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Abstract

Routine health data are used to monitor quality of care and to inform interven-

tions to improve patient care. However, statistical analysis of such data presents

several challenges related to handling missing data and multiple responses in the

presence of complex data structures.

In this study we sought to: i) Analyze multilevel clustered data accounting for co-

variate missingness. ii) Explore appropriate strategies for handling missing data

when the outcome is a composite of partially observed components. iii) Examine

sensitivity of results to departures from the commonly assumed missing at ran-

dom (MAR) mechanism. iv) Simultaneously estimate joint covariate effects and

association amongst multiple correlated outcomes.

We analysed routine data collected during a cluster randomized trial in 12 Kenyan

hospitals between March and November 2016. There were 2127 children admit-

ted by 378 clinicians ascross the study sites. The outcomes of interest were 12

pneumonia quality of care indicators spanning assessment, diagnosis and clas-

sification and treatment domains of care. For the first three objectives, we con-

structed Paediatric Admission Quality of Care (PAQC) score, an ordinal compos-

ite outcome using 12 pneumonia care indicators. Covariates of interest included :

trial arm and follow-up time, hospital, clinician and patient-level variables. Miss-

ing data occurred in patient and clinician level variables. Missing data in covari-

ates were imputed using latent normal joint modelling approach assuming MAR

mechanism. Random-effects and marginal models were the substantive models
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of interest. To explore appropriate strategies of handling missing PAQC score

subcomponents, we conducted a simulation study. Multiple imputation (MI) at

subcomponent level versus the conventional method where missing PAQC score

subcomponents were scored with value 0. We assessed departure form MAR

assumption within pattern mixture models. Elicited experts’ opinions were in-

corporated into the imputation models in the form of prior distributions and

delta adjustment parameters to create missing not at random imputed values. In

the fourth objective, we analyzed 9 binary pneumonia care indicators under the

correlated random effects joint model, by applying pairwise fitting and pseudo-

likelihood methods before and after MI of missing covariates.

From results, trial intervention was associated with higher uptake of the paedi-

atric pneumonia guidelines during the trial period. Parameter estimates were

precise after MI of covariates compared to complete case analysis. In a range

of simulation scenarios, multiple imputation of missing PAQC score elements at

item level produced minimally biased estimates compared to the conventional

method. Our inferences were insensitive to departures from MAR assumption

using either sensitivity analysis approach. Lastly, there was a significant joint in-

teraction effect between intervention arm and follow-up time on pneumonia care

indicators. The strength and direction of association amongst outcomes varied

within and across domains care.

This study demonstrates the practical utility of advanced biostatistical analyses

methods with an aim to promote their use while answering substantive health

research questions. Uptake of such methods can improve analysis and report-
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ing of health data used to inform policies and in the long run enhance optimal

utilization of limited resources while promoting better patients’ outcomes.
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Chapter 1

General Introduction

1.1 Background

Data sets containing routine data collected from multiple sites are a common phe-

nomenon in many health research settings and present significant challenges in

analysis. For example, in evaluating quality of care provided to patients using

data collected during inpatient admission in a set of hospitals,observations from

the same hospital tend to be correlated. Further, within each hospital observa-

tions from the same clinician will also tend to be correlated. While using data

from multiple hospitals enhances generalization of results to a wider population

of hospitals, it leads to complex hierarchical data structures. Furthermore, re-

searchers may be interested in multiple outcomes representing different aspects

of care processes (Mc Cord et al., 2018) leading to cluster correlated data. In addi-

tion to multiple outcomes and complex data structures, routine data are subject

to missing information at any level of the hierarchical structure.

1



When the outcome is affected by missing data, assuming a missing at random

(MAR) (Rubin, 1976) missingness mechanism, and assuming separability of the

missingness and measurement processes, a likelihood based analysis of the ob-

served data, will be valid. This is not the case with quasi-likelihood based meth-

ods(Fitzmaurice et al., 2009a, Chapter 1, p. 3), and only valid under a missing

completely at random (MCAR) mechanism.

With missing covariate data as well, unless the probability of the covariate miss-

ing does not depend on the outcome variable, an analysis based only on "com-

plete cases" will provide biased inference (Carpenter and Kenward, 2013). In

this case, multiple imputation (MI), usually based on an MAR assumption for

the missingness mechanism, is applied to provide validity under more realistic

assumptions about the missingness mechanism, as well as to mitigate the po-

tential loss of efficiency due to information loss (Carpenter and Kenward, 2013,

Chapter 1, p. 9). While MI is a useful tool in this context, there is still a risk

of invalid inferences arising from incompatibility between the imputation model

and the substantive model (Bartlett et al., 2015). Incompatibility arises whenever

the substantive model contains non-linear effects, interactions, and hierarchical

structures, yet these are not properly accounted for in the imputation model (Car-

penter and Kenward, 2013; Bartlett et al., 2015).

In both missing outcome and the missing covariate contexts, even when an anal-

ysis which is valid under the MAR assumption is performed, there is need for

sensitivity analyses. This is because the possibility that a missing not at ran-

dom (MNAR) mechanism could be in operation cannot be discounted (Molen-
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berghs et al., 2014, Chapter 1, p. 319). Sensitivity analyses usually take the form

of comparing inferences under an MAR assumption with those under an MNAR

assumption, or comparing inferences under different models formulated under

an MNAR assumption. Sensitivity analyses could be in the framework of the

pattern-mixture factorization (usually called the pattern-mixture model, and ab-

breviated PMM) of the joint model for the missingness and measurement pro-

cesses (Molenberghs et al., 2014, chapter. 1), the selection models or the gen-

eralized shared-parameter factorization (usually called the generalized shared-

parameter model, and abbreviated generalized SPM) (Creemers et al., 2010, 2011).

Finally, with a multivariate vector of outcomes, joint models (Fieuws and Ver-

beke, 2004, 2006) are used to simultaneously analyse all the outcomes. Joint mod-

els allow one to test hypotheses of joint effects of covariates on the various out-

comes simultaneously, and to study the association among the different outcomes

(Molenberghs and Verbeke, 2005, Chapter 25, p. 466). Joint models also provide

efficiency gain, in case of missing data in some of the outcomes, or in case some

fixed effects parameters are shared by the outcomes (Fitzmaurice et al., 2009b).

Within the joint modelling framework, correlated random-effects joint models

are preferred to shared-parameter joint models (shared random-effects joint mod-

els), as the latter may impose too restrictive association structure (Molenberghs

and Verbeke, 2005, Chapter 25, P. 468). The cost is that as the dimension of the

multivariate response vector increases, so do the number of random-effects in

the correlated random-effects joint models, resulting in fitting problems due to

increased dimension of the variance covariance matrix. To circumvent this chal-
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lenge, fitting strategies such as pairwise fitting combined with pseudo-likelihood

methodology (Fieuws and Verbeke, 2006) are used.

1.2 Missing Data Concepts

1.2.1 Notations

Missing data refers to intended information about a study subject but could not

be measured or observed for one reason or another. Missing data problems are

common in many disciplines and consequently they complicate statistical analy-

sis and inference (Molenberghs et al., 2014, Chapter 1, p. 3). In clinical studies,

missing data could occur due to withdrawal, attrition, loss to follow up or lost

records. Missingness could also occur due to non-response by study participant

or by study design.

Here, we use hypothetical data set to illustrate basic missing data concepts and

terminology used throughout this report. Suppose Y (representing both outcome

and covariates) is an N ⇥ P matrix containing data values on p variables for N

study subjects i = 1, . . . , N. For the ith study subject, the elements of Y denoted

by yip can be grouped into a vector Y i = (yi1, yi2, . . . , yip). Further, assuming that

some of the yip values are partially observed, a missingness indicator matrix R

with same dimension as Y can be defined. The elements of matrix R are defined

as follows

rip =

8
>>><

>>>:

1, if yip is observed

0, otherwise.
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For each study subject, the elements of R can be grouped into a vector Ri =

(ri1, ri2, . . . , rip). Given Ri, the vector Y i can be partitioned into observed and

missing data subvectors of denoted by Y
obs
i and Y

miss
i respectively. When taken

together, (Y i) (i.e., the measurement process) and (Ri) (i.e., the missingness pro-

cess) constitute the joint density distribution of the full data defined by

f (Y i, Ri, q, y), (1.1)

where q, and y are vector of parameters for the measurement and missingness

processes respectively.

1.2.2 Missing Data Mechanisms

Usually, the missing data mechanism underlying a given data set is unknown to

the study researchers. Therefore, assumptions are normally made about a plau-

sible mechanism. The validity of inference depends on whether the assumptions

hold for the data at hand (Molenberghs et al., 2014, Chapter 1).

Rubin (1976) distinguished three broad classes of missing data mechanisms namely;

MCAR, MAR and MNAR. The three mechanisms were defined depending on

how Ri is related to Y i. Specifically, the conditional density of the missingness

process Ri given Y
obs
i and Y

miss
i as outlined in the following subsection.
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Missing Completely at Random

Missing completely at random (MCAR) mechanism occurs when the missingness

process and the measurement process are independent (Rubin, 1976). That is,

P(Ri|Yobs
i , Y

miss
i , y) = P(Ri|y). (1.2)

In other words, the probability of missingness is independent of observed and

unobserved components of Y i. When data are MCAR, the observed data can be

taken as a random sample of the target population. In this case, restricting anal-

ysis to complete cases yields valid but inefficient parameter estimates (Carpenter

and Kenward, 2013, Chapter 1, p. 9).

Missing at Random

According to Rubin (1976), data are said to be MAR when the probability of miss-

ing values in a variable does not depend on the variable of interest but are con-

ditionally dependent on other observed variables in the data set. In other words,

Ri is conditionally independent of Y
miss
i given Y

obs
i , that is,

P(Ri|Yobs
i , Y

miss
i , y) = P(Ri|Yobs

i , y). (1.3)

When data are MAR, complete cases are not as a random sample of the target

population and restricting analysis to complete case records yields both biased

and inefficient parameter estimates (Molenberghs et al., 2014, Chapter 1, p. 9-

10). MAR mechanism further implies that the conditional distribution of Y
miss
i
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given Y
obs
i is the same as the distribution of the corresponding observations in

the completers and target population.

Missing Not at Random

Data are said to be MNAR when the probability of a value being missing depends

on unobserved measurements. This is in addition to dependencies on observed

covariates and/or outcomes (Molenberghs et al., 2014, Chapter 1, p. 11). That is,

the conditional distribution of Ri, given Y
obs
i is related to Y

miss
i as shown below,

P(Ri|Yobs
i , Y

miss
i , y) = P(Ri|Yobs

i , Y
miss
i , y). (1.4)

Ignorability

With complete data, inference about parameters of the measurement process (q)

can be conducted based on the likelihood of the data given q, that is, P(Y |q)

(Molenberghs et al., 2014, p. 9). Assuming that q and y denote two distinct sets

of parameters, the joint distribution can be simplified to

P(Ri, Y
obs
i |q, y) =

Z
P(Ri|Yobs

i , y)P(Yobs
i , Y

miss
i |q)dY

mis
i

= P(Ri|Yobs
i , y)

Z
P(Yobs

i , Y
miss
i |q)dY

mis

= P(Ri|Yobs
i , y)P(Yobs

i |q).

(1.5)

This implies that when data are MAR, the missing data mechanism is ignorable.
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When missingness is ignorable, likelihood-based inferences can be obtained by

integrating the missing observations from f (Yobs
i |q), i.e.,

L(q|Yobs
i ) = c ⇥

N

’
i=1

Z
f (Yobs

i , Y
miss
i |q)dY

miss
i , (1.6)

where c is a constant factor that is independent of the missingness process param-

eters, (y). In this case, the missing data mechanism need not be known in order

to obtain valid statistical inferences about q from the observed data (Molenberghs

et al., 2014, Chapter 1, p. 9). Since MCAR is a special case of MAR, ignorability

also holds for MCAR. On the other hand, when data are MNAR and the aim is

to make inference about the distribution of the observed data, then missing data

mechanism cannot be ignored. The assumed model for P(Ri|Yobs
i , Y

miss
i ) must be

accounted for in the analysis model. However, assumptions made about Ri are

unverifiable from the data. Therefore, sensitivity analysis of inferences to a vari-

ety of plausible MNAR models is recommended (Carpenter and Kenward, 2013,

Chapter 10,).

1.2.3 Missing Data Frameworks

To correct for non-ignorability, the joint models for the measurement (Y i) and the

missingness process (Ri) are required to obtain valid estimates (Molenberghs and

Verbeke, 2005, Chapter 26, p. 484). In particular, the joint distribution f (Y i, Ri|q, y)

can be factorized into one of the three common modelling frameworks namely;

selection models, pattern mixture models and shared parameter models (Rubin,

1976; Molenberghs and Verbeke, 2005; Carpenter and Kenward, 2013).
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Selection Models

In the selection model (SeM) factorization, the joint distribution of measurement

process (Y i) and missingness process (Ri) factorizes into

f (Y i, Ri|q, y) = f (Y i|q) f (Ri|Y i, y), (1.7)

where f (Y i|q) is the marginal of the measurement process and f (Ri|Y i, y) is the

density of the missing data process conditional on the measurement process .

SeM impose assumptions about the marginal density of the measurement pro-

cess for identifiability purpose. Specifically, identifiability is achieved through

parametric assumptions about f (Y i|q) and unverifiable models for the depen-

dence of the missingness process on unobserved data (Molenberghs et al., 2014,

Chapter 1, p. 11).

Pattern Mixture Models

Alternatively, one can consider the pattern mixture models (PMM) factorization.

PMM factorization is the reverse of SeM (Little, 1993; Molenberghs and Verbeke,

2005; Molenberghs and Kenward, 2007; Carpenter and Kenward, 2013) in that it

specifies the joint distribution in terms of marginal distribution of the missingness

process (Ri) and the conditional distribution of the measurement process (Y i)

given the missingness process, that is,

f (Y i, Ri|q, y) = f (Y i|Ri, q) f (Ri|y), (1.8)
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where q and y are parameters of the conditional and marginal densities respec-

tively. In PMM, the distribution of Y i given patterns of missingness process

Ri is not completely identifiable. Therefore, unverifiable links are postulated

among the distributions of the measurement processes conditional on the pat-

terns of missingness processes for identification purposes (Molenberghs et al.,

2014, Chapter 1, p. 11).

Shared Parameter Models

Lastly, the measurement and missingness processes can be modelled jointly within

the shared parameter model (SPM) framework (Creemers et al., 2010, 2011). An

SPM factorization is defined by

f (Y i, Ri|q, y, bi) = f (Y i|q, bi) f (Ri|y, bi). (1.9)

In this framework, the measurement process (Y i) and missingness process (Ri)

are assumed to share latent variables, conditional upon which, Y i and Ri are in-

dependent. The latent variables are more often considered to be random-effects

denoted by bi. The random-effects are assumed to follow a specific parametric

distribution (Creemers et al., 2011).

Generalized Share Parameter Models

The SPM framework can be extended to a more general form where the vector

of random-effects is defined by bi = gi, hi, ji, ki, li, mi, qi. Creemers et al. (2011)

constructed a generalized shared parameter model (GSPM) in a missing outcome
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context as follows,

f (Yobs
i , Y

miss
i , Ri|gi, hi, ji, ki, li, mi, qi, q, y)

= f (Yobs
i |gi, hi, ji, li, q) f (Ymiss

i |Yobs
i , gi, hi, ki, mi, q) f (Ri|gi, ji, ki, qi, y),

(1.10)

where gi is a random-effect common to all three factors in the right hand of (2.18),

hi, ji, and ki are random-effects shared between pair of factors, and li, mi, and qi

are random-effects restricted to a single factor (Creemers et al., 2011; Njagi et al.,

2014).

1.2.4 Missing Data Patterns

Before embarking on a formal analysis, it is important to understand how missing

data patterns manifest themselves in each data set (Van Buuren, 2018, Chapter. 3).

Such is the case because missing data patterns underlying a given data set can be

used to identify auxiliary variables that are predictive of missingness thus en-

hancing statistical efficiency in subsequent analysis. Figure 2.1 shows a graphical

representation of common missing data patterns which include univariate and

multivariate missing data patterns. Univariate missing data pattern occurs when

only one variable in the data set is partially observed (Figure 2.1, left panel).

When a data set has two or more variables with missing data, then it is said to

have a multivariate missing data pattern. A data set is said to have a multivari-

ate monotone missing data pattern if the variables can be ordered such that if Yp

is missing, then all variables Yk with k > p are also missing (Figure 2.1, middle

panel).
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Monotone missing data pattern is common in longitudinal studies due to drop-

out (Molenberghs and Verbeke, 2005, Chapter 26). On the other hand, if a data

set has several variables missing intermittently (Figure 2.1, right panel), then the

underlying missingness pattern is said to be multivariate general.

Figure 1.1: Common missing data patterns in multivariate data.

1.3 Motivating Case Study

Study Design

Data to be analysed in this study came from a cluster randomized trial conducted

by the Kenya Medical Research Institute-Wellcome Trust Research programme

(KEMRI-WTRP) between March 2016 and November 2016. The trial was embed-

ded within the Clinical Information Network (CIN) observational study (Ayieko

et al., 2015; English, 2013; Tuti et al., 2015). The trial’s objective was to investi-

gate uptake of paediatric pneumonia treatment guidelines following recommen-

dations by the World Health Organization (WHO) in 2013 (Organization, 2013).
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Details of the trial are contained in the trial report (Ayieko et al., 2019, 2017). In

brief, six hospitals were randomly allocated to the intervention arm while the

remaining six were allocated to the control arm. The intervention arm received

a monthly enhanced audit and feedback (A&F) report on assessment, classifica-

tion and treatment of pneumonia cases, a bi-monthly standard audit and feed-

back report on general inpatient paediatric routine care and network interven-

tion strategies. Network intervention included peer learning among clinicians

across hospitals and follow up visits (emails and phone calls) by the trail co-

ordinating paediatrician. The control arm on the other hand received a standard

audit and feedback report alone and network intervention strategy (Ayieko et al.,

2017, 2019). The Kenya Ministry of Health and KEMRI’s Scientific and Ethical

Review Unit approved the use of de-identified data without individual patient’s

consent (Ayieko et al., 2017).

In total, 2299 children aged 2 to 59 months were admitted with childhood pneu-

monia in all 12 hospitals during the trial period. Of all pneumonia cases, 1084/2299

(47.1%) were admitted in 6 hospitals assigned to the enhanced A&F (intervention)

arm.

Data were abstracted by trained data clerks from individual patient medical records

after discharge from hospital. The data were entered into an open source data

capture tool (Research Electronic Data Capture, (REDcap)) (Harris et al., 2009)

using standard operating procedure manual. For each case record, details of the

admitting clinician including a unique clinician code, gender and cadre were also

abstracted into a separate database. In this report the term ’cadre’ refers to clini-
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cian’s qualification depending on the level of training, that is, clinical officers for

a clinician with diploma-level training and medical officers for clinician with a

bachelor’s degree level training.

Patients’ and clinicians’ databases were linked using unique clinician code present

in both databases with a success rate of 92.5% (2127/2299). The remaining 172/2299

case records were excluded from all analyses for lack of admitting clinician’s in-

formation. This resulted in a hierarchical data set with three levels of clustering

that is, 2127 patients (level 1) admitted by 378 specific clinicians (level 2) in 12

hospitals (level 3). The number of paediatric pneumonia admissions per hospital

ranged between 42 and 356 patients (Table 1.1).

Characteristic of hospitals, clinicians and patients enrolled in the trial are pre-

sented in Table 1.1. Five out of 12 hospitals were drawn from high malaria en-

demic regions ( i.e., three hospitals in the control arm and two hospitals in the

intervention arm) while the remaining seven hospitals (i.e., four hospitals in the

control arm and three hospitals in the intervention arm) were drawn from re-

gions with low malaria endemicity in Kenya (Ayieko et al., 2015). Furthermore,

four in 12 hospitals were high admission workload hospitals, that is, more than

1000 paediatric admissions per annum (i.e., three hospitals in the control arm and

one hospital in the intervention arm). On the other hand, 8/12 were low admis-

sion workload hospitals, that is, less than 1000 paediatric admissions per year

(i.e., three hospitals in the control arm and five hospitals in the intervention arm)

irrespective of admission diagnosis (Table 1.1). On average there were 32 clini-

cians per hospital with a standard deviation of nine clinicians.
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Approximately, 21.9% (83/378) and 21.7% (82/378) clinicians had missing data

on gender and cadre respectively. Among clinicians with documented cadre, 6

(1.59%) and 184 (48.7%) were clinical officers and clinical officer interns respec-

tively while 6 (1.59%) and 99 (26.19%) were medical officers medical officer in-

terns respectively. The number of patients per clinician ranged between 3 and

46. Overall, 42% (903/2127) of the patients were aged between 2 and 11 months

while 45% (950/2127) of the patients were females (Table 1.1). Patient’s sex was

missing in 0.7% (17/2127) of case records (Table 1.1).
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Table 1.1: Descriptive characteristic of pneumonia trial data at hospital, clinician and patients level. Denominator for proportions exclude
case with missing values

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 All hospitals

combined

Enhanced A&Fa arm No Yes No No Yes Yes Yes Yes No No No Yes

Admission workload Low Low High Low Low High Low Low Low High High Low

Malaria prevalence High Low High Low Low Low High High Low Low Low High

Pneumonia admissions, n (%) 132 (6.2) 215 (10.1) 210 (9.9) 243 (11.4) 110 (5.2) 356 (16.7) 63 (2.9) 167 (7.9) 88 (4.1) 172 (8.1) 329 (15.6) 42 (1.9) 2127 (100)

Patients aged 2-11 months,n (%) 44 (33.3) 79 (36.7) 71 (33.8) 89 (36.6) 49 (44.6) 193 (54.5) 22 (34.9) 70 (41.9) 45 (51.1) 99 (57.6) 129 (39.2) 13 (30.9) 903 (42.5)

Patients aged 12-59 months,n (%) 88 (66.7) 136 (63.3) 139 (66.2) 154 (63.4) 61 (55.5) 162 (45.5) 41 (65.1) 97 (58.1) 43 (48.9) 73 (42.4) 200 (60.8) 29 (69.1) 1224 (57.5)

Male patients,n (%) 80 (60.6) 118 (54.9) 103 (49.1) 138 (56.8) 55 (50.0) 194 (54.5) 35 (55.6) 100 (59.9) 42 (47.7) 95 (55.2) 181 (55.1) 23 (54.8) 1164 (54.7)

Female patients, n (%) 52 (39.4) 97 (45.1) 107 (50.9) 101 (41.6) 55 (50.0) 162 (45.5) 27 (42.9) 67 (40.1) 46 (52.3) 76 (44.2) 141 (42.9) 19 (45.2) 950 (44.6)

Missing patients sex, n (%) 0 (0.0) 0 (0.0) 0 (0.0) 4 (1.7) 0 (0.0) 0 (0.0) 1 (1.6) 0 (0.0) 0 (0.0) 1 (0.6) 7 (2.1) 0 (0.0) 13 (0.6)

Number of clinicians 31 36 43 33 25 36 24 39 32 20 44 15 378

Female clinicians, n (%) 15 (54.6) 11 (30.6) 15 (34.9) 13 (39.4) 2 (8.0) 14 (38.9) 13 (54.2) 16 (41.0) 0 (0.0) 0 (0.0) 24 (54.6) 5 (33.3) 128 (33.9)

Male clinicians,n (%) 16 (45.45) 18 (50.0) 28 (65.2) 20 (60.6) 8 (32.0) 10 (27.8) 11 (45.8) 23 (59.0) 3 (9.4) 1 (5.0) 20 (45.4) 10 (66.7) 168 (44.4)

Clinicians with missing sex, n (%) 0 (0.0) 7 (19.4) 0 (0.0) 0 (0.0) 15 (60.0) 12 (33.3) 0 (0.0) 0 (0.0) 29 (90.6) 19 (95.0) 0 (0.0) 0 (0.0) 82 (21.7)

Cadre: COb,n (%) 0 (0.0) 0 (0.0) 0 (0.0) 2 (6.1) 3 (12.0) 0 (0.0) 0 (0.0) 0 (0.0) 1 (3.1) 0 (0.0) 0 (0.0) 0 (0.0) 6 (1.6)

Cadre: CO interns, n (%) 20 (64.5) 18 (50.0) 31 (72.1) 20 (60.6) 2 (8.0) 14 (38.9) 16 (66.7) 29 (74.4) 1 (3.1) 0 (0.0) 25 (56.82) 8 (53.3) 184 (48.7)

Cadre: MOc, n (%) 1 (3.2) 12.8 (2.8) 0 (0.0) 0 (0.0) 0 (0.0) 1 (2.8) 0(0.0) 1 (2.6) 0 (0.0) 1 (5.0) 1 (2.3) 0 (0.0) 6 (1.6)

Cadre: MO interns, n (%) 10 (32.3) 10 (27.8) 12 (27.9) 11 (33.3) 5 (20.0) 9(25.0) 7 (29.2) 9 (23.1) 1 (3.1) 0 (0.0) 18 (40.9) 7 (46.7) 99 (26.2)

Clinicians with missing cadre, n (%) 0 (0.0) 7 (19.4) 0 (0.0) 0 (0.0) 15(60.0) 12 (33.3) 1 (4.1) 0 (0.0) 29 (90.6) 19 (95.0) 0 (0.0) 0 (0.0) 83 (21.9)

A&Fa:-Audit and feedback,COa:- Clinical officer,MOb:-Medical Officer



Childhood Pneumonia

Pneumonia is an infection of the lungs caused by bacteria, viruses or fungi. The

most common causes of pneumonia in low-and middle-income countries (LMICs)

are bacteria and viruses, but in these settings diagnosis and treatment of pneu-

monia is syndromic (based on clinical signs and symptoms). Globally pneumonia

continues to be a leading cause of mortality among children under five years of

age with nearly 1 million deaths every year (Organization et al., 2014). Half of

these deaths occur in Sub-Saharan Africa (UNICEF et al., 2016). Although pneu-

monia is preventable and manageable with antibiotics, it is estimated to causes

more deaths than HIV/AIDS, diarrhoea and malaria combined (Amouzou et al.,

2016).

In 2013 the World Health Organization (WHO) revised the classification of pneu-

monia to include only two categories of pneumonia. That is, “pneumonia” with

fast breathing and/or chest indrawing, which is treatable with oral amoxicillin

with a dose of at least 40mg/kg/dose twice daily (80mg/kg/day) for five days.

On the other hand, “severe pneumonia”, with any general danger sign ( i.e., oxy-

gen saturation < 90, cyanosis, inability to drink/breast feed, AVPU= "verbal",

’pain’, or "unresponsive, and grunting)is treated with oxygen, injectable peni-

cillin and gentamicin (Organization et al., 2014). Figure 1.1 summarizes pneu-

monia assessment, classification and treatment guidelines recommended by the

WHO in the year 2013.
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Figure 1.2: Assessment, diagnosis and treatment of pneumonia cases for children
aged 2-59 months
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Pneumonia Care Processes

In this research study, we focused on 12 pneumonia care processes spanning as-

sessment, diagnosis and classification, and treatment domains of paediatric care

(Table 1.2). In the assessment domain, nine pneumonia signs and symptoms (two

primary and seven secondary signs & symptoms) relevant for diagnosis and clas-

sification of pneumonia of severity were considered as per WHO guidelines (Or-

ganization, 2013). Diagnosis domain entailed clinical diagnosis and classifica-

tion of disease severity by admitting clinician while treatment domain contains

two indicators of interest, that is, prescription of correct treatment depending on

pneumonia severity and correctness of treatment dosage (Table 1.2). In this case,

the severity of interest was ’pneumonia’ treatable with oral amoxicillin. Correct-

ness of dose was calculated using patient’s weight, prescribed oral amoxicillin

dose and frequency of oral amoxicillin administration.

Missing data occurred in 6/9 primary and secondary signs and symptoms within

assessment domain of care (Organization, 2013). The proportion of missingness

ranged between 0.2% and 39% (Table 1.2). In the diagnosis domain, all patients

had a clinical diagnosis documented in the medical record by the admitting clini-

cian. However, only 69.3% (1473/2127) patients had correct severity classification

(Organization, 2013). That is, pneumonia severity classification abstracted from

the medical record corresponded to the severity implied by secondary signs and

symptom documented at point of admission.

In the treatment domain, only 50.2% (1036/2062) of all pneumonia patients re-

ceived oral amoxicillin during the trial period as recommended. Among oral
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amoxicillin recipients, 4/1036 (0.4%), 27/1036 (2.6%) and 30/1036(2.9%) had miss-

ing oral amoxicillin dose, frequency of oral amoxicillin administration and pa-

tient’s weight respectively (Table 1.2). Missing information in either of the 3 indi-

cators made it impossible to calculate correctness of the dose as per the guidelines

(Organization, 2013). Table 1.2 presents a summary of the level of documentation

within domain of interest among children admitted with childhood pneumonia

during the trial period.
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Table 1.2: Documentation of pneumonia care processes in the assessment, diagnosis and treatment domains

Quality of care domain Pneumonia care indicator Documented cases (%) Missing cases (%) Variable type
1. Assessment

Primary signs & symptoms Cough 2118/2127 (99.6) 9/2127 (0.4) binary
Difficult breathing 2114/2127 (99.4) 13/2127 (0.6) binary

Secondary sign & symptoms Oxygen saturation 1297/2127 (60.9) 830/2127 (39.1) continuous
Ability to drink 2127/2127 (100) 0/2127 (0.0) binary
Central cyanosis 2127/2127 (100) 0/2127 (0.0) binary
AVPUb 2112/2127 (99.3) 15/2127 (0.7) categorical (4 levels)
Grunting 2127/2127 (100) 0/2127 (0.0) binary
Respiratory rate 1889/2127 (88.8) 238/2127 (11.2) continuous
Lower chest wall indrawing 2123/2127 (99.8) 4/2127 (0.2) binary

2. Diagnosis and classification Classified pneumonia cases 2127/2127 (100) 0/2127 (0.0) binary
Correct classification 1473/2127 (69.3)

3. Treatment domain Oral amoxicillin prescribed 2062/2127 (96.9) 65/2127 (3.1) binary
Yes 1036/2062 (50.2)
No 1026/2062 (49.8)

Amoxicillin indicators Amoxicillin dose prescribed 1032/1036 (99.6) 4/1036 (0.4) continuous
Patients weight 1006/1036 (97.1) 30/1036 (2.9) continuous
Frequency of administration 1009/1036 (97.4) 27/1036 (2.6) categorical (4 levels)

AVPUb: A for Alert, V for Verbal response, P for pain , U for unresponsive



1.4 Statement of the problem

Statistical analysis of multivariate hierarchical data with both missing outcome

and covariates poses several challenges. The first challenge is imputation of the

missing covariates, ensuring that the hierarchical structure is properly accounted

for. Secondly, when some of the multiple outcomes are partially observed and

one is interested in combining them into a single composite measure, then the

challenge is whether to address missing data at item level or at composite score

level. The third challenge is assessing sensitivity of results to departures from

the commonly used MAR assumption especially in multilevel data contexts. The

fourth is circumventing computational burden when jointly analysing a multi-

variate vector of outcomes.

1.5 Objectives of the Study

General Objective

The aim of this research study is to develop a robust analysis framework for in-

patient data measuring quality of care received by children admitted to hospi-

tals in Kenya. The proposed analysis framework will address the challenges of

analysing multivariate vectors of clustered outcomes (quality of care outcomes

that are captured using more than a single measure with such measures often

showing correlation), and holistically handling problems of missing data.
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Specific objectives

The specific objectives of this study are to:

(i) Analyse a composite outcome accounting for covariate missingness and

clustering at clinician and hospital level respectively.

(ii) Conduct multiple imputation when the study outcome is a composite of

partially observed components.

(iii) Examine sensitivity of results to departures from the commonly assumed

missing at random mechanism.

(iv) Jointly analyse multiple clustered outcomes under the correlated random-

effects joint model applying pairwise fitting and pseudo-likelihood meth-

ods.

1.6 Significance of the Study

Through application and extension of existing biostatistics methods, this study

will provide proper statistical analysis framework of partially observed multi-

variate hierarchical data often encountered by researchers in paediatric health

research. Specifically, through objectives (i) and (ii), the study will demonstrate

practical utility of advanced biostatistical analyses methods with an aim to pro-

mote their use in reporting of paediatric routine care studies. Through objectives

(iii) and (iv), the study will extend existing methods thus adding new knowl-

edge to the biostatistical tool kit.
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These methods are not only be applicable to paediatric routine care context but

also generalizable to other multivariate data contexts with missing data.

1.7 Literature Review

1.7.1 Routine Paediatric Care

In the recent past, there has been a steady growth of paediatric routine care litera-

ture on mortality and burden of common childhood diseases in LMIC settings. In

2013, CIN was established in Kenya by the KEMRI-WTRP in collaboration with

the ministry of health and 14 county level hospitals and other partner institutions

(Tuti et al., 2015). CIN is among the largest inpatient paediatric databases in the

Sub-Saharan Africa region and was established with an aim to promote adop-

tion and delivery of recommended paediatric clinical guidelines by health care

provider for better patients’ outcomes (English, 2013).

Out of CIN, several studies on management of common childhood illnesses such

as malaria (Amboko et al., 2016), severe acute malnutrition (Gachau et al., 2018),

pneumonia (Agweyu et al., 2018a; Tuti et al., 2017), rickets (Karuri et al., 2017)

diarrhoea and dehydration (Akech et al., 2018) among children aged 1-59 months

have been reported. Other studies have examined adherence to guidelines in doc-

umentation of clinical indicators (Gachau et al., 2017), monitoring of vital signs

(Ogero et al., 2018) blood transfusion (Thomas et al., 2017) and management of

shock (Mbevi et al., 2016) using CIN database. Other examples related to paedi-

atric care studies in Kenyan hospitals include Ayieko et al. (2012),Mwaniki et al.
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(2014), Opondo et al. (2016) and Muthee et al. (2018). Elsewhere Hau et al. (2018)

studied post-hospital mortality among children in Tanzanian hospitals, while

Gordon et al. (2013) studied the prevalence and burden of diseases in general

paediatric wards in Ethiopia.

