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Abstract

Grothendieck’s magni�cent theory of schemes pervades the spectrum of modern alge-
braic geometry and underpins itswide applications in the�eld of Number theory,Medicine,
Physics , Applied Mathematics,image encryption and �nger printing. This report which
is a simple account of the foundations to the theory of schemes underscores and demon-
strates the common geometric concepts that form the basis of the de�nitions. The report
begins these foundations with Some local algebra where we make a mention of Noether’s
Normalization Lemma, Going-up theorem of Cohen-Seidenberg and the Weak Nullstel-
lensatz result before giving some properties of Cohen-Macaulay rings. The report then
introduces the language of categories and functors which then leads to a discussion on
the sheaf theory. We then introduce the spectrum of rings and the Zariski topology before
de�ning an a�ne scheme and scheme in general. This is then followed by a number of
examples of schemes and some of the properties of a�ne schemes. The report discusses
dimension of a scheme and ends by exhibiting on the concept of gluing construction. In
this dissertation all the results are well-known and therefore our contribution is only at
the level of presentation.
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1 Introduction

1.1 Historical perspective

The theory of schemes is the foundation for Algebraic Geometry as formulated by Alexan-
der Grothendieck and his many coworkers. It is viewed as the basis for a grand unifica-
tion of Number theory and Algebraic Geometry, a situation that many number theorists
and geometers yearned and wished for over a century. By allowing flexible geometric
arguments about infinitesimals and limits in away that could not be achieved via the
classical theory, the theory of schemes has strengthened and enriched classical algebraic
geometry[EH00]. It is in view of this that the report gives the foundations to the theory
of schemes.

1.1.1 Motivation (Why schemes?)

The goal of this dissertation is to introduce the reader to an accessible Foundations to
the Theory of Schemes, that is widely used in modern geometry.

Unlike in classical Algebraic Geometry, Schemes:

1. Make intrinsic sense of X without referring to the ambient space.

2. Take any commutative ring Rwith 1 (cr1ng) and consider its corresponding variety
Spec(R) instead of just the polynomial ring.

3. Take care of nilpotents in a variety without ignoring them. In classical AG, such
information is lost under continuous deformation e.g with a �= b ∈ R∗

R2 ∼= R[V(x2 − (a+b)x+ab)] �= R[V(x2)]∼= R.

4. Focus on sheaf of functions OSpec(R) on Spec(R) than just the space.

1.2 The aesthetic nature of the theory of schemes.

The beautiful nature of the theory of schemes is evidenced by the pictures that follow
which are but a few of the many interesting representations that we use to reduce the
abstractness of the theory if indeed it exists. By this, we put the foundations to the theory
schemes in a natural environmental se�ing with the full alluring and soothing ambiance.
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Figure 2. a projective surface for y = cos (deg (x− y2)) in 3 D

1.3 Outline of the dissertation

The outline of the dissertation report is as follows:

Chapter 1:
The report focuses on the historical background of the theory of schemes, some motiva-
tion, the aesthetic nature of the theory and the basic structure of the report.

Chapter 2
We begin the chapter by a discussion on some basic facts on Algebraic Geometry, some
local algebra and consider the basic tool in studying the loci V of roots of a finite set of
polynomials fi(x1, . . . ,xn) in kn, k algebraically closed field. We present some of the most
important results which include Noethers’ normalization Lemma, the Going-up theorem
of Cohen-Seidenberg and some results on depth and Cohen-Macaulay rings.

The report discusses Categories, Functors and the theory on sheaves. In particular we
present the data that constitutes the categories, functors and sheaves together with fun-
damental examples in each case.

Chapter 3:
We discuss Schemes as follows:

Section 3.1: The spectrum of a ring and the Zariski topology. In this section we
construct the space Spec R, define a topology on it, give some of the basic properties of
the O on Spec R and give mophisms of ringed spaces and locally ringed spaces.
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Section 3.2: First definition and examples of schemes. We define the a�ine scheme
and a scheme. The report then provides some examples of schemes. A presentation on
Proj S then follows as we also describe the projective n-space of a ring.

Section 3.3: First properties of schemes. Here, we deal with connectedness of schemes,
irreducible and reduced schemes, the notion of integral schemes, locally notherian schemes.
We then explain open, closed subschemes and the products of schemes.

Section 3.4: Dimension and morphism of a scheme. In this section we give the def-
inition and first properties of dimension of a scheme, discuss dimension and schemes
of finite type over a field and conclude the section with a discussion on morphisms and
dimension.

Section 3.5: Constructions. In this section we define a few useful constructions on
schemes (the gluing construction).

Chapter 4:
We conclude our report by a recap of the main ideas in the dissertation and finally indi-
cating the future research direction.
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2 Preliminaries, Categories, Functors and Sheaf theory

2.1 Preliminaries

2.1.1 Some basic results of Algebraic Geometry

Transition from classical Algebraic Geometry to schemes

The proofs of results in this section can be found in [Ewal96] and [Fult93] for example.

Let C[x] = C[x1, . . . ,xn] be the ring of polynomials in n variables over C.

De�nition 2.1.1. If E = ( f1, . . . , fr)⊂C[x], thenV (E) = {x ∈Cn : f1(x) = . . .= fn(x) =
0} is called the a�ne algebraic set de�ned by E .

Let X ⊂ Cn; then
I(X) = { f ∈ C[x] : f |X = 0},

is an ideal called the vanishing ideal of X .

Example 2.1.2. For a = (a1, . . . ,an) ∈ Cn, Consider E = {x1 − a1, . . .xn − an}. Then
V (E) = {a} and I({a}) = C[x](x1 − a1) + · · ·+C[x](xn − an). It is a maximal ideal de-
noted by ma.

De�nition 2.1.3. An n-dimensional a�ne space is de�ned by An := Cn to be the set of all
n-tuples of elements of C.

De�nition 2.1.4. For a positive integer n, Let R = C[x1, . . . ,xn] be a polynomial ring. An
a�ne variety de�ned on S ⊂ R = C[x1, . . . ,xn] is the varnishing set

(S) := {p ∈ Cn| f (p) = 0, for f ∈ S}

De�nition 2.1.5. Let V ⊂ Cn be a�ne variety. The varnishing ideal of V

I(V ) = { f ∈ C[x0, . . . ,xn] : f (p) = 0, for all p ∈V}

is the ideal of all homogeneous polynomials on V . The coordinate ring C[V ] of V is the
quotient ring

C[V ] =
C[x0, . . . ,xn]

I(V )
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Furthermore, we call a subset V ⊂ Pn an algebraic set if there exists a homogeneous ideal I
for which V = V(I). We say V is reducible if V = V(I) = V(I1)∪V(I2) for some proper
ideals I1, I2 ∈ C[x0, . . . ,xn], otherwise it is irreducible.

