\delta_{\rm H}$ 7.60 (H-2'/6'), 7.47 (H-3'/5') and 7.42 (H-4'))] and a singlet at $\delta_{\rm H}$ 5.91 that was assigned to ring A. HMBC correlation between the hydroxy proton at $\delta_{\rm H}$ 12.24 (OH-5) with $\delta_{\rm C}$ 97.6 (C-6, $\delta_{\rm H}$ 5.91) allowed the placement of the modified 2",2"dimethylpyran ring at C-7/8. A (2S)-configuration was established from the ECD spectrum of 6 (Figure 4.1) that showed positive and negative Cotton effects at 317 and 295 nm (Stevenson et al., 2012). However, the configuration at 2"-CH2 remains undetermined. Therefore, compound 6 was characterized (2S)-5-hydroxy-2"-methyl-2"as acetoxymethylpyrano[5",6":7,8]flavanone. It is a new compound that was given the trivial name acetylobovatin because of its close similarity with obovatin (Andrei *et al.*, 2000).

Figure 4.1: ECD spectrum of compound 6

4.1.7: 5-Hydroxy-7-methoxysaniculamin A (7)

Compound 7 was isolated as an off-white paste. Its molecular formula was deduced as $C_{21}H_{22}O_6$ based on the HRESIMS [molecular ion [M+H]⁺ at m/z 371.1488 (calcd for $C_{21}H_{23}O_6$, 371.1489) and the [M+Na]⁺ peak at m/z 393.1309 (calcd for C₂₁H₂₂O₆Na, 393.1309)] and NMR (Table 4.4 and Appendix A7). In the NMR, the AMX spin system at $\delta_{\rm H}$ 5.47 (dd, J = 13.2, 2.5Hz, H-2), 2.73 (m, H-3_{eq}) and signals at 3.22 (dd, J = 17.2, 13.0 Hz, H-3_{ax}), 12.35 (OH-5); $\delta_{\rm C}$ 79.3 (C-2), 42.7 (C-3) and 196.9 (C-4)] (Xu *et al.*, 2016) and UV (λ_{max} 224, 230, 292 and 336 nm) data (Mabry et al., 1970) indicated that compound 7 has a 5-hydroxyflavanone skeleton. Further, the NMR spectra exhibited signals for a methoxy group ($\delta_{\rm H}$ 3.88, $\delta_{\rm C}$ 55.5) and a 2"hydroxy-3"-methylbut-3"-enyl [$\delta_{\rm H}$ 2.86, 2.77 (m) for H-1", 4.29 (dd, J = 7.0, 3.8 Hz) for H-2", 4.69 and 4.63 (brs) for H-4" and 1.79 (s) for H-5"] group. The MS data was dominated by losses of 72 Da (C₄H₈O) and 18 Da (H₂O), supporting the existence of a hydroxy-3-methylbut-3-enyl group (Xu *et al.*, 2012). The ¹H NMR spectrum further showed an AA'XX' spin system at $\delta_{\rm H}$ 7.41 and 6.91 (J = 8.5 Hz, d, 2H) assigned to a 4'-substituted ring B. HMBC correlations of H-1" (δ_H 4.25, 4.09) with C-7 (δ_C 166.1) and C-5 (δ_C 160.9) allowed placement of the 2-hydroxy-3-methylbut-3-enyl group at C-6 ($\delta_{\rm C}$ 106.8). A (2S)-configuration was established from the ECD spectrum of 7 (Figure 4.2) that showed positive and negative Cotton effects at 335 and 291 nm (Bedane et al., 2016). However, the configuration at 2" remains undetermined. Therefore, compound 7 was characterized as (2S)-5,4',dihydroxy-7-methoxy-6-(2-hydroxy-3methylbut-3-enyl)flavanone, it is a new compound given the trivial name 5-hydroxy-7methoxysaniculamin A, by comparison with saniculamin A (Xu *et al.*, 2016).

Figure 4.2: ECD spectrum of compound 7

	6				7		
Position	δc	$\delta_{\rm H}$, mult. (<i>J</i> in Hz)	HMBC	δ	$\delta_{\rm H}$, mult. (<i>J</i> in Hz)	НМВС	
2	80.2	5.68, dd (12.7, 3.1)	C-4, C-1', C-2'/6'	79.3	5.47, dd (13.2, 2.5)	C-4, C-1', C-2'/6'	
3	43.4	2.90, dd (17.1, 3.2 H _{eq})	C-2, C-4, C-10, C-1'	42.7	2.73, m (H _{eq})	C-2, C-4, C-10, C-1'	
		3.22, dd (17.1, 12.7 Hax)			3.22, dd (17.2, 13.0 Hax)		
4	197.4			196.9			
5	164.8			160.9			
6	97.6	5.91, s	C-5, C-7, C-8, C-10	106.8			
7	162.4			166.1			
8	102.3			90.9	6.15, s	C-6, C-7, C-9, C-10	
9	157.9			162.1			
10	103.8			102.5			
1'	139.8			129.9			
2'/6'	127.2	7.60, m	C-2, C-2'/6', C-4'	128.1	7.41, d (8.5)	C-2, C-2'/6', C-4'	
3'/5'	129.5	7.47, m	C-1', C-4', C-3'/5'	115.2	6.91, d (8.5)	C-1', C-3'/5', C-4'	
4'	129.6	7.42, m	C-2'/6', C-3'/5'	157.9			
1"				28.6	2.76, m	C-5, C-6, C-7, C-2"	
					2.86, m		
2"	80.0			74.5	4.29, m	C-1", C-4", C-5"	
3"	123.1	5.58, d (10.1)	C-8, C-4", 2"-CH ₃ , 2"-CH ₂	148.4			
4"	118.5	6.68, d (10.1)	C-7, C-8, C-9, C-2"	109.3	4.69 and 4.63, s(broad)	C-2", C-3", C-5"	
5"				16.6	1.66, s	C-2", C-3", C-4"	
2"-CH ₂	68.9	4.09, d (11.8)	C-2", C-3", 2"-CH ₃ , C=O				
		4.25, d (11.7)					
2"-CH ₃	23.9	1.45, s	C-2", C-3", 2"-CH ₂				
7-OMe				55.5	3.75, s	C-7	
5-OH		12.24	C-5, C-6, C-10,		12.35	C-5, C-6, C-10	
<u>C(</u> O)CH ₃	170.6						
C(O) <u>CH</u> 3	20.6	1.97	C=O				

Table 4.4: NMR Data for Compounds 6 and 7 in Acetone-d₆ (600 MHz)

4.1.8: 7-O-Methyl-6-prenylnaringenin (8)

Compound 8 was isolated as an off-white paste. Its molecular formula was deduced as $C_{21}H_{22}O_5$ from its HRESIMS [molecular ion [M+H]⁺ at m/z 355.1537 (calcd for $C_{21}H_{23}O_5$, 355.1540)] and ¹³C NMR data (Table 4.5 and Appendix A8). A 5-hydroxyflavanone was evident from the UV (λ_{max} 236 and 292 nm) and NMR [AMX system; δ_H 5.39 (1H, dd, J =13.2, 2.9 Hz) for H-2, 3.04 (1H, dd, J = 16.8, 13.2 Hz) for H-3ax, 2.75 (1H, dd, J = 16.8, 2.9 Hz) for H-3eq and 12.27 for 5-OH] (Table 4.5 and Appendix A8) (Mabry et al., 1970; Agrawal, 1989). Further, the NMR spectra exhibited signals for a methoxy group [$\delta_{\rm H}$ 3.89 ($\delta_{\rm C}$ 56.5)], prenyl group [$\delta_{\rm H}$ 3.22, 2H ($\delta_{\rm C}$ 21.6) for methylene group; 5.16, t, J = 7.3 Hz, 1H ($\delta_{\rm C}$ 123.4) for olefinic protons, δ_C 131.4 for a quaternary carbon and δ_H 1.63 (s, 3H) and δ_H 1.74 (s, 3H) for methyl groups]. The NMR data also showed peaks for AA'XX'-coupled aromatic protons [δ_{H} 7.42 ($\delta_{\rm C}$ 129.0) and 6.91 ($\delta_{\rm C}$ 116.2) (2H, d, J = 8.7 Hz) to H-2'/6' and H-3'/5', respectively, assigned to ring B] and a singlet aromatic proton at $\delta_{\rm H}$ 6.15. The attachment of the prenyl group to C-6 also followed HMBC correlations of H-1" ($\delta_{\rm H}$ 3.22) with C-6, C-5 and C-7, while the methoxy group was placed at C-7 based on the HMBC correlation of its protons with C-7. Thus, compound 8 was identified as 7-O-methyl-6-prenylnaringenin (Intekhab and Aslam, 2009; Zhang et al., 2019b). 7-O-Methyl-6-prenylnaringenin (8) was previously isolated from Feronia limonia (Intekhab and Aslam, 2009) and Mallotus conspurcatus Croizat (Zhang et al., 2019b). This is its first report in the genus *Tephrosia*.

8

4.1.9: Erylivingstone I (9)

Compound 9 was obtained as an off-white solid. The molecular formula of C₁₇H₁₆O₆ was established from the HRESIMS [molecular ion $[M+H]^+$ at m/z 317.1021 (calcd for C₁₇H₁₇O₆, 317.1020)]. Compound **9** was established as a flavanone from UV (λ_{max} 236 and 292 nm) and ¹H NMR data (Table 4.5 and Appendix A9) (Mabry *et al.*, 1970; Agrawal, 1989). The NMR data exhibited signals of two methoxy groups [$\delta_{\rm H}$ 3.85 ($\delta_{\rm C}$ 56.5) and $\delta_{\rm H}$ 3.87 ($\delta_{\rm C}$ 56.3)]. Further, the NMR data revealed signals for an ABX spin system [δ_H 7.18 (1H, d, J = 2.0 Hz); 6.86 (1H, d, J = 8.1 Hz) and 6.99 (1H, dd, J = 8.1, 2.0 Hz)] and two aromatic singlet protons (δ_H 7.26 and 6.47). Placement of the singlet at $\delta_{\rm H}$ 7.26 at C-5 followed its HMBC correlations with C-4, C-7 and C-9. The other singlet proton at $\delta_{\rm H}$ 6.47 could only be at C-8 as evident from its HMBC correlations with C-6, C-7, C-9and C-10. The HMBC correlation of the methoxy protons at $\delta_{\rm H}$ 3.85 with C-6 placed the substituent at C-6. Two ABX protons at $\delta_{\rm H}$ 7.18 (1H, d, J = 2.0 Hz) and 6.99 (1H, dd, J = 8.1, 2.0 Hz) showed HMBC correlations with C-2 that placed them at C-2' and C-6', respectively, and their coupling partner [6.86 (1H, d, J = 8.1 Hz)] at C-5'. HMBC correlations of H-5' and methoxy protons ($\delta_{\rm H}$ 3.87) with C-3' place the methoxy group at C-3'. These spectral data of 9 were comparable to those described in the literature and thus compound 9 was identified as 7,4'dihydroxy-6, 3'-dimethoxyflavanone (erylivingstone I) (Bedane et al., 2016). Erylivingstone I (9) was previously isolated from Erythrina livingstoniana (Bedane et al., 2016) and this is its first report in the genus Tephrosia.

8					9			
Position	δc	$\delta_{\rm H}$, mult. (<i>J</i> in Hz)	НМВС	δc	$\delta_{\rm H}$, mult. (<i>J</i> in Hz)	НМВС		
2	80.1	5.46, dd (13.0, 3.0)	C-2'/6', C-1', C-4	80.9	5.39, dd (13.2, 2.9)	C-2', C-6', C-1', C-4		
3	43.6	2.75, dd (17.1, 3.1 Heq)	C-2, C-4, C-1', C-10	44.7	2.66, dd (16.8, 2.9 Heq)	C-4, C-1', C-10		
		3.19, m (Hax)			3.04, dd (16.8, 13.2 Hax)			
4	197.7			190.5				
5	160.9			107.9	7.26, s	C-10, C-6, C- 9, C-7, C-4		
6	109.9			144.2				
7	166.3			159.0				
8	91.8	6.15, s	C-7, C-9, C-6, C-10	104.3	6.47, s	C-7, C-9, C-6, C-10		
9	162.7			155.2				
10	103.5			113.9				
1'	130.8			131.9				
2'	129.0	7.42, d (8.5)	C-2, C-2'/6', C-4'	111.1	7.18, d (2.0)	C-2, C-6', C-4'		
3'	116.2	6.91, d (8.5)	C-3'/5', C-1'	148.3				
4'	158.7			147.7				
5'	116.2	6.91, d (8.5)	C-3'/5', C-1'	115.6	6.86, d (8.1)	C-3', C-1'		
6'	129.0	7.42, d (8.5)	C-2, C-2'/6', C-4'	120.4	6.99, dd (8.1, 2.0)	C-2, C-2', C-4'		
1"	21.6	3.22, m	C-6, C-2", C-5, C-7					
2"	123.4	5.16, t (7.3)	C-4", C-5", C-1"					
3"	131.3							
4"	25.9	1.63, s	C-5", C-2", C-3"					
5"	17.8	1.74, S	C-4", C-2", C-3"					
5-OH		12.27, s						
6-OMe				56.5	3.85, s	C-6		
7-OMe	56.5	3.89, s	C-7					
3'-OMe				56.3	3.87, s	C-3'		

Table 4.5: NMR Data for Compounds 8 and 9 in Acetone-d₆ (600 MHz

4.1.10: 6-C-Prenylapigenin (10)

Compound 10 was isolated as a yellow paste. Its molecular formula was deduced as $C_{20}H_{18}O_5$ from the HRESIMS molecular ion $[M+H]^+$ at m/z 339.1228 (calcd C₂₀H₁₉O₅, 339.1227) and ¹³C NMR data (Table 4.6 and Appendix A10). The presence of a 5-hydroxyflavone skeleton was evident from the UV (λ_{max} 230, 274 and 332 nm) and NMR data (Mabry *et al.*, 1970; Agrawal, 1989). The NMR data exhibited signals for a prenyl group [$\delta_{\rm H}$ 3.25, d, J = 7.2 Hz, 2H ($\delta_{\rm C}$ 22.0) for a methylene group; $\delta_{\rm H}$ 5.28, t, J = 7.5 Hz, 1H ($\delta_{\rm C}$ 123.2) for an olefinic proton, δ_C 131.6 for a quaternary carbon and δ_H 1.65, s, 3H (δ_C 25.9) and δ_H 1.78, s, 3H (δ_C 17.9) for methyl groups] and downfield signals at $\delta_{\rm H}$ 9.62 and 9.20 attributed to two hydroxy groups. Further, the NMR spectra exhibited signals for a singlet in the aromatic region [$\delta_{\rm H}$ 6.61 ($\delta_{\rm C}$ 94.1)] and AA'XX' coupled aromatic protons [$\delta_{\rm H}$ 7.93 and 6.91 (2H, d, J = 8.8 Hz)] assigned to ring B. 5-Hydroxy proton (δ_H 13.30) and H-1" (δ_H 3.25) showed HMBC correlations with C-6 that allowed for placement on the prenyl group at C-6. The HMBC correlations of the hydroxy proton at $\delta_{\rm H}$ 9.20 with C-3'/5' and C-4' allowed for the placement of this group at C-4'. Thus, compound 10 was identified as 5,7,4'-trihydroxy-6-(3-methylbut-2-enyl)flavone (6-C-prenylapigenin) (Monache et al., 1994; Chang et al., 1995; Abegaz et al., 1998). 6-C-Prenylapigenin was previously isolated from Polygonum and Dorstenia species (Abegaz et al., 1998; Dzoyem et al., 2017) and Cudrania cochinchinensis (Chang et al., 1995). It is the first time it is being reported in the genus Tephrosia.

4.1.11: 5,7,4',2''-Tetrahydroxy-6-[3''-methylbut-3''-enyl]flavone (11)

Compound **11** was isolated as a yellow paste. Its molecular formula was deduced as C₂₀H₁₈O₆ from its HRESIMS molecular ion $[M+H]^+$ at *m/z* 355.1176 (calcd for C₂₀H₁₉O₆, 355.1176) and ¹³C NMR data (Table 4.6 and Appendix A11). The presence of a 5-hydroxyflavone skeleton was evident from the UV (λ_{max} 224, 274 and 334 nm) and NMR data (Mabry *et al.*, 1970; Agrawal, 1989). The NMR data showed very close similarity with compound **10**. The only difference was in the nature of the prenyl group. The prenyl substituent in **11** had a hydroxy group at C-2" [δ_{H} 4.43 (dd, *J* = 7.9, 3.5 Hz), δ_{C} 76.5 for an oxymethine residue]. Based on this spectral data, compound **11** was identified as 5,7,4',2"-tetrahydroxy-6-[3"-methylbut-3"-enyl]flavone (Lee *et al.*, 1998) but C-2" absolute configuration remains undetermined. This compound was previously isolated from *Maclura pomifera* (Lee *et al.*, 1998). This is its first report in the genus *Tephrosia*.

	10				11		
Position	δc	δ _H , mult. (<i>J</i> in Hz)	HMBC	δc	δ _H , mult. (<i>J</i> in Hz)	НМВС	
2	164.8			165.0			
3	104.1	6.63, s	C-2, C-4, C-10, C-1'	104.0	6.64, s	C-2, C-4, C-10, C-1'	
4	183.2			183.2			
5	160.2			160.7			
6	112.3			110.2			
7	162.4			164.1			
8	94.1	6.61, s	C-6, C-7, C-9, C-10	95.3	6.56, s	C-6, C-7, C-9, C-10	
9	156.6			157.1			
10	105.2			105.0			
1'	123.4			123.4			
2'/6'	129.2	7.93, d (8.8)	C-2, C-2'/6', C-4'	129.3	7.95, d (8.8)	C-2, C-2'/6', C-4'	
3'/5'	116.9	7.02, d (8.8)	C-1', C-3'/5', C-4'	116.8	7.03, d (8.8)	C-1', C-3'/5', C-4'	
4'	161.8			161.8			
1"	22.0	3.35, d (7.2)	C-5, C-6, C-7, C-2", C-3"	30.3	2.92, dd (14.5, 7.9)	C-5, C-7, C-2"	
•					3.07, dd (14.5, 3.5)		
2"	123.2	5.28, t (7.5)	C-1", C-4", C-5"	76.5	4.43, dd (7.9, 3.5)	C-1", C-3", C-4"	
3"	131.6			148.2			
4"	25.9	1.65, s	C-2", C-3", C-5"	110.4	4.77, br s	C-2", C-5"	
					4.94, br s		
5"	17.9	1.78, s	C-2", C-3", C-4"	18.4	1.84, s	C-3, C-2", C-4"	
5-OH		13.30, s	C-5, C-6, C-10		13.51	C-5, C-6, C-10	
7-OH		9.62, s	C-6, C-7				
4'-OH		9.20	C-3'/5', C-4'				

 Table 4.6: NMR Data for Compounds 10 and 11 in Acetone-d₆ (600 MHz)

4.1.12: Apigenin (12)

Compound **12** was isolated as a yellow paste. Its molecular formula was deduced as C₁₅H₁₀O₅ from the HRESIMS [molecular ion [M+H]⁺ at *m/z* 271.0601 (calcd for C₁₅H₁₁O₅, 271.0601)] and ¹³C NMR data (Table 4.7 and Appendix A12). The presence of a 5-hydroxyflavone skeleton was evident from UV (λ_{max} 230, 266 and 336 nm) and NMR data (Mabry *et al.*, 1970; Agrawal, 1989). The NMR spectra showed the presence of two *meta*-coupled aromatic protons at $\delta_{\rm H}$ 6.26, (d, *J* = 2.1 Hz) and 6.54, (d, *J* = 2.2 Hz) and an AA'XX' spin system [$\delta_{\rm H}$ 7.95 and 7.03 (d, *J* = 8.8 Hz, 2H) assigned to ring B]. The HMBC correlations of the proton at $\delta_{\rm H}$ 6.26 with C-8, C-5, C-10 and C-7 allowed its placement at C-6, while the proton at $\delta_{\rm H}$ 6.54 was assigned to H-8 due to its HMBC correlations with C-6, C-9, C-10 and C-7. Thus, compound **12** was identified as 5,7,4'-trihydroxyflavone (apigenin). Apigenin was previously reported from *Tamarix dioica* (Parmar *et al.*, 1994) and *T. elata* (Atilaw, 2018) but this is its first report in the plant.

4.1.13: Luteolin (13)

Compound **13** was isolated as a yellow paste. Its molecular formula was deduced as $C_{15}H_{10}O_6$ on the basis of its HRESIMS [molecular ion $[M+H]^+$ at *m/z* 287.0551 (calcd for $C_{15}H_{11}O_6$, 287.0550)] and ¹³C NMR data (Table 4.7 and Appendix A13). The presence of a 5-hydroxyflavone skeleton was evident from the UV (λ_{max} 264 and 350 nm) and NMR data (Table 4.7 and Appendix A13) (Mabry *et al.*, 1970; Agrawal, 1989). The NMR spectra exhibited

signals for *meta*-coupled aromatic protons [$\delta_{\rm H}$ 6.25 and 6.52 (1H, d, J = 2.0 Hz) assigned to ring A with biogenetically expected oxygenation at C-7] and ABX-coupled aromatic protons [$\delta_{\rm H}$ 7.50 (1H, d, J = 2.2 Hz), 7.47 (1H, dd, J = 8.3, 2.2 Hz) and 7.00 (1H, d, J = 8.3 Hz)] assigned to ring B. HMBC correlations of C-2 with the protons at $\delta_{\rm H}$ 7.50 and 7.47 allowed the placement of an OH at C-3'. Based on these spectral data and comparison with literature (Lin *et al.*, 2015), compound **13** was identified as 5,7,3',4'-tetrahydroxyflavone (luteolin). Luteolin was previously isolated from *Dendranthema morifolium* (Lin *et al.*, 2015), but this is its first report in the genus *Tephrosia*.

		12		13		
Position	δc	δ _H , mult. (<i>J</i> in Hz)	HMBC	δc	δ _H , mult. (<i>J</i> in Hz)	HMBC
2	165.1			165.2		
3	104.1	6.64, s	C-2, C-4, C-10, C-1'	104.2	6.58, s	C-2, C-4, C-10, C-1'
4	183.1			183.0		
5	163.4			163.4		
6	99.7	6.26, d (2.1)	C-5, C-7, C-8, C-10	99.7	6.25, d (2.0)	C-5, C-7, C-8, C-10
7	164.8			164.9		
8	94.7	6.54, d (2.2)	C-6, C-7, C-9, C-10	94.7	6.52, d (2.0)	C-6, C-9, C-7, C-10
9	158.8			158.8		
10	105.4			105.3		
1'	123.3			123.6		
2'	129.3	7.95, d (8.8)	C-2, C-2'/6', C-4'	114.1	7.50, d (2.2)	C-2, C-6', C-4'
3'	116.9	7.03, d (8.8)	C-1', C-3'/5', C-4'	146.6		
4'	161.9			150.3		
5'	116.9	7.03, d (8.8)	C-1', C-3'/5', C-4'	116.7	7.00, d (8.3)	C-1', C-3', C-4'
6'	129.3	7.95, d (8.8)	C-2, C-2'/6', C-4'	120.1	7.47, d (8.3, 2.2)	C-2, C-2', C-4'
5-OH		13.02	C-5, C-6, C-10		13.04, s	C-5, C-6, C-10

 Table 4.7: NMR Data for Compounds 12 and 13 in Acetone-d₆ (600 MHz)

4.1.14: Geraldone (14)

Compound 14 was obtained as a yellow paste. The ¹³C NMR data and HRESIMS molecular ion $[M+H]^+$ at m/z 285.0758 (calcd for C₁₆H₁₃O₅, 285.0757) were consistent with the molecular formula C₁₆H₁₂O₅ (Table 4.8 and Appendix A14). The UV (λ_{max} 238 and 340 nm) and NMR data indicated that this compound is a flavone (Mabry et al., 1970; Agrawal, 1989). Its NMR data showed the presence of a methoxy group ($\delta_{\rm H}$ 4.00, $\delta_{\rm C}$ 56.6). Further, the NMR spectra showed signals for two ABX spin systems [$\delta_{\rm H}$ 7.96 (1H, d, J = 8.7 Hz), 7.97 (1H, dd, J = 8.7, 2.3 Hz) and 7.84 (1H, d, J = 2.2 Hz)] and [$\delta_{\rm H}$ 7.62 (1H, d, J = 2.1 Hz), 7.59 (1H, dd, J = 8.3, 2.1 Hz) and 7.00 (1H, d, J = 8.3 Hz)]. The ABX-coupled aromatic proton at $\delta_{\rm H}$ 7.96 showed HMBC correlations with C-9 (δ_C 163.2), C-7 (δ_C 158.8) and C-4 (δ_C 177.2) allowing for its placement at C-5 in ring A and thus, the other ABX system was assigned to ring B. The substitution pattern of ring B of 14 and 13 are identical. HMBC correlation of the *meta* proton (H-2') with C-3' which in turn with methoxy protons allowed for the placement of the methoxy group at C-3'. Thus, compound 14 was identified as 3'-methoxy-7,4'-dihydroxyflavone (geraldone) (Jung et al., 2004). Geraldone (14) was previously isolated from Sahertia concallariodora (Lopes et al., 1979) and Albizzia julibrissin (Jung et al., 2004). This is its first report in the genus Tephrosia.

14						
Position	δ	$\delta_{\rm H}$, mult. (<i>J</i> in Hz)	НМВС			
2	163.6					
3	106.1	6.66, s	C-2, C-4, C-10, C-1'			
4	177.2					
5	127.7	7.96, d (8.7)	C-4, C-7, C-9,			
6	115.3	6.97, dd (8.7, 2.3)	C-8, C-10			
7	158.8					
8	103.6	7.84, d (2.2)	C-6, C-7, C-10, C-9			
9	163.2					
10	118.0					
1'	124.3					
2'	110.3	7.62, d (2.1)	C-2, C-3', C-4', C-6'			
3'	148.8					
4'	150.9					
5'	116.3	7.00, d (8.3)	C-1', C-3', C- 4'			
6'	120.9	7.59, dd (8.3, 2.1)	C-2, C-4', C-3'			
6-OMe						
3'-OMe	56.6	4.00, s	C-3'			
4'-OH						

Table 4.8: NMR Data for Compound 14 in Acetone-d₆ (600 MHz)

4.1.15: Atalantoflavone (15)

Compound **15** was isolated as a yellow paste. Its molecular formula was deduced as C₂₀H₁₆Os from the HRESIMS molecular ion $[M+H]^+$ at *m/z* 337.1071 (calcd for C₂₀H₁₇O₅, 337.1071) and ¹³C NMR data (Table 4.9 and Appendix A15). The presence of a 5-hydroxyflavone skeleton was evident from UV (λ_{max} 242, 306 and 354 nm) and NMR data (Table 4.9 and Appendix A15) (Mabry *et al.*, 1970; Agrawal, 1989). The ¹H and ¹³C NMR spectra exhibited signals for a 2,2-dimethylchromene moiety [δ_{H} 1.47, (s, 6H) for methyl groups and δ_{H} 5.76 (*J* = 10.0 Hz, 1H) for H-3" and 6.66 (*J* = 10.0 Hz, 1H) for H-4"]. Further, the NMR revealed the presence of an AA'XX' spin system [δ_{H} 7.96 (d, *J* = 8.9 Hz, 2H) for H-2'/6' and δ_{H} 7.03 (d, *J* = 8.8 Hz, 2H) for H-3''5'] assigned to a *p*-substituted ring B and a singlet proton at δ_{H} 6.49 for a ring A proton. The placement of the proton at δ_{H} 6.49 to H-6 was based on its HMBC correlations with C-8, C-5, C-10 and C-7. The HMBC correlation of H-4" (δ_{H} 6.66) with C-8, C-7, C-9 and C-2" placed the 2,2-dimethylchromene moiety at C-7/8. The above spectral data of **15** were identical to those described in the literature (Banerji *et al.*, 1988; Chang, 1990) for 5,4'-dihydroxy-2",2"-

dimethylpyrano[5",6":7,8]flavone (atalantoflavone or limomianin). Atalantoflavone (**15**) was previously reported from *Atalantza racemosa* (Banerji *et al.*, 1988) and *Citrus limonia* (Chang, 1990). This is its first report in the genus *Tephrosia*.

Table 4.9: NMR Data for Compound 15 in Acetone-d₆ (600 MHz)

		15					
Position	δ _C	$\delta_{\rm H}$, mult. (<i>J</i> in Hz)	НМВС				
2	165.2						
3	104.1	6.67 s	C-2, C-4, C-10, C-1'				
4	183.3						
5	157.9						
6	95.7	6.49, s	C-5, C-7, C-8, C-10				
7	160.1						
8	106.1		C-6, C-7, C-9, C-10				
9	157.3						
10	105.9						
1'	123.2						
2'	129.3	7.96, d (8.9)	C-2, C-2'/6', C-4'				
3'	116.9	7.03, d (8.8)	C-1', C-3'/5', C-4'				
4'	162.0						
5'	116.9	7.03, d (8.8)	C-1', C-3'/5', C-4'				
6'	129.3	7.96, d (8.9)	C-2, C-2'/6', C-4'				
2"	78.8						
3"	129.3	5.76, d (10.0)	C-8, C-2", 2"-Me ₂				
4"	115.8	6.66, d (10.0)	C-7, C-8, C-9, C-2"				
2"-Me ₂	28.4	1.47, s					
5-OH		13.31, s	C-6, C-10, C-5				

4.1.16: Patuletin-3-O-rhamnoside (16)

Compound **16** was isolated as a yellow solid. Its molecular formula was deduced as $C_{22}H_{22}O_{12}$ on the basis of the HRESIMS [molecular ion $[M+H]^+$ at m/z 479.1177 (calcd for $C_{22}H_{23}O_{12}$, 479.1184) with its sodiated ion $[M+Na]^+$ at m/z 501.0996 (calcd for $C_{22}H_{22}O_{12}Na$, 501.1003)] and ¹³C NMR data (Table 4.10 and Appendix A16). The presence of a 5-hydroxyflavonol

skeleton was evident from the UV absorption (λ_{max} 260 and 344 nm) and NMR data [δ_{H} 12.93 (5-OH); δ_C 158.5 (C-2), 135.4 (C-3) and 179.7 (C-4)] (Mabry *et al.*, 1970; Agrawal, 1989). The 1 H and 13 C NMR spectra exhibited signals for a methoxy [δ_{H} 3.88, 3H (δ_{C} 60.7)] and rhamnose $[\delta_{\rm H} 5.53, 1\text{H} \text{ for an anomeric proton, H-2"} (\delta_{\rm C} 102.7)$ and methyl protons for 6"-Me at $\delta_{\rm H} 0.91$ (d, J = 6.1 Hz) ($\delta_{C} (17.8)$] (Nawwar *et al.*, 1984) moieties. Further, the NMR spectra revealed signals for an aromatic singlet proton at $\delta_{\rm H}$ 6.55 and an ABX spin system [$\delta_{\rm H}$ 6.99, d, J = 8.3Hz, 1H for H-5'; $\delta_{\rm H}$ 7.40, dd, J = 8.3, 2.1 Hz, 1H for H-6'; and 7.51 d, J = 2.1 Hz for H-2']. The HMBC correlations of the proton at δ_H 6.55 with C-6, C-9, C-10 and C-7 allowed for its placement at C-8 and thus, the ABX system was assigned to ring B. The HMBC correlations of the anomeric proton, H-2" ($\delta_{\rm H}$ 5.53) with C-3 allowed the placement of the rhamnose moiety at C-3. HMBC correlations of the 5-OH with C-5 and C-6 which in turn correlates with the methoxy protons allowed for the placement of the methoxy group at C-6. The HMBC correlations of C-2 with the aromatic protons at $\delta_{\rm H}$ 7.40 and 7.51 placed the hydroxy substituents at C-3' and C-4'. Thus, compound 16 was identified as patuletin 3-O- α -Lrhamnopyranoside (patuletin-3-O-rhamnoside) (Costa et al., 1994). Patuletin-3-O-rhamnoside (16) was previously isolated from Kalanchoe gracilis (Liu et al., 1989) and Kalanchoe brasiliensis (Costa et al., 1994). This is its first report in the genus Tephrosia.

4.1.17: Eupatolitin-3-O-rhamnoside (17)

Compound **17** was isolated as a yellow solid. Its molecular formula was deduced as C₂₃H₂₄O₁₂ from the HRESIMS molecular ion $[M+H]^+$ at m/z 493.1333 (calcd for C₂₃H₂₅O₁₂, 493.1341) with its sodiated ion $[M+Na]^+$ at m/z 515.1153 (calcd for C₂₃H₂₄O₁₂Na, 515.1160) and NMR data (Table 4.10 and Appendix A17). The presence of a 5-hydroxyflavonol skeleton was evident from UV absorption (λ_{max} 266 and 348 nm) and NMR data (Mabry *et al.*, 1970; Agrawal, 1989). The NMR data showed very close similarity with compound **16**. The only difference between the two compounds was the presence of a methoxy group (δ_H 3.80, δ_C 60.6) in this compound at C-7 instead of a hydroxy group. Thus, compound **17** was identified as eupatolitin 3-*O*- α -*L*-rhamnopyranoside (eupatolitin-3-*O*-rhamnoside) (Quijano *et al.*, 1970). Eupatolitin-3-*O*-rhamnoside (**17**) was previously isolated from *Eupatorium ligustrinum* (Quijano *et al.*, 1970) and this is its first report in the genus *Tephrosia*.

	16				17		
Position	δ	δ _H , mult. (<i>J</i> in Hz)	НМВС	δc	$\delta_{\rm H}$, mult. (<i>J</i> in Hz)	НМВС	
2	158.5			158.6			
3	135.4			135.7			
4	179.7			179.6			
5	153.7			153.6			
6	132.0			133.2			
7	153.2			160.2			
8	94.5	6.55, s	C-6, C-7, C-9, C-10	91.7	6.77, s	C-6, C-7, C-9, C-10	
9	157.8			153.3			
10	106.2			106.9			
1'	122.9			122.9			
2'	116.8	7.51, d (2.1)	C-2, C-4', C-6'	116.7	7.52, d (2.1)	C-2, C-4', C-6'	
3'	145.9			145.9			
4'	149.1			149.0			
5'	116.2	6.99, d (8.3)	C-1', C-3'	116.1	7.00, d (8.4)	C-1', C-3'	
6'	122.6	7.40, dd (8.3, 2.1)	C-2, C-2', C-4'	122.6	7.42, dd (8.3, 2.1)	C-2, C-2', C-4'	
2"	102.7	5.53, d (1.6)	C-3, C-3", C-4", C-6"	102.7	5.54, d (1.4)	C-3, C-3", C-4", C-6"	
3"	71.5	4.21, dd (3.5, 1.6)	C-4", C-5"	71.4	4.21, dd (3.5, 1.6)	C-2", C-4", C-5"	
4"	72.1	3.73, dd (9.3, 3.4)	C-3", C-5", C-6"	72.1	3.71, dd (9.2, 3.4)	C-3". C-5", C-6"	
5"	73.0	3.34, m	C-4", 6"-Me	73.0	3.34, dd (9.4, 9.4)	C-4", 6"-Me	
6"	71.4	3.41, m	C-4"	71.4	3.40, m	C-4", 2"-Me	
6"-Me	17.8	0.91, d (6.1)	C-5", C-6"	17.8	0.91, d (6.1)	C-3", C-5"	
6-OMe	60.7	3.88, s	C-6	56.8	3.98, s	C-6	
7-OMe				60.6	3.80, s	C-7	
5-OH		12.93, s	C-5, C-6, C-10		12.65	C-5, C-6, C-10	

 Table 4.10: NMR Data for Compounds 16 and 17 in Acetone-d₆ (600 MHz)

4.1.18: Munduserone (18)

Compound 18 was obtained as a white paste. Its molecular formula was deduced as $C_{19}H_{18}O_6$ from the HRESIMS [molecular ion $[M+H]^+$ at m/z 343.1177 (calcd C₁₉H₁₉O₆, 343.1176), [M+Na]⁺ at *m/z* 365.0998 (calcd C₁₉H₁₈O₆Na, 365.0996)] and NMR data (Table 4.11 and Appendix A18). A rotenoid skeleton was evident from the UV (λ_{max} 230 and 280 nm) and NMR data [$\delta_{\rm H}$ 4.61, dd, J = 12.2, 2.9 Hz, and 4.30, dd, J = 12.2, 1.3 Hz for H-6 ($\delta_{\rm C}$ 66.1); $\delta_{\rm H}$ 5.12, ddd, J = 3.9, 3.0, 1.0 Hz for H-6a (δ_{C} 72.3); δ_{H} 3.91, d, J = 4.0 Hz for H-12a (δ_{C} 44.1) and $\delta_{\rm C}$ 188.8 for C-12)] (Mabry *et al.*, 1970; Agrawal, 1989) (Table 4.11 and Appendix A18). The NMR data of 18 displayed signals for three methoxy groups [$\delta_{\rm H}$ 3.65 ($\delta_{\rm C}$ 56.0), 3.76 ($\delta_{\rm C}$ 55.1) and 3.86 (δ_C 55.3]. Further, ¹H NMR revealed signals for two singlet protons [δ_H 6.72 $(\delta_{\rm C} \ 112.6)$ and 6.47 $(\delta_{\rm C} \ 102.3)$], and an ABX spin system $[\delta_{\rm H} \ 7.82, d, J = 8.9 \ {\rm Hz} \ (\delta_{\rm C} \ 128.8),$ 6.62, dd, J = 8.8, 2.3 Hz (δ_{C} 110.2) and 6.46, d, J = 2.4 Hz (δ_{C} 100.4)]. HMBC correlations of one of the ABX protons at δ_H 7.82 with C-7a, C-12 and C-9 allowed for its placement at C-11. This placed the singlet aromatic protons in ring B at H-1 and H-4. HMBC correlation of the proton at δ_H 6.47 with C-1a, C-2, C-4a and C-3 allowed for its placement at C-4, whereas the correlation of the other singlet proton at $\delta_{\rm H}$ 6.72 with C-12a, C-1a, C-2, C-3 and C-4a allowed for its placement at C-1. The chemical shift value of H-1 can be used to determine whether the stereochemistry of the B/C ring junction is cis (δ 6.4-6.8) or trans (δ 7.7-8.3) (Yenesew et al., 1998). Since H-1 resonated at $\delta_{\rm H}$ 6.72, the stereochemistry of the B/C ring junction was determined to be cis in this compound. Thus, compound 18 was identified as munduserone (Dagne et al., 1989). Munduserone (18) was previously isolated from Tephrosia fulvinervis (Dagne et al., 1989). This is its first report in this species.