1.7.2 Missing Data in Routine Care

Missing data is a common problem in epidemiological studies (Bartlett et al.,

2015). However, consequences of missing data on inference were neglected un-

til Rubin introduced three missing data mechanisms through a seminar paper

(Rubin, 1976). Since then, there has been a tremendous growth of robust miss-

ing data methods to mitigate the effects of incomplete data on statistical analysis

and inference (Molenberghs et al., 2014). Some of the work are by (Molenberghs

and Kenward, 2007) with a focus on clinical studies and (Daniels and Hogan,

2008) with an emphasis on longitudinal studies. More recently, Carpenter and

Kenward (2013) and Van Buuren (2018) provided an overview of multiple impu-

tation and its application in a range of complex data structures in medical and

social sciences. A review of paediatric literature revealed that the choice of miss-

ing data handling methods by various researchers varied across studies. For in-

stance, some of researchers did not acknowledge missing data in their studies

e.g. Gachau et al. (2017) and Thomas et al. (2017). Others including Gordon et al.

(2013); Mwaniki et al. (2014); Mbevi et al. (2016); Gachau et al. (2018) and Hau

et al. (2018), used complete case analysis to handle missing data. Despite its lim-

itations, complete case analysis method is the default methods in most standard

statistical software such as R, SAS, STATA, and SPSS, among others. In other
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studies including Opondo et al. (2016); Bohlius et al. (2016); Hooli et al. (2016);

Malla et al. (2017); Tuti et al. (2017); Agweyu et al. (2018a,b); Ogero et al. (2018);

Akech et al. (2018); Agweyu et al. (2018a) and Agweyu et al. (2018b), MI assum-

ing a MAR mechanism was used to handle missing data in the respective stud-

ies. However, details of imputation models used are rarely reported in most of

the above-mentioned studies thus, hindering replication and verification of MI

methods used. For instance, compatibility between the imputation model and

substantive models could not be ascertained in multilevel study contexts due to

lack of sufficient imputation model details. Additionally, tests and assessment of

imputation model convergence were hardly reported.

As already mentioned, MI in its standard application assumes a MAR mecha-

nism; an assumption that cannot be confirmed using observed data alone, hence

the need for sensitivity analysis (Carpenter and Kenward, 2013; Molenberghs

et al., 2014). In missing data literature, sensitivity analysis can be implemented

within selection models, pattern mixture and shared parameter model frame-

work, respectively (Molenberghs et al., 2014). Nevertheless, sensitivity analysis to

assess robustness of inference under MAR assumption are rarely conducted and

reported in practice (Mackinnon, 2010; Smuk et al., 2017). For instance, among re-

viewed paediatric routine care studies, only three reported assessing departures

from MAR assumption (Agweyu et al., 2018a,b; Gathara et al., 2017). In these

studies, observations were partitioned according to patterns of missingness (i.e.,

observations with no missing data, observations with one to three incomplete

variables and observations with more than three partially variables). Missing
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values were then imputed multiple times and the substantive model of inter-

est fitted to each pattern independently. Thereafter, final estimates were pooled

across the three patterns weighted by the proportions of individuals in each pat-

tern per variable (Gathara et al., 2017; Agweyu et al., 2018a). Besides splitting

observations along the patterns of missingness, no further details were provided

on how uncertainty reflecting MNAR mechanism was incorporated in the impu-

tation model.

1.7.3 Multiple Outcomes in outine Care

As earlier mentioned, researchers may be interested in multiple outcomes span-

ning several domains of care in order to assess trends in adherence to recom-

mended clinical practices. This section presents a brief review of common ap-

proaches of handling multiple outcomes in clinical studies.

1.7.4 Multiple Univariate Analysis

In the literature, the most common approach of handling such outcomes is mul-

tiple univariate analysis. This approach involves estimating the effect of a set of

covariates on each outcome separately and is most suitable when the outcomes

of interest are independent (Huberty and Morris, 1989). In paediatric literature,

multiple univariate analysis approach has been previously used to analyze mul-

tiple quality of care indicators by several authors including (Gachau et al., 2017,

2018; Gathara et al., 2017). Although this approach is straightforward, analyses

and reporting can be time consuming and cumbersome when the number of out-

comes is large (Eapen et al., 2011).
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Alternatively, a single primary outcome is specified while all other outcomes are

treated as secondary. The primary outcome is analysed and interpreted formally

while the secondary outcomes are analysed for exploratory purposes (Pocock

et al., 1987). This strategy was employed in the initial analysis of pneumonia

trial data where the trial investigators defined correct diagnosis and classification

of pneumonia cases as the primary outcome while the assessment and treatment

domain outcomes were treated as secondary outcomes (Ayieko et al., 2017, 2019).

A major limitation of this approach is the potential loss of power owing to se-

lection and analysis of one primary outcome among several other outcomes that

address/describe different aspects of care (Pocock et al., 1987; Bebu and Lachin,

2018).

Composite Outcomes

In health care settings, composite scores which combine multiple outcomes into

a single summary measures have been used as scorecards to measure and bench-

mark performance and quality of care in neonatal (Profit et al., 2010), peadi-

atrics, as indicated by Opondo et al. (2016, 2018) and adult cardiovascular studies

(Caldis, 2007; Chen et al., 2013; Eapen et al., 2011; EUnetHTA, 2013). A key ad-

vantage of composite outcomes over individual outcomes is increased statistical

efficiency (Freemantle et al., 2003). However, missing data at item level (com-

posite sub-components) or at score level may undermine their reliability (Caldis,

2007; Profit et al., 2010).
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Joint Modelling

With a multivariate vector of outcomes, joint models can be used to test hypothe-

ses of joint effects of covariates on the various outcomes simultaneously, and to

study the association among the different outcomes (Fieuws and Verbeke, 2004,

2006; Fitzmaurice et al., 2009a; Molenberghs and Verbeke, 2005). In the literature,

joint modelling is commonly used to analyse two outcomes, but it can be ex-

tended to jointly model three or more outcomes. However, computationally com-

plexity arises in high dimensional joint modelling settings (i.e., when the number

of outcomes is greater than three) (Molenberghs and Verbeke, 2005, Chapter 25).

In our literature review of paediatric routine, we did not come across any study

using high dimensional joint models to analyze multiple outcomes.

1.8 Thesis outline

The remainder of this report is organized as follows: Notations, fundamental

concepts and general methods used throughout this report are outlined in Chap-

ter 2. In Chapter 3, we construct and analyze pneumonia paediatric admission

quality of care (PAQC) score while addressing missing covariate in a multilevel

data context using MI method. Strategies for handling incomplete components

of a composite outcome is the subject of Chapter 4. The relative merits of the dif-

ferent approaches are highlighted via a simulation study conducted. In Chapter

5, the study integrates sensitivity analysis within the pattern-mixture modelling

framework to assess departures from MAR missing data mechanism assumed in
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Chapters 3 and 4, respectively. In Chapter 6, we analyze high dimensional pneu-

monia outcomes using correlated random-effects joint modelling approach at the

same time addressing covariate missingness. We conclude in Chapter 7 with a

discussion and recommendations for further research.
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Chapter 2

Fundamental Concepts and Research

Methodology

2.1 Introduction

This chapter introduces important concepts and methods that will be used through-

out this thesis report. In particular, an overview of model families for clustered

data is presented in Section 2.2 while basic missing data concepts and terminolo-

gies are presented in Section 2.3. This is followed by a review of methods used

to handle missing data in Section 2.4. Section 2.5 provides a detailed account of

multiple imputation.

2.2 Model Families for Clustered Data

Clustered data are common in epidemiological studies. Such data arise as a re-

sult of natural clustering, such as children from the same household. Cluster-
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correlated data may also occur by study design. For instance, one can consider

systolic/diastolic blood pressure measurements collected on the same patients

over a period of time. Consequently, measurements from the same subjects/cluster

tend to be more alike than measurements from different subjects/clusters (Agresti,

2002).

In the literature, there are several approaches of analyzing cluster-correlated data

and the choice of the method to use largely depends on the nature of the outcome

and study objectives (Molenberghs and Verbeke, 2005, Chapter 5. ). This section

briefly introduces two model families commonly used in the analysis of clustered

data. These include the random effects and marginal family of models.

2.2.1 Random-effects Models

Letting Yij be the jth outcome measured for cluster (subject) i, i = 1, . . . , N, j =

1, . . . , ni, it is assumed that conditional on the random-effects (bi), the outcomes,

Yij are independent and belong an exponential distribution of the form

fi(yij|bi) = exp
n

f�1 ⇥yijqij � y(qij)
⇤
+ c(yij, f)

o
. (2.1)

It further follows that

E(Yij|bi) = µij = h�1 �E(Yij|bi, X ij, Zij)
 
= X

0
ijb + Z

0
ijbi, (2.2)

where h�1(·) is a known link function, X ij and Zij are vectors of known covariate

values with fixed and random-effects respectively, b is vector of unknown fixed
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regression coefficients, f is a scale (dispersion) parameter, and qij is the canonical

(natural parameter) which is a function of the linear predictor (Molenberghs and

Verbeke, 2005, p. 27-28). Random-effects models are useful when research interest

lies in drawing inference with respect to subject specific parameters denoted by

bi. These models are also useful when subject specific predictions are of interest

(Molenberghs and Verbeke, 2005, Chapter. 13).

Linear Mixed Model

When the outcome is continuous, an identity link function is used and the random-

effects model is commonly known as linear mixed model (LMM). A LMM is for-

mulated as

Yij = X
0
ijb + Z

0
ijbi + eij,

bi ⇠ N
�
0, D), eij ⇠ N (0, S),

(2.3)

The random-effects bi are assumed to be sampled from a multivariate normal dis-

tribution with mean 0 and covariance D while the residual errors are multivariate

normal with mean 0 and variance covariance S.

Generalized linear mixed model

When the response of interest is discrete, generalized linear mixed model (GLMM)

is the most frequently used random-effects models (Fitzmaurice et al., 2009a,

Chapter. 4). In general, a GLMM is formulated as

h�1 �E(Yij|bi, X ij, Zij)
 
= X

0
ijb + Z

0
ijbi. (2.4)
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The choice of the link function h�1(·) in GLMM depends on the nature of the out-

come (Molenberghs and Verbeke, 2005, p. 27). For instance, when the responses

are binary, a mixed logit model is considered appropriate, that is,

logit(µij) ⌘ log

 
µij

1 � µij

!
= X

0
ijb + Z

0
ijbi,

Yij|µij ⇠ Bernoulli(µij).

Alternatively, a probit mixed model defined below is considered

F�1(µij) = X
0
ijb + Z

0
ijbi,

where F�1(·) is the probit link or the inverse standard normal cumulative distri-

bution function. When the responses are ordinal, a cumulative logit/probit link

is considered appropriate (Agresti, 2002, Chapter 7, p. 275). On the other hand,

count data are modelled using a mixed Poisson model with a log link (Agresti,

2002) as defined below

log(µij) = X
0
ijb + Z

0
ijbi,

Yij|µij ⇠ Poisson(µij).
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2.2.2 Marginal Models

Letting Yij be the jth outcome measured for cluster (subject) i, i = 1, . . . , N, j =

1, . . . , ni, a marginal model for clustered data is specified as

h�1(µij) = E(Yij|X ij) = X
0
ijb. (2.5)

In this case, the vector of regression parameters (b) describe population averaged

means (Molenberghs and Verbeke, 2005, Chapter 5, p. 48). For marginal models

with discrete outcomes, specification of the joint multivariate distribution of the

Yij is computationally challenging. As an alternative, semi-parametric marginal

models are used to circumvent computational complexity associated with full

likelihood. A common semi-parametric estimation method for marginal models

is the generalized estimating equations (Fitzmaurice et al., 2009a, Chapter 3) and

(Molenberghs and Verbeke, 2005, Chapter 8).

Generalized estimating equations

GEE model proposed by Liang and Zeger (1986) is quasi-likelihood marginal

model applicable to both continuous (Gaussian) and discrete outcomes (non-

Gaussian) settings. To circumvent computation challenges highlighted above, the

mean response and within subject association (the association among responses)

are modelled separately. The association is considered as a nuisance characteris-

tic of the data that must considered in order to make correct inferences about

changes in the population mean response. The quasi-likelihood estimator of
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marginal regression parameters, b can be obtained by solving the following quasi-

likelihood score equations,

S(b) =
N

Â
i=1

∂µi
∂b0 (A1/2

i Ri(a)A1/2
i )�1(Yi � µi) = 0, (2.6)

where Ai is a diagonal matrix with the marginal variances Var(Yi) = fu(µi) along

the diagonal, f is a dispersion parameter and Ri(a) is an ni ⇥ ni working corre-

lation matrix. The working correlation is a function of the nuisance association

parameters, a (Liang and Zeger, 1986; Molenberghs and Verbeke, 2005; Fitzmau-

rice et al., 2009a). Some of the commonly used working correlation structures

include:

i) Independence working correlation structure defined by

rijk(a) = corr(Yij, Yik; a) = 0 f or all j 6= k.

ii) First-order auto regressive (AR(1)) working correlation structure which is

defined by

rijk(a) = Corr(Yij, Yik; a) = a|j�k|, f or all j 6= k,

where the a lies in the interval [0, 1]. The correlation decreases with an in-

crease in time between measurements, that is (|j � k|) (Fitzmaurice et al.,

2009a).
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iii) Exchangeable working correlation structure defined by,

rijk(a) = Corr(Yij, Yik; a) = a, f or all j 6= k.

iv) Unstructured working correlation structure which is defined by

rijk(a) = Corr(Yij, Yik; a) = ajk f or all j 6= k.

In practice, exchangeable and independence working correlation structures are

applicable in a wide range of clustered correlated data settings compared to AR(1)

and unstructured working correlation structures (Molenberghs et al., 2014, Chap-

ter 3 , p. 50). In the event that adopted working correlation structure strongly

differs from the true underlying structure in a given setting, the consequences

are loss of efficiency. But even then, the estimator b̂ obtained by solving (2.6)

remains consistent and asymptotically normally distributed with mean b. More-

over, point estimates and empirically corrected (robust) standard errors based on

the sandwich variance estimator are asymptotically correct whether the working

correlation structure is correct or not (Liang and Zeger, 1986).
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2.2.3 Relationship between Marginal and Random-effects Mod-

els

The underlying differences between random effects and marginal models reflect

the distinct targets of inference associated with the two model families. Specif-

ically, random effects models are appropriate when one is interested in the ef-

fects of covariates on changes in an individual0s response, while marginal mod-

els are more useful when population-averaged covariates’ effects are of interest

(Molenberghs and Verbeke, 2005, Chapter . 6). For linear mixed models with

identity link (i.e., models continuous outcomes), a random-effects model implies

marginal model. That is, the mean of marginal models can be obtained by con-

ditioning the random vector bi to zero or by marginalizing over the distribution

of random-effects. In this case, the vector of fixed-effects denoted b has both

population-averaged and subject-specific interpretation (Molenberghs and Ver-

beke, 2005, p. 48).

In contrast, when the outcomes are discrete, the relationship between marginal

and random-effects models is not straightforward because it involves taking the

mean of a non-linear function of bi, (Fitzmaurice et al., 2009a, p.34). That is,

µij = E(Y i|X i)

= E([E(Y i|X i, bi)]

= E [h(X ib + Zibi)

=
Z •

�•
h(X ib + Zibi) f (bi)dbi,

(2.7)
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where f (bi) is the joint probability density function for bi, and

h�1 {E(Y i|X i, bi)} 6= Xib,

for any b. To illustrate this, consider a binary response modelled via a logistic

regression model with random intercepts,

logit(E(Yij|xij, bi) = b0 + b1xi + bi,

where bi ⇠ N(0, s2
b ). The corresponding model for the marginal probability of

success is

µij = E(Yij|xij)

= E(
⇥
E(Yij|xij, bi)

⇤

= E

"
exp(b0 + b1xij + bi)

1 + exp(b0 + b1xij + bi)

#

=
Z •

�•

exp(b0 + b1xij + bi)

1 + exp(b0 + b1xij + bi)
⇥ 1q

2ps2
b

exp

 
�1

2
b2

i
s2

b

!
dbi.

(2.8)

The marginal mean in (2.8) is insolvable (Fitzmaurice et al., 2009a, p. 34) and

therefore,

E

"
exp(b0 + b1xij + bi)

1 + exp(b0 + b1xij + bi)

#
6=

exp(b0 + b1xij)

1 + exp(b0 + b1xij)
,

for any b. This shows that conditioning the random vector bi to zero in a GLMM

does not lead to marginal mean (Fitzmaurice et al., 2009a, p. 34). Therefore,
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regression parameters are not comparable to regression parameter in marginal

models. In practice, the (G)LMMs and GEE models are commonly used in analysing

one outcome at a time (i.e., univariate analysis). However, (G)LMMs are also ap-

plicable in the joint modelling of two or more outcomes. In joint modelling con-

text, it is assumed that the outcomes share or have correlated random-effects bi

(Molenberghs and Verbeke, 2005, Chapters. 24-25).

2.3 Methods of Handling Data with Missing Values

In missing data literature, there are several missing data handing methods rang-

ing between simple and complex methods. In this section, we review some of the

methods highlighting their strengths and limitations.

2.3.1 Simple Methods

Listwise Deletion

In listwise deletion also known as complete case analysis (CCA), analysis is based

on a subset of complete records after exclusion of case all records with missing

information. CCA is widely used in practice due to its ease of application. Be-

sides, it is the default missing data handling method in most statistical software

such as R, SAS and STATA. When the underlying mechanism is MCAR or co-

variates dependent MAR, CCA yields valid but inefficient parameter estimates

(White and Carlin, 2010). The loss of efficiency is as a result of estimation based

on a reduced sample size and it is characterized by inflated standard errors . On
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the other hand, when the underlying missing data mechanism is outcome de-

pendent MAR, the expected results are both biased and inefficient (Molenberghs

et al., 2014, Chapter 1). Bias refers to lack of generalization of sample estimates to

target populations parameters.

Single Imputation

This method involves imputing missing data values once yielding a single com-

plete data set (Eekhout, 2015). Single imputation method can be implemented in

one of the following approaches:

1. Marginal mean imputation

Missing values are replaced with the mean of the observed values for that

variable ignoring all other variables. Mean imputation is more relevant in

the imputation of continuous variables (Molenberghs et al., 2014, Chapter

2, p. 36).

2. Regression mean imputation

In this approach, variables with complete observations are used to predict

the values of the missing observations. For example, considering two vari-

ables, X (a fully observed covariate) and Y (partially observed response).

The regression mean is found by regressing Y on X that is, Yi = b0 + b1Xi.

The estimates of b0 and b1 denoted by b̂0 and b̂1 respectively are obtained

and used to impute missing Y0
i s using Yi = b̂0 + b̂1Xi. In this method,

imputed values fall on a regression line without random variation (error).

Consequently, correlation between predictor variables and the missing out-
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come is overestimated (Eekhout, 2015).

3. Stochastic Regression Imputation

Stochastic regression imputation reduces bias in regression mean imputa-

tion by adding an error term to each predicted value (Eekhout, 2015). That

is, imputing missing observations with Yi = b̂0 + b̂1Xi + #i where #i is

the normally distributed error term with mean 0 and a variance equal to

the residual variance from the regression of the predictor on the outcome

(Eekhout, 2015). Inclusion of the error term preserves variability in the data

and parameter estimates are unbiased with MAR data. Nonetheless, the

method does not account for uncertainty about the imputed values and the

standard errors tends to be underestimated (Enders, 2010).

4. Matching Method (Hot Deck Imputation)

This method matches missing data records with observed data records. Specif-

ically, records are stratified into separate homogenous groups and missing

values are imputed by the observed values of the closest match within the

subsets (Andridge and Little, 2011). This method is common in survey re-

search (Little and Rubin, 2002; Eekhout, 2015).

5. Last Observation Carried Forward (LOCF)

In this method the last observation is substituted whenever a value is miss-

ing. This method is mainly applicable in longitudinal studies exhibiting

monotone missing data pattern due to attrition/dropout. In LOCF, it is as-

sumed that the observation of the individual does not change after the last

measured observation. This assumption is often unrealistic (Molenberghs
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and Verbeke, 2005, Chapter 27, p. 493).

A common limitation of the single imputation methods above is that imputed

values are treated as if they were the original observations ignoring variability

due to imputations. This issue leads to substantial underestimation of the stan-

dard errors and biased estimates especially when data are not MCAR or covariate

dependent MAR (Little and Rubin, 2002; Eekhout, 2015).

2.3.2 Maximum-likelihood Methods

With incomplete data, likelihood inference is based on maximizing the likelihood

of the observed data (Little and Rubin, 2002), that is,

L(q, y|Yobs
i , Ri) = c ⇥

N

’
i=1

Z
f (Yobs

i , Y
miss
i , Ri|q, y)dY

miss
i , (2.9)

where c is a constant factor that is independent of the measurement process pa-

rameter vector (q) and the missingness process parameter vectors (y). However,

when ignorability is assumed, then maximum likelihood estimates are obtained

by maximizing (2.14), where the likelihood contribution of the ith study subject is

f (Yobs
i |q) (Molenberghs et al., 2014). It is further assumed that missing values can

be validly predicted using the conditional mean, that is, E(Ymiss
i |Yobs

i , q) and co-

variance model of the observed data (Molenberghs et al., 2014). In this report, we

briefly discuss two methods for obtaining estimates using maximum-likelihood

estimation, that is, the expectation-maximization (EM) algorithm and full infor-

mation maximum likelihood (FIML).
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Expectation-Maximization Method

The Expectation Maximisation (EM) is a two-step iterative process developed

to compute maximum likelihood (ML) estimates in parametric models in the

presence of missing data (Dempster et al., 1977; Molenberghs and Verbeke, 2005;

Molenberghs and Kenward, 2007; Fitzmaurice et al., 2009a). The algorithm as-

sumes that data are MAR and it iterates between the E and M step as follows.

E-step

The E-step calculates the conditional expectation of the complete-data log-likelihood

given the observed data and parameter estimates from previous iteration. Complete-

data likelihood function is calculated by filling in the missing elements in the

likelihood with their expected values, given Y
obs
i and a current set of parameter

estimates qr (Molenberghs and Verbeke, 2005), that is,

L(q|qr) =
Z

log(q, Y i) f (Ymiss
i |Yobs

i , qr)dY
miss
i = E[log(q|Y i)|Yobs

i , qr]. (2.10)

M-step

Given the complete-data log-likelihood, the M-step then finds the parameter esti-

mates qr+1, to maximize the complete-data log-likelihood from the E step (Molen-

berghs and Verbeke, 2005; Fitzmaurice et al., 2009a).

L(qr+1|qr) � L(q|q(r)) f or all q. (2.11)
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The iteration process is repeated between the E and M steps until convergence

yields the ML estimate of q (Molenberghs and Verbeke, 2005; Fitzmaurice et al.,

2009a).

Although the EM algorithm always converges to a final solution, it is rarely

used in practice due to computational complexities and slow convergence. More-

over, the algorithm does not provide standard errors for the parameter estimates

(Molenberghs and Verbeke, 2005; Fitzmaurice et al., 2009b) and considerable model

specifications are needed to obtain them (Louis, 1982).

Full Information Maximum Likelihood/Direct Maximum Likelihood Method

In full information maximum likelihood (FIML)/ direct maximum likelihood method,

missing data are handled directly within the analysis model during estimation

(Enders, 2010). FIML assumes that data are MAR (Allison, 2012). For illustration,

suppose there are N independent observations on p fully observed variables. If

the first variable y1 is missing for a particular observation i, then the joint prob-

ability for observation yi2 to yip is the probability of observing yi2 to yip (Allison,

2012). When yi1 is continuous, then the joint probability is integrated over all

possible values of the partially observed variable as follows

f ⇤i (yi2, yi3, . . . , yip; q) =
Z

yi1
fi(yi1, yi2, . . . , yip; q)dyi1. (2.12)
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When y1 is discrete, then the joint probability is summed over all possible values

as shown below,

f ⇤i (yi2, yi3, . . . , yip; q) = Sy1 fi(yi1, yi2, . . . , yip; q). (2.13)

When there are m fully observed cases and N � m partially observed cases on y1,

then the likelihood function for the full data set is the product of the likelihoods

for all the observations. That is,

L =
m

’
i=1

fi(yi1, yi2, . . . , yip; q)
N

’
i=m+1

f ⇤i (yi2, yi3, . . . , yip; q). (2.14)

The main limitation of FIML method is that it does not allow inclusion of aux-

iliary variables and cannot handle missing covariates data in second and higher

levels of multilevel data (Grund et al., 2018).

2.3.3 Multiple Imputation

Multiple imputation (MI), proposed by Rubin (1987) is the most recommended

method for obtaining valid parameter estimates from partially observed data

(Molenberghs and Verbeke, 2005; Molenberghs and Kenward, 2007; van Buuren

and Groothuis-Oudshoorn, 2011; Carpenter and Kenward, 2013; Enders et al.,

2016; Grund et al., 2018). In its standard application, MI assumes a MAR mecha-

nism. However, missing data can also be imputed assuming a MNAR mechanism

(Carpenter and Kenward, 2013, Chapter. 10). MI involves three sequential steps

(Rubin, 2004; Carpenter and Kenward, 2013).
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Step 1: Independent random samples are drawn from the posterior predictive

distribution (Bayesian framework) of the missing values given the observed data

and a statistical imputation model, thus generating more than one filled-in data

sets (Rubin, 1976). In the Bayesian perspective, missing data (Ymiss
i ) are treated as

an additional set of nuisance parameters (Carpenter and Kenward, 2013). Thus,

a joint posterior distribution of q and Y
miss
i is given by

P(q, Y
miss
i |Yobs

i ) = P(q|Ymiss
i , Y

obs
i )P(Ymiss

i |Yobs
i ). (2.15)

The corresponding marginal posterior distribution for q given Y
obs is

P(q|Yobs
i ) =

Z
P(q, Y

miss
i |Yobs)dY

miss
i , (2.16)

and it can be regarded as the Bayesian equivalent to the observed-data likelihood

in (2.14) (Little and Rubin, 2002). At iteration r (r = 1, 2, . . . ), the Markov Chain

Monte Carlo (MCMC) algorithm behind MI simulates from the joint posterior dis-

tribution by iterating between a posterior step and an imputation step (Carpenter

and Kenward, 2013) as follows,

q(r+1) = P(q|Yobs
i , Y

miss
i

(r)) (Posterior step)

Y
miss,(r+1)
i = P(Ymiss

i |Yobs
i , q(r+1)) (Imputation step).

(2.17)

The sequence of iterations converges in distribution to P(q, Y
miss
i |Yobs

i ) for a large

number of iterations. The algorithm is repeated a number of times, say M, result-

ing in M copies of the original data with missing data filled in by the imputed
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values (Rubin, 1976; Van Buuren, 2018; Carpenter and Kenward, 2013).

Step 2: Imputed data sets are analyzed using standard statistical methods. The

choice of statistical method depends on several factors such as the type of out-

come, study design and research question for a given data set.

Step 3: Pooled estimates are obtained by averaging over the parameter estimates

from all multiply imputed data sets according to Rubin’s rules (Rubin, 1976). The

pooled MI estimator for b is given by

b̂MI =
1
M

M

Â
m=1

b̂m, (2.18)

with variance estimator

V̂ MI = W +

✓
M + 1

M

◆
⇥ B,

where

W =
1
M

M

Â
m=1

ŝ2
m

is the average within imputation variance and

B =
1

M � 1

M

Â
m=1

(b̂m � b̂MI)
2

is the between imputation variance.

A key advantage of MI over other missing data handling methods is that un-

certainty about the missing values is taken into account. Besides, MI is flexible

in that, the imputation phase is separate from the analysis phase. This allows
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inclusion of auxiliary variables in the imputation model that are predictive of

missing variables and the missingness mechanism (Meng, 1994; van Buuren and

Groothuis-Oudshoorn, 2011; Carpenter and Kenward, 2013; Bartlett et al., 2015;

Grund et al., 2018). In the literature and statistical software, MI is implemented in

two broad frameworks, that is, joint modelling imputation framework (Schafer,

1997) and fully conditional specification imputation framework (Van Buuren,

2018). The following subsections provide a general introduction to MI within

the two frameworks.

Joint Modelling Imputation Framework

In the joint modelling (JM) imputation framework, it is assumed that data can be

described by a multivariate normal distribution of the form.

Y i = X ib + ei, (2.19)

where Y i denote a vector of incomplete variables, X i is a vector of fully ob-

served predictor variables and ei is a vector of residuals which follows a multi-

variate normal distribution with mean zero and covariance matrix, S (Carpenter

and Kenward, 2013; Molenberghs et al., 2014; Van Buuren, 2018). Suppose that

Y i = (Yobs
i , Y

obs
i ) is any partially observed variable with an arbitrary missing data

pattern, then imputations are generated in two steps as earlier noted. In the first

step, the model parameters (q = b, S), are drawn from their posterior distribu-

tions, given Y
obs and current imputations for Y

miss
i . Secondly, new imputations

for Y
miss
i are generated based on q and Y

obs
i (Grund et al., 2017, 2018). Initial
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values for b, S and Y
miss
i are estimated using the observed data (Carpenter and

Kenward, 2013).

Multilevel MI in JM framework

In multilevel data context, partially observed variable at each level of the hier-

archy are jointly specified as responses in a multilevel structural equation of the

imputation model regardless of the missing data pattern (Carpenter and Ken-

ward, 2013; Grund et al., 2017, 2018; Quartagno and Carpenter, 2018). Suppose

we have two levels of hierarchy in the data at hand where i denotes level 1 units

nested within level 2 units denoted by j, then a two level JM imputation model is

defined by

Y
(1)
ij = X

(1)
ij b(1) + Z

(1)
ij b

(1)
j + e

(1)
ij (2.20)

Y
(2)
j = X

(2)
j b(2) + b

(2)
j ,

where Y
(1)
ij and Y

(2)
j are vectors of partially observed level 1 and level 2 variables

respectively, with corresponding vectors b(1) and b(2) fixed effects. X
(1)
ij and X

(2)
j

are vectors of fully observed variables used to predict partially observed level

1 and level 2 variables (Carpenter and Kenward, 2013, Chapter. 9, p.212). Co-

variates with random-effects are denoted by Zij. Jointly, random-effects b
(1)
j and

b
(2)
j are assumed to follow multivariate normal distributions with mean zero and

covariance matrices W. Lastly, level 1 residuals (e(1)ij ) also follow a multivariate

normal distribution with mean zero and variance denoted by S (Carpenter and

Kenward, 2013).
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Multilevel JM accounts for both the between-and within-cluster relations among

variables (Grund et al., 2017). Incomplete level 1 variables are imputed condition-

ally on the observed data at level 1. On the other hand, partially observed level

2 variables are imputed conditionally on the observed data at level 2, in addition

to the random-effects of the variables at level 1. More details on sampling algo-

rithm are provided by Grund et al. (2018). Although JM assumes multivariate

normal model, it extends easily to accommodate partially observed categorical

data (ordered and nominal) (Carpenter and Kenward, 2013, p. 99). Specifically,

JM imputation framework handles a nominal variable with S levels by includ-

ing S � 1 latent normal background variables. The S � 1 latent normal variables

correspond to different levels of the variable under consideration. For an ordinal

variable with S levels, JM imputation model includes a single background vari-

able, where the differences between categories are represented by a set of S � 1

threshold parameters corresponding to different levels of the ordered variable.

For more details on the computational aspects of different types of variables see

(Carpenter and Kenward, 2013, Chapter 3-5).

Full Conditional Specification Framework

In fully conditional specification (FCS) framework, incomplete variables are im-

puted on a variable-by-variable basis (Van Buuren, 2018),(Molenberghs et al.,

2014, Chapter 13,p. 275). Suppose that Yip, the pth variable for the ith subject

is partially observed.
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Further, if Yip follows a normal distribution, then the imputation model of interest

corresponds to

Yip = Y i(�p)bp + eip, (2.21)

where Y i(�p) is the vector of predictor variables in the pth imputation model,

excluding the variable being imputed, bp is a vector of regression coefficients and

eip denotes normally distributed residual with mean zero and variance s2
p (Grund

et al., 2018). In this case, imputations for Ymiss
ip are drawn from the conditional

distribution of missing data, given the observed data Y
obs
i(�p) and the most recent

imputations for the missing data in other variables Y
imputed
i(�p) .

The FCS approach accommodates relationships between variables by repeatedly

conditioning them on one another. Specifically, it iterates back and forth between

variables. When the target variable is continuous, a linear regression model is

used with an assumption that the residuals are normally distributed. The FCS

imputation framework also accommodates other data types such as ordered and

unordered categorical data using generalized linear models. For example, if Yip is

ordinal, an ordinal logistic imputation model is used while a multinomial logistic

imputation model is specified for an unordered (nominal) variable. A Poisson

regression model is considered an appropriate choice for a variable with count

data (van Buuren and Groothuis-Oudshoorn, 2011).
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Multilevel Multiple Imputation in FCS Framework

In multilevel data settings, the joint distribution of the variables can be approx-

imated with a sequence of conditional models by multilevel FCS. For example,

considering multilevel data set with 2 levels of clustering, missing data in a con-

tinuous variable can be addressed with univariate random-effects models (van

Buuren and Groothuis-Oudshoorn, 2011; Grund et al., 2018). Specifically, impu-

tation of pth variable with missing data at level 1 using multilevel FCS approach

can be based on the following set of models.

Y(1)
ijp = Y

(1)
ij(�p)b

(1)
p + b(1)jp + eijp, (2.22)

where Y
(1)
ij(�p) denotes all level 1 variables except Y(1)

ijp (or a subset of these) as

well as the between-group components of the variables at level 1, b(1)
p is a vector

of regression coefficients. The random intercepts b(1)jp and residuals eijp, are each

assumed to follow a normal distribution with mean zero and variances W2
1p and

s2
p respectively (Grund et al., 2018). The FCS imputation model for qth variable at

level 2 is given by,

Y(2)
jq = Y

(2)
j(�q)b

(2)
q + b(2)jq , (2.23)

where Y
(2)
j(�q) represents all level 2 variables except the variable being imputed,

that is, Y(2)
jq and b(2)

q is a vector of regression coefficients. The random intercepts

b(2)jq are assumed to be normally distributed with mean zero and variance W2
q.
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The multilevel FCS approach iterates across all variables with missing data to

address multivariate patterns of missing data. More details on the sampling

algorithm are provided by Grund et al. (2018) and van Buuren and Groothuis-

Oudshoorn (2011).