Theorem 2.1.6 (Hilbert Nullstellensatz.). Let I be an ideal of R. Then

(i) I � R if and only if V(I) �= /0

(ii) I(V (I)) =
√

I = { f ∈ R=C[x0, . . . ,xn] : f m ∈ I for some m}. In particular, if I is radical
(i.e

√
I = I) or equivalently R/I is a reduced ring ( has no nilpotent elements ) e.g I =

(x)⊂ C[x], then I(V(I)) = I

Corollary 2.1.7 (The I−V Correspondence in classical AG). There are order-reversing
bijections between ideals I �R = k[x1, . . . ,xn] where k an algebraically closed �eld with alge-
braic varieties X ⊂ An

k . That is

{varieties }←→ {radical ideals }
{irreducible varieties}←→ {prime ideals p� k[X ]}= Spec (R)

{points}←→ {maximal ideals ma � k[X ]}= Spec m(R)

X ←→ I(X)

V(I)←→ I

Remark 2.1.8. An algebraic set is irreducible if and only if its ideal is prime.

The examples that follow o�er some explanation the Corollary 2.1.7

Example 2.1.9. An
k is irreducible, since it corresponds to the zero ideal in R, which is prime.

Example 2.1.10. Let f be an irreducible polynomial in R= k[x,y]. Then f generates a prime
ideal in R, since R a unique factorization domain, so the zero set X � =V ( f ) is irreducible. We
call it the a�ne curve de�ned by f (x,y) = 0. If f has degree d, then X is a curve of degree d

Example 2.1.11. More generally, if f is an irreducible polynomial in R = k[x1, . . . ,xn], we
obtain an a�ne variety X = V ( f ), which is called a surface if n = 3 or a hypersurface if
n ≥ 3.

Example 2.1.12. A maximal ideal m of R = k[x1, . . . ,xn] corresponds to a minimal irre-
ducible closed subset of An

k which must be a point, say P = (a1, . . . ,an). This shows that
every maximal ideal of R is of the form m = (x1 −a1, . . . ,xn −an) for some a1, . . . ,an ∈ k

Example 2.1.13. If k is not algebraically closed, these results do not hold, for example if
k = R, the curve x2 + y2 +1 = 0 in A2

R has no points.

De�nition 2.1.14. If X ⊆ An
k is an a�ne algebraic set, we say the a�ne coordinate ring

R(X) of X , is R/I(X).
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Lemma 2.1.15. A collection of algebraic sets has the following properties.

(i) Empty space and the whole projective space are algebraic sets.

(ii) Arbitrary intersection of algebraic sets is an algebraic set.

(iii) Finite union of algebraic sets is an algebraic set.

De�nition 2.1.16 (Zariski topology). Zariski topology on Pn is the topology on algebraic
varieties where the open sets are complements of algebraic sets which satisfy Lemma 2.1.15

2.1.2 Some local Algebra

In this section, we will discuss some local algebra. We consider the basic tool in study-
ing the locus V of roots of a finite set of polynomials fi(x1, . . . ,xn) in kn, ( k being an
algebraically closed field ). This is the ring of functions from V to k obtained by restrict-
ing polynomials from kn to V . On the other hand we assume known to the reader the
following topics in algebra.

(i) The essentials of field theory ( Galois theory, separability, transcendence degree );

(ii) Ring localization, the behavior of ideals in localization, local ring concept;

(iii) Noetherian rings, and the decomposition theorem of ideals in these rings;

(iv) The integral dependence concept.

Theorem2.1.17 (Noethers’ NormalizationLemma.). If A is an integral domain, �nitely
generated over a �eld k and if R has transcendence degree n over k, then we have elements
x1, . . . ,xn ∈ A, algebraically independent on the sub-ring k(x1, . . . ,xn) generated by x�s.

For the proof, see Mumford [Mum99].

Theorem 2.1.18 (Going-up theorem of Cohen-Seidenberg.). Let R be a commutative
ring and S ⊂ R a sub-ring such that R is integrally dependent on S. For all prime ideals
P ⊂ S, there exists prime ideals P� ⊂ R such that P� ∩S = P.

Again for the proof check [Mum99].

Lemma 2.1.19. If A is a �eld, and S ⊂ A a subring such that A is integrally dependent on
B, then B is a �eld.
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We refer to [Mum99] for the proof of Lemma 2.1.3.

In the remaining portion of this section, we present some results majorly on depth and
Cohen-Macaulay rings, which play a pivotal role in Algebraic Geometry.

We refer to Matsumura [Mat89] for proofs.

Let R be a ring, and M be an R-module. Recall that a sequence x1, . . . ,xr of elements of
R is a regular sequence for M if x1 is not a zero divisor in M, and for all i = 2, . . . ,r, xi is
not a zero in M/(x1, . . . ,xi−1)M. Suppose R is a local ring with maximal idealm, then the
depth of M is the maximum length of a regular sequence, x1, . . . ,xr for M with all xi ∈m.
These definitions apply to the ring R itself, and a local Noetherian ring R is said to be
Cohen-Macaulay if depth R = dim R.

We now present some properties of the Cohen-Macaulay rings.

Theorem 2.1.20. Let R be a local Noetherian ring with maximal ideal m .

(i) If R is regular, then it is Cohen-Macaulay,

(ii) If R is Cohen-Macaulay, then any localization of R at a prime ideal is also Cohen-
Macaulay.

(iii) If R is Cohen-Macaulay, then a set of elements x1, . . . ,xr ∈ m forms a regular sequence
for R if and only if dim R/(x1, . . . ,xr) = dim R− r.

(iv) If R is Cohen-Macaulay, and x1, . . . ,xr ∈ mr ∈ m is a regular sequence for R, then
R/(x1, . . . ,xn) is also Cohen-Macaulay.

(v) If R is Cohen-Macaulay, and x1, . . . ,xr ∈ m is a regular sequence, Let I be the ideal
(x1, . . . ,xr). Then the natural map

(R)/[t1, . . . , tr]→ grI =⊕n≥In/In+1,

de�ned by sending ti �→ xi, is an isomorphism. That is, I/I2 is free R/I-module of rank r,
and for every n ≥ 1, the natural map Sn(I/I2)→ In/In+1 is an isomorphism, where the
nth symmetric power is denoted by Sn.

For the proof check Matsumura [Mat89]

Remark 2.1.21. We say that a Noetherian ring R is normal if for every prime ideal p, the
localization Rp is an integrally closed domain. A normal ring is a �nite direct product of
integrally closed domains.
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Theorem 2.1.22 (Serre). Let R be a Noetherian ring. We say R is normal if and only if it
satis�es the following two conditions:

(a) for each prime ideal p ∈ R of height ≤ 1, Rp is regular and

(b) for each prime ideal p ∈ R of height ≥ 2, the depth Ap ≥ 2.

For the proof of Theorem 2.1.8, check Matsumura [Mat89].

2.2 The language of categories.

A category C consists of the following data:

• A collection Obj C of objects;

• For every two objectsC,D a set H (C, D) called morphisms fromC to D. In Figure 3,
a and b are elements of C while H (a) and H (b) are elements in D.

a

H
��

f �� b

H
��

H a
H f

��H b

Figure 3. Data constituting a category.