Table 4.11: NMR Data for Compound 18 in Acetone-d₆ (600 MHz)

		18	
Position	δc	$\delta_{\rm H}$, mult. (<i>J</i> in Hz)	НМВС
1	111.6	6.72, s	C-1a, C-2, C-3, C-4a, C-12a
1a	105.2		
2	143.9		
3	150.2		
4	101.3	6.47, s	C-1a, C-2, C-3, C-4a
4a	148.1		
6	66.1	4.61, dd (12.2, 2.9)	C-4a, C-6a, C-12, C-12a
		4.30, dd (12.2, 1.3)	
6a	72.3	5.14, ddd (3.9, 3.0, 1.0)	C-4a, C-6a, C-12, C-12a
7a	162.9		
8	100.4	6.46, d (2.4)	C-7a, C-10, C-11a
9	166.4		
10	110.2	6.62, dd (8.8, 2.3)	C-8, C-11a
11	128.8	7.82, d (8.9)	C-7a, C-9, C-12
11a	112.8		
12	188.8		
12a	44.1	3.91, d (4.0)	C-1, C-1a, C-4a, C-12
2-OMe	56.0	3.65, s	C-2
3-OMe	55.1	3.76, s	C-3
9-OMe	55.3	3.86, s	C-9

4.1.19: cis-12a-Hydroxymunduserone (19)

Compound **19** was isolated as a white paste. The molecular formula was deduced as C₂₃H₂₂O₇ from its NMR data (Table 4.13 and Appendix A19). A 12a-hydroxyrotenoid skeleton was evident from the NMR data [$\delta_{\rm H}$ 4.58, dd, J = 12.2, 2.5 Hz, and 4.47, dd, J = 12.1, 1.1 Hz for H-6 ($\delta_{\rm C}$ 64.7); $\delta_{\rm H}$ 4.69, dd, J = 2.5, 1.1 Hz for H-6a ($\delta_{\rm C}$ 77.1); $\delta_{\rm C}$ 68.5 for C-12a and $\delta_{\rm C}$ 191.7 for C-12] (Mabry *et al.*, 1970; Agrawal, 1989). The NMR data of **19** was very similar to that of **18**. The key difference was the presence of the hydroxyl group at C-12a ($\delta_{\rm C}$ 68.5) in

compound **19**. This was evident from the HMBC correlation of H-6 ($\delta_{\rm H}$ 4.58 and 4.47 with C-12a and also the correlation of H-1 ($\delta_{\rm H}$ 6.62) with C-12a. The NMR data was found to be similar to that of *cis*-12a-hydroxymunduserone (Dagne *et al.*, 1989). This compound was previously isolated from *T. fulvinervis* (Dagne *et al.*, 1989). This is the first report in this species.

Table 4.12: NMR Data for Compound 19 in Acetone-d₆ (600 MHz)

			19
Position	δ _C	$\delta_{\rm H}$, mult. (<i>J</i> in Hz)	НМВС
1	112.3	6.62, s	C-1a, C-2, C-3, C-4a, C-12a
1a	109.9		
2	144.7		
3	152.5		
4	102.0	6.49, s	C-1a, C-2, C-3, C-4a
4a	149.8		
6	64.7	4.58, dd (12.2, 2.5)	C-4a, C-6a, C-12, C-12a
		4.47, dd (12.1, 1.1)	
6a	77.1	4.69, dd (2.5, 1.1)	C-4a, C-6a, C-12, C-12a
7a	163.1		
8	101.3	6.42, d (2.3)	C-7a, C-10, C-11a
9	167.6		
10	111.5	6.62, dd (8.8, 2.3)	C-8, C-11a
11	129.7	7.79, d (8.8)	C-7a, C-9, C-12
11a	112.8		
12	191.7		
12a	68.5		
2-OMe	56.8	3.60, s	C-2
3-OMe	56.0	3.76, s	C-3
9-OMe	56.3	3.84, s	C-9

4.1.20: Rotenone (20)

Compound **20** was isolated as a white paste. The molecular formula was established as $C_{23}H_{22}O_6$ from the HRESIMS [molecular ion $[M+H]^+$ at m/z 395.1486 (calcd for $C_{23}H_{23}O_6$, 395.1489), $[M+Na]^+$ at m/z 417.1305 (calcd for $C_{23}H_{22}O_6Na$, 417.1309) and NMR data (Table

4.13 and Appendix A20). A rotenoid skeleton was evident from the UV (λ_{max} 222 and 296 nm) and NMR data (Table 4.13 and Appendix A20) (Mabry et al., 1970; Agrawal, 1989). The NMR data of **20** displayed signals for two methoxy groups [δ_H 3.65 (δ_C 56.9) and 3.77 (δ_C 56.0)] and 2-isopropenyltetrahydrofuran residues [$\delta_{\rm H}$ 2.95 (1H, dd, J = 15.7, 8.1 Hz) and 3.30 (1H, dd, J= 15.7, 9.8 Hz) for methylene protons (δ_C 31.9), 5.35 (1H, t, J = 8.9 Hz) for methine protons ($\delta_{\rm C}$ 88.9), 5.08, broad-s for olefinic methylene protons ($\delta_{\rm C}$ 112.4), 1.77 (3H, s) for methyl protons ($\delta_{\rm C}$ 17.2) and $\delta_{\rm C}$ 144.4 for quaternary carbon]. Further, ¹H NMR revealed signals for two singlet protons [$\delta_{\rm H}$ 6.72 and 6.46] and *ortho*-coupled aromatic protons [$\delta_{\rm H}$ 6.51 (1H, d, J = 8.6 Hz) and 7.79 (1H, d, J = 8.5 Hz)]. The deshielded aromatic proton at $\delta_{\rm H}$ 7.79 showed HMBC correlations with C-7a, C-12 and C-9 which allowed for its placement at C-11 and its coupling partner at C-10. HMBC correlations of the aromatic singlet protons at $\delta_{\rm H}$ 6.46 and 6.72 with C-2 and C-3 placed the methoxy groups at C-2 and C-3. HMBC correlations of H-4' with C-8, C-7a and C-9 allowed for the placement of the 2-isopropenyltetrahydrofuran moiety at C-8/C-9. In the ¹H NMR, H-1 resonated at a shielded resonance of $\delta_{\rm H}$ 6.72 indicating the B/C ring junction is cis. Thus, compound 20 was identified as rotenone (Carlson et al., 1973). Rotenone (20) has been reported in several *Tephrosia* species including the root of this plant (Were et al., 1990) but this is its first report from the aerial part.

4.1.21: 12a-Hydroxyrotenone (21)

Compound **21** was isolated as a white paste. The molecular formula was established as $C_{23}H_{22}O_7$ from its HRESIMS [molecular ion $[M+H]^+$ at m/z 411.1438 (calcd for $C_{23}H_{23}O_7$, 411.1438), $[M+Na]^+$ at m/z 433.1257 (calcd for $C_{23}H_{22}O_7Na$, 433.1258) and NMR data (Table 4.14 and Appendix A21). A 12a-hydroxyrotenoid skeleton was evident from (λ_{max} 226 and 298 nm) and NMR data (Table 4.14 and Appendix A21) (Mabry *et al.*, 1970; Agrawal, 1989). The NMR data of **21** displayed very close similarity with those of compound **20**. The notable difference was the presence of the hydroxyl group at C-12a (δ_C 68.5) in compound **21**. It was evident from HMBC correlations of H-6 (δ_H 4.59 and 4.48 with C-12a and also H-1 (δ_H 6.64) with C-12a. In the ¹H NMR, H-1 resonated at a shielded resonance of δ_H 6.64 indicating that the *B/C* ring junction is *cis*. These spectral data were identical to those described in the literature for 12a-hydroxyrotenone (Carlson *et al.*, 1973; Oberholzer *et al.*, 1974). 12a-Hydroxyrotenone (**21**) was previously reported in the roots of this plant (Were *et al.*, 1990) but this is its first report from the aerial part.

20				21		
Position	δc	$\delta_{\rm H}$, mult. (<i>J</i> in Hz)	НМВС	δc	$\delta_{\rm H}$, mult. (<i>J</i> in Hz)	НМВС
1	112.6	6.72, s	C-1a, C-2, C-3, C-4a, C-12a	112.5	6.64, s	C-1a, C-2, C-3, C-4a, C-12a
1a	106.2			109.2		
2	144.9			144.7		
3	151.1			152.5		
4	102.3	6.46, s	C-1a, C-2, C-3, C-4a	102.0	6.49, s	C-1a, C-2, C-3, C-4a
4a	149.0			149.8		
6	67.0	4.60, dd (12.3, 2.9) 4.29, dd (12.3, 1.4)	C-4a, C-6a, C-12, C-12a	64.6	4.59, dd (12.2, 2.5) 4.48, dd (12.2, 1.2)	C-4a, C-6a, C-12a
6a	73.2	5.13. ddd (4.0. 2.9. 1.1)	C-1a, C-6, C-7a, C-12	77.1	4.70. dd (2.4. 1.1)	C-1a, C-6, C-12
7a	158.9	0.10, 000 (, 2.), 1.1)		168.2		
8	113.8			113.9		
9	167.9			158.3		
10	105.1	6.51, d (8.6)	C-8, C-9, C-11a	105.5	6.54, d (8.6)	C-8, C-9, C-11a
11	130.3	7.79, d (8.5)	C-7a, C-9, C-12	130.4	7.77, d (8.5)	C-7a, C-9, C-12
11a	114.4			113.6		
12	189.4			191.5		
12a	45.1	3.90, d (4.0)	C-1, C-1a, C-4a, C-11a, C-12	68.5		
4'	31.9	2.95, dd (15.7, 8.1)	C-7a, C-8, C-9, C-5', C-6'	31.7	2.93, dd (15.8, 8.1)	C-7a, C-8, C-9, C-5', C-6'
		3.30, dd (15.7, 9.8)			3.27, dd (15.8, 9.8)	
5'	88.4	5.35, t (8.9)	C- 4', C-7'	88.5	5.34, m	C-7', C- 4', C-6', C- 8'
6'	144.4			144.5		
7'	112.4	5.08, s	C- 5', C-6', C-8'	112.4	5.07, s	C- 5', C-6', C-8'
		4.93, s			4.93, s	
8'	17.2	1.77, s	C- 5', C-6', C-7'	17.2	1.76, s	C- 5', C-6', C-7'
2-OMe	56.9	3.65, s	2	56.9	3.61, s	2
3-OMe	56.0	3.77, s	3	56.0	3.77, s	3

 Table 4.13: NMR Data for Compounds 20 and 21 in Acetone-d₆ (600 MHz)

4.1.22: Deguelin (22)

Compound **22** was isolated as a white paste. The molecular formula was established as $C_{23}H_{22}O_6$ from the HRESIMS [molecular ion [M+H]⁺ at *m/z* 395.1495 (calcd for $C_{23}H_{23}O_6$, 395.1489), [M+Na]⁺ at *m/z* 417.1304 (calcd for $C_{23}H_{22}O_6$ Na, 417.1309) and NMR data (Table 4.14 and Appendix A22). A rotenoid skeleton was evident from the UV absorption (λ_{max} 234, 268 and 298 nm) and NMR data (Table 4.14 and Appendix A22) (Mabry *et al.*, 1970; Agrawal, 1989). The NMR data of **22** displayed very close similarity with those of rotenone (**20**). The notable difference was the presence of a 2,2-dimethylchromene moiety at C-8/C-9 in **22** rather than a 2-isopropenyltetrahydrofuran group in **20**. These spectral data were identical to those described in the literature for deguelin (Luyengi *et al.*, 1994). This compound was previously reported in the roots of this plant (Were *et al.*, 1990) but this is its first report from the aerial part.

4.1.23: Tephrosin (23)

Compound **23** was isolated as a white paste. The molecular formula was established as C₂₃H₂₂O₇ from its HRESIMS data [molecular ion [M+H]⁺ at m/z 411.1430 (calcd for C₂₃H₂₃O₇, 411.1438), [M+Na]⁺ at m/z 433.1238 (calcd for C₂₃H₂₂O₇Na, 433.1258) and NMR data (Table 4.14 and Appendix A23). A 12a-hydroxyrotenoid skeleton was evident from the UV absorption (λ_{max} 234, 270 and 316 nm) and NMR data (Table 4.14 and Appendix A23) (Mabry *et al.*, 1970; Agrawal, 1989). The NMR data of **23** displayed very close similarity with those of

compound **22**. The notable difference was the presence of the hydroxy group at C-12a (δ_{C} 77.1) in compound **23**. This was evident from HMBC correlation of H-6 (δ_{H} 4.65 and 4.49 with C-12a and also H-1 (δ_{H} 6.65) with C-12a. These spectral data were identical to those described in the literature for tephrosin (Luyengi *et al.*, 1994). This compound was previously reported in the roots of this plant (Were *et al.*, 1990) but this is its first report from the aerial part.

	22				23		
Position	δc	$\delta_{\rm H}$, mult. (<i>J</i> in Hz)	НМВС	δ	δ _H , mult. (<i>J</i> in Hz)	НМВС	
1	112.5	6.73, s	C-2, C-3, C-4a, C-12a	112.3	6.65, s	C-2, C-3, C-4a, C-12a	
1a	106.0			108.9			
2	144.8			144.7			
3	151.1			152.5			
4	102.3	6.45, s	C-1a, C-2, C-3, C-4a	102.0	6.46, s	C-1a, C-2, C-4a, C-3	
4a	149.0			149.8			
6	67.0	4.30, m	C-4a, C-6a, C-12, C-12a	64.6	4.49, dd (12.1, 1.1)	C-4a, C-6a	
		4.66, dd (12.2, 2.9)			4.65, dd (12.1, 2.5)		
6a	73.5	5.14, ddd (4.0, 2.9, 1.1)	C-1a, C-6, C-12, C-12a	77.3	4.71, dd (2.5, 1.1)	C-1a, C-6, C-12, C-12a	
7a	160.4			157.1			
8	109.9			108.9			
9	157.8			160.7			
10	111.7	6.45, d (8.0)	C-8, C-11a	112.1	6.47, d (8.0)	C-8, C-11a	
11	129.0	7.70, d (8.7)	C-7a, C-9, C-12	129.0	7.69, d (8.7)	C-7a, C-9, C-12	
11a	113.8			112.5			
12	189.6			191.8			
12a	44.9	3.91, d (4.0)	C-1, C-1a, C-4a, C-11a, C-12	77.1			
4'	116.1	6.65, d (10.1)	C-7a, C-8, C-9, C-6'	115.9	6.61, d (10.1)	C-7a, C-8, C-9, C-6'	
5'	130.0	5.73, d (10.1)	C-8, C-6', C-7', C-8'	130.0	5.73, d (10.1)	C-8, C-6', C-7', C-8'	
6'	78.4			78.6			
7'	28.2*	1.36, s	C-5', C-6', C-8'	28.2*	1.35, s	C-5', C-6', C-8'	
8'	28.6*	1.44, s	C-5', C-6', C-7'	28.6*	1.44, s	C-5', C-6', C-7'	
2-OMe	56.8	3.64, s	2	56.8	3.61, s	2	
3-OMe	56.0	3.74, s	3	56.0	3.76, s	3	

 Table 4.14: NMR Data for Compounds 22 and 23 in Acetone-d₆ (600 MHz)

*interchangeable positions

*interchangeable positions

4.1.24: Maackiain (24)

Compound 24 was isolated as a white paste. The molecular formula was established as $C_{16}H_{12}O_5$ from its HRESIMS [molecular ion [M+H]⁺ at m/z 285.0758 (calcd for $C_{16}H_{13}O_5$, 285.0757) and NMR data (Table 4.15 and Appendix A24). A pterocarpan skeleton was evident from the UV (λ_{max} 228 and 310 nm) and NMR [δ_{H} 3.61, dd, J = 10.6, 10.2 Hz, and 4.27, dd, J= 10.7, 4.6 Hz for H-6 (δ_{C} 67.0); 3.56, ddd, J = 10.1, 7.0, 4.7 Hz for H-6a (δ_{C} 41.0); and 5.49, d, J = 7.0 Hz for H-11a (δ_C 79.4)] (Table 4.15 and Appendix A24) data (Mabry *et al.*, 1970; Agrawal, 1989). The NMR spectra displayed signals for a methylenedioxy group [two singlets at $\delta_{\rm H}$ 5.93 and 5.90, 2H ($\delta_{\rm C}$ 102.1)]. Further, the NMR data revealed signals for two singlet protons [$\delta_{\rm H}$ 6.89 and 6.40] and an AMX spin system [$\delta_{\rm H}$ 7.30, d, J = 8.3 Hz ($\delta_{\rm C}$ 133.0), 6.55, dd, J = 8.4, 2.4 Hz (δ_{C} 110.4) and 6.35, d, J = 2.4 Hz (δ_{C} 103.9)]. HMBC correlation of one of the ABX system protons at $\delta_{\rm H}$ 7.30 with C-11a, C-4a, C-3 and C-4 allowed for its placement at C-1 with its coupling partners at $\delta_{\rm H}$ 6.55 (dd, J = 8.4, 2.4 Hz) and 6.35 (d, J = 2.4 Hz) at C-2 and C-4, respectively. HMBC correlation of the singlet proton at $\delta_{\rm H}$ 6.89 with C-6a, C-9, C-10a, C-10 and C-8 allowed for its placement at C-7, whereas the correlation of the proton at $\delta_{\rm H}$ 6.40 with C-6b, C-8, C-9 and C-10a allowed for its placement at C-10. The placement of the methylenedioxy group at C-8/C-9 was based on the HMBC correlation of its protons with C-8 and C-9. Therefore, compound 24 was identified as 3-hydroxy-8,9-methylenedioxypterocarpan (maackiain) (Abdel-Kader, 2001). Maackiain has previously been reported in several plants including Ononis vaginalis (Abdel-Kader, 2001) and T. elata (Atilaw, 2018), but this is its first report in this plant.

 Table 4.15: NMR Data for Compound 24 in Acetone-d₆ (600 MHz)

			24
Position	δc	$\delta_{\rm H}$, mult. (<i>J</i> in Hz)	НМВС
1	133.0	7.30, d (8.3)	C-3, C-4, C-4a, C-11a
2	110.4	6.55, dd (8.4, 2.4)	C-3, C-4, C-11b
3	159.7		
4	103.9	6.35, d (2.4)	C-2, C-3, C-4a, C-11b
4a	157.7		
6	67.0	3.61, dd (10.6, 10.2)	C-4a, C-6a, C-6b, C-11a
		4.27, dd (10.7, 4.6)	
6a	41.0	3.56, ddd (10.1, 7.0, 4.7)	C-6, C-6b, C-10a
6b	119.5		
7	105.9	6.89, s	C-6a, C-8, C- 9, C-10, C-10a
8	142.4		
9	148.9		
10	94.0	6.40, s	C-6b, C-8, C-9, C-10a
10a	155.3		
11a	79.4	5.49, d (7.0)	C-1, C- 4a, C-6, C-6a, C-6b, C-11b
11b	112.8		
OCH ₂ O	102.1	5.93, s	C-8, C-9
		5.90, s	
4.2: Characterization of Compounds Isolated from Tephrosia hildebrandtii

An extract of the aerial parts of *T. hildebrandtii* was subjected through sets of chromatographic techniques to give a new flavone named hildeflavone (**25**) together with other ten known compounds identified as 5,7,3'-trihydroxy-4'-methoxy-8-prenylisoflavone (**26**), 5,3'-dihdroxy-4'-methoxy-2",2"-dimethylpyrano[5",6":8,7]isoflavone (**27**), 4'-hydroxyemoroidocarpan (**28**), hildecarpin (**29**), pisatin (**30**), pongachin (**31**), emoroidenone (**32**), desmoxyphyllin A (**33**), pinoresinol (**34**) and tephrosin (**22**).

4.2.1: Hildeflavone (25)

Compound 25 was isolated as a yellow paste. The molecular formula was established as $C_{22}H_{22}O_5$ from the HRESIMS molecular ion $[M+H]^+$ at m/z 367.1540 (calcd for $C_{22}H_{23}O_5$, 367.1540), [M+Na]⁺ at m/z 389.1361 (calcd for C₂₂H₂₂O₅Na, 389.1359) and ¹³C NMR data (Table 4.16 and Appendix A25). A 5-hydroxyflavone skeleton was evident from the UV (λ_{max} 228 and 268 nm) and NMR data [δ_H 6.86 for H-3 and 13.26 for 5-OH; δ_C 165.2 (C-2), 105.6 (C-3), 183.8 (C-4)] (Table 4.16 and Appendix A25) (Mabry et al., 1970; Agrawal, 1989). Further, the NMR spectra exhibited signals for a methoxy [$\delta_{\rm H}$ 4.02 ($\delta_{\rm C}$ 56.9)] and a *trans*oriented-3"-methoxy-3"-methylbut-1"-enyl [δ_H 1.40, s, 6H (δ_C 26.5) for methyl groups, 6.80, d, 1H, J = 16.7 Hz ($\delta_{\rm C}$ 118.1) for H-1", 6.54, d, 1H, J = 16.7 Hz ($\delta_{\rm C}$ 140.0) for H-2" and 3.23, s, 3H ($\delta_{\rm C}$ 50.52) for a methoxy substituent] groups (Khalid and Waterman, 1981; Atilaw *et al.*, 2017b). The NMR also exhibited signals for three sets of mutually coupled protons [$\delta_{\rm H}$ 8.11, m, 2H (δ_{C} 127.5), 7.63, m, 2H (δ_{C} 130.0 and 7.65, m, 1H (δ_{C} 132.9] typical of an unsubstituted flavone ring B and a singlet aromatic proton at $\delta_{\rm H}$ 6.55 assigned to ring A. HMBC correlations of the proton at $\delta_{\rm H}$ 6.55 with C-8, C-5, C-10 and C-7 allowed for its placement at C-6. The methoxy protons at $\delta_{\rm H}$ 4.02 showed HMBC correlation with C-7 ($\delta_{\rm C}$ 164.3) which allowed for the placement of this substituent at C-7. Placement of the prenyl group at C-8 was based on HMBC correlation of H-1" with C-9 (δ_C 155.0), C-8 (δ_C 106.3) and C-7 (δ_C 164.3). Thus,

compound **25** was identified as 5-hydroxy-7-methoxy-8-(E-3-methoxy-3-methylbut-1enyl)flavone. This is a new compound and was given the trivial name hildeflavone.

Table 4.16: NMR Data for Compound 25 in Acetone-d₆ (600 MHz)

		25	
Position	δ_{C}	δ_{H} , m (<i>J</i> in Hz)	HMBC
2	165.2		
3	106.2	6.86, <i>s</i>	C-10, C-4, C-2, C-1'
4	183.8		
5	162.5		
6	96.2	6.55, <i>s</i>	C-5, C-8, C-7, C-10
7	164.3		
8	106.3		
9	155.0		
10	105.8		
1'	132.5		
2'/6'	127.5	8.11, <i>m</i>	C-2, C-2'/6', C-4'
3'/5'	130.0	7.63, <i>m</i>	C-3'/5', C-1'
4'	132.9	7.65, <i>m</i>	
1"	118.1	6.80, <i>d</i> (16.7)	C-3", C-2", C-7, C-9
2"	140.0	6.54, <i>d</i> (16.7)	C-3"-Me ₂ , C-8
3"	76.0		
3"-Me ₂	26.5	1.40, <i>s</i>	C-3"-Me, C-3", C-2"
3"-OMe	50.5	3.23, <i>s</i>	C-3"
7-OMe	56.9	4.02, <i>s</i>	C-7
5-OH		13.26, <i>s</i>	

4.2.2: 5,7,3'-Trihydroxy-4'-methoxy-8-prenylisoflavone (26)

Compound **26** was isolated as a pale yellow paste. The molecular formula was established as $C_{21}H_{20}O_6$ from the HRESIMS molecular ion $[M+H]^+$ at m/z 369.1349 (calcd for $C_{21}H_{21}O_6$, 369.1333) together with NMR data (Table 4.17 and Appendix A26). A 5-hydroxyisoflavone

skeleton was evident from the UV (λ_{max} 230, 274 and 332 nm) and NMR data [δ_{H} 8.30 for H-2 and 12.99 for 5-OH; δ_{C} 154.6 for C-2, 123.7 for C-3 and 181.9 for C-4] (Mabry *et al.*, 1970; Agrawal, 1989). The NMR data exhibited signals for a prenyl and a methoxy group. Further, the NMR spectra showed signals for a singlet aromatic proton at δ_{H} 6.37 and an ABX spin system [δ_{H} 6.89, d, J = 8.1 Hz (δ_{C} 115.6), 7.10, dd, J = 8.2, 2.0 Hz (δ_{C} 122.8) and 7.27, d, J =2.0 Hz (δ_{C} 113.7)]. The proton at δ_{H} 6.37 was placed at C-6 based on its HMBC correlation with C-5 and C-8. Two of the AXY system protons (δ_{H} 6.81 and 7.10) showed HMBC correlation with C-4'. Further correlation with the methoxy protons allowed the placement of this substituent at C-4'. HMBC correlation of H-1" (δ_{H} 3.45) with C-8, C-9 and C-7 placed the prenyl at C-8. Thus, compound **26** was identified as 5,7,3'-trihydroxy-4'-methoxy-8prenylisoflavone (Souza *et al.*, 2017). This compound was previously reported in *Vatairea guianensis* by Souza *et al.*, (2017). However, this is its first report in this plant.

4.2.3: 5,3'-Dihydroxy-4'-methoxy-2'',2''-dimethylpyrano[5'',6'':8,7]isoflavone (27)

Compound **27** was isolated as a pale yellow paste. The molecular formula was deduced as $C_{21}H_{18}O_6$ from the HRESIMS [molecular ion $[M+H]^+$ at m/z 367.1198 (calcd for $C_{21}H_{19}O_6$, 367.1176)] and NMR data (Table 4.17 and Appendix A27). Both the 1D- and 2D-NMR data of **27** showed very close similarity with those of compound **26**. The only notable difference was the presence of a 2,2-dimethylchromene moiety in compound **27** instead of a 3-methylbut-2-enyl group in **26**. Therefore, compound **27** was identified as 5,3'-dihydroxy-4'-methoxy-2",2"-

dimethylpyrano[5",6":8,7]isoflavone (Souza *et al.*, 2013). This compound was previously reported in *Vatairea guianensis* by Souza *et al.*, (2013), but this is its first report in the genus *Tephrosia*.

		26			27	
Position	δc	$\delta_{\rm H}$, mult. (<i>J</i> in Hz)	НМВС	δc	$\delta_{\rm H}$, mult. (<i>J</i> in Hz)	HMBC
2	154.6	8.30, s	C-3, C-4, C-9	154.6	8.30, s	C-3, C-4, C-9
3	123.7			123.5		
4	181.9			182.6		
5	161.5			160.2		
6	99.5	6.37, s	C-5, C-8	100.4	6.21, s	C-5, C-8
7	161.2			163.3		
8	107.2			100.9		
9	156.2			152.9		
10	107.2			100.4		
1'	123.6			123.3		
2'	113.7	7.27, d (2.0)	C-3, C-4', C-6'	113.7	7.26, d (2.0)	C-3, C-4', C-6'
3'	147.6			147.7		
4'	148.0			148.0		
5'	115.6	6.89, d (8.2)	C-1', C-3', C-4'	115.7	6.90, d (8.1)	C-1', C-3', C-4'
6'	122.8	7.10 dd (8.1, 2.0)	C-3, C-1', C-2', C-4'	122.8	7.09 dd (8.1, 2.0)	C-2', C-4'
1"	22.0	3.45, d (7.3)	C-8, C-9, C-3"			
2"	123.1	5.25, t (7.2)		79.0		
3"	132.0			128.7	5.76, d (10.0)	C-2", 2"-Me ₂
4"	17.9*	1.81	C-2", C-3", C-5"	115.0	6.73, d (9.9)	C-7, C-2"
5"	25.9*	1.66	C-2", C-3", C-4"			
6"						
2"-Me ₂				28.3	1.48, s	C-2", C-3", 2"-Me
5-OH		12.99, s			13.14 s	
4'-OMe	56.4	3.89, s	C-4'	56.4	3.89, s	C-4'

 Table 4.17: NMR Data for Compounds 26 and 27 in Acetone-d₆ (600 MHz)

*interchangeable

4.2.4: 4'-Hydroxyemoroidocarpan (28)

Compound 28 was isolated as a white paste. The molecular formula was established as $C_{21}H_{18}O_6$ from the HRESIMS [molecular ion [M+H]⁺ at m/z 367.1193 (calcd for $C_{21}H_{19}O_6$, 367.1176)] and NMR data (Table 4.18 and Appendix A28). A pterocarpan skeleton was evident from NMR data [$\delta_{\rm H}$ 3.62, dd, J = 11.7, 10.1 Hz, and 5.28, dd, J = 10.5, 4.4 Hz for H-6 ($\delta_{\rm C}$ 67.2); 3.57, ddd, J = 9.9, 7.1, 4.5 Hz for H-6a ($\delta_{\rm C}$ 41.0) and 5.50, d, J = 7.1 Hz for H-11a ($\delta_{\rm C}$ 79.7)] (Mabry et al., 1970; Agrawal, 1989). The NMR spectra displayed signals for a methylenedioxy [$\delta_{\rm H}$ 5.93 and 5.91, 2H ($\delta_{\rm C}$ 102.1)] and 2-(3-hydroxy-isopropenyl)tetrahydrofuran [$\delta_{\rm H}$ 3.10, dd, J = 15.3, 7.9 Hz and 3.39, dd, J = 15.5, 9.7 Hz for H-4' ($\delta_{\rm C}$ 35.0); 5.35, t, J = 8.6 Hz for H-5' ($\delta c 85.0$); 4.18, s for H-8' ($\delta c 62.3$); 5.18 and 5.20, broad-s for H-7' ($\delta_{\rm C}$ 109.9); and $\delta_{\rm C}$ 150.0 for C-6'] groups. Further, the NMR data revealed the presence of four singlet aromatic protons [$\delta_{\rm H}$ 7.25, 6.28, 6.90 and 6.39]. HMBC correlation of the aromatic singlet proton at $\delta_{\rm H}$ 7.25 with C- 11a, C-4a and C-3 allowed for its placement at C-1, whereas the correlation of the proton at $\delta_{\rm H}$ 6.28 with C-2 and C-11b allowed for its placement at C-4. HMBC correlation of the proton at $\delta_{\rm H}$ 6.90 with C-6a, C-8, C-9 and C-10a allowed for its placement at C-7. HMBC correlation of methylenedioxy protons with C-8/C-9 placed this group at these carbons. The placement of the 2-(3-hydroxy-isopropenyl)-tetrahydrofuran group at C-2/C-3 was from the HMBC correlations of H-4' (δ_H 3.10 and 3.39) with C-5', C-1, C-6' and C-3. Thus, compound 28 was identified as 4'-hydroxyemoroidocarpan (Harinantenaina et al., 2010). This compound was previously reported from the roots of the endemic Malagasy Pongamiopsis pervilleana by Harinantenaina et al., (2010), but it is the first report in this plant.

Table 4.18: NMR Data for Compound 28 in Acetone-d₆ (600 MHz)

		28	
Position	δc	δ _H , mult. (<i>J</i> in Hz)	НМВС
1	127.8	7.25, s	C-3, C-4a, C-11a, C-4'
2	113.5		
3	161.8		
4	98.4	6.28, s	C-2, C-3, C-4a, C-11b
4a	157.1		
6	67.2	3.62, dd (11.7, 10.1)	C-4a, C-6a, C-6b, C-5'
		5.28, dd (10.5, 4.4)	
6a	41.0	3.57, dd (9.9, 7.1, 4.5)	C-6, C-6b, C-10a
6b	119.5		
7	105.9	6.90, s	C-6a, C-8, C-9, C-10a
8	142.5		
9	148.9		
10	93.9	6.39, s	C-6b, C-8, C-9, C-10a
10a	155.3		
11a	79.7	5.50, d (7.1)	C-1, C-2, C-4a, C-6
11b	121.6		
4'	35.0	3.10, dd (15.3, 7.9)	C-1, C-3, C-5', C-6'
		3.39, dd (15.5, 9.7)	
5'	85.0	5.35, t (8.6)	C-4', C-6', C-7'
6'	150.0		
7'	109.9	5.18, s	C-5', C-6', C-8'
		5.20, s	
8'	62.3	4.18, s	
OCH ₂ O	102.1	5.91, s	C-8, C-9
		5.93, s	

4.2.5: Hildecarpin (29)

Compound **29** was isolated as a white paste. Its molecular formula was deduced as $C_{17}H_{14}O_7$ from HRESIMS molecular ion peak $[M+H]^+$ at m/z 381.0814 (calcd for $C_{17}H_{15}O_7$, 381.0812) and NMR data (Table 4.19 and Appendix A29). A 6a-hydroxypterocarpan skeleton was evident from the NMR data [δ_H 4.00, d, J = 11.3 Hz, 4.08, d, J = 11.4 Hz for H-6; 5.25, s for H-11a and 4.98, s for 6a-OH] (Table 4.19 and Appendix A29) (Mabry *et al.*, 1970; Agrawal, 1989). The

NMR spectra showed signals for a methylenedioxy and methoxy group. Additionally, the NMR data exhibited signals for four singlet aromatic protons ($\delta_{\rm H}$ 6.99, 6.89, 6.35 and 6.36). A hydroxy proton at $\delta_{\rm H}$ 7.86 showed HMBC correlation with C-2, C-3 and C-4 allowing for its placement at C-3 and methoxy group at C-2, while the singlet aromatic proton ($\delta_{\rm H}$ 6.89) was placed at C-4. HMBC correlation of the methylenedioxy protons ($\delta_{\rm H}$ 5.92 and 5.95) with C-8 and C-9 supported its placement at C-8/C-9. Thus, compound **29** was identified as hildecarpin (Lwande *et al.*, 1985b). Hildecarpin was previously reported from the root of this plant (Lwande *et al.*, 1985b). But this is the first report of hildecarpin in the aerial parts of *T. hildebrandtii*.

4.2.6: Pisatin (30)

Compound **30** was isolated as a white paste. The molecular formula was deduced as C₁₇H₁₄O₆ from its HRESIMS [M-H₂O]⁺ at *m/z* 297.0756 (calcd for C₁₇H₁₅O₆, 315.0863) and NMR data (Table 4.19 and Appendix A30). A 6a-hydroxypterocarpan skeleton was evident from the NMR data [δ_{H} 4.10, d, *J* = 11.4 Hz, 4.14, d, *J* = 11.4 Hz for H-6; 5.29, s for H-11a and 5.03, s for 6a-OH] (Table 4.19 and Appendix A30) (Mabry *et al.*, 1970; Agrawal, 1989). The NMR spectra showed signals for a methylenedioxy and a methoxy substituent (Table 4.19 and Appendix A30). Further, the NMR exhibited signals for two singlet aromatic protons (δ_{H} 6.90 and δ_{H} 6.36) and an ABX spin system [δ_{H} 7.37, d, *J* = 8.5 Hz, 6.63, dd, *J* = 8.6, 2.6 Hz and 6.40, d, *J* = 2.5 Hz]. HMBC correlations of the proton at δ_{H} 7.37 with C-11a, C-4a and C-3 allowed for its placement at C-1 with its coupling partners δ_{H} 6.63 and 6.40 at C-2 and C-4, respectively. Placement of the methylenedioxy group at C-8/9 was based on the HMBC correlations of its

protons with C-8 and C-9. HMBC correlation of the methoxy protons with C-3 allowed for its placement at C-3. Thus, compound **30** was identified as pisatin (Ingham and Markham, 1980). Pisatin was previously isolated from the seeds of *Tephrosia bidwilli* by Ingham and Markham, (1980) but it is the first report in this plant.