Considerations between FCS and JM Imputation Frameworks

For single level data with multivariate normal distribution, the FCS and JM im-

putation frameworks are equivalent (Enders et al., 2016; Meng, 1994). However,

standard tasks such as the specification of the imputation model tend to be sim-

pler under the JM framework. Such is the case because JM uses a single imputa-

tion model for all partially observed variables while FCS uses a separate imputa-

tion model for each incomplete variable (Grund et al., 2017, 2018). In multilevel

data context with a mixture of variables types at second and higher levels of hi-

erarchy, setting up an appropriate conditional models accounting for multilevel

structures is more difficult in FCS framework compared to JM framework (Car-

penter and Kenward, 2013; Grund et al., 2017, 2018; Enders et al., 2016). In subse-

quent chapters of this thesis, multilevel joint imputation framework was used to

handle missing data in the pneumonia trial data.

Potential Drawbacks of MI

While MI is a useful tool in a wide range of missing contexts, there is risk of biased

estimates leading to invalid inferences regardless of the imputation framework.

Bias arises from poor or lack of convergence at imputation stage hence the need

for monitoring imputed values using appropriate diagnostic tools/tests (Gelman
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et al., 1992). Besides convergence issues, bias may also arise due to incompati-

bility between the imputation model and the substantive model of interest for a

given data set. Specifically, incompatibility can occur when the imputation model

omits some variables present in the analysis model of interest or when it incor-

rectly handles nonlinear effects, interactions and multilevel structures present in

the analysis model (Bartlett et al., 2015). In this case, the imputation model is

said to be poorer than the analysis model. The consequence of a poor imputation

model is invalidity of Rubin’s rules variance formula in addition to inconsistent

parameter estimates in subsequent analyses and inferences (Carpenter and Ken-

ward, 2013, p. 64).

Incompatibility can also occur when the imputation model is richer than the sub-

stantive model. That is, the imputation model has more variables than the anal-

ysis model interest. The additional variables (auxiliary variables) are included

if they are thought to be predictive of the missingness mechanism. The conse-

quences of a richer imputation model is overestimation of the sampling variabil-

ity of the MI estimators though negligible in practice (Meng, 1994).

Multiple Imputation in Statistical Software

In practice, MI can be implemented in several standard statistical software in-

cluding SAS, STATA, R and REALCOM, among others. In this study, we used

R, which is an open source statistical software, to handle missingness in pneu-

monia trial data. Some of the MI packages in R, include mice (van Buuren and

Groothuis-Oudshoorn, 2011) and mi (Su et al., 2011) packages, which are imple-

mented in the FCS framework. Other MI packages in R include jomo (Quartagno
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et al., 2019) and mitml (Grund et al., 2019), both implemented within the joint

model framework.

Among FCS based packages, mice is the most commonly used package. How-

ever, the package does not have functionalities to impute categorical variables in

the second and higher level of multilevel data structures. For this reason, the re-

cently developed jomo and mitml packages, which allows MI of different variable

types at any level of the hierarchical structure were preferred. A detailed review

on capabilities and limitations of various imputation packages in multilevel data

context is provided by (Grund et al., 2017).

Besides MI assuming MAR, incomplete variables can also be imputed assuming

a MNAR mechanism for sensitivity analysis purposes (Carpenter and Kenward,

2013, p. 229). An example is MI with shift parameters (commonly known as

the delta adjustment method) (Carpenter and Kenward, 2013; Tsiatis et al., 2014;

Leacy et al., 2017). In software, MI with delta adjustment has been previously

implemented in SAS (Yuan, 2014) with a generic function for the same in mice

package in R (Van Buuren, 2018; Galimard et al., 2018). However, these generic

functions are limited to single level data contexts thus hindering sensitivity anal-

ysis in multilevel data contexts.

2.4 Summary

This chapter provides a general background and justification of methods used in

subsequent chapters of this thesis. In Chapter 3, an ordinal composite outcome

will be constructed using 12 pneumonia care indicators. Thereafter, multilevel
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joint imputation framework will be used to handle missing covariates across two

levels of pneumonia trial data. In Chapter 4, multilevel joint imputation method

will be used to handle missing pneumonia care indicators used to construct an

ordinal composite outcome. In Chapters 3 and 4, MI will be conducted assuming

a MAR mechanism and parameter estimates compared to those obtained from

complete case analysis. At analysis stage, GLMM and GEE models with a cumu-

lative logit link will be used to analyse an ordinal composite outcome. In Chapter

5, robustness of inference obtained in Chapters 3 and 4 will be assessed using two

sensitivity analyses approaches within the pattern mixture models framework. In

this case, missing data covariates will be imputed assuming a MNAR mechanism.

In Chapter 6, nine out of 12 pneumonia care indicators previously used to con-

struct the ordinal composite outcome will be modelled jointly using correlated

random effects models. The choice of link functions will depend on the type of

an individual outcome. Joint modelling will be conducted under complete case

analysis and after MI of missing covariates across two levels of pneumonia trial

data. Specific details on methods application and extensions are contained in the

respective chapters.
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Chapter 3

Analysis of Ordinal Hierarchical

Data with Covariate Missingness

3.1 Introduction

Routine data are widely used in many health care settings to monitor the quality

of care and to inform intervention programmes for better patients’ health out-

comes (Harries et al., 2013). Routine data can also be used to highlight areas

of concern in clinical performance; thus, prompting actions and strategies to im-

prove practice at individual or institutional levels (Omore et al., 2016). Prior stud-

ies show that quality of care vary across place and time despite standard clinical

guidelines (Gachau et al., 2017). These variations can be attributed to multiple

factors including changes in clinical guidelines, degree of task complexity and

patient’s characteristics, clinician characteristics in addition to organisational and

contextual factors at hospital level.
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While data from multiple sites enhance generalization of results to wider a popu-

lation, it leads to complex hierarchical data structures, for instance, patients clus-

tered within clinicians, who are then clustered within hospitals. Besides com-

plex structures, routine data are subject to missing information at any level of

hierarchy. Missing information may occur due to lack of documentation of care

processes by health care providers, poor record keeping or limited health care

technology at facility level (Harries et al., 2013; Lloyd et al., 2013; Houngbo et al.,

2017). In the occurrence of missing data, appropriate missing data methods at

analysis stage are recommended to avoid biased results (Carpenter and Kenward,

2013) informing clinical policies and ultimately leading to poor patients’ care and

outcomes (Rombach et al., 2018).

In the recent past, there has been an increase in literature on quality of care among

children admitted with common childhood illnesses in LMICs, (Gathara et al.,

2017; Opondo et al., 2016; Gachau et al., 2017; Thomas et al., 2017; Agweyu et al.,

2018a). However, majority of these studies account for variation at patient and

hospital levels, ignoring variation due to clinicians’ characteristics in spite of their

critical role in delivery of routine care (Rowe et al., 2005). Besides, missing data

is a common problem in paediatric routine care and researchers use complete

case analysis and MI to handle missingness. A major limitation of complete case

records is biased, and inefficient parameter estimates due to information loss.

Among studies reporting MI to handle missingness, the nature and details of

the imputation model are rarely reported, which pose uncertainty about conclu-

sions and barriers for replicate analyses. Furthermore, when missing data occur
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in multilevel data context, incompatibility between the imputation model and

the analysis models potentially leads to biased estimates, underestimated cluster

level variances and overestimated individual level variances (Enders et al., 2016;

Grund et al., 2018; Drechsler, 2015).

The main aim of this chapter is to construct and analyse pneumonia PAQC score,

adapted to new WHO recommendations on assessment and treatment of inpa-

tient paediatric pneumonia cases. This is in addition to addressing missing co-

variates while properly accounting for hierarchical structure in inpatient routine

data set, that is, patients nested within clinicians who are in hospitals. Specifi-

cally, we analysed pneumonia trial date introduced in Chapter 1, Section 1.2.

The remainder of this chapter is structured as follows. Section 3.2 presents an

outline of pneumonia PAQC score construction steps. This is followed by miss-

ing data methods used to handle missing covariates in pneumonia trial data.

The methods section also presents statistical approaches for analysing ordinal

responses followed by a review of Wald tests and likelihood ratio tests. Results

are presented in Section 3.3 and we conclude with a discussion in Section 3.4.

3.2 Methods

3.2.1 Paediatric Admission Quality of Care (PAQC) score

PAQC score is an ordered composite measure developed to benchmark quality

of care among children admitted with common childhood illnesses in LMIC set-

tings (Opondo et al., 2016, 2018).
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Table 3.1 presents a summary of the procedures used to construct PAQC score

based on childhood pneumonia treatment guidelines (Organization, 2013). In

the first step, we created binary indicators with one representing adherence to

recommended paediatric pneumonia guidelines and zero representing inappro-

priate care. Specifically, the value zero in three assessment domain constituents

corresponded to: - i) lack of documentation of at least of one of the primary signs

and symptoms required for pneumonia identification; ii) lack of documentation

of at least one of the seven secondary signs and symptoms required for pneu-

monia severity classification; iii) incomplete documentation of all primary and

secondary pneumonia signs and symptoms (Table 3.1).

The second PAQC score domain entails integration of information on present-

ing signs and symptoms by admitting clinician to correctly diagnose and classify

pneumonia severity (i.e., severe pneumonia or pneumonia). For example, pneu-

monia was the correct diagnosis for a child who, in addition to cough and/or

difficult breathing (primary signs), presented with lower chest indrawing or res-

piratory rate greater than 50 for patients aged 2-11 months (or respiratory rate

less than 40 for patients aged 12-59 months) in the absence of all other secondary

signs and symptoms. We created a binary indicator with one representing cor-

rect pneumonia severity classification (i.e., pneumonia severity documented in

the medical record by the admitting clinician was in line with severity implied by

presenting signs and symptoms) and zero representing misclassified pneumonia

severity.

The third PAQC score domain (treatment) comprised two components; a binary
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indicator with one corresponding to oral amoxicillin prescription and zero repre-

senting inappropriate care due to missing prescription or documentation in the

case record that oral amoxicillin was not prescribed. For patients prescribed oral

amoxicillin, we created a new variable “recommended dose per kilo body”. That

is, the actual dose given at point of care divided by patient’s weight. We then

transformed the new variable into a binary form with one representing correct

oral amoxicillin dose (i.e., dose between 32 and 48 international units (IU) per

Kilogram (Kg) every 12 hours) and zero representing either missing or wrong

oral amoxicillin dosage (under dose for < 32 IU/Kg or over dose for >48IU/Kg),

missing or wrong frequency of oral amoxicillin administration (e.g., administra-

tion frequency of once every 24 hours instead of once every 12 hours) or both.

In the second and final step, we summed all the six binary indicators spanning

assessment (n=3), clinical diagnosis (n=1) and treatment (n=2) domains to obtain

PAQC score. The score ranges between zero and six where a minimum score of

zero corresponds to inappropriate pneumonia care and maximum score of six

represents total adherence to recommended clinical guidelines across domains of

care.

To visualize adherence to paediatric pneumonia guidelines during the trial pe-

riod, we first calculated the mean monthly PAQC score for each trial arm and

thereafter plotted the LOESS smoothing curves and the corresponding 95% con-

fidence bands.
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Table 3.1: Pneumonia care indicators used in PAQCa score construction

Quality of care domain Pneumonia care indicators Binary indicators
1. Assessment

Primary S&Sb Cough, difficult breathing 1: if both primary S&S are documented
0: if at least one is not documented

Secondary S&S Oxygen saturation, AVPUc

ability to drink,central cyanosis 1: if all secondary S&S are documented
grunting, respiratory rate 0: if at least one is not documented
lower chest wall indrawing

Complete assessment All primary and secondary S&S 1: if all are documented
0: if at least one S&S is not documented

2. Diagnosis and classification Pneumonia diagnosis and classification 1 : for correct diagnosis classification
0: incorrect diagnosis classification

3. Treatment Amoxicillin prescription 1: if oral amoxicillin was prescribed
0 : if amoxicillin was not prescribed

Amoxicillin dosage 1 : if dose ranges between 32-48 (IU/Kg)every 12 hours.
0 :if dose is missing or < 32 IU/Kg (under dose)
or >48 IU/Kg (overdose) or wrong frequency or
missing frequency or missing patient’s weight.

PAQCa:- Paediatric Admission Quality of Care, S&Sb:- sign & symptoms, AVPUc: A for Alert, V for Verbal response, P for pain, U for unresponsive



3.2.2 Covariates

The predictor variables of interest included an interaction between the trial arm

and follow up time (in months), hospital level covariates (i.e., malaria prevalence

status and paediatric admission workload), and clinician level covariates (i.e.,

gender and cadre). At patient level, we considered gender, age categorized into 2-

11 months and 12-59 months respectively and the number of comorbid illnesses.

Although WHO pneumonia guidelines apply for children aged 2 to 50 months

(Organization, 2013), we categorized patients in two age groups because older

children have better clinical outcomes compared to infants (Lopez, 2014).

To determine the number of comorbidities, we considered common clinical di-

agnoses documented in patient’s medical records besides pneumonia. This in-

cluded malaria, malnutrition, HIV, Asthma, Tuberculosis (TB), rickets, anaemia,

diarrhoea and dehydration. For each diagnosis, we created binary variables with

one denoting the presence of a disease and zero denoting absence of a disease.

Thereafter, we summed the binary indicators and categorized patients into those

with 0, 1, 2, 3 or more comorbidities. Clinically, 46.8% (995/2127) of the patients

had no comorbidities, 29.8% (633/2127) had one comorbidity, 17.9% (381/2127)

had two comorbidities, and 5.5% (118/2127) had at least three comorbidities.

3.2.3 Investigating Missing Data Mechanism Underlying Pneu-

monia Trial Data

To explore plausible missing data mechanism underlying pneumonia trial data

set, we created binary missingness indicators for each partially observed vari-

ables, that is, patient’s gender, clinician’s cadre and gender respectively. We
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created binary indicators such that Rpijl = 1 if the pth variable is observed and

Rpijl = 0 if the pth variable is missing for the ith patient admitted by jth clinician in

hospital l. We regressed the binary indicators separately on fully observed vari-

ables in pneumonia data set using multivariable logistic regression model below

logit(P[Ri = 1|X i]) = X ib, (3.1)

The predictor variables of interest (X i) included: fully observed PACQ score, an

interaction between intervention arm and follow up time in months, number of

comorbid illnesses, age of the patient, hospital malaria prevalence and paedi-

atric admission workload. The vector b denotes fixed regression parameters to

be estimated. We also used graphical methods to explore missing data patterns

underlying pneumonia trial data.

3.2.4 Multilevel Multiple Imputation of Pneumonia Trial Data

To handle missingness in the trial data set, we imputed missing covariate compo-

nents assuming a MAR mechanism. MI was conducted within the latent normal

joint model imputation framework using jomo (Quartagno et al., 2019) and mitml

(Grund et al., 2019) packages in R (version 3.5.4). Considering the ith pneumonia

patient attended by clinician j in hospital l, our multilevel level joint imputation

model corresponded to

Y(1)
ijl = X

(1)
ijl b(1) + b

(1)
jl + e(1)ijl

Y
(2)
jl = X

(2)
jl b(2) + b

(2)
jl ,

(3.2)
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e(1)ijl ⇠ N(0, S) and
⇣

b
(1)
jl , b

(2)
jl

⌘
⇠ N(0, Wb),

where Y(1)
ijl and Y

(2)
jl denote partially observed level 1 variables (patient’s gender)

and level 2 variables (clinician’s gender and cadre) respectively. Level 1 predic-

tors (X
(1)
ijl ) included fully observed covariates (i.e., an interaction term between

follow-up time and trial arm, hospital workload and malaria prevalence status,

patient’s age and number of comorbid illnesses). Besides, we included pneumo-

nia PAQC score (outcome) as a predictor in the first level of the imputation model.

On the other hand, level 2 predictors X
(2)
jl included an interaction term between

follow-up time and intervention arm, hospital admission workload and hospital

malaria prevalence status.

A random intercept (bjl) was included to account for clustering at clinicians’ level

and to ensure compatibility with substantive models of interests. A burn-in of

1000 updates and 100 iterations between each of the 30 imputations were consid-

ered. Trace plots, auto-correlation functions, and the Gelman and Rubin diagnos-

tic tests were used to assess convergence (Gelman et al., 1992). An example trace

plot in Appendix Figure A.2 indicated satisfactory convergence. Final estimates

were pooled according Rubin’s rules (Rubin, 1976).

3.2.5 Cumulative-logit Models for Ordinal Responses

When the outcomes of interest is ordinal with S levels, s = 1, 2, . . . , S, the asso-

ciated probabilities correspond to p1 + p2 + · · ·+ pS. Furthermore, the outcome

can be expressed in terms of S � 1 cumulative logits (Agresti, 2002, p. 275). The

cumulative probability of the response for subject i being in category s or below
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is given by

P(Yi  s) = p1 + p2 + · · ·+ pS, (3.3)

while the cumulative logit describing the log-odds of two cumulative probabili-

ties is defined by

log
✓

P(Yi  s)
P(Yi > s)

◆
= log

✓
P(Yi  s)

1 � P(Yi  s)

◆
= log

✓
p1 + p2 + ... + ps

ps+1 + ps+2 + ... + pS

◆
.

(3.4)

That is, the probability that a response is in category s or below versus the prob-

ability that a response is in a category higher than s. Thus, the corresponding

sequence of cumulative logits is

L1 = log
✓

p1
p2 + p3 + · · ·+ ps

◆

L2 = log
✓

p1 + p2
p3 + p4 + · · ·+ ps

◆

...

LS�1 = log
✓

p1 + p2 + · · ·+ pS�1
pS

◆
.

(3.5)

When the ordered outcome is regressed on a set of fixed effects, a proportional-

odds cumulative logit model defined by

logit[P(Yi  s)] = as + Xib, (3.6)
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is commonly used (Agresti, 2002, Chapter 7. 326). When the proportional odds

assumptions are upheld (i.e., parallel logits), the slope for each variable stays the

same across different cumulative logits. That is, the b regression coefficient of

each covariate is assumed identical across all S � 1 logit equations while the in-

tercepts as can differ. The intercepts describe the log-odds of being in category

s or below when all the fixed effects are fixed to zero (i.e., X1 = X2 = · · · =

Xp = 0) for continuous variables or held at reference levels for categorical vari-

ables (Agresti, 2002). For ordinal responses in multilevel data contexts, model

families that account for clustering can be used as appropriate. In this study, we

used both proportional odds random-effects and proportional odds generalized

estimating equation (GEE) model introduced in Section 2.2. Specifically, letting i

index patient, j clinician and l hospital, the proportional odds random intercepts

model implemented in R’s Ordinal package (Christensen, 2015) corresponded to

logit[P(YPAQC score;ijl  s)] = as + b1Xage group;ijl + b2Xpatient gender;ijl +

b3Xcomorbidity=0;ijl + b4Xcomorbidity=1;ijl + b5Xcomorbidity=2;ijl+

b6Xclinician cadre;jl + b7Xclinician gender;jl + b8Xadmission workload;l +

b9Xmalaria prevalence;l + b10Xtime in months;l + b11Xtrial arm;l +

beta12Xtime in months;l ⇤ Xtrial arm;l + bjl,
(3.7)

where as, s = 1, 2, 3, 4, 5, 6 are PAQC score specific intercepts, b are estimated re-

gression coefficients and bjl are clinician’s random intercept. PAQC score = 0 was

considered as a reference category. Hospital random-effects were not considered

because the number of hospitals (n=12) was low to consider random-effects at
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that level. This was in addition to ensuring compatibility with the two-level MI

model.

Similarly, letting i index patient, j clinician and l hospital, the proportional odds

GEE model of interest implemented in R’s Multgee package (Touloumis, 2014)

corresponded to

logit[P(YPAQC score;ijl  s)] = as + b1Xage group;ijl + b2Xpatient gender;ijl +

b3Xcomorbidity=0;ijl + b4Xcomorbidity=1;ijl + b5Xcomorbidity=2;ijl+

b6Xclinician cadre;jl + b7Xclinician gender;jl + b8Xadmission workload;l +

b9Xmalaria prevalence;l + b10Xtime in months;l + b11Xtrial arm;l +

beta12Xtime in months;l ⇤ Xtrial arm;l,
(3.8)

where as, s = 1, 2, 3, 4, 5, 6 are PAQC score intercepts. We adopted an exchange-

able working correlation. In this thesis, both model families were used to analyse

PAQC score with an aim of assessing stability of parameter estimates within the

models before and after MI of missing covariates. Under complete case analysis,

records with missing covariates were discarded. Before analyses (imputed data

sets and complete case records), clinicians were grouped into two cadres from the

initial four cadres, that is, clinical officers (combining clinical officers and clinical

officer interns) and medical officers (combining medical officers and medical of-

ficer interns). Re-grouping was due to the small number of clinical officer and

medical officers (Table 1.1).

69



3.2.6 Hypotheses Testing for Regression Coefficients Associated

with Ffixed Effects

To determine covariates with statistically significant effect on pneumonia PAQC

score, Wald tests and likelihood-ratio tests were used. The tests entailed com-

paring full (saturated) model containing all the covariates and a reduced (null)

models which dropped one covariate at a time. Supposing that the full model

had p estimated regression parameters, removing one of the fixed effects with a

regression coefficient bp, i = 1, 2, . . . , p resulted to a reduced model with fewer

parameters than the saturated model, say q = 1, 2 . . . , p � 1. In this case, the null

and the alternative hypotheses correspond to

H0 : bp = 0 (3.9)

H1 : bp 6= 0.

The likelihood-ratio test was used to test for statistical significance of covariates in

the random-effects models while the Wald tests was used for the GEE model. The

tests were conducted on complete case records and after MI as outlined below.

Likelihood Ratio Test

To perform likelihood-ratio test (LRT) under complete case analysis, we obtained

the log-likelihoods for the saturated model (l(b̂saturated)) and the reduced model

(l(b̂reduced)) respectively. We then calculated the test statistic as follows

G
2 = 2(l(b̂saturated)� l(b̂reduced)). (3.10)
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The LRT statistic follows a chi-squared distribution with degrees of freedom be-

ing the difference in the number of fixed-effects parameters between the saturated

and the reduced model (i.e., p � q). If the LRT statistic is greater than a critical

value, the null hypothesis is rejected conclude the alternative hypothesis. How-

ever, if the LRT statistic is less than the critical value, we fail to reject the null. In

this case the covariate of interest is not statistically significant.

Extending LRT to imputed data sets, first we fitted the saturated model to each

imputed data set (m = 1, 2 . . . M) and obtained the corresponding log-likelihood

functions. Likewise, we fitted the reduced model to each imputed data set (re-

moving one covariate at a time) to obtain the log-likelihood functions. We then

calculated

G
2
m = 2(l(b̂m,saturated)� l(b̂m,reduced)) f or m = 1, . . . , M

for each imputed data set before computing the average of the likelihood ratios

across the M imputed data sets as follows

G
⇤ =

1
M

M

Â
m=1

G
2
m. (3.11)

We also obtained the averages of regression parameters estimated in the satu-

rated and reduced models using b̄saturated = 1
M ÂM

m=1 b̂m,saturated and b̄reduced =

1
M ÂM

m=1 b̂m,reduced respectively. The saturated and reduced models were then re-

estimated with model parameters fixed to b̄saturated and b̄reduced respectively. For
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each imputed data set, we obtained

Ḡ
2
m = 2(lm(b̄saturated)� lm(b̄reduced)) f or m = 1, . . . , M,

and thereafter calculated the average of log-likelihood functions across imputed

data sets using

Ḡ =
1
M

M

Â
m=1

Ḡ
2
m.

The LRT statistic under MI is defined by

FLR =
Ḡ

q(1 + r)
, (3.12)

where

r =
M + 1

q(M � 1)
(G⇤ � Ḡ),

estimates the average relative increase in variance due to missingness (Van Bu-

uren, 2018; Carpenter and Kenward, 2013; Meng and Rubin, 1992). The LRT

statistics FLT is compared to a reference F distribution with q and vl degrees of

freedom where

vl =

8
>>><

>>>:

4 + (t � 4)
h
1 + (1�2t�1)

r

i2
for t = q(M � 1) > 4

t(1 + 1/q)(1 + 1/r)2/2 otherwise.
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The p�value for FLT is given by

Pl = Pr[Fq,vl > FLT]. (3.13)

Wald Test

Under complete case analysis the Wald test statistics is defined by

W =
(b̂ � b0)2

Var(b̂)
, (3.14)

which follows a chi-squared distribution with p � q degrees of freedom. If the

Wald test statistic is greater than a critical value, the null hypothesis is rejected

and conclude the alternative. However, if the statistic is less than the critical

value, we fail to reject the null. In this case the covariate of interest is not statisti-

cally significant. Extending to imputed data sets, the Wald test statistic is defined

by

WT =
(b̂MI � b)T

V̂
�1
MI(b̂MI � b)

q(1 + r⇤)
, (3.15)

where V̂ MI = Ŵ + (1 + 1/M)B̂ is the estimate of the total variance and r⇤ =

1
q (1+

1
M )tr(BW

�1) is the average fraction of missing information (Carpenter and

Kenward, 2013; Van Buuren, 2018).
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Components B and W denote the between and within imputation variances de-

fined in Section 2.3.3. The corresponding p-value for the test statistic WT is char-

acterized by

Pw = Pr[Fq,vw > WT],

where Fq,vw is an F distribution with q and vw degrees of freedom with

vw =

8
>>><

>>>:

4 + (t � 4)
h
1 + (1�2t�1)

r⇤

i2
if t = q(M � 1) > 4

t(1 + 1/q)(1 + 1/r⇤)2/2 otherwise.

More details on multi-parameter hypothesis tests after MI using Wald tests and

likelihood-ratio tests are available in (Carpenter and Kenward, 2013, p. 52-54) and

(Van Buuren, 2018, 157-158). All analyses were conducted in R version 3.5.4. A

5% level of significance was considered under complete case analysis and after

MI of missing covariates.
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3.3 Results

Examining pneumonia PAQC score over time graphically, hospitals in the stan-

dard A&F (control) arm (dashed red curve) exhibited a higher mean PAQC score

at baseline with no significant fluctuations over time (Figure 3.1). On the other

hand, hospitals assigned to enhanced A&F (intervention) arm (solid blue curve)

had a lower mean PAQC score at baseline which rapidly improved towards higher

score in the first 6 months of follow-up. Although enhanced A&F arm’s trend line

surpassed that of standard A&F arm after six months of follow-up, the 95% con-

fidence bands of the two trial arms overlapped substantially (Figure 3.1).
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Figure 3.1: Loess curves for mean PAQC score over time (dashed curve represent
the average for 6 hospitals in the standard A&F arm and solid curve represent
the mean for 6 hospitals in the enhanced A&F arm) and corresponding 95% con-
fidence bands.

An assessment of missing data patterns suggested a multivariate missing data

pattern (Appendix Figure A.1). The missing data pattern were similar between

clinician’s cadre and gender. That is, nearly all clinicians with missing gender had

missing cadre as well. Further investigations into missing data patterns showed

that missing clinicians’ cadre and gender only occurred in 6 out of 12 hospitals

(Figure 3.2).
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Figure 3.2: Proportion of missing clinicians’ cadre and gender at hospital level and across all hospitals combined.
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Logistic regression results on plausible mechanisms underlying pneumonia trial

data indicated that the probability of missing patient’s gender was neither depen-

dent on the outcome (PAQC score) nor fully observed covariates (interaction be-

tween intervention arm and follow up time in months, hospital admission work-

load and malaria prevalence, patient’s age group and the number of presenting

comorbid illnesses). On the other hand, the probabilities of missing clinician’s

cadre and gender were dependent on both the outcome and fully observed co-

variates suggesting evidence against MCAR (Appendix Table A.1).

Random-effects and GEE Model Results

Test for proportional odds assumption was not statistically significant at 5% level

(P-value =0.17). Therefore, we assumed parallel logits and fitted proportional

odds models to complete case records and imputed data sets. Table 3.2 presents

the likelihood ratio test and Wald test results for proportional odds random-

effects and GEE model respectively. After MI of missing covariates, we observed

consistent results between the random-effects model and the GEE model in terms

of statistical significance of covariates of interest (Table 3.2). Specifically, we

found statistically significant interaction effect between intervention arm and follow-

up time. Similarly, admission workload at hospital level was significant at 5%

level. At patient’s level, age and the number of comorbidities were statistically

significant while at clinician’s level, gender showed significant effect on pneumo-

nia PAQC score (Table 3.2).
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Table 3.2: Likelihood ratio test and Wald test results for random-effects model and GEE model under complete case analysis and after
multilevel multiple imputation of missing covariates

Random-effects model Marginal model: GEEa

CCAb Multilevel MIc CCA Multilevel MI
N=1619 (76.1%) N=2127 (100%) N=1619 (76.1%) N=2127 (100%)

Effect LRTd P value LRT P value Wald test P value Wald test P value
Patient’s age 3.49 0.06 4.66 0.03 4.18 0.04 7.81 0.01
Patient’s gender 0.08 0.77 0.01 0.92 0.003 0.96 0.02 0.88
Comorbidities 4.46 0.02 4.83 0.03 2.42 0.49 5.48 0.02
Clinician’s gender 5.06 0.02 4.02 0.04 6.32 0.01 4.47 0.03
Clinician’s cadre 0.01 0.91 0.23 0.63 1.36 0.24 2.96 0.08
Hospital workload 0.14 0.71 3.39 0.04 1.46 0.23 4.95 0.03
Malaria prevalence 0.07 0.79 1.35 0.25 0.98 0.32 0.01 0.91
Time (months) 11.98 < 0.001 14.16 < 0.001 11.37 0.003 11.16 < 0.001
Enhanced A&F e arm 28.58 <0.001 17.51 < 0.001 28.86 < 0.001 17.76 <0.001
Time ⇥ Enhanced A&F 14.92 0.02 14.16 < 0.001 17.85 < 0.001 9.45 <0.001

GEEa: -Generalized estimating equations, CCAb:-Complete case analysis, MIc: -Multiple imputation, LRTd: - Likelihood ratio test, A&Fe: -Audit and

feedback



Table 3.3: Parameter estimates (standard errors) from random-effects and marginal GEE models: complete case analysis and after multiple
imputation.

Random-effects model Marginal model: GEEa

Complete case analysis Multilevel MIb Complete cases analysis Multilevel MI
N=1619 (76.1%) N=2127 (100%) N=1619 (76.1%) N=2127 (100%)

Effect Odds Ratios (95% CIc) Odds Ratios (95% CI) Odds Ratios (95% CI) Odds Ratios (95% CI)

PAQCd score intercept 0 Reference Reference Reference Reference
PAQC score intercept 1 0.06 (0.031,0.140) 0.18 (0.071, 0.375) 6.13 (3.188, 9.456) 4.18 (2.010,6.128)
PAQC score intercept 2 0.07 (0.036, 0.138) 0.17 (0.082, 0.365) 7.73 (3.258, 12.31) 4.98 (2.056, 2.078)
PAQC score intercept 3 0.22 (0.110, 0.420) 0.53 (0.251, 1.105) 3.12 (1.345, 7.23) 2.02 (0.852, 4.809)
PAQC score intercept 4 0.67 (0.342, 1.294) 1.63 (0.779, 3.427) 1.29 (0.561, 2.981) 0.84 (0.354, 1.987)
PAQC score intercept 5 2.74 (1.401, 5.347) 6.69 (3.166, 14.14) 0.44 (0.192, 1.012) 0.29 (0.122, 0.678)
PAQC score intercept 6 7.24 (3.678, 4.253) 7.79 (8.336, 3.964) 0.21 (0.089, 0.501) 0.14 (0.057, 0.336)
Age-group:12-59 1.20 (0.991, 1.464) 1.19 (0.986, 1.454) 1.15 (0.922, 1.432) 1.16 (0.932, 1.454)
Patient’s gender: males 0.97 (0.806, 1.174) 0.97 (0.805, 1.173) 0.95 (0.759, 1.185) 0.95 (0.760, 1.183)
Comorbidities: 1 0.99 (0.783,1.267) 0.99 (0.782,1.253) 1.02 (0.810,1.295) 1.03 (0.815,1.304)
Comorbidities: 2 1.01 (0.766,1.327) 1.01 (0.767,1.326) 1.01 (0.779,1.304) 1.01 (0.781,1.312)
Comorbidities: �3 0.63 (0.398,0.985) 0.61 (0.387,0.955) 1.37 (0.906,2.063) 1.41 (0.937,2.126)
Clinician’s gender: female 1.51 (1.057, 2.183) 1.53 (1.064, 2.195) 1.44 (1.095, 1.910) 1.45 (1.106, 1.894)
Clinician’s cadre: MOe 1.02 (0.709, 1.468) 1.04 (0.720, 1.490) 1.18 (0.878, 1.582) 1.20 (0.888, 1.611)
Hospital workload: low 0.93 (0.624, 1.376) 1.12 (1.080, 1.372) 1.42 (0.974, 2.068) 1.40 (1.103, 2.063)
Malaria prevalence: low 0.95 (0.644, 1.401) 0.94 (0.640, 1.389) 1.18 (0.748, 1.865) 1.18 (0.742, 1.87)
Time (months) 1.05 (0.969, 1.145) 1.05 (0.967, 1.141) 0.99 (0.904, 1.094) 0.99 (0.905, 1.103)
Enhanced A&F f arm 0.18 (0.095, 0.349) 0.18 (0.093, 0.341) 0.11 (0.054, 0.227) 0.11 (0.053, 0.236)
Time ⇥ Enhanced A&F 1.15 (1.018, 1.307) 1.16 (1.020, 1.308) 1.27 (1.125, 1.484) 1.29 (1.117,1.482)
Variance between 1.328 (1.151) 1.161 (1.073)

random clinician’s intercepts

GEEa: -Generalized estimating equations, MIb: -Multiple imputation, CIc:-Confidence Intervals,PAQCd:-Paediatric admission quality of care, MOe :

Medical officer, A&F f : -Audit and feedback



In Table 3.3, we present proportional odds ratios and the corresponding 95% con-

fidence interval obtained before and after multilevel MI. For the GEE model, we

reported robust (empirically corrected) standard errors which were in agreement

with model based (naive) standard errors (Appendix Table A.2). Under complete

case analysis, only 1619/2127 (76.1%) case records were considered. This loss in-

formation led to larger standard errors in comparison to those obtained after MI

of missing covariates. These observations were made in both random-effects and

GEE model families. Furthermore, the proportional odds ratios were consistently

smaller under complete case analyses compared to those obtained after MI (Table

3.3). These results were an indication of bias and inefficiency of parameters es-

timated under complete case analysis. PAQC score intercepts presented in Table

3.3 denote thresholds (cut points) differentiating adjacent levels of the response

variable. For example, intercept 1 in Table 3.3 denote the odds of PAQC score = 1

vs PAQC score � 2 for a female patient in age-group 2 to 11 months, with no co-

morbidities, and admitted by a male medical officer in a high workload hospital

located in the high malaria prevalence region. The individual fixed effect pa-

rameters are the proportional odds ratios of individual variables on PAQC score

holding all other variables in the model constant.