• For every three objects A,B,C, a composition map H (C,B)×H (B,A), (g, f ) �→
f ◦g, so that the following axioms are satisfied:

(1) For every object A, there is a distinguished morphism IdA ∈H (A,A), called the iden-
tity;

(2) We have f ◦ IdB = f for every f ∈ H (B, A);

(3) We have g◦ IdC = g for every g ∈ H (C, B);

(4) For every four objects A, B, C, D and every three morphisms h ∈ H (D, C), g ∈
H (C, B), f ∈ H (B, A), the two morphisms ( f ◦ g) ◦ h) and f ◦ (g ◦ h) in H (M, Q)

are equal (the associativity of composition).

Remark 2.2.1 (Composition of morphisms). If g : C → B and f : B → A are two mor-
phisms, then one de�nes a new function f ◦g, the composition of g and f (g followed by f )
by

f ◦g : C → A, x �→ f (g(x)).
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A

B

C

IdA

f
IdB

IdC

h

g

Figure 4. Identity morphisms.

A common notation forH (B,A) is also HomH (B,A). Finally, we can o�en write f : B →
A instead of f ∈ H (B,A).

De�nition 2.2.2. If f : B → A is a morphism in a category C, then we say that f is left-
invertible, resp. right-invertible, resp. invertible if there exists a morphism g : A → B such
that g◦ f = IdB, resp. f ◦g = IdA, resp. g◦ f = IdB and f ◦g = IdA.

Remark 2.2.3. If f is both left- and right-invertible, then we say it is invertible. An invertible
morphism is also called an isomorphism.

Below are examples of categories.

Example 2.2.4. The category Set of sets consists of sets as the objects, and the usual maps
between sets for the morphisms.

Example 2.2.5. The category Gr of groups contains the groups as the objects and the mor-
phisms of groups for themorphisms. The categoryAb of abelian groups consists of the abelian
groups as the objects and the morphisms of groups for its morphisms. Take cognizance of the
fact that objects of Ab are objects of Gr; therefore we could say that Ab is a full subcategory
of Gr.

Example 2.2.6. The category Ring consists of rings as the objects and morphisms of rings
as the morphisms.

Example 2.2.7. Similarly, there is the categoryField of �elds and if k is a �eld, the category
Veck of k- vector spaces. More generally, for every ring A, there is a category ModA of right
A-modules, and a category AMod for the left A-modules.
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Example 2.2.8. Let Q be a category; its opposite category Q0 contains the same objects as
Q, but the morphisms of Q0 are de�ned by H 0(A, B) = H (B, A) and composed in the
opposite direction. It is synonymous with the de�nition of an opposite group. However a
category is always di�erent from its opposite category.

Example 2.2.9. Let I be a partially ordered set. We attach to I a category I whose set of
objects is I itself. Its morphisms are as follows: let i, j ∈ I; if i ≤ j, then I (i, j) has a single
element say the pair (i, j); otherwise, I (i, j) is empty. The composition of morphisms is
the obvious one: ( j, k)◦ (i, j) = (i, k) if i, j, k are elements of I such that i ≤ j ≤ k.

Remark 2.2.10. Let Q be a category. We say that Q is small if Ob Q is a set andH (A, B)
is a set for every pair (A,B) of objects of Q. A category Q such that the collectionH (A, B)
is a set for every pair (A,B) of objects is said to be locally small. Usually most categories
considered in general Mathematics, such as the categories of sets, of groups, of abelian groups,
of modules over a �xed ring, of vector spaces, e.t.c, are locally small, but not small [Cham15].

De�nition 2.2.11. Let Q be a category, let A,B be objects of Q and let f ∈ H (A,B).
We say that f is an epimorphism if for every object P of Q and every morphisms g1,g2 ∈
H (B,P) such that g1 ◦ f = g2 ◦ f , we have g1 = g2. We say f is a monomorphism if for
every object L of Q and every morphisms g1,g2 ∈ H (P,A) such that f ◦ g1 = f ◦ g2, we
have g1 = g2.

2.3 Functors

Remark 2.3.1. Functors are to categories what maps are to sets [Cham15].

Let C and D be two categories. A functor H from C to D consists of the following data:

• An object H (M) of D for every object M of C;

• a morphism H ( f ) ∈ H (L (X),L (Y )) for every objects X ,Y of C and every f ∈
L (X ,Y ), subject to the conditions which follow:

(i) For any object X of C, H (IdX) = IdH (X);

(ii) For any objects X ,Y,Z of C and every morphisms f ∈ H (X ,Y ) and g ∈ H (Y,Z), we
have

H (g◦ f ) = H (g)◦H ( f ).

A contravariant functor H from C to D is a functor from C0 to D, consisting of the data
as above.
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De�nition 2.3.2. Such a functorH is said to be faithful, resp. full, resp. fully faithful if for
each objects X ,Y of C the map f �→H ( f ) from L (X ,Y ) to H (L (X),L (Y )) is injective,
resp. surjective, resp. bijective.

A similar definition applies for contravariant functors [Cham15].

A functor H is essentially surjective if for each object N of D, there exists an object M
of C such that H (X) is isomorphic to N in the category D.

Example 2.3.3 (Forgetful functors). Many algebraic structures are de�ned by enriching
other structures. Usually, forgetting this enrichment gives rise to a functor, called a forgetful
functor [Cham15].

For instance, a group already constitutes a set, and a map of groups is a morphism. There is
therefore a functor relating to every group its underlying set, hence forgetting the group struc-
ture. We thus get a forgetful functor from Gr to Set. It is faithful, since a group morphism
is determined by the map between the underlying sets. It is however not full because they are
maps between two (non-trivial) groups which are not morphisms of groups [Cham15].

Example 2.3.4. The construction of the spectrum of a ring de�nes a contravariant functor
from the category Ring of rings to the category Top of topological spaces.

Conversely, set O(X) to be the ring of continuous complex-valued functions on a topological
space X . If f : X → Y is a continuous map of topological spaces, and f ∗ : O(Y ) → O(X)

be the morphism of rings given by f ∗(u) = u◦ f . We thus get a contravariant functor from
the category Top of topological spaces to the category of algebras over the �eld of complex
numbers.

If H and G are two functors from a category C to a category D, then a morphism of
functors α from H to G consists in the datum, for every object X of C, a morphism
αX : H (X)→ G (X) with the following conditions obeyed:

For every morphism f : X → Y in C, we have αY ◦H ( f ) = G ( f )◦αX .

Remark 2.3.5.

(i) It is possible to compose morphisms of functors. Consider a functor H , we have an
identity morphism fromH to itself. Consequently, functors from C to D form themselves
a category, denoted H (C,D).

(ii) Let C and D be categories, let H be a functor from C to D and let G be a functor from
D to C. H and G are said to be quasi-inverse functors if the functors G ◦H ∼= IdC and
H ◦G ∼= IdD respectively.
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(iii) We say that a functor H : C → D is an equivalence of categories, if we have another
functor G : D → C and H ,G are quasi-inverse functors.

Proposition 2.3.6. To qualify to be an equivalence of categories, a functor H : C → D
needs to be fully faithful and essentially surjective (a necessary and su�cient condition).

For the proof check,[Cham15].