			29			30
Position	δc	$\delta_{\rm H}$, mult. (<i>J</i> in Hz)	НМВС	δc	$\delta_{\rm H}$, mult. (<i>J</i> in Hz)	НМВС
1	113.3	6.99, s	C-2, C-3, C-4a, C-11a, C-11b	132.1	7.37, d (8.5)	C-3, C-4a, C-11a
2	148.2			109.0	6.63, dd (8.6, 2.6)	C-3, C-4, C-11b
3	143.1			161.0		
4	103.4	6.89, s	C-2, C-3, C-4a, C-11b	101.1	6.40, d (2.5)	C-2, C-3, C-4a, C-11b
4a	149.7			156.2		
6	69.6	4.00, d (11.3)	C-4a, C-6a, C-6b, C-11a,	69.4	4.10, d (11.4)	C-4a, C-6a, C-6b, C-11a
		4.08, d (11.4)			4.14, d (11.4)	
6a	76.5			76.4		
6b	120.8			120.6		
7	103.5	6.35, s	C-6a, C-8, C-9, C-10, C-10a	103.5	6.90, s	C-6a, C-8, C-9, C-10, C-10a
8	142.0			142.0		
9	149.3			149.4		
10	93.2	6.36, s	C-6b, C-8, C-9, C-10a	93.3	6.36, s	C-6b, C-7, C-8, C-9, C-10a
10a	154.6			154.6		
11a	85.4	5.25, s	C-1, C-4a, C-6a, C-10a, C-11b	85.0	5.29, s	C-1, C-4a, C-6, C-6a, C-6b, C-11b
11b	111.2			113.3		
2-OMe	55.9	3.84, s	C-2			
3-OMe				54.7	3.77, s	C-3
3-OH		7.86, s	C-2, C-3, C-4			
6a-OH		4.98, s	C-6, C-6a, C-6b, C-11b		5.03, s	C-6, C-6a, C-6b, C-11b
OCH ₂ O	101.4	5.92, s	C-8, C-9	101.4	5.92, s	C-8, C-9
		5.95, s			5.96, s	

Table 4.19: NMR data for Compounds 29 and 30 in Acetone-d₆ (600 MHz)

4.2.7: Pongachin (31)

Compound **31** was obtained as an off-white solid. The molecular formula was established as $C_{21}H_{20}O_4$ from the HRESIMS [molecular ion [M+H]⁺ at m/z 337.1427 (calcd for $C_{21}H_{21}O_4$, 337.1431, $[M+Na]^+$ at m/z 359.1243 (calcd for C₂₁H₂₀O₄Na, 359.1254)] and ¹³C NMR data (Table 4.20 and Appendix A31). A flavanone skeleton was evident from the UV (λ_{max} 268 and 293 nm) and NMR data [AMX spin system of $\delta_{\rm H}$ 5.55,dd, J = 12.7, 3.1 Hz for H-2 ($\delta_{\rm C}$ 79.8), 2.71, dd, J = 16.3, 3.0 Hz for H-3eq and 2.97, dd, J = 16.3, 12.7 Hz for H-3ax ($\delta c 46.2$); δc 187.8 for C-4] (Table 4.20 and Appendix A31) (Mabry et al., 1970; Agrawal, 1989). The NMR showed signals of a methoxy and 2,2-dimethylchromene moiety [$\delta_{\rm H}$ 6.58 (1H, d, J = 10.0 Hz) for H-4", 5.79 (1H, d, *J* = 10.0 Hz) for H-5", 1.42 (3H, s) for H-7" and 1.44 (3H, s) for H-8"] groups. The NMR spectra revealed the presence of three sets of mutually coupled protons [$\delta_{\rm H}$ 7.57, m, 2H (δ_C 127.0), 7.45, m, 2H (δ_C 129.5 and 7.39, m, 1H (δ_C 129.2)] assigned to an unsubstituted ring B and a singlet proton at $\delta_{\rm H}$ 6.11 ($\delta_{\rm C}$ 94.5) assigned to ring A. HMBC correlations of the singlet proton at $\delta_{\rm H}$ 6.11 with C-8, C-5, C-10 and C-7 allowed for its placement at C-6. The methoxy group at $\delta_{\rm H}$ 3.82 ($\delta_{\rm C}$ 56.2) showed HMBC correlations with C-5 allowing its placement at this position. HMBC correlations of H-4" (δ_H 6.58) with C-8, C-9 and C-7 placed the 2,2-dimethylchromene moiety at C-7/8. Thus, compound 31 was identified as 5-methoxy-6",6"-dimethylpyrano[2",3":6,7]flavanone (pongachin) (Andrei et al., 2000). Pongachin was previously reported from the roots of Tephrosia tunicata (Andrei et al., 2000) but, this is its first report from this plant.

31

4.2.8: Emoroidenone (32)

Compound **32** was obtained as an off-white solid. Its molecular formula was deduced as $C_{21}H_{20}O_4$ from the HRESIMS [molecular ion $[M+H]^+$ at *m/z* 337.1433 (calcd for $C_{21}H_{21}O_4$, 337.1431, $[M+Na]^+$ at *m/z* 359.1251 (calcd for $C_{21}H_{20}O_4Na$, 359.1254)] and ¹³C NMR data (Table 4.20 and Appendix A32). A flavanone skeleton was apparent from the UV (λ_{max} 215 and 290 nm) and NMR data [AMX spin system of δ_H 5.54 (1H, dd, J = 12.5, 3.0 Hz for H-2), 2.70 (1H, dd, J = 16.2, 3.1 Hz for H-3eq) and 2.95 (1H, dd, J = 16.2, 12.5 Hz, H-3ax) and δ_C 186.4 for C-4] (Mabry *et al.*, 1970; Agrawal, 1989). The NMR data of **32** had close similarity to those of compound **31**. The difference was the presence of an 2-isopropenyltetrahydrofuryl group [δ_H 2.90 (dd, J = 15.1, 7.8 Hz) and 3.34, m for H-4" (δ_C 31.1); 5.35, m for H-5" (δ_C 87.4); 1.76, s for H-8' (δ_C 16.4); 4.91 and 5.08, broad-s for H-7' (δ_C 111.4); and δ_C 143.9 for C-6"] in compound **32** instead of a 2,2-dimethylchromene moiety in **31**. Based on these spectral data, compound **32** was identified as 4",5"-dihydro-5-methoxy-5"-isopropenylfurano-(2",3":7,8)-flavanone (emoroidenone). Emoroidenone was previously reported from the roots of *Tephrosia emoroides* (Machocho *et al.*, 1995) but this is its first report in this plant.

		31			32	
Position	δ	$\delta_{\rm H}$, mult. (<i>J</i> in Hz)	HMBC	δc	δ _H , mult. (<i>J</i> in Hz)	НМВС
2	79.8	5.55, dd (12.7, 3.1)	C-2'/6', C-1', C-4	78.7	5.54, dd, (12.5, 3.0)	C-2'/6', C-1', C-4
3	46.2	2.71, dd (16.3, 3.0) 2.97, dd (16.3, 12.7)	C-2, C-10, C-1, C-4	45.6	2.70, dd (16.2, 3.1) 2.95, dd (16.2, 12.5)	C-2, C-10, C-1, C-4
4	187.8			186.4		
5	159.4			163.3		
6	94.5	6.11, s	C-8, C-10, C-7, C-9, C-4	87.4	6.21, s	C-8, C-10, C-7, C-9, C-4
7	160.3			166.2		
8	103.4			104.8		
9	163.0			159.1		
10	106.5			105.7		
1'	140.5			139.7		
2'/6'	127.0	7.57, m	C-2, C-2'/6', C-4'	126.2	7.56, m	C-2, C-2'/6', C-4'
3'/5'	129.5	7.45, m	C-3'/5', C-1'	128.5	7.44, m	C-3'/5', C-1'
4'	129.2	7.39, m	C-2'/6'	128.3	7.38, m	C-2'/6'
4"	116.6	6.58, d (10.0)	C-6", C-8, C-9, C-7	31.1	2.90, dd (15.1, 7.9) 3.34, m	C-6", C-8, C-9, C-7
5"	127.3	5.59, d (10.0)	C-7", C-8", C-6", C-8	87.8	5.35, m	C-7", C-8", C-6", C-8
6"	78.5			143.9		
7"	28.3*	1.42, s	C-8", C-6", C-5"	111.2	4.91, s	C-8", C-6", C-5"
	2 0 CH	1 1 1		164	5.08, s	
8"	28.6*	1.44, s	C-/", C-6", C-5"	16.4	1./6, s	C-/", C-6", C-5"
5-OMe	56.2	3.82, s	C-5	55.5	3.82, s	C-5

 Table 4.20: NMR Data for Compounds 31 and 32 in Acetone-d₆ (600 MHz)

*interchangeable

4.2.9: Desmoxyphyllin A (33)

Compound **33** was isolated as a yellow paste. Its molecular formula was deduced as $C_{21}H_{20}O_4$ from the HRESIMS [molecular ion $[M+H]^+$ at m/z 315.0499 (calcd for C₂₁H₂₁O₄, 315.0499)] and ¹³C NMR data (Table 4.21 and Appendix A33). The presence of a 5hydroxycoumaronochromone skeleton was evident from the UV (λ_{max} 258, 284 and 336 nm) and NMR data [$\delta_{\rm H}$ 13.00 for 5-OH; $\delta_{\rm C}$ 165.5 (C-2), $\delta_{\rm C}$ 98.7 (C-3) and $\delta_{\rm C}$ 179.6 (C-4)] (Mabry *et al.*, 1970; Agrawal, 1989). The NMR spectra showed a signal for a methoxy group [$\delta_{\rm H}$ 4.00, s, 3H (δ_C 56.9)]. Further, the NMR exhibited a set of *meta*-coupled protons [δ_H 6.39 and 6.62 (1H, d, J = 2.2 Hz)] and two singlet aromatic protons ($\delta_{\rm H}$ 7.20 and 7.51). HMBC correlations of the proton at $\delta_{\rm H}$ 6.39 with C-7, C-8 and C-10 allowed for its placement at C-6 while its coupling partner at C-8. ³J HMBC correlations of the proton at $\delta_{\rm H}$ 7.20 with C-5' which in turn correlates with the methoxy protons allowed for the placement of this substituent at C-5'. Thus, compound (33)was identified as 7,4'-dihydroxy-5'-methoxycoumaronochromone (desmoxyphyllin A) (Mizuno et al., 1992). Desmoxyphyllin A was previously isolated from the leaves of Desmodium oxyphyllum (Mizuno et al., 1992). This is its first report in the genus Tephrosia.

4.2.10: Pinoresinol (34)

Compound **34** was isolated as a white paste. Its molecular formula was deduced as $C_{20}H_{22}O_6$ from the HRESIMS [molecular ion $[M_2+H]^+$ at m/z 717.2900 (calcd for $C_{20}H_{23}O_6$, 315.0499)for a dimer (Banoub *et al.*, 2015)] and ¹³C NMR data (Table 4.21 and Appendix A34) representing an index of hydrogen deficiency of 10. The NMR showed signals for a methoxy

group [$\delta_{\rm H}$ 3.86, ($\delta_{\rm C}$ 56.4)]. The ¹H NMR spectra showed signals for an ABX spin system [$\delta_{\rm H}$ 6.77 (1H, d, J = 8.1 Hz), 6.82 (1H, dd, J = 8.1, 2.0 Hz) and 6.95 (1H, d, J = 1.9 Hz) attributed to a trisubstituted benzene ring]. The NMR further displayed resonance for four mutually coupled aliphatic protons [$\delta_{\rm H}$ 4.77 (1H, d, J = 4.3 Hz, $\delta_{\rm C}$ 87.5) for oxymethine, 3.15 (1H, dd, J= 6.4, 4.9 Hz, $\delta_{\rm C}$ 55.4) for methine and 4.24 (H, dd, J = 9.1, 6.9 Hz)/3.84 (1H, dd, J = 8.7, 3.9Hz, $\delta_{\rm C}$ 72.6) for oxymethylene]. These signals only represent a methoxy, a phenyl and three aliphatic carbons corresponding to C₁₀H₁₁O₃ which is half of the molecular formula for this compound. Therefore, compound **34** is a symmetrical dimer consistent with a lignan skeleton. HMBC correlation of the oxymethine proton ($\delta_H 4.71$) with C-6 ($\delta_C 120.1$) and C-2 ($\delta_C 111.0$) indicated that the ABX system is 1,3,4-trisubstituted with oxygenation at C-3 and C-4. HMBC correlations of the protons at $\delta_{\rm H}$ 6.95 (H-1, d, J = 1.9 Hz) and 6.77 (H-5, d, J = 8.1 Hz) with C-3 ($\delta_{\rm C}$ 147.3) which in turn correlated with methoxy protons allowed for the placement of this substituent at C-3. Thus, compound 34 was identified as pinoresinol (Ouyang et al., 2007). Pinoresinol was previously isolated from the root of Rhus javanica (Ouyang et al., 2007) and the leaves of Calotropis gigantea (Nguyen et al., 2017). This is its first report in the genus Tephrosia.

		33			34				
Position	δ	δ _H , mult. (<i>J</i> in Hz)	HMBC	δc	δ _H , mult. (<i>J</i> in Hz)	НМВС			
1				133.8					
2	165.5			111.0	6.95, d, (1.9)	C-7, C-6, C-1, C-4			
3	98.7			149.1					
4	179.6			147.3					
5	164.0			116.1	6.77, d, (8.1)	C-1, C-3			
6	100.7	6.39, d, (2.2)	C-7, C-8, C-10	120.1	6.82, dd, (8.1, 2.0)	C-7, C-2, C-4			
7	164.6			87.5	4.71, d, (4.3)	C-8, C-9, C-6, C-1, C-2			
8	95.6	6.62, d, (2.2)	C-6, C-10, C-9, C-7	55.4	3.15, dd, (6.4, 4.9)	C-8, C-7, C-1			
9	156.1			72.6	4.24, dd, (9.1, 6.9)	C-8, C-7			
					3.84, dd, (8.9, 3.9)				
10	104.3								
1'	114.3								
2'	144.9								
3'	99.7	7.20, s	C-1', C-2', C-4', C-5'						
4'	146.9								
5'	147.4								
6'	103.8	7.51, s	C-3, C-2', C-4', C-1'						
3-OMe				56.4	3.86, s	C-3			
5'-OMe	56.9	4.00, s	5′						
5-OH		13.00, s							

 Table 4.21: NMR Data for Compounds 33 and 34 in Acetone-d₆ (600 MHz)

4.3: Characterization of Compounds Isolated from Tephrosia vogelii

Chromatographic fractionation of an extract of the seedpods of *Tephrosia vogelii* led to the isolation and characterization of twelve compounds. These compounds were vogelisoflavone A (**35**), vogelisoflavone B (**36**), onogenin (**37**), isopongaflavone (**38**), luteolin (**13**), 4',7-dihydroxy-3'-methoxyflavanone (**39**), *trans-p*-hydroxycinnamic acid (**40**), tephrosin (**23**), 2-methoxygliricidol (**41**), dehydrorotenone (**42**), 6a,12a-dehydro- α -toxicarol (**43**) and pinoresinol (**34**). Compounds **35** and **36** are reported here as new compounds.

4.3.1: Vogelisoflavone A (35)

Compound 35 was obtained as a white paste. The molecular formula of 35 was established as C₁₇H₁₂O₇ from HRESIMS [molecular ion peak $[M+H]^+$ at m/z 329.0654 (calcd for C₁₇H₁₃O₇, 329.0656) and [M+Na]⁺ at *m/z* 351.0475 (calcd for C₁₇H₁₂O₇Na, 351.0475)] and NMR data (Table 4.22 and Appendix A35). The UV (λ_{max} 232, 268 and 312 nm) and NMR data [$\delta_{\rm H}$ 8.37 for H-2; $\delta_{\rm C}$ 156.6 (C-2), 123.9 (C-3) and 178.0 (C-4)] showed characteristic signals for an isoflavone skeleton (Table 4.22 and Appendix A35) (Mabry et al., 1970; Agrawal, 1989). The NMR spectra displayed signals of a methylenedioxy [$\delta_{\rm H}$ 5.97 ($\delta_{\rm C}$ 102.3)] and a methoxy [$\delta_{\rm H}$ 4.01, ($\delta_{\rm C}$ 56.7)] group. The NMR spectra also showed signals for four singlet protons ($\delta_{\rm H}$ 7.60, 7.07, 6.84 and 6.52). HMBC correlations of the proton at $\delta_{\rm H}$ 7.60 with C-7, C-4 and C-9 allowed for its placement at C-5, whereas correlations of the proton at δ_H 7.07 with C-10, C-6 and C-7 allowed for its placement at C-8. HMBC correlations of the protons at $\delta_{\rm H}$ 6.52 with C-1', C-4', C-5' and C-2' allowed for its placement at C-3', whereas correlations of $\delta_{\rm H}$ 6.84 with C-3, C-4', C-5' and C-2' placed it at C-6'. Placement of the methoxy group at C-6 was based on HMBC correlations of its protons ($\delta_{\rm H}$ 4.01) with C-6. The methylenedioxy protons showed an HMBC correlation with C-4'/C-5' which supported its placement at these carbons. Based on these spectral data, compound 35 was characterized as 2',7-dihydroxy-6-methoxy-4',5'- methylenedioxyisoflavone, a new compound that was given the trivial name vogelisoflavone A.

4.3.2: Vogelisoflavone B (36)

Compound **36** was obtained as a white paste. The molecular formula of **36** was deduced as C₁₈H₁₆O₆ from its HRESIMS [molecular ion peak [M+H]⁺ at *m/z* 329.1021 (calcd for C₁₈H₁₇O₆, 329.1020)] and NMR data (Table 4.22 and Appendix A36). An isoflavone skeleton was evident from the UV (λ_{max} 262 and 312 nm) and NMR [δ_{H} 8.25 for H-2; δ_{C} 153.0 (C-2,), 124.3 (C-3) and 175.3 (C-4)] data (Mabry *et al.*, 1970; Agrawal, 1989). The NMR spectra showed the presence of three methoxy groups [δ_{H} 3.84 (δ_{C} 55.6), 3.96 (δ_{C} 56.6) and 3.99 (δ_{C} 61.5)]. Further, the NMR data exhibited signals for an AA'XX' set of aromatic coupled protons [δ_{H} 7.58 and 6.99 (2H, d, *J* = 8.7 Hz)] and a singlet aromatic (δ_{H} 7.36) proton that was assigned to ring B and A, respectively. HMBC correlation of the singlet proton at δ_{H} 7.36 with C-4, C-7 and C-9 placed this proton at C-5. Thus, compound **36** was characterized as 7-hydroxy-4',6,8-trimethoxyisoflavone and it is a new compound. Vogelisoflavone B has been suggested as its trivial name.

35			36			
Position	δc	$\delta_{\rm H}$, mult. (<i>J</i> in Hz)	HMBC	δc	$\delta_{\rm H}$, mult. (<i>J</i> in Hz)	HMBC
2	156.6	8.37, s	C-3, C-1', C-9, C-4	153.0	8.25, s	C-3, C-1', C-9, C-4
3	123.9			124.3		
4	178.0			175.3		
5	105.3	7.60, s	C-9, C-4, C-7	100.4	7.36, s	C-9, C-4, C-7
6	148.2			147.9		
7	154.6			146.2		
8	103.5	7.07, s	C-10, C-6, C-7	136.3		
9	153.5			147.2		
10	117.1			117.6		
1'	113.0			125.7		
2'	152.9			131.0	7.58, d (8.7)	C-3, C-6', C-4'
3'	100.9	6.52, s	C-1', C-4', C-5', C-2'	114.4	6.99, d (8.7)	C-5', C-1', C- 4'
4'	150.0			160.4		
5'	142.3			114.4	6.99, d (8.7)	C-3', C-1', C-4'
6'	109.9	6.84, s	C-3, C-4', C-5', C-2'	131.0	7.58, d (8.7)	C-3, C-2', C-4'
6-OMe	56.7	4.01, s	C-6	56.6	3.96, s	C-6
8-OMe				61.5	3.99, s	C-8
4'-OMe				55.6	3.84, s	C-4'
4',5'-OCH2O	102.3	5.97, s	C-4', C-5'			

 Table 4.22: NMR Data for Compounds 35 and 36 in Acetone-d₆ (600 MHz)

4.3.3: Onogenin (37)

Compound 37 was obtained as an off-white paste. Its molecular formula was deduced as $C_{17}H_{14}O_6$ from the HRESIMS [molecular ion [M+H]⁺ at m/z 315.0862 (calcd for $C_{17}H_{14}O_6$, 315.0863)] and NMR data (Table 4.23 and Appendix A37). The presence of an isoflavanone skeleton was evident from UV (λ_{max} 234, 276 and 302 nm) and NMR data [AMX spin system of $\delta_{\rm H}$ 4.55 (dd, J = 11.2, 10.7 Hz) for H-2ax, 4.46 (dd, J = 10.9, 5.4 Hz) for H-2eq and 4.22 (dd, J = 11.6, 5.4 Hz) for H-3; $\delta_{C} 61.9 (C-2)$, 38.3 (C-3) and 190.9 (C-4)]. The NMR spectra showed signals for methylenedioxy [δ_H 5.94 (δ_C 102.2)] and methoxy [δ_H 3.75, (δ_C 47.1)] groups. Further, NMR spectra revealed signals for two aromatic singlets ($\delta_{\rm H}$ 6.72 and 6.67) and an AMX spin system [$\delta_{\rm H}$ 7.77 (d, J = 8.6 Hz), 6.59 (dd, J = 8.6, 2.3 Hz) and 6.41 (d, J = 2.3Hz)]. HMBC correlations of the proton at δ_H 7.77 with C-4, C-7 and C-9 allowed for its placement at C-5. This placed the singlet aromatic protons in ring B. HMBC correlations of the singlet aromatic proton at $\delta_{\rm H}$ 6.67 with C-3, C-4', C-5' and C-2' allowed for its placement at C-6'. The HMBC correlation of H-6' with C-2' which in turn correlated with the methoxy protons placed the methoxy group at C-2'. HMBC correlations of the methylenedioxy protons with C-4' and C-5' allowed for the placement of the methylenedioxy group at C-4'/C-5'. Based on these spectral data. compound 37 was identified as 7-hydroxy-2'-methoxy-3',4'methylenedioxyisoflavanone (onogenin). Onogenin was previously isolated from the roots of Ononis spinosa (Kovalev et al., 1975) and Ononis arvensis (Gampe et al., 2016). This is its first report in the genus Tephrosia.

4.3.4: Isopongaflavone (38)

Compound **38** was isolated as a yellow solid. Its molecular formula was deduced as $C_{21}H_{18}O_4$ from the HRESIMS [molecular ion $[M+H]^+$ at m/z 335.1279 (calcd for C₂₁H₁₉O₄, 335.1278)] and NMR data (Table 4.23 and Appendix A38). The presence of a flavone skeleton was evident from the UV (λ_{max} 272, 300 and 346 nm) and NMR [δ_{H} 6.70, s for H-2; δ_{C} 160.2 for C-2, 108.9 for C-3 and 177.7 for C-4] data (Mabry et al., 1970; Agrawal, 1989). The NMR data showed signals for a methoxy [δ_H 3.98 (δ_C 56.5)] and a 2,2-dimethylchromene [δ_H 1.53 (6H, s, δ_C 28.2), 5.64 (1H, d, J = 10.0 Hz, δ_{C} 127.6) and 6.88 (1H, d, J = 10.0 Hz δ_{C} 115.3)] moiety. Further, the NMR data showed signals for three sets of mutually coupled protons [$\delta_{\rm H}$ 7.88 (m, 2H), 7.53 (m, 2H) and 7.54 (m, 1H)] assigned to an unsubstituted flavone ring B and a singlet aromatic proton $\delta_{\rm H}$ 6.36 assigned to ring A. HMBC correlations of the singlet proton at $\delta_{\rm H}$ 6.36 with C-8, C-5 and C-10 allowed for its placement at C-6. This placed the methoxy group at C-5 and the 2,2-dimethylchromene moiety at C-7/8. The placement of the 2,2-dimethylchromene moiety at C-7/8 was further established from the HMBC correlations of H-4" ($\delta_{\rm H}$ 6.88) with C-8, C-9 and C-7. Based on these spectral data, compound 38 was identified as 5-methoxy-2",2"dimethylpyrano[5",6":7,8]flavone (isopongaflavone). Isopongaflavone was previously reported from the roots of Tephrosia elata (Bentley et al., 1987). This is its first report in this plant.

		37				38
Position	δc	δ _H , mult. (<i>J</i> in Hz)	HMBC	δc	δ _H , mult. (J in Hz)	НМВС
2	71.7	4.55, dd (11.2, 10.7)	C-3, C-4, C-9, C-1'	160.2		
		4.46, dd (10.9, 5.4)				
3	48.2	4.22, dd (11.6, 5.4)	C-2, C-4, C-1', C-2', C-6'	108.9	6.70, s	C-2, C-4, C-10, C-1'
4	190.9			177.7		
5	130.0	7.77, d (8.6)	C-4, C-7, C-9	160.7		
6	111.2	6.59, dd (8.6, 2.3)	C-10	96.7	6.36, s	C-5, C-8, C-10
7	165.0			154.0		
8	103.5	6.41, d (2.3)		102.7		
9	164.6			158.0		
10	115.8			108.9		
1'	117.1			131.8		
2'	153.9			125.9	7.88, m	C-2, C-2'/6', C-4'
3'	96.2	6.72, s	C-1', C-2', C-4', C-5'	129.0	7.53, m	C-1', C-3'/5'
4'	142.0			131.2	7.54, m	C-2'/6'
5'	148.6			129.0	7.53, m	C-1', C-3'/5'
6'	110.5	6.67, s	C-3, C-2', C-4', C-5'	125.9	7.88, m	C-2, C-2'/6', C-4'
2"				78.1		
3"				127.6	5.64, d (10.0)	C-8, C-2", C-2"-Me ₂
4"				115.3	6.88, d (10.0)	C-7, C-8, C-9, C-3", C-2"
2"-Me ₂				28.2	1.53, s	C-2", C-3", C-2"-Me,
2'-OMe	57.1	3.75, s	C-2'			
5-OMe				56.5	3.98, s	C-5
4',5'-OCH ₂ O	102.2	5.94, s (broad)	C-4', C-5'			

 Table 4.23: NMR Data for Compounds 37 and 38 in Acetone-d₆ (600 MHz)

4.3.5: 4',7-Dihydroxy-3'-methoxyflavanone (39)

Compound 39 was obtained as an off-white paste. Its molecular formula was established as $C_{16}H_{14}O_5$ from the HRESIMS [molecular ion [M+H]⁺ at m/z 287.0915 (calcd for $C_{16}H_{15}O_4$, 287.0914)] and NMR data (Table 4.24 and Appendix A39). A flavanone skeleton was evident from the UV (λ_{max} 258, 278 and 312 nm) and NMR [AMX spin system of [δ_{H} 5.44 (1H, dd, J = 13.2, 2.9 Hz for H-2), 2.67 (1H, dd, J = 16.7, 2.8 Hz for H-3eq), 3.08 (1H, dd, J = 16.7, 13.1Hz for H-3ax) and δ_c 190.5 for C-4] data (Mabry *et al.*, 1970; Agrawal, 1989). The NMR spectra exhibited signals for a methoxy group at $\delta_{\rm H}$ 3.89 ($\delta_{\rm C}$ 56.3)]. Further, NMR data showed two sets of ABX spin systems [$\delta_{\rm H}$ 7.73 (1H, d, J = 8.6 Hz, $\delta_{\rm C}$ 129.5), 6.58 (1H, dd, J = 8.7, 2.3Hz, $\delta_{\rm C}$ 111.2) and 6.43 (1H, d, J = 2.3 Hz, $\delta_{\rm C}$ 103.7)] and [$\delta_{\rm H}$ 6.87 (1H, d, J = 8.1 Hz, $\delta_{\rm C}$ 115.7), 7.01 (1H, dd, J = 8.1, 2.1 Hz, $\delta_{\rm C}$ 120.5) and 7.20 (1H, d, J = 2.0 Hz, $\delta_{\rm C}$ 111.2)]. HMBC correlations of the deshielded proton at δ_H 7.73 with C-4, C-7 and C-9 allowed for its placement at C-5 and its coupling partner protons $\delta_{\rm H}$ 6.58 (dd, J = 8.67, 2.3 Hz) and 6.43 (d, J = 2.3 Hz) at C-6 and C-8, respectively. HMBC correlations of the protons at $\delta_{\rm H}$ 7.20 (1H, d, J = 2.0 Hz) and 7.01 (1H, dd, J = 8.1, 2.1 Hz) with C-2 allowed for their placement at C-2' and C-6', respectively, indicating that ring B is substituted at C-3' and C-4'. HMBC correlation of H-5' $(\delta_{\rm H} 6.87)$ with C-3' which in turn correlated with the methoxy protons allowed for the placement of the methoxy group at C-3'. Compound 39 was identified as 4',7-dihydroxy-3'methoxyflavanone (Recourt et al., 1991). This compound was previously reported in the roots of Vicia sativa (Recourt et al., 1991) but this is its first report in the genus Tephrosia.

4.3.6: Trans-p-hydroxycinnamic Acid (40)

Compound **40** was obtained as an off-white paste. Its molecular formula C₉H₈O₃ was deduced from the HRESIMS molecular ion [M+H]⁺ at *m/z* 165.0544 (calcd for C₉H₉O₃, 165.0546) and NMR data (Table 4.24 and Appendix A40). The UV (λ_{max} 230 and 310 nm) and NMR data indicated compound **40** was a hydroxycinnamic acid derivative (Harbaum *et al.*, 2007). The ¹H NMR exhibited *ortho*-coupled aromatic protons [δ_{H} 7.54 and 6.89 (2H, d, *J* = 8.6 Hz) assigned to a disubstituted benzene ring]. Further, the NMR data showed signals for *trans*-oriented olefinic protons [δ_{H} 7.59 and 6.33 (1H, d, *J* = 16.0 Hz)] and carboxylic carbon at δ_{C} 168.9. HMBC correlation of one of the *trans*-oriented olefinic proton (δ_{H} 7.59) with C-2, C-5/9, C-4 and C-1 allowed for its placement at C-3. Based on these spectral data, compound **40** was identified as *trans-p*-hydroxycinnamic acid (Ming *et al.*, 2005). *trans-p*-Hydroxycinnamic acid was previously isolated from *Tephrosia elata* (Atilaw, 2018) but this is its first report in this plant.

	39				40		
Position	δ	δ _H , mult. (<i>J</i> in Hz)	HMBC	δc	$\delta_{\rm H}$, mult. (<i>J</i> in Hz)	HMBC	
1				168.9			
2	80.8	5.44, dd (13.2, 2.9)	C-2', C-6', C-1', C-4	115.9	6.33, d (15.9)	C-4, C-3, C-1	
3	44.8	2.67, dd (16.7, 2.8)	C-2, C-10, C-1', C-4	145.5	7.59, d (16.0)	C-2, C-5/9, C-4, C-1	
		3.08, dd (16.7, 13.1)					
4	190.5			127.0			
5	129.5	7.73, d (8.6)	C-9, C-7, C-4	116.7	6.89, d (8.6)	C-4, C-7, C-5/9	
6	111.2	6.58, dd (8.7, 2.3)	C-8, C-10	130.8	7.54, d (8.6)	C-6/8, C-7, C-4	
7	165.3			160.5			
8	103.7	6.43, d (2.3)	C-6, C-10, C-9, C-7	130.8	7.54, d (8.6)	C-6/8, C-7, C-4	
9	164.5			116.7	6.89, d (8.6)	C-4, C-7, C-5/9	
10	115.2						
1'	131.8						
2'	111.2	7.20, d (2.0)	C-6', C-2, C-4'				
3'	148.4						
4'	147.8						
5'	115.7	6.87, d (8.1)	C-1', C-3'				
6'	120.5	7.01, dd (8.1, 2.1)	C-2, C-2', C-5', C-4'				
3'-OMe	56.3	3.89, s	C-3'				

 Table 4.24: NMR Data for Compounds 39 and 40 in Acetone-d₆ (600 MHz)

4.3.7: 2-Methoxygliricidol (41)

Compound **41** was isolated as a white paste. The molecular formula was deduced as $C_{18}H_{16}O_7$ from its HRESIMS data [M-H₂O]⁺ at *m/z* 327.0869 (calcd $C_{18}H_{17}O_7$, 345.0969) and NMR data (Table 4.25 and Appendix A41). A rotenoid skeleton was evident from the UV (λ_{max} 238 and 294 nm) and NMR [δ_H 4.56 (1H, dd, *J* = 12.1, 2.5 Hz)/4.45 (1H, dd, *J* = 12.2, 1.1 Hz) for H-6, δ_H 4.65 (1H, dd, *J* = 2.5, 1.1 Hz) for H-6a indicating that C-12a (δ_C 68.5) is oxygenated] data (Mabry *et al.*, 1970; Agrawal, 1989). The NMR data showed that compound **41** was very similar to compound **19**. The only notable difference was that compound **41** has a hydroxy group at C-9 instead of a methoxy group as in **19**. Therefore, compound **41** was identified as 2-methoxygliricidol (Rastrelli *et al.*, 1999). 2-Methoxygliricidol was previously isolated from *Gliricidia sepium* bark by Rastrelli *et al.*, (1999) but this is its first report in the genus *Tephrosia*.

		41	
Position	δ	$\delta_{\rm H}$, mult. (J in Hz)	HMBC
1	112.4	6.64, s	C-12a, C-1a, C-2, C-3, C-4a
1a	110.1		
2	144.6		
3	152.5		
4	102.0	6.47, s	C-1a, C-2, C-4a, C-3
4a	149.8		
6	64.7	4.56, dd (12.1, 2.5)	C-12, C-12a, C-6a, C-4a
		4.45, dd (12.2, 1.1)	
6a	77.0	4.65, dd (2.5, 1.1)	C-6a, C-4a, C-12, C-12a
7a	163.2		
8	103.3	6.31, d (2.2)	C-10, C-11a, C-7a
9	166.2		
10	112.0	6.64, dd (8.7, 2.2)	C-8, C-11a
11	130.2	7.75, d (8.7)	C-7a, C-12, C-9
11a	112.2		
12	191.6		
12a	68.5		
2-OMe	56.8	3.60, s	C-2
3-OMe	56.0	3.76, s	C-3

Table 4.25: NMR Data for Compound 41 in Acetone-d₆ (600 MHz)

4.3.8: Dehydrorotenone (42)

Compound **42** was isolated as a yellow paste. The molecular formula was deduced as C₂₃H₂₀O₆ from its HRESIMS [molecular ion [M+H]⁺ at *m/z* 393.1330 (calcd C₂₃H₂₁O₆, 393.1330)] and NMR data (Table 4.26 and Appendix A42). A 6a,12a-dehydrorotenoid skeleton was evident from the UV (λ_{max} 240, 278 and 310 nm) and NMR data [δ_{H} 5.00 (2H, s) for H-6; δ_{C} 64.6 for C-6, 156.2 for C-6a and 111.9 for C-12a] (Agrawal, 1989). The NMR data of **42** displayed signals for two methoxy [δ_{H} 3.96 (δ_{C} 56.4) and 3.87 (δ_{C} 56.1)] and 2-isopropenyltetrahydrofuran [δ_{H} 3.20 (1H, dd, *J* = 15.7, 8.1 Hz/3.53 (1H, dd, *J* = 15.7, 9.9 Hz) for H-4', 5.41 (1H, dd, *J* = 10.0, 7.7 Hz) for H-5', 1.88 (3H, s, for H-8'), 4.98/5.14 (broad-s) for H-7'] groups. Further, the NMR data showed signals for two singlet aromatic protons [δ_{H} 8.45 and 6.55 and *ortho*-coupled protons [δ_{H} 8.13, d, *J* = 8.7 Hz and 6.92, d, *J* = 8.6Hz]. The deshielded aromatic proton at δ_{H} 8.13 showed HMBC correlations with C-7a, C-12 and C-9 which allowed for its placement at C-11 and its coupling partner at C-10. HMBC correlations

of the aromatic singlet protons at $\delta_{\rm H}$ 8.45 and 6.55 with C-2 and C-3 placed the methoxy groups at C-2 and C-3. The 2-isopropenyltetrahydrofuran moiety was placed at C-8/C-9 because H-4' had HMBC correlations with C-8 ($\delta_{\rm C}$ 113.1), C-7a ($\delta_{\rm C}$ 152.4), and C-9 ($\delta_{\rm C}$ 165.0). Thus, compound **42** was identified as dehydrorotenone (Carlson *et al.*, 1973; Krupadanam *et al.*, 1977b). Dehydrorotenone was previously isolated from the pods of *Tephrosia villosa* (Krupadanam *et al.*, 1977b) and also from the stems and leaves of *Tephrosia candida* (Roy *et al.*, 1986). This is its first report in this plant.

4.3.9: 6a,12a-Dehydro-α-toxicarol (43)

Compound **43** was obtained as a yellow solid. The molecular formula was established as $C_{18}H_{16}O_7$ from its NMR data (Table 4.26 and Appendix A43). An 11-hydroxy-6a,12adehydrorotenoid skeleton was evident from the NMR data [δ_H 4.99 (3H, s) for H-6 and 13.01 for 11-OH; δ_C 67.0 for C-6, 156.9 for C-6a and 110.8 for C-12a]. The NMR data showed the presence of a 2,2-dimethylchromene moiety and two methoxy groups. Further, the NMR data showed signals for three singlet aromatic protons (δ_H 8.27, 6.56 and 6.29). The singlet aromatic proton at δ_H 6.29 showed HMBC correlations with C-8 and C-11a which allowed for its placement at C-10. HMBC correlations of the aromatic singlet protons at δ_H 8.27 and 6.56 with C-2 and C-3 allowed the placement of the methoxy groups at C-2 and C-3. The 2,2-dimethylchromene moiety was placed at C-8/C-9 because H-4' had HMBC correlations with C-8 (δ_C 101.1), C-7a (δ_C 159.2), and C-9 (δ_C 159.7). Thus, compound **43** was identified as 6a,12a-dehydro-α-toxicarol (Lin and Kuo, 1993). This compound was previously reported from *Derris oblonga* (Lin and Kuo, 1993) and *Amorpha fruticose* (Reisch *et al.*, 1976). This is its first report in this plant.

42					43			
Position	δc	$\delta_{\rm H}$, mult. (<i>J</i> in Hz)	НМВС	δc	$\delta_{\rm H}$, mult. (<i>J</i> in Hz)	НМВС		
1	110.1	8.45, s	C-2, C-3, C-4a, C-12a	110.0	8.27, s	C-2, C-3, C-4a, C-12a		
1a	110.7			109.9				
2	144.2			144.3				
3	149.0			149.2				
4	100.5	6.55, s	C-1a, C-2, C-4a	100.7	6.56, s	C-1a, C-2, C-3, C-4a		
4a	149.8			149.0				
6	64.6	5.00, s	C-4a, C-6a, C-12a	67.0	4.99, s	C-4a, C-6a, C-12, C-12a		
6a	156.2			156.9				
7a	152.4			159.2				
8	113.1			101.1				
9	165.0			159.7				
10	108.9	6.92, d (8.6)	C-8, C-11a	1008	6.29, s	C-8, C-11a		
11	128.0	8.13, d (8.7)	C-7a, C-9, C-12	162.5				
11a	119.1			105.4				
12	174.5			172.5				
12a	111.9			110.8				
4'	31.6	3.20, dd (15.7, 8.1)	C-7a, C-8, C-9, C-5', C-6'	114.5	6.64, d (10.1)	C-7a, C-8, C-9, C-6'		
		3.53, dd (15.7, 9.9)						
5'	130.0	5.41, dd (10.0, 7.7)	C-8, C-6', C-7', C-8'	127.9	5.60, d (10.1)	C-8, C-6', C-7', C-8'		
6'	142.9			78.3				
7'	113.2	5.14, s (broad)	C-5', C-6', C-8'	28.3	1.47, s	C-5', C-6', C-8'		
		4.98, s (broad)						
8'	17.2	1.80, s	C-5', C-6', C-7'	28.3	1.47, s	C-5', C-6', C-7'		
2-OMe	56.4	3.96, s	2	56.5	3.95, s	2		
3-OMe	56.1	3.87, s	3	56.1	3.88, s	3		
11-OH					13.01, s			

 Table 4.26: NMR Data for Compounds 42 and 43 in Acetone-d₆ (600 MHz)

4.4: Characterization of Compounds Isolated from Tephrosia elata

Chromatographic fractionation of the crude extract of the stems of *Tephrosia elata* led to isolation of four compounds; elatisoflavone (44), barbigerone (45), calopogoniumisoflavone B (46) and jamaicin (47).