From study results, enhanced audit and feedback led to improved uptake of new

pneumonia paediatric guideline over time. For instance, considering a patient ad-

mitted in an intervention hospital (enhanced audit and feedback arm), the odds of

PAQC score=1 versus PAQC score � 2 were 1.16 (95% CI: 1.02-1.308) times higher

the odds of a patients admitted in a control hospital, for a unit increase in follow-
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up time and holding other variables constant at reference levels. Likewise, for

a patient admitted in an intervention hospital, the odds of PAQC score=1 versus

PAQC score � 2 were 1.29 (95% CI: 1.17-1.482) times higher than the odds of a pa-

tients admitted in a control hospital, for a unit increase in follow-up month (GEE

model after MI). These interpretations hold for all other response (PAQC score)

levels. The study results also exhibited shifts in statistical significance before and

after MI for selected variable. Specifically, adjusting for other variables, complete

cases analysis led to insignificant difference between low and high admission

workload hospitals on levels of PAQC score in both random-effects model and

GEE model. However, after MI, the odds of higher pneumonia PAQC score in

low workload hospitals were 1.12 (95% CI: 1.08-1.372) and 1.40 (95% CI: 1.103-

2.063) times higher than for high workload hospitals for the random intercepts

and GEE model respectively (Table 3.3).

Regarding random-effects model, the variance component between clinicians and

the corresponding standard error were inflated under complete cases analysis.

3.4 Discussion

In this chapter, we sought to investigate the effect of enhanced A&F on routine

paediatric pneumonia care in 12 Kenyan hospitals during a cluster randomized

trial. Among covariates, about 22% of clinicians had missing gender and cadre

respectively. In contrast, patient level variables were fully observed except pa-

tient’s gender which had less than 1% missingness. The sharp contrast in the

level of missingness could be due the fact that continued CIN audit and feedback
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reports focus on the documentation of patient level variables rather than docu-

mentation of clinicians’ characteristics. Through preliminary investigations, we

established that missing clinicians’ characteristics occurred in 6 out of 12 hospi-

tals participating in the trial. The patterns of missingness in the two clinicians

level variables was highly correlated. That is, clinicians who did not document

their gender were also likely not to document their cadre and vice versa.

To alleviate bias and inefficiency, we used MI within the joint modelling (JM)

imputation framework assuming a MAR mechanism (Quartagno and Carpenter,

2018; Grund et al., 2017). Although JM imputation framework does not address

the full range of complexities that are typical of multilevel data (Enders et al.,

2016; Grund et al., 2018; Quartagno et al., 2019), it was preferred due to its flexi-

bility coupled with recent statistical software developments in handling categor-

ical variables with more than two levels in second and higher levels of hierarchy

(Quartagno, 2016). This ensured compatibility between imputation and analy-

sis models of interest thus minimizing bias in parameter estimates (Grund et al.,

2018).

From study results multilevel MI led to more precise parameter estimates com-

pared to complete case analyses in both random-effects and GEE models. Adjust-

ing for patients, clinicians and hospital level factors, enhanced A&F improved

uptake and adherence to recommended paediatric pneumonia guidelines over

time among children aged 2 to 59 months admitted in 6 CIN hospitals during

the trial period compared to standard A&F on general inpatient paediatric care.

The significant difference in the uptake of pneumonia guidelines between the in-
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tervention arms could be due to difference in baseline performance observed in

the LOESS curves. Control hospitals exhibited high baseline performance (on

average) thus leaving smaller room for improvement compared to low baseline

performance in the enhanced A&F arm hence larger room for improvement over

time.

From results, the quality of pneumonia care differed between male and female

clinicians. It was also evident that junior clinicians (medical officers and clinical

officer interns) were responsible for much care during the trial period. However,

the quality of care provided did not differ between the cadres. The high number

of interns was due to the fact that majority of the study sites were teaching and

referral hospitals.

Strengths and Implications of the Study

We evaluated missing data patterns underlying the trial data set. This was useful

in revealing trends and gaps in the quality of routine care. Insight into such in-

formation is useful when designing cost effective follow-up or new interventions

programmes for optimal and efficient utilization of already stretched resources

(Bitton et al., 2017). For instance, based on this study results, a follow up inter-

vention programme aimed at improving documentation and reporting of clini-

cian characteristics, should be directed to specific hospitals with low documenta-

tion of clinicians’ level variables, while directing resources in hospitals with good

documentation practices elsewhere.
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Our choice of proportion odds models to analyse the ordinal outcome, was ascer-

tained through formal test, further enhancing the validity of these study results.

In instances when the proportional odds assumptions are violated, multinomial

logistic regression model is recommended (Molenberghs et al., 2014, Chapter 27,

p. 493)agresti2002.

In contrast to previous studies reporting quality of inpatient paediatric routine

care (Gachau et al., 2017; Thomas et al., 2017; Agweyu et al., 2018a), this study

accounted for clinicians who are essential for the delivery of health intervention

(Rowe et al., 2005). Ignoring variation at clinician level may lead to biased esti-

mates, overestimation or underestimation of variations in other levels of cluster-

ing (Cook et al., 2018).

A limitation of this study is that we relied on data collected after patient dis-

charge. Therefore, we are unable to ascertain if patients received pneumonia care

as documented by health workers (Ayieko et al., 2019). In conclusion, adjust-

ing for hospitals, admitting clinicians and patient level factors, enhanced audit

and feedback improved uptake of WHO recommended paediatric pneumonia

guidelines compared to standard audit and feedback. Additionally, female clin-

icians and hospitals with low admission workload were associated with higher

uptake of the new paediatric pneumonia guidelines during the trial period. In

both random-effects and marginal model, parameter estimates were biased and

inefficient under complete case analysis. Therefore, MI is recommended.
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Chapter 4

Handling Missing data in a

Composite Outcome with Partially

Observed Subcomponents

4.1 Introduction

Composite measures combine information from multiple measures into a single

summary score (Caldis, 2007; Chen et al., 2013; Profit et al., 2014; Shwartz et al.,

2015; Ibrahim et al., 2016; Cordoba et al., 2010). In health care settings, com-

posite measures are used as scorecards to measure and benchmark performance

and quality of care in neonates (Profit et al., 2010) and cardiovascular care among

adults, (Caldis, 2007; Eapen et al., 2011; Chen et al., 2013; EUnetHTA, 2013). Profit

et al. (2010) presented a conceptual framework on composite indicator develop-

ment in paediatrics care. More recently, Opondo et al. (2016) developed and val-
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idated the PAQC score; a 7-point composite score aimed at benchmarking pro-

cesses of care among children admitted with common childhood illnesses in low

income settings. In the validation study, PAQC score was shown to be a good

proxy for outcome of care (Opondo et al., 2018).

Besides gain in statistical efficiency, composite scores reduce the amount of data

processed thus providing global insights and trends about complex and multidi-

mensional quality of care processes (Profit et al., 2014; Shwartz et al., 2015; EU-

netHTA, 2013). In addition, the issue of multiple testing is avoided (Proschan and

Waclawiw, 2000; Freemantle et al., 2003). Although composite outcomes com-

plement single measures, weak theoretical and statistical assumptions may un-

dermine the overall reliability (Caldis, 2007). For instance, use of inappropriate

methods to deal with partially observed subcomponents may impede the validity

and reliability of the composite measure in subsequent analyses and inferences

(Caldis, 2007; Profit et al., 2014; Ibrahim et al., 2016; EUnetHTA, 2013; Commis-

sion et al., 2008). In the literature, MI, proposed by Rubin 1976, offers a good,

often best practice, solution in dealing with partially observed outcomes and co-

variates (Molenberghs and Verbeke, 2005; van Buuren and Groothuis-Oudshoorn,

2011; Carpenter and Kenward, 2013; Enders et al., 2016). In particular, handling

missing data in single outcomes (with no subcomponents) is straight forward be-

cause the imputation model is usually equivalent to the analyst’s model (Grund

et al., 2017). On the other hand, dealing with missing data in composite out-

come context has not received the same level of attention with no consensus on

whether to impute at the composite score level or at the missing components level
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(Ibrahim et al., 2016; Simons et al., 2015).

In chapter 3, partially observed subcomponents of a composite outcome (PAQC

score) were scored with value 0 representing suboptimal care (Opondo et al.,

2016). This approach of dealing with missing PAQC score subcomponents is

henceforth referred to as ’conventional method’, which will be deemed equiv-

alent to single imputation. A major limitation of the single imputation method

is inability to capture uncertainty in the missing data values leading to under-

estimated standard errors (Carpenter and Kenward, 2013; Plumpton et al., 2016).

Using routine paediatric pneumonia data from Kenyan hospitals, we explored

appropriate strategies of dealing with missing data in the PAQC score subcom-

ponents. Through a range of simulation scenarios, that is, three missing data rates

under two missing data mechanisms, we assessed the implications of the missing

data method (MI versus the conventional method) employed in addressing miss-

ing PAQC score subcomponents. Specifically, the amount of bias in regression co-

efficients and corresponding standard errors attributable to missing PAQC score

subcomponents across the simulation scenarios was obtained and compared be-

tween MI and the conventional method.

The remainder of this chapter is structured as follows. Section 4.2 presents multi-

level MI methods used to handle missing covariates and PAQC score subcompo-

nents. This is in addition to a simulation scheme as used to assess performance

of MI and the conventional approach in handling missing PAQC score subcom-

ponents. Results are presented in Section 4.3 and we conclude with a discussion

in Section 4.4.
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4.2 Methods

4.2.1 Data

We analyzed pneumonia trial data described in Chapter 1, Section 1.2. The out-

come of interest was pneumonia PAQC score introduced in Chapter 3, Section

3.2.1. Missing data occurred in covariates across two levels of the hierarchical

structure (Table 1.1) as well as PAQC score subcomponents in the assessment

and treatment domains of care (Table 1.2). In Chapter 3, PAQC score was con-

structed using 12 pneumonia care indicators using the conventional approach

presented in Table 3.1. The 12 indicators comprised of nine signs and symp-

toms in the assessment domain, one indicator in the diagnosis and classification

domain and two indicators in the treatment domain). Specifically, six binary in-

dicators were created with one representing adherence to recommended child-

hood pneumonia guidelines and zero representing inappropriate care. Under the

conventional approach, variation on the 7-point scale was due to missing data

and/or inappropriate care across the three domains of care. In this study, inap-

propriate care refers to undocumented primary and secondary signs and symp-

toms in the assessment domain, incorrect severity classification, undocumented

oral amoxicillin prescription or prescription of the drug in the wrong dose or

frequency (Opondo et al., 2016). However, considering the controlled study in-

clusion criteria (i.e., inclusion of patients with pneumonia signs and symptoms),

undocumented signs and symptoms in the assessment domain were regarded as

inappropriate care. Therefore, we restricted our focus on missing data in treat-
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ment domain subcomponents, namely amoxicillin dose prescribed, frequency of

administration and weight of patient (Table 1.2). Appendix Figure B.1 provides

a graphical representation of missing data pattern underlying pneumonia trial

data.

4.2.2 Multilevel Multiple Imputation of Missing Covariates and

PAQC Score subcomponents

We imputed incomplete variables of interest using a two-level joint imputation

model corresponding to,

Y(1)
ijl = X

(1)
ijl b(1) + b(1)jl + e(1)ijl

Y
(2)
jl = X

(2)
jl b(2) + b(2)jl ,

(4.1)

eijl ⇠ N(0, S) and
⇣

b(1)jl , b(2)jl

⌘
⇠ N(0, Wb),

where Y(1)
ijl denotes partially observed patient’s gender (level 1 covariate) and

outcome subcomponents in the treatment domain (i.e., missing patient’s amoxi-

cillin dose and frequency of administration). Level 1 predictors of interest (X
(1)
ijl )

included fully observed covariates (i.e., an interaction term between follow-up

time and intervention arm, hospital workload and malaria prevalence status, pa-

tient’s age and number of comorbid illnesses). We also included outcome sub-

components in the assessment and diagnosis domains as level 1 predictors. The

second level of the imputation model targeted missing clinicians’ cadre and gen-

der respectively.

90



A burn-in of 1000 updates and 100 iterations between each of the 30 imputations

were considered upon satisfactory convergence. After MI of missing subcompo-

nents in the treatment domain, pneumonia PAQC score was constructed before

fitting substantive models of interest. After MI variation in PAQC score on the 7-

point scale was attributed to inappropriate inpatient pneumonia care. That is, un-

documented primary and secondary signs and symptoms (assessment domain),

misclassification of disease severity, failure to prescribe the oral amoxicillin drug

or prescription of the drug in the wrong dose or frequency of oral amoxicillin

administration (Opondo et al., 2016). Random-effects model (3.7) and general-

ized estimating equation (GEE) model (3.8) were used to analyse the trial data.

Final parameter estimates were pooled according to Rubin’s rules (Rubin, 1976).

MI results were compared to complete case analysis results (after deletion of case

records with missing clinician’s cadre, gender and patient’s gender) combined

with conventional approach of handling missing PAQC score elements. A 5%

level of significance was considered in all statistical analyses.

4.2.3 Simulation Study

We sought to simulate data mimicking the observed pneumonia trial data set.

However, simulating a standard data set based on model parameters while pre-

serving the correlation structure was a challenge due to the complex multilevel

structure of the trial data set. This was in addition to mixed variable types in

covariates and outcome subcomponents. To circumvent this challenge, missing

data were generated in a complete subset of pneumonia trial data.
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Specifically, our simulation study targeted subcomponents in the treatment do-

main namely patient’s weight, oral amoxicillin dose prescribed and frequency of

oral amoxicillin administration. These three pneumonia care indicators are re-

quired in the calculation of correctness of prescribed oral amoxicillin dose. To

create a subset of pneumonia trial data, complete in the treatment domain sub-

components of interest, we excluded 65/2127 (3.1%) case records with missing

oral amoxicillin prescription. Out of the remaining 2062 (96.9%) pneumonia case

records, 1036 (50.2%) were prescribed oral amoxicillin while 1026 (49.8%) pneu-

monia cases were not. Amongst patients prescribed oral amoxicillin, we further

excluded 61/1036 (5.9%) cases for whom weight (n=30), amoxicillin dose (n=4)

or frequency of amoxicillin administration (n=27) were missing.

Therefore, the base data set used in the simulation study consisted of 2001(94.1%)

pneumonia patients nested within 372 admitting clinicians in 12 hospitals. Al-

though the data set was complete in the outcome subcomponents of interest, one

patient and two clinician level covariates still had missing data. Specifically, pa-

tients’ gender was missing in <1% of the case records while clinicians’ cadre and

gender were missing in 22.3% (83/372) and 25.1% (82/372) cases respectively.

4.2.4 Standard Parameter Estimates

The base dataset was used to estimate standard parameter estimates as follows.

First, pneumonia PAQC score was constructed for each patient. Thereafter, miss-

ing covariates were imputed 10 times using the latent normal approach within

multilevel joint model imputation framework presented in section (3.2).
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In this case, only partially observed covariates in level 1 and level 2 were imputed.

Each imputed data set was analyzed using proportional odds random clinician’s

intercepts model (equation 3.7). Final parameter estimates were pooled according

to Rubin’s rules (Rubin, 1976). The pooled estimates henceforth referred to as

standard estimates and denoted hereby (b⇤
MI) were used as reference estimates

against which results from different simulation scenarios were benchmarked.

4.2.5 Simulation Scheme

Missing data were induced in the base data set targeting three outcome subcom-

ponents in the treatment domain, that is, patient’s weight, oral amoxicillin dose

prescribed and frequency of oral amoxicillin administration. Missingness was

generated assuming MCAR and MAR mechanisms, respectively. Binary missing

data indicators were generated by sampling random numbers from a random bi-

nomial distribution with success rates of 3%, 10% and 40%. A 3% missing data

rate was selected to evaluate the impact of low proportion of missingness while

10% and 40% were chosen to assess the extent of bias in moderate to high rates

of missingness. Under MCAR mechanism, missing values in the target treatment

domain subcomponents were induced independent of other variables in the base

data set, that is, covariates and outcome subcomponents in the assessment and

clinical diagnosis domains. For the MAR condition, probabilities of missing data

were conditionally dependent on variables associated with probability of miss-

ingness in the three variables of interest (based on the observed trial data set)

(Supplementary Table B.1).
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In both MAR and MCAR, missing data in the target variables were induced in-

dependently of each other, such that either one, two or all three variables were

missing for any given patient. Each scenario was simulated 1,000 times. Random

number generators (seeds) were chosen and maintained for different scenarios to

ensure reproducibility of results.

Thereafter, two approaches were used to handle missing data in each simulated

data set. In the first approach, only missing covariates at patient and clinician

level were handled using MI. On the other hand, all partially observed outcome

subcomponents including patient’s weight, amoxicillin dose and frequency of ad-

ministration (outcome subcomponents within treatment domain) were handled

using the conventional approach where they were score with value 0 at PAQC

score construction stage described in Table 3.1. In this case, PAQC score was con-

structed prior to multiple imputation of missing covariates and hence included

in the imputation model as a one of the predictor variables.

In the second approach, MI was used to handle partially observed covariates

and missing treatment domain subcomponents. Outcome subcomponents in the

assessment and diagnosis domains were included in the imputation model as

predictor variables. In this approach, PAQC score was constructed after MI of

incomplete subcomponents in the treatment domain. Variation on the 7-point

scale was attributed to inappropriate pneumonia care which encompassed; lack

of documentation of all primary sign and symptom, lack of documentation of all

secondary signs and symptoms (assessment domain), misdiagnosis or misclas-

sification of disease severity, failure to prescribe oral amoxicillin, prescription of
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oral amoxicillin in wrong dosage or wrong frequency of oral amoxicillin admin-

istration.

4.2.6 Performance Measures

A proportional odds random intercepts model (equation 3.7) was fitted to each

imputed data set to obtain imputation specific parameter estimates. Imputation-

specific estimates were pooled using Rubin’s rules (Rubin, 1976) to produce a

single estimate (b̂i,MI) for the ith simulation. This procedure was repeated in

all the scenarios. Bias in regression coefficients was calculated as the differences

between estimates (log odds) averaged over 1000 simulated data sets ( ¯̂bMI =

ÂN
i=1 b̂i,MI/N) and estimated (log odd)(b⇤

MI) from the base data set. That is,

Bias = ¯̂bMI � b⇤
MI . (4.2)

To assess accuracy, model based standard errors calculated as the average of the

estimated within simulation standard errors were used. That is,

Model based SE(b̂) =
N

Â
i=1

SE(b̂i,MI)/N.

The model based standard errors were compared with empirical standard errors

calculated as the standard deviation of the estimates of interest (Burton et al.,

2006) across the 1000 data sets, that is,

Empircal SE(b̂) =

vuut1/(N � 1)
N

Â
i=1

(b̂i,MI � ˆ̄bi,MI)2, (4.3)
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where N denotes the number of simulations, b̂i,MI is the coefficient estimated in

the ith simulation and ¯̂bi,MI is estimator’s average over 1000 simulations. The

mean square error (MSE) which incorporates both measures of bias and variabil-

ity (Burton et al., 2006; Enders et al., 2016; Grund et al., 2018) was calculated for

the regression coefficients as

MSE = (Bias)2 + (Empircal SE(b̂))2. (4.4)

Bias and accuracy of the corresponding standard errors were assessed in a similar

manner. Coverage probability of the 95% confidence intervals were not applica-

ble in this simulation study because missing data were simulated on the same

subset of the pneumonia trial data set. Computation time was also used to assess

performance of the two strategies employed in handling missing PAQC score

subcomponents. To assess variability due to finite number of simulations (Morris

et al., 2019), Monte-Carlo standard errors for estimated bias in regression param-

eters were calculated using

Monte � CarloSE(b) =

vuut 1
N(N � 1)

N

Â
i=1

(b̂i,MI � ¯̂bi,MI)2. (4.5)

Simulations were carried out using a server with the following specification:

40 GB memory, Intel Xeon E5-4650 (2.70GHz) processor (12 cores/24 threads),

Gnu/Linux Ubuntu 14.04 OS, and R (version 3.4.4) programming language.
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4.3 Results

4.3.1 Pneumonia Trial Data Results
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Table 4.1: Parameter estimates (standard errors) from random- effects and marginal GEE models: complete case analysis and after multilevel
MI.

Random-effects model Marginal model: GEEa

Complete case analysis Multilevel MIb Complete cases analysis Multilevel MI
N=1619 (76.1%) N=2127 (100%) N=1619 (76.1%) N=2127 (100%)

Effect Estimate (SEc) p-value Estimate (SE) p-value Estimate (SE) p-value Estimate (SE) p-value
PAQCd score intercept 0 Reference - Reference - Reference - Reference -
PAQC score intercept 1 -7.77 (1.076) <0.001 -7.74 (0.829) <0.001 -7.41 (1.032) <0.001 -7.19 (0.794) < 0.00
PAQC score intercept 2 -1.77 (0.383) <0.001 -2.20 (0.341) <0.001 -1.65 (0.332) <0.001 -2.03 (0.314) <0.00
PAQC score intercept 3 -0.65 (0.379) 0.03 -1.14 (0.336) <0.001 -0.72 (0.329) 0.03 -1.07 (0.308) <0.001
PAQC score intercept 4 0.48 (0.379) 0.12 0.11 (0.334) 0.740 0.19 (0.336) 0.561 -0.04 (0.306) 0.91
PAQC score intercept 5 1.89 (0.384) <0.001 1.41 (0.337) <0.001 1.30 (0.334) <0.001 1.03 (0.308) <0.00
PAQC score intercept 6 2.86 (0.388) <0.001 2.38 (0.339) <0.000 2.15 (0.342) <0.001 1.87 (0.308) <0.001
Patient’s age-group:12-59 months 0.19 (0.099) 0.04 0.20 (0.086) 0.019 -0.18 (0.086) 0.04 0.24 (0.079) <0.001
Patient’s gender: Males -0.03 (0.096) 0.773 0.01 (0.084) 0.925 0.01 (0.084) 0.958 -0.02 (0.073) 0.82
Comorbidities: 0 0.47 (0.231) 0.042 0.42 (0.201) 0.034 0.31 (0.209) 0.136 0.39 (0.186) 0.03
Comorbidities :1 0.46 (0.232) 0.047 0.30 (0.201) 0.132 0.29 (0.213) 0.174 0.22 (0.187) 0.23
Comorbidities :2 0.48 (0.243) 0.049 0.33 (0.211) 0.116 0.30 (0.209) 0.145 0.26 (0.187) 0.16
Clinician’s gender: female 0.42 (0.184) 0.023 0.31 (0.169) 0.068 0.45 (0.179) 0.011 0.33 (0.168) 0.07
Clinician’s cadre: MOe 0.02 (0.186) 0.913 0.05 (0.167) 0.787 -0.19 (0.161) 0.242 -0.21 (0.151) 0.16
Hospital workload: low -0.08 (0.201) 0.705 -0.33 (0.166) 0.045 0.22 (0.178) 0.226 0.37 (0.153) 0.01
Malaria prevalence: low -0.05 (0.198) 0.793 -0.20 (0.172) 0.25 -0.19 (0.189) 0.322 0.02 (0.167) 0.91
Time (months) 0.05 (0.043) 0.223 0.01 (0.036) 0.75 -0.01 (0.037) 0.856 -0.03 (0.034) 0.44
Enhanced A&F f arm -1.71 (0.333) <0.001 -1.59 (0.294) <0.001 -2.07 (0.334) <0.001 -1.96 (0.304) <0.001
Time ⇥ Enhanced A&F 0.14 (0.063) 0.025 0.19 (0.053) <0.001 0.25 (0.060) <0.001 0.27 (0.052) <0.001
Variance between 1.328 (1.151) 1.161 (1.073)
random intercepts

GEEa: -Generalized estimating equations, MIb: -Multiple imputation, SEc:- Standard Error, MOe:- Medical Officer, A&F f :-Audit and feedback
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Table 4.1 presents random intercepts and GEE models parameter estimates (in

log odds) and the corresponding standard errors obtained under complete case

analysis and after MI of missing covariates and missing PAQC score subcompo-

nents in the treatment domain. Overall, MI led to more precise estimates across

all variables compared to complete case records methods in both GEE and ran-

dom intercepts models. We also observed change in the regression coefficients

before and after imputing missing covariates and PAQC score subcomponents in

the treatment domain. However, the magnitude of change varied across covari-

ates of interest. The largest differences in proportional logs odds were observed

in hospital workload regression coefficient with an approximate absolute differ-

ence of 0.25 (i.e., from -0.08 to -0.33) in the random-effects model and an absolute

difference of 0.15 (i.e., from -0.22 to -0.37) in the GEE (Table 4.1). We further ob-

served model specific shifts in the direction of effect before and after MI. For ex-

ample, under the random-effects model, we observed negative patient’s gender

effect (log odds= -0.03) under complete case analysis which changed to a positive

effect (log odds= 0.01) after MI (Table 4.1).

4.3.2 Simulation Study Results
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Figure 4.1: Bias in regression coefficients under the conventional approach of handling missing PAQC score subcomponents
and after multiple imputation of missing PAQC score subcomponents in the treatment domain and missing covariates imputed
across missing data rates and missing data mechanisms
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Figure 4.2: Bias in standard errors under the conventional approach of handling missing PAQC score subcomponents and after
multiple imputation of missing PAQC score subcomponents in the treatment domain and missing covariates imputed across
missing data rates and missing data mechanisms.
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Figure 4.1 and Figure 4.2 respectively, present bias estimated in regression coef-

ficients and standard errors under the conventional and MI approaches across

6-simulation scenarios (i.e., 3 missing data rates of 3%, 10% and 40% and 2 miss-

ing data mechanism namely MAR and MCAR). Results for specific scenarios with

regard to estimated bias, empirical standard errors, model based standard errors

and MSE for regression coefficients and corresponding standard errors are pre-

sented in Tables 4.1, Table 4.2, and supplementary Tables B.2-B.7. Monte-Carlo

standard errors and confidence interval around bias for regression parameters

across simulation scenarios are presented in Supplementary Tables B.8-B.9.

Across 6-simulation scenarios, the regression coefficients either underestimated

(negative bias) or overestimated (positive bias) the standard estimates (Figure

4.1). Moreover, the magnitude of bias varied across variables and tended to in-

crease with an increase in the proportion of missingness. However, the bias was

much smaller when MI was used to handle incomplete treatment subcomponents

compared to the conventional approach (Figures 4.1). On the other hand, the

standard errors tended to overestimate the base data set resulting to positive bias

across simulation scenarios (Figure 4.2). For individual variables, it was further

observed that the standard errors were less prone to bias compared to regres-

sion coefficients. These observations were made within and across simulation

series. Moreover, simulation results exhibited larger bias when missingness in

treatment domain subcomponents were generated under MAR mechanism com-

pared to MCAR mechanism.

Across simulation scenarios, the estimated empirical standard errors were close
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to the estimated model based standard errors (Table 4.1, Table 4.2 and Supple-

mentary Tables B.2-B.7). In addition, the magnitude of both measures of accuracy

tended to increase with an increase in the proportion of missing data in PAQC

score components. The results further showed that MSEs were slightly larger un-

der the conventional approach compared to MI approach and were somewhat

larger under MAR mechanism compared with MCAR mechanism (Table 4.2, Ta-

ble 4.3 and Supplementary Tables B.2-B.7).

Across simulation scenarios, that is, missing data mechanisms and rates of miss-

ingness, Monte-Carlo standard errors of estimated bias in regression parameters

ranged between 0.001 and 0.04 (Supplementary Tables B.8-B.9). The correspond-

ing 95% confidence intervals around bias in the parameters of interest were nar-

row across simulation settings. Finally, the simulation process was on average

more time intensive under MI strategy compared to the conventional approach.

Furthermore, the computational time increased with an increase in the propor-

tion of missing data irrespective of the mechanism used to generate missing data.
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Table 4.2: Performance measures of regression coefficients after multiple imputation of covariates and outcome elements: MARa mechanism.

Proportion Missing
3% 10% 40%

Effect True estb Bias Model-based SE Emp SEc MSEd Bias Model-based SE Emp SE MSE Bias Model-based SE Emp SE MSE

PAQC score intercept 1 -7.825 0.018 0.015 0.017 0.005 0.021 0.023 0.024 0.001 0.022 0.036 0.036 0.002

PAQC score intercept 2 -2.253 -0.616 0.030 0.030 0.380 -0.707 0.449 0.450 0.701 -0.739 0.153 0.154 0.569

PAQC score intercept 3 -1.189 -0.327 0.080 0.080 0.113 -0.375 0.319 0.321 0.242 -0.392 0.414 0.414 0.325

PAQC score intercept 4 0.083 -0.241 0.582 0.583 0.400 -0.277 0.186 0.188 0.111 -0.289 0.142 0.143 0.104

PAQC score intercept 5 1.371 -0.264 0.237 0.237 0.126 -0.303 0.373 0.374 0.231 -0.317 0.249 0.249 0.162

PAQC score intercept 6 2.246 -0.041 0.131 0.135 0.020 -0.047 0.203 0.203 0.043 -0.049 0.229 0.228 0.055

Patient’s age-group:12-59 0.154 0.038 0.083 0.088 0.008 0.044 0.147 0.148 0.023 0.046 0.170 0.172 0.032

Patient’s gender: males -0.046 -0.027 0.216 0.216 0.047 -0.031 0.259 0.260 0.068 -0.032 0.276 0.277 0.078

Comorbidities: 0 0.474 -0.130 0.228 0.230 0.069 -0.149 0.014 0.015 0.022 -0.156 0.070 0.071 0.029

Comorbidities: 1 0.309 -0.134 0.330 0.333 0.129 -0.154 0.557 0.558 0.334 -0.161 0.644 0.645 0.442

Comorbidities: 2 0.335 -0.111 0.384 0.386 0.163 0.127 0.570 0.570 0.341 -0.133 0.643 0.644 0.431

Clinician’s gender: female 0.337 -0.03 0.020 0.020 0.002 -0.05 0.027 0.019 0.002 -0.08 0.016 0.018 0.003

Clinician’s cadre: MO 0.038 0.062 0.155 0.156 0.028 0.071 0.054 0.055 0.008 0.074 0.014 0.016 0.006

Hospital workload: low -0.367 -0.063 0.147 0.150 0.025 -0.072 0.250 0.252 0.068 -0.075 0.290 0.292 0.090

Malaria prevalence: low -0.189 0.159 0.306 0.302 0.119 0.183 0.170 0.171 0.063 0.191 0.275 0.276 0.112

Enhanced A&F -0.002 -0.065 0.192 0.193 0.041 -0.053 0.189 0.190 0.038 -0.060 0.180 0.182 0.036

Time (months) -1.754 0.015 0.720 0.721 0.518 0.017 0.696 0.698 0.484 0.018 0.686 0.687 0.470

Time ⇥ Enhanced A&F 0.226 -0.028 0.160 0.163 0.026 -0.032 0.106 0.108 0.012 -0.034 0.126 0.126 0.017

MARa:-Missing at Random, True estb:-True estimate, Emp SEc:-Empirical standard error, MSEd:- Mean Square Error, MOe:- Medical Officer, A&F f :-

Audit and feedback



Table 4.3: Performance measures of regression coefficients after multiple imputation of covariates and outcome elements: MARa mechanism.

Proportion Missing
3% 10% 40%

Effect True estb Bias Model-based SE Emp SEc MSEd Bias Model-based SE Emp SE MSE Bias Model-based SE Emp SE MSE

PAQC score intercept 1 -7.825 0.141 0.015 0.016 0.020 0.171 0.023 0.024 0.03 0.484 0.036 0.037 0.236

PAQC score intercept 2 -2.253 -0.386 0.031 0.031 0.150 -0.697 0.450 0.451 0.688 -0.808 0.154 0.154 0.677

PAQC score intercept 3 -1.189 -0.736 0.080 0.081 0.548 -0.8 0.322 0.323 0.743 -0.9 0.414 0.415 0.982

PAQC score intercept 4 0.083 -0.542 0.584 0.586 0.637 -0.665 0.187 0.188 0.477 -0.798 0.143 0.145 0.657

PAQC score intercept 5 1.371 -0.594 0.236 0.238 0.409 -0.727 0.370 0.374 0.669 -0.805 0.254 0.255 0.71

PAQC score intercept 6 2.246 -0.092 0.135 0.136 0.027 -0.113 0.204 0.205 0.054 -0.186 0.232 0.233 0.088

Age-group:12-59 0.154 0.086 0.084 0.085 0.015 0.106 0.146 0.148 0.033 0.175 0.173 0.173 0.061

Child’s gender: males -0.046 -0.061 0.216 0.217 0.051 -0.074 0.260 0.261 0.074 -0.122 0.278 0.279 0.092

Comorbidities: 0 0.474 -0.293 0.230 0.230 0.139 -0.358 0.015 0.017 0.128 -0.593 0.071 0.071 0.357

Comorbidities: 1 0.309 -0.302 0.334 0.335 0.203 -0.37 0.557 0.558 0.448 -0.612 0.643 0.646 0.791

Comorbidities: 2 0.335 -0.25 0.389 0.390 0.215 -0.305 0.571 0.571 0.419 -0.505 0.642 0.644 0.67

Clinicians’ gender: female 0.337 -0.007 0.021 0.022 0.001 -0.007 0.017 0.018 0.011 -0.011 0.017 0.018 0.001

Clinicians’ cadre: MOe 0.038 0.14 0.156 0.157 0.044 0.17 0.055 0.056 0.032 0.281 0.015 0.016 0.079

Hospital workload: low -0.367 -0.142 0.148 0.149 0.042 -0.173 0.251 0.252 0.093 -0.285 0.291 0.292 0.166

Malaria prevalence: low -0.189 0.358 0.307 0.307 0.222 0.439 0.172 0.172 0.222 0.726 0.276 0.277 0.603

Enhanced A&F -0.002 -0.005 0.193 0.194 0.038 -0.008 0.189 0.190 0.036 -0.017 0.181 0.182 0.033

Time (months) -1.754 0.034 0.720 0.721 0.521 0.041 0.696 0.697 0.488 0.068 0.687 0.688 0.477

Time ⇥ Enhanced A&F f 0.226 -0.063 0.161 0.162 0.030 -0.077 0.110 0.111 0.017 -0.129 0.127 0.127 0.033

MARa:-Missing at Random, True estb:-True estimate, Emp SEc:-Empirical standard error, MSEd:- Mean Square Error, MOe:- Medical Officer, A&F f :-

Audit and feedback



4.4 Discussion

In this chapter, we sought to explore and propose appropriate strategy for han-

dling missing data in PAQC score (Opondo et al., 2016), an ordinal composite

outcome. In composite measures development guidelines, a required step is a

strategy for handling missing data to minimize bias and enhance reliability of a

composite score (Profit et al., 2010; Commission et al., 2008). However, in the

literature, most studies reporting composite measures avoid missing items in

composite scores by conducting complete case analysis (Simons et al., 2015; Cor-

doba et al., 2010). In Chapter 3, we imputed missing covariate while all missing

PAQC score subcomponents were handled using the conventional method. In the

present chapter, we used MI to handle missing PAQC score subcomponents in

the treatment domain in addition to partially observed covariates. Although the

proportion of missingness in PAQC score subcomponents of interest (treatment

domain) was small, we observed notable differences in parameter estimates.