Example 2.3.7 (Linear Algebra). Let K be a �eld. Traditionally undergraduate linear al-
gebra only considers as vector spaces the subspaces of varying vector Kn and linear maps
between them. This gives rise to a small category, because for every integer n, the subspaces
of Kn form a set.

From this category to the category of �nite dimensional K-vector spaces, the obvious functor
is an equivalence of categories which again is fully faithful and also essentially surjective:
since vector spaces have bases, every �nite dimensional K-vector spaceV is isomorphic to Kn

with n = dim(V ). Consequently the (small) ”Category of undergraduate linear algebra" is
equivalent to the (large) category of �nite dimensional vector spaces.[Cham15]

Example 2.3.8. Let X be a topological space, and let x ∈ X . Let CovX be the category of
coverings of X . For every covering ρ : E → X , the fundamental group π1(X ,x) acts on the
�ber p−1(x). This de�nes a functor H : E �→ H (E) = p−1(x) from the category CovX to
the category of π1(X ,x)- sets.

Remark 2.3.9. The functor in Example 2.3.8 is said to be fully faithful if X is connected
and locally pathwise connected. In addition, it is an equivalence of categories if X has simply
connected cover.

Example 2.3.10 (Galois Theory). Let K be a perfect �eld and let ω be an algebraic closer of
K; let GK be the group of K-automorphisms of ω. For every �nite extension L of K, let s(L) =
HomK(L,ω), the set of K-morphisms from L to ω . This gives a �nite set, with cardinality
[L : K], and the group GK acts on it by the formular g.ϕ = g ◦ϕ , for every ϕ ∈ s(L) and
every g ∈ GK ; additionally, the action of GK is transitive.

A map f ∗ : s(L�) → s(L) which is compartible with the actions of GK is induced by Every
morphism of extensions f : L → L�. The assignments L �→ s(L) and f �→ f ∗ de�ne a con-
travariant functor from the category of �nite extensions of K to the category of �nite sets
endowed with a transitive action of GK

2.4 Sheaves

Through the concept of a sheaf, we find a systematic way of handling local algebraic
data on a topological space. Furthermore, Sheaves play an essential role in the study of
schemes as we shall see in a short while.
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De�nition 2.4.1. Let X be a topological space. A presheaf F on X consists of the data

(1) for every open subset U ⊆ X , an abelian group F (U), and

(2) for every inclusion V ⊆ U of open subsets of X , a morphism of abelian groups ρUV :
F (U)→ F (V ) such that the following axioms are satis�ed:

(i) F ( /0) = 0, where /0 is the empty set.

(ii) ρUU is the identity map F (U)→ F (U), and

(iii) if W ⊆V ⊆U are those open subsets, then ρUW = ρVW ◦ρUV

De�nition 2.4.2. A presheaf F on a topological space X is said to be a sheaf if it satis�es
the following supplementary conditions:

(3) if U is an open set, and {Vi} is an open covering of U , with s ∈F (U) being an element
such that s|Vi = 0 for all i, then s = 0;

(4) if U is an open set, and {Vi} is an open covering of U , and if we have elements si ∈F (Vi)

for each i, with the property that for each i, j, si|Vi∩Vj = s j|Vi∩Vj , then there is an element
s ∈ F (U) such that s|Vi = si for each i.

Example 2.4.3. Let X andY be two topological spaces. For all open setsU ⊂ X , letF : U →
Y be the set of continuous maps. Then F (U) is a presheaf with the restriction maps given
by simply restricting maps to smaller sets; it is a sheaf because a function is continuous on
∪Ui if and only if its restrictions to each Ui are continuous.

Example 2.4.4. Consider two di�erentiable manifolds M and N. Let F (U) be the di�eren-
tiable maps U → N. This is a sheaf as di�erentiability is a local condition.

Example 2.4.5. Let X be a topological space, F (U) the vector space of locally constant
real-valued functions onU modulo the constant functions onU. This is a presheaf. But every
s ∈ F (U) goes to zero in ∏F (Ui) for some open covering (Ui), while if U is not connected,
F (U) �= (0). Thus it is not a sheaf.

Example 2.4.6. Let X be a variety over a �eld k. For each open set U ⊆ X , let O(U) be
the ring of regular functions from U → k, and for each V ⊆U, let ρUV : O(U)→ O(V ) be
the restriction map . Then O is a sheaf of rings on X . It is apparent that it is a presheaf of
rings. To verify the supplementary conditions for a sheaf, we note that a function which is
zero locally is 0, and a function which is regular locally is regular applying the de�nition of
regular functions. Thus O is the sheaf of regular functions on X .
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Example 2.4.7. X a topological space, B an abelian group. The constant sheaf B on X
determined by B is de�ned as follows. Give B the discrete topology , and for any open set
U ⊆ X , let B(U) be the group of all continuous maps of U → B. Then from the usual
restriction maps, one obtains a sheaf B. Furthermore, if U is an open set whose connected
components are open, then B(U) is a direct product of copies of B, one for each connected
component of U.

Remark 2.4.8. For every connected open set U , B(U) is isomorphic to B, hence the name
“constant sheaf."

There are some important ideas on sheaves worth noting before we add other examples.

(i) Stalks. LetF be a sheaf on X , x∈X . The collection ofF (U), U open which contains
x, is an inverse system ,thus we can generate

Fx =
lim−−→

x∈U
F (U),

which we call the stalk of F at x.

Example 2.4.9. IfF (U) is the continuous functionsU →R, thenFx is the set of germs
of continuous functions at x. It is ∪x∈UF (U) modulo an equivalence relation: f1 ∼ f2 if
f1 and f2 coincide in a neighborhood of x.

(ii) Sheafification of a presheaf. If F0 is a presheaf on X , then there exists a sheaf F

and a map f : F0 →F such that if g : F0 →F � is any map withF � a sheaf, we have
a unique map h : F → F � such that the diagram commutes.

F0 F �

F

Figure 5. Sheafification of a presheaf.

Consider example 2.4.4 above, IfM is locally compact, the sheafification of this presheaf
is the sheaf of all continuous functions on M, and in example 2.4.5, the sheafification
of this presheaf is (0).

It is worth mentioning something about the foregoing notations.

Notation One may write Γ (U,F ) for F (U), and term it the set of sections of F over
U. Γ (X ,F ) is the set of global sections of F . We may denote F (X) by H0 (X ,F ) in
other contexts and call it the zeroth cohomology group.
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Suppose that for all U, F (U) is a group [ring, e.t.c] and that all the restriction maps are
group [ring, e.t.c] homomorphisms. Then we call F a sheaf of groups [rings, etc.]. In this
scenario Fx is a group [rings, e.t.c] and so on.

Example 2.4.10. If X is a topological space, Fcont,X(U) a set of continuous functionsU →
R, then Fcont,X(U) is a sheaf of rings.

Remark 2.4.11. Suppose g : X → Y is a continuous function and the operation f �→ f ◦ g
gives us the following maps: for every openU ⊂Y a map Fcont,Y (U)→Fcont,X(g−1U) such
that

FY (U) ��

res
��

FX(g−1U)

res
��

FY (V ) ��FX(g−1V )

Figure 6. Commutative diagram with continuous functions.

commutes for all open sets V ⊂U. Then we call this set up a morphism of the pair (X ,FX)

to the pair (Y,FY ) [Mum99].