4.4.1: Elatisoflavone (44)

Compound 44 was obtained as a white paste. Its molecular formula was deduced as C₂₃H₂₄O₆ from the HRESIMS [molecular ion $[M+H]^+$ at m/z 397.1642 (calcd for C₂₃H₂₅O₆, 397.1646) and NMR data (Table 4.27 and Appendix A44). The isoflavone skeleton was evident from the UV (λ_{max} 238, 264 and 306 nm) and NMR [δ_H 8.12 (1H, s) for H-2; δ_C 154.9 for C-2, 122.3 for C-3 and 175.8 for C-4] data (Mabry et al., 1970; Agrawal, 1989). The NMR data showed signals for three methoxy [δ_H 3.95 (δ_C 56.3), δ_H 3.80 (δ_C 57.1) and δ_H 3.87 (δ_C 56.7)] and a 3methylbut-2-enyl [δ_H 3.57 (2H, d, J = 7.3 Hz) for methylene, 5.25 (1H, t, J = 7.3 Hz) for olefinic methine, 1.67 (3H, s) for methyl and $\delta_{\rm H}$ 1.83 (H, s) for methyl] groups. Further, the NMR data exhibited signals for two singlet aromatic protons [$\delta_{\rm H}$ 6.98 and 6.78] and *ortho*-coupled protons $[\delta_{\rm H} 7.89 \text{ and } 7.06 \text{ (1H, d, } J = 8.7 \text{ Hz})]$. HMBC correlations of the deshielded proton at $\delta_{\rm H} 7.89$ with C-4 (δ_C 175.8), C-7 (δ_C 160.4) and C-9 (δ_C 156.6) allowed for its placement at C-5 and its coupling partner at C-6. HMBC correlations of the singlet protons at $\delta_{\rm H}$ 6.98 (H-3') and 6.78 (H-6') with C-2', C-4' and C-5' placed the three methoxy groups in ring B at C-2', C-4' and C-5'. The placement of the 3-methylbut-2-enyl group at C-8 was consistent with HMBC correlations of H-1" (δ_H 3.57) with C-7, C-8 and C-9. Thus, this compound was identified as 7-hydroxy-2',4',5'-trimethoxy-8-(3-methylbut-2-enyl)isoflavone. It is a new compound for which the trivial name elatisoflavone was suggested.

4.4.2: Barbigerone (45)

Compound 45 was isolated as a white paste. Its molecular formula was deduced as C₂₃H₂₂O₆ from the HRESIMS [molecular ion $[M+H]^+$ at m/z 395.1487 (calcd for C₂₃H₂₅O₆, 395.1489)] and NMR data (Table 4.27 and Appendix A45). The isoflavone skeleton was evident from the UV (λ_{max} 232, 264 and 294 nm) and NMR [δ_H 8.12 (1H, s) for H-2; δ_C 154.9 for C-2, 122.7 for C-3 and 175.4 for C-4] data (Mabry et al., 1970; Agrawal, 1989). The NMR data of this compound were related to that of 44. The difference was the presence of a 2,2dimethylchromene moiety [$\delta_{\rm H}$ 1.50, 6H ($\delta_{\rm C}$ 28.2), 5.92, d, J = 10.0 Hz ($\delta_{\rm C}$ 131.7) and 6.86, d, J = 10.0 Hz ($\delta_{\rm C}$ 115.4)] at C-7/8 in compound 45 instead of the 3-methylbut-2-envl group in **44**. Compound 45 was, therefore, identified as 2',4',5'-trimethoxy-2",2"dimethylpyrano(5",6":7,8)isoflavone (barbigerone). Barbigerone was first isolated from Tephrosia barbigera (Vilain, 1980) but this is its first report in this plant.

		44			2	15
Position	δ	$\delta_{\rm H}$, mult. (<i>J</i> in Hz)	HMBC	δc	$\delta_{\rm H}$, mult. (<i>J</i> in Hz)	НМВС
2	154.9	8.12, s	C-3, C-4, C-9, C-1'	154.9	8.12, s	C-4, C-1', C-9, C-3
3	122.3			122.7		
4	175.8			175.4		
5	125.2	7.89, d (8.7)	C-4, C-7, C-9	127.0	7.94, d (8.8)	C-4, C-7, C-9
6	114.8	7.06, d (8.7)	C-7, C-8, C-10	115.6	6.89, d (8.7)	C-7, C-8, C-10
7	160.4			157.8		
8	116.3			110.3		
9	156.6			153.2		
10	118.7			119.3		
1'	113.8			113.4		
2'	151.1			153.0		
3'	117.7	6.98, s	C-1', C-2', C-4', C-5'	117.7	6.98, s	C-1', C-4', C-5'
4'	144.0			151.3		
5'	153.2			144.0		
6'	99.6	6.78, s	C-3, C-2', C-4', C-5'	99.6	6.79, s	C-2', C-3, C-4'
1"	22.7	3.57, d (7.3)	C-7, C-8, C-9, C-2", C-3"			
2"	122.7	5.29, t (7.3)	C-1", C-4", C-5"	78.5		
3"	132.4			131.7	5.92, d (10.0)	C-8, C-2", C-4"
4"	25.9	1.67, s	C-2", C-3", C-5"	115.4	6.86, d (10.0)	C-7, C-8, C-9, C-2", C-3"
5"	18.0	1.83, s	C-2", C-3", C-4"			
2"-Me ₂				28.2	1.50, s	C-2", C-3", C-2"-Me
2'-OMe	56.3	3.95, s	C-2'	56.4	3.88, s	C-2'
4'-OMe	57.1	3.80, s	C-4'	57.1	3.76, s	C-4'
5'-OMe	56.7	3.87, s	C-5'	56.9	3.77, s	C-5'

 Table 4.27: NMR Data for Compounds 44 and 45 in Acetone-d₆ (600 MHz)

4.4.3: Calopogoniumisoflavone B (46)

Compound 46 was isolated as a white paste. Its molecular formula was deduced as C₂₁H₁₆O₅ from the HRESIMS [molecular ion $[M+H]^+$ at m/z 349.1068 (calcd for C₂₁H₁₇O₅, 349.1071)] and NMR data (Table 4.28 and Appendix A46). The isoflavone skeleton was evident from the UV (λ_{max} 230, 264 and 294 nm) and NMR [δ_H 8.28 (s, H-2); δ_C 153.6 (C-2), 125.0 (C-3) and 175.5 (C-4)] data (Mabry et al., 1970; Agrawal, 1989). The NMR data of this compound showed the presence of a 2,2-dimethylpyrano ring and methylenedioxy residue. Further, the NMR spectra exhibited signals of *ortho*-coupled protons [$\delta_{\rm H}$ 7.99 and 6.91 (1H, d, J = 8.0 Hz)] and an ABX spin system [$\delta_{\rm H}$ 7.19 (1H, d, J = 1.8 Hz), 7.11, (1H, dd, J = 8.0, 1.8 Hz) and 6.93 (1H, d, J = 8.5 Hz)]. The ortho-coupled proton at $\delta_{\rm H}$ 7.99 showed HMBC correlation with C-4, C-7 and C-9 allowing for its placement at C-5 and its coupling partner at C-6. This implied that the ABX spin system was in ring B. HMBC correlations of the protons at $\delta_{\rm H}$ 7.19 (1H, d, J = 1.8 Hz) and 7.11 (1H, dd, J = 8.0, 1.8 Hz) with C-3 allowed for the placement of the methylenedioxy group at C-3'/4'. Placement of the 2,2-dimethylpyrano ring at C-7/8 was supported by the HMBC correlation of H-4" with C-7 and C-9. Thus, compound 46 was identified 4',5'-methylenedioxy-2",2"-dimethylpyrano(5",6":7,8)isoflavone as (calopogoniumisoflavone B) (Rao and Murthy, 1985; Sree and Venkata, 1985). Calopogoniumisoflavone B was previously isolated from the roots of Tephrosia maxima by Sree and Venkata, (1985) and grains of *Millettia pachyloba* (Mai et al., 2010). This is its first report in this plant.

46

4.4.4: Jamaicin (47)

Compound **47** was isolated as a white paste. Its molecular formula was deduced as $C_{22}H_{18}O_6$ from the HRESIMS [molecular ion [M+H]⁺ at *m/z* 379.1177 (calcd for $C_{22}H_{19}O_6$, 379.1177)] and NMR data (Table 4.28 and Appendix A47). The isoflavone skeleton was evident from the UV (λ_{max} 230 and 264) and NMR [δ_H 8.11 (1H, s) for H-2; δ_C 155.0 (C-2), 122.8 (C-3) and 175.3 (C-4)] data (Mabry *et al.*, 1970; Agrawal, 1989). The 1D- and 2D-NMR of this compound (Table 4.28) is closely related with that of **45**. The only difference was the presence of the methylenedioxy group at C-4/5 in compound **47** instead of the methoxy groups at the same positions in **45**. Compound **47** was, therefore, identified as 2'-methoxy-4',5'-methylenedioxy-2",2"-dimethylpyrano(5",6":7,8)isoflavone (jamaicin). Jamaicin was previously isolated from the root of the Jamaican Dogwood *Piscidia erythrina* (Falshaw *et al.*, 1966) and also from the grains of *Millettia pachyloba* (Mai *et al.*, 2010). This is its first report in *Tephrosia*.

	46			47		
Position	δc	δ _H , mult. (<i>J</i> in Hz)	HMBC	δc	$\delta_{\rm H}$, mult. (<i>J</i> in Hz)	НМВС
2	153.6	8.28, s	C-3, C-4, C-9	155.0	8.11, s	C-3, C-4, C-9, C-1'
3	125.0			122.8		
4	175.5			175.3		
5	127.0	7.99, d (8.0)	C-4, C-7, C-9	127.0	7.93, d (8.7)	C-4, C-7, C-9
6	115.8	6.91, d (8.2)	C-7, C-8, C-10	115.6	6.89, d (8.6)	C-7, C-8, C-10
7	158.0			157.9		
8	110.2			110.3		
9	153.0			153.0		
10				119.3		
1'	119.2			114.1		
2'	110.5	7.19, d (1.8)	C-3, C-3'	154.1		
3'	148.4			112.0	6.85, s	C-1', C-3', C-4', C-5'
4'				141.8		
5'	108.8	6.93, d (8.5)		149.2		
6'	123.3	7.11, dd (8.0, 1.8)	C-2'	96.1	6.77, s	C-3, C-2', C-4', C-5'
2"	78.6			78.5		
3"	131.8	5.94, d (10.0)	C-8, C-2"	131.8	5.92, d (10.0)	C-8, C-2", C-2"-Me
4"	115.3	6.87, d (10.0)	C-7, C-2"	115.4	6.86, d (10.1)	C-7, C-9, C-2"
2"-Me ₂	28.2	1.52, s	C-2", C-3", C-2"-Me	28.2	1.50, s	C-2", C-3", C-2"-Me
2'-OMe				57.1	3.73, s	C-2'
OCH ₂ O	102.1	6.06, s	C-4', C-5'	102.3	5.99, s	C-4', C-5'

Table 4.28: NMR Data for Compounds 46 and 47 in Acetone-d₆ (600 MHz),
4.5: Characterization of Compounds Isolated from Tephrosia rhodesica

Chromatographic separation of the crude extract from the stem of *Tephrosia rhodesica* led to the isolation and characterization of eleven compounds; 3-methoxycoumestrol (**48**), glabranin (**49**), 7-*O*-methylglabranin (**50**), liquiritigenin (**51**), naringenin (**52**), rhodiflavan (**53**), 3'-*O*-methylorobol (**54**), genistein (**55**), edunol (**56**), 12a-hydroxyrotenone (**21**) and tephrosin (**23**).

4.5.1: 3-Methoxycoumestrol (48)

Compound 48 was isolated as a yellow paste. Its molecular formula was deduced as $C_{16}H_{10}O_{6}$ from the HRESIMS [molecular ion $[M+H]^+$ at m/z 299.0549 (calcd for C₁₆H₁₁O₆, 299.0550)] and NMR data (Table 4.29 and Appendix A48). A coumestan skeleton was evident from the UV (λ_{max} 248, 308 and 348 nm) and NMR [δ_C 158.6 (C-2), 104.0 (C-3) and 156.0 (C-4)] data (Mabry et al., 1970; Agrawal, 1989). The NMR spectra exhibited a signal for a methoxy group $[\delta_{\rm H} 4.00 \ (\delta_{\rm C} 56.9)]$. Further, the ¹H NMR spectra displayed signals for a set of ABX spin system $[\delta_{\rm H} 7.89 (1 {\rm H}, {\rm d}, J = 8.6 {\rm Hz}), 7.02 (1 {\rm H}, {\rm dd}, J = 8.6, 2.2 {\rm Hz}) \text{ and } 6.95 (1 {\rm H}, {\rm d}, J = 2.2 {\rm Hz})]$ and two singlet protons ($\delta_{\rm H}$ 7.45 and 7.25). HMBC correlations of the proton at $\delta_{\rm H}$ 7.89 with C-4, C-7 and C-8a allowed for its placement at C-5 and its coupling partners $\delta_{\rm H}$ 7.02 (1H, dd, J =8.6, 2.2 Hz) and 6.95 (1H, d, J = 2.2 Hz) at C-6 and C-8, respectively. The singlet proton at $\delta_{\rm H}$ 7.45 was placed at C-10 as it had HMBC correlations with C-3, C-11, C-12 and C-13a. ³J HMBC correlations of the proton at $\delta_{\rm H}$ 7.25 with C-11, which in turn correlated with the methoxy protons, placed this substituent at C-11. Based on these spectral data, this compound was identified as 3-methoxycoumestrol. 3-Methoxycoumestrol was previously isolated from alfalfa (Medicago sativa) (Bickoff et al., 1966) and the stem of Vigna angularis (Guo et al., 2019). This is its first report in this genus.

Table 4.29: NMR Data for Compound 48 in Acetone-d₆ (600 MHz),

	48				
Position	δ _C	$\delta_{\rm H}$, mult. (<i>J</i> in Hz)	HMBC		
2	158.6				
3	104.0				
4	156.0				
4a	106.2				
5	123.5	7.89, d (8.6)	C-4, C-7, C-8a		
6	114.3	7.02, dd (8.6, 2.2)			
7	160.5				
8	104.1	6.95, d (2.2)			
8a	161.8				
9	115.8				
10	102.8	7.45, s	C-3, C-11, C-12, C-13a		
11	147.5				
12	151.1				
13	99.5	7.25, s	C-9, C-11, C-12, C-13a		
13a	147.6				
11-OCH ₃	56.9	4.00, s	C-11		

4.5.2: Glabranin (49)

Compound **49** was isolated as a white paste. Its molecular formula was deduced as C₂₀H₂₀O₄ from the HRESIMS [molecular ion [M+H]⁺ at *m/z* 325.1433 (calcd for C₂₀H₂₀O₄, 325.1433)] together with the NMR data (Table 4.30 and Appendix A49). A 5-hydroxyflavanone skeleton was evident from the UV (λ_{max} 238 and 298 nm) and NMR [AMX spin system: $\delta_{\rm H}$ 5.58 (1H, dd, *J* = 12.6, 3.2 Hz for H-2), 2.85 (1H, m for H-3eq), 3.13 (1H, dd, *J* = 17.0, 12.6 Hz for H-3ax) and 12.12 (1H, s for 5-OH); $\delta_{\rm C}$ 79.7 (C-2), 43.6 (C-3) and 197.2 (C-4)] data (Mabry *et al.*, 1970; Agrawal, 1989). The NMR spectra exhibited signals for a prenyl group [$\delta_{\rm H}$ 3.25 (2H, d, *J* = 7.2 Hz, $\delta_{\rm C}$ 22.3), 5.21 (1H, t, *J* = 7.3 Hz, $\delta_{\rm C}$ 123.7), 1.63(3H, s, $\delta_{\rm C}$ 25.9) and 1.61 (3H, s, $\delta_{\rm C}$ 17.9)]. Further, the NMR data showed signals for three sets of mutually coupled protons [$\delta_{\rm H}$ 7.59 (2H, m, $\delta_{\rm C}$ 127.1), 7.46 (2H, m, $\delta_{\rm C}$ 129.3) and 7.39 (1H, m, $\delta_{\rm C}$ 129.2)] assigned to

unsubstituted ring B and a singlet proton $\delta_{\rm H}$ 6.05 (1H, s) assigned to ring A. HMBC correlations of the singlet proton at $\delta_{\rm H}$ 6.05 with C-5 and C-10 allowed for its placement at C-6. The placement of the prenyl group at C-8 was based on the HMBC correlations of H-1" with C-7, C-8 and C-9. Thus, this compound was identified as 5,7-dihydroxy-8-(3"-methylbut-2"enyl)flavanone (glabranin). Glabranin was previously isolated from *Glycyrrhiza glabra* (Yuldashev *et al.*, 2000; Biondi *et al.*, 2003, 2005) and also from *Tephrosia purpurea* (Atilaw *et al.*, 2017b). This is, however, its first report in this plant.

4.5.3: 7-O-Methylglabranin (50)

Compound **50** was isolated as a white paste. Its molecular formula was deduced as C₂₁H₂₄O₄ from the HRESIMS [molecular ion [M+H]⁺ at *m/z* 341.1749 (calcd for C₂₁H₂₅O₄, 341.1747)] and NMR data (Table 4.30 and Appendix A50). A 5-hydroxyflavanone skeleton was evident from the NMR data [AMX spin system: $\delta_{\rm H}$ 5.41 (1H, dd, *J* = 12.8, 3.1 Hz for H-2), 2.85 (1H, dd, *J* = 17.1, 3.1 Hz for H-3eq), 3.05 (1H, dd, *J* = 17.1, 12.1 Hz for H-3ax); $\delta_{\rm C}$ 78.8 (C-2), $\delta_{\rm C}$ 43.6 (C-3), and $\delta_{\rm C}$ 196.4 (C-4)] (Mabry *et al.*, 1970; Agrawal, 1989). The NMR data of **50** was closely related to that of **49**. The difference was the presence of a methoxy group [$\delta_{\rm H}$ 3.88, 3H ($\delta_{\rm C}$ 56.0)] at C-7 in compound **50** rather than a hydroxy group in **49**. Thus, compound **50** was identified as 7-*O*-methylglabranin (Jayaraman *et al.*, 1980). This compound was previously reported from the roots of *Tephrosia villosa* (Jayaraman *et al.*, 1980) but this is its first report in this plant.

	49			50		
Position	δc	δ _H , mult. (J in Hz)	HMBC	δc	$\delta_{\rm H}$, mult. (<i>J</i> in Hz)	НМВС
2	79.7	5.58, dd (12.6, 3.2)	C-4, C-1', C-2'/6'	78.8	5.41, dd (12.8, 3.1)	C-1', C-2'/6', C-4
3	43.6	2.85, m	C-2, C-4, C-10	43.6	2.85, dd (17.1, 3.1)	C-2, C-4, C-10
		3.13, dd (17.0, 12.6)			3.05, dd (17.1, 12.1)	
4	197.2			196.4		
5	162.7			162.8		
6	96.5	6.05, s	C-5, C-7, C-8, C-10	95.7	6.10, s	C-5, C-7, C-8, C-10
7	165.0			165.9		
8	108.3			109.2		
9	160.9			158.9		
10	103.3			103.1		
1'	140,4			139.1		
2'/6'	127.1	7.59, m	C-2, C-2'/6', C-4'	126.1	7.46, m	C- C-2, 2'/6', C-4'
3'/5'	129.4	7.46, m	C-1', C-3'/5'	128.9	7.39, m	C-1', C-3'/5'
4'	129.3	7.39, m	C-2'/6'	129.3	7.42, m	C-2'/6'
1"	22.3	3.25, d (7.2)	C-8, C-7, C-9, C-2"	21.8	3.24, d (8.2)	C-7, C-8, C-9, C-2"
2"	123.7	5.21, t (7.3)	C-4", C-5"	122.6	5.14, t (7.3)	C-4", C-5"
3"	131.3			131.3		
4"	25.9*	1.63, s	C-2", C-3", C-5"	25.9*	1.67, s	C-2", C-3", C-5"
5"	17.9*	1.61, s	C-2", C-3", C-4"	17.9*	1.62, s	C-2", C-3", C-4"
5-OH		12.12, s			12.13, s	
7-OMe				56.0	3.88, s	C-7
	ΨT / 1	1.1		ψT / 1	11	

Table 4.30: NMR Data for Compounds 49 and 50 in Acetone-d₆ (600 MHz),

*Interchangeable

*Interchangeable

4.5.4: Liquiritigenin (51)

Compound **51** was isolated as an off-white paste. Its molecular formula was deduced as $C_{15}H_{12}O_4$ from the HRESIMS [molecular ion $[M+H]^+$ at *m/z* 257.0807 (calcd for $C_{15}H_{13}O_4$, 257.0808)] and NMR data (Table 4.31 and Appendix A51). A flavanone skeleton was evident from the UV (λ_{max} 234, 276 and 312 nm) and NMR [AMX spin system: δ_H 5.45 (1H, dd, *J* = 13.0, 2.9 Hz for H-2), 2.67 (1H, dd, *J* = 16.7, 2.9 Hz for H-3eq) and 3.04 (1H, dd, *J* = 16.7, 13.0 Hz for H-3ax); & 70.5 (C-2), & 44.7 (C-3), & 190.5 (C-4)] data (Mabry *et al.*, 1970; Agrawal, 1989). Further, the NMR data showed signals for AA'XX' set of coupled aromatic protons [δ_H 7.40 and 6.90 (2H, d, *J* = 8.6 Hz)] assigned to ring B and a set of ABX spin systems [δ_H 7.72 (1H, d, *J* = 8.7 Hz), 6.58 (1H, dd, *J* = 8.6, 2.3 Hz) and 6.42 (1H, d, *J* = 2.2 Hz) assigned to ring A]. Thus, compound **51** was identified as 7,4'-dihydroxyflavanone (liquiritigenin) (Recourt *et al.*, 1991). Liquiritigenin has previously been reported from several plants including *Spatholobus suberectus* (Liu *et al.*, 2019) and *Millettia speciosa* (Fu *et al.*, 2016) but this is its first report in the genus Tephrosia.

4.5.5: Naringenin (52)

Compound **52** was isolated as an off-white paste. Its molecular formula was deduced as C₁₅H₁₂O₅ from the HRESIMS [molecular ion [M+H]⁺ at m/z 273.0758 (calcd for C₁₅H₁₂O₅, 273.0757)] and NMR data (Table 4.31 and Appendix A52). The presence of a 5-hydroxyflavanone skeleton was evident from the UV (λ_{max} 232 and 288 nm) and NMR [δ_{H} 5.43 (1H, dd, J = 12.9, 3.1 Hz for H-2), 2.71 (1H, dd, J = 17.0, 3.1 Hz for H-3eq) and 3.15 (1H,

dd, J = 17.0, 12.9 Hz for H-3ax); δ_{C} 79.9, (C-2), 43.5 (C-3) and 196.8 (C-4)] data (Mabry *et al.*, 1970; Agrawal, 1989). The NMR of this compound showed signals for a set of AA'XX' coupled aromatic protons [δ_{H} 7.41 and 6.89 (2H, d, J = 8.5 Hz)] assigned to ring B and two *meta*-coupled aromatic protons [δ_{H} 5.93 and 5.94 (1H, dJ = 2.2 Hz)] assigned to ring A. Thus, compound **52** was identified as 5,7,4'-trihydroxyflavanone (naringenin). Naringenin was previously isolated from *Citrus junos* (Heo *et al.*, 2004), *Glycyrrhiza glabra* leaves (Biondi *et al.*, 2005) and the flowers of *Nymphaea mexicana* (Hsu *et al.*, 2013). However, this is its first report in *Tephrosia*.

		51			1	52
Position	δc	δ _H , mult. (<i>J</i> in Hz)	HMBC	δc	$\delta_{\rm H}$, mult. (<i>J</i> in Hz)	НМВС
2	70.5	5.45, dd (13.0, 2.9)	C-4, C-1', C-2'/6'	79.9	5.43, dd (12.9, 3.1)	C-1', C-2'/6'
3	44.7	2.67, dd (16.7, 2.9)	C-2, C-4, C-10	43.5	2.71, dd (17.0, 3.1)	C-2, C-4, C-1'
		3.04, dd (16.7, 13.0)			3.15, dd (17.0, 12.9)	
4	190.5			196.8		
5	129.5	7.72, d (8.7)	C-4, C-7, C-9			
6	111.2	6.58, dd (8.6, 2.3)	C-10	97.0	5.93, d (2.2)	C-7, C-8, C-10
7	164.5			164.3		
8	103.7	6.42, d (2.2)	C-6, C-7	96.1	5.94, d (1.8)	C-6, C-7, C-10
9	165.3			165.3		
10	115.2			102.8		
1'	131.3			130.9		
2'/6'	129.0	7.40, d (8.5)	C-2, C-2'/6', C-4'	129.0	7.41, d (8.5)	C-2, C-2'/6', C-4'
3'/5'	116.1	6.90, d (8.6)	C-1', C-3'/5'	116.1	6.89, d (8.5)	C-1', C-3'/5'
4'	158.6			158.6		C-2'/6'
5-OH					12.20, s	

Table 4.31: NMR data for Compounds 51 and 52 in Acetone-d₆ (600 MHz),

4.5.6: Rhodiflavan C (53)

Compound 53 was obtained as an oily paste. Its molecular formula was deduced as C24H28O4 from the HRESIMS molecular ion $[M+H]^+$ at m/z 381.2060 (calcd for C₂₄H₂₉O₄, 381.2060) together with NMR data (Table 4.32 and Appendix A53). The presence of a modified flavan-4ol skeleton was evident from the UV (λ_{max} 230 and 296 nm) and NMR [δ_{H} 5.55 (1H, dd, J =12.9, 2.3 Hz for H-2), 2.10 (1H, m for H-3eq) and 2.24 (1H, m for H-3ax), 4.69 (1H, t, J = 2.6 Hz for H-4); δ_C 79.3 (C-2), 38.8 (C-3), 55.8 (C-4)] data (Mabry *et al.*, 1970; Agrawal, 1989). The NMR data revealed the presence of two prenyl groups (Table 4.32). Further, the NMR data revealed three sets of mutually coupled protons [$\delta_{\rm H}$ 7.54 (2H, m, $\delta_{\rm C}$ 127.5), 7.50 (2H, m, $\delta_{\rm C}$ 129.7) and 7.44 (1H, m, $\delta_{\rm C}$ 129.6] assigned to an unsubstituted ring B, two carbonyl carbons (δ_C 184.3 and 204.6) and a quaternary carbon (δ_C 53.1). Since ring B and C were completely assigned, the prenyl groups, the carbonyl carbons and the quaternary carbon could only be in ring A which is a fully substituted five-membered non-aromatic ring with two carbonyl carbons (Atilaw *et al.*, 2020). This was supported by the HMBC correlations of H-4 (δ_{H} 4.69) with C-2 ($\delta_{\rm C}$ 79.3), C-8 ($\delta_{\rm C}$ 187.1) and C-9 ($\delta_{\rm C}$ 127.4). The prenyl methylene protons at $\delta_{\rm H}$ 2.45 (H-1" and H-1") of both prenyl groups showed HMBC correlations with C-6 (δ_C 204.6), C-7 (δ_C 53.1) and C-8 ($\delta_{\rm C}$ 187.1) placed the two prenyl groups at C-7. Thus, compound 53 was identified as rhodiflavan C (Atilaw et al., 2020). Rhodiflavan C was previously reported from the roots of this plant (Atilaw et al., 2020) but this is its first report from the stem.

		5.	3
Position	δ _C	$\delta_{\rm H}$, mult. (<i>J</i> in Hz)	НМВС
2	79.3	5.55, dd (12.4, 2.3)	C-3, C-4, C-1', C-2'/6'
3	38.8	2.10, m	C-2, C-4, C-9, C-1'
		2.24, m	
4	55.8	4.69, t (2.6)	C-2, C-8, C-9
5	184.3		
6	204.6		
7	53.1		
8	187.1		
9	127.4		
1'	139.8		
2'/6'	127.5	7.54, m	C-2, C-2'/6', C-4'
3'/5'	129.7	7.50, m	C-3'/5', C-1'
4'	129.6	7.44, m	C-2'/6'
1"	33.3	2.45, m	C-6, C-7, C-8, C-2", C-3", C-1"
2"	118.4	4.95, t (7.8)	C-6, C-1", C-4", C-5"
3"	136.5		
4"	25.9	1.61, s	C-2", C-3", C-5"
5"	17.8	1.57, s	C-2", C-3", C-4"
1'''	33.8	2.45, m	C-6, C-7, C-8, C-1", C-2"', C-3"'
2"''	118.4	4.95, t (7.8)	C-7, C-1"', C-4"', C-5"'
3"'	136.5		
4'''	25.9	1.61, s	C-2''', C-3''', C-5'''
5"'	17.9	1.57, s	C-2", C-3", C-4"

Table 4.32: NMR Data for Compound 53 in Acetone-d₆ (600 MHz)

4.5.7: 3'-O-Methylorobol (54)

Compound **54** was isolated as a white paste. Its molecular formula was deduced as C₁₆H₁₂O₆ from the HRESIMS [molecular ion [M+H]⁺ at *m/z* 301.0706 (calcd for C₁₆H₁₃O₆, 301.0707)] and NMR data (Table 4.33 and Appendix A54). A 5-hydroxyisoflavone skeleton was evident from the UV (λ_{max} 228 and 262) and NMR [δ_{H} 8.20 (1H, s for H-2) and 13.04 (1H, s for 5-OH); δ_{C} 154.5 (C-2), 124.1 (C-3) and 181.6 (C-4)] data (Mabry *et al.*, 1970; Agrawal, 1989). The NMR spectra showed signals for a methoxy group [δ_{H} 3.88 (δ_{C} 56.4)]. Further, the ¹H NMR showed signals for *meta*-coupled aromatic protons [δ_{H} 6.29 and 6.42 (1H, d, *J* = 2.0 Hz)] and an ABX spin system [δ_{H} 7.25 (1H, d, *J* = 2.0 Hz), 7.07 (1H, dd, *J* = 8.1, 2.0 Hz) and 6.89 (1H, d, *J* = 8.1 Hz)]. Two of the ABX system protons (δ_{H} 7.25 and 7.07) showed HMBC correlation with C-3 (δ_{C} 124.1) and C-4' (δ_{C} 147.7) placing these protons at C-2' and C-6', respectively, and their coupling partner (δ_{H} 6.89) at C-5'. C-3' showed HMBC correlation with H-5' and methoxy

protons allowing for the placement of the methoxy substituent at C-3' (δ_{C} 148.0). Based on these spectral data, compound **54** was identified as 5,7,4'-trihydroxy-3'-methoxyisoflavone (3'-*O*-methylorobol). 3'-*O*-Methylorobol was previously reported from *Thermopsis montuna* (Dement and Mabry, 1972). This is its first report in the genus Tephrosia.

4.5.8: Genistein (55)

Compound **55** was isolated as a white paste. Its molecular formula was deduced as $C_{15}H_{10}O_5$ from the HRESIMS [molecular ion $[M+H]^+$ at m/z 271.0600 (calcd for $C_{15}H_{10}O_5$, 271.0601)] and NMR data (Table 4.33 and Appendix A55). A 5-hydroxyisoflavone skeleton was evident from the UV (λ_{max} 218 and 262) and NMR [δ_H 8.11 (1H, s for H-2) and 13.01 (1H, s for 5-OH); δ_C 153.9 (C-2), 123.9 (C-3) and 181.4 (C-4)] data (Mabry *et al.*, 1970; Agrawal, 1989; Wang *et al.*, 2007). Further, the NMR exhibited signals for an AA'XX' spin system [(δ_H 6. 74 and 6.90 (2H, d, J = 8.6 Hz] assigned to ring B and *meta*-coupled protons at δ_H 6.26 and 6.38 (1H, d, J = 1.8 Hz) assigned to ring A. Thus, compound **55** was identified as 5,7,4'-trihydroxyisoflavone (genistein). Genistein has previously been isolated in many plant species including *Ginkgo biloba* (Wang *et al.*, 2007), *Hericium erinaceum* mycelium (He *et al.*, 2018) and *Tephrosia purpurea* (Atilaw *et al.*, 2017b). This is the first report of genistein in this plant.

54						55
Position	δ _C	$\delta_{\rm H}$, mult. (<i>J</i> in Hz)	HMBC	δ _C	$\delta_{\rm H}$, mult. (<i>J</i> in Hz)	НМВС
2	154.5	8.20, s	C-3, C-4, C-9	153.9	8.11, s	C-3, C-4, C-9
3	124.1			123.9		
4	181.6			181.4		
5	163.9			163.6		
6	99.9	6.29, d (2.0)	C-7, C-8, C-10	100.3	6.26, d (1.8)	C-8, C-10
7	165.3			163.8		
8	94.5	6.42, d (2.1)	C-6, C-7, C-9, C-10	94.8	6.38, d (1.9)	C-6, C-9, C-10
9	159.0			159.2		
10	106.1			105,4		
1'	123.4			123.2		
2'	113.7	7.25, d (2.0)	C-3, C-1', C-4', C-3', C-6'	131.2	7.45, d (8.6)	C-3, C-2'/6', C-4'
3'	148.0			115.9	6.90, d (8.6)	C-1', C-3'/5'
4'	147.7			158.3		
5'	115.7	6.89, d (8.1)	C-1', C-3', C-4'	115.9	6.90, d (8.6)	C-1', C-3'/5'
6'	122.8	7.07, dd (8.2, 2.0)	C-3, C-2', C-4'	131.2	7.45, d (8.6)	C-3, C-2'/6', C-4'
5-OH		13.04, s			13.01, s	
3'-OMe	56.4	3.88, s	C-2'			

 Table 4.33: NMR Data for Compounds 54 and 55 in Acetone-d₆ (600 MHz)

4.5.9: Edunol (56)

Compound 56 was isolated as a white paste. Its molecular formula was deduced as $C_{21}H_{20}O_5$ from its HRESIMS [molecular ion peak $[M+H]^+$ at m/z 353.1382 (calcd for C₂₁H₂₁O₅, 353.1382)] and NMR data (Table 4.34 and Appendix A56). A pterocarpan skeleton was evident from the UV (λ_{max} 234 and 310) and NMR [δ_{H} 3.55 (1H, m)/4.24 (1H, dd, J = 10.0, 4.0 Hz) for H-6, 3.52 (1H, m for H-6a) and 5.46 (1H, d, J = 6.7 Hz for H-11a); $\delta_{\rm C}$ 67.0 (C-6), $\delta_{\rm C}$ 41.1 (C-6a) and δ_C 79.5; (C-11a)] data (Mabry et al., 1970; Agrawal, 1989). The NMR data showed the presence of a prenyl [$\delta_{\rm H}$ 3.29 (2H, d, J = 7.4 Hz, $\delta_{\rm C}$ 28.4); 5.35 (1H, t, J = 7.4 Hz, $\delta_{\rm C}$ 123.9), 1.73 (3H, s, $\delta_{\rm C}$ 25.9) and 1.73 (3H, s, $\delta_{\rm C}$ 17.8] and a methylenedioxy ($\delta_{\rm H}$ 5.91, $\delta_{\rm C}$ 102.1) substituent. Further, the NMR data showed signals for four aromatic singlets ($\delta_{\rm H}$ 7.16, 6.88, 6.40 and 6.39). HMBC correlations of the singlet proton at $\delta_{\rm H}$ 7.16 (H-1) with C-1', C-11a, C-11b, C-4a, C-3 and C-2 allowed for its placement at C-1, whereas the proton at $\delta_{\rm H}$ 6.39 showed correlations with C-11b, C-3, C-2 and C-4a allowing for its placement at C-4. HMBC correlation of the protons at $\delta_{\rm H}$ 6.88 and 6.40 with C-8 and C-9 placed the methylenedioxy group at C-8/9. Placement of the prenyl to C-2 was based on the HMBC correlations of H-1' $(\delta_{\rm H} 3.29)$ with C-1 and C-3. Based on these spectral data, this compound was identified as 3hydroxy-2-prenyl-8,9-methylenedioxypterocarpan (edunol). Edunol was previously reported from Brongniartia podalyrioides and Tephrosia purpurea (Reyes-Chilpa et al., 1994; Li et al., 2011). This is its first report in this plant.