Through a range of simulation conditions, we explored bias in regression coeffi-

cients and standard errors associated with missing data in PAQC score treatment

domain subcomponents. The study results demonstrated superiority of MI as a

strategy for dealing with partially observed PAQC score domain subcomponents

over the conventional method. Nevertheless, MI approach led to some level of

bias in the regression coefficients. These observations could be due to lack of

compatibility between the imputation model and the analysis model considering
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that PAQC score was not included in the imputation model. To be specific, in-

complete subcomponents in the treatment domain were included in the imputa-

tion model as target while subcomponents in the assessment and diagnosis do-

mains were included as predictors variables. In this case, the composite outcome

was constructed after MI step. Therefore, further research is needed to compare

the performance of proposed MI method with that of MI including the com-

posite outcome, possibly adapting substantive model compatible MI approaches

(Bartlett et al., 2015) to this setting, in order to guarantee that the relation between

subcomponent and composite outcome is preserved (Quartagno and Carpenter,

2018).

Simulation results further showed that regression coefficients were more prone to

bias compared to standard errors across simulation scenarios. A possible expla-

nation for these results is that case records with missing PAQC score subcompo-

nents in the treatment domain were not discarded in both conventional approach

and MI approach and hence no major impact on estimation of standard errors.

Previously, MI has been used to address missing data at component level in com-

posite scores assessing quality of patient’s care (Blough et al., 2009; Plumpton

et al., 2016). Elsewhere, Simons et al. (2015) proposed MI at index level partic-

ularly for smaller samples. In the case of PAQC score, there are no possibilities

of missing PAQC score at aggregate level (the only possibilities are values be-

tween zero and six). Therefore, multiple imputation can only be implemented

at subcomponents level. In this study, MI was used to handle missing treatment

domain subcomponents while undocumented pneumonia signs and symptoms
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in the assessment domain were regarded as inappropriate care and hence scored

zero in the binary indicators at PAQC score construction stage. This was in con-

sideration of the trial’s inclusion criterion which required recruitment of patients

with syndromic pneumonia. That is, patients with at least one of the two primary

pneumonia signs and symptoms (i.e., presence of cough or difficult breathing) in

addition to at least one secondary sign and symptom necessary for pneumonia

severity classification (Organization, 2013; Ayieko et al., 2017). As such, imputa-

tion of undocumented signs and symptoms was not expected to have any mean-

ingful impact on the simulation study. However, it should be noted that MI can be

extended to handle missing PAQC score subcomponents in other domains of rou-

tine care in studies without such restrictive inclusion criteria. Moreover, analyses

and MI procedure proposed in this study can be extended to other MI techniques

(Jenghara et al., 2018; Mostafa, 2019) in order to examine performance in terms of

computational cost, bias and measures of accuracy as appropriate.

In conclusion, MI produce minimally biased estimates in comparison with con-

ventional method. However, the regression coefficients are more prone to bias

compared to standards errors more so when the underlying mechanism is MAR.

Besides, bias tended to increase with an increase in proportion of missing variable

in the outcome subcomponents. Therefore, missing data in subcomponents com-

posite measures should be addressed carefully to alleviate potential for biased

estimate and misleading inferences.
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Chapter 5

Sensitivity analysis of departure

from missing at random (MAR)

assumption

5.1 Introduction

In practice, MAR and MNAR mechanisms cannot be distinguished using ob-

served data only, hence the need for sensitivity analyses (Mackinnon, 2010). Sen-

sitivity analyses entail scrutinizing plausible models assuming MNAR mecha-

nisms to assess departures from the MAR assumption. Alternatively, the primary

analysis model is changed through a number of alterations and the stability of in-

ferences across the alternative settings assessed (Héraud-Bousquet et al., 2012;

Liublinska and Rubin, 2014).

As already mentioned, sensitivity analyses following MI can be conducted within
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three generic frameworks namely; pattern-mixture models, selection models and

shared parameter models (Héraud-Bousquet et al., 2012; Little et al., 2012; Li-

ublinska and Rubin, 2014). Nonetheless, sensitivity analysis within these frame-

works is rarely reported in practice. This is because it is a computationally com-

plex procedure which involves defining and examining suitable assumptions for

a given data set under analysis (Héraud-Bousquet et al., 2012; Smuk et al., 2017).

Besides, sensitivity analyses methods are underdeveloped in standard statistical

software thus limiting their application in practice (Héraud-Bousquet et al., 2012).

In health care settings, completeness of routine data depends on an interplay of

factors that operate at the patient, clinician and healthcare facility levels (Yelin

et al., 2015). For example, missing data at facility level could result from tempo-

rary breakdown of medical devices (e.g. blood pressure machine or pulse oxime-

ter) within a healthcare facility leading to absence of diagnostic investigations

in that facility during the breakdown period. At the clinician level, individual

attributes such as professional qualification, experience and behaviour can influ-

ence quality of care, and its documentation therefore impacting the quality of

routine data (Rowe et al., 2005). Separately, clinician-level factors are rarely cap-

tured within routine health data generated in low income countries and hence

clinician effect is often overlooked in studies reporting clinician-prescribed rou-

tine care (Thomas et al., 2017; Tuti et al., 2017).

This problem of missing data at the clinician level is compounded when missing

data are handled using inappropriate methods, that increase the risk for obtaining

biased and inefficient estimates hence misleading inference (Mackinnon, 2010;

110



Tompsett et al., 2018). Furthermore, in most studies for which the primary analy-

sis was based on complete case records, MI assuming MAR mechanism was used

as a sensitivity analyses tool (Mackinnon, 2010). However, similarities between

CCA and MI results could lead to false reassurances that data are either MCAR or

missing at random with a mechanism not involving the outcome (i.e., covariate-

dependent MAR (Molenberghs et al., 2014, Chapter 1 ) whereas a MNAR mecha-

nism could be in operation (Mackinnon, 2010).

To address this gap, we analysed partially observed paediatric routine data col-

lected in 12 Kenyan hospitals during a cluster randomized trial. Specifically,

we imputed missing data assuming MAR while appropriately accounting for

the hierarchical structure of the data set. We also conducted sensitivity analy-

ses aimed at assessing robustness of inference under MAR mechanism using two

approaches within the pattern-mixture models framework.

The rest of this Chapter is structured as follows. Section 5.2 provides details of

multilevel MI under MAR mechanism and MNAR mechanism respectively fol-

lowed by results in Section 5.3. The chapter concludes with a discussion in Sec-

tion 5.4.
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5.2 Methods

5.2.1 Multiple Imputations under MNAR assumption: Sensitiv-

ity analyses

In chapters 3 and 4, we imputed missing covariates and PAQC score components

in the treatment domain within the joint model framework while assuming a

MAR mechanism. More details on multilevel MI assuming a MAR mechanism

are presented in Chapter 4 Section 4.2.3. As mentioned above, MAR assump-

tion cannot be verified using observed data alone. Therefore, we imputed miss-

ing data assuming a MNAR mechanism to assess possible departures from MAR

mechanism. Our sensitivity analyses focused on missing clinicians’ cadre and

gender in the second level of the hierarchical structure using two approaches

within the pattern-mixture model (PMM) framework. Specifically, we consid-

ered MNAR imputation in level two variables (i.e., clinician’s gender and cadre)

while retaining the MAR imputation models for patient-level (level one) vari-

ables for two reasons. First, we aimed to minimize complexities at analysis stage

considering that three out of four patient-level variables (i.e., patient’s weight,

amoxicillin dose prescribed and frequency of amoxicillin administration) were

subcomponents of a composite outcome. Secondly, the proportion of missing

data in patient-level variables was much lower (< 4%) compared to the much

higher proportion (> 20%) of missing data observed in clinician-level variables.

In one approach, we replaced clinicians’ gender and cadre imputed assuming
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MAR mechanism with random draws using appropriate prior distributions cre-

ating MNAR imputed data sets (Smuk et al., 2017). In the second approach, we

modified MI model assuming MAR mechanism through a range of sensitivity

parameters (delta adjustment approach) (Carpenter and Kenward, 2013). These

changes can be informed by opinions elicited from experts in the subject matter

or contextual knowledge (Molenberghs et al., 2014, Chapter 20).

Pattern mixture models

The PMM assumes that observations are stratified based on patterns of missing

data, and distinct models formulated to estimate parameters within each pattern.

However, since the distribution of the outcome given patterns of non-response

is unidentifiable, the conditional distributions under MAR is used as a start-

ing point and then appropriate changes reflecting MNAR assumption are made

(Molenberghs et al., 2014, Chapter 19, p. 439)

5.2.2 Elicitation of Experts’ Opinion

In this study, we elicited clinical experts’ opinions to enable us to define suitable

MNAR assumption about the differences in the distribution of clinicians with

observed cadre/gender and clinicians with missing cadre/gender. Preliminary

investigations into underlying missing data pattern showed that nearly all clini-

cians with missing cadre had missing gender (Figure 3.1). Further assessment re-

vealed that intervention arm and paediatric admission workload were predictor

variables for missing cadre and gender respectively. Preliminary analysis sug-
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gested that both trial arm and admission workload were strongly associated with

the observed clinician’s cadre and gender respectively. Therefore, we defined 4

patterns labelled k based on combinations of admission workload and trial arm

as

k =

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

1 if hospital is in control arm and has high paediatric admission workload

2 if hospital is in control arm and has low paediatric admission workload

3 if hospital is in intervention arm and has high paediatric admission workload

4 if hospital is in intervention arm and has low paediatric admission workload.

(5.1)

For each k, we estimated data predicted probabilities of a clinician belonging to a

cadre (i.e., clinical officers or clinical officer interns or medical officers or medical

officer interns) under the MAR assumption (Smuk et al., 2017). Specifically, we

imputed missing clinicians’ cadre and gender jointly assuming a MAR mecha-

nism with trial arm and admission workload as predictor variables. Thereafter,

we separately regressed clinicians’ cadre on trial arm and admission workload

using a multinomial logistic model on each imputed data set. The final estimates

(log odds) were pooled according to Rubin’s rule (Rubin, 1976) were then used

to determine data predicted probabilities of clinicians belonging to either of the

four cadre categories for each k.

Similarly, we fitted a logistic regression model to each imputed data set with clini-

cian’s gender as the outcome and trial arm and admission workload as covariates

and determined data predicted probabilities of clinicians being males or females.
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Data predicted probabilities (pjk) for clinicians’ cadre (Figure 5.1) and clinician’s

gender (Appendix Figure C.1) were then presented to experts in form of ques-

tionnaires in face to face interviews.

Fifteen clinical experts (three clinical officers, five clinical officer interns, three

medical officers and four medical officer interns) from paediatric wards in two

CIN hospitals participated in the elicitation exercise. Experts were briefed about

the purpose of the exercise before filling their predicted probability of clinicians

with missing cadre being either clinical officers, clinical officer interns, medical

officers or medical officer interns for each k = 1, 2, 3, 4. Here, we use j = 1 to

denote clinical officers, j = 2 for clinical officer interns, j = 3 for medical officers

and j = 4 for medical officer interns while for clinicians’ gender, j = 1 denotes

females and j = 2 denotes males. Similarly, they filled in their belief about clin-

icians with missing gender being females (j = 1) or males (j = 2) in each k.

Experts’ predicted probability for clinician’s gender/cadre are denoted by qjk.

After the elicitation exercise, we pooled experts predicted probabilities and calcu-

lated the mean (E[qjk]) and variances (Var[qjk]) for every cadre/gender category

in k. This information was then used to approximate parameters of Dirichlet

and beta distributions from which missing clinicians’ cadre and gender were im-

puted assuming a MNAR mechanism. The parameters for the respective prior

distributions were approximated using the methods of moments as explained in

the following section.
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Figure 5.1: Questionnaire tables used to elicit experts’ opinions about missing
clinician’s cadre
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Dirichlet Conjugate Prior for Multinomial Distribution

For clinicians’ cadre with four categories, we chose a Dirichlet distribution as an

appropriate conjugate prior distribution (Smuk et al., 2017). A Dirichlet distribu-

tion with four parameters is formulated as

f (xjk, xjk, xjk, xjk, ajk, ajk, ajk, ajk) =
G ÂJ

j=1 ajk

’J
j=1 G(ajk)

k

’
i=1

x
ajk�1
jk , (5.2)

where the vector xjk denotes probabilities for different categories in the variable

of interest, ÂJ
j=1 xjk = 1 and ajk are concentration parameters. The mean and

variance of Dirichlet distribution are denoted by

E(xjk) =
ajk

Lk
, (5.3)

and

Var(Xjk) =
ajk(Lk � ajk)

L2
k(Lk + 1)

, (5.4)

where Lk = ÂJ
j=1 ajk. Using the means and variances of experts predicted proba-

bilities (E[qjk]) and (Var[qjk]) for jth cadre (j = 1, 2, 3, 4) in each k, (k = 1, 2, 3, 4),

we estimated Dirichlet distribution concentration parameters using the methods

of moments (Smuk et al., 2017) as follows:

1. Using a sequence of values between 1 and 40 (Lk) and the mean of experts

predicted probabilities (E[qjk]) to approximate unknown Dirichlet mean

E(xjk), we estimated the concentration parameters (ajk) of a Dirichlet dis-
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tribution in equation (5.3) using

ajk = Lk ⇤ E(qjk). (5.5)

2. We substituted ajk values obtained in step 1 in the variance formulae (equa-

tion 5.5) to estimate Dirichlet distribution variances Var(xjk) for each value

in the sequence Lk.

3. We plotted Dirichlet distribution variance approximated in step 2 against

the sequence Lk and superimposed a horizontal line corresponding to vari-

ance of expert predicted probabilities (Var[qjk]). For instance, in k = 1, we

had four plots, one for each clinicians’ cadre category (i.e., clinical officers,

clinical officer interns, medical officers and medical officer interns) (Figure

5.2). The step was repeated for the other patterns of missingness, that is,

k = 2, 3, 4. The corresponding figures are presented in the Supplementary

file (Appendix Figures C.2-C.4).

4. We determined the value in the sequence Lk for which estimated Dirichlet

estimated variance Var(xjk) (black curve) and variance of experts’ predicted

probabilities (Var[qjk]) (red line) intersected (or were approximately equal)

for a given cadre category. We summed Lk values across the four cadre

categories and divided the total by four. The mean was denoted by E(Lk).

5. We determined Dirichlet distribution parameters for the jth cadre in each k
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by multiplying expert predicted mean probabilities E(qjk) by E(Lk), that is,

âjk = E(Lk) ⇤ E(qjk). (5.6)

Figure 5.2: Estimated Dirichlet variances (black curves) and experts’ variances
(horizontal red lines) in a control hospital with high admission workload (k = 1)

Estimated concentration parameters for Dirichlet distribution for a given k, (k, 1, 2, 3, 4)
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are presented in Table 5.1. The parameter vectors were used to generate random

vectors of probabilities of jth cadre probabilities in each k.

Table 5.1: Estimated concertation parameters (a) and precision (L) for the Dirich-
let distribution estimated using moments method.

CO CO intern MO MO intern
k â1 â2 â3 â4 E[Lk]
1 1.19 5.08 1.34 7.63 14.96
2 1.96 11.78 2.62 16.36 32.73
3 0.58 3.01 1.59 3.09 8.35
4 1.06 4.38 2.12 5.58 13.28

Beta Conjugate Prior for Binomial Distribution

For clinicians’ gender with two levels, we considered a beta distribution conju-

gate prior. A beta distribution is formulated as

f (x) =
G(ajk + b jk)

G(ajk)G(b jk)
xajk�1(1 � x)b jk�1, (5.7)

where ajk > 0 and b jk > 0. Using the mean (E[qjk]) and variances (Var[qjk])

of experts predicted probabilities for jth (j = 1, 2) clinician’s gender category in

the kth strata (k = 1, 2, 3, 4), we estimated ajk and b jk using the moments method

(Lunn et al., 2012) as shown below

b̂ jk =
E[qjk](1 � E[qjk])

2

Var[qjk]
+ E[qjk]� 1 (5.8)

âjk =
E[qjk] ⇤ b̂ jk

1 � E[qjk]
+ E[qjk]� 1. (5.9)
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The approximated âjk and b̂ jk parameters for each k, k = 1, 2, 3, 4 are presented in

Table 5.2.

Table 5.2: Beta distribution parameters approximated using moments method

j=female clinician
k â b̂
1: Control arm and high paediatric admission workload 6.5 4.5
2: Control arm and low paediatric admission workload 4.3 3.6
3: Intervention arm and high paediatric admission workload 4.6 3.9
4: Intervention arm and low paediatric admission workload 7.3 6.1

5.2.3 Multiple Imputations from MNAR Prior Distributions

Using Dirichlet and beta prior parameter estimate vectors (Tables 5.1 and 5.2), we

generated 20 random probability vectors for each k, (k = 1, 2, 3, 4). The number

of random draws corresponded to the number of imputations. Each imputed

data set was split into four mutually exclusive strata defined by k (k = 1, 2, 3, 4).

The jth probability value in the ith random vector (i = 1, 2, . . . , 20) was then used

to determine the proportion of occurrence of clinicians’ cadre/gender category

in the kth stratum. For clinician’s gender, we drew 20 random probabilities of

a clinician being female. In each draw, the probability of being a male clinician

was 1 minus the probability of being a female clinician. After drawing values for

clinician gender/cadre from the probability vectors, the four strata (k = 1, 2, 3, 4)

were merged into one data set. This step was repeated for all the imputed data

sets before fitting the analysis model of interest.

121



5.2.4 Multiple Imputation with Delta Adjustment Method)

MI with delta adjustment involves adding a fixed quantity d to the linear predic-

tor of the imputation model (Yuan, 2014; Tompsett et al., 2018). For continuous

target variables, d represents the difference in mean between non-respondents

and respondents (Little et al., 2012). When the variable of interest is categorical,

addition of shift parameter in the imputation model modifies the predicted prob-

abilities for the classification levels thus producing MNAR imputed values (Little

et al., 2012; Tompsett et al., 2018).

In this study, we conducted separate MI-MNAR analyses for clinicians’ gender

and clinicians’ cadre rather than two-dimensional sensitivity analysis. In first im-

putation model, we modified the probability of classification among clinicians

with missing gender while missing clinicians’ cadre was imputed without any

modifications. In second imputation model, shift parameter modified the prob-

ability of classification in the imputation of clinicians with missing cadre while

missing clinicians’ gender was imputed without any modification. We performed

these analyses using functions from the jomo package in R (version 3.5.4) (Quartagno

et al., 2019). These functions are not yet available in the version of the package

available in CRAN but will be included in the near future. The modified multi-

level joint imputation model is formulated as follows

Y
(1)
ijl = X

(1)
ijl b(1) + b(1)jl + e(1)ijl

Y
(2)
jl = X

(2)
jl b(2) + d(1 � Rjl) + b(2)jl

(5.10)
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eijl ⇠ N(0, S) and
⇣

b(1)jl , b(2)jl

⌘
⇠ N(0, Wb),

where Y
(1)
ijl is a vector of partially observed level one variables (i.e., patient’s gen-

der, weight, amoxicillin dose prescribed and frequency of amoxicillin adminis-

tration) at level one of the hierarchical structure. The vector of clinicians’ gender

and cadre at level two of the hierarchical structure is denoted by Y
(2)
jl while Rjl

is a binary indicator with value 1 if clinicians’ gender/cadre is observed and 0

if clinicians’ gender/cadre is missing. When d is zero, a MAR mechanism is im-

plied (Carpenter and Kenward, 2013).

To determine a set of shift parameters for clinicians’ gender with two levels, we

used latent normal variables which is equivalent to modelling binary data with a

probit link. Specifically, we obtained the quartiles of the prior distribution for the

proportion of female clinicians and chose values of the latent normal correspond-

ing to quartiles values. We chose three shift parameters (i.e., d = �0.2,�0.3,�0.5)

to alter probability of classification in the imputation of clinicians’ gender. These

parameters corresponded to the three quartiles of the prior distributions elicited

from experts. Specifically, the negative shift parameters decreased the latent nor-

mal for female clinicians on the probit scale. As such clinicians with missing

gender were more likely to be imputed as males.

The same shift values used to alter classification probabilities for clinicians’ gen-

der were also used to alter classification probabilities among clinicians with miss-

ing cadre. This was in consideration of the similarities in missing data patterns

underlying clinicians’ gender and clinicians’ cadre (Appendix, Figure A.1). In

this case, negative shift parameters increased the probability of being medical of-
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ficers and medical officer interns, by decreasing latent normal for clinical officer

(interns) on the probit scale. Therefore, clinicians with missing cadre were more

likely to be imputed as medical officers (interns).

The differences in proportion of classification increased with an increase in the

magnitude of shift parameters. The MI-MNAR analysis under the delta-adjusted

approach was repeated for different shift parameters.

5.2.5 Statistical Analysis

After MI assuming MAR and MNAR mechanism (i.e., with delta adjustment and

from appropriate prior distribution), we constructed PAQC score in each imputed

data set following procedure outlined in Section 3.2.1. For each imputed data

set, we fitted a proportional odds random intercepts model (3.7) in Section 3.2.5.

Thereafter, we combined MI estimates using Rubin’s rules (Rubin, 1976) and com-

pared inference between MAR and MNAR mechanisms. We also compared MI

results with those obtained under complete case analysis which was based on

77.1% (1639/2127) observations after deletion of case records with missing data

in patients and clinicians level variables.

5.3 Results

Table 5.3 presents a summary of data predicted probabilities and experts’ pre-

dicted probabilities (mean and variance) for four cadre categories in each com-

bination of trial arm and admission workload respectively. Among clinicians

with missing cadre, experts believed that medical officers and clinical officers
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were more than clinical officer interns and medical officer interns respectively.

These observations were in contrast to data predicted probabilities. Furthermore,

elicited opinion suggested that medical officers were more likely in hospitals with

high paediatric admission workload compared to hospitals with low admission

workload (Table 5.3). With regard to clinicians’ gender, experts’ opinions sug-

gested that among clinicians with missing gender, males were more likely in

high workload hospitals than in low admission hospitals in each k (Table 5.3). In

both clinicians’ gender and cadre, experts’ responses did not vary widely across

cadre/gender categories and across stratification groups.
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Table 5.3: Data predicted and expert predicted probabilities (mean and variance)
for clinicians’ cadre.

K Data probabilities Elicited probabilities
(pjk) E(qjk), Var(qjk)

Clinician’s cadre
1: Control arm and high workload

CO intern 0.38 0.12 (0.08)
CO 0.01 0.14 (0.10)
MO intern 0.60 0.49 (0.12)
MO 0.01 0.25 (0.09)

2: Control arm and low workload
CO intern 0.45 0.17 (0.12)
CO 0.03 0.39 (0.11)
MO intern 0.50 0.29 (0.10)
MO 0.02 0.15 (0.05)

3: Intervention arm and high workload
CO intern 0.42 0.23 (0.05)
CO 0.01 0.23 (0.09)
MO intern 0.55 0.22 (0.06)
MO 0.02 0.31 (0.08)

4: Intervention arm and low workload
CO intern 0.50 0.25 (0.04)
CO 0.01 0.25 (0.12)
MO intern 0.47 0.31 (0.06)
MO 0.02 0.19 (0.05)

Clinician’s gender
1: Control arm and high workload

Females 0.47 0.45 (0.02)
Males 0.53 0.55 (0.06)

2: Control arm and Low workload
Females 0.36 0.54 (0.04)
Males 0.64 0.46 (0.07)

3: Intervention arm and high workload
Females 0.57 0.44 (0.06)
Males 0.46 0.56 (0.08)

4: Intervention arm and low workload
Females 0.42 0.52 (0.05)
Males 0.58 0.48 (0.10)
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Table 5.4 shows the distribution of clinicians’ cadre and gender under complete

case analysis and under MAR and MNAR mechanisms. When clinician’s cadre

was the sensitivity variable of interest, we observed a systematic increase in the

proportion of clinicians imputed as medical officer and medical officer interns re-

spectively. Similarly, when clinician gender was the sensitivity variable of inter-

est, more clinicians were imputed as males compared to females. For clinician’s

cadre, the proportions of medical officer and medical officer interns tended to in-

crease with an increase in magnitude of sensitivity parameter (delta values).

Furthermore, we observed similarities in the proportions of clinicians’ gender

and clinicians’ cadre after MI from prior distributions and delta adjustment with

a sensitivity parameter equal to -0.2 (Table 5.4). Considering the few numbers of

clinical officer and medical officers , we grouped clinician into two categories as

done in previous chapters.
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Table 5.4: Proportion of clinicians’ cadre and gender in complete records and under MAR and MNAR: 20 imputations used

Sensitivity analysis variable: Clinician’s cadre Sensitivity analysis variable: Clinician’s gender

MI-MNAR MI-MNAR

Complete Records MI-MAR d = �0.2 d = �0.3 d = �0.5 Dirichlet prior d = �0.2 d = �0.3 d = �0.5 Beta Prior
Clinician’s cadre
CO 0.52 1.05 0.55 0.60 0.69 1.58 0.69 0.68 0.88 0.64
COI 39.80 43.58 40.31 39.59 36.59 39.19 44.47 43.53 44.38 45.34
MO 2.62 2.82 3.62 4.17 4.51 4.71 2.87 2.88 2.62 2.63
MOI 57.05 52.70 55.53 55.64 58.33 54.53 51.97 52.91 52.11 51.38
Clinician’s gender
Males 58.61 57.34 58.31 56.44 55.79 57.33 60.21 61.26 63.70 60.34
Females 41.39 42.66 41.69 43.56 44.21 42.67 39.79 38.74 36.30 39.66

MI-MAR: -Multiple imputation assuming Missing at Random, MI-MNAR: -Multiple imputation assuming Missing at Not Random, MO: -Medical

officers
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Complete case analysis (CCA), MI results assuming MAR mechanism and MI re-

sults assuming MNAR mechanism (i.e., MI with delta adjustment over a range

of parameters and MI from appropriate conjugate prior distributions) for clin-

icians’ cadre and gender are presented in Table 5.5 and Table 5.6 respectively.

After MI assuming MAR mechanism, enhanced audit and feedback led to im-

proved uptake of new pneumonia paediatric guideline over time. For example,

considering a patient admitted in an intervention hospital (enhanced audit and

feedback arm), the odds of PAQC score=1 versus PAQC score � 2 were 1.22 (95%

CI: 1.04-1.358) times higher the odds of a patients admitted in a control hospital,

for a unit increase in follow-up time and holding other variables at reference lev-

els (Table 5.5/Table 5.6). Similar observations were made under complete case

analysis, but the magnitude of effect was smaller and characterized by a slightly

wider 95% confidence interval.

The study results also exhibited contrasting results before and after multiple im-

putation for selected variables. For instance, adjusting for other variables, the

odds of PAQC score=1 versus PAQC score � 2 for a patient admitted by female

clinician were 1.52 (95% CI: 1.05 to 2.18) times higher the odds of patient admit-

ted by a male clinician (Table 5.5/Table 5.6). However, after MI assuming MAR

mechanism, the odds ratio and the corresponding 95% confidence interval (i.e.,

0R=1.37 (95% CI: 0.977 to 1.912)) did not suggest difference between male and

female clinicians in the odds of PAQC score=1 versus PAQC score � 2.

To assess stability of parameter estimates under MI assuming MAR mechanism,

we imputed missing clinicians’ cadre (Table 5.5) and clinicians’ gender (Table 5.6)
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assuming MNAR mechanism. This study results showed that the odds ratios and

the corresponding 95% CI under MI assuming MNAR mechanism were close

to those obtained under MI assuming MAR mechanism. Moreover, the magni-

tude and direction of effects were comparable after MI with the delta adjustment

method and MI based on appropriate prior distributions. The similarities in pa-

rameter estimates were more apparent for d = �0.2.

When we added shift parameters in the imputation of missing clinicians’ cadre

(delta adjustment method), we observed some changes in clinicians’ cadre effect

(adjusting for other variables) whereas the odds ratios and the 95% CI for other

variables remained the same. Specifically, the effect of clinicians’ cadre (adjusted

odd ratio) changed from 1.05 (95% CI: 0.735 to 1.421) under MI assuming MAR

mechanism to 1.02 (95% CI: 0.740 to 1.460) and 1.01 (95% CI: 0.741 to 1.461) for

d = �0.3 and d = �0.5 respectively (Table 5.5). Similarly, replacing imputed clin-

icians’ cadre with random draws from a prior Dirichlet distribution, the adjusted

odds ratio decreased to 1.04 (95% CI: 0.719 to 1.464) (Table 5.5). Nevertheless, the

observed changes in magnitude did not change the conclusion.
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Table 5.5: Adjusted odds ratios and corresponding 95% confidence intervals under complete case analysis and under MI assuming MAR
and MNAR mechanisms respectively: Clinicians’ cadre probabilities adjusted using shift parameters (d) under delta adjustment methods.
MAR imputed clinicians’ cadre replaced with draws from a Dirichlet prior distribution.

Complete case MI-MARa MI-MNARb, d =-0.2 MI-MNAR, d =-0.3 MI-MNAR, d =-0.5 MI-MNAR, Dirichlet prior
Effect OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI)
PAQC score intercept 0 Ref Ref Ref Ref Ref Ref
PAQC score intercept 1 0.002 (0.001, 0.003) 0.002 (0.001, 0.004) 0.002 (0.001, 0.004) 0.002 (0.001, 0.004) 0.002 (0.001, 0.004) 0.002 (0.001, 0.004)
PAQC score intercept 2 0.20 (0.092, 0.458) 0.03 (0.010, 0.076) 0.03 (0.010, 0.079) 0.03 (0.010, 0.079) 0.03 (0.010, 0.079) 0.02 (0.007, 0.062)
PAQC score intercept 3 0.63 (0.283, 1.397) 0.08 (0.028, 0.221) 0.08 (0.029, 0.229) 0.08 (0.029, 0.229) 0.08 (0.029, 0.229) 0.06 (0.021, 0.171)
PAQC score intercept 4 1.94 (0.874, 4.325) 0.27 (0.097, 0.759) 0.28 (0.101, 0.785) 0.28 (0.101, 0.785) 0.28 (0.101, 0.785) 0.21 (0.074, 0.599)
PAQC score intercept 5 5.99 (3.567, 7.935) 1.02 (0.364, 2.864) 1.06 (0.376, 2.964) 1.06 (0.376, 2.964) 1.06 (0.376, 2.964) 0.77 (0.270, 2.196)
PAQC score intercept 6 2.16 (9.342, 7.916) 2.56 (0.909, 7.194) 2.64 (0.937, 7.444) 2.64 (0.937, 7.444) 2.64 (0.937, 7.444) 1.83 (0.641, 5.24)
Patient’s age group:12-59 months 1.20 (0.991, 1.464) 1.19 (1.010, 1.410) 1.19 (1.011, 1.411) 1.19 (1.011, 1.411) 1.19 (1.011, 1.411) 1.20 (1.011, 1.428)
patient’s gender: Males 0.97 (0.806, 1.174) 0.99 (0.842, 1.166) 0.99 (0.844, 1.168) 0.99 (0.844, 1.168) 0.99 (0.844, 1.168) 0.97 (0.820, 1.15)
Comorbidities: 0 1.59 (1.015, 2.513) 1.51 (1.029, 2.219) 1.51 (1.029, 2.220) 1.51 (1.029, 2.220) 1.51 (1.029, 2.220) 1.50 (1.016, 2.226)
Comorbidities :1 1.59 (1.005, 2.498) 1.34 (0.910, 1.974) 1.34 (0.911, 1.977) 1.34 (0.911, 1.977) 1.34 (0.911, 1.977) 1.33 (0.877, 1.928)

Comorbidities :2 1.61 (1.001, 2.591) 1.38 (0.929, 2.076) 1.39 (0.930, 2.078) 1.39 (0.930, 2.078) 1.39 (0.930, 2.078) 1.35 (0.897, 2.033)
Clinician’s gender: female 1.52 (1.057, 2.183) 1.37 (0.977, 1.912) 1.37 (0.981, 1.931) 1.39 (0.985, 2.110) 1.35 (0.892, 1.951) 1.37 (0.973, 1.937)
Clinician’s cadre: MOc 1.02 (0.709, 1.468) 1.05 (0.735, 1.421) 1.04 (0.741, 1.462) 1.02 (0.740, 1.460) 1.01 (0.740, 1.461) 1.04 (0.719, 1.464)
Hospital workload: low 0.93 (0.624, 1.376) 0.73 (0.531, 1.020) 0.74 (0.535, 1.025) 0.74 (0.535, 1.025) 0.74 (0.535, 1.025) 0.74 (0.526, 1.04)
Malaria prevalence: low 0.95 (0.644, 1.40) 0.87 (0.588, 1.151) 0.87 (0.606, 1.185) 0.87 (0.606, 1.185) 0.84 (0.606, 1.185) 0.86 (0.610, 1.226)
Time (months) 1.05 (0.969, 1.145) 1.01 (0.941, 1.083) 1.01 (0.943, 1.085) 1.01 (0.943, 1.085) 1.01 (0.943, 1.085) 0.99 (0.927, 1.074)
Enhanced A&Fd arm 0.18 (0.095, 0.349) 0.19 (0.109, 0.345) 0.19 (0.108, 0.340) 0.19 (0.108, 0.340) 0.19 (0.108, 0.341) 0.18 (0.101, 0.334)
Time ⇥ Enhanced A&F 1.15 (1.018, 1.307) 1.22 (1.104, 1.358) 1.23 (1.107, 1.362) 1.23 (1.107, 1.362) 1.23 (1.107, 1.362) 1.24 (1.112, 1.379)
Variance between 1.32 (1.151) 1.16 (1.07) 1.16 (1.07) 1.16 (1.07) 1.16 (1.07) 1.16 (1.07)
random clinician’s intercepts

MI-MAR: -Multiple imputation assuming Missing at Random, MI-MNAR: -Multiple imputation assuming Missing at Not Random, MO: -Medical

officers, A&F: -Audit and feedback



Table 5.6: Adjusted odds ratios and corresponding 95% confidence intervals under complete case analysis and under MI assuming MAR
and MNAR mechanisms respectively: Clinicians’ gender probabilities adjusted using shift parameters (d ) under delta adjustment methods
and imputed clinicians’ gender (under MAR) replaced with draws from a beta prior distribution.