Example 2.4.12. Let M and N be di�erentiable manifolds. Fdi�,M and Fdi�,N be the sub-
sheaves ofFcont,M andFcont,N of di�erentiable functions. Suppose g : M →N is a continuous
map. Then g is di�erentiable if and only if for all open sets U ⊂ N,

f ∈ Fdi�,N(U)→ f ◦g ∈ Fdi�,M(g−1U).

Example 2.4.13. Let M,N be complex analytic manifolds. Let Fan,M and Fan,N be the
sheaves of holomorphic functions. Then a continuous map g : M → N is holomorphic if and
only if for all open sets, U ⊂ N,

f ∈ Fan,N(U)→ f ◦g ∈ Fan,M(g−1U).

Thus the idea of using a “structure sheaf" to describe an object is useful in many contexts,
and it will solve our problems too [Mum99].

De�nition 2.4.14. Let F and G be any two presheaves on X , a morphism ϑ : F → G

consists of a morphism of abelian groups ϑ(U) : F (U)→ G (U) for each open set U , such
that whenever V ⊆U is an inclusion, the diagram

is commutative, where ρ and ρ � are the restriction maps in F and G . If F and G are
sheaves on X , for a morphism of sheaves, the same de�nition can be used. An isomorphism
is a morphism which is both injective and surjective.
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F (U)
ϑ(U) ��

ρUV
��

G (U)

ρ �
UV
��

F (V )
ϑ(V ) �� G (V )

Figure 7. Commutative diagram of presheaves with an inclusion V ⊆U .

A morphism ϑ : F → G of presheaves on X induces a morphism ϑp : Fp → Gp on the
stalks, for any point p∈X . We illustrate the local nature of a sheaf by the corollary below,
which happens to be false for presheaves [Hart77]

Corollary 2.4.15. If ϑ : F → G be a morphism of sheaves on a topological space X , then
ϑ is said to be an isomorphism if and only if it induces an isomorphic map on the stalk
ϑp : Fp → Gp for each p ∈ X .

For the proof of Corollary 2.4.15, check [Hart77].

We now proceed to give a definition of kernels, cokernels, and images of morphisms.

De�nition 2.4.16. If ϑ : F → G is a morphism of presheaves, then we de�ne the presheaf
kernel on ϑ , presheaf cokernel of ϑ , and presheaf image of ϑ as the presheaves given by
U �→ ker (ϑ(U)), U �→ coker (ϑ(U)) and U �→ Im (ϑ(U)) respectively.

Remark 2.4.17. Given a morphism of sheaves ϑ : F → G , the presheaf kernel of ϑ is
a sheaf. On the contrary the presheaf of cokernel of ϑ and presheaf of the image of ϑ are
generally not sheaves. This brings us to the notion of a sheaf associated to a presheaf [Hart77].

Corollary 2.4.18. For any presheaf F , there is a sheaf F+ and a morphism θ : F →F+,
having the property that for every sheaf G , and every morphism ϑ : F → G , we have a
unique morphism Ψ : F+ → G such that ϑ = Ψ◦θ . Moreover the pair (F+,θ) is unique
up to unique isomorphism. We call F+ the sheaf associated to the presheaf F .

Proof. F+ is constructed as follows. For every open set U, let F+(U) be the set of
functions s from U to the union

�
p∈U Fp of the stalks of F over points of U , such that

(a) for every p ∈U , s(p) ∈ Fp, and

(b) for every p ∈ U , there is a neighborhood V of p , which is in U , and an element
t ∈ F (V ) such that for all q ∈V , the germ tq of t at q is equal to s(q).

We can then verify that F+ with the natural restriction maps is a sheaf, that there is a
natural morphism θ : F → F+ and that it has the universal property described. The
uniqueness of F+ is a formal consequence of the universal property.
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Proposition 2.4.19. Suppose X is an irreducible algebraic set and let R = Γ(Σ). Let f ∈ R,
and Xf = {x ∈ X | f (x) �= 0}. Then we have OX(Xf ) = R f .

For the proof of Proposition 2.4.19 refer to Mumford [Mum99] . In particular, as a simple
corollary we have;

Corollary 2.4.20. Γ(X ,OX) = R.

Proposition 2.4.21. For any two irreducible algebraic sets X ⊂ kn and Y ⊂ km, and a con-
tinuous map f : X → Y , the following conditions are equivalent:

(a) f is a morphism

(b) for all g ∈ Γ(Y,OY ), g◦ f ∈ Γ(X ,OX)

(c) for all open U ⊂ Y, and Γ(U,OY ) =⇒ g◦ f ∈ Γ( f−1U,OX)

(d) for all x ∈ X and g ∈ O f (x) =⇒ g◦ f ∈ OX .

For the proof of proposition 2.4.20 see Mumford [Mum99].

De�nition 2.4.22. A subsheaf of a sheaf F is a sheaf F � such that for any open setU ⊆ X ,

F �(U) is a subgroup of F (U), and the restriction maps of the sheaf F � are induced from
the ones of F . Clearly it follows that for every point p, the stalk F �

p is a subgroup of Fp.

Let ϑ : F → G be a morphism of sheaves, we de�ne the kernel of ϑ , denoted by ker ϑ as
the presheaf kernel of ϑ which is actually a sheaf. Therefore ker ϑ is subsheaf of F .

A morphism of sheaves ϑ : F → G is said to be injective if ker ϑ = 0. Therefore ϑ is said to
be injective if and only if the induced map ϑ(U) : F (U)→ G (U) is injective for each open
set of X .

Letϑ : F →G be amorphism of sheaves, we de�ne the image ofϑ denoted as Im ϑ , to be the
sheaf associated to the presheaf image of ϑ . By the universal property of the sheaf associated
to a presheaf, there exists a natural map Im ϑ → G which is injective and therefore Im ϑ

can be identi�ed with a subsheaf of G .

A morphism ϑ : F → G is said to be surjective if Im ϑ = G .

De�nition 2.4.23. A sequence . . .→ F i−1 ϑ i−1
−−→ F i ϑ i

−→ F i+1 → . . . of sheaves and mor-
phisms is said to be exact if at each stage ker ϑ i = Im ϑ i−1. Therefore a sequence 0 →F

ϑ−→
G is exact if and only if ϑ injective, and F

ϑ−→ G → 0 is exact if and only if ϑ is surjective.
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If F � is a subsheaf of a sheaf F . Then the quotient sheaf F/F � is de�ned as the sheaf
associated to the presheaf U → F (U)/F �(U). Thus for any point p, the stalk (F/F �)p is
given as the quotient Fp/F �

p.

If ϑ : F → G is a morphism of sheaves, then, the cokenel of ϑ , denoted coker ϑ , is said to
be the sheaf associated to the presheaf cokernel of ϑ .

Let us now define some operations on sheaves which are associated with a continuous
map from one topological space to another.