			56
Position	δ	$\delta_{\rm H}$, mult. (<i>J</i> in Hz)	НМВС
1	132.4	7.16, s	C-2, C-3, C-4a, C-11a, C-11b, C-1'
2	112.5		
3	157.0		
4	103.5	6.39, s	C-2, C-3, C-4a, C-11b
4a	155.6		
6	67.0	3.55, m	C-4a, C-6a, C-6b, C-11a
		4.24, dd (10.0, 4.0)	
6a	41.1	3.52, m	C-6, C-6b, C-10a
6b	119.6		
7	105.9	6.88, s	C-6a, C-8, C-9, C-10, C-10a
8	142.4		
9	148.9		
10	94.0	6.40, s	C-6b, C-8, C-9, C-10a
10a	155.3		
11a	79.5	5.46, d (6.7)	C-1, C-4a, C-6a, C-10a, C-11b
11b	103.5		
1'	28.4	3.29, d (7.4)	C-1, C-2'
2'	123.9	5.35, t (7.4)	C-4', C-5'
3'	132.3		
4'	25.9	1.73, s	C-2', C-3', C-5'
5'	17.8	1.73, s	C-2', C-3', C-4',
OCH ₂ O	102.1	5.91, s	C-8, C-9

Table 4.34: NMR Data for Compound 57 in Acetone-d₆ (600 MHz)

4.6: Synthesis of Pyrazoisopongaflavone (57)

Pyrazoisopongaflavone (**57**), a pyrazole derivative of isopongaflavone (**38**), was prepared by using hydrazine monohydrate. It was obtained as an off-white paste. Its molecular formula $C_{21}H_{22}O_3N_2$ was established from the HRESIMS molecular ion peak $[M+H]^+$ at m/z 351.1696 (calcd for $C_{21}H_{23}O_3N_2$, 351.1703) and $[M+Na]^+$ at m/z 373.1516 (calcd for $C_{21}H_{22}O_3N_2Na$ 373.1523). The NMR data confirmed the presence of a methoxy group at δ_H 3.91 (δ_C 55.9), an unsubstituted benzene ring [δ_H 7.85 (126.6 for C-2"/6"), 7.50 (130.1 for C-3"/5") and 7.41 (129.5 for C-4")] and 2',2'-dimethylchromane ring [δ_H 1.80 (δ_C 33.2 for C-3'), 2.60 (δ_C 17.7 for C-4'), 1.32 (δ_C 27.1 for C-2'-Me_2) and 6.02 (δ_C 92.3 for C-8'); δ_C 75.0 (C-2'), 102.4 (C-4'a), 157.4 (C-5'), 99.8 (C-6'), 158.3 (C-7') and 155.7 (C-8'a)] (Table 4.35 and Appendix A57). The pyrazole ring was evident from the ¹³C NMR signals at δ_C 151.6 (C-3), 104.2 (C-4) and 143.4

(C-5) (He *et al.*, 2009). Based on these spectroscopic characteristics, compound **57** was elucidated as 3-(5-hydroxy-7-methoxy-2,2-dimethylchromanyl)-5-phenyl-pyrazole.

Table 4.35: NMR Data for Compound 57 in Acetone-d₆ (600 MHz)

	57					
Position	δ _C	$\delta_{\rm H}$, mult. (<i>J</i> in Hz)	HMBC			
2						
3	151.6					
4	104.2	7.34, s	C-3, C-5			
5	143.4					
2'	75.0					
3'	33.2	1.80, t (6.8, 6.8)	C-2', C-4', C-4'a, C-2'-Me ₂			
4'	17.7	2.64, t (6.8, 6.8)	C-2', C-3', C-4'a, C-5, C-8'a			
4'a	102.4					
5'	157.4					
6'	99.8					
7'	158.3					
8'	92.3	6.02, s				
8'a	155.7					
1"	130.5					
2"/6"	126.6	7.85, m	C-2"/6", C-4"			
3"/5"	130.1	7.50, m	C-1", C-3"/5"			
4"	129.5	7.41, m	C-2"/6"			
2'-Me ₂	27.1	1.32, s	C-2', C-3', C-2'-Me			
7'-OMe	55.9	3.91, s	C-7			

4.7: Anti-inflammatory Activity

An assay was conducted to assess the anti-inflammatory activities of the crude extracts as well as the compounds isolated from the aerial parts of *T. linearis*, aerial parts of *T. hildebrandtii*, seedpods of *T. vogelii*, *the* stem of *T. elata* and stem of *T. rhodesica*. Further, the synergistic anti-inflammatory activities of the different classes of flavonoids were also investigated. This assay was done by measuring the levels of cytokines (IL-1 β , IL-2, IFN- γ , GM-CSF and TNF- α) released from LPS-stimulated PBMCs. The tests relied on the evidence that during inflammation, cytokines are secreted from the PBMCs as part of the inflammatory reaction (Davis *et al.*, 2010). This can be assessed by incubating PBMCs with bacterial LPS (O'Bryan *et al.*, 2000). Therefore, the cytokine release from LPS stimulated PBMC was quantified with or without tested compounds in the supernatant by Luminex. The results of the assays are discussed below.

4.7.1: Activity of Compounds Isolated from Tephrosia linearis

Figure 4.3 shows the results for controls and it is clear that in the presence of LPS, the PBMCs were induced to secrete the cytokines as compared to the medium., It also observed that ibuprofen, the standard drug suppressed the release of the cytokines to 12.2-80.3% of the LPS control except for IL-1 β secretion which was increased to 199.3% (Table 4.36).

Figure 4.3: The LPS stimulated the secretion of the cytokines in comparison to untreated control cells and ibuprofen (mean \pm SD, n=3 for medium and n = 4 for LPS and ibuprofen)¹

As shown in (Figure 4.4 and Table 4.36), the crude extract reduced the production of all cytokines except IL-1 β that slightly increased to about 107.67% in comparison to the LPS control. All the compounds evaluated resulted in decreased release of IL-2, GM-CSF and TNF- α . Compounds 1, 2, 4, 7, 10, 13, 15 and 16 decreased the production of IL-1 β with a strong inhibitory effect occurring in the presence of compound 13. Except for compounds 3 and 11, which provoked the production of IL-6, the rest of the compounds reduced their production.

¹ The data used to generate the graphs is presented in Appendix B1, Table B1.

Figure 4.4: The cytokine release after LPS stimulated PMBCs incubated with the crude extracts and isolated compounds from *Tephrosia linearis*²

² The data used to generate the graphs are presented in Appendix B1, Table B2

	Percentage cytokine Release					
Samples	IL-1β	IL-2	IL-6	GM-CSF	TNF-α	
Ibuprofen	199.29	80.33	46.46	47.76	12.23	
Crude Extract	107.67	17.72	13.91	36.83	4.61	
1	68.27	57.60	10.89	17.39	0.92	
2	1.18	57.60	0.00	8.63	0.17	
3	169.84	17.72	622.32	78.39	1.89	
4	75.85	57.60	97.43	83.73	3.15	
5	170.51	17.72	43.11	17.39	4.03	
6	157.09	17.72	43.39	40.97	2.66	
7	53.77	17.72	25.79	32.47	4.03	
8	102.34	57.64	19.57	46.89	6.38	
9	220.43	57.60	100.00	35.76	12.55	
10	40.83	17.72	24.72	48.79	5.01	
11	103.28	57.64	238.54	38.92	5.20	
12	105.17	57.60	48.33	32.47	4.22	
13	0.67	57.60	0.04	8.63	0.17	
14	0.80	57.60	0.09	8.63	0.92	
15	48.35	57.64	7.23	4.87	1.12	
16	109.22	57.64	100.00	92.58	3.64	
17	4.81	57.60	0.64	8.63	0.54	
18	148.44	17.72	24.94	48.79	3.83	

 Table 4.36: The Percentage of Cytokine Release in Comparison to Lipopolysaccharide

 Control after Incubation with Compounds from Tephrosia linearis³

4.7.2: Activity of Compounds Isolated from Tephrosia hildebrandtii

The anti-inflammatory activities of the crude extract of *T. hildebrandtii*, as well as the isolated compounds (**25-32**), were assessed for their anti-inflammatory activities. The crude extract decreased the production of IFN- γ , GM-CSF, and TNF- α . However, the crude extract did not affect IL-6 but provoked the production of IL-1 β and IL-2 to 139 % and 106%, respectively, as compared to the LPS control (Table 4.37 and Figure 4.5). Almost, all the compounds showed superior suppression of the cytokines compared to ibuprofen. The strongest inhibition for IL-6 release was observed for compound **27**, an isoflavone that attenuated the production to 0.6% compared to LPS. Similarly, compound **27** attenuated the production of TNF- α to 0.4% compared to LPS. The pterocarpans (compounds **29** and **30**) exhibited the highest reduction in the production of IFN- γ to 2.7% and GM-CSF to 11.0%, respectively, as compared to LPS.

³ The data used for calculation of the percentage cytokine release is presented in the Appendix B1, Table B2

While compounds 25, 27, 28, 30 and 32 suppressed the production of IL-1 β , compounds 26, 29 and 31 stimulated its production. The strongest inhibition was exhibited by compound 30 which decreased IL-1 β production to 20.2% in comparison to LPS control.

Figure 4.5: The cytokine release after LPS stimulated PMBCs incubated with the crude extracts and isolated compounds from *Tephrosia hildebrandtii*⁴

⁴ The data used to generate the graphs are presented in Appendix B1, Table B2

	Percentage Cytokine Release					
Sample	IL-1ß	IL-2	IL-6	IFN-γ	GM-CSF	TNF-α
Ibuprofen	199.3	80.3	46.5	51.2	47.8	12.2
THC	139.0	106.1	100.0	8.6	57.9	3.3
25	32.5	17.7	7.4	35.5	43.0	2.9
26	153.9	17.7	13.0	35.5	48.8	6.4
27	27.1	57.6	0.6	35.5	14.4	0.4
28	77.0	17.7	17.5	35.5	43.0	2.3
29	140.3	17.7	67.8	2.7	48.8	3.1
30	20.2	17.7	5.8	35.5	11.0	1.1
31	146.1	57.6	29.4	8.6	40.0	6.6
32	57.6	57.6	10.0	35.5	1.9	1.5

 Table 4.37: The Percentage of Cytokine Release in Comparison to Lipopolysaccharide

 Control after Incubation with Compounds from Tephrosia hildebrandtii⁵

4.7.3: Activity of Compounds Isolated from Tephrosia vogelii

The crude extract, as well as three compounds (35, 36 and 38) obtained from T. vogelii seedpods, were assessed for their anti-inflammatory activities. As shown in Figure 4.6 and Table 4.36, all the tested compounds and the crude extract showed a decreased IL-1 β release between 57.9 and 75.2% compared to the LPS control. In comparison, ibuprofen resulted in a decreased IL-1 β release of 25.5% compared to the LPS control. IFN- γ release was decreased between 0.5% and 10.1% when treated with the compounds as well as the crude extract. Likewise, ibuprofen led to a decreased IFN- γ production of 16.8%. All the tested compounds and crude extract were able to decrease the GM-CSF release from the PBMCs. In comparison, the GM-CSF release was reduced to 24.2% in the presence of ibuprofen. The suppression of the release of TNF- α by all the compounds and the crude was more significant than that of ibuprofen.

⁵ The data used for calculation of the percentage cytokine release is presented in the Appendix B1, Table B2

Figure 4.6: The cytokine release after LPS stimulated PMBCs incubated with the crude extracts and isolated compounds from *Tephrosia vogelii*⁶

 Table 4.38: The Percentage of Cytokine Release in Comparison to Lipopolysaccharide

 Control after Incubation with Compounds from Tephrosia vogelii⁷

	Percentage Cytokine Release					
Sample	IL-1β (%)	IFN-γ (%)	GM-CSF (%)	TNF-α (%)		
Ibuprofen	25.5	16.8	24.2	32.2		
35	65.1	10.1	86.7	22.7		
36	16.0	0.5	17.6	2.2		
38	57.9	1.4	7.1	0.7		
57	74.6	3.9	148.8	8.5		
Crude extract	75.2	1.1	66.1	3.2		

4.7.4: Activity of Compounds Isolated from Tephrosia elata

All the compounds (44-47) tested decreased the production of IL- β , IFN- γ , GM-CSF, and TNF-

 α though, the activity of ibuprofen was better than most of the compounds. Compound 45

⁶ The data used to generate the graphs are presented in Appendix B1, Table B3 and B4

⁷ The data used for calculation of the percentage cytokine release is presented in the Appendix B1, Table B3 and B4

exhibited relatively strong inhibition by decreasing the production of IFN- γ to 0.3 and TNF- α

to 3.4% compared to LPS.

 Table 4.39: The Percentage of Cytokine Release in Comparison to Lipopolysaccharide

 Control after Incubation with Compounds from *Tephrosia elata*⁸

	Percentage Cytokine Release					
Sample	IL-1β	IFN-γ	GM-CSF	TNF-α		
44	65.6	11.9	59.2	28.5		
45	30.0	0.3	29.3	3.4		
46	46.9	3.5	49.7	16.6		
47	91.2	49.2	43.9	56.7		
Ibuprofen	25.5	16.8	24.2	32.2		

Figure 4.7: The cytokine release after LPS stimulated PMBCs incubated with the crude extracts and isolated compounds from *Tephrosia elata*⁹

⁸ The data used for calculation of the percentage cytokine release is presented in the Appendix B1, Table B3 and B4

⁹ The data used to generate the graphs are presented in Appendix B1, Table B3 and B4

4.7.5: Activity of Compounds Isolated from Tephrosia rhodesica

The crude extract decreased the production of IL-1 β , IFN- γ and TNF- α except for GM-CSF which was increased to 188% as compared to the LPS control (Table 4.40 and Figure 4.8). All the compounds (**48**, **52-56**) decreased the production of IL-1 β , IFN- γ except compound **56** which stimulated the production of GM-CSF to about 248.1% compared to ibuprofen (**Figure 4.8** and **Table 4.40**). Compounds **53-55** exhibited a strong reduction of IFN- γ release compared to LPS. Similarly, compound **55** attenuated the production of TNF- α to 5.1% compared to LPS.

Figure 4.8: IL-1 β , IFN- γ , GM-CSF and TNF- α release after LPS stimulated PMBCs incubated with the crude extracts and isolated compounds from *Tephrosia rhodesica*¹⁰

¹⁰ The data used to generate the graphs are presented in Appendix B1, Table B3 and B4

	Percentage Cytokine Release				
Sample	IL-1β	IFN-γ	GM-CSF	ΤΝΓ-α	
Ibuprofen	25.5	16.8	24.2	32.2	
Crude extract	45.0	0.5	188.1	20.6	
48	58.7	2.5	142.5	9.9	
52	57.6	5.8	70.2	17.8	
53	43.6	1.0	79.9	12.8	
54	76.1	0.8	34.7	2.8	
55	72.5	0.9	60.6	5.1	
56	63.4	3.6	248.1	33.4	
57	74.6	3.9	148.8	8.5	

 Table 4.40: The Percentage of Cytokine Release in Comparison to Lipopolysaccharide

 Control after Incubation with Compounds from *Tephrosia rhodesica*¹¹

4.7.6: Anti-inflammatory Activity of Pyrazoisopongaflavone (57)

Pyrazoisopongaflavone (57) which was structurally modified from isopongaflavone (38) was evaluated for anti-inflammatory activity. Pyrazoisopongaflavone (57) decreased the production of IL- β , IFN- γ , and TNF- α to 74.6, 3.9 and 8.5%, respectively, compared to isopongaflavone (38) which decreased the production of IL- β , IFN- γ and TNF- α to 57.9, 1.4 and 0.7%. Pyrazoisopongaflavone stimulated the production of GM-CSF to about 148% but isopongaflavone reduced its production to 7.1%. It is worth noting that the conversion of some natural products such as curcumin into their pyrazole derivatives enhanced their anti-inflammatory activity (Somchit *et al.*, 2018; Fernández-Moriano *et al.*, 2019). Also, pyrazole derivatives have been found to have potent anti-inflammatory properties and some, such as celecoxib, have been developed into anti-inflammatory drugs (Ismail *et al.*, 2009; McCormack, 2011; Karrouchi *et al.*, 2018). However, in this study, isopongaflavone was found to be more active than its pyrazole derivative, pyrazoisopongaflavone.

¹¹ The data used for calculation of the percentage cytokine release is presented in the Appendix B1, Table B3 and B4

4.7.7: Synergistic Anti-inflammatory Activities of the Isolated compounds

The synergistic anti-inflammatory activities of combinations of flavonoids isolated in this study were evaluated. The combinations were as follows: group 1 (compounds 1-2, 8, and 9), group 2 (compounds 12–17, 5), group 3 (compounds 6, 7, 10 and 11), group 4 (compounds 25, 31 and 32), group 5 (compounds 26, 27) and group 6 (compounds 28 - 30). As shown in Figure 4.9 and Table 4.41, all the combinations showed a reduction of IL-1 β , IFN- γ , GM-CSF and TNF- α production except group 5 that stimulated the production of GM-CSF to about 184% in comparison to the LPS control. Groups 1-3 reduced the secretion of IL-6, IFN- γ and TNF- α to levels that were not expressively different from the untreated control (medium). Generally, the combinations of flavonoids showed stronger activities than the individual compounds. For instance, lineaflavone B (2) was the most active compound among the compounds in group 1 decreasing the production of IL-1 β , IFN- γ , GM-CSF to 0.3, 0.2, 3.4 and 0.0%, respectively and a similar trend was observed in all other groups. Thus, combining the flavonoids showed synergism.

Generally, the results for anti-inflammatory activities of the isolated compounds and combinations supplement early reports on anti-inflammatory properties of flavonoids (Tordera *et al.*, 1994; Hyun Pyo *et al.*, 2004; Ko *et al.*, 2004; Ibrahim *et al.*, 2007; Huang *et al.*, 2009; Feng *et al.*, 2012; Hu *et al.*, 2017; Ryu *et al.*, 2019). For instance, luteolin (**13**) was earlier found to suppress the NF- κ B pathway and inhibit the release of pro-inflammatory cytokines (Ueda *et al.*, 2002; Seelinger *et al.*, 2008) and in this study, luteolin showed anti-inflammatory effect by reducing the production of IL-1 β , IL-2, IL-6, GM-CSF and TNF- α (Table 4.36).

Figure 4.9: IL-1 β , IFN- γ , GM-CSF and TNF- α release after LPS stimulated PMBCs incubated with the crude extracts and combinations of isolated compounds¹²

 Table 4.41: The Percentage of Cytokine Release in Comparison to Lipopolysaccharide

 Control after Incubation with combinations of isolated compounds¹³

Sample	Percentage Cytokine Release in Comparison LPS Control			
	IL-1β	IFN-γ	GM-CSF	ΤΝΓ-α
Ibuprofen	25.5	16.8	24.2	32.2
Group 1	0.3	0.2	3.4	0.0
Group 2	0.1	0.2	3.4	0.1
Group 3	3.4	0.2	2.1	0.1
Group 4	21.1	0.1	3.7	1.0
Group 5	79.4	1.2	184.3	7.9
Group 6	40.0	0.3	12.1	1.7

¹² The data used to generate the graphs are presented in Appendix B1, Table B5. THC = crude extract of *Tephrosia hildebrandtii* and TLC = crude extract of *Tephrosia linearis*.

¹³ The data used to generate the table are presented in Appendix B1, Table B5.

CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS

5.1: Conclusions

In this study, five plants in the genus *Tephrosia* Pers. (Fabaceae) namely; *Tephrosia linearis*, *Tephrosia hildebrandtii*, *Tephrosia vogelii*, *Tephrosia elata* and *Tephrosia rhodesica* were phytochemically investigated and a total of fifty-six compounds were isolated and characterized. The compounds were evaluated for their anti-inflammatory activities and their synergistic effects.

The specific conclusions drawn from this study are outlined herein.

i. Phytochemical investigation of the selected plants led to isolation and characterization of eleven new compounds (1-7, 25, 35, 36 and 44) and forty-five known compounds (8-24, 26-34, 37-43 and 45-56 as summarised in Table 5.1. It is worthy to note that isopongaflavone (38) was structurally modified to the pyrazole derivative pyrazoisopongaflavone (57).

Table 5.1: Summary of the Compounds Characterized from the five Tephrosia species

Plant species (part)	New compounds	Known compounds
T. linearis (AP)	Seven (1-7)	Sixteen (8-24)
T hildebrandtii (AP)	One (25)	Ten (22, 26-34)
T vogelii (SD)	Two (35 and 36)	Ten (34 , 37-43)
T. elata (ST)	One (44)	Three (45-47)
T. rhodesica (ST)	-	Eleven (21, 23 and 48-56)

Key: AP-aerial parts, SD -seedpods and ST-stems

ii. The treatment of LPS-stimulated PBMCs with the isolated compounds (at 100 μ M) and extracts (100 μ g/mL) showed anti-inflammatory activities by suppressing the production of the pro-inflammatory cytokines (IL-1 β , IL-2, IL-6, IFN- γ , GM-CSF and

TNF- α). Among the compounds that were tested, lineaflavone B (2), luteolin (13), patuletin-3-*O*-rhamnoside (16) and pisatin (30) showed the strongest activity.

iii. The synergistic anti-inflammatory effects of the isolated compounds were also investigated. All the combinations of flavonoids (groups 1-6) showed superior antiinflammatory activities than the individual flavonoids isolated in this study suggesting anti-inflammatory synergetic effects.

5.2: Recommendations

Based on the results of this study, the recommendations are made as follows:

- 1. Since the plants investigated led to the isolation of novel compounds and structurally diverse flavonoids with the potential to serve as anti-inflammatory agents, further phytochemical studies should be carried on other parts of these plants.
- 2. Diverse analogues of the most active compounds should be prepared to optimize their antiinflammatory effects.
- 3. The cytotoxicity of the most active compounds should be evaluated to determine their safety.

REFERENCE

- Abdallah, H. M., Almowallad, F. M., Esmat, A., Shehata, I. A., and Abdel-Sattar, E. A. (2015).
 Anti-inflammatory activity of flavonoids from *Chrozophora tinctoria*. *Phytochemistry Letters*, 13, 74-80.
- Abdel-Kader, M. S. (2001). Phenolic Constituents of *Ononis vaginalis* Roots. *Planta Medica*, 67(04), 388-390.
- Abdulkhaleq, L. A., Assi, M. A., Abdullah, R., Zamri-Saad, M., Taufiq-Yap, Y. H., and Hezmee,
 M. N. M. (2018). The crucial roles of inflammatory mediators in inflammation: A review. *Veterinary world*, *11*(5), 627-635.
- Abegaz, B. M., Ngadjui, B. T., Dongo, E., and Tamboue, H. (1998). Prenylated chalcones and flavones from the leaves of *Dorstenia kameruniana*. *Phytochemistry*, *49*(4), 1147-1150.
- Abidi, S. L. (1987). Optical resolution of rotenoids. *Journal of Heterocyclic Chemistry*, 24(3), 845-852.
- Abreu, P. M., and Luis, M. H. (1996). Constituents of *Tephrosia Uniflora*. Natural Product Letters, 9(2), 81-86.
- Adaudi, A., Aluwong, T., Salawu, O., and Anuka, J. (2009). Blood pressure, analgesic and antiinflammatory properties of methanolic extracts of Tephrosia vogelii in experimental animals. *Nigerian Veterinary Journal, 30*(3), 37-43.
- Agbeko, R. S., and Peters, M. J. (2011). Chapter 90 The Innate Immune System. In Fuhrman,
 B. P. and Zimmerman, J. J. (Eds.), *Pediatric Critical Care (Fourth Edition)* (pp. 1267-1273). Saint Louis: Mosby.
- Aggarwal, B. B., Vijayalekshmi, R. V., and Sung, B. (2009). Targeting Inflammatory Pathways for Prevention and Therapy of Cancer: Short-Term Friend, Long-Term Foe. *Clinical Cancer Research*, 15(2), 425-430.

- Agnew, A. D. Q. (2013). Upland Kenya Wild Flowers and Ferns: A Flora of the Flowers, Ferns, Grasses, and Sedges of Highland Kenya (Third ed.). Nairobi: Nature Kenya, The East Africa Natural History Society.
- Agrawal, P. K. (1989). *Carbon-13 NMR of flavonoids* (Vol. 39). Amsterdam, The Netherlands: Elsevier.
- Ahmad, S. (1986). Natural occurrence of *Tephrosia* flavones. *Phytochemistry*, 25(4), 955-958.
- Al-Ghamdi, F. A. (2013). Morphological Diversity of Some *Tephrosia* Species (Fabaceae) in Saudi Arabia. *American Journal of Plant Sciences*, 04(03), 6.
- Andrei, C. C., Ferreira, D. T., Faccione, M., de Moraes, L. A. B., de Carvalho, M. G., and Braz-Filho, R. (2000). C-prenylflavonoids from roots of *Tephrosia tunicata*. *Phytochemistry*, 55(7), 799-804.
- Atilaw, A. Y. (2018). Phytochemical investigation of selected Tephrosia species for antiplasmodial and anti-inflammatory principles. (PhD Thesis), University Of Nairobi, Nairobi.
- Atilaw, Y., Duffy, S., Heydenreich, M., Muiva-Mutisya, L., Avery, V., Erdélyi, M., and Yenesew,
 A. (2017a). Three Chalconoids and a Pterocarpene from the Roots of *Tephrosia* aequilata. Molecules, 22(2), 318.
- Atilaw, Y., Muiva-Mutisya, L., Bogaerts, J., Duffy, S., Valkonen, A., Heydenreich, M., Avery,
 V. M., Rissanen, K., Erdélyi, M., and Yenesew, A. (2020). Prenylated Flavonoids from the Roots of *Tephrosia rhodesica*. *Journal of Natural Products*, *83*(8), 2390-2398.
- Atilaw, Y., Muiva-Mutisya, L., Ndakala, A., Akala, H., Yeda, R., Wu, Y., Coghi, P., Wong, V., Erdélyi, M., and Yenesew, A. (2017b). Four Prenylflavone Derivatives with Antiplasmodial Activities from the Stem of *Tephrosia purpurea* subsp. *leptostachya*. *Molecules*, 22(9), 1514.

- Attiq, A., Jalil, J., Husain, K., and Ahmad, W. (2018). Raging the War Against Inflammation With Natural Products. *Frontiers in Pharmacology*, 9, 976-976.
- Auditeau, E., Chassagne, F., Bourdy, G., Bounlu, M., Jost, J., Luna, J., Ratsimbazafy, V., Preux,
 P.-M., and Boumediene, F. (2019). Herbal medicine for epilepsy seizures in Asia, Africa and Latin America: A systematic review. *Journal of Ethnopharmacology, 234*, 119-153.
- Banerjee, T., Valacchi, G., Ziboh, V. A., and van der Vliet, A. (2002). Inhibition of TNFαinduced cyclooxygenase-2 expression by amentoflavone through suppression of NF-κB activation in A549 cells. *Molecular and Cellular Biochemistry*, *238*(1), 105-110.
- Banerji, A., Luthria, D. L., and Prabhu, B. R. (1988). Prenylated compounds from Atalantia racemosa: isolation and synthesis of two pyranoflavones. Phytochemistry, 27(11), 3637-3640.
- Banoub, J., Delmas Jr., G.-H., Joly, N., Mackenzie, G., Cachet, N., Benjelloun-Mlayah, B., and Delmas, M. (2015). A critique on the structural analysis of lignins and application of novel tandem mass spectrometric strategies to determine lignin sequencing. *Journal of Mass Spectrometry*, 50(1), 5-48.
- Barnes, P. J. (1998). Anti-inflammatory Actions of Glucocorticoids: Molecular Mechanisms. *Clinical Science*, 94(6), 557-572.
- Beattie, K. D. (2009). *Phytochemical studies and bioactivity of Centipeda and Eremophila species*. Southern Cross University.
- Bedane, K. G., Kusari, S., Masesane, I. B., Spiteller, M., and Majinda, R. R. T. (2016).
 Flavanones of *Erythrina livingstoniana* with antioxidant properties. *Fitoterapia*, 108, 48-54.

- Bentley, M. D., Hassanali, A., Lwande, W., Njoroge, P. E. W., Sitayo, E. N. O., and Yatagai, M. (1987). Insect antifeedants from *Tephrosia elata* Deflers. *Insect Science and Its Application*, 8(1), 85-88.
- Bickoff, E. M., Spencer, R. R., Knuckles, B. E., and Lundin, R. E. (1966). 3'-Methoxycoumestrol from Alfalfa: Isolation and Characterization. *Journal of Agricultural and Food Chemistry*, 14(5), 444-446.
- Biljana, B. P. (2012). Historical review of medicinal plants' usage. *Pharmacognosy Review*, 6(11), 1-5.
- Biondi, D. M., Rocco, C., and Ruberto, G. (2003). New Dihydrostilbene Derivatives from the Leaves of Glycyrrhiza glabra and Evaluation of Their Antioxidant Activity. *Journal of Natural Products*, 66(4), 477-480.
- Biondi, D. M., Rocco, C., and Ruberto, G. (2005). Dihydrostilbene Derivatives from *Glycyrrhiza glabra* Leaves. *Journal of Natural Products*, 68(7), 1099-1102.
- Bond, W. S. (1977). Toxic reactions and side effects of glucocorticoids in man. American Journal of Hospital Pharmacy, 34(5), 479-485.
- Botting, R., and Ayoub, S. S. (2005). COX-3 and the mechanism of action of paracetamol/acetaminophen. *Prostaglandins, Leukotrienes and Essential Fatty Acids,* 72(2), 85-87.
- Brown, E. S. (2009). Effects of glucocorticoids on mood, memory, and the hippocampus: treatment and preventive therapy. *Annals of the New York Academy of Sciences*, 1179(1), 41-55.
- Buttgereit, F., Seibel, M. J. H., and Bijlsma, J. W. J. (2013). 87 Glucocorticoids. In Rich, R.R., Fleisher, T. A., Shearer, W. T., Schroeder, H. W., Frew, A. J. and Weyand, C. M.

(Eds.), *Clinical Immunology (Fourth Edition)* (pp. 1066-1076). London: Content Repository Only!

- Camele, G., Delle Monache, F., Delle Monache, G., and Marini Bettolo, G. B. (1980). Three new flavonoids from *Tephrosia praecans*. *Phytochemistry*, *19*(4), 707-709.
- Carlson, D. G., Weisleder, D., and Tallent, W. H. (1973). NMR investigations of rotenoids. *Tetrahedron, 29*(18), 2731-2741.
- Chang, C.-H., Lin, C.-C., Kadota, S., Hattori, M., and Namba, T. (1995). Flavonoids and a prenylated xanthone from *Cudrania cochinchinensis* var. *gerontogea*. *Phytochemistry*, 40(3), 945-947.
- Chang, H. W., Baek, S. H., Chung, K. W., Son, K. H., Kim, H. P., and Kang, S. S. (1994). Inactivation of Phospholipase A2 by Naturally Occurring Biflavonoid, Ochnaflavone. *Biochemical and Biophysical Research Communications*, 205(1), 843-849.
- Chang, L. C., Chávez, D., Song, L. L., Farnsworth, N. R., Pezzuto, J. M., and Kinghorn, A. D. (2000). Absolute Configuration of Novel Bioactive Flavonoids from *Tephrosia* purpurea. Organic Letters, 2(4), 515-518.
- Chang, L. C., Gerhäuser, C., Song, L., Farnsworth, N. R., Pezzuto, J. M., and Kinghorn, A. D. (1997). Activity-Guided Isolation of Constituents of *Tephrosia purpurea* with the Potential to Induce the Phase II Enzyme, Quinone Reductase. *Journal of Natural Products*, 60(9), 869-873.
- Chang, S.-H. (1990). Flavonoids, coumarins and acridone alkaloids from the root bark of *Citrus limonia*. *Phytochemistry*, *29*(1), 351-353.
- Che, C. T., George, V., Ijinu, T. P., Pushpangadan, P., and Andrae-Marobela, K. (2017). Chapter
 2 Traditional Medicine. In Badal, S. and Delgoda, R. (Eds.), *Pharmacognosy* (pp. 15-30). Boston: Academic Press.

- Chen, G.-L., Fan, M.-X., Wu, J.-L., Li, N., and Guo, M.-Q. (2019). Antioxidant and antiinflammatory properties of flavonoids from *lotus plumule*. *Food Chemistry*, 277, 706-712.
- Chen, L., Deng, H., Cui, H., Fang, J., Zuo, Z., Deng, J., Li, Y., Wang, X., and Zhao, L. (2017). Inflammatory responses and inflammation-associated diseases in organs. *Oncotarget*, 9(6), 7204-7218.
- Chen, Y.-L., Hs, uuml, and Hong, Y. (1958). Constituents of *Tephrosia* Species in Taiwan. I: On the Active Principles of *Tephrosia obovata* MERR. *Yakugaku Zasshi*, 78(2), 198-200.
- Chen, Y.-L., Wang, Y.-S., Lin, Y.-L., Munakata, K., and Ohta, K. (1978). Obovatin, obovatin methyl ether and obovatachalcone, new piscicidal flavonoids from *Tephrosia obovata*. *Agricultural and Biological Chemistry*, 42(12), 2431-2432.
- Chen, Y.-N., Peng, Y., Gao, C.-H., Yan, T., Xu, Z.-F., Qiu, S. X., Cao, W.-H., Deng, L., and Huang, R.-M. (2015). Two New Secondary Metabolites from *Tephrosia purpurea*. *Natural Product Communications*, 10(6), 921 - 922.
- Chen, Y., Yan, T., Gao, C., Cao, W., and Huang, R. (2014). Natural Products from the Genus *Tephrosia. Molecules*, *19*(2), 1432-1458.
- Chhabra, S. C., and Mahunnah, R. L. A. (1994). Plants Used in Traditional Medicine by Hayas of the Kagera Region, Tanzania. *Economic Botany*, *48*(2), 121-129.
- Chibber, S., and Dutt, S. (1982). Tephrone, a new chalcone from *Tephrosia candida* seeds. *Current Science*.
- Chinniah, A., Mohapatra, S., Goswami, S., Mahapatra, A., Kar, S. K., Mallavadhani, U. V., and Das, P. K. (2009). On the potential of *Tephrosia purpurea* as anti-Helicobacter pylori agent. *Journal of Ethnopharmacology*, 124(3), 642-645.

- Conti, B., Tabarean, I., Andrei, C., and Bartfai, T. (2004). Cytokines and fever. Frontiers in Bioscience, 9(12), 1433-1449.
- Costa, S. S., Jossang, A., Bodo, B., Souza, M. L. M., and Moraes, V. L. G. (1994). Patuletin Acetylrhamnosides from *Kalanchoe brasiliensis* as Inhibitors of Human Lymphocyte Proliferative Activity. *Journal of Natural Products*, *57*(11), 1503-1510.
- Cragg, G. M., and Newman, D. J. (2013). Natural products: A continuing source of novel drug leads. *Biochimica et Biophysica Acta (BBA) General Subjects, 1830*(6), 3670-3695.
- Dafam, D., Kagaru, D., Yakubu, P., Umar, M., Ohemu, T., and Udoji, P. (2014). Pharmacognostic studies of the leaves and root of the plant, *Tephrosia vogelii* Hook f (Fabaceae). *Journal of Pharmaceutical and Biomedical Sciences*, 04(07), 619-622.
- Dagne, E., Dinku, B., Gray, A. I., and Waterman, P. G. (1988). Pumilaisoflavones A and B from the seed pods of *Tephrosia pumila*. *Phytochemistry*, *27*(5), 1503-1505.
- Dagne, E., Yenesew, A., and Waterman, P. G. (1989). Flavonoids and isoflavonoids from *Tephrosia fulvinervis* and *Tephrosia pentaphylla*. *Phytochemistry*, 28(11), 3207-3210.
- Davis, J. M., Knutson, K. L., Strausbauch, M. A., Crowson, C. S., Therneau, T. M., Wettstein,
 P. J., Matteson, E. L., and Gabriel, S. E. (2010). Analysis of Complex Biomarkers for
 Human Immune-Mediated Disorders Based on Cytokine Responsiveness of Peripheral
 Blood Cells. *Journal of Immunology, 184*(12), 7297-7304.
- de Kloet, E. R., Ortiz Zacarias, N. V., and Meijer, O. C. (2017). Chapter 37 Manipulating the Brain Corticosteroid Receptor Balance: Focus on Ligands and Modulators. In Fink, G. (Ed.), *Stress: Neuroendocrinology and Neurobiology* (pp. 367-383). San Diego: Academic Press.
- de Oliveira, S., Rosowski, E. E., and Huttenlocher, A. (2016). Neutrophil migration in infection and wound repair: going forward in reverse. *Nature reviews. Immunology, 16*(6), 378-391.
- Dement, A. W., and Mabry, T. J. (1972). Flavonoids of north american species of *Thermopsis*. *Phytochemistry*, *11*(3), 1089-1093.
- Desborough, M. J. R., and Keeling, D. M. (2017). The aspirin story from willow to wonder drug. *British Journal of Haematology*, 177(5), 674-683.
- Dewick, P. M. (2002). *Medicinal natural products: a biosynthetic approach*: John Wiley & Sons.
- Dharani, N., Yenesew, A., Aynekulu, E., Tuei, B., and Jamnadass, R. (2015). *Traditional ethnoveterinary medicine in East Africa: a manual on the use of medicinal plants*. Nairobi, Kenya: The World Agroforestry Centre.
- Dhikav, V., Singh, S., Pande, S., Chawla, A., and Anand, K. S. (2003). Non-steroidal druginduced gastrointestinal toxicity: mechanisms and management. *Journal, Indian Academy of Clinical Medicine, 4*(4), 315-322.
- Dinarello, C. A. (2010). Anti-inflammatory Agents: Present and Future. Cell, 140(6), 935-950.
- Ding, X.-Z., Hennig, R., and Adrian, T. E. (2003). Lipoxygenase and cyclooxygenase metabolism: new insights in treatment and chemoprevention of pancreatic cancer. *Molecular Cancer*, 2, 10-10.
- Drini, M. (2017). Peptic ulcer disease and non-steroidal anti-inflammatory drugs. *Australian Prescriber*, 40(3), 91-93.
- Duque, A. G., and Descoteaux, A. (2014). Macrophage cytokines: involvement in immunity and infectious diseases. *Frontiers in Immunology 5*, 491-491.