Complete case MI-MARa MI-MNARb, d =-0.2 MI-MNAR, d =-0.3 MI-MNAR, d =-0.5 MI-MNAR, Beta prior
Effect OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI)
PAQC score intercept 0 Ref Ref Ref Ref Ref Ref
PAQC score intercept 1 0.002 (0.001, 0.003) 0.002 (0.001, 0.004) 0.002 (0.001, 0.004) 0.002 (0.001, 0.004) 0.002 (0.001, 0.004) 0.002 (0.001, 0.004)
PAQC score intercept 2 0.20 (0.092, 0.458) 0.03 (0.010, 0.076) 0.03 (0.010, 0.076) 0.03 (0.010, 0.077) 0.03 (0.010, 0.079) 0.02 (0.008, 0.061)
PAQC score intercept 3 0.63 (0.283, 1.397) 0.08 (0.028, 0.221) 0.08 (0.028, 0.221) 0.08 (0.028, 0.223) 0.08 (0.029, 0.229) 0.07 (0.024, 0.178)
PAQC score intercept 4 1.94 (0.874, 4.325) 0.27 (0.097, 0.759) 0.27 (0.097, 0.758) 0.274(0.098, 0.766) 0.28 (0.101, 0.785) 0.23 (0.083, 0.611)
PAQC score intercept 5 5.99 (3.567, 7.935) 1.02 (0.364, 2.864) 1.02 (0.364, 2.861) 1.03 (0.368, 2.892) 1.06 (0.376, 2.964) 0.85 (0.313, 2.304)
PAQC score intercept 6 2.16 (9.342, 7.916) 2.56 (0.909, 7.194) 2.56 (0.909, 7.186) 2.58 (0.918, 7.264) 2.64 (0.937, 7.444) 2.12 (0.779, 5.787)
Patient’s age group:12-59 months 1.20 (0.991, 1.464) 1.19 (1.010, 1.410) 1.19 (1.010, 1.411) 1.19 (1.010, 1.411) 1.19 (1.011, 1.411) 1.19 (1.011, 1.412)
Patient’s gender: Males 0.97 (0.806, 1.174) 0.99 (0.842, 1.166) 0.99 (0.843, 1.168) 0.99 (0.843, 1.168) 0.99 (0.844, 1.168) 0.99 (0.842, 1.167)
Comorbidities: 0 1.59 (1.015, 2.513) 1.51 (1.029, 2.219) 1.51 (1.028, 2.218) 1.51 (1.031, 2.223) 1.51 (1.029, 2.220) 1.51 (1.030, 2.222)
Comorbidities :1 1.59 (1.005, 2.498) 1.34 (0.910, 1.974) 1.34 (0.909, 1.973) 1.34 (0.911, 1.977) 1.34 (0.911, 1.977) 1.34 (0.910, 1.975)
Comorbidities :2 1.61 (1.001, 2.591) 1.38 (0.929, 2.076) 1.38 (0.928, 2.074) 1.39 (0.930, 2.079) 1.39 (0.930, 2.078) 1.38 (0.929, 2.076)
Clinician’s gender: female 1.52 (1.057, 2.183) 1.37 (0.977, 1.912) 1.37 (0.962, 1.891) 1.37 (0.971, 2.026) 1.46 (0.989, 2.313) 1.37 (0.975, 1.857)
Clinician’s cadre: MOc 1.02 (0.709, 1.468) 1.05 (0.735, 1.421) 1.03 (0.729, 1.453) 1.04 (0.718, 1.402) 1.04 (0.741, 1.461) 1.03 (0.741, 1.423)
Hospital workload: low 0.93 (0.624, 1.376) 0.73 (0.531, 1.020) 0.73 (0.530, 1.016) 0.74 (0.533, 1.022) 0.74 (0.535, 1.025) 0.73 (0.527, 1.012)
Malaria prevalence: low 0.95 (0.644, 1.400) 0.87 (0.588, 1.151) 0.87 (0.597, 1.169) 0.86 (0.603, 1.181) 0.86 (0.606, 1.185) 0.86 (0.578, 1.139)
Time (months) 1.05 (0.969, 1.145) 1.01 (0.941, 1.083) 1.01 (0.942, 1.084) 1.01 (0.942, 1.084) 1.01 (0.943, 1.085) 1.01 (0.940, 1.082)
Enhanced A&Fd arm 0.18 (0.095, 0.349) 0.19 (0.109, 0.345) 0.19 (0.108, 0.342) 0.19 (0.108, 0.339) 0.19 (0.108, 0.340) 0.19 (0.11, 0.347)
Time ⇥ Enhanced A&F 1.15 (1.018, 1.307) 1.22 (1.104, 1.358) 1.22 (1.106, 1.361) 1.22(1.107, 1.362) 1.23 (1.107, 1.362) 1.22 (1.103, 1.357)
Variance between 1.32 (1.151) 1.16 (1.07) 1.16 (1.07) 1.16 (1.07) 1.16 (1.07) 1.16 (1.07)
random clinician’s intercepts

MI-MAR: -Multiple imputation assuming Missing at Random, MI-MNAR: -Multiple imputation assuming Missing at Not Random, MO: -Medical

officers, A&F: -Audit and feedback



5.4 Discussion

In this study we sought to conduct sensitivity analyses to assess stability and ro-

bustness of inference under assumed MAR mechanism. Missing data occurred in

patient and clinician-level covariates, as well as pneumonia care indicators used

to construct PAQC score; a composite measure for quality of care.

The focus of these sensitivity analyses was clinician-level variables in pneumonia

trial data set. In order to define suitable assumptions reflecting MNAR missing

data mechanism in the two variables of interest, we elicited and incorporated ex-

perts’ opinions into the analysis. Specifically, we interviewed 15 clinical experts

in paediatrics wards in two study hospitals and incorporated their opinions into

our sensitivity analyses using two approaches. In the first approach, we incor-

porated uncertainty about the missing data mechanism in the form of conjugate

prior distributions. In the second approach, we incorporated experts’ opinion

in the form of shift parameters within the delta adjustment method. Although

this approach is a transparent and flexible means by which to impute data un-

der MNAR mechanisms, the choice of appropriate sensitivity parameters is less

straightforward.

In this study, we utilized elicited probabilities combined with additional infor-

mation probed from experts during interview sessions in the choice of sensible

shift parameters. According to experts’ contextual knowledge, hospitals with

high workload were more likely to be teaching and referral hospitals, hence more

medical officers and medical officer interns. Furthermore, experts’ opinions in-

dicated that there are more male medical officers/interns than female medical
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officers/interns, compared to the observed data. Therefore, clinicians with miss-

ing information in high workload hospitals were more likely to be male medical

officers/interns than female medical officers/interns. In this analysis, we imple-

mented experts’ opinion over a range of three shift parameters (i.e., d = -0.2, -0.3

and -0.5). The shift parameters altered the probabilities with which the multilevel

joint imputation model imputed missing clinicians’ cadre and gender. The degree

of departure from MAR assumption was the same for individuals with missing

clinicians’ cadre and gender. This was in consideration of experts’ beliefs that

departures from MAR assumptions would be similar for the two clinician-level

variables.

From the study results, parameter estimates (i.e., odds ratios and correspond-

ing 95% confidence intervals) under MI assuming MNAR scenarios were close

to those estimated under MAR assumption. The similarities were an indication

of robust inferences under MAR assumptions. For delta adjusted over a range

of parameters, we observed slight increase/decrease in magnitude of clinicians’

cadre and gender effects. However, these changes did not lead to changes in

inference and conclusions. More importantly, the effect of enhanced A&F over

follow-up time remained stable across a range of MNAR scenarios. If conclu-

sions differ between CCA and MI-MAR, it could mean that either CCA is wrong

(outcome dependent MAR) or that MI is wrong (covariate dependent MNAR) or

both are wrong (outcome dependent MNAR). When the mechanism is covariate-

dependent MNAR (i.e., it does not depend on the outcome), then CCA is valid

and in this case, it can be better than MI assuming MAR mechanism (White and
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Carlin, 2010).

Through this study, we have demonstrated application of two sensitivity anal-

ysis approaches in multilevel routine data contexts incorporating experts’ opin-

ion. The sensitivity analyses methods adopted in this study have been used and

reported in previous studies (Héraud-Bousquet et al., 2012; Smuk et al., 2017;

Tompsett et al., 2018). In this case, we applied the approaches to multilevel

data compared to single level data used in previous analyses. A key difference

between the two sensitivity analyses methods is that one provides several in-

ferences based on MI with delta adjustment method while the other provides

a single inference based on informative prior distributions (i.e., MI from prior

distribution). Despite these differences, parameter estimates were comparable

between the two sensitivity analyses methods. A possible explanation for the

similarities could be the fact that both methods utilized same experts’ opinions to

create differences between MAR and MNAR imputed values in the variables of

interest. Therefore, we recommend both methods as guiding examples for con-

ducting sensitivity analyses within the PMM framework, rather than prescribe

how every sensitivity analysis in the multilevel data setting should be conducted.

Moreover, more studies are needed to examine the performance of the two meth-

ods in a range of simulation scenarios.

In this analysis, we elicited experts’ opinions in face-to-face interviews, which

allowed us to probe for additional information and clarifications not captured

in the questionnaires. In instances where face-to-face interviews are impracti-

cal, telephone discussions or electronic questionnaires can be considered (Molen-
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berghs et al., 2014, Chapter 20). When imputing from prior distributions, the

choice of a conjugate prior should be informed by the distribution of the vari-

able under analysis. However, in situations where prior knowledge is difficult

to elicit, delta adjustment method with tipping-point analysis can be a valuable

alternative (Leacy et al., 2017; Tompsett et al., 2018). Tipping-point analysis al-

lows one to explore sensitivity parameters across a wide range of values in order

to determine a set of sensitivity parameters for which inference and conclusions

change (Yuan, 2014).

In this study, we applied the delta adjustment method within the pattern mixture

framework and combined estimates across the imputed data sets using Rubin’s

rules (Rubin, 1976). A recent study by Tang (2017) evaluated the extent of bias

associated with Rubin’s variance estimator under the delta-adjusted PMM and

control-based PMM. From the study results, bias of MI variance was found to be

negligible in the delta-adjusted PMM but substantial in the control-based PMM

context. The study results further showed that inference based on Rubin’s rules

in the delta-adjusted PMM was approximately valid. For this reason, we only

reported estimates based on Rubin’s rules. The alternative asymptotic sampling

variance estimator suggested by Tang (2017) can be considered in future studies.

This analysis was limited in several ways. Firstly, we interviewed 15 clinical ex-

perts in two study sites due to time and cost constraints, on top of refusal by

some of the respondents to fill in the questionnaires. Secondly, we only imputed

clinicians’ cadre and gender under MNAR mechanism while patient-level vari-

ables were imputed assuming MAR mechanism. Moreover, we conducted sep-
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arate MI-MNAR analysis for"y analysis. This because eliciting experts’ opinions

for the two variables jointly would have been complicated and more difficult to

implement. Thirdly, although pneumonia data had clustering at hospital (n=12)

and clinician level (n=378), we only accounted for clinicians’ random effect in the

analysis model while hospital characteristics were included as fixed effects. This

was to ensure compatibility between analysis and imputation models. Moreover,

statistical software used could only accommodate random-effects only at the sec-

ond level of hierarchy.

In conclusion, sensitivity analysis is useful in ascertaining robustness of infer-

ence under MAR assumption. We have demonstrated that eliciting and incorpo-

rating experts’ opinions in form of prior distribution and shift parameters pro-

vides transparent and flexible means of assessing departures from the MAR as-

sumption following multilevel MI. After multilevel MI of clinician level variables

assuming MNAR, our inferences were insensitive to departures from the MAR

mechanism. These observations were made using two sensitivity analyses meth-

ods. That is, incorporating uncertainty about the missing data mechanism in the

form of conjugate prior distributions and in the form of shift parameters within

the delta adjustment method.
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Chapter 6

Pairwise Joint Modelling of

Clustered and High-dimensional

Vector of Outcomes with Covariate

Missingness

6.1 Introduction

Multiple responses reflecting different aspects of patient care is a common phe-

nomenon in routine care studies, investigating research questions such as the

level of adherence to standard quality of care guidelines by clinicians in differ-

ent health care facilities. Despite measuring, for each patient, a correlated vec-

tor of response variables, inferences in most routine care studies are based on

one primary outcome or multiple separate analyses (Gachau et al., 2017; Ogero
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et al., 2018; Ayieko et al., 2019). Alternatively, the outcomes are combined into

a single composite score (Profit et al., 2014; Opondo et al., 2016; Ogero et al.,

2020), to provide global trends and insight into the quality of patient care. While

these approaches are relatively straightforward, some research questions require

joint modelling of all outcomes simultaneously (Molenberghs and Verbeke, 2005,

Chapter25-25), for instance, when the association among outcomes and joint ef-

fects of covariates on all outcomes are of primary research interest (Fieuws and

Verbeke, 2006; Fieuws et al., 2006; Verbeke et al., 2014).

In principle, a joint model links two or more models, using random-effects that

capture association among outcomes of interest. Statistically, joint modelling has

advantages over separate analyses of multiple outcomes. This includes efficiency

gain and bias reduction, especially when data are MAR in some of the outcomes

(Gueorguieva, 2001; Fieuws and Verbeke, 2004, 2006; McCulloch, 2008). In ad-

dition, joint modelling allows for different types of models for the different out-

comes (e.g. linear, non-linear, and generalized linear mixed models) (Faes et al.,

2008), while the interpretation of parameter estimates is the same as interpreta-

tion from the separate univariate models (Fieuws and Verbeke, 2004).

Although joint models have been extended from the common bivariate to the

multivariate cases (Fieuws and Verbeke, 2006), standard fitting procedures are

difficult to implement with high-dimensional outcomes (Fieuws and Verbeke,

2006; McCulloch, 2008; Jaffa et al., 2014; Hickey et al., 2016; Nassiri et al., 2017).

The computational complexities stem from an increase in the number of param-

eters to be estimated, for every new outcome added into the joint model (Molen-
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berghs and Verbeke, 2005, Chapter 25, p .470), and relatedly the increasing di-

mension of the random-effects vector.

To overcome these challenges, the shared random-effects model, which assumes

that all outcomes share the same set of random-effects, can be considered. In this

case, the dimension of the random-effects does not increase with an increase with

the number of outcomes (Jaffa et al., 2014). The price to pay is a sometimes re-

strictive, less realistic model (McCulloch, 2008). For instance, when dealing with

discrete outcomes (e.g., binomial and Poisson), that have a natural link between

the mean and variance.

A plausible alternative is the pairwise joint modelling approach, which allows fit-

ting of the correlated random-effects joint model, while circumventing the com-

putational complexity associated with a full joint multivariate model (Fieuws and

Verbeke, 2006; Fieuws et al., 2006).

As mentioned earlier, missing data in either outcomes or covariates is a com-

mon problem in routine data. Although joint modelling can be used to mitigate

the effect of missing data among outcomes, appropriate strategies of handling

missing covariates in high-dimensional joint modelling is hardly addressed in

the literature. For instance, a previous joint modelling study reported deletion of

case records with missing covariates to alleviate computational challenges (Long

and Mills, 2018). The repercussion of suboptimal missing data handling tech-

niques includes risk of biased and inefficient estimates, hence misleading infer-

ences (Carpenter and Kenward, 2013).

In this chapter, we sought to jointly analyse 9 binary outcomes, at the same time
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accounting for covariate missingness in a paediatric pneumonia trial data set.

Specifically, we used MI, based on the joint modelling framework, to address

missing covariates across two levels of the hierarchy. Thereafter, we used the

pairwise approach to estimate the joint effects of covariates on outcomes. This

was in addition to estimating the strength of association among pneumonia out-

comes.

The remainder of this chapter is organized as follows. Section 6.2 presents meth-

ods on joint modelling approach using mixed models and the pairwise fitting

approach followed by application to pneumonia trial data. Results are presented

in Section 6.3 and we conclude with a discussion in Section 6.4.

6.2 Methods

6.2.1 Correlated Random-effects Joint Model

Let Yrij denote the rth (r = 1, 2, . . . , p) outcome for the ith (i = 1, 2, . . . , N) subject

in cluster j (j = 1, 2, . . . , ni). The corresponding univariate random-effects model

for the rth outcome can be defined as

h�1 �E(Yrij|bri, Xrij, Zrij)
�
= X

0
rijbr + Z

0
rijbri, (6.1)

where h�1(·) is an appropriate link function depending on the of type variable

(i.e. continuous, binary, count, etc.) (Fitzmaurice et al., 2009a), Xrij is a vec-

tor of known covariates with fixed effects br and Zrij is a vector of covariates

with random-effects bri. The univariate random-effects model can be extended

to jointly model all the outcomes simultaneously, by imposing a joint multivari-
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ate distribution on the random-effects (Gueorguieva and Agresti, 2001; Fieuws

and Verbeke, 2006; Faes et al., 2008). Moreover, the number of random-effects can

vary among the outcomes of interest. Conditional on the vector of random-effects

(bri), the outcomes are assumed to be independent (Molenberghs and Verbeke,

2005) and the corresponding log-likelihood contribution for subject i equals

li(y1i, y2i, . . . , ypi|Q⇤) = ln
Z p

’
r=1

fri(yri|bri, qr) f (bri|D)dbri. (6.2)

The vector Q⇤ contains all parameters of the full joint model (i.e. fixed parameters

denoted by b⇤ and covariance parameters denoted by S⇤), while fri(yri|bri, Qr)

is the density of yri conditional on the random- effects for the rth outcome on

subject i. The vector of random-effects bi is assumed to follow a multivariate

normal distribution with mean zero and covariance matrix D (Molenberghs and

Verbeke, 2005), that is,

bi =

0

BBBBBBBBBB@

b1i

b2i

...

bpi

1

CCCCCCCCCCA

⇠ N

2

66666666664

0

BBBBBBBBBB@

0

0

...

0

1

CCCCCCCCCCA

,

0

BBBBBBBBBB@

D11 D12 . . . D1p

D21 D22 . . . D2p

...
... . . . ...

Dp1 Dp2 . . . Dpp

1

CCCCCCCCCCA

3

77777777775

.

The elements Drs in D correspond to blocks of random-effects variance-covariance

between the rth and the sth outcomes (r, s = 1, 2, . . . , p). For example, if each out-

come has a random intercept (b0) and a random slope (b1), then Drs is given by
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Drs =

2

66666666664

s2
b0r

sb0rb1r sb0rb0s sb0rb1s

s2
b1r

sb1rb0s sb1rb1s

s2
b0s

sb0sb1s

s2
b1s

3

77777777775

.

The elements of the variance covariance matrix D can be used to measure the

strength of association between any two outcomes of interest. As mentioned ear-

lier, the dimension of the random-effects vector bi in the full joint model, increases

with an in increase in the number of outcomes. This leads to computational chal-

lenges for high dimensional vector of outcomes (Molenberghs and Verbeke, 2005;

Fieuws and Verbeke, 2006).

6.2.2 Pairwise Modelling Approach

In light of computational challenges highlighted above, Fieuws and Verbeke (2006)

proposed a pairwise approach within the pseudo-likelihood framework to han-

dle a high-dimensional vector of outcomes. With a vector of p outcomes, the pair-

wise approach maximizes the likelihood for all Q = p(p � 1)/2 pairwise models

separately, instead of maximizing the full joint multivariate likelihood (Fieuws

and Verbeke, 2006; Fieuws et al., 2006; Kundu, 2011).
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Precisely, this produces a so-called pseudo-likelihood (pl)of the following form:

pl(Q) = l(Y1Y2|Q1,2)l(Y1Y3|Q1,3), . . . , l(Yp�1Yp|Qp�1,p) =
p�1

’
r=1

p

’
s=1

l(YrYs|Qr,s).

(6.3)

For a given pair of responses (r, s = 1, 2, . . . , p), l(Yr, Ys|Qrs) denotes the likeli-

hood, while Qrs is the vector of all parameters encountered in a pairwise joint

model (Fieuws and Verbeke, 2006; Kundu, 2011). The corresponding pseudo-log

likelihood (pll) function is given by

pll(Q) =
p�1

Â
r=1

p

Â
s=r+1

ll(YrYs|Qrs)

=
Q

Â
q=1

ll(Yq|Qq),

(6.4)

where Yq and Qq contains all the observations and parameters, respectively, in

the qth response pair (q = 1, 2, . . . , Q). All Q pair-specific parameter vectors Qq

(q = 1, 2, . . . , Q) are stacked together into Q. It is clear that if Q̂q maximizes

l(Yq|Qq), then Q̂, the stacked vector combining all Qq, maximizes pll(Q) (Kundu,

2011). The asymptotic distribution of Q̂ is multivariate normal given by

p
N(Q̂ � Q) ⇠ MVN(0, H

�1
GH

�1), (6.5)

where H
�1

GH
�1 is a sandwich estimator and H and G are based on cluster-

wise Hessians and gradients of the log-pseudo-likelihood function, respectively

(Fieuws et al., 2006; Fieuws and Verbeke, 2006; Kundu, 2011). The vector of all
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parameters in the full joint model (Q⇤) and stacked vector from pairwise models

(Q) are not equivalent. Specifically, some parameters in Q⇤ have a single coun-

terpart in Q, while other elements in Q⇤ have multiple counterparts in Q. A set

of fixed effects (b⇤), for the full joint model, are obtained by averaging duplicate

parameter estimates from the pairwise joint models (Fieuws and Verbeke, 2006).

This can be achieved by multiplying the stacked vector of regression parameters

(b) with an appropriate weight matrix A as below

b⇤ = Ab. (6.6)

The standard errors follow as the square root of diagonal elements of variance-

covariance estimator:

S⇤ = A(H
�1

GH
�1)A

T. (6.7)

Further details on estimation of fixed effects and corresponding standard errors

are presented in the application section.

6.2.3 Pneumonia Trial Data

We analyzed routine paediatric data introduced in Chapter 1, Section 1.2. There

were 12 pneumonia care indicators of interest in the trial data (i.e., nine signs and

symptoms in the assessment domain, 1 indicator in the diagnosis and classifica-

tion domain and two indicators in the treatment domain (Table 1.2)). However,

3 signs and symptoms, namely central cyanosis, grunting and ability to drink
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were documented for all the case records. Therefore, we considered 9 binary

outcomes in a subsequent analysis. Table 6.1 describes how we created each

binary outcome. The value one for the binary indicators represents documen-

tation/adherence to recommended paediatric pneumonia guidelines, while zero

represents lack of documentation or documentation of inappropriate care.
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Table 6.1: Quality of care indicators among children admitted with pneumonia during the trial period.

Quality of care domain Indicator Scores in binary indicators
1. Assessment
Primary signs and symptoms Cough 1: if cough is documented,

0: if it is not documented.
Difficult breathing 1: if difficult breathing is documented,

0: if it is not documented.
Secondary sign and symptoms Respiratory rate 1: if respiratory rate is documented,

0: if it is not documented.
Oxygen saturation 1: if oxygen saturation is documented,

0: if it is not documented.
AVPUa 1: if AVPU is documented,

0: if it is not documented.
Lower chest wall indrawing 1: if indrawing is documented,

0: if it is not documented.
2. Diagnosis and classification Correct diagnosis 1: if the admitting clinician documented

pneumonia as the clinical diagnosis
0: if documented clinical diagnosis is severe
pneumonia or missing classification.

3. Treatment Correct prescription 1: if oral amoxicillin was prescribed and documented
in the medical record.
0: if amoxicillin was not prescribed

Correct oral amoxicillin dose 1: if oral amoxicillin was prescribed in correct dose and frequencies,
i.e., 32-48 international units/Kilogram (IU/Kg) every 12 hours.
0: if oral amoxicillin prescription is an under dose (<32 IU/Kg)
or over dose (>48 IU/Kg) or missing amoxicillin dose or
wrong frequency or missing frequency or missing patient’s weight.

AVPUa :-Alert, Verbal response, Pain response, Unresponsive, ⇤Pneumonia diagnosis for patients with history of cough and/or difficult breathing

(primary signs) in combination with signs of lower chest wall indrawing and/or respiratory rate (RR) �50 (�40) for patients aged 2-11 (12-59 months), in

the absence of danger any sign (inability to drink/breastfeed, cyanosis, grunting or oxygen saturation < 90% or AVPU= ‘V’, ‘P’ or ‘U’).



Covariates

The covariates of interest are as described in Chapter 3, Section 3.2.1. Missing-

ness occurred in patients’ gender at 7% while 21.7% and 21.9% of the clinicians

had missing cadre and gender, respectively. Before fitting a pairwise model, we

imputed partially observed covariates using the latent normal joint modelling MI

approach described in Chapter 3, Section 3.2.3.

Application: Model Fitting and Inference

We applied the pairwise approach to jointly model the probability of documen-

tation among 9 pneumonia outcomes (1=cough, 2=difficult breathing, 3=respira-

tory rate, 4=oxygen saturation, 5=AVPU, 6=lower chest wall indrawing, 7=correct

pneumonia diagnosis, 8=correct pneumonia treatment, and 9=correct treatment

dose).
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For each imputed data set we fitted 36 pairwise models defined by

logit[P(YPAQCScore;rijl = 1)] = br0 + b1Xagegroup;rijl + b2Xpatientgender;rijl+

b3Xcomorbidity=0;rijl + b4Xcomorbidity=1;rijl + b5Xcomorbidity=2;rijl+

b6Xcliniciancadre;rjl + b7Xcliniciangender;rjl + b8Xadmissionworkload;rl+

b9Xmalariaprevalence;rl + b10Xtimeinmonths;rl + b11Xtrialarm;rl+

beta12Xtimeinmonths;rl ⇤ Xtrialarm;rl + brjl

(6.8)

logit[P(YPAQCScore;sijl = 1)] = bs0 + b1Xagegroup;sijl + b2Xpatientgender;sijl+

b3Xcomorbidity=0;sijl + b4Xcomorbidity=1;sijl + b5Xcomorbidity=2;sijl+

b6Xcliniciancadre;sjl + b7Xcliniciangender;sjl + b8Xadmissionworkload;sl+

b9Xmalariaprevalence;sl + b10Xtimeinmonths;sl + b11Xtrialarm;sl+

beta12Xtimeinmonths;sl ⇤ Xtrialarm;sl + bsjl

where Yrijl and Ysijl denote the rth and the sth outcomes, r 6= s for (r, s = 1, 2, . . . , 9)

for patient i admitted by clinician j in hospital l. Each outcome occurred in 8

specific pairs and we included a random clinician intercept in each model. Due

to relatively low numbers of clinical and medical officers, we grouped clinicians

into two cadres from the initial four. That is, clinical officers (CO) combine clinical

officers and clinical officer interns and medical officers (MO) combine medical of-

ficers and medical officer interns, respectively. We fitted all pairwise joint models

using the JMbayes package (Rizopoulos et al., 2020) in R version 3.5.4. Compete

case analysis was also conducted using a SAS macro provided by Fieuws et al.

149



(2006) for verification purposes.

Under complete case analysis, regression estimates and standard errors were

averaged across 36 pairwise models using the pseudo-likelihood approach pre-

sented in subsection 6.2.2. Likewise, regression parameters were averaged across

the various pairwise models for each imputed data set. Variance-covariance es-

timators (6.7) were also obtained for each imputed data set. This step resulted

in 20 sets of averaged regression parameters and variance-covariance estimators

respectively. Thereafter, Rubin’s rules (Rubin, 1976) were applied to obtain final

estimates while accounting for within and between imputation variability. More

details on the two-step procedure are as follows. Each bivariate model in the mth

imputed data set had a vector of 26 regression coefficients (i.e., 13 regression co-

efficients for each outcome) denoted by b̂qm, q = 1, 2, . . . , 36, m = 1, 2, . . . , 20. We

stacked the 36 pairwise parameter estimate vectors resulting into a column vector

with 936 rows, that is,

b̂m =

2

66666666664

b̂1m

b̂2m

...

b̂36m

3

77777777775

936⇥1

, m = 1, 2, . . . , 20.

Any two pairwise joint models with a common outcome (e.g., l(Yr, Ys) and l(Yr, Ys0 )

s 6= s0), shared the parameters for the rth outcome (Fieuws and Verbeke, 2006;

Fieuws et al., 2007; Kundu, 2011). To account for duplicate parameter estimates,
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we pre-multiplied bm with an appropriate weight matrix A as follows,

b̂
⇤
m = Ab̂m m=1,2,. . . ,20. (6.9)

The weight matrix A had 117 rows and 936 columns, and it was constructed such

that, it averaged all duplicate parameter estimates of an outcome across the 8

pairwise models in which it occurred. The resulting vector, b̂
⇤
m was a stacked

column vector of regression parameters for all nine outcomes. Each outcome had

13 regression parameters denoted by b̂
⇤
mr.

Inference for Standard Errors

The corresponding standard errors were obtained using the pseudo-likelihood

approach introduced above. For each bivariate pair, Ymq, q = 1, 2, . . . , 36, in the

mth imputed data set, we estimated the variance-covariance matrix, H
�1

GH
�1.

Since H and G depend on the unknown parameters in Q (Molenberghs and Ver-

beke, 2005; Kundu, 2011), estimation proceeded as follows.

1. We obtained Ĵmq and K̂mq for each pairwise model using

Ĵmq =
N

Â
i=1

XT
imqT̂imqXimq

and

K̂mq =
h

XT
1mqT̂1mq, XT

2mqT̂2mq, . . . , XT
NmqT̂Nmq

i
,

where Ximq corresponds to the ith subject’s contribution in the design matrix

for the fixed effects, Timq = (ZimqD̂mqZT
imq)

�1 where Zimq is the ith subject’s
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contribution in the design matrix for random-effects (Kundu, 2011) and Dmq

is the variance-covariance matrix for the random-effects for the qth pair in

the mth imputed data set. N indicates the number of subjects.

2. We combined Ĵmq and K̂mq estimated across all the 36 pairs, (i.e., ( Ĵm1,K̂m1),( Ĵm2,K̂m2),

. . . , ( Ĵm36,K̂m36)) as follows:

Ĵm =

2

66666666664

Ĵm1 0 . . . 0

0 Ĵm2 . . . 0

...
... . . . ...

0 . . . . . . Ĵm36

3

77777777775

936⇥936

and K̂m =

2

66666666664

K̂m1

K̂m2

...

K̂m36

3

77777777775

936⇥N.

3. We estimated Hm and Gm as follows

Ĥm =
1
N

Ĵm and Ĝm =
1
N

K̂mK̂
T
m,

where N is the number of subjects.

4. We obtained a variance-covariance matrix, Ŝ
⇤
m for each imputed data set

using

Ŝ
⇤
m = AWm A

T, m = 1, 2, . . . , 20, (6.10)

where Ŵm = Ĥ
�1
m ĜmĤ

�1
m and A is the weight matrix defined above. Each

Ŝ
⇤
m was a 117 ⇥ 117 covariance matrix and the diagonal elements corre-

sponded to variances of fixed regression parameters in b̂
⇤
m.
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Pooling Final Estimates

In the final step, we pooled the final estimates using Rubin’s rules (Rubin, 1976)

for each of the nine outcomes. This was based on the set of pairwise regression

parameters and the estimated variance covariance matrices Ŝ
⇤
m. The pooled MI

estimator for b is given by

b̄⇤
r =

1
M

M

Â
m=1

b̂⇤
mr, (6.11)

with variance estimator

Vr = Wr +

✓
M + 1

M

◆
⇥ Br,

where

Wr =
1
M

M

Â
m=1

ŝ2
mr

is the average imputation variance, ŝ2
mr are the diagonal elements of Ŝ⇤

m and

Br =
1

M � 1

M

Â
m=1

(b̂⇤
mr � b̄⇤

r )
2

is the between imputation variance. Final MI estimates were compared to those

obtained under complete case analysis.

6.2.4 Statistical Tests for Multiple Parameters

To test for the joint effect of covariates on the outcomes, we used the Wald-type

test. The full (saturated) model contained all the covariates while the reduced
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(null) models dropped one covariate at a time. The general linear hypothesis

under complete case analysis corresponded to

H0 : Lb = 0 vs HA : Lb 6= 0 (6.12)

where L is an appropriate matrix (Molenberghs and Verbeke, 2005; Fieuws and

Verbeke, 2006). For example, to test for the joint interaction effect between inter-

vention arm and follow-up time, the null hypothesis corresponded to

H0 : b1,13 = b2,13 = b3,13 = b4,13 = b5,13 = b6,13 = b7,13 = b8,13 = b9,13 = 0.

We compared the test statistic with a chi-square with nine degrees of freedom. A

5% level of significance was considered.

6.2.5 Association Among Pneumonia Outcomes

The strength of association among documentation of pneumonia care indicators

was evaluated using the covariances of the random-effects. Since the covariance

matrix D was not estimated directly at analysis stage, we constructed it using

blocks of random-effects variance-covariance matrices estimated in the pairwise

joint models. Under MI, we first averaged duplicate variances across 36 pairwise

random intercept models for each of the 20 imputed data set.
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Specifically, for each imputed data set, we extracted the random intercepts variance-

covariance matrix for all 36 pairwise joint models, that is,

Dm1 =

2

664
s2

bm01
sbm01bm02

s2
bm02

3

775 , Dm2 =

2

664
s2

bm01
sbm01bm03

s2
bm03

3

775 , . . . , Dm36 =

2

664
s2

bm08
sbm08bm09

s2
bm09

3

775 .