De�nition 2.4.24. Let f : X →Y be a continuous map of topological spaces. For every sheaf
F on X , the direct image sheaf f∗F on Y is de�ned by ( f∗F )(V ) = F ( f−1(V )) for every
open set V ⊆ Y. For every sheaf G on Y, the inverse image sheaf f−1G on X is de�ned as
the sheaf associated to the presheaf U �→ limV⊇ f (U)G (V ), U being any open set in X and
the limit is taken over all open sets V of Y containing f (U).

De�nition 2.4.25. Let T be a subset of X , regarded as a topological subspace with the
induced topology, let ω : T → X be the inclusion map, and let F be a sheaf on X . We call
ω−1F the restriction of F to T , usually denoted F |T .

Remark 2.4.26. Note that f∗ is a functor from the category Ub(X) of sheaves on X to the
category Ub(Y ) of sheaves on Y. In the same manner, f−1 is a functor from Ub(Y ) to Ub(X)

and the stalk of F |T at any point p ∈ T is just Fp.



19

3 Schemes

3.1 Spectrum of Rings and The Zariski topology

We start o� by constructing the space Spec R associated to a ring R. As a set, the Spec R
is said to be the set of all prime ideals of R. Let p be any ideal of R, the subsetVp⊆ Spec R
is defined as the set of all prime ideals which contain p. We give a lemma to illustrate the
point.

Lemma 3.1.1.

(1) Let p and m be two ideals of R. We say V (pm) =V (p)∪V (m)

(2) Let {pi} be any set of ideals of R.We say V (∑pi) =
�

V (pi).

(3) Let p and m be two ideals, we say that V (p)⊆V (m) if and only if
√
p⊇√

m.

Proof.

(1) Suppose a ⊇ p or a ⊇ m . We have a ⊇ pm. In the other direction, suppose a ⊇ pm

and a � m for example, then we have a m ∈ m such that m /∈ a. Now for any p ∈ p,

pm ∈ a, there must be p ∈ a because a is a prime ideal. Therefore a⊇ p.

(2) We say that ∑pi is contained in a if and only if each pi is contained in a, since pi is the
smallest ideal containing all of the ideals pi

(3) The intersection of the set of all prime ideals which contains p is the radical of p.
Therefore √p⊇√

m if and only if V (p)⊆V (m).

Let us now define a topology on Spec(R) by taking the subsets of the form V (p) to be
the closed subsets.

De�nition 3.1.2. The closed sets of Spec(R) are of the formV (p) = {a ∈ Spec(R) |p ∈ a},
where p is any ideal in R, called the Zariski topology on Spec(R).
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Remark 3.1.3. V (R) = /0; V ((0)) = Spec(R) and from Lemma 3.1.1 we notice that the
�nite unions and arbitrary intersections of sets of the form V (p) are again of that form and
thus form the set of closed sets for a topology on Spec(R) and so the collection of closed subsets
{Vp} does de�ne a topology.

We introduce certain open sets of a spectrum that play a big role, thus the definition
which follow.

De�nition 3.1.4. The distinguished open sets of a ring R are the open sets of the form
Spec(R) f = {m ∈ Spec(R) | f /∈m}= Spec(R) \V ( f ).

These sets form a basis for the Zariski topology on Spec(R)

We then can summarise the topology of Spec(R) as follows.

1. Basic open set are defined as

D f : = {m ∈ Spec(R) : f /∈m}
= {m ∈ Spec(R) : f (m) = Rm/m, R �= 0}

It is the case that D f ∩Dg = D f g and that

D f ⊆ Dg ⇐⇒ V(g)⊆ V( f ) ⇐⇒
�

f ⊆√
g

⇐⇒ f N ∈ (g) some N

⇐⇒ g ∈ D f invertile.

2. We can canonically identify Spec(R/I) with the closed a�ine subscheme V(I)⊆
Spec(R) through the inclusion map α on Specs

3. Open sets UI := Spec(R)\V(I) = ∪ f∈ID f ,

Maximal ideal mp ∈U ⊆ Spec(Rp) open =⇒ U = Spec(Rp).

Let us Now define a sheaf of rings O on Spec(R). For any prime ideal p ⊆ R, let Rp be
the localization of R at p. For an open set U ⊆ Spec(R), we define O(U) to be the set of
functions s : U →∏p∈U Rp, such that s(p)∈Rp for every p, such that s is locally a quotient
of elements of R : precisely, for every p ∈ U there is neighborhood V of p, contained in
U , and elements a, f ∈ R such that for every m ∈V, f /∈m and s(m) = a/ f in Rm

From the foregoing, we note that sums and products of such functions are again of the
same form, and that the element 1 giving 1 in any Rp is an identity. Therefore O(U) is
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a commutative ring with identity. Let V ⊆ U be two open sets, the natural restriction
map O(U) → O(V ) is a homomorphism of rings. Hence O is a presheaf. Finally, from
the local nature of the definition, we can then draw a conclusion that O is a sheaf.

De�nition 3.1.5. The spectrum of a commutative ring R, is the set of prime ideals in R, and
is denoted Spec(R).

The definition 3.1.5 can be framed di�erently as below.

De�nition 3.1.6. Let R be a ring. The spectrum of R is the pair consisting of the topological
space Spec(R) together with the sheaf of rings O de�ned on R.

Example 3.1.7. Consider Spec(Z)= {0}∪{(p) : p∈N primes }. V((0))= {prime ideals containing (0)}

(0) (2) (3) (5) . . .

Figure 8. Spec(Z)

Spec(Z) =⇒ (0) ∈ Spec(Z) is a (dense) generic point.
V((p)) = {(p)} are “closed points" (= {maximal ideals of Z, a PID }).

Example 3.1.8. If k is a �eld, then Spec(k) is the one point space with OSpec(k)(�) = k.

Example 3.1.9. Let k be a �eld, and R =
k[x]
(x2)

, then R has only one prime ideal, namely,

(x), hence Spec R is one point, with
k[x]
(x2)

at that point.

Themain idea in Example 3.1.9 is that functions are no longer determined by their values.
In particular, the function x is everywhere zero, though it is not the zero function.

We shall put forth some basic properties of the sheaf O on Spec(R). Let f ∈ R be any
element and let us denote by D( f ) the open complements of V (( f )). The open sets of
the form D( f ) form a basis for the topology of Spec(R). In fact, if V (p) is a closed set,
and m /∈ V (p), then m � p, thus there is an f ∈ p, f /∈ m. It follows that m ∈ D( f ) and
D( f )∩V (p) = /0

Proposition 3.1.10. If R is a ring, and if (Spec(R),O) is its spectrum, then;

(1) for any p ∈ Spec(R), the stalk Op of the sheaf O and the local ring Rp are isomorphic to
each other, that is, Op ∼= Rp.

(2) for any element f ∈ R, the ring O(D( f )) and the localized ring R f are isomorphic to
each other, that is, O(D( f ))∼= R f
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(3) in particular, Γ(Spec(R),O) is isomorphic to R.

For the proof of Proposition 3.1.10, check [Hart77]

Morphisms of ringed spaces

De�nition 3.1.11. We say that a ringed space is a pair (X ,OX) which consists of a topo-
logical space X and a sheaf of rings OX on X .