- Durgaprasad, L., Manoj, K., Hemalatha, R., Ramakrishna, S., Naidu, V. G. M., Venu, T., Vinod,
 V., Navrinder, K., and Ravinder, N. (2013). Anti-Inflammatory Treatments for Chronic
 Diseases: A Review. *Inflammation & Allergy Drug Targets (Discontinued), 12*(5), 349-361.
- Dzenda, T., Ayo, J., Adelaiye, A., and Adaudi, A. (2007). Ethno-medical and veterinary uses of *Tephrosia vogelii* hook. F.: A review. *Nigerian Veterinary Journal, 28*(3), 24-39.
- Dzoyem, J. P., Nkuete, A. H. L., Ngameni, B., and Eloff, J. N. (2017). Anti-inflammatory and anticholinesterase activity of six flavonoids isolated from *Polygonum* and *Dorstenia* species. *Archives of Pharmacal Research*, *40*(10), 1129-1134.
- Falak, A. H., and Shoeb, A. (1987). A New Epoxyflavanone from *Tephrosia Hamiltonii*. *Planta Medica*, *53*(02), 220-221.
- Falshaw, C. P., Ollis, W. D., Moore, J. A., and Magnus, K. (1966). The extractives of *Piscidia* erythrina L.—III: The constitutions of lisetin, piscidone and piscerythrone. *Tetrahedron*, 22, 333-348.
- Feng, R., Guo, Z. K., Yan, C. M., Li, E. G., Tan, R. X., and Ge, H. M. (2012). Anti-inflammatory flavonoids from *Cryptocarya chingii*. *Phytochemistry*, 76, 98-105.
- Fernández-Moriano, C., González-Burgos, E., and Pilar Gómez-Serranillos, M. (2019). Curcumin: Current evidence of its therapeutic potential as a lead candidate for antiinflammatory drugs—an overview. In Brahmachari, G. (Ed.), *Discovery and Development of Anti-Inflammatory Agents from Natural Products* (pp. 7-59): Elsevier.
- Ferreira, V. L., Borba, H. H. L., Bonetti, A. D. F., Leonart, L., and Pontarolo, R. (2018). Cytokines and interferons: types and functions *Autoantibodies and Cytokines*: IntechOpen.

- Fu, M.-q., Xiao, G.-s., Xu, Y.-j., Wu, J.-j., Chen, Y.-l., and Qiu, S.-X. (2016). Chemical Constituents from Roots of *Millettia speciosa*. *Chinese Herbal Medicines*, 8(4), 385-389.
- Funakoshi-Tago, M., Nakamura, K., Tago, K., Mashino, T., and Kasahara, T. (2011). Antiinflammatory activity of structurally related flavonoids, Apigenin, Luteolin and Fisetin. *International Immunopharmacology*, 11(9), 1150-1159.
- Gachene, C. K. K., and Wortmann, C. S. (2004). Green manure/cover crop technology in eastern and central Uganda: development and dissemination *Green Manure/Cover Crop Systems of Smallholder Farmers* (pp. 219-236): Springer.
- Gampe, N., Darcsi, A., Lohner, S., Béni, S., and Kursinszki, L. (2016). Characterization and identification of isoflavonoid glycosides in the root of Spiny restharrow (*Ononis spinosa* L.) by HPLC-QTOF-MS, HPLC–MS/MS and NMR. *Journal of Pharmaceutical and Biomedical Analysis*, 123, 74-81.
- Ganapaty, S., Nair, V., Devi, D. R., Pannakal, S. T., Laatsch, H., and Dittrich, B. (2014). Rare Prenylated Isoflavones from *Tephrosia calophylla*. *Natural Product Communications*, 9(7), 1934578X1400900713.
- Ganapaty, S., Pannakal, S. T., Srilakshmi, G. V. K., Lakshmi, P., Waterman, P. G., and Brun, R.
 (2008a). Pumilanol, an antiprotozoal isoflavanol from *Tephrosia pumila*. *Phytochemistry Letters*, 1(4), 175-178.
- Ganapaty, S., Srilakshmi, G. V. K., Pannakal, S. T., and Laatsch, H. (2008b). A Pyranochalcone and Prenylflavanones from *Tephrosia pulcherrima* (Baker) Drumm. *Natural Product Communications*, 3(1), 1934578X0800300111.

- Ganapaty, S., Srilakshmi, G. V. K., Pannakal, S. T., Rahman, H., Laatsch, H., and Brun, R. (2009). Cytotoxic benzil and coumestan derivatives from *Tephrosia calophylla*. *Phytochemistry*, 70(1), 95-99.
- García-Lafuente, A., Guillamón, E., Villares, A., Rostagno, M. A., and Martínez, J. A. (2009). Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease. *Inflammation Research*, 58(9), 537-552.
- Gillett, J. B., Polhill, R. M., and Verdcourt, B. (1971). *Flora of Tropical East Africa*: Royal Botanic Gardens, Kew (K).
- Ginwala, R., Bhavsar, R., Chigbu, D. I., Jain, P., and Khan, Z. K. (2019). Potential Role of Flavonoids in Treating Chronic Inflammatory Diseases with a Special Focus on the Anti-Inflammatory Activity of Apigenin. *Antioxidants (Basel, Switzerland)*, 8(2), 35.
- Go'mez-Garibay, F., Quijano, L., and Rios, T. (1991). Flavanones from *Tephrosia leiocarpa*. *Phytochemistry*, *30*(11), 3832-3834.
- Goldstein, J. L., and Cryer, B. (2015). Gastrointestinal injury associated with NSAID use: a case study and review of risk factors and preventative strategies. *Drug, Healthcare and Patient Safety*, 7, 31-41.
- Gomes, R. N., Felipe da Costa, S., and Colquhoun, A. (2018). Eicosanoids and cancer. *Clinics*, 73(suppl 1), e530s-e530s.
- Gómez-Garibay, F., Calderón, J., Quijano, L., Téllez, O., del Socorro Olivares, M., and Ríos, T.
 (1997). An unusual prenyl biflavanol from *Tephrosia tepicana*. *Phytochemistry*, 46(7), 1285-1287.
- Gomez-Garibay, F., Quijano, L., Calderón, J. S., Morales, S., and Rios, T. (1988). Prenylflavanols from Tephrosia quercetorum. *Phytochemistry*, *27*(9), 2971-2973.

- Gómez-Garibay, F., Téllez-Valdez, O., Moreno-Torres, G., and Calderón José, S. (2002). Flavonoids from *Tephrosia major*. A New Prenyl-β-hydroxychalcone *Zeitschrift für Naturforschung C* (Vol. 57, pp. 579).
- Gomez, F., Calderon, J., and Quijano, L. (1984). Nitenin: A new flavan from *Tephrosia nitens* Beth. *Society Of Chemical Industry*, 17, 632-632.
- Gómez, F., Calderón, J. S., Quijano, L., Domínguez, M., and Ríos, T. (1985a). Viridiflorin, an isoflavone from *Tephrosia viridiflora*. *Phytochemistry*, *24*(5), 1126-1128.
- Gómez, F., Quijano, L., Calderón, J. S., Rodríquez, C., and Ríos, T. (1985b). Prenylflavans from *Tephrosia watsoniana*. *Phytochemistry*, *24*(5), 1057-1059.
- Gómez, F., Quijano, L., García, G., Calderón, J. S., and Ríos, T. (1983). A prenylated flavan from *Tephrosia madrensis*. *Phytochemistry*, 22(5), 1305-1306.
- Goodman, L. S. (1996). Goodman and Gilman's the pharmacological basis of therapeutics (Vol. 1549): McGraw-Hill New York.
- Goppelt-Struebe, M., Wolter, D., and Resch, K. (1989). Glucocorticoids inhibit prostaglandin synthesis not only at the level of phospholipase A2 but also at the level of cyclooxygenase/PGE isomerase. *British Journal of Pharmacology*, *98*(4), 1287-1295.
- Grosser, T., Fries, S., and FitzGerald, G. A. (2006). Biological basis for the cardiovascular consequences of COX-2 inhibition: therapeutic challenges and opportunities. *The Journal of Clinical Investigation*, *116*(1), 4-15.
- Guo, F., Zhang, S., Yan, X., Dan, Y., Wang, J., Zhao, Y., and Yu, Z. (2019). Bioassay-guided isolation of antioxidant and α-glucosidase inhibitory constituents from stem of *Vigna* angularis. Bioorganic Chemistry, 87, 312-320.
- Gupta, K. R., Krishnamurti, M., and Parthasarathi, L. (1980). Purpurin, a new flavanone from *Tephrosia purpurea* seeds. *Phytochemistry*, *19*(6), 1264.

- Hafidh, R. R., Abdulamir, A. S., Jahanshiri, F., Abas, F., Abu Bakar, F., and Sekawi, Z. (2009).Asia is the mine of natural antiviral products for public health. *The Open Complementary Medicine Journal*, 1, 58-68.
- Hämäläinen, M., Nieminen, R., Vuorela, P., Heinonen, M., and Moilanen, E. (2007). Anti-Inflammatory Effects of Flavonoids: Genistein, Kaempferol, Quercetin, and Daidzein Inhibit STAT-1 and NF-κB Activations, Whereas Flavone, Isorhamnetin, Naringenin, and Pelargonidin Inhibit only NF-κB Activation along with Their Inhibitory Effect on iNOS Expression and NO Production in ActivatedMacrophages. *Mediators of Inflammation, 2007*, 045673.
- Hamill, F. A., Apio, S., Mubiru, N. K., Bukenya-Ziraba, R., Mosango, M., Maganyi, O. W., and Soejarto, D. D. (2003). Traditional herbal drugs of Southern Uganda, II: literature analysis and antimicrobial assays. *Journal of Ethnopharmacology*, 84(1), 57-78.
- Hanna, V. S., and Hafez, E. A. A. (2018). Synopsis of arachidonic acid metabolism: A review. *Journal of Advanced Research*, 11, 23-32.
- Harbaum, B., Hubbermann, E. M., Wolff, C., Herges, R., Zhu, Z., and Schwarz, K. (2007).
 Identification of Flavonoids and Hydroxycinnamic Acids in Pak Choi Varieties (*Brassica campestris* L. ssp. chinensis var. communis) by HPLC–ESI-MS n and NMR and Their Quantification by HPLC–DAD. *Journal of Agricultural and Food Chemistry*, 55(20), 8251-8260.
- Harinantenaina, L., Brodie, P. J., Slebodnick, C., Callmander, M. W., Rakotobe, E., Randrianasolo, S., Randrianaivo, R., Rasamison, V. E., TenDyke, K., Shen, Y., Suh, E. M., and Kingston, D. G. I. (2010). Antiproliferative Compounds from *Pongamiopsis pervilleana* from the Madagascar Dry Forest. *Journal of Natural Products, 73*(9), 1559-1562.

- Harvey, A. L. (2008). Natural products in drug discovery. *Drug Discovery Today, 13*(19), 894-901.
- He, J., Fan, P., Feng, S., Shao, P., and Sun, P. (2018). Isolation and Purification of Two Isoflavones from Hericium erinaceum Mycelium by High-Speed Counter-Current Chromatography. *Molecules*, 23(3), 560.
- He, S., Chen, L., Niu, Y.-N., Wu, L.-Y., and Liang, Y.-M. (2009). 1,3-Dipolar cycloaddition of diazoacetate compounds to terminal alkynes promoted by Zn(OTf)₂: an efficient way to the preparation of pyrazoles. *Tetrahedron Letters*, 50(20), 2443-2445.
- Hegazy, M.-E. F., Abd El-Razek, M. H., Nagashima, F., Asakawa, Y., and Paré, P. W. (2009). Rare prenylated flavonoids from *Tephrosia purpurea*. *Phytochemistry*, 70(11), 1474-1477.
- Hegazy, M.-E. F., Mohamed, A. E.-H. H., El-Halawany, A. M., Djemgou, P. C., Shahat, A. A., and Paré, P. W. (2011). Estrogenic Activity of Chemical Constituents from *Tephrosia candida*. *Journal of Natural Products*, 74(5), 937-942.
- Heo, H. J., Kim, M. J., Lee, J. M., Choi, S. J., Cho, H. Y., Hong, B., Kim, H. K., Kim, E., and Shin, D. H. (2004). Naringenin from *Citrus junos* has an Inhibitory Effect on Acetylcholinesterase and a Mitigating Effect on Amnesia. *Dementia and Geriatric Cognitive Disorders*, 17(3), 151-157.
- Heuzé, V., Thiollet, H., Tran, G., Hassoun, P., and Lebas, F. (2018, January 25, 2018, 14:36).
 Ahuhu (*Tephrosia purpurea*). Retrieved January 11, 2020, from https://www.feedipedia.org/node/654
- Hsu, C.-L., Fang, S.-C., and Yen, G.-C. (2013). Anti-inflammatory effects of phenolic compounds isolated from the flowers of Nymphaea mexicana Zucc. Food & Function, 4(8), 1216-1222.

- Hu, J., Ma, W., Li, N., and Wang, K.-J. (2017). Antioxidant and Anti-Inflammatory Flavonoids from the Flowers of Chuju, a Medical Cultivar of *Chrysanthemum morifolim* Ramat. *Journal of the Mexican Chemical Society*, 61, 282-289.
- Huang, Y.-C., Hwang, T.-L., Chang, C.-S., Yang, Y.-L., Shen, C.-N., Liao, W.-Y., Chen, S.-C., and Liaw, C.-C. (2009). Anti-inflammatory Flavonoids from the Rhizomes of *Helminthostachys zeylanica*. *Journal of Natural Products*, 72(7), 1273-1278.
- Hyun Pyo, K., Kun Ho, S., Hyeun Wook, C., and Sam Sik, K. (2004). Review : Antiinflammatory Flavonoids: Modulators of Proinflammatory Gene Expression. [Review : Anti-inflammatory Flavonoids: Modulators of Proinflammatory Gene Expression]. *Natural Product Sciences*, 10(1), 1-10.
- Ibrahim, S. R. M., Badr, J. M., Sayed, K. A. E., and Youssef, D. T. A. (2007). A New Cytotoxic Sesquiterpene and Three Anti-inflammatory Flavonoids from Egyptian *Tanacetum santolinoides*. *Natural Product Communications*, 2(11), 1934578X0700201102.
- Ingham, J. L., and Markham, K. R. (1980). Tephrocarpin, a pterocarpan phytoalexin from *Tephrosia bidwilli* and a structure proposal for acanthocarpan. *Phytochemistry*, 21(12), 2969-2972.
- Intekhab, J., and Aslam, M. (2009). Isolation of a flavonoid from *Feronia limonia*. Journal of Saudi Chemical Society, 13(3), 295-298.
- Ismail, M. A. H., Lehmann, J., Abou El Ella, D. A., Albohy, A., and Abouzid, K. A. M. (2009). Lonazolac analogues: molecular modeling, synthesis, and in vivo anti-inflammatory activity. *Medicinal Chemistry Research*, 18(9), 725.
- Jain, A., Lodhi, S., and Singhai, A. (2009). Simultaneous estimation of quercetin and rutin in Tephrosia purpurea Pers by high performance thin layer chromatography. *Asian Journal* of Traditional Medicines, 4(3), 104-109.

- Jang, D. S., Park, E. J., Kang, Y.-H., Hawthorne, M. E., Vigo, J. S., Graham, J. G., Cabieses, F., Fong, H. H. S., Mehta, R. G., Pezzuto, J. M., and Kinghorn, A. D. (2003). Potential Cancer Chemopreventive Flavonoids from the Stems of *Tephrosia toxicaria*. *Journal of Natural Products*, 66(9), 1166-1170.
- Jang, J.-H., Shin, H. W., Lee, J. M., Lee, H.-W., Kim, E.-C., and Park, S. H. (2015). An Overview of Pathogen Recognition Receptors for Innate Immunity in Dental Pulp. *Mediators of Inflammation*, 2015, 794143-794143.
- Jayaraman, I., Ghanim, A., and Khan, H. A. (1980). A new prenylated flavanone from *Tephrosia* villosa. Phytochemistry, 19(6), 1267-1268.
- Jo-Watanabe, A., Okuno, T., and Yokomizo, T. (2019). The Role of Leukotrienes as Potential Therapeutic Targets in Allergic Disorders. *International Journal of Molecular Sciences*, 20(14), 3580.
- Jones, A. W. (2011). Early drug discovery and the rise of pharmaceutical chemistry. *Drug Testing and Analysis*, 3(6), 337-344.
- Juma, W. P., Akala, H. M., Eyase, F. L., Muiva, L. M., Heydenreich, M., Okalebo, F. A., Gitu,
 P. M., Peter, M. G., Walsh, D. S., Imbuga, M., and Yenesew, A. (2011). Terpurinflavone:
 An antiplasmodial flavone from the stem of *Tephrosia Purpurea*. *Phytochemistry Letters*, 4(2), 176-178.
- Jung, M. J., Kang, S. S., Jung, H. A., Kim, G. J., and Choi, J. S. (2004). Isolation of flavonoids and a cerebroside from the stem bark of *Albizzia julibrissin*. *Archives of Pharmacal Research*, 27(6), 593.
- Karrouchi, K., Radi, S., Ramli, Y., Taoufik, J., Mabkhot, Y. N., Al-aizari, F. A., and Ansar, M.
 h. (2018). Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review. *Molecules, 23*(1), 134.

- Katayama, S., and Lee, J. B. (2003). Prostaglandins and Leukotrienes. In Caballero, B. (Ed.),
 Encyclopedia of Food Sciences and Nutrition (Second Edition) (pp. 4798-4804).
 Oxford: Academic Press.
- Kerebba, N., Oyedeji, A. O., Byamukama, R., Kuria, S. K., and Oyedeji, O. O. (2019).
 Pesticidal activity of *Tithonia diversifolia* (Hemsl.) A. Gray and *Tephrosia vogelii* (Hook f.); phytochemical isolation and characterization: A review. *South African Journal of Botany*, *121*, 366-376.
- Khalid, S. A., and Waterman, P. G. (1981). 8-C-Prenylflavonoids from the seed of *Tephrosia* bracteolata. Phytochemistry, 20(7), 1719-1720.
- Khalivulla, S. I., Reddy, B. A. K., Gunasekar, D., Blond, A., Bodo, B., Murthy, M. M., and Rao,
 T. P. (2008). A new di-O-prenylated isoflavone from *Tephrosia tinctoria*. *Journal of Asian Natural Products Research*, *10*(10), 953-955.
- Khan, H. A., Chandrasekharan, I., and Ghanim, A. (1986). Falciformin, a flavanone from pods of *Tephrosia falciformis*. *Phytochemistry*, *25*(3), 767-768.
- Kim, Y. K., Shin, J. S., and Nahm, M. H. (2016). NOD-Like Receptors in Infection, Immunity, and Diseases. *Yonsei Medical Journal*, 57(1), 5-14.
- Kisangau, D. P., and Amri, E. (2012). Ethnomedicinal study of plants used in villages around Kimboza forest reserve in Morogoro, Tanzania. *Journal of Ethnobiology and Ethnomedicine*, 8, 1-9.
- Kishore, H., Reddy, V. B. M., Gunasekar, D., Murthy, M. M., Caux, C., and Bodo, B. (2003). A New Coumestan from *Tephrosia calophylla*. *Chemical and Pharmaceutical Bulletin*, 51(2), 194-196.

Ko, H.-H., Weng, J.-R., Tsao, L.-T., Yen, M.-H., Wang, J.-P., and Lin, C.-N. (2004). Antiinflammatory flavonoids and pterocarpanoid from *Crotalaria pallida* and *C. assamica*. *Bioorganic & Medicinal Chemistry Letters*, 14(4), 1011-1014.

Kokwaro, J. O. (1976). Medicinal Plant of East Africa. Nairobi: East African Literature Bureau.

Kokwaro, J. O. (2009). Medicinal plants of east Africa: University of Nairobi press.

- Kovalev, V. N., Spiridonov, V. N., Borisov, M. I., Kovalev, I. P., Gordienko, V. G., and Kolesnikov, D. D. (1975). Phenolic compounds of Ononis arvensis the structure of onogenin. *Chemistry of Natural Compounds*, 11(3), 367-369.
- Krupadanam, G. L. D., Sarma, P. N., Srimannarayana, G., and Rao, N. V. S. (1977a). New C-6 oxygenated rotenoids from tephrosia villosa -- villosin, villosone, villol and villinol. *Tetrahedron Letters*, 18(24), 2125-2128.
- Krupadanam, G. L. D., Sarma, P. N., Srimannarayana, G., and Rao, N. V. S. (1977b). New C-6 oxygenated rotenoids from *Tephrosia villosa* - villosin, villosone, villol and villinol. *Tetrahedron Letters*, 18(24), 2125-2128.
- Kumar, S., and Pandey, A. K. (2013a). Chemistry and biological activities of flavonoids: an overview. *TheScientificWorldJournal*, 2013, 162750-162750.
- Kumar, S., and Pandey, A. K. (2013b). Chemistry and Biological Activities of Flavonoids: An Overview. *The Scientific World Journal*, 2013, 16.
- LaPointe, M. C., and Isenović, E. (1999). Interleukin-1β regulation of inducible nitric oxide synthase and cyclooxygenase-2 involves the p42/44 and p38 MAPK signaling pathways in cardiac myocytes. *Hypertension*, *33*(1), 276-282.
- Lee, S.-J., Wood, A. R., Maier, C. G. A., Dixon, R. A., and Mabry, T. J. (1998). Prenylated flavonoids from *Maclura pomifera*. *Phytochemistry*, *49*(8), 2573-2577.

- Lee, S. H., Kim, J. Y., Seo, G. S., Kim, Y. C., and Sohn, D. H. (2009). Isoliquiritigenin, from Dalbergia odorifera, up-regulates anti-inflammatory heme oxygenase-1 expression in RAW264.7 macrophages. *Inflammation Research*, 58(5), 257-262.
- Leyva-López, N., Gutierrez-Grijalva, E. P., Ambriz-Perez, D. L., and Heredia, J. B. (2016). Flavonoids as Cytokine Modulators: A Possible Therapy for Inflammation-Related Diseases. *International Journal of Molecular Sciences*, *17*(6), 921.
- Li, Y., Li, G., Wei, X., Liu, Z., and Xu, H. (2011). Isolation and identification of insecticidal compounds from *Tephrosia purpurea* (Fabaceae) bark and their insecticidal activity. *Acta Entomologica Sinica*, *54*(12), 1368-1376.
- Lichtenstein, D. R., Syngal, S., and Wolfe, M. M. (1995). Nonsteroidal antiinflammatory drugs and the gastrointestinal tract the double-edged sword. *Arthritis & Rheumatism, 38*(1), 5-18.
- Lin, L.-C., Pai, Y.-F., and Tsai, T.-H. (2015). Isolation of Luteolin and Luteolin-7-O-glucoside from *Dendranthema morifolium* Ramat Tzvel and Their Pharmacokinetics in Rats. *Journal of Agricultural and Food Chemistry*, 63(35), 7700-7706.
- Lis, K., Kuzawińska, O., and Bałkowiec-Iskra, E. (2014). Tumor necrosis factor inhibitors state of knowledge. *Archives of Medical Science*, *10*(6), 1175-1185.
- Liu, C.-S. K., Yang, S.-L., Roberts, M. F., and Phillipson, J. D. (1989). Flavonol glycosides with acetyl substitution from *Kalanchoe gracilis*. *Phytochemistry*, *28*(10), 2813-2818.
- Liu, T., Zhang, L., Joo, D., and Sun, S.-C. (2017). NF-κB signaling in inflammation. *Signal Transduction and Targeted Therapy*, *2*, 17023.
- Liu, X.-Y., Zhang, Y.-B., Yang, X.-W., Yang, Y.-F., Xu, W., Zhao, W., Peng, K.-F., Gong, Y., Liu, N.-F., and Zhang, P. (2019). Anti-Inflammatory Activity of Some Characteristic Constituents from the Vine Stems of *Spatholobus suberectus*. *Molecules*, 24(20), 3750.

- Lone, A., and Taskén, K. (2013). Proinflammatory and Immunoregulatory Roles of Eicosanoids in T Cells. *Frontiers in Immunology 4*(130).
- Lopes, J. L. C., Lopes, J. N. C., and Leitao Filho, H. F. (1979). 5-Deoxyflavones from the Vochysiaceae. Phytochemistry, 18(2), 362.
- Luheshi, G., and Rothwell, N. (1996). Cytokines and Fever. *International Archives of Allergy* and Immunology, 109(4), 301-307.
- Luyengi, L., Lee, I.-S., Mar, W., Fong, H. H. S., Pezzuto, J. M., and Kinghorn, A. D. (1994). Rotenoids and chalcones from *Mundulea sericea* that inhibit phorbol ester-induced ornithine decarboxylase activity. *Phytochemistry*, 36(6), 1523-1526.
- Lwande, W., Bentley, M. D., and Hassanali, A. (1986a). The structure of hildecarpin, an insect antifeedant 6a-hydroxypterocarpan from the roots of *Tephrosia hildebrandtii* Vatke. *Insect Science and Its Application*, 7(4), 501-503.
- Lwande, W., Bentley, M. D., Macfoy, C., Lugemwa, F. N., Hassanali, A., and Nyandat, E. (1987). A new pterocarpan from the roots of *Tephrosia hildebrandtii*. *Phytochemistry*, *26*(8), 2425-2426.
- Lwande, W., Greene, C., and Bentley, M. (1985a). Flavonoids from the roots of *Tephrosia elata*. Journal of Natural Products, 48(6), 1004-1005.
- Lwande, W., Hassanali, A., Bentley, M., and Monache, F. D. (1986b). 8-C-Prenylated Flavones from the Roots of *Tephrosia hildebrandtii*. *Journal of Natural Products*, *49*(6), 1157-1158.
- Lwande, W., Hassanali, A., Njoroge, P. W., Bentley, M. D., Monache, F. D., and Jondiko, J. I. (1985b). A new 6a-hydroxypterocarpan with insect antifeedant and antifungal properties from the roots of *Tephrosia hildebrandtii* vatke. *Insect Science and Its Application, 6*(4), 537-541.

- Ma, H., Hong, M., Duan, J., Liu, P., Fan, X., Shang, E., Su, S., Guo, J., Qian, D., and Tang, Y. (2013). Altered cytokine gene expression in peripheral blood monocytes across the menstrual cycle in primary dysmenorrhea: a case-control study. *PLoS ONE*, 8(2), e55200-e55200.
- Ma, Y. L., Li, Q. M., Van den Heuvel, H., and Claeys, M. (1997). Characterization of flavone and flavonol aglycones by collision-induced dissociation tandem mass spectrometry. *Rapid Communications in Mass Spectrometry*, 11(12), 1357-1364.
- Mabry, T. J., Markham, K. R., and Thomas, M. B. (1970). *The Systematic Identification of Flavonoids*. Bwelin: Springer-Verlag.
- Machocho, A. K., Lwande, W., Jondikoa, J. I., Moreka, L. V. C., and Hassanali, A. (1995). Three New Flavonoids from the Root of *Tephrosia emoroides* and their Antifeedant Activity against the Larvae of the Spotted Stalk Borer *Chilo partellus* Swinhoe. *International Journal of Pharmacognosy*, 33(3), 222-227.
- Madhusudhana, J., Reddy, R. V. N., Reddy, B. A. K., Reddy, M. V. B., Gunasekar, D., Deville,
 A., and Bodo, B. (2010). Two new geranyl flavanones from *Tephrosia villosa*. *Natural Product Research*, 24(8), 743-749.
- Mahdi, J. G., Mahdi, A. J., Mahdi, A. J., and Bowen, I. D. (2006). The historical analysis of aspirin discovery, its relation to the willow tree and antiproliferative and anticancer potential. *Cell Proliferation*, *39*(2), 147-155.
- Mahomoodally, M. F. (2013). Traditional medicines in Africa: an appraisal of ten potent African medicinal plants. *Evidence-Based Complementary and Alternative Medicine*, 2013.
- Mai, H. D. T., Nguyen, T. T. O., Pham, V. C., Litaudon, M., Guéritte, F., Tran, D. T., and Nguyen,
 V. H. (2010). Cytotoxic Prenylated Isoflavone and Bipterocarpan from *Millettia* pachyloba. Planta Medica, 76(15), 1739-1742.

- Malcher-Lopes, R., Franco, A., and Tasker, J. G. (2008). Glucocorticoids shift arachidonic acid metabolism toward endocannabinoid synthesis: a non-genomic anti-inflammatory switch. *European Journal of Pharmacology*, *583*(2-3), 322-339.
- Malik, K., Ahmad, M., Zafar, M., Ullah, R., Mahmood, H. M., Parveen, B., Rashid, N., Sultana, S., Shah, S. N., and Lubna. (2019). An ethnobotanical study of medicinal plants used to treat skin diseases in northern Pakistan. *Complementary and Alternative Medicine*, 19(1), 210.
- Maroon, J. C., Bost, J. W., and Maroon, A. (2010). Natural anti-inflammatory agents for pain relief. *Surgical Neurology International, 1*, 80-80.
- McCormack, P. L. (2011). Celecoxib. Drugs, 71(18), 2457-2489.
- Menegatti, S., Bianchi, E., and Rogge, L. (2019). Anti-TNF Therapy in Spondyloarthritis and Related Diseases, Impact on the Immune System and Prediction of Treatment Responses. *Frontiers in Immunology 10*, 382-382.
- Ming, D. S., Hillhouse, B. J., Guns, E. S., Eberding, A., Xie, S., Vimalanathan, S., and Towers,
 G. H. N. (2005). Bioactive compounds from *Rhodiola rosea* (Crassulaceae). *Phytotherapy Research*, 19(9), 740-743.
- Mintah, S. O., Asafo-Agyei, T., Archer, M.-A., Junior, P. A.-A., Boamah, D., Kumadoh, D., Appiah, A., Ocloo, A., Boakye, Y. D., and Agyare, C. (2019). Medicinal Plants for Treatment of Prevalent Diseases *Pharmacognosy-Medicinal Plants*: IntechOpen.
- Mizuno, M., Baba, K., Iinuma, M., and Tanaka, T. (1992). Coumaronochromones from leaves of *Desmodium oxyphyllum*. *Phytochemistry*, *31*(1), 361-363.
- Mkindi, A. G., Tembo, Y., Mbega, E. R., Medvecky, B., Kendal-Smith, A., Farrell, I. W., Ndakidemi, P. A., Belmain, S. R., and Stevenson, P. C. (2019). Phytochemical Analysis

of *Tephrosia vogelii* across East Africa Reveals Three Chemotypes that Influence Its Use as a Pesticidal Plant. *Plants, 8*(12), 597.

- Mogensen, T. H. (2009). Pathogen recognition and inflammatory signaling in innate immune defenses. *Clinical Microbiology Reviews*, *22*(2), 240-273.
- Monache, F. D., Labbiento, L., Marta, M., and Lwandet, W. (1986). 4β-substituted flavans from *Tephrosia hildebrandtii*. *Phytochemistry*, *25*(7), 1711-1713.
- Monache, G. D., Scurria, R., Vitali, A., Botta, B., Monacelli, B., Pasqua, G., Palocci, C., and Cernia, E. (1994). Two isoflavones and a flavone from the fruits of *Maclura pomifera*. *Phytochemistry*, 37(3), 893-898.
- Monitto, C. L., Kost-Byerly, S., and Yaster, M. (2011). CHAPTER 15 Pain Management. In Davis, P. J., Cladis, F. P. and Motoyama, E. K. (Eds.), *Smith's Anesthesia for Infants and Children (Eighth Edition)* (pp. 418-451). Philadelphia: Mosby.
- Muiva-Mutisya, L., Macharia, B., Heydenreich, M., Koch, A., Akala, H. M., Derese, S., Omosa,
 L. K., Yusuf, A. O., Kamau, E., and Yenesew, A. (2014). 6α-Hydroxy-α-toxicarol and
 (+)-tephrodin with antiplasmodial activities from *Tephrosia* species. *Phytochemistry Letters, 10*, 179-183.
- Muiva-Mutisya, L. M., Atilaw, Y., Heydenreich, M., Koch, A., Akala, H. M., Cheruiyot, A. C.,
 Brown, M. L., Irungu, B., Okalebo, F. A., Derese, S., Mutai, C., and Yenesew, A. (2018).
 Antiplasmodial prenylated flavanonols from *Tephrosia subtriflora*. *Natural Product Research*, 32(12), 1407-1414.
- Muiva, L. M., Yenesew, A., Derese, S., Heydenreich, M., Peter, M. G., Akala, H. M., Eyase, F., Waters, N. C., Mutai, C., Keriko, J. M., and Walsh, D. (2009). Antiplasmodial βhydroxydihydrochalcone from seedpods of *Tephrosia elata*. *Phytochemistry Letters*, 2(3), 99-102.

- Murthy, M. S. R., and Rao, E. V. (1985). Maxima Isoflavone J: a New O-Prenylated Isoflavone from *Tephrosia maxima*. *Journal of Natural Products*, *48*(6), 967-968.
- Mwaura, L., Stevenson, P. C., Ofori, D. A., Anjarwalla, P., Jamnadass, R., and Smith, P. (2013). Pesticidal Plant Leaflet: *Tephrosia vogelii* Hook. f. Nairobi, Kenya: World Agroforestry Centre.
- Mwine, T. J., Van Damme, P., Gerard, K., and Charles, K. (2011). Ethnobotanical survey of pesticidal plants used in South Uganda: Case study of Masaka district. *Journal of Medicinal Plants Research*, 5(7), 1155-1163.
- Nawwar, M. A. M., El-Sissi, H. I., and Barakat, H. H. (1984). Flavonoid constituents of *Ephedra alata*. *Phytochemistry*, 23(12), 2937-2939.
- Nenaah, G. E. (2014). Toxic and antifeedant activities of prenylated flavonoids isolated from *Tephrosia apollinea* L. against three major coleopteran pests of stored grains with reference to their structure–activity relationship. *Natural Product Research*, 28(24), 2245-2252.
- Nguyen, K. D. H., Dang, P. H., Nguyen, H. X., Nguyen, M. T. T., Awale, S., and Nguyen, N. T.
 (2017). Phytochemical and cytotoxic studies on the leaves of *Calotropis gigantea*. *Bioorganic & Medicinal Chemistry Letters*, 27(13), 2902-2906.
- Norris, D. O., and Carr, J. A. (2013). Chapter 3 Synthesis, Metabolism, and Actions of Bioregulators. In Norris, D. O. and Carr, J. A. (Eds.), Vertebrate Endocrinology (Fifth Edition) (pp. 41-91). San Diego: Academic Press.
- Noverr, M. C., Erb-Downward, J. R., and Huffnagle, G. B. (2003). Production of Eicosanoids and Other Oxylipins by Pathogenic Eukaryotic Microbes. *Clinical Microbiology Reviews*, 16(3), 517-533.

- O'Bryan, M. K., Schlatt, S., Phillips, D. J., de Kretser, D. M., and Hedger, M. P. (2000). Bacterial Lipopolysaccharide-Induced Inflammation Compromises Testicular Function at Multiple Levels in Vivo1. *Endocrinology*, *141*(1), 238-246.
- Oberholzer, M. E., Rall, G. J. H., and Roux, D. G. (1974). The concurrence of 12a-hydroxyand 12a-O-methylrotenoids. Isolation of the first natural 12a-O-methylrotenoids. *Tetrahedron Letters*, 15(25), 2211-2214.
- Oldfield, V., Dhillon, S., and Plosker, G. L. (2009). Tocilizumab. Drugs, 69(5), 609-632.
- Oray, M., Abu Samra, K., Ebrahimiadib, N., Meese, H., and Foster, C. S. (2016). Long-term side effects of glucocorticoids. *Expert Opinion on Drug Safety*, *15*(4), 457-465.
- Oryema, C., Ziraba, R. B., Omagor, N., and Opio, A. (2010). Medicinal plants of Erute county, Lira district, Uganda with particular reference to their conservation. *African Journal of Ecology*, 48(2), 285-298.
- Osbourn, A. E., and Lanzotti, V. (2009). Plant-derived natural products: Springer.
- Ouyang, M.-A., Wein, Y.-S., Zhang, Z.-K., and Kuo, Y.-H. (2007). Inhibitory Activity against Tobacco Mosaic Virus (TMV) Replication of Pinoresinol and Syringaresinol Lignans and Their Glycosides from the Root of *Rhus javanica* var. roxburghiana. *Journal of Agricultural and Food Chemistry*, 55(16), 6460-6465.
- Oviedo-Boyso, J., Bravo-Patiño, A., and Baizabal-Aguirre, V. M. (2014). Collaborative Action of Toll-Like and Nod-Like Receptors as Modulators of the Inflammatory Response to Pathogenic Bacteria. *Mediators of inflammation, 2014*, 16.
- Pahwa, R., and Jialal, I. (2019, 2019 Jun 4). Chronic Inflammation. from https://www.ncbi.nlm.nih.gov/books/NBK493173/
- Panche, A. N., Diwan, A. D., and Chandra, S. R. (2016). Flavonoids: an overview. Journal of Nutritional Science, 5, e47-e47.

- Parisi, L., Gini, E., Baci, D., Tremolati, M., Fanuli, M., Bassani, B., Farronato, G., Bruno, A., and Mortara, L. (2018). Macrophage Polarization in Chronic Inflammatory Diseases: Killers or Builders? *Journal of Immunology Research*, 2018, 25.
- Parmar, V. S., Bisht, K. S., Sharma, S. K., Jain, R., Taneja, P., Singh, S., Simonsen, O., and Boll,
 P. M. (1994). Highly oxygenated bioactive flavones from *Tamarix*. *Phytochemistry*, 36(2), 507-511.
- Pedley, L. (2014). Systematics of Tephrosia Pers. (Fabaceae: Millettiae) in Queensland: 1. A summary of the classification of the genus, with the recognition of two new species allied to *T. varians* (F.M.Bailey) C.T.White. *Austrobaileya*, 9(2), 229-243.
- Pelter, A., Ward, R. S., Rao, E. V., and Raju, N. R. (1981). 8-Substituted flavonoids and 3'substituted 7-oxygenated chalcones from *Tephrosia purpurea*. *Journal of the Chemical Society, Perkin Transactions 1*(0), 2491-2498.
- Pettipher, E. R. (1998). Prostaglandins. In Delves, P. J. (Ed.), *Encyclopedia of Immunology* (Second Edition) (pp. 2024-2027). Oxford: Elsevier.
- Plioukas, M., Gabrieli, C., Lazari, D., and Kokkalou, E. (2016). Phytochemical analysis with the antioxidant and aldose reductase inhibitory capacities of Tephrosia humilis aerial parts' extracts. *Natural Product Research*, *30*(12), 1366-1372.
- Poluha, R. L., and Grossmann, E. (2018). Inflammatory mediators related to arthrogenic temporomandibular dysfunctions. *Brazilian Journal of Pain, 1*, 60-65.
- Prabhakar, P., Vanangamudi, A., Gandhidasan, R., and Raman, P. V. (1996). Hookerianin: a flavone from *Tephrosia hookeriana*. *Phytochemistry*, 43(1), 315-316.
- Qu, X., Tang, Y., and Hua, S. (2018). Immunological Approaches Towards Cancer and Inflammation: A Cross Talk. *Frontiers in Immunology 9*(563).