We then created an overall variance-covariance matrix Dm for each imputed data

set accounting for overlapping information. For example, in each imputed data

set, (m = 1, 2, . . . , 20), documentation of cough occurred in the variance-covariance

matrices of the first 8 pairs, that is,

Dm1 =

2

664
s2

bm01
sbm01bm02

s2
bm02

3

775 , Dm2 =

2

664
s2

bm01
sbm01bm03

s2
bm03

3

775 , . . . , Dm8 =

2

664
s2

bm01
sbm01bm09

s2
bm09

3

775 .

We extracted the random intercept variances of each outcome from the pairs it

occurred in and averaged them into a single random intercept variance estimate

of Yr (e.g., s2
b01

denoting the random intercept variance for cough). On the other

hand, unique off-diagonal elements corresponding to covariance between any

two outcomes were also mapped into Dm. Thereafter, we averaged all the 20 Dm

matrices, m = 1, 2, . . . , 20 to obtain the overall 9⇥ 9 variance covariance matrix D

for all the nine outcomes. We used the same procedure to construct the random-

intercepts variance-covariance under complete case analysis where we averaged

duplicate variances across 36 pairwise random intercept models. The strength of
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association between any two outcomes, say Yr and Ys, was calculated using

Corr(b0r, b0s) =
Cov(b0rb0s)p

Var(b0r)⇥ Var(b0s)
=

sb0rb0sq
s2

b0r
⇥ s2

b0s

. (6.13)

We performed principal component analysis (PCA) on random clinicians’ inter-

cepts variance-covariance matrices obtained under complete case analysis and

after MI in order to visualize the factor loadings amongst pneumonia outcomes

of interest.

6.3 Results

Regarding to outcomes of interest, the level of documentation and adherence to

recommended pneumonia care varied within and across domains of care. Most

of the signs and symptoms in the assessment domain were well documented ex-

cept for oxygen saturation and respiratory rate, which had documentation rates

of 60.9% (1297/2127) and 88.8% (1889/2127), respectively. On the other hand,

we observed poorer performance in diagnosis and classification domain as well

as treatment domain. Specifically, of all 2127 syndromic pneumonia cases, only

1473 (69.3%) had correct clinical diagnosis documented in the medical record.

In the treatment domain, about 48.7% (1036/2127) were prescribed with oral

amoxicillin as per the guidelines. However, only 25% (523/2127) of all pneu-

monia patients got the right oral amoxicillin dosage, that is, 32-48 international

units/Kilogram (IU/Kg) every 12 hours.
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Wald-type Tests for Joint Covariates Effect

Under compete case analysis, Wald test results revealed a significant joint interac-

tion effect between intervention arm and follow-up time on documentation of 9

paediatric pneumonia quality of care indicators (Table 6.2). At hospital level, pae-

diatric admission workload and malaria prevalence status exhibited significant

joint effects on documentation of all the 9 paediatric pneumonia care outcomes

(Table 6.2). At patients’ level, age and comorbidity showed significant joint effect

on documentation of paediatric pneumonia care outcomes. Likewise, clinicians’

gender and cadre had significant joint effect on documentation and adherence to

recommended paediatric pneumonia care guidelines (Table 6.2).

Table 6.2: Wald test for the joint effect of covariates on 9 pneumonia outcomes under
complete case analysis.

Effect Test statistics P-Value

Patient’s age 19.62 0.02

Patient’s gender 12.20 0.21

Comorbidity 20.54 0.01

Clinician’s gender 20.91 0.01

Clinician’s cadre 19.94 0.02

Admission workload 25.56 0.002

Malaria prevalence 17.89 0.04

Follow-up time (months) 19.26 0.02

Enhanced A&F a arm 17.98 0.04

Enhanced A&F arm ⇥ follow-up time 18.13 0.03



Table 6.3 and 6.4 present the odds ratios and the corresponding 95% confidence

intervals for the nine paediatric pneumonia outcomes under complete case anal-

ysis and after MI of missing covariates. In general, the magnitude and direction

of covariate effects varied among outcomes. Holding other covariates at refer-

ence levels, enhanced audit and feedback improved adherence to recommended

guidelines in 6 out of 9 paediatric pneumonia care indicators over time. That is,

for a unit increase in follow-up time, the change in the odds of oxygen satura-

tion, respiratory rate, lower wall indrawing documentation (in the assessment

domain), correct pneumonia diagnosis, oral amoxicillin prescription and correct

dosage among patients admitted in an intervention hospital (enhanced audit and

feedback (A&F) arm) was significantly more positive in comparison to the change

among patients admitted in a control hospital. These observations were made

under complete case analysis (Table 6.3) and after MI of missing covariates (Ta-

ble 6.4). However, the 95% confidence intervals estimated after multiple impu-

tation were consistently narrower compared to those estimated under complete

case analysis. On the other hand, there was no significant difference between en-

hanced A&F and standard A&F on the documentation of cough, difficult breath-

ing and AVPU over time.

Although results were largely consistent before and after MI, we observed a few

instances of contrasting results. For example, under complete case analysis, the

odds of cough documentation were significantly lower among patients admit-

ted in hospitals with low paediatric admission workload (Table 6.3). After MI,

however, the difference was no longer significant (Table 6.4). Similarly, the odds
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of documentation of difficult breathing and lower wall chest indrawing among

patients in low malaria prevalence hospital were lower compared to the odds of

patients in high malaria hospital (Table 6.3). However, after MI, the difference

was no longer statistically significant (Table 6.4).
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Table 6.3: Odds ratios and 95% confidence intervals for 9 pneumonia care indicators under complete case analysis.

Cough Difficult breathing Respiratory rate Oxygen saturation AVPU Indrawing Correct diagnosis Correct treatment Correct dose

Effect OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI)

Intercept 8.45 (6.72, 10.18) 4.76 (4.17, 5.35) 5.75 (5.56, 5.94) 3.40 (3.23, 3.57) 3.94 (3.64, 4.24) 1.01 (0.93, 1.09) 2.31 (2.02, 2.61) 0.60 (0.5, 0.71) 0.14 (0.11, 0.17)

Patients’age group:12-59 months 2.16 (1.09, 3.23) 1.35 (1.11, 1.59) 0.91 (0.85, 0.97) 0.99 (0.92, 1.06) 1.09 (0.98, 1.21) 1.92 (1.67, 2.17) 1.33 (1.12, 1.54) 1.13 (0.92, 1.34) 1.18 (0.94, 1.42)

Patient’s gender: males 1.02 (0.89, 1.15) 0.94 (0.83, 1.05) 0.89 (0.79, 0.99) 0.89 (0.83, 0.96) 0.86 (0.76, 0.97) 2.44 (2.31, 2.57) 0.89 (0.86, 0.92) 0.98 (0.73, 1.23) 0.96 (0.51, 1.41)

Comorbidities: 0 6.05 (5.08, 7.02) 2.76 (2.32, 3.21) 0.82 (0.69, 0.95) 1.34 (1.13, 1.55) 1.49 (1.26, 1.72) 1.78 (1.37, 2.19) 0.87 (0.73, 1.01) 2.09 (1.76, 2.42) 2.12 (1.48, 2.76)

Comorbidities :1 2.92 (1.90, 3.94) 3.40 (2.16, 4.64) 0.83 (0.75, 0.92) 1.30 (1.19, 1.41) 1.66 (1.53, 1.79) 1.24 (1.16, 1.32) 1.06 (0.97, 1.15) 2.13 (1.93, 2.33) 2.28 (2.04, 2.52)

Comorbidities :2 2.71 (1.35, 4.07) 3.37 (2.48, 4.26) 0.96 (0.86, 1.06) 1.22 (1.10, 1.34) 4.20 (3.82, 4.58) 1.12 (1.03,1.21) 1.08 (0.97, 1.19) 1.83 (1.62, 2.04) 1.98 (1.73, 2.23)

Clinician’s gender: female 0.92 (0.73, 1.11) 1.25 (1.02, 1.48) 1.08 (0.91, 1.25) 2.24 (1.96, 2.52) 1.45 (1.31, 1.60) 1.23 (1.10, 1.36) 1.12 (1.07, 1.17) 1.24 (1.01, 1.47) 1.29 (1.16, 1.42)

Clinician’s cadre: MOb 2.11 (2.01, 2.21) 0.52 (0.19, 0.84) 1.64 (1.55, 1.73) 1.45 (1.37, 1.53) 1.13 (1.07, 1.20) 1.83 (1.60, 2.06) 0.94 (0.73, 1.17) 0.91 (0.80, 1.03) 0.98 (0.86, 1.10)

Hospital workload: low 0.57 (0.37, 0.79) 2.54 (1.72, 3.36) 1.01 (0.71, 1.31) 0.64 (0.47, 0.81) 0.87 (0.67, 1.07) 0.25 (0.20, 0.31) 1.17 (1.01, 1.33) 1.40 (1.22, 1.58) 0.44 (0.24, 0.64)

Malaria prevalence: low 0.15 (0.12, 0.19) 0.7 (0.55, 0.85) 3.61 (2.72, 4.50) 0.22 (0.19, 0.25) 0.8 (0.69, 0.91) 0.89 (0.79, 0.99) 1.19 (1.03, 1.36) 0.85 (0.78, 0.92) 0.81 (0.75, 0.87)

Time (months) 1.24 (1.04, 1.44) 1.17 (1.02, 1.32) 1.06 (0.94, 1.18) 1.27 (1.14, 1.41) 5.10 (4.64, 5.56) 1.52 (1.27, 1.77) 1.02 (0.95, 1.09) 0.93 (0.88, 0.98) 1.04 (0.99, 1.09)

Enhanced A&Fc arm 1.01 (0.92, 1.11) 0.86 (0.67, 1.05) 0.85 (0.64, 1.06) 0.16 (0.12, 0.20) 0.79 (0.63, 0.95) 0.89 (0.70, 1.09) 0.79 (0.65, 0.93) 0.30 (0.26, 0.35) 0.94 (0.82, 1.06)

Time⇥ Enhanced A&F arm 1.04 (0.85, 1.23) 0.96 (0.83, 1.09) 1.13 (1.03, 1.23) 1.10 (1.01, 1.20) 1.17 (0.99, 1.35) 1.24 (1.08, 1.40) 1.36 (1.18, 1.54) 1.34 (1.17, 1.51) 1.15 (1.01, 1.29)

AVPUa :-Alert, Verbal response, Pain response, Unresponsive, MO:- Medical officers, A&F:-Audit and feedback
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Table 6.4: Odds ratios and 95% confidence intervals for 9 pneumonia care indicators after multiple imputation.

Cough Difficult breathing Respiratory rate Oxygen saturation AVPU Indrawing Correct diagnosis Correct treatment Correct dose

Effect OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI)

Intercept 7.01 (4.74, 9.24) 5.1 (4.69, 5.51) 6.76 (5.31, 8.21) 3.43 (3.32, 3.54) 3.95 (3.67, 4.23) 1.04 (0.94, 1.14) 2.33 (2.05, 2.61) 0.68 (0.53, 0.83) 0.23 (0.07, 0.39)

Patient’s age group: 12-59 months 1.86 (1.11, 2.61) 1.37 (1.17, 1.57) 0.95 (0.82, 1.08) 1.02 (0.95, 1.10) 1.11 (0.94, 1.28) 1.89 (1.71, 2.07) 1.30 (1.10, 1.51) 1.15 (0.80, 1.50) 1.13 (0.75, 1.51)

Patient’s gender: males 1.04 (0.95, 1.13) 0.96 (0.89, 1.03) 0.90 (0.85, 0.95) 0.90 (0.84, 0.96) 0.87 (0.84, 0.90) 2.45 (2.33, 2.57) 0.91 (0.80, 1.01) 0.98 (0.77, 1.19) 0.99 (0.61, 1.37)

Comorbidities: 0 6.17 (5.76, 6.58) 2.65 (2.42, 2.88) 0.83 (0.76, 0.95) 1.40 (1.26, 1.55) 1.35 (1.26, 1.44) 1.76 (1.38, 2.14) 0.97 (0.66, 1.28) 2.15 (1.81, 2.49) 1.96 (1.23, 2.69)

Comorbidities :1 2.34 (2.15, 2.53) 3.51 (2.43, 4.59) 0.81 (0.73, 0.89) 1.25 (1.11, 1.39) 1.68 (1.56, 1.80) 1.25(1.18,1.32) 1.03(0.95, 1.12) 1.89(1.75, 2.04) 1.90 (1.78, 2.02)

Comorbidities :2 2.22 (1.75, 2.69) 3.21 (2.55, 3.87) 0.90 (0.72, 1.08) 1.24 (1.14, 1.34) 4.55 (3.83, 5.27) 1.14 (1.08,1.20) 1.10 (0.96, 1.24) 1.66 (1.36, 1.96) 1.54 (1.29, 1.79)

Clinician’s gender: female 1.18 (1.02,1.34) 0.99 (0.48, 1.50) 1.05 (0.96, 1.14) 2.17 (1.90, 2.44) 1.47 (1.39, 1.55) 1.24 (1.13, 1.35) 1.17 (1.07, 1.27) 1.14 (1.05, 1.23) 1.32 (1.15, 1.49)

Clinician’s cadre: MOb 2.18 (2.04, 2.32) 0.65 (0.25, 1.05) 1.58 (1.38, 1.78) 1.47 (1.31, 1.63) 1.17 (1.09, 1.25) 1.83 (1.62, 2.04) 0.96 (0.84, 1.08) 0.95 (0.78, 1.01) 0.91 (0.79,1.04)

Hospital workload: low 0.81 (0.43, 1.19) 2.40 (1.72, 3.08) 0.93 (0.76, 1.1) 0.57 (0.48, 0.68) 0.79 (0.69, 0.89) 0.24 (0.18, 0.30) 1.15 (1.04, 1.26) 1.30 (1.25, 1.35) 0.48 (0.28, 0.68)

Malaria prevalence: low 0.15 (0.07, 0.23) 0.73 (0.34, 1.12) 3.62 (2.81, 4.43) 0.26 (0.23, 0.30) 0.80 (0.68, 0.92) 0.89 (0.78, 1.01) 1.18 (1.05, 1.31) 0.64 (0.31, 0.97) 0.78 (0.58, 0.98)

Time (months) 1.22 (1.09, 1.35) 1.21 (1.07, 1.35) 1.04 (0.95, 1.13) 1.23 (1.15, 1.32) 4.99 (4.71, 5.27) 1.53 (1.28, 1.78) 0.99 (0.96, 1.02) 0.90 (0.81, 0.99) 0.98 (0.93, 1.03)

Enhanced A&Fc arm 0.95 (0.85, 1.05) 0.76 (0.46, 1.03) 0.82 (0.75, 0.89) 0.14 (0.07, 0.21) 0.76 (0.67, 0.85) 0.86 (0.72, 0.99) 0.74 (0.67, 0.81) 0.42 (0.11, 0.73) 0.87 (0.75, 0.99)

Time ⇥ Enhanced A&F arm 0.98 (0.87, 1.09) 1.05 (0.88, 1.22) 1.11 (1.04, 1.18) 1.08 (1.02, 1.17) 1.16 (0.94, 1.38) 2.56 (2.19, 2.93) 1.37 (1.15, 1.59) 1.32 (1.13, 1.51) 1.20 (1.06, 1.34)

AVPUa :-Alert, Verbal response, Pain response, Unresponsive, MO:- Medical officers, A&F:-Audit and feedback
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Table 6.5 and 6.6 present variance-correlation matrices of random clinicians’ in-

tercepts among nine pneumonia outcomes under complete case analysis and af-

ter MI, respectively. Generally, the magnitude of correlation estimated among

outcomes was consistently larger under MI compared to complete case analy-

sis. Moreover, the strength and direction of association amongst pneumonia care

outcome varied within and across domains of care. For instance, the strength of

association between documentation of oxygen saturation and respiratory rate in

the assessment domain was somewhat high, compared to association with other

indicators in the assessment domain. To be specific, correlation between oxygen

saturation and respiratory rate documentation increased from 0.69 (Table 6.5) un-

der complete case analysis to 0.89 (Table 6.6) after MI of missing covariates. In the

treatment domain, prescription of oral amoxicillin and correct dosage, exhibited

a strong positive association with a correlation coefficient of 0.73 under complete

case analysis (Table 6.5) and 0.80 after MI of missing covariates (Table 6.6).

Across domains of care, correct pneumonia diagnosis was strongly associated

with prescription of oral amoxicillin and correct dosage both in the treatment do-

main. We also observed that documentation of three secondary signs and symp-

toms (S&S), namely: oxygen saturation, respiratory rate and lower wall chest

wall indrawing, in the assessment domain were positively associated with correct

pneumonia diagnosis, amoxicillin prescription and correctness of the dose. On

the other hand, documentation of cough and difficult breathing (primary S&S)

and AVPU (a secondary S&S) in the assessment domain were negatively associ-

ated with documentation of other pneumonia care indicators.
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Table 6.5: Variance-correlation matrix for the random intercepts under complete case analysis.

Cough Difficult breathing Respiratory rate Oxygen saturation AVPUa Indrawing Correct diagnosis Correct treatment Correct dose

Cough 1.49

Difficult breathing 0.07 1.92

Respiratory rate -0.29 -0.43 2.71

Oxygen saturation -0.17 -0.47 0.63 7.38

AVPU -0.14 -0.19 -0.20 0.09 2.26

Indrawing -0.22 -0.11 -0.54 -0.39 -0.19 2.33

Diagnosis -0.49 -0.53 0.48 0.29 -0.06 0.04 2.64

Treatment -0.48 -0.42 0.07 0.16 -0.38 0.66 0.64 1.81

Dose -0.54 -0.64 0.57 0.69 -0.21 0.19 0.62 0.73 1.30

Table 6.6: Variance-correlation matrix for the random intercepts after multiple imputation.

Cough Difficult breathing Respiratory rate Oxygen saturation AVPU a Indrawing Correct diagnosis Correct treatment Correct dose

Cough 1.05

Difficult breathing 0.17 0.71

Respiratory rate -0.29 -0.60 2.47

Oxygen saturation -0.30 -0.78 0.89 2.23

AVPU -0.12 -0.24 -0.12 0.22 1.76

Indrawing -0.30 0.06 -0.52 -0.50 -0.26 1.82

Diagnosis -0.54 -0.65 0.40 0.24 -0.07 0.35 2.14

Treatment -0.45 -0.55 0.23 0.26 -0.22 0.52 0.77 0.56

Dose -0.47 -0.76 0.63 0.64 -0.18 0.15 0.74 0.80 0.67

AVPUa :-Alert, Verbal response, Pain response, Unresponsive.
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Under complete case analysis, a principal component analysis (PCA) on the corre-

lation matrix of the random intercepts showed that the first and second principal

components explained 57.6% and 24.6% of the variation respectively (Figure 6.1,

panel a). After multiple imputation, the first and second principal components

explained 60.3% and 26.2% of the variation respectively (Figure 6.1, panel b). Vec-

tors of two positively correlated outcomes in the loading plots were close, form-

ing a small angle between them (e.g. oxygen saturation and respiratory rate).

On the other hand, vectors of negatively correlated outcomes (e.g. cough and

treatment) were diverging forming a large angle between them. The direction

of vectors for all the outcomes was consistent under complete case analysis and

after MI.
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Figure 6.1: Results (component loadings for the first and second principal components) of a principal components analysis on
correlation matrix of the random intercepts of model under complete case analysis (panel a) and after multiple imputation (panel
b).
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6.4 Discussion

In this chapter we sought to estimate the joint effects of covariates on nine pae-

diatric pneumonia quality of care indicators. We also estimated the strength of

association among the outcomes using a correlated random-effects joint model

(Fieuws and Verbeke, 2006). From study results, there was a significant joint ef-

fect of covariates on nine pneumonia outcomes under complete case analysis. The

strength and direction of association among pneumonia outcomes varied within

and across domains of care. Thus, an assumption of common random-effects

amongst all outcomes would be too restrictive and unrealistic for pneumonia trial

data analysed in this study.

Further results showed that enhanced audit and feedback improved documen-

tation and adherence to recommended clinical guidelines in six out of nine pae-

diatric pneumonia care indicators over time before and after MI. However, fit-

ting pairwise models after MI led to more precise estimates compared to esti-

mates from pairwise models under complete case analysis. These observations

were attributed to loss of information under complete case analysis resulting to

larger standard errors hence wider 95% confidence intervals. During the trial

period, documentation and adherence to recommended paediatric pneumonia

guidelines by clinicians depended on individual quality of care indicators. For

instance, documentation of care indicators, that did not require a lot of cogni-

tive effort, were highly documented (e.g. cough, difficult breathing) compared

to indicators that required more cognitive effort on the part of the clinician (e.g.
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prescribing the right treatment in the right dosage). These variations in delivery

of recommended care could also be due to hospital level factors, such as lack of

or broken medical devices, impeding delivery of recommended care (e.g. pulse

oximeter to measure oxygen saturation).

In the pairwise modelling approach, estimates obtained by averaging over a num-

ber of auxiliary estimates (from the various pairs) do not maximize the full multi-

variate likelihood. However, Fieuws and Verbeke (2005) demonstrated with sim-

ulations that the loss of efficiency is small in the pairwise approach relative to a

full maximum-likelihood based approach. Moreover, the averaged estimates are

consistent and asymptotically normal (Molenberghs and Verbeke, 2005, Chapter

25 ,p. 473), a property which holds for imputed data sets as well thus, ensuring

valid within imputation estimates. Validity of within imputation estimates is a

prerequisite for the application of Rubin’s rules which then account for between

imputation variability (Rubin, 1976).

Although we did not evaluate computational complexity explicitly, combining

pairwise joint model fitting and MI comes with its computational expense as

demonstrated in this study. At imputation stage, the level of complexity is com-

pounded when missing data occur in more than one level of clustering. In such

occurrences, it is paramount to account for the hierarchical structure present in

the analysis model of interest in the imputation model as well. This is because

incompatibility between imputation and analysis model may lead to biased esti-

mates, underestimated cluster level variances and overestimated individual level

variances (Grund et al., 2017). In the current study, missing covariates were
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imputed using the latent normal approach within the joint model imputation

framework while accounting for clustering at clinician level. Additionally, the

outcomes of interest, all fully observed were included in the imputation model

as auxiliary variables. Nonetheless, there is need for further research possibly

through a simulation study to evaluate compatibility between imputation and

substantive model or the lack thereof, in the high dimensional joint modelling

context.

At analysis stage, complexity stems from calculating parameters of interest (e.g.

obtaining variance-covariances matrices for each imputed data set using the pseudo-

likelihood approach before applying Rubin’s rules). Besides, constructing the

overall variance covariance matrix for the random effects is not straight forward,

hence the need for greater care to avoid incorrect inferences due to miscalcu-

lations. Therefore, future studies can consider developing and incorporating

generic functions and packages into standard statistical software to handle miss-

ing data and other computational aspects (e.g. Wald-type tests to test for joint

covariate effects after MI) more efficiently when the substantive model of interest

entails joint modelling of clustered and high-dimensional vectors of outcomes.

The correlated random-effects joint model fitted using the pairwise approach has

been previously used to jointly analyse clustered binary data (Fieuws et al., 2006)

as well as continuous longitudinal outcomes (Fieuws and Verbeke, 2006). How-

ever, there is essentially no example in the literature on how to also account for

missing covariates in a high-dimensional joint modelling context, hence the nov-

elty of this study. We estimated joint effects of covariates in addition to quantify-
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ing the strength of association among quality of care outcomes, aspects that are

largely ignored in routine paediatric care studies.

In previous analysis of the trial data, for instance, diagnosis and classification

of pneumonia cases was the primary outcome of interest (Ayieko et al., 2019).

In the previous chapters, pneumonia quality of care indicators were combined

into a single ordinal composite outcome known as the paediatric quality of care

indicator (PAQC) score. Therefore, when there is need for joint inference, we rec-

ommend this study as a practical example for handling high-dimensional vector

of outcomes using a pairwise fitting approach and at the same time performing

MI to account for missing covariates. However, if the research question does not

necessitate joint inference, then univariate mixed models as tools for analysis suf-

fice (Fieuws and Verbeke, 2006).

Evidently, this study has a number of limitations. First, our tests for the joint ef-

fects were based on complete case analysis only. This was due to lack of function-

alities in standard software to perform Wald-type tests for joint covariate effects

after MI. Secondly, we imputed missing covariates assuming a MAR mechanism,

an assumption that cannot be verified using the observed data alone (Molen-

berghs et al., 2008; Verbeke and Molenberghs, 2010; Carpenter and Kenward,

2013). Therefore, sensitivity analysis is recommended to explore the robustness

of the inferences to the MAR assumptions.

As already noted, fitting pairwise joint models on multiply imputed data sets was

time intensive. Future studies may consider MI, an approach suggested by Nas-

siri et al. (2017) as alternative to the pairwise joint modelling using a sandwich-
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type robust variance estimator.

In conclusion, there was a significant joint interaction effect between intervention

arm and follow-up time on pneumonia care under complete case analysis. This

was in addition to significant joint effects of patients age, clinician’s cadre and

gender and hospital level factors on pneumonia care indicators. Enhanced audit

and feedback improved documentation and adherence to recommended clinical

guidelines in six out of nine paediatric pneumonia care indicators over time. Mul-

tiple imputation of missing covariates improved precision of parameter estimate

compared to complete case analysis. The strength and direction of association

estimated using clinicians’ random intercepts varied amongst pneumonia out-

comes within and across the three domains of pneumonia care. Across domains

of care, pneumonia diagnosis was strongly correlated with oral amoxicillin pre-

scription and dosage.
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Chapter 7

Conclusion and Recommendations

Research studies that involve analysis of routine heath care data are often sub-

ject to incompleteness, thus necessitating application of missing data techniques

at analysis stage. In the past, analyses of incomplete data revolved around sim-

ple methods such as complete case analysis. However, there has been signifi-

cant methodological and computational development of principled missing data

handling methods, thus broadening the options available to researchers (Sotto,

2009). Despite the methodological advancements, analysis of incomplete data re-

mains less than straightforward. This is because inferential validity of missing

data techniques rests on untestable assumptions regarding the underlying miss-

ing data mechanism (Molenberghs et al., 2014, Chapter 1).

This report demonstrates practical utility of advanced biostatistical analyses meth-

ods of partially observed multivariate hierarchical data, often encountered by re-

searchers in health research. The choice regarding the type of analysis depends

on several practical considerations. These include the scientific research question
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of interest, computational complexities, as well as the level of incompleteness

present in the data at hand. Uptake and utilization of sound statistical methods

can improve analysis and reporting of health data used to inform policies and

in the long run enhance optimal utilization of limited resources while promoting

better patients’ outcomes. A summary of methods, the resulting conclusions and

areas of further research for the pertinent chapters are as follows:

In chapter 3, we considered the latent normal joint MI approach to handle missing

covariates while accounting for multilevel structures of the data at hand. We then

used random-effects models and GEE to analyze an ordinal composite outcome.

The study results reinforced the strengths of MI over complete case analysis in

terms of parameter estimates efficiency and precision. Thus, while complete case

analysis remains the default missing data handling technique in most statistical

software, it should be used as a preliminary step or supplement to more appro-

priate methods.

In Chapter 4 we explored handling missing components in a composite outcome

of interest. Through a range of simulation scenarios which entailed 2 missing

data mechanisms: missing MCAR and MAR, and 3 rates of missingness: 3%,

10% and 40%. We compared performance of MI at item level and the conven-

tional method where missing composite components were scored with value 0.

Results indicated that the precision of the estimates in both methods was largely

dependent on the amount of missingness as well as the underlying missing data

mechanism. Nonetheless, MI produced less biased estimates compared to the

conventional approach across simulation scenarios. However, more work is still
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needed on the best way to impute for composite outcomes in multilevel settings,

to assure compatibility between imputation and substantive models in that set-

ting.

In Chapter 3 and 4, missing data were imputed assuming a MAR mechanism.

To assess robustness of these inferences, sensitivity analysis within the PMM

framework was the subject of chapter 5. The sensitivity analyses focused on

two categorical covariates in the second level of pneumonia trial data analyzed

in this study. The two variables were imputed assuming a MNAR mechanism.

To achieve this, we elicited and incorporated uncertainty about the missing data

mechanism in the form of conjugate prior distributions and in the form of shift

parameters within the delta adjustment method. In both approaches, inferences

were insensitive to departures from the MAR mechanism thus increasing the

level confidence in the resulting conclusions. Furthermore, both procedures led

to estimates and standard errors that were comparable in magnitude. Due to

computational complexity reasons, sensitivity analyses for the two variables of

interest were performed separately. Therefore, future studies may consider strate-

gies of performing multi-dimensional sensitivity analyses of two or more target

variables. Although sensitivity analyses methods are well established in theory,

implementation in statistical software is still lagging especially for multilevel data

contexts, thus limiting their utility in practice.

In Chapter 6, nine binary outcomes were jointly modelled under the correlated

random-effects approach. Specifically, we applied the pairwise fitting and pseudo-

likelihood methods before and after multilevel MI of missing covariates. Even
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though the analysis was time intensive under MI, the parameter estimates were

more precise compared to those under complete case analysis. However, due

to software and computational complexities, Wald-type test for joint covariate ef-

fects were restricted to complete case analysis. Consequently, more research work

is needed with regards to testing for joint covariates effects in pairwise fitting and

pseudo-likelihood methods after MI of missing variables.

When using MI to handle partially observed data, it is vital to ensure compatibil-

ity between the imputation model and the analysis model of interest. That is, the

imputation model should be compatible with or richer than the analysis model

interest. Nonetheless, there is need for further research to evaluate compatibility

in greater details in complex settings such as the high dimensional joint mod-

elling and analysis of composite outcomes when some of the subcomponents are

partially observed.
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Chapter A

Appendices

A Chapter 3 Appendices

Figure A.1: Missing data pattern underlying pneumonia trial data.
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Figure A.2: Example of a chain portraying satisfactory multilevel multiple impu-
tation convergence
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Table A.1: Multiple logistic regression model parameter estimates (standard errors) for the probabilities of missing patients’ sex, clinician’s
sex and cadre.

Patient’s sex Clinician’s sex Clinician’s cadre
Variable Estimate (s.e) P value Estimate (s.e) P value Estimate (s.e) P value
Intercept: PAQC score1 0.66 (0.86) 0.99 9.36 (0.001) <0.001 9.35 (0.01) <0.001
Intercept: PAQC score 2 -2.02 (0.83) 0.97 -8.42 (0.001) <0.001 -8.42 (0.01) <0.001
Intercept: PAQC score 3 -2.16 (0.62) 0.85 6.44 (0.002) 0.002 6.44 (0.01) <0.001
Intercept: PAQC score 4 0.33 (0.36) 0.78 -3.98 (0.001) 0.003 -3.98 (0.01) 0.002
Intercept: PAQC score 5 0.43 (0.16) 0.67 1.81 (0.001) 0.002 1.81 (0.01) 0.001
Intercept: PAQC score 6 1.12 (0.50) 0.69 -0.26 (0.001) 0.03 -0.26 (0.01) 0.02
Age-group:12-59 months -0.56 (0.63) 0.38 0.21 (0.96) 0.03 -0.16 (0.63) 0.04
Comorbidity 0 0.91 (0.82) 0.12 -1.96 (0.97) 0.04 -1.96 (0.97) 0.02
Comorbidity 1 2.04 (6.40) 0.99 -2.09 (1.15) 0.06 -2.09 (1.14) 0.21
Comorbidity 2 2.04 (3.70) 0.98 -2.03 (0.002) 0.10 -2.03 (0.01) 0.11
Malaria prevalence: low -9.5 (6.24) 0.96 -10.13 (0.001) 0.01 -10.13 (0.01) 0.01
Hospital workload: low 1.63 (0.39) 0.68 -1.06 (1.08) 0.03 -1.06 (1.08) 0.02
Enhanced A&F arm 1.47 (2.34) 0.43 0.21 (0.001) 0.03 0.21 (0.01) <0.001
Time (months) -0.34 (0.13) 0.07 -0.48 (0.002) 0.03 -0.47 (0.01) 0.04
Time⇥Enhanced A&F arm 0.26 (0.40) 0.68 -0.05 (0.001) <0.001 -0.06 (0.001) <0.001
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Table A.2: Standard errors estimated in random effects model and GEE model under complete case analysis and after multilevel multiple
imputation.

Random effects model GEE Model
Complete case analysis Multilevel MI Complete case analysis Multilevel MI

Effect Standard error Standard error Standard error Standard error
Intercept: PAQC score 0 ref ref ref ref
Intercept: PAQC score 1 1.231 1.074 1.031 1.010
Intercept: PAQC score 2 1.075 0.381 0.332 0.332
Intercept: PAQC score 3 0.383 0.378 0.329 0.330
Intercept: PAQC score 4 0.380 0.378 0.336 0.336
Intercept: PAQC score 5 0.380 0.382 0.334 0.334
Intercept: PAQC score 6 0.384 0.387 0.342 0.341
Age-group:12-59 0.389 0.093 0.090 0.086
Child sex: Males 0.100 0.096 0.084 0.084
Comorbidities: 0 0.121 0.120 0.122 0.120
Comorbidities :1 0.141 0.140 0.131 0.130
Comorbidities: 2 0.231 0.230 0.209 0.208
Clinician sex: female 0.186 0.185 0.183 0.182
Clinician Cadre: MO 0.186 0.185 0.166 0.163
Hospital workload: low 0.202 0.201 0.178 0.160
Malaria prevalence: low 0.198 0.198 0.190 0.191
Time (months) 0.042 0.042 0.038 0.038
Enhanced A&F arm 0.332 0.332 0.335 0.338
Time⇥ Enhanced A&F 0.064 0.063 0.060 0.060
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B Chapter 4 Appendices

Figure B.1: Missing data pattern underlying covariates and pneumonia outcomes
in the trial data.
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Table B.1: Coefficients (standard errors) from logistic regression models for the probability missing PAQC score components in the treatment
domain and independent variables (patient’s sex and clinician’s cadre and sex variables).