For examples on ringed spaces refer to the Examples 2.4.10, 2.4.12, 2.4.13 covered earlier
in chapter 2.

We say a morphism of ringed spaces from (X ,OX) to (Y,OY ) is a pair ( f , f �) of continuous
map f : X → Y and a map f � : OY → f∗OX of sheaves of rings on Y. In other words

( f , f �) : (X ,OX)→ (Y,OY )

ϕ : X → Y is continuous

f � : OY → f∗OX

f �y : OY ,y → ( f∗OX)y → OX ,x(for all x, f(x)=y)

We say the ringed space (X ,OX) is a locally ringed space if for each point p ∈ X , the stalk
OX ,p is a local ring.

We say a morphism of locally ringed spaces is a morphism ( f , f �) of ringed spaces, such
that for any point point p ∈ X , the induced map of local rings f �p : OY, f (p) → OX ,p is a local
homomorphism of local rings.

For an explanation to the last condition, check [Hart77].

The diagram below can be used to make sense from the foregoing discussion.

X
ϕ ��

��

Y

��
Xf (p)

f �p

�� Yp

Figure 9. Morphism of rings

De�nition 3.1.12. we say an isomorphism of locally ringed spaces is a morphism with a
two-sided inverse; that is a morphism which is both injective and surjective. Therefore we say
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a morphism ( f , f �) is an isomorphism if and only if f is a homeomorphism of the underlying
topological spaces, and f � is an isomorphism of sheaves.

Proposition 3.1.13.

(1) Let X be a ring. Then (Spec(X),O) is a locally ringed space.

(2) Let ϕ : X → Y be a homomorphism of rings. Then a natural morphism of locally ringed
spaces

( f , f �) : (Spec(Y ),OSpec(Y ) → (Spec(X),OSpec(X))

is induced by ϕ .

(3) Let X and Y be rings. Any homomorphism of rings ϕ : X → Y as in (2) above induces a
morphism of locally ringed spaces from Spec(Y ) to Spec(X).

For the proof of Proposition 3.1.13,we can refer to the proof of Proposition 2.3 in [Hart77].

The upshot is captured by the following summary:

X being a ring =⇒ (Spec X ,O) is locally a ringed space .

ϕ : X → Y ring Hom. =⇒ ( f , f �) : (Spec(Y ),OSpec(Y ))→ (Spec(X),OSpec(X))

ϕ : X → Y ring Hom. =⇒ f : Spec(Y )→ Spec(X) is an induced map.

Let ϕ : X → Y be a ring homomorphism. Then a map f : Spec(Y )→ Spec(X) is defined
by f (p) = ϕ−1(p) (p ∈ Spec Y.)

3.2 First definition and examples of schemes.

We begin by giving the definition of a scheme.

De�nition 3.2.1. An a�ne scheme is a locally ringed space (X ,OX) which is isomorphic to
the spectrum of some ring (as a locally ring space [Hart77].)

De�nition 3.2.2. We say a scheme is a locally ringed space (X ,OX) in which every point
has an open neighborhood U such that the topological space U , together with the restricted
sheaf OX |U , is an a�ne scheme.

Remark 3.2.3. X is the underlying topological space of the scheme (X ,OX), and OX is its
structure sheaf. We say a morphism of schemes is a morphism as locally ringed spaces.

The following examples show what a scheme is.
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Example 3.2.4. Let k be a �eld. Spec k is an a�ne scheme whose topological space has one
point, and whose structure sheaf contains the �eld k.

Example 3.2.5. Let A be a discrete valuation ring and let W = Spec A be an a�ne scheme
whose topological space contains two points. One point w0 is closed, with local ring equals
A; the second point w1 is open and dense, with local ring equal to K, the quotient �eld of
ring A. The inclusion map A → K corresponds to the morphism Spec K → W sending the
unique point of Spec K to w1. There is a second morphism of ringed spaces Spec K →W
which sends the unique point of Spec K to w0 and applies the inclusion A → K to de�ne the
associatedmap f � on structure sheaves. Thismorphism can not be induced by homomorphism
A → K, because it is not a morphism of locally ringed spaces.

Example 3.2.6. Consider Spec(Z). Z is principal ideal domain like k[x], and Z is usually
viewed as a line: It has one closed point for every prime number , plus a generic point (0).
The stalk at (p) is Z(p) and at (0) is Q, thus Q is the “function �eld" of Spec(Z).

The nonempty open sets of Spec(Z) are obtained by omitting�nitelymany primes p1, . . . ,pn.
If m= ∏pi, then this is the distinguished open Spec(Zm), and

Γ(Spec(Zm),OSpec(Z)) = {a
k
}|a ∈ Z,k ≥ 0.

The residue �elds of the stalks OX are Z/2 Z, Z/3 Z, . . . ,Q. We get each prime �eld exactly
once.

Example 3.2.7. Almost a similar scenario apply to Spec(R) for any Dedekind domain R.
All prime ideals are maximal or (0); hence again we have a “line" of closed points together
with a generic point. A case in point is when R is a principal valuation ring. Such a ring has
a unique maximal ideal m hence Spec(R) has two points (0) and (m). Then (0) is an open
point and (m) is closed.

Example 3.2.8. Let k be a �eld. We de�ne the a�ne line over k, A1
k as Spec k[x]. It consists

of a point η which corresponds to the (0) (the zero ideal), whose closure is the whole space.
We call this the generic point. The other points, corresponding to the maximal ideals in k[x],
are all closed points and correspond one-to-one with the non-constant monic polynomials in
x. Particularly, if k is algebraically closed, the closed points of A1

k correspond one-to-one with
elements of k.

(0) (x) (x−α)

Figure 10. The a�ine line (Scheme A1
K = Spec(K[x]))

Example 3.2.9. If k is an algebraically closed �eld and if we consider the a�ne plane over
k, de�ned as A2

k = Spec(k[x,y]), then the closed points of A2
k are in a 1-to-1 correspondence

with the ordered pairs of elements of k. Moreover the set of all closed points of A2
k , with the
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induced topology, is homeomorphic to the variety called A2. Further, there is a generic point
η , which corresponds to the (0) ideal of k[x,y], whose closure is the whole space in addition
to the closed points. We also have a point ξ whose closer consists of ξ together with all closed
points (a,b) for which f (a,b) = 0, for each irreducible polynomial f (x,y). We call ξ the
generic point of the curve f (x,y) = 0.

(y)
( f (x,y)

(x−λ ,y−µ)

(x)

(0)

−2 −1 0 1 2
−2

−1

0

1

2

Figure 11. The a�ine plane(The scheme A2
K = Spec(K[x,y])

Example 3.2.10. Suppose X1 and X2 are schemes and if U1 ⊆ X1 and U2 ⊆ X2 are open
subsets. Let ϑ : (U1,OX1 |U1) → (U2,OX2

|U2) be an isomorphism of locally ringed spaces.
De�ne a scheme X obtained by gluing X1 and X2 along U1 and U2 through the isomorphism
ϑ . The quotient of the disjoint union X1∪X2 by the equivalence relation x1 ∼ ϑ(x1) for each
x1 ∈U1, with the quotient topology is the topological space of X .