- Quijano, L., Malanco, F., and Ríos, T. (1970). The structures of eupalin and eupatolin. Two new flavonol rhamnosides isolated from *Eupatorium ligustrinum* D.C. *Tetrahedron*, 26(12), 2851-2859.
- Raghavendra, G. M., Varaprasad, K., and Jayaramudu, T. (2015). Chapter 2 Biomaterials:
 Design, Development and Biomedical Applications. In Thomas, S., Grohens, Y. and
 Ninan, N. (Eds.), *Nanotechnology Applications for Tissue Engineering* (pp. 21-44).
 Oxford: William Andrew Publishing.
- Rainsford, K. D. (1984). Aspirin and the Salicylates: Elsevier.
- Rainsford, K. D. (2007). Anti-Inflammatory Drugs in the 21st Century. In Harris, R. E., Bittman, R., Dasgupta, D., Engelhardt, H., Flohe, L., Herrmann, H., Holzenburg, A., Nasheuer, H. P., Rottem, S., Wyss, M. and Zwickl, P. (Eds.), *Inflammation in the Pathogenesis of Chronic Diseases: The COX-2 Controversy* (pp. 3-27). Dordrecht: Springer Netherlands.
- Rajani, P., and Sarma, N. (1988). A coumestone from the roots of *Tephrosia hamiltonii*. *Phytochemistry*, 27(2), 648-649.
- Rao, P. P., and Srimannarayana, G. (1980). Tephrosol, a new coursestone from the roots of *Tephrosia villosa. Phytochemistry*.
- Rao, V., E., and Prasad, Y. R. (1992a). Prenylated flavonoids from *Tephrosia spinosa*. *Phytochemistry*, 32(1), 183-185.
- Rao, V., Murthy, S. R. M., and Ward, R. S. (1984). Nine isoflavones from *Tephrosia maxima*. *Phytochemistry*, 23(7), 1493-1501.
- Rao, V. E., and Murthy, S. R. M. (1985). Further studies on the isoflavones of *Tephrosia maxima*. *Phytochemistry*, 24(4), 875-876.

- Rao, V. E., and Prasad, R. Y. (1992b). Two chalcones from *Tephrosia spinosa*. *Phytochemistry*, *31*(6), 2121-2122.
- Rao, V. E., and Raju, R., N. (1984). Two flavonoids from *Tephrosia purpurea*. *Phytochemistry*, 23(10), 2339-2342.
- Rastrelli, L., Berger, I., Kubelka, W., Caceres, A., De Tommasi, N., and De Simone, F. (1999).
 New 12a-Hydroxyrotenoids from *Gliricidia sepium* Bark. *Journal of Natural Products*, 62(1), 188-190.
- Rauter, A. P., Ennis, M., Hellwich, K.-H., Herold, B. J., Horton, D., Moss, G. P., and Schomburg, I. (2018). Nomenclature of flavonoids (IUPAC Recommendations 2017). *Pure and Applied Chemistry*, 90(9), 1429.
- Recourt, K., Schripsema, J., Kijne, J. W., van Brussel, A. A. N., and Lugtenberg, B. J. J. (1991). Inoculation of *Vicia sativa* subsp. nigra roots with *Rhizobium leguminosarum* biovar *viciae* results in release of nod gene activating flavanones and chalcones. *Plant Molecular Biology*, 16(5), 841-852.
- Reisch, J., Gombos, M., Szendrei, K., and Novak, I. (1976). 6a, 12a-dehydro-alpha-toxicarol, ein neues Rotenoid aus *Amorpha fruticosa*. *Phytochemistry*, *15*, 234-235.
- Reyes-Chilpa, R., Gómez-Garibay, F., Quijano, L., Magos-Guerrero, G. A., and Ríos, T. (1994).
 Preliminary results on the protective effect of (-)-edunol, a pterocarpan from *Brongniartia podalyrioides* (Leguminosae), against *Bothrops atrox* venom in mice. *Journal of Ethnopharmacology, 42*(3), 199-203.
- Ricciotti, E., and FitzGerald, G. A. (2011). Prostaglandins and inflammation. *Arteriosclerosis, Thrombosis, and Vascular Biology 31*(5), 986-1000.
- Rittchen, S., and Heinemann, A. (2019). Therapeutic Potential of Hematopoietic Prostaglandin D2 Synthase in Allergic Inflammation. *Cells, 8*(6), 619.

- Roy, M., Mitra, S. R., Bhattacharyya, A., and Adityachaudhury, N. (1986). Candidone, a flavanone from *Tephrosia candida*. *Phytochemistry*, 25(4), 961-962.
- Ruiz-Cruz, S., Chaparro-Hernández, S., Hernández-Ruiz, K. L., Cira-Chávez, L. A., Estrada-Alvarado, M. I., Ortega, L. E. G., Ornelas-Paz, J., and Mata, M. A. L. (2017).
 Flavonoids: Important Biocompounds in Food, Flavonoids from Biosynthesis to Human Health: IntechOpen. Retrieved from <u>http://dx.doi.org/10.5772/67864</u>. doi: 10.5772/67864
- Ryu, H. W., Park, M. H., Kwon, O.-K., Kim, D.-Y., Hwang, J.-Y., Jo, Y. H., Ahn, K.-S., Hwang,
 B. Y., and Oh, S.-R. (2019). Anti-inflammatory flavonoids from root bark of *Broussonetia papyrifera* in LPS-stimulated RAW264.7 cells. *Bioorganic Chemistry*, 92, 103233.
- Saag, K. G., and Furst, D. E. (2013, Oct 30, 2020). Major side effects of systemic glucocorticoids. from <u>https://www.uptodate.com/contents/major-side-effects-of-systemic-glucocorticoids</u>
- Samad, T. A., Sapirstein, A., and Woolf, C. J. (2002). Prostanoids and pain: unraveling mechanisms and revealing therapeutic targets. *Trends in Molecular Medicine*, 8(8), 390-396.
- Samuel, V. J., Mahesh, A. R., and Murugan, V. (2019). Phytochemical and pharmacological aspects of *Tephrosia* genus: A brief review. *Journal of Applied Pharmaceutical Science*, 9(03), 117-125.
- Sandhya, S., Venkatramana, K., Vinod, K., Chaitanya, R., Chandrasekhar, J., Sudhakar, K., and Rajeswar, T. (2010). Membrane stabilizing potency of two Tephrosia species. *Journal of Phytology*, *2*(6), 42-46.

- Sayhan, H., Beyaz, S. I. G., and Çeliktaş, A. (2017). The local anesthetic and pain relief activity of alkaloids. In Vasil, G. and Atanas, P. (Eds.), Alkaloids: Alternatives in Synthesis, Modification and Application (pp. 57). Croatia: Intech. Retrieved from <u>https://www.intechopen.com/books/alkaloids-alternatives-in-synthesis-modificationand-application/the-local-anesthetic-and-pain-relief-activity-of-alkaloids</u>.
- Schäcke, H., Döcke, W.-D., and Asadullah, K. (2002). Mechanisms involved in the side effects of glucocorticoids. *Pharmacology & Therapeutics*, *96*(1), 23-43.
- Seelinger, G., Merfort, I., and Schempp, C. M. (2008). Anti-Oxidant, Anti-Inflammatory and Anti-Allergic Activities of Luteolin. *Planta Medica*, *74*(14), 1667-1677.
- Selders, G. S., Fetz, A. E., Radic, M. Z., and Bowlin, G. L. (2017). An overview of the role of neutrophils in innate immunity, inflammation and host-biomaterial integration. *Regenerative Biomaterials*, 4(1), 55-68.
- Serhan, C. N., Ward, P. A., and Gilroy, D. W. (2010). *Fundamentals of inflammation*: Cambridge University Press.
- Sherwood, E. R., and Toliver-Kinsky, T. (2004). Mechanisms of the inflammatory response. Best Practice & Research Clinical Anaesthesiology, 18(3), 385-405.
- Shu, J., Li, L., Zhou, M., Yu, J., Peng, C., Shao, F., Liu, R., Zhu, G., and Huang, H. (2018). Three new flavonoid glycosides from *Smilax glabra* and their anti-inflammatory activity. *Natural Product Research*, 32(15), 1760-1768.
- Slater, D., Kunnathil, S., McBride, J., and Koppala, R. (2010). Pharmacology of nonsteroidal anti-inflammatory drugs and opioids. *Seminars in Interventional Radiology*, 27(4), 400-411.
- Smalberger, T. M., van den Berg, A. J., and Vleggaar, R. (1973). Flavonoids from *Tephrosia*—VI: The structure of semiglabrin and semiglabrinol. *Tetrahedron*, *29*(19), 3099-3104.

- Smalberger, T. M., Vleggaar, R., and Weber, J. C. (1974). Flavonoids from *Tephrosia*—VII: The constitution and absolute configuration of lupinifolin and lupinifolinol, two flavanones from *Tephrosia lupinifolia* Burch (DC). *Tetrahedron*, 30(21), 3927-3931.
- Smalberger, T. M., Vleggaar, R., and Weber, J. C. (1975). Flavonoids from *Tephrosia*—VIII: The structure of elongatin, an isoflavone from *Tephrosia elongata* E. Mey. *Tetrahedron*, 31(18), 2297-2301.
- Smyth, E. M., and FitzGerald, G. A. (2010). Chapter 150 Prostaglandin Mediators. In Bradshaw, R. A. and Dennis, E. A. (Eds.), *Handbook of Cell Signaling (Second Edition)* (pp. 1219-1228). San Diego: Academic Press.
- Sofowora, A., Ogunbodede, E., and Onayade, A. (2013). The role and place of medicinal plants in the strategies for disease prevention. *African Journal of Traditional, Complementary, and Alternative Medicines, 10*(5), 210-229.
- Somchit, N., Kimseng, R., Dhar, R., Hiransai, P., Changtam, C., Suksamrarn, A., Chunglok, W., and Chunglok, W. (2018). Curcumin pyrazole blocks lipopolysaccharide-induced inflammation via suppression of JNK activation in RAW 264.7 macrophages. *Asian Pacific Journal of Allergy and Immunology, 36*(3), 184-190.
- Souza, R. F., Silva, G. A. d., Arruda, A. C., Silva, M. N. d., Santos, A. S., Grisólia, D. P. A., Silva, M. B., Salgado, C. G., and Arruda, M. S. P. (2017). A New Prenylisoflavone from the Antifungal Extract of Leaves of *Vatairea guianensis* Aubl. *Journal of the Brazilian Chemical Society, 28*, 1132-1136.
- Souza, R. F. d., Marinho, V. H. S., Silva, G. A. d., Costa-Jr., L. M., Silva, J. K. R. d., Bastos, G. N. T., Arruda, A. C., Silva, M. N. d., and Arruda, M. S. P. (2013). New isoflavones from the leaves of *Vatairea guianensis* Aublé. *Journal of the Brazilian Chemical Society, 24*, 1857-1863.

- Sree, M. M. R., and Venkata, R. E. (1985). Maxima Isoflavone J: a New O-Prenylated Isoflavone from *Tephrosia maxima*. *Journal of Natural Products*, *48*(6), 967-968.
- Steele, V. E., Holmes, C. A., Hawk, E. T., Kopelovich, L., Lubet, R. A., Crowell, J. A., Sigman,
 C. C., and Kelloff, G. J. (1999). Lipoxygenase Inhibitors as Potential Cancer
 Chemopreventives. *Cancer Epidemiology Biomarkers & Prevention*, 8(5), 467-483.
- Stevenson, P. C., Kite, G. C., Lewis, G. P., Forest, F., Nyirenda, S. P., Belmain, S. R., Sileshi,
 G. W., and Veitch, N. C. (2012). Distinct chemotypes of *Tephrosia vogelii* and implications for their use in pest control and soil enrichment. *Phytochemistry*, 78, 135-146.
- Strasser, R. (2003). Rural health around the world: challenges and solutions. *Family Practice*, 20(4), 457-463.
- Sugimoto, M. A., Sousa, L. P., Pinho, V., Perretti, M., and Teixeira, M. M. (2016). Resolution of Inflammation: What Controls Its Onset? *Frontiers in Immunology* 7(160).
- Szefel, J., Kruszewski, W. J., and Sobczak, E. (2015). Factors influencing the eicosanoids synthesis *In Vivo. BioMed Research International*, 2015, 690692-690692.
- Tabuti, J. R., Lye, K. A., and Dhillion, S. (2003). Traditional herbal drugs of Bulamogi, Uganda: plants, use and administration. *Journal of Ethnopharmacology*, *88*(1), 19-44.
- Tang, Y., Liu, J., Zhang, D., Xu, Z., Ji, J., and Wen, C. (2020). Cytokine Storm in COVID-19: The Current Evidence and Treatment Strategies. *Frontiers in Immunology 11*, 1708-1708.
- Tarus, P. K., Machocho, A. K., Lang'at-Thoruwa, C. C., and Chhabra, S. C. (2002). Flavonoids from *Tephrosia aequilata*. *Phytochemistry*, 60(4), 375-379.

- Taylor, T. N., Taylor, E. L., and Krings, M. (2009). 22 Flowering Plants. In Taylor, T. N.,Taylor, E. L. and Krings, M. (Eds.), *Paleobotany (Second Edition)* (pp. 873-997).London: Academic Press.
- Thèze, J. (1998). Interleukin 2. In Delves, P. J. (Ed.), Encyclopedia of Immunology (Second Edition) (pp. 1436-1438). Oxford: Elsevier.
- Thirumurugan, D., Cholarajan, A., Raja, S. S., and Vijayakumar, R. (2018). An Introductory Chapter: Secondary MetabolitesSecondary Metabolites: Sources and Applications (pp. 20): IntechOpen. Retrieved from <u>https://www.intechopen.com/books/secondary-metabolites-sources-and-applications/an-introductory-chapter-secondary-metabolites.</u> doi: 10.5772/intechopen.79766.
- Tordera, M., Ferrándiz María, L., and Alcaraz María, J. (1994). Influence of Anti-Inflammatory Flavonoids on Degranulation and Arachidonic Acid Release in Rat Neutrophils *Zeitschrift für Naturforschung C* (Vol. 49, pp. 235).
- Torres, M., Wang, J., Yannie, P. J., Ghosh, S., Segal, R. A., and Reynolds, A. M. (2019). Identifying important parameters in the inflammatory process with a mathematical model of immune cell influx and macrophage polarization. *PLOS Computational Biology*, 15(7), e1007172.
- Touqeer, S., Saeed, M. A., and Ajaib, M. (2013). A review on the phytochemistry and pharmacology of genus *Tephrosia*. *Phytopharmacology*, *4*(3), 598-637.
- Traish, A., Bolanos, J., Nair, S., Saad, F., and Morgentaler, A. (2018). Do Androgens Modulate the Pathophysiological Pathways of Inflammation? Appraising the Contemporary Evidence. *Journal of Clinical Medicine*, 7(12), 549.

- Tsai, S.-J., Huang, C.-S., Mong, M.-C., Kam, W.-Y., Huang, H.-Y., and Yin, M.-C. (2012). Antiinflammatory and Antifibrotic Effects of Naringenin in Diabetic Mice. *Journal of Agricultural and Food Chemistry*, 60(1), 514-521.
- Tungmunnithum, D., Thongboonyou, A., Pholboon, A., and Yangsabai, A. (2018). Flavonoids and Other Phenolic Compounds from Medicinal Plants for Pharmaceutical and Medical Aspects: An Overview. *Medicines (Basel, Switzerland)*, 5(3), 93.
- Turman, M. V., and Marnett, L. J. (2010). Prostaglandin Endoperoxide Synthases: Structure,
 Function, and Synthesis of Novel Lipid Signaling Molecules. In Liu, H.-W. and Mander,
 L. (Eds.), *Comprehensive Natural Products II* (pp. 35-63). Oxford: Elsevier.
- Turner, M. D., Nedjai, B., Hurst, T., and Pennington, D. J. (2014). Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. *Biochimica et Biophysica Acta (BBA) - Molecular Cell Research*, 1843(11), 2563-2582.
- Ueda, H., Yamazaki, C., and Yamazaki, M. (2002). Luteolin as an Anti-inflammatory and Antiallergic Constituent of *Perilla frutescens*. *Biological and Pharmaceutical Bulletin*, 25(9), 1197-1202.
- Valli, G., Vasanthi, A., Vijayalakshmi, R., and Thanga Thirupathi, A. (2011). Antipyretic and anti-inflammatory activities of Tephrosia purpurea root extracts. *International Journal* of Pharmaceutical Research and Development, 3(6), 211-217.
- Valsecchi, A. E., Franchi, S., Panerai, A. E., Sacerdote, P., Trovato, A. E., and Colleoni, M. (2008). Genistein, a natural phytoestrogen from soy, relieves neuropathic pain following chronic constriction sciatic nerve injury in mice: anti-inflammatory and antioxidant activity. *Journal of Neurochemistry*, 107(1), 230-240.
- Vasconcelos, J. N. e., Lima, J. Q., Lemos, T. L. G. d., Oliveira, M. d. C. F. d., Almeida, M. M. B., Andrade-Neto, M., Mafezoli, J., Arriaga, A. M. C., Santiago, G. M. P., and Braz-

Filho, R. (2009). Estudo químico e biológico de *Tephrosia toxicaria* Pers. *Química Nova, 32*, 382-386.

- Venkata Rao, E., Rajendra Prasad, Y., and Sree Rama Murthy, M. (1994). A prenylated flavanone from Tephrosia maxima. *Phytochemistry*, *37*(1), 111-112.
- Venkata Rao, E., Venkataratnam, G., and Vilain, C. (1985). Flavonoids from Tephrosia fulvinervis. *Phytochemistry*, 24(10), 2427-2430.
- Venkataratnam, G., Rao, E. V., and Vilain, C. (1986). Fulvinervin C, a flavone from *Tephrosia fulvinervis*. *Phytochemistry*, 25(6), 1507-1508.

Venkiteshwaran, A. (2009). Tocilizumab. Landes Bioscience, 1(5), 432-438.

- Vilain, C. (1980). Barbigerone, a new pyranoisoflavone from seeds of *Tephrosia barbigera*. *Phytochemistry*.
- Vleggaar, R., Kruger, G. J., Smalberger, T. M., and Van Den Berg, A. J. (1978). Flavonoids from tephrosia-XI: The structure of glabratephrin. *Tetrahedron*, 34(9), 1405-1408.
- Voronov, E., Apte, R. N., and Sofer, s. (1999). The Systemic Inflammatory Response Syndrome Related to The Release of Cytokines Following Severe Envenomation. *Journal of Venomous Animals and Toxins*, 5, 5-33.
- Wang, F., Jiang, K., and Li, Z. (2007). Purification and Identification of Genistein in *Ginkgo biloba* Leaf Extract. *Chinese Journal of Chromatography*, 25(4), 509-513.
- Waterman, P. G., and Khalid, S. A. (1980). The major flavonoids of the seed of *Tephrosia* apollinea. Phytochemistry, 19(5), 909-915.
- Weinberger, B., Hirsch, D., Yin, K., and Spur, B. W. (2015). Chapter 21 Lipid Mediators and Lung Function. In Parent, R. A. (Ed.), *Comparative Biology of the Normal Lung (Second Edition)* (pp. 403-421). San Diego: Academic Press.

- Were, O., Munavu, R. M., Lwande, W., and Nyandat, E. (1990). Flavonoids from *Tephrosia interrupta* and *T. linearis*. *Fitoterapia*, *61*(4), 372.
- Whitten, P., Kudo, S., and Okubo, K. (1997). Isoflavonoids. In D'Mello, J. P. F. (Ed.), *Handbook of plant and fungal toxicants* (pp. 117-137). New York: CRC Press.
- WHO. (2008). Traditional Medicine. (No. 134). Retrieved July 4, 2013, from World Health Organization <u>http://www.who.int/mediacentre/factsheets/fs134/en/#</u>
- Williams, C. (2012). *Medicinal plants in Australia Volume 3: Plants, potions and poisons* (Vol. 3). Sydney, Australia: Rosenberg Publishing.
- Willoughby, D. A., Moore, A. R., and Colville-Nash, P. R. (2000). COX-1, COX-2, and COX-3 and the future treatment of chronic inflammatory disease. *The Lancet, 355*(9204), 646-648.
- Wink, M. (2015). Modes of Action of Herbal Medicines and Plant Secondary Metabolites. Medicines (Basel, Switzerland), 2(3), 251-286.
- Wong, R. S. Y. (2019). Role of Nonsteroidal Anti-Inflammatory Drugs (NSAIDs) in Cancer Prevention and Cancer Promotion. *Advances in Pharmacological Sciences*, 2019, 10.
- Wu, J.-Y., Chen, Y.-J., Bai, L., Liu, Y.-X., Fu, X.-Q., Zhu, P.-L., Li, J.-K., Chou, J.-Y., Yin, C.-L., Wang, Y.-P., Bai, J.-X., Wu, Y., Wu, Z.-Z., and Yu, Z.-L. (2020). Chrysoeriol ameliorates TPA-induced acute skin inflammation in mice and inhibits NF-κB and STAT3 pathways. *Phytomedicine*, 68, 153173.
- Xu, G., Wang, Z., Zhao, B., Liu, N., Yang, S., Liu, Y., Wang, J., and Zhou, X. (2016).
 Saniculamins A and B, two new flavonoids from *Sanicula lamelligera* hance inhibiting LPS-induced nitric oxide release. *Phytochemistry Letters*, 18, 35-38.
- Xu, M.-J., Wu, B., Ding, T., Chu, J.-H., Li, C.-Y., Zhang, J., Wu, T., Wu, J., Liu, S.-J., Liu, S.-L., Ju, W.-Z., and Li, P. (2012). Simultaneous characterization of prenylated flavonoids

and isoflavonoids in *Psoralea corylifolia* L. by liquid chromatography with diode-array detection and quadrupole time-of-flight mass spectrometry. *Rapid Communications in Mass Spectrometry 26*(19), 2343-2358.

- Yang, L., Wen, K.-S., Ruan, X., Zhao, Y.-X., Wei, F., and Wang, Q. (2018). Response of Plant Secondary Metabolites to Environmental Factors. *Molecules (Basel, Switzerland)*, 23(4), 762.
- Yao, C., and Narumiya, S. (2019). Prostaglandin-cytokine crosstalk in chronic inflammation. British Journal of Pharmacology, 176(3), 337-354.
- Yenesew, A., Dagne, E., and Waterman, P. G. (1989). Flavonoids from the seed pods of *Tephrosia pumila. Phytochemistry*, 28(4), 1291-1292.
- Yenesew, A., Midiwo, J. O., and Waterman, P. G. (1998). Rotenoids, isoflavones and chalcones from the stem bark of *Millettia usaramensis* subspecies usaramensis. *Phytochemistry*, 47(2), 295-300.
- Yiu, T. Y., Faisal, A., Angelica, G.-C., and Sandro, A. (2018). Signaling Pathways in Inflammation and Anti-inflammatory Therapies. *Current Pharmaceutical Design*, 24(14), 1449-1484.
- Yuldashev, M. P., Batirov, E. K., Vdovin, A. D., and Abdullaev, N. D. (2000). Structural study of glabrisoflavone, a novel isoflavone from *Glycyrrhiza glabra* L. *Russian Journal of Bioorganic Chemistry*, 26(8), 784-786.
- Zarghi, A., and Arfaei, S. (2011). Selective COX-2 Inhibitors: A Review of Their Structure-Activity Relationships. *Iranian Journal of Pharmaceutical Research*, *10*(4), 655-683.
- Zhang, J.-K., Li, M., Li, M., Du, K., Lv, J., Zhang, Z.-G., Zheng, X.-K., and Feng, W.-S. (2019a). Four C-geranyl flavonoids from the flowers of *Paulownia fortunei* and their anti-inflammatory activity. *Natural Product Research*, 1-10.

- Zhang, J.-M., and An, J. (2007). Cytokines, inflammation, and pain. International Anesthesiology Clinics, 45(2), 27-37.
- Zhang, Y., Zhou, D., Liu, W., Li, C., Hao, L., Zhang, G., Deng, S., Yang, R., Qin, J., Li, J., and Deng, W. (2019b). Cytotoxic Activity and Related Mechanisms of Prenylflavonoids Isolated from *Mallotus conspurcatus* Croizat. *Chemistry & Biodiversity*, 16(5), e1800465.

APPENDIX A: Spectra for the Isolated Compounds

HRESIMS spectrum of compound 1

¹H-¹H COSY spectrum of compound 1

¹H-¹H COSY spectrum of compound 2

HSQC spectrum of compound 2

¹H NMR spectrum (600 MHz, Acetone-d6) of compound 3

13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 Chemical shift (ppm)

¹³C NMR spectrum (150 MHz, Acetone-d6) of compound 3

¹H-¹H COSY spectrum of compound 3

Appendix A4: Spectra for compound 4

¹H NMR spectrum (600 MHz, Acetone-d6) of compound 4

8.2 8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 Chemical shift (ppm)

¹³C NMR spectrum (150 MHz, Acetone-d6) of compound 4

¹H-¹H-COSY Spectrum of Compound 4

HMBC spectrum of compound 4

Appendix A5: Spectra for compound 5

HRESIMS spectrum of compound 5

TLA-55C6 #644 RT:12.40 AV:1 NL:2.01E7 F:FTMS + c ESI Full ms3 315.09@cid35.00 300.06@cid35.00 [80.00-350.00]

INFU-TLA-55C6_2019-03-06_15-07-37_AV600.11.fid C13 with power gated H1 decoupling z_C13pg Acetone /NMR-Daten INFU 43 56.5 HO II O 10.2 r 10£ 05.1 177.0 163.4 124.4 53.3 żο 3່0 Chemical shift (ppm)

¹H-¹H-COSY spectrum of compound 5

Ju. INFU-TLA-55C6_2019-03-08_14-36-28_AV600/14 HMBCGPND 90 z_gHMBC Acetone /NMR-Daten INFU 4 100 110 q 0 0 120 0 130 f1 (ppm) 140 - 150 0 160 0 01 170 ÷ 4 180 7.5 7.0 6.5 6.0 5.5 f2 (ppm) 5.0 4.5 4.0 3.5 3.0 9.0 8.5 8.0

¹H NMR spectrum (600 MHz, Acetone-d6) of compound 6

¹³C NMR spectrum (150 MHz, Acetone-d6) of compound 6

¹H-¹H-COSY spectrum of compound 6

Th _____ Ш INFU-TLA-40A31_2019-03-18_14-09-27_AV600/11 HMBCGPND -0 - 10 z_gHMBC Acetone /NMR-Daten INFU 17 - 20 • 9.0 - 30 з., 40 . - 50 -60 - 70 . - 80 . . 9 0 . - 90 0 - 100 f1 (ppm) 0 0 - 110 . - 120 i a () . \$5. - 130 140 . 150 0 0 160 i 1 170 - 180 - 190 0 9 200 - 210 11 10 9 5 3 2 0 13 12 8 7 6 f2 (ppm) 4 1 NOESY spectrum of compound 6 INFU-TLA-40A31_2019-03-07_13-37-20_AV600/14 NOESYGPPH -1 0 z_gNOESY Acetone /NMR-Daten INFU 50 - 1 • • • 2 • : 3 4 : : f1 (ppm) - 5 . . • . . 2 - 6 ٠ - 7 M ٥ 8 - 9 • . - 10 ÷ 11 11 10 7 --6 ____ f2 (ppm) 8 4 2 -1 9 3 0 5 1

HMBC spectrum of compound 6

HMBC spectrum of compound 7

221

¹H NMR spectrum (600 MHz, Acetone-d₆) of compound 8

¹³C NMR spectrum (150 MHz, Acetone-d₆) of compound 8

f1 (ppm)

HSQC spectrum of compound 8

¹H NMR spectrum (600 MHz, Acetone-d₆) of compound 9

¹³C NMR spectrum (150 MHz, Acetone-d₆) of compound 9

HSQC spectrum of compound 9

¹H NMR spectrum (600 MHz, Acetone-d₆) of compound 10

¹³C NMR spectrum (150 MHz, Acetone-d₆) of compound 10

f1 (ppm)

¹³C NMR spectrum (150 MHz, Acetone-d₆) of compound 11

f1 (ppm)

Appendix A12: Spectra for compound 12

INFU-TLA-55C10_2019-03-12_13-09-27_AV600/12 gHSQC z_gHSQC_adiab Acetone /NMR-Daten INFU 29 ⊢20 30 - 40 50 I. 60 70 f1 (ppm) - 80 90 į 0 100 -- 110 120 - 130 8.5 8.0 7.0 5.5 5.0 f2 (ppm) 4.5 4.0 3.5 3.0 1.5 7.5 6.5 6.0 2.5 2.0 HMBC spectrum of compound 12 INFU-TLA-55C10_2019-03-15_11-24-06_AV600/11 HMBCGPND - 20 30 z_gHMBC Acetone /NMR-Daten INFU 7 40 - 50 60 - 70 - 80 - 90 . - 100 00 0 - 110 f1 (ppm) - 120 . - 130 -- 140 . 16 - 150 - 160 8 8 40 8 -- 170 - 180 . - 190 - 200 - 210 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 f2 (ppm)

HSQC spectrum of compound 12

Appendix A13: Spectra for compound 13

HSQC spectrum of compound 13

239

f1 (ppm)

¹H-¹H-COSY spectrum of compound 15

INFU-TLA-55A8_2019-02-15_13-36-54_AV600/12 gHSQC z_gHSQC_adiab Acetone /NMR-Daten INFU 8 30 40 - 50 - 60 - 70 f1 (ppm) - 80 - 90 - 100 Ì - 110 0 Ô - 120 0 130 5.0 f2 (ppm) 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 HMBC spectrum of compound 15 INFU-TLA-55A8_2019-02-15_13-36-54_AV600/13 HMBCGPND - 10 - 20 z_gHMBC Acetone /NMR-Daten INFU 8 · · 0 - 30 40 - 50 - 60 - 70 . ٠ 60 Ģ - 80 - 90 . - 100 f1 (ppm) . 9 . - 110 . - 120 0 . - 130 - 140 - 150 . 81 - 160 . - 170 . - 180 . - 190 - 200 - 210 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 f2 (ppm) 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5

HSQC spectrum of compound 15

HSQC spectrum of compound 16 INFU-TLA-28N610_2019-03-06_15-04-08_AV600/13 gHSQC z_gHSQC_adiab Acetone /NMR-Daten INFU 40 - 10 Ô - 20 - 30 - 40 - 50 - 60 f1 (ppm) - 70 Ôŋ 0 Q - 80 - 90 100 110 120 0 4.5 4.0 f2 (ppm) 8.0 3.5 3.0 2.5 5.5 5.0 2.0 1.5 1.0 7.5 7.0 6.5 6.0 HMBC spectrum of compound 16 لسا INFU-TLA-28N610_2019-03-06_15-04-08_AV600/14 HMBCGPND z_gHMBC Acetone /NMR-Daten INFU 40 - 0 - 20 - 40 - 60 ę • 1 .0 - 80 f1 (ppm) - 100 . - 120 ŧ . . - 140 - 160 - 180 - 200 - 220 11 10 7 6 f2 (ppm) 12 9 8 5 4 3 0 2

Appendix A17: Spectra for compound 17

¹H NMR spectrum (600 MHz, Acetone-d₆) of compound 17

Appendix A18: Spectra for compound 18

HRESIMS spectrum of compound 18

7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 f1 (ppm)

¹³C NMR spectrum (150 MHz, Acetone-d₆) of compound 19

Appendix A20: Spectra for compound 20

¹H NMR spectrum (600 MHz, Acetone-d₆) of compound 20

¹³C NMR spectrum (150 MHz, Acetone-d₆) of compound 20

f1 (ppm)

HSQC spectrum of compound 21

¹H NMR spectrum (600 MHz, Acetone-d₆) of compound 22

HSQC spectrum of compound 22

8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1 f1 (ppm)

HSQC spectrum of compound 23

¹H NMR spectrum (600 MHz, Acetone-d₆) of compound 24

HSQC spectrum of compound 24

THA-51E2_367_15 #1564 RT: 27.08 AV: 1 NL: 1.31E6 F: FTM S + c ESI Full ms2 367.15@cid35.00 [100.00-600.00]

¹³C NMR spectrum (150 MHz, Acetone-d₆) of compound 25

¹H-¹H-COSY spectrum of compound 25

¹H NMR spectrum (600 MHz, Acetone-d₆) of compound 26

HSQC spectrum of compound 26 البنال INFU-THA-2965_2019-01-07_11-11-35_AV600/12 - 10 gHSQC z_gHSQC_adiab Acetone /NMR-Daten INFU 25 A - 20 1 - 30 40 - 50 Į - 60 - 70 f1 (ppm) - 80 - 90 1. - 100 - 110 1 0 - 120 0 A - 130 - 140 - 150 0 - 160 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 f2 (ppm) 9.5 HMBC spectrum of compound 26 INFU-THA-29G5_2019-01-07_11-11-35_AV600/13 HMBCGPND - 10 - 20 z_gHMBC Acetone /NMR-Daten INFU 25 Ģ -- 30 . - 40 . - 50 - 60 - 70 - 80 - 90 . - 100 f1 (ppm) 0 -110 . - 120 0 0 . 8 . . - 130 0 0 - 140 • • • - 150 • * - 160 • - 170 - 180 0 - 190 - 200 210 5.0 4.5 f2 (ppm) 4.0 3.5 3.0 2.5 2.0 9.0 8.5 8.0 7.5 7.0 6.5 5.5 1.5 1.0 6.0 0.5

¹³C NMR spectrum (150 MHz, Acetone-d₆) of compound 27

¹H-¹H-COSY spectrum of compound 27

HSQC spectrum of compound 27 INFU-THA-29F6_2019-01-07_11-11-35_AV600/12 gHSQC z_gHSQC_adiab Acetone /NMR-Daten INFU 18 |- 20 -mr 30 0 40 - 50 ļ 60 - 70 f1 (ppm) - 80 90 - 100 - 110 Ó 0 0 120 Ô Ô - 130 L 140 7.5 7.0 5.0 4.5 4.0 f2 (ppm) 3.5 3.0 2.5 2.0 6.5 6.0 5.5 1.5 1.0 HMBC spectrum of compound 27 INFU-THA-29F6_2019-01-07_11-11-35_AV600/13 HMBCGPND - 20 4 30 z_gHMBC Acetone /NMR-Daten INFU 18 40 50 60 70 80 90 100 . 110 f1 (ppm) 120 2 . 8 130 140 • • • 0 150 9 - 160 - 170 180 - 190 200 210 L 220 4.5 4.0 f2 (ppm) 8.5 7.5 7.0 5.5 5.0 3.5 3.0 2.5 2.0 1.5 0.5 8.0 6.5 6.0 1.0

¹H NMR spectrum (600 MHz, Acetone-d₆) of compound 28

Appendix A29: Spectra for compound 29

HRESIMS spectrum of compound 29 THA01_181013235313 #440 RT: 13.14 AV: 1 NL: 4.05E4 F: FTMS + c ESI Full ms [100.00-1000.00] 130 120 331.0814 110 C₁₇ H₁₅ O₇ HO 0.3945 ppm C OH 100 MeO 90-80 70 60-50 40 331.1178 C ₁₈ H₁₉ O₆ 30 0.4608 ppm 20 10-----3 3β**M**8+H]⁺331.10 331.06 331.12 331.14 331.16 m/z

HSQC spectrum of compound 29

HSQC spectrum of compound 32 ш INFU-THR-453_2019-01-07_11-12-32_AV600/12 gHSQC z_gHSQC_adiab Acetone /NMR-Daten INFU 21 --10 - 0 - 10 İ - 20 Ξ. - 30 0 0 - 40 . 1 - 50 •0 - 60 f1 (ppm) 70 1 80 Ø - 90 - 100 - 110 11 - 120 10 - 130 - 140 ゴ - 150 - 160 12 11 10 9 6 5 f2 (ppm) 3 2 0 8 4 'n HMBC spectrum of compound 32 Uh INFU-THR-453_2019-01-07_11-12-32_AV600/13 HMBCGPND - 10 D 88 - 20 z_gHMBC Acetone /NMR-Daten INFU 21 - 30 40 - 50 60 - 70 ii) - 80 Ó 0 0 ī 0 0 - 90 - 100 0 🛛 1 Ø Ô - 110 0 - 120 000 Q - 130 Ô - 140 ٩. Ô 0 0 - 150 0 0 0 Q 160 ļ Î - 170 - 180 0 0 - 190 - 200 - 210 4.0 f2 (ppm) 7.5 7.0 -0.5 8.0 6.5 6.0 5.0 4.5 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 5.5

297

¹³C NMR spectrum (150 MHz, CD₃OD) of compound 34

INFU-THA568-21G1_2018-11-06_10-53-24_AV600/12 gHSQC z_gHSQC_adiab MeOD /NMR-Daten INFU 37 40 Ŵ 50 0 60 70 0 Ø 80 f1 (ppm) Ø 90 100 - 110 120 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 f2 (ppm) HMBC spectrum of compound 34 INFU-THA568-21G1_2018-11-06_10-53-24_AV600/13 HMBCGPND 40 6 50 z_gHMBC MeOD /NMR-Daten INFU 37 0 ¢1) 0 00 - 60 70 0 - 80 0 🚳 68 - 90 f1 (ppm) - 100 - 110 0 ថា៖ 0 - 120 0 - 130 0 Ø 0 10 - 140 8 98 Ô 150 - 160 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 f2 (ppm)