Patient’s sex Amoxicillin dose Patient’s weight Amoxicillin frequency Clinician’s sex Clinician’s cadre
Variable Estimate (s.e) P value Estimate (s.e) P value Estimate (s.e) P value Estimate (s.e) P value Estimate (s.e) P value Estimate (s.e) P value
Intercept: PAQC score 1 0.66 (0.86) 0.99 7.12 (8.70) 0.86 -0.47 (0.61) 0.46 1.20 (3.50) 0.95 9.36 (0.001) <0.001 9.35 (0.01) <0.001
Intercept: PAQC score 2 -2.02 (0.83) 0.97 1.14 (7.56) 0.96 0.50 (2.66) 0.34 1.70 (5.30) 0.86 -8.42 (0.001) <0.001 -8.42 (0.01) <0.001
Intercept: PAQC score 3 -2.16 (0.62) 0.85 1.10 (3.56) 0.95 0.31 (2.65) 0.47 0.13 (2.10) 0.97 6.44 (0.002) 0.002 6.44 (0.01) <0.001
Intercept: PAQC score 4 0.33 (0.36) 0.78 0.59 (3.29) 0.85 -0.76 (0.80) 0.34 1.20 (2.30) 0.90 -3.98 (0.001) 0.003 -3.98 (0.01) 0.002
Intercept: PAQC score 5 0.43 (0.16) 0.67 0.17 (2.36) 0.84 0.15 (0.09) 0.11 0.14 (3.10) 0.89 1.81 (0.001) 0.002 1.81 (0.01) <0.001
Intercept: PAQC score 6 1.12 (0.50) 0.69 -1.20 (4.50) 0.86 -0.13 (0.11) 0.25 0.60 (5.30) 0.56 -0.26 (0.001) 0.03 -0.26 (0.01) 0.02
Age-group:12-59 months -0.56 (0.63) 0.38 0.14 (0.09) 0.15 0.43 (0.23) 0.07 0.15 (0.09) 0.11 0.21 (0.96) 0.03 -0.56 (0.63) 0.04
Comorbidity 0 0.91 (0.82) 0.12 -0.13 (0.12) 0.27 0.23 (0.28) 0.41 -0.13 (0.11) 0.25 -1.96 (0.97) 0.04 -1.96 (0.97) 0.02
Comorbidity 1 2.04 (6.40) 0.99 -0.24 (0.14) 0.07 0.51 (0.35) 0.14 -0.20 (0.14) 0.14 -2.09 (1.15) 0.06 -2.09 (1.14) 0.21
Comorbidity 2 2.04 (3.70) 0.98 -0.69 (0.23) 0.002 1.73 (1.03) 0.09 -0.63 (0.23) 0.002 -2.03 (0.002) 0.10 -2.03 (0.01) 0.11
Malaria prevalence: low -9.5 (6.24) 0.96 -0.39 (0.16) 0.01 0.85 (0.33) 0.01 -0.45 (0.15) 0.003 -10.13 (0.001) 0.01 -10.13 (0.01) 0.01
Hospital workload: low 1.63 (0.39) 0.68 0.16 (0.14) 0.01 0.97 (0.32) 0.02 0.17 (0.14) 0.023 -1.06 (1.08) 0.03 -1.06 (1.08) 0.02
Enhanced A&F arm 1.47 (2.34) 0.43 -1.19 (0.28) <0.01 -1.09 (0.63) <0.01 -0.48 (0.63) 0.44 0.21 (0.001) 0.03 0.21 (0.01) <0.001
Time (months) -0.34 (0.13) 0.07 -0.11 (0.04) 0.001 -0.09 (0.08) 0.28 -0.07 (0.08) 0.33 -0.48 (0.002) 0.03 -0.47 (0.01) 0.04
Time⇥Enhanced A&F arm 0.26 (0.40) 0.68 0.28 (0.05) <0.01 0.11 (0.12) 0.32 0.02 (0.11) 0.79 -0.05 (0.001) <0.001 -0.06 (0.001) <0.001201



Table B.2: Simulation results for random intercepts models under MCAR mechanism: Estimated bias in regression coefficients after multiple
imputation of missing covariates and missing PAQCa score treatment domain subcomponents.

Proportion Missing
3% 10% 40%

Effect True estb Bias Model-based SE Emp SEc MSEd Bias Model-based SE Emp SE MSE Bias Model-based SE Emp SE MSE
Intercept: PAQC score 1 -7.825 -0.191 0.047 0.047 0.039 -0.054 0.120 0.121 0.017 -0.031 0.152 0.153 0.024
Intercept: PAQC score 2 -2.253 -0.484 0.060 0.062 0.238 -0.580 0.378 0.377 0.479 -0.630 0.588 0.587 0.742
Intercept: PAQC score 3 -1.189 -0.269 0.009 0.010 0.072 -0.313 0.264 0.266 0.167 -0.341 0.379 0.380 0.260
Intercept: PAQC score 4 0.083 -0.266 0.102 0.101 0.081 -0.266 0.155 0.154 0.095 -0.281 0.131 0.132 0.096
Intercept: PAQC score 5 1.371 -0.240 0.447 0.447 0.257 -0.268 0.459 0.459 0.282 -0.292 0.258 0.259 0.152
Intercept: PAQC score 6 2.246 -0.152 0.362 0.363 0.154 -0.086 0.241 0.242 0.065 -0.082 0.244 0.245 0.066
Age-group:12-59 0.154 0.018 0.035 0.035 0.002 0.028 0.061 0.063 0.004 0.026 0.061 0.062 0.004
Child sex: males -0.046 -0.002 0.159 0.160 0.025 -0.019 0.199 0.200 0.040 -0.025 0.216 0.217 0.047
Comorbidities: 0 0.474 -0.052 0.413 0.415 0.173 -0.084 0.329 0.331 0.115 -0.101 0.275 0.276 0.086
Comorbidities: 1 0.309 -0.043 0.122 0.123 0.017 -0.083 0.223 0.225 0.056 -0.103 0.284 0.285 0.091
Comorbidities: 2 0.335 -0.053 0.249 0.249 0.065 -0.077 0.315 0.316 0.105 -0.093 0.366 0.367 0.142
Clinicians’ sex: female 0.337 -0.025 0.023 0.024 0.001 -0.041 0.065 0.065 0.006 -0.048 0.089 0.090 0.010
Clinicians’ cadre: MOe 0.038 0.072 0.144 0.145 0.026 0.073 0.127 0.128 0.021 0.078 0.104 0.106 0.017
Hospital workload: low -0.367 -0.035 0.079 0.080 0.007 -0.057 0.136 0.137 0.022 -0.066 0.167 0.168 0.032
Malaria prevalence: low -0.189 0.113 0.785 0.786 0.628 0.105 0.790 0.791 0.635 0.108 0.813 0.814 0.672
Enhanced A&F f -0.002 -0.030 0.130 0.131 0.018 -0.019 0.149 0.150 0.022 -0.014 0.159 0.160 0.025
Time (months) -1.754 0.007 0.739 0.740 0.546 0.011 0.729 0.730 0.531 0.010 0.730 0.731 0.533
Time⇥ Enhanced A&F 0.226 -0.012 0.022 0.023 0.001 -0.017 0.036 0.037 0.002 -0.019 0.044 0.045 0.002

aPAQC:- Paediatric admission quality of care, bTrue estimate, cEmpirical standard error, dMSE:- Mean Square Error, eMO:- Medical Officer, f A&F:-
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Table B.3: Simulation results for random intercepts models under MCAR mechanism: Estimated bias in regression coefficients after multiple
imputation of missing covariates and conventional methods in handling missing PAQCa score treatment domain subcomponents

Proportion Missing
3% 10% 40%

Effect True estb Bias Model based SE Emp SEc MSEd Bias Model based SE Emp SE MSE Bias Model based SE Emp SE MSE
PAQC score intercept 1 -7.825 0.101 0.048 0.049 0.012 0.124 0.121 0.122 0.032 0.376 0.153 0.154 0.165
PAQC score intercept 2 -2.253 -0.316 0.061 0.062 0.104 -0.434 0.379 0.380 0.332 -0.544 0.589 0.590 0.643
PAQC score intercept 3 -1.189 -0.565 0.010 0.011 0.319 -0.72 0.265 0.266 0.589 -0.835 0.38 0.381 0.842
PAQC score intercept 4 0.083 -0.509 0.103 0.103 0.271 -0.612 0.156 0.157 0.399 -0.688 0.132 0.133 0.491
PAQC score intercept 5 1.371 -0.504 0.448 0.449 0.455 -0.616 0.460 0.461 0.591 -0.715 0.259 0.260 0.578
PAQC score intercept 6 2.246 -0.109 0.363 0.364 0.144 -0.158 0.242 0.243 0.084 -0.201 0.245 0.246 0.101
Age-group:12-59 0.154 0.038 0.036 0.037 0.003 0.124 0.062 0.063 0.019 0.164 0.062 0.063 0.031
Child sex: males -0.046 -0.004 0.160 0.161 0.026 -0.044 0.201 0.202 0.042 -0.061 0.217 0.218 0.051
Comorbidities: 0 0.474 -0.109 0.414 0.414 0.183 -0.193 0.330 0.330 0.146 -0.247 0.276 0.277 0.137
Comorbidities: 1 0.309 -0.090 0.123 0.125 0.023 -0.191 0.224 0.224 0.087 -0.252 0.285 0.286 0.145
Comorbidities: 2 0.335 -0.111 0.250 0.251 0.075 -0.177 0.316 0.316 0.131 -0.228 0.367 0.368 0.186
Clinicians’ sex: female 0.337 -0.053 0.024 0.025 0.003 -0.094 0.066 0.067 0.013 -0.118 0.09 0.10 0.022
Clinicians’ cadre: MOe 0.038 0.151 0.145 0.146 0.044 0.168 0.128 0.129 0.045 0.191 0.105 0.106 0.048
Hospital workload: low -0.367 -0.074 0.080 0.081 0.012 -0.131 0.137 0.138 0.036 -0.162 0.168 0.167 0.055
Malaria prevalence: low -0.189 0.237 0.786 0.787 0.675 0.242 0.791 0.792 0.685 0.265 0.814 0.815 0.733
Enhanced A&Fd -0.002 -0.063 0.131 0.132 0.021 -0.044 0.151 0.152 0.025 -0.034 0.16 0.161 0.027
Time (months) -1.754 0.015 0.740 0.741 0.548 0.025 0.732 0.734 0.534 0.025 0.731 0.732 0.535
Time⇥ Enhanced A&F 0.226 -0.025 0.023 0.024 0.001 -0.039 0.037 0.038 0.003 -0.047 0.045 0.046 0.004

aPAQC:- Paediatric admission quality of care, bTrue estimate, cEmpirical standard error, dMSE:- Mean Square Error, eMO:- Medical Officer, f A&F:-
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Table B.4: Simulation results for random intercepts models under MAR mechanism: Estimated bias in standard errors after multiple
imputation of missing covariates and missing PAQCa score treatment domain subcomponents.

Proportion Missing
3% 10% 40%

Effect True estb Bias Model based SE Emp SEc MSdd Bias Model based SE Emp SE MSE Bias Model based SE Emp SE MSE
PAQC score intercept 1 0.796 -0.007 0.223 0.224 0.050 -0.013 0.142 0.142 0.020 -0.013 0.093 0.094 0.009
PAQC score intercept 2 0.352 0.079 0.079 0.079 0.012 0.158 0.121 0.122 0.040 0.162 0.162 0.163 0.052
PAQC score intercept 3 0.349 0.056 0.056 0.057 0.006 0.112 0.106 0.107 0.024 0.116 0.116 0.116 0.027
PAQC score intercept 4 0.348 0.053 0.053 0.053 0.006 0.106 0.115 0.115 0.024 0.110 0.110 0.111 0.024
PAQC score intercept 5 0.350 0.043 0.143 0.144 0.022 0.086 0.109 0.110 0.019 0.089 0.118 0.119 0.022
PAQC score intercept 6 0.353 0.043 0.243 0.244 0.061 0.086 0.026 0.027 0.008 0.089 0.129 0.130 0.025
Age-group:12-59 0.089 0.007 0.270 0.271 0.073 0.015 0.085 0.086 0.007 0.015 0.085 0.086 0.007
Child sex: males 0.087 0.007 0.107 0.107 0.011 0.014 0.101 0.102 0.010 0.014 0.101 0.102 0.010
Comorbidities: 0 0.202 -0.007 0.12 0.121 0.014 -0.013 0.013 0.014 0.000 -0.014 0.114 0.114 0.013
Comorbidities: 1 0.203 -0.004 0.270 0.270 0.073 -0.009 0.068 0.069 0.005 -0.009 0.027 0.028 0.001
Comorbidities: 2 0.211 -0.011 0.099 0.099 0.010 -0.022 0.234 0.235 0.055 -0.023 0.243 0.243 0.060
Clinicians’ sex: female 0.176 0.000 0.250 0.250 0.063 0.000 0.060 0.061 0.004 0.000 0.17 0.170 0.029
Clinicians’ cadre: MOe 0.174 0.036 0.132 0.133 0.019 0.071 0.075 0.076 0.011 0.080 0.075 0.076 0.012
Hospital workload: low 0.176 0.022 0.024 0.025 0.001 0.044 0.026 0.027 0.003 0.045 0.047 0.047 0.004
Malaria prevalence: low 0.178 0.011 0.148 0.149 0.022 0.022 0.166 0.167 0.028 0.023 0.167 0.168 0.028
Enhanced A&F f 0.307 0.019 0.123 0.124 0.015 0.037 0.073 0.074 0.007 0.038 0.043 0.043 0.003
Time (months) 0.038 0.002 0.118 0.119 0.014 0.003 0.107 0.108 0.011 0.003 0.106 0.107 0.011
Time⇥Enhanced A&F 0.055 0.008 0.108 0.109 0.012 0.016 0.155 0.156 0.024 0.016 0.056 0.056 0.003

aPAQC:- Paediatric admission quality of care, bTrue estimate, cEmpirical standard error, dMSE:- Mean Square Error, eMO:- Medical Officer, f A&F:-
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Table B.5: Simulation results for random intercepts models under MCAR mechanism: Estimated bias in standard errors after multiple
imputation of missing covariates and missing PAQCa score treatment domain subcomponents.

Proportion Missing
3% 10% 40%

Effect True estb Bias Model based SE Emp SEc MSEd Bias Model based SE Emp SE MSE Bias Model based SE Emp SE MSE
PAQC score intercept 1 0.796 0.050 0.015 0.015 0.003 0.039 0.016 0.017 0.002 0.075 0.150 0.152 0.028
PAQC score intercept 2 0.352 0.013 0.173 0.174 0.030 0.014 0.054 0.056 0.003 0.015 0.073 0.074 0.006
PAQC score intercept 3 0.349 0.070 0.070 0.070 0.010 0.083 0.081 0.081 0.013 0.103 0.083 0.084 0.017
PAQC score intercept 4 0.348 0.060 0.180 0.181 0.036 0.066 0.059 0.060 0.008 0.096 0.068 0.069 0.014
PAQC score intercept 5 0.350 0.050 0.249 0.250 0.065 0.075 0.091 0.092 0.014 0.010 0.090 0.091 0.008
PAQC score intercept 6 0.353 0.050 0.375 0.375 0.143 0.064 0.059 0.059 0.008 0.012 0.058 0.059 0.004
Age-group:12-59 0.089 0.020 0.056 0.057 0.004 0.035 0.059 0.060 0.005 0.051 0.049 0.049 0.005
Child sex: males 0.087 0.020 0.115 0.117 0.014 0.033 0.116 0.117 0.015 0.037 0.118 0.118 0.015
Comorbidities: 0 0.202 0.010 0.256 0.257 0.066 0.029 0.062 0.063 0.005 0.032 0.140 0.140 0.021
Comorbidities: 1 0.203 0.020 0.176 0.177 0.031 0.027 0.025 0.025 0.001 0.031 0.027 0.028 0.002
Comorbidities: 2 0.211 0.010 0.320 0.321 0.103 0.024 0.032 0.033 0.002 0.028 0.033 0.033 0.002
Clinicians’ sex: female 0.176 0.040 0.031 0.032 0.003 0.034 0.031 0.031 0.002 0.042 0.037 0.038 0.003
Clinicians’ cadre: MOe 0.174 0.050 0.087 0.088 0.010 0.062 0.088 0.089 0.012 0.067 0.086 0.086 0.012
Hospital workload: low 0.176 0.010 0.280 0.280 0.079 0.022 0.061 0.061 0.004 0.028 0.080 0.080 0.007
Malaria prevalence: low 0.178 0.030 0.131 0.131 0.018 0.041 0.132 0.132 0.019 0.054 0.130 0.130 0.020
Enhanced A&F f 0.307 0.02 0.027 0.028 0.001 0.043 0.074 0.075 0.007 0.047 0.060 0.060 0.006
Time (months) 0.038 0.021 0.126 0.126 0.016 0.033 0.127 0.127 0.017 0.041 0.123 0.124 0.018
Time⇥ Enhanced A&F 0.055 0.010 0.210 0.211 0.044 0.023 0.052 0.053 0.003 0.026 0.091 0.091 0.009

aPAQC:- Paediatric admission quality of care, bTrue estimate, cEmpirical standard error, dMSE:- Mean Square Error, eMO:- Medical Officer, f A&F:-
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Table B.6: Simulation results for random intercepts models under MAR mechanism: Estimated bias in standard errors after multiple
imputation of missing covariates and conventional methods in handling missing PAQCa score treatment domain subcomponents

Proportion Missing
3% 10% 40%

Effect True estb Bias Model based SE Emp SEc MSEd Bias Model based SE Emp SE MSE Bias Model based SE Emp SE MSE
PAQC score intercept 1 0.796 0.184 0.184 0.184 0.068 0.230 0.230 0.230 0.106 0.249 0.049 0.049 0.064
PAQC score intercept 2 0.352 0.876 0.028 0.028 0.768 0.092 0.092 0.092 0.017 0.186 0.106 0.106 0.046
PAQC score intercept 3 0.349 0.738 0.094 0.094 0.553 0.920 0.220 0.220 0.895 0.199 0.045 0.045 0.042
PAQC score intercept 4 0.348 0.786 0.049 0.049 0.620 0.280 0.280 0.280 0.157 0.165 0.065 0.065 0.031
PAQC score intercept 5 0.35 0.708 0.011 0.011 0.501 0.682 0.182 0.182 0.498 0.238 0.058 0.058 0.060
PAQC score intercept 6 0.353 0.728 0.013 0.013 0.530 0.208 0.108 0.108 0.055 0.186 0.216 0.216 0.081
Age-group:12-59 0.089 0.280 0.028 0.028 0.079 0.362 0.162 0.162 0.157 0.421 0.421 0.421 0.354
Child sex: males 0.087 0.036 0.015 0.015 0.002 0.251 0.159 0.159 0.088 0.278 0.163 0.163 0.104
Comorbidities: 0 0.202 0.122 0.013 0.013 0.015 0.045 0.161 0.161 0.028 0.049 0.174 0.174 0.033
Comorbidities: 1 0.203 0.005 0.022 0.022 0.001 0.128 0.017 0.017 0.017 0.139 0.014 0.014 0.020
Comorbidities: 2 0.211 0.096 0.059 0.059 0.013 0.152 0.087 0.087 0.031 0.165 0.103 0.103 0.038
Clinicians’ sex: female 0.176 0.103 0.013 0.013 0.011 0.010 0.157 0.157 0.025 0.013 0.168 0.168 0.028
Clinicians’ cadre: MOe 0.174 0.208 0.012 0.012 0.043 0.124 0.162 0.162 0.042 0.140 0.189 0.189 0.055
Hospital workload: low 0.176 0.044 0.046 0.046 0.004 0.068 0.070 0.070 0.010 0.102 0.104 0.104 0.021
Malaria prevalence: low 0.178 0.038 0.102 0.102 0.012 0.103 0.091 0.091 0.019 0.140 0.061 0.061 0.023
Enhanced A&F f 0.307 0.163 0.043 0.043 0.028 0.049 0.288 0.288 0.085 0.079 0.519 0.519 0.276
Time (months) 0.038 0.083 0.046 0.046 0.009 0.218 0.026 0.026 0.048 0.249 0.011 0.011 0.062
Time⇥ Enhanced A&F 0.055 0.081 0.081 0.081 0.013 0.101 0.101 0.101 0.020 0.110 0.210 0.210 0.056

aPAQC:- Paediatric admission quality of care, bTrue estimate, cEmpirical standard error, dMSE:- Mean Square Error, eMO:- Medical Officer, f A&F:-
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Table B.7: Simulation results for random intercepts models under MCAR mechanism: Estimated bias in standard errors after multiple
imputation of missing covariates and conventional methods in handling missing PAQCa score treatment domain subcomponents

Proportion Missing
3% 10% 40%

Effect True estb Bias Model based SE Emp SEc MSEd Bias Model based SE Emp SE MSE Bias Model based SE Emp SE MSE
PAQC score intercept 1 0.796 0.177 0.112 0.112 0.051 0.201 0.102 0.102 0.051 0.223 0.123 0.123 0.065
PAQC score intercept 2 0.352 0.342 0.232 0.232 0.196 0.126 0.958 0.958 0.934 0.059 0.019 0.019 0.004
PAQC score intercept 3 0.349 0.509 0.209 0.209 0.365 0.211 0.807 0.807 0.696 0.219 0.112 0.112 0.061
PAQC score intercept 4 0.348 0.356 0.221 0.221 0.205 0.256 0.860 0.860 0.805 0.245 0.151 0.151 0.083
PAQC score intercept 5 0.350 0.480 0.248 0.248 0.349 0.124 0.127 0.127 0.032 0.236 0.116 0.116 0.069
PAQC score intercept 6 0.353 0.528 0.210 0.210 0.390 0.190 0.236 0.236 0.092 0.480 0.118 0.118 0.244
Age-group:12-59 0.089 0.269 0.139 0.139 0.110 0.317 0.317 0.317 0.201 0.376 0.176 0.176 0.172
Child sex: males 0.087 0.200 0.149 0.149 0.070 0.220 0.153 0.153 0.072 0.248 0.158 0.158 0.086
Comorbidities: 0 0.202 0.035 0.126 0.126 0.006 0.039 0.142 0.142 0.022 0.044 0.157 0.157 0.027
Comorbidities: 1 0.203 0.099 0.022 0.022 0.012 0.113 0.018 0.018 0.013 0.124 0.016 0.016 0.016
Comorbidities: 2 0.211 0.117 0.055 0.055 0.020 0.133 0.072 0.072 0.023 0.148 0.088 0.088 0.030
Clinicians’ sex: female 0.176 0.005 0.128 0.128 0.001 0.009 0.142 0.142 0.020 0.011 0.153 0.153 0.024
Clinicians’ cadre: MOe 0.174 0.092 0.111 0.111 0.019 0.109 0.131 0.131 0.029 0.125 0.159 0.159 0.041
Hospital workload: low 0.176 0.042 0.024 0.024 0.003 0.060 0.052 0.052 0.006 0.091 0.093 0.093 0.017
Malaria prevalence: low 0.178 0.080 0.104 0.104 0.015 0.091 0.097 0.097 0.018 0.125 0.069 0.069 0.020
Enhanced A&F f 0.307 0.036 0.426 0.426 0.017 0.043 0.461 0.461 0.214 0.071 0.493 0.493 0.248
Time (months) 0.038 0.157 0.049 0.049 0.032 0.191 0.038 0.038 0.038 0.223 0.004 0.004 0.050
Time⇥ Enhanced A&F 0.055 0.078 0.018 0.018 0.007 0.089 0.122 0.122 0.023 0.098 0.098 0.098 0.019

aPAQC:- Paediatric admission quality of care, bTrue estimate, cEmpirical standard error, dMSE:- Mean Square Error, eMO:- Medical Officer, f A&F:-
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Table B.8: Monte-Carlo standard errors and confidence intervals for estimated bias in regression parameters across simulation scenarios:
MAR mechanism.

Multiple imputation of covariates and Multiple imputation of covariates and conventional method
outcome subcomponents in the treatment domain in handling outcome subcomponents in the treatment domain
Proportion missing Proportion missing

3% 10% 40% 3% 10% 40%
Effect Monte-Carlo SE Monte-Carlo SE Monte-Carlo SE Monte-Carlo SE Monte-Carlo SE Monte-Carlo SE

(MCa 95% CI for bias) (MC 95% CI for bias) (MC 95% CI for bias) (MC 95% CI for bias) (MC 95% CI for bias) (MC 95% CI for bias)
PAQC score intercept 1 0.008 (0.01, 0.03) 0.007 (0.01,0.03) 0.025 (0.03,0.07) 0.006 (0.12, 0.15) 0.005 (0.16, 0.18) 0.006 (0.47,0.50)
PAQC score intercept 2 0.016 (-0.65, -0.58) 0.017 (-0.74, -0.67) 0.035 (-0.81, -0.67) 0.005 (-0.4, -0.36) 0.001 (-0.71, -0.66) 0.02 (-0.85, -0.77)
PAQC score intercept 3 0.01 (-0.35, -0.31) 0.01 (-0.39, -0.36) 0.01 (-0.41, -0.37) 0.004 (-0.74, -0.72) 0.002 (-0.81, -0.79) 0.019 (-0.94, -0.86)
PAQC score intercept 4 0.001 (-0.25, -0.22) 0.01 (-0.28, -0.26) 0.02 (-0.31, -0.26) 0.02 (-0.56, -0.52) 0.001 (-0.67, -0.66) 0.003 (-0.8, -0.77)
PAQC score intercept 5 0.011 (-0.29, -0.24) 0.01 (-0.32, -0.28) 0.01 (-0.34, -0.30) 0.003 (-0.62, -0.57) 0.002 (-0.73.-0.72) 0.004 (-0.84, -0.79)
PAQC score intercept 6 0.02 (-0.08, -0.01) 0.02 (-0.09, -0.01) 0.02 (-0.09, -0.01) 0.037 (-0.16, -0.02) 0.036 (-0.18, -0.04) 0.035 (-0.25, -0.12)
Age-group:12-59 0.001 (0.02,0.04) 0.001 (0.04,0.05) 0.001 (0.04,0.05) 0.002 (0.07,0.10) 0.002 (0.10, 0.11) 0.003 (0.17,0.18)
Child sex: males 0.001 (-0.03, -0.02) 0.004 (-0.04, -0.02) 0.006 (-0.04, -0.02) 0.003 (-0.07, -0.05) 0.002 (-0.08, -0.07) 0.003 (-0.13, -0.12)
Comorbidities: 0 0.003 (-0.14, -0.12) 0.003 (-0.15, -0.14) 0.003 (-0.16, -0.15) 0.001 (-0.31, -0.29) 0.001 (-0.36, -0.34) 0.001 (-0.60, -0.58)
Comorbidities: 1 0.001 (-0.14, -0.13) 0.001 (-0.16, -0.15) 0.006 (-0.18, -0.15) 0.001 (-0.32, -0.29) 0.001 (-0.42, -0.32) 0.002 (-0.62, -0.59)
Comorbidities: 2 0.001 (-0.13, -0.10) 0.001 (-0.13, -0.11) 0.005 (-0.15, -0.11) 0.002 (-0.28, -0.22) 0.001 (-0.31, 0.29) 0.002 (-0.51, -0.49)
Clinicians’ sex: female 0.002 (-0.05, -0.02) 0.005 (-0.06, -0.04) 0.002 (-0.09, -0.07) 0.007 (-0.01, -0.004) 0.001 (-0.01, -0.001) 0.002 (-0.02, -0.01)
Clinicians’ cadre: MOc 0.001 (0.06,0.08) 0.01 (0.07,0.09) 0.001 (0.07,0.08) 0.004 (0.11, 0.17) 0.002 (0.16,0.18) 0.002 (0.27,0.29)
Hospital workload: low 0.004 (-0.07, -0.06) 0.004 (-0.08, -0.06) 0.004 (-0.08, -0.07) 0.003 (-0.16, -0.12) 0.002 (-0.18, -0.17) 0.002 (-0.29, -0.27)
Malaria prevalence: low 0.004 (0.16,0.14) 0.004 (0.17,0.19) 0.002 (0.17,0.21) 0.004 (0.33, 0.37) 0.001 (0.41,0.44) 0.002 (0.72, -0.73)
Enhanced A&Fd 0.001 (-0.07, -0.06) 0.002 (-0.06, -0.05) 0.002 (-0.07, -0.05) 0.001 (-0.007, -0.002) 0.003 (-0.01, -0.002) 0.002 (-0.019, -0.01)
Time (months) 0.003 (0.01,0.02) 0.003 (0.01,0.02) 0.008 (0.01,0.02) 0.01 (0.029, 0.04) 0.002 (0.039, 0.042) 0.003 (0.06,0.07)
Time⇥ Enhanced A&F 0.001 (-0.03, -0.01) 0.002 (-0.04, -0.03) 0.001 (-0.04, -0.03) 0.004 (-0.069, -0.058) 0.001(-0.08, -0.06) 0.001 (-0.13, -0.11)

a MC:-Monte-Carlo, bPAQC:- Paediatric admission quality of care, cMO:- Medical Officer, dA&F:-Audit and feedback
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Table B.9: Monte-Carlo standard errors and confidence intervals for estimated bias in regression parameters across simulation scenarios:
MCAR mechanism.

Multiple imputation of covariates and Multiple imputation of covariates and conventional method in
outcome subcomponents in the treatment domain handling outcome subcomponents in the treatment domain

Proportion missing Proportion missing
3% 10% 40% 3% 10% 40%

Effect Monte-Carlo SE Monte-Carlo SE Monte-Carlo SE Monte-Carlo SE Monte-Carlo SE Monte-Carlo SE
(MCa 95% CI for bias) (MC 95% CI for bias) (MC 95% CI for bias) (MC 95% CI for bias) (MC 95% CI for bias) (MC 95% CI for bias)

PAQCb score intercept 1 0.018 (-0.23, -0.16) 0.007 (-0.07, -0.04) 0.025 (-0.06,0.01) 0.013 (0.08,0.13) 0.018 (0.09,0.16) 0.018 (0.34,0.41)
PAQC score intercept 2 0.014 (-0.51, -0.46) 0.016 (-0.61, -0.55) 0.034 (-0.7, -0.56) 0.012 (-0.34, -0.29) 0.016 (-0.47, -0.41) 0.032 (-0.61, -0.48)
PAQC score intercept 3 0.01 (-0.29, -0.25) 0.009 (-0.33, -0.27) 0.009 (-0.36, -0.32) 0.014 (-0.59, -0.54) 0.01 (-0.74, -0.67) 0.007 (-0.85, -0.82)
PAQC score intercept 4 0.001 (-0.27, -0.25) 0.001 (-0.27, -0.25) 0.001 (-0.30, -0.26) 0.003 (-0.51, -0.49) 0.006 (-0.62, -0.58) 0.006 (-0.7, -0.66)
PAQC score intercept 5 0.011 (-0.26, -0.22) 0.008 (-0.28, -0.25) 0.01 (-0.31, -0.27) 0.006 (-0.52, -0.49) 0.006 (-0.63, -0.6) 0.006 (-0.73, -0.69)
PAQC score intercept 6 0.018 (-0.19, -0.12) 0.019 (-0.12, -0.05) 0.02 (-0.12, -0.04) 0.019 (-0.15, -0.07) 0.018 (-0.19, -0.12) 0.018 (-0.24, -0.17)
Age-group:12-59 0.001 (0.01,0.03) 0.001 (0.03,0.025) 0.001 (0.02,0.03) 0.001 (0.04,0.036) 0.002 (0.11,0.13) 0.003 (0.15,0.17)
Child sex: males 0.001 (-0.004,-0.01) 0.001 (-0.02, -0.01) 0.001 (-0.03, -0.01) 0.001 (-0.005, -0.02) 0.001 (-0.05, -0.03) 0.001 (-0.07, -0.05)
Comorbidities: 0 0.005 (-0.06, -0.04) 0.004 (-0.09, -0.07) 0.004 (-0.12, -0.09) 0.003 (-0.11, -0.09) 0.002 (-0.2, -0.18) 0.002 (-0.25, -0.23)
Comorbidities: 1 0.002 (-0.05, -0.04) 0.002 (-0.09, -0.08) 0.001 (-0.13, -0.09) 0.002 (-0.11, -0.07) 0.001 (-0.21, -0.18) 0.001 (-0.26, -0.24)
Comorbidities: 2 0.001 (-0.06, -0.05) 0.001(-0.10, -0.08) 0.001 (-0.11, -0.08) 0.002 (-0.13, -0.10) 0.001 (-0.19, -0.16) 0.001 (-0.24, -0.21)
Clinicians’ sex: female 0.002 (-0.03, -0.02) 0.002 (-0.06, -0.04) 0.002 (-0.05, -0.03) 0.001 (-0.06, -0.047) 0.001 (-0.1, -0.09) 0.001 (-0.13, -0.10)
Clinicians’ cadre: MOc 0.001 (0.06,0.08) 0.001 (0.06,0.08) 0.001 (0.06,0.10) 0.002 (0.14,0.17) 0.001 (0.17,0.15) 0.002 (0.18,0.21)
Hospital workload: low 0.004 (-0.04, -0.03) 0.003 (-0.06, -0.04) 0.004 (-0.07, -0.05) 0.004 (-0.08, -0.067) 0.004 (-0.14, -0.12) 0.004 (-0.17, -0.15)
Malaria prevalence: low 0.001 (0.10,0.12) 0.001 (0.09,0.12) 0.001 (0.09,0.13) 0.001 (0.22,0.26) 0.001 (0.23,0.27) 0.001 (0.25,0.28)
Enhanced A&Fd 0.002 (-0.04, -0.02) 0.002 (-0.02, -0.01) 0.003 (-0.02, -0.01) 0.001 (-0.07, -0.05) 0.001 (-0.05, -0.03) 0.002(-0.05, -0.02)
Time (months) 0.003 (0.001,0.01) 0.003 (0.01,0.02) 0.003 (0.008,0.08) 0.004 (0.01,0.02) 0.003 (0.01,0.03) 0.003 (0.02,0.03)
Time⇥ Enhanced A&F 0.002 (-0.02, -0.01) 0.001 (-0.024,-0.01) 0.001 (-0.04, -0.01) 0.002 (-0.03, -0.02) 0.001 (-0.05, -0.03) 0.001 (-0.06, -0.04)

a MC:-Monte-Carlo, bPAQC:- Paediatric admission quality of care, cMO:- Medical Officer, dA&F:-Audit and feedback
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C Chapter 5 Appendices

Figure C.1: Questionnaire tables used to elicit experts’ opinions about missing
clinician’s sex
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Figure C.2: Clinician’s cadre Dirichlet variances (curves) and experts’ variances
(horizontal red lines) for k=2
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Figure C.3: Clinician’s cadre Dirichlet variances (curves) and experts’ variances
(horizontal red lines) for k=3
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Figure C.4: Clinician’s cadre Dirichlet variances (curves) and experts’ variances
(horizontal red lines) for k=4
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