INFU-TVP-53C42_2019-06-28_06-35-05_AV600/13 gHSQC z_gHSQC_adiab Acetone /NMR-Daten INFU 17 A 30 40 50 60 70 80 f1 (ppm) 90 100 0 0 0 - 110 120 130 140 Ξ 150 0 5.5 5.0 f2 (ppm) 8.5 8.0 7.5 7.0 6.5 6.0 4.5 4.0 3.5 3.0 2.5 2.0 HMBC spectrum of compound 35 INFU-TVP-53C42_2019-06-28_06-35-05_AV600/14 HMBCGPND - 20 - 30 z_gHMBC Acetone /NMR-Daten INFU 17 40 - 50 - 60 - 70 - 80 - 90 - 100 110 f1 (ppm) 0 . . 120 0 0 - 130 - 140 • 1 - 150 ۰. - 160 - 170 0 0 - 180 - 190 - 200 210 5.0 f2 (ppm) 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 4.5 4.0 3.5 3.0 2.5 2.0 1.5

HSQC spectrum of compound 35

HSQC spectrum of compound 36

Appendix A38: Spectra for compound 38

INFU-TVP889-22D_2018-10-22_15-24-57_AV600/13 gHSQC z_gHSQC_adiab_CDCl3 /NMR-Daten_INFU_20 - 20 - 30 - 40 - 50 - 60 - 70 f1 (ppm) - 80 - 90 l - 100 - 110 0 120 Ó 0 130 5.0 f2 (ppm) 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 HMBC spectrum of compound 38 INFU-TVP889-22D_2018-10-22_15-24-57_AV600/14 HMBCGPND - 20 ģ z_gHMBC CDCl3 /NMR-Daten INFU 20 30 40 50 . . 60 70 ò . . 80 90 f1 (ppm) 100 Ô . . - 110 120 • ::::: - 130 140 150 8 -160 170 - 180 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 f2 (ppm) 3.5 3.0 2.5 2.0 1.5 1.0 4.0

HSQC spectrum of compound 38

Appendix A39: Spectra for compound 39

¹H NMR spectrum (600 MHz, Acetone-d₆) of compound 39

¹³C NMR spectrum (150 MHz, Acetone-d₆) of compound 39

¹³C NMR spectrum (150 MHz, Acetone-d₆) of compound 41

ساسل 1.4.4 INFU-TVP-13Q32_2019-06-27_13-48-20_AV600/12 gHSQC z_gHSQC_adiab Acetone /NMR-Daten INFU 4 ⊦20 1 - 30 1 40 - 50 1 - 60 00 - 70 f1 (ppm) - 80 - 90 - 100 - 110 00 - 120 0 - 130 - 140 5.0 4.5 f2 (ppm) 7.5 7.0 6.0 5.5 4.0 3.5 3.0 2.5 2.0 1.0 8.5 8.0 6.5 1.5 HMBC spectrum of compound 41 INFU-TVP-13Q32_2019-06-27_13-48-20_AV600/13 HMBCGPND | 10 20 . z_gHMBC Acetone /NMR-Daten INFU 4 30 • 40 50 1 • • . 60 ò 70 ... θ, ι · 040 80 . 00 . 8 0 90 100 0 **0 . f1 (ppm) - 110 0 120 130 140 + ; ; -150 6 160 \$ ê 170 180 190 0 . - 200 - 210 L 220 8.5 4.5 4.0 f2 (ppm) 8.0 7.5 7.0 6.5 5.5 5.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 6.0

HSQC spectrum of compound 41

¹³C NMR spectrum (150 MHz, CDCl₃) of compound 42

¹H-¹H-COSY spectrum of compound 42

HMBC spectrum of compound 42

¹³C NMR spectrum (150 MHz, CDCl₃) of compound 43

HSQC spectrum of compound 43

Appendix A44: Spectra for compound 44

لىل INFU-TES-68E7_2019-06-17_10-48-06_AV600/12 gHSQC z_gHSQC_adiab Acetone /NMR-Daten INFU 12 - -10 - 0 - 10 1 - 20 (1., - 30 - 40 - 50 11 - 60 f1 (ppm) - 70 - 80 - 90 - 100 - 110 - 120 Ø 0 - 130 140 - 150 _ I - 160 11 10 9 8 6 5 f2 (ppm) 4 3 2 -1 0 HMBC spectrum of compound 44 INFU-TES-68E7_2019-06-17_10-48-06_AV600/13 HMBCGPND - 10 Q. 0 - 20 z_gHMBC Acetone /NMR-Daten INFU 12 . 10 - 30 40 - 50 3 0 - 60 - 70 - 80 - 90 - 100 f1 (ppm) . - 110 .8 : 8 • • ¢ 120 - 130 000 Ö - 140 đ * - 150 **1** - 1 • 6 ig ģ - 160 - 170 0 o •0 - 180 - 190 - 200 . - 210 8.5 5.0 4.5 f2 (ppm) 8.0 7.5 7.0 6.0 5.5 4.0 3.5 3.0 2.5 2.0 1.0 6.5 1.5

HSQC spectrum of compound 44

Appendix A45: Spectra for compound 45

¹³C NMR spectrum (150 MHz, Acetone-d₆) of compound 47

HRESIMS spectrum of compound 48

343

¹³C NMR spectrum (150 MHz, Acetone-d₆) of compound 49

INFU-TRS-63B4_2019-05-09_10-51-45_AV600/13 gHSQC z_gHSQC_adiab Acetone /NMR-Daten INFU 11 - 10 Î 20 0 Ó 30 40 - 50 - 60 - 70 f1 (ppm) đ - 80 - 90 **Semin** - 100 - 110 120 Ø 0 00 130 - 140 7.5 7.0 4.5 f2 (ppm) 4.0 3.5 3.0 2.5 2.0 8.0 6.5 6.0 5.5 5.0 1.5 1.0 HMBC spectrum of compound 49 INFU-TRS-63B4_2019-05-09_10-51-45_AV600/14 HMBCGPND 10 0 20 z_gHMBC Acetone /NMR-Daten INFU 11 0 ġ - 30 40 - 50 60 - 70 80 6 90 100 f1 (ppm) 06 00 110 120 8 8.8*. 0 - 130 đQ 140 150 160 00 08 ġ 170 180 190 (iii) 0 200 210 4.5 f2 (ppm) 8.0 7.5 7.0 6.0 5.5 4.0 3.5 2.5 2.0 1.5 6.5 5.0 3.0

HSQC spectrum of compound 49

¹³C NMR spectrum (150 MHz, CDCl₃) of compound 50

Appendix A51: Spectra for compound 51

¹H NMR spectrum (600 MHz, Acetone-d₆) of compound 51

HSQC spectrum of compound 51

Appendix A52: Spectra for compound 52

¹H NMR spectrum (600 MHz, Acetone-d₆) of compound 52

Appendix A53: Spectra for compound 53

HSQC spectrum of compound 53

Appendix A54: Spectra for compound 54

Appendix A55: Spectra for compound 55

Appendix A56: Spectra for compound 56

HSQC spectrum of compound 56

Appendix A57: Spectra for compound 57

¹³C NMR spectrum (150 MHz, Acetone-d₆) of compound 57

¹H-¹H-COSY spectrum of compound 57

HSQC spectrum of compound 57 L Jul INFU-SYP-62A6_2019-05-08_13-26-19_AV600/12 gHSQC z_gHSQC_adiab Acetone /NMR-Daten INFU 48 - 10 0 - 20 1 Ì 30 0 40 - 50 0 - 60 f1 (ppm) - 70 - 80 - 90 - 100 ļ - 110 - 120 Ø 00 - 130 - 140 4.5 4.0 f2 (ppm) 8.0 7.5 7.0 6.5 6.0 5.5 5.0 3.5 3.0 2.5 2.0 1.5 1.0 HMBC spectrum of compound 57 INFU-SYP-62A6_2019-05-08_13-26-19_AV600/13 HMBCGPND Ó . - 20 ÷ z_gHMBC Acetone /NMR-Daten INFU 48 Ó 111 30 0 40 50 60 70 4 Ó Ó - 80 f1 (ppm) 90 - 100 Ģ Ó 110 120 • 0 0 0 130 140 Ö ø 150 . 8 160 - 170 5.0 4.5 f2 (ppm) 8.0 7.0 6.5 5.5 3.0 2.5 2.0 1.5 1.0 7.5 6.0 4.0 3.5

APPENDIX B: Data for Anti-Inflammatory Assay

APPENDIX B1: Table Results for Anti-inflammatory Assay

Table	B1:	Results	of	controls	(mean	±	SD,	n=3	for	medium	and	n=4	for	LPS	and
ibupro	ofen)														

Controls		Cytokine release [pg/ml]							
		IL-1β	IL-2	IL-6	IFN-γ	GM-CSF	TNFα		
Medium	mean	616.95	6.59	29213.73	27.04	163.32	417.09		
	SD	178.00	1.51	22861.52	8.10	2.39	356.67		
LPS	mean	651.20	9.91	42900.00	42.60	168.60	656.66		
	SD	343.02	1.99	0.00	18.84	47.34	48.84		
Ibuprofen	mean	1297.77	7.96	19931.71	21.82	80.53	80.29		
	SD	54.04	1.59	5357.24	12.44	8.18	6.78		

Table B2: Results for Cytokine release (pg/ml) after LPS stimulated PMBCs incubated with isolated compounds and crude extracts from *Tephrosia linear* and *T. hidebrandtii*¹⁴

	Cytokine release [pg/ml]							
Samples	IL-1β	IL-2	IL-6	IFN-γ	GM-CSF	TNF-α		
Medium	820.55	5.71	2821.58	35.53	165.71	14.93		
Medium	539.48	5.71	41919.60	26.17	160.93	695.07		
Medium	490.81	8.34	42900.00	19.41	163.33	541.28		
LPS	148.06	8.34	42900.00	15.11	12.08	723.15		
LPS	867.29	8.34	42900.00	57.09	210.89	657.19		
LPS	717.47	12.46	42900.00	51.79	177.44	607.52		
LPS	872.00	10.52	42900.00	46.43	117.47	638.77		
Ibuprofen	1248.97	8.34	22460.36	10.28	82.25	84.40		
Ibuprofen	1356.05	8.34	18570.75	39.20	88.51	74.54		
Ibuprofen	1331.35	5.71	25559.62	16.44	82.25	87.70		
Ibuprofen	1254.72	9.47	13136.10	21.37	69.08	74.54		
1	444.56	5.71	4670.13	15.11	29.33	6.07		
2	7.65	5.71	0.00	15.11	<14.55	1.09		
3	1106.02	1.76	266973.99	1.15	132.16	12.39		
4	493.96	5.71	41795.72	15.11	141.17	20.67		
5	1110.37	1.76	18492.90	1.15	29.33	26.44		
6	1022.97	1.76	18614.32	1.15	69.08	17.48		
7	350.15	1.76	11062.37	15.11	54.75	26.44		
8	666.47	5.71	8393.81	15.11	79.05	41.92		
9	1435.44	5.71	42900.00	15.11	60.29	82.42		

 $^{^{14}}$ Isolated compounds and ibuprofen were evaluated at 100 μm and the plant crude extract was evaluated at 100 $\mu g/mL.$

	Cytokine release [pg/ml]								
Samples	IL-1β	IL-2	IL-6	IFN-γ	GM-CSF	TNF-α			
10	265.90	1.76	10603.96	15.11	82.25	32.88			
11	672.59	5.71	102332.57	14.42	65.63	34.17			
12	684.87	<5.71	20732.99	<15.11	54.75	27.73			
13	4.37	<5.71	18.17	<15.11	<14.55	1.09			
14	314.85	5.71	3102.34	<15.11	8.21	7.33			
15	711.26	5.71	>42900.00	2.44	156.09	23.87			
16	31.34	<5.71	273.39	<15.11	<14.55	3.56			
17	966.63	1.76	10699.86	13.40	82.25	25.16			
TLC	701.13	1.76	5965.31	<15.11	62.09	30.30			
25	211.81	1.76	3178.91	<15.11	72.47	18.75			
26	1002.29	1.76	5583.01	<15.11	82.25	41.92			
27	176.44	<5.71	252.14	<15.11	24.21	2.32			
28	501.32	1.76	7503.57	<15.11	72.47	14.93			
29	913.40	1.76	29074.63	1.15	82.25	20.03			
30	131.49	1.76	2485.24	<15.11	18.58	7.33			
31	951.61	5.71	12621.06	3.65	67.36	43.22			
32	375.02	<5.71	4290.28	<15.11	3.22	9.85			
THC	905.08	10.52	>42900.00	3.65	97.57	21.31			

TLC – crude extract from *T. linearis*

THC – crude extract from *T. hildebrandtii*

Table B3: Results of controls (mean ± SD, n=3)

Controls		Cytokine release [pg/ml]					
		IL-1β	IFN-γ	GM-CSF	TNFα		
Medium	mean	892.01	178.61	40.90	139.39		
	SD	72.62	38.29	7.02	65.45		
LPS	mean	14532.78	8876.79	427.98	8295.07		
	SD	1354.00	1764.07	77.51	988.00		
Ibuprofen	mean	3703.12	1493.90	103.75	2672.63		
	SD	441.66	146.93	17.54	333.15		
Ibuprofen	% of LPS control	25.48	16.83	24.24	32.22		

	Concentration	C			
Samples		IL-1β	IFN-γ	GM-CSF	TNF-α
35	100 µM	9462.05	897.55	370.99	1878.78
36	100 µM	2323.22	43.06	75.31	183.83
38	100 µM	8418.14	121.10	30.16	61.57
44	100 µM	9537.92	1058.28	253.42	2364.94
45	100 µM	4361.17	27.51	125.49	278.81
46	100 µM	13251.15	4371.17	187.76	4701.73
47	100 µM	6810.24	314.62	212.69	1380.12
48	100 µM	6337.58	85.40	341.78	1064.32
52	100 µM	8367.57	512.77	300.30	1477.27
53	100 µM	11061.86	72.73	148.61	228.65
54	100 µM	10534.45	82.18	259.46	422.54
55	100 µM	9219.65	317.65	1061.74	2770.18
56	100 µM	8526.89	217.13	609.91	823.50
57	100 µM	10846.16	341.83	636.70	701.32
TVC	100 µg/ml	10926.34	93.51	283.08	267.69
TRC	100 µg/ml	6534.53	44.32	805.18	1705.53

Table B4: Results for Cytokine release (pg/ml) after LPS stimulated PMBCs incubated with isolated compounds and crude extracts from *Tephrosia vogelii*, *T. elata* and *T. rhodesica*¹⁵

TVC – the crude extract of *T. vogelii*

TRC – the crude extract of T. rhodesica

 $^{^{15}}$ Isolated compounds and ibuprofen were evaluated at 100 μm and the plant crude extract was evaluated at 100 $\mu g/mL.$

			Cytokine release [pg/ml]			
		Concentration			GM-	
Group	Compound		IL-1ß	IFN-γ	CSF	TNF-α
	1					
1	2		25.02	15 11	1455	2.20
	3	100 M	55.95	13.11	14.33	2.39
1	4	100 μΜ	± 7.00			± 0.00
	8		7.90	0.00	0.00	0.00
	9					
	5					
	12					
	13		11.25	15 11	1455	0.50
2	14	100 ··· M	11.35	15.11	14.55	8.39
2	15	100 μΜ	± 2 0 4	±	±	± 0.00
	16		2.84	0.00	0.00	0.00
	17					
	6					
	7		489.92	15.11	8.87	10.59
3	10	100 μΜ	±	±	±	±
	11		77.43	0.00	5.93	1.75
	25		3068.36	7.44	15.75	78.84
4	31	100 µM	±	±	±	±
	32		550.46	2.61	13.77	14.95
	26		11544.17	107.70	788.55	657.12
5		100 µM	±	±	±	±
	27		1529.60	9.38	111.83	138.41
	28		5816.37	21.88	51.78	136.77
6	29	100 µM	±	±	±	±
	30		1925.60	9.33	34.14	130.10
Crude e	extract of T		2594.11	950.60	72.71	1638.64
hidehrav	ndtii	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		±	±	±
macorun			147.62	240.84	10.48	86.94
Crude	extract of T		2745.63	582.78	84.40	1417.03
li	nearis	10 µg/ml	±	±	±	±
imearis			305.94	12.53	16.59	307.13

Table B5: Results for Cytokine release (pg/ml) after LPS stimulated PMBCs incubated with combination of isolated compounds and crude extracts from

	•	i i i i i i i i i i i i i i i i i i i	A- 10	C.I.	L.				
• •	ELAC	AAC : 13.06.	0019	0/01					
	. LAGE	RUNCH RAA.	1, 905, 74/8	0187	DDUO				
PRODUCT	DATA SHEET	- ePBMC® Und	characterized C	ryopreserved H	uman PBMC				
Catalog No.:	CTL-UP1	CTL-UP1							
Product name:	ePBMC®	- Uncharacterized (Cryopreserved Humar	PBMC					
Size:	>10x10^4	6 cells / vial							
Description:	Human F and froze were ethi Tested n as HIV I,	Human PBMC (Peripheral Blood Mononuclear Cells) isolated from leukopacks and frozen in CTL-CryoABC [™] serum-free freezing medium. These leukopacks were ethically collected from healthy donors with no risk of breaching privacy. Tested negative for HBsAg, HBcAb, HCV, HTLV I/II and STS by serology; as well as HIV I, HCV and WNV by NAT (nucleic acid testing)							
Performance:	T cell fun	ctionality by ELISPC	T equivalent to fresh	cells					
Applications:	PBMCs a arrays, te requires	PBMCs are suited for T cell monitoring in ELISPOT, ELISA, cytokine bead arrays, tetramer/ pentamer, and cytokine capture assays or any assay that requires live functional PBMC							
Recommended concentration:	test Investiga applicatio CTL reco	Investigators are advised to determine optimal concentrations for individual applications. CTL recommends of 100,000 to 800,000 cells / well concentration for ELISPOT							
Stability and	Storage: Cryopres immediat acceptat storage, must be freeze-th	Cryopreserved cells are shipped in a dry cryoshipper, and should be unpacked immediately upon receipt. Short-term storage of cells (24h) at -80°C is acceptable, but should be minimized to ensure maximum stability. For long-term storage, cryopreserved cells should be stored in liquid nitrogen. Thawed samples must be used immediately and have a finite life span in culture. Avoid repeated freeze-thaw cycles!							
Long-term Sto	rage: -169°C to	o -196°C (must be or	n liquid nitrogen (LN2)) vapor)					
Thawing:	Thaw pro	Thaw protocol included							
Usage:	FOR RE diagnos procedu	FOR RESEARCH USE ONLY! Not intended for direct therapeutic or diagnostic use in humans or animals, or for use in in vitro diagnostic procedures!							
Characterization results:	PBMCs 1	rom 3 donors, 1 vial	each to Pharmacelsu	us GmbH, Dr. Tanja Wo	olf				
Sample ID#	HHU20181025	HHU20181023	HHU20181002	x	x				
Ethnicity	African/American	Pacific Islander	Caucasian						
Age	38	38	34						
Gender	Male	Male	Female						
ABO/Rh	0/Pos	B/Pos	A/Pos						
SFC- Spot Fo	rming <u>C</u> ells								

 RI
 June 10, 2019

 CTL Representative
 Date

Y

C.T.L., 20521 Chagrin Blvd., Shaker Heights, Ohio 44122 USA Tel (216) 791-5084 • Toll Free (888) 791-4005 • Fax (216) 791-8814 • www.immunospot.com
Thermo Fisher SCIENTIFIC

Bender MedSystems GmbH Campus Vienna Biocenter 2 A-1030 Vienna, Austria www.thermofisher.com

Certificate of analysis

ProcartaPlex

Cat. number:	PPX-07-MXXGRJX 96 tests/7 analytes	Name:	Human Cust plex	tom Procar	taPlex 7-
Lot number:	214139000	Expiry date:	2020-06	<i>3</i> 5	
Components s10011EX B-07-MXXGRJX-EX	Standard Mix A 7-plex Beads		Quantity 2 each 1 x 5ml (1x)	Lot 187440101 213797000	Store at

D OF INFORMULE	r-piex beaus	1 x 5ml (1x)	213797000	2-8°C	
BK-07-MXXGRJX-EX	7-plex det.AB	$1 \times 3.5 ml(1 x)$	213708000	2.0%	
RBEX/46 WBEX/28 SA-PE	Reading Buffer 10x Wash Buffer Streptavidio-PE	1 x 40ml 1 x 25ml 1 x 25ml	18103753 18093505	2-8°C 2-8°C	
UABEX/11	Universal Assay Buffer 1v	1 x 5mi	202532000	2-8°C	
SVM104	Black Microplate Lid	1 Apoch	18124434	2-8°C	
SVM16	Plate Covers	8 each		2-8.0	
SVM183	PCR 8-Tube Strip	2 each		2.8°C	
SVM182	Flat bottom Plate (black)	1 each		2-8°C	

Standard Mix A Lot#187440101

Provided below is a table of Standard 1 (Std1) value for each analyte in each tube when prepared according to the "Preparing Standard" procedure of the Manual.

Analyte	Std1 Concentration (pg/ml)	ULOQ / LLOQ (pg/mi)
		Determined in cell culture medium
	59600 61900 35200 6950 25200 13800 9300 67800 8150 23400 41500 77900 70700 71500	59600 / 15 61900 / 15 35200 / 8,59 6950 / 1,70 25200 / 6,15 13800 / 2,27 67800 / 17 8150 / 1,99 23400 / 5,71 41500 / 10 77900 / 19 70700 / 17 71500 / 17
IL-5	42000	4090079,99
X IL-6	42900	10500710
IL-9	24600	24600 / 6.01

7-plex Beads Lot#213797000

Target Name	Bead Number	Std1 Concentration pg/ml	Standard
GM-CSF	44	59600	Standard Mix A
IFN-gamma	43	61900	Standard Mix A
IL-1beta	18	8150	Standard Mix A
IL-12p70	34	25200	Standard Mix A
IL-2	19	23400	Standard Mix A
IL-6	25	42900	Standard Mix A
TNF-alpha	45	35200	Standard Mix A

Analytical information:

This product has been tested by Quality Control and passed internal specifications.

Quality control:

Jahits

For Research Use Only. Not for use in diagnostic procedures. If you have any further questions about this Certificate of Analysis, please contact Technical Services at 1–800–955–6288 (US and Canada) or 1–760–603–7200, x2 (all other countries). For inquiries, contact us at "thermofisher.com/askaquestion"

PRODUCT DATA SHEET – ePBMC® Uncharacterized Cryopreserved Human PBMC

Catalog No.:		CTL-UP1				
Product name	:	ePBMC® - Uncharacterized Cryopreserved Human PBMC				
Size:		>10x10^6 cells / vial				
Description:		Human PBMC (Peripheral Blood Mononuclear Cells) isolated from leukopacks and frozen in CTL-CryoABC™ serum-free freezing medium. These leukopacks were ethically collected from healthy donors with no risk of breaching privacy. Tested negative for HBsAg, HBcAb, HCV, HTLV I/II and STS by serology; as well as HIV I, HCV and WNV by NAT (nucleic acid testing)				opacks opacks ivacy. gy; as well
Performance:		T cell fur	octionality by ELISPO)T equivalent to fresh	n cells	
Applications:		PBMCs a arrays, tr requires	are suited for T cell n etramer/ pentamer, a live functional PBMC	nonitoring in ELISPO nd cytokine capture :	T, ELISA, cytokine be assays or any assay t	ad hat
Recommended concentration:	d test	Investiga applicatio CTL reco	tors are advised to c ons. ommends of 100,000	letermine optimal cor to 800,000 cells / we	ncentrations for individ	lual LISPOT
Stability and	Storage:	Cryopres immedia acceptat storage, must be freeze-th	erved cells are shipp tely upon receipt. Sh le, but should be mir cryopreserved cells : used immediately an aw cycles!	bed in a dry cryoshipp ort-term storage of o nimized to ensure ma should be stored in life d have a finite life sp	per, and should be un ells (24h) at -80°C is aximum stability. For lo quid nitrogen. Thawed an in culture. Avoid re	packed ong-term i samples speated
Long-term Sto	rage:	-169°C to	o -196°C (must be or	n liquid nitrogen (LN2) vapor)	
Thawing:		Thaw pro	tocol included			
Usage:		FOR RE diagnos procedu	SEARCH USE ONL' tic use in humans c res!	/! Not intended for or animals, or for us	direct therapeutic or e in in vitro diagnos	tic
Characterizatio results:	on	PBMCs f	rom 3 donors, 1 vial	each to Pharmacels	us GmbH, Dr. Tanja W	/olf
Sample ID#	HHU201	190620	HHU20190709	HHU20190624	x	X
Ethnicity	Hispa	anic	Caucasian	Caucasian		
Age	22	2	54	41		
Gender	Fem	ale	Male	Male	ana -	
ABO/Rh	0/P	os	AB/Pos	AB/Pos		

ABO/Rh 0/Pos **SFC**- Spot Forming Cells

ZSB	Aug. 16, 2019
CTL Representative	Date

C.T.L., 20521 Chagrin Blvd., Shaker Heights, Ohio 44122 USA Tel (216) 791-5084 • Toll Free (888) 791-4005 • Fax (216) 791-8814 • www.immunospot.com

ThermoFisher SCIENTIFIC

Bender MedSystems GmbH Campus Vienna Biocenter 2 A-1030 Vienna, Austria www.thermofisher.com

Certificate of analysis

ProcartaPlex

Cat. number:	PPX-06-MXKA3ZU 96 tests/6 analytes	Name:	Human Cust plex	om Procart	aPlex 6-
Lot number:	218832-000	Expiry date:	2020-08		
Components S10011EX	Standard Mix A		Quantity 2 each	Lot	Store at

B-06-MXKA3ZU-EX	6-plex Beads	1 x 5ml (1x)	218571-000	2-8°C	
BK-06-MXKA3ZU-EX	6-plex det.AB	1 x 3,5ml (1x)	218572-000	2-8°C	
RBEX/46	Reading Buffer	1 x 40ml	19045685	2-8°C	
WBEX/28	10x Wash Buffer	1 x 25ml	19045686	2-8°C	
SA-PE	Streptavidin-PE	1 x 5ml	202532000	2-8°C	
UABEX/11	Universal Assay Buffer 1x	1 x 10ml	18124434	2-8°C	
SVM104	Black Microplate Lid	1 each		2-8°C	
SVM16	Plate Covers	8 each		2-8°C	
SVM183	PCR 8-Tube Strip	2 each		2-8°C	
SVM182	Flat bottom Plate (black)	1 each		2-8°C	

6-plex Beads Lot#218571-000

Target Name	Bead Number	Std1 Concentration pg/ml	Standard
GM-CSF	44	59600	Standard Mix A
IFN-gamma	43	61900	Standard Mix A
IL-1beta	18	8150	Standard Mix A
IL-2	19	23400	Standard Mix A
IL-6	25	42900	Standard Mix A
TNF-alpha	45	35200	Standard Mix A

Analytical information:

This product has been tested by Quality Control and passed internal specifications.

Quality control:

Jahits

For Research Use Only. Not for use in diagnostic procedures. If you have any further questions about this Certificate of Analysis, please contact Technical Services at 1–800–955–6288 (US and Canada) or 1–760–603–7200, x2 (all other countries). For inquiries, contact us at "thermofisher.com/asksquestion"

APPENDIX C: Extract of First Page of Publications from this Thesis

Article

Anti-inflammatory Flavanones and Flavones from Tephrosia linearis

Richard Oriko Owor, Kibrom Gebreheiwot Bedane, Sebastian Zühlke, Solomon Derese, George Otieno Ong'amo, Albert Ndakala,* and Michael Spiteller*

ABSTRACT: Phytochemical analysis of a methanol-dichloromethane (1:1) extract of the aerial parts of *Tephrosialinearis* led to the isolation of 18 compounds. Seven of these, namely, lineaflavones A–D (1–4), 6-methoxygeraldone (5), 8"-acetylobovatin (6), and 5-hydroxy-7-methoxysaniculamin A (7) are new compounds. The compounds were characterized based on their NMR and HRMSⁿ data. The anti-inflammatory effects of the crude extract and isolated compounds were evaluated by measuring the levels of interleukins (IL-1 β , IL-2, and IL-6), granulocyte-macrophage colony-stimulating factor (GM-CSF), and tumor necrosis factor- α (TNF- α) in lipopolysaccharide (LPS)-stimulated peripheral blood monnuclear cells (PBMCs). The crude extract inhibited the release of all cytokines except IL-1 β , which slightly increased in comparison to the LPS control. All the tested compounds suppressed the production of IL-2, GM-CSF, and TNF- α . Whereas compounds 1, 2, 4–8, 10–15, 17, and 18 decreased production of IL-6, compounds 1, 2, 4, 7, 10, 13–15, and 17 inhibited the release of IL-1 β . It is worth noting that most of the compounds tested showed a superior reduction in cytokines release compared to the reference drug ibuprofen.

Plants of the genus *Tephrosia* Pers. (Fabaceae) mainly inhabit tropical and subtropical regions with over 30 species occurring in Kenya.1 Many of the species have been used ethnomedicinally to alleviate diverse illnesses.^{2,3} Phytochemical investigations of some of these plants by our research group have led to the isolation of a chalcone,⁴ rotenoids,⁵ flavanonols,⁶ and flavones' that are biologically active. Also, the genus Tephrosia is reported to elaborate other bioactive flavonoids such as flavanones, isoflavones, and $pterocarpans.^{8,9}$ Some of these flavonoids also exhibit anti-inflammatory properties. For instance, genistein found in Tephrosia toxicaria¹⁰ reduces peripheral and central nuclear factor-KB (NF-KB) and the nitric oxide system as well as pro-inflammatory cytokine overactivation,¹¹ while naringenin, common in the family Fabaceae, decreases the production of TNF- α_1^{12} and apigenin inhibits TNF- α -induced NF- κ B.¹

In Kenya, the juice of boiled leaves of *Tephrosialinearis* (Willd.) Pers. is used traditionally to treat a broad spectrum of ailments in infants.¹⁴ An earlier phytochemical investigation on the roots of this plant led to the isolation of rotenone, deguelin, tephrosin, and 12a-hydroxyrotenone.¹⁵ In our continued effort

to investigate *Tephrosia* species, the aerial parts of *T. linearis* were investigated phytochemically leading to the isolation and identification of 18 compounds, of which seven are new. Herein, are discussed the isolation, structure elucidation, and anti-inflammatory effects of these compounds. To evaluate the anti-inflammatory effects of the crude plant extract and the isolated compounds, lipopolysaccharide (LPS)-stimulated cytokine release of peripheral blood mononuclear cells (PBMCs) was quantified through measurement of the levels of IL-1 β , IL-2, IL-6, GM-CSF, and TNF- α .

RESULTS AND DISCUSSION

The crude extract of the aerial parts of *T. linearis* was subjected to silica gel and Sephadex LH-20 column chromatography,

Received: September 24, 2019 Published: March 10, 2020

ACS Publications

2020 American Chemical Society and American Society of Pharmacognosy

s://dx.doi.org/10.1021/acs.jnatprod.9b00922 J. Nat. Prod. 2020, 83, 996–1004

006

Check for updates

Synergistic anti-inflammatory activities of a new flavone and other flavonoids from *Tephrosia hildebrandtii* vatke

Richard Oriko Owor^{a,b,c} , Kibrom Gebreheiwot Bedane^{b,d}, Yolande Ikala Openda^a, Sebastian Zühlke^b, Solomon Derese^a, George Ong'amo^e, Albert Ndakala^a and Michael Spiteller^b

^aDepartment of Chemistry, University of Nairobi, Nairobi, Kenya; ^bInstitute of Environmental Research (INFU), Department of Chemistry and Chemical Biology, Chair of Environmental Chemistry and Analytical Chemistry, TU Dortmund, Dortmund, Germany; ^cDepartment of Chemistry, Busitema University, Tororo, Uganda; ^dDepartment of Chemistry, Addis Ababa University, Addis Ababa, Ethiopia; ^eSchool of Biological Sciences, University of Nairobi, Nairobi, Kenya

ABSTRACT

A new flavone, named hildeflavone (1) along with 7 other known flavonoids were isolated from the aerial parts of *Tephrosia hildebrandtii* Vatke. Their characterisation was based on NMR and MS data analysis. The anti-inflammatory properties of the crude extract, isolated compounds and combination of the compounds were investigated in lipopolysaccharide (LPS)-stimulated peripheral blood mononuclear cells (PBMCs). Treatment of the LPS-stimulated PBMCs with the isolated flavonoids at a concentration of 100 μ M significantly reduced the production of interleukins (IL-1 β , IL-2 and IL-6), interferon-gamma (IFN- γ), granulocyte macrophage-colony stimulating factor (GM-CSF) and tumour necrosis factor-alpha (TNF- α). It was also found that the combination of a flavonoe and flavanones exhibited remarkable synergistic anti-inflammatory effects on the production of the cytokines.

Received 26 December 2019 Accepted 10 February 2020

KEYWORDS

Fabaceae; *Tephrosia* hildebrandtii; flavonoid; anti-inflammatory; hildeflavone; cytokine; synergy

CONTACT M. Spiteller 🐼 michael.spiteller@tu-dortmund.de; A. Ndakala 🐼 andakala@uonbi.ac.ke Supplemental data for this article can be accessed at https://doi.org/10.1080/14786419.2020.1736065. © 2020 Informa UK Limited, trading as Taylor & Francis Group

Fitoterapia 146 (2020) 104695

Contents lists available at ScienceDirect

Fitoterapia

journal homepage: www.elsevier.com/locate/fitote

Isoflavones from the seedpods of *Tephrosia vogelii* and pyrazoisopongaflavone with anti-inflammatory effects

Richard Oriko Owor^{a,b,c,*}, Solomon Derese^a, Kibrom Gebreheiwot Bedane^d, Sebastian Zühlke^b, Albert Ndakala^{a,**}, Michael Spiteller^{b,**}

^a Department of Chemistry, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya

^b Institute of Environmental Research (INFU), Department of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn-Str. 6, 44221 Dortmund, Germany

^c Department of Chemistry, Busitema University, P.O. Box 236, Tororo, Uganda
^d Department of Chemistry, Addis Ababa University, P.O. Box 33658, Addis Ababa, Ethiopia

ARTICLE INFO

Keywords: Tephrosia vogelii Vogelisoflavone Pyrazoisopongaflavone Isopongaflavone Anti-inflammatory Cytokine

ABSTRACT

Phytochemical investigation of *Tephrosia vogelii* seedpods led to the isolation of twelve compounds: vogelisoflavone A (1), vogelisoflavone B (2), isopongaflavone (3), onogenin, luteolin, 4',7-dihydroxy-3'-methoxyflavanone, *trans-p*-hydroxycinnamic acid, tephrosin, 2-methoxygliricidol, dehydrorotenone, 6a,12a-dehydro-atoxicarol and pinoresinol. Compounds 1 and 2 are reported as new natural products. Isopongaflavone (3) was structurally modified using hydrazine to pyrazoisopongaflavone (4). These compounds were characterized based on their NMR and HRESIMS data. Further, four compounds (1–4) were evaluated for their anti-inflammatory effects in lipopolysaccharide (LPS)-stimulated peripheral blood mononuclear cells (PBMCs). Treatment of the LPS-stimulated PBMCs with the compounds at a concentration of 100 μ M suppressed the secretion of interleukin IL-1 β interferon-gamma (IFN- γ), granulocyte macrophage-colony stimulating factor (GM-CSF) and tumour necrosis factor-alpha (TNF- α).

1. Introduction

Tephrosia vogelii Hook.f. Pers. is widely distributed in tropical Africa and is commonly known as fish bean or Vogel's tephrosia [1,2]. This plant is widely cultivated in Africa for fishing, protecting crops against mole rats, pests and for soil enrichment [3-7]. It is also an important ethnomedicinal plant used to manage a variety of ailments including scabies, yaws and constipation [8,9]. The diverse traditional uses of T. vogelii have stimulated various studies on its phytochemical and pharmacological properties. Extracts and isolates from T. vogelii have exhibited varied activities including insecticidal, mollusicidal and piscidal activities [1,4,6,10-12]. Most of the entomotoxic and ichthotoxic properties of T. vogelii are attributed to rotenoids especially deguelin, rotenone, tephrosin, α -toxicarol and sarcolobine that have been reported to be abundant in the plant [11,13,14]. The plant also elaborates other flavonoids that are non-entomotoxic and non-ichthotoxic such as rutin, quercetin-3-arabinopyranoside, obovatin-5-O-methylether, quercetin-3-O-galactoside and Z-tephrostachin [13-16]. Interestingly, some of these flavonoids such as rutin, quercetin-3-O-galactoside have been shown to possess anti-inflammatory properties through modulation of

inflammatory mediators especially cytokines [17,18].

In our continued efforts to study the anti-inflammatory flavonoids from *Tephrosia* plants [19,20], the phytochemical constituents of *T. vogelii* seed-pods were investigated leading to isolation of two new isoflavones along with ten known compounds. Considering that conversion of some natural products such as curcumin into their pyrazole derivative enhanced their anti-inflammatory activity [21,22], in this study, one of the flavonoids (isopongaflavone) was structurally modified to its pyrazole derivative and evaluated for its anti-inflammatory activity. It is also worth noting that pyrazole derivatives are potent anti-inflammatory agents and some have been developed into anti-inflammatory drugs such as celecoxib, lonazolac and mepirizole [23–25]. Herein, the isolation, structural elucidation, structural educidation, and anti-inflammatory activities of the compounds isolated from the seedpods of *T. vogelii* are described.

2. Experimental

2.1. General experimental procedures

The instrumentation and reagents used were as described in our

* Corresponding author at: Department of Chemistry, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya. ** Corresponding authors.

E-mail addresses: roriko@sci.busitema.ac.ug (R.O. Owor), andakala@uonbi.ac.ke (A. Ndakala), michael.spiteller@tu-dortmund.de (M. Spiteller).

https://doi.org/10.1016/j.fitote.2020.104695

Received 15 May 2020; Received in revised form 23 July 2020; Accepted 28 July 2020

Available online 01 August 2020 0367-326X/ © 2020 Elsevier B.V. All rights reserved.