We then have maps i1 : X1 → X and i2 : X2 → X , and a subset V ⊆ X is open if and only if
i−1
1 (V ) is open in X1 and i−1

2 (V ) is open in X2. We de�ne the structure sheaf OX as follows:
for every open set OX(V ) = {< s1,s2 > | s1 ∈ OX , (i−1

1 (v)) and s2 ∈ OX , (i−1
2 (v)) and

ϑ(s1|i−1(U)∪U1
) = s2|i−1(V )∪U2

}.

We notice that OX is a sheaf, and that (X ,OX) is a locally ringed space. Moreover, since X1

and X2 are schemes, every point of X has a an a�ne neighborhood, thus X is a scheme.

Example 3.2.11 (A scheme which is non-separated and which is not an a�ne scheme).
Let k be a �eld, let X1 = X2 = A1

k , and let U1 = U2 = A1
k\{p}, where p is the point which

corresponds to the maximal ideal (x), and let ϑ : U1 → U2 be the identity map. Obtain a
new scheme X by gluing X1 and X2 along U1 and U2 via ϑ . This is an “a�ne line with the
point p doubled [Hart77]." ( an example of a gluing construction.)

Figure 12. A�ine Line with point p doubled

Example 3.2.12. The Spec (∏∞
i=1 k), k is a �eld. This topological space is the Stone-cech

compacti�cation of Z+.
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Example 3.2.13 ( The “arithmetic surface" ). The Spec(Z[x]). This is an example which
has a real mixing of arithmetic and geometric properties. The prime ideals in Z[x] are :

(i) (0);

(ii) (p), for p ∈ Z prime;

(iii) principal prime ideals ( f ), where f ∈Z[x] is either a prime p or Q-irreducible polynomial
written such that its coe�cients have g.c.d 1; and

(iv) maximal ideals (p, f ), p ∈ Z is a prime and f ∈ Z[x] a monic integral polynomial irre-
ducible modulo p.

[(2)]

V((2))

[(3)]

V((3))

[(5)]

V((5)) V((7)) . . .

[(0)] generic point

[(2,x)] [(3,x)] [(5,x)] (x)

[(2,x+1)]

[(3,x+1)]
[(5,x+1)]

[(3,x+2)]

[(5,x+2)]

[(5,x+3)]

[(5,x+4)]

(x2 +1)

Figure 13. Mumford Spec(Z[x]) diagram

Morphisms of schemes

De�nition 3.2.14. Amorphism between two schemes X andY is a continuous map f : X →
Y together with a map of sheaves on Y , f � : OY → f�OX subject to the condition that if for
any point p ∈ X , any neighbourhood U of q = f (p) in Y , and any f� ∈ OY , f� varnishes at
q if and only if f � varnishes at p.

To further explain the Definition 3.2.14, we give a corollary.

Theorem 3.2.15. Let X be an arbitrary scheme and R a ring. Then there is a bijection

Hom(X ,Spec(R))∼= Hom(R,OX X)).

That is, the set of scheme morphisms from X to Spec(R) can be identi�ed with ring homo-
morphisms from R to the ring of global sections of X .
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In particular, if X = Spec(S) is also an a�ine scheme, then the maps Spec(S)→ Spec(R)
are basically the same thing as the maps R → S except that they go in the opposite di-
rection.

Proj S Schemes

We now look at very fundamental class of schemes, constructed from graded rings, which
are analogous to projective varieties.

De�nition 3.2.16. Suppose S is a graded ring. Denote by S+ the ideal ⊕d>0 Sd. The set
Proj S is de�ned as the set of all prime ideals p, which exclude all of S+. Let a be a homo-
geneous ideal of S.We de�ne the subset V (a) as

V (a) = {p ∈ Proj S |p⊇ a}

Lemma 3.2.17.

(1) Let p and m be homogeneous ideals in S.We have V (pm) =V (p)∪V (m)

(2) Let {pi} be any family of homogeneous ideals in S.We have V (∑ pi) =
�

V (pi).

Proof. The proofs are the same as for Lemma (3.1.1;1,2), when we consider the fact
that a homogeneous ideal p is prime if and only if for any two homogeneous elements
a,b ∈ S, ab ∈ p implies a ∈ p or b ∈ p .

De�nition 3.2.18. Let S be any graded ring. We de�ne (Proj S,O) as the topological space
together with the sheaf of rings de�ned on Proj S.

Proposition 3.2.19. Let S be a graded ring.

(1) For every p ∈ Proj S, the stalk Op
∼= S(p).

(2) For any homogeneous f ∈ S+, let

D+( f ) = p ∈ Proj S | f /∈ p}.

Then D+( f ) is open in Proj S.

Additionally, these open sets cover Proj S, and for any such open set, there is an isomor-
phism of locally ringed spaces

(D+( f ),O|D+( f ))
∼= Spec S f ,

such that S( f ) is the sub-ring of elements of degree 0 in the localized ring S f .



28

(3) Proj S is a scheme.

For the proof of Proposition 3.2.17 refer to [Hart77].

Example 3.2.20. Let A be a ring , we de�ne projective n-space over A to be the scheme
Pn

A = Proj A [x1, . . . ,xn]. In particular if A = k is an algebraically closed �eld , then Pn
k is

a scheme whose subspace of closed points is naturally homeomorphic to the variety called
projective n-space denoted Pn.

7

4

1

8

5

2

9

6

3

10

11

12
13

Figure 14. An example of a projective n-space

A variety can be converted into a scheme by naturally adding generic points for every
irreducible subset of the variety.

The definition which follows helps to illustrate this result.

De�nition 3.2.21. If S is a �xed scheme, then a scheme over S is a scheme X , together with
a morphism X → S.

If X and Y are schemes over S, a morphism of X to Y as scheme over S is a morphism
f : X → Y which is compatible with the given morphisms to S.

The category of schemes over S is denoted by Sch(S). If A is a ring, we may writeSch(A)
for the category of schemes over Spec(A). from the category of varieties over k to the schemes
over k. For any variety V, its topological space is homeomorphic to the set of closed points of
sp(t(V )) and its sheaf of regular functions is gotten by restriction of the structure sheaf of
t(V ) through this homeomorphism.

Proposition 3.2.22. Let k be an algebraically closed �eld. There is a natural fully faithful
functor: Var(k)→Sch(k) from the category of varieties over k to schemes over k. For any
variety V, its topological space is homeomorphic to the set of closed points of sp(t(V )) and
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its sheaf of regular functions is obtained by restricting the structure sheaf of t(V ) via this
homeomorphism.

For the proof of Proposition refer to [Hart77].

3.3 First properties of schemes.

In this section, we give some of the first properties of schemes.

De�nition 3.3.1. We say a scheme is connected if its topological space is connected. A
scheme is said to be irreducible if its topological space is irreducible.

De�nition 3.3.2. A scheme X is reduced if for every open set U, the ring OX(U) has no
nilpotent elements. Equivalently, X is reduced if and only if the local ring Op, for all p ∈ X ,

contain no nilpotent elements.

De�nition 3.3.3. A scheme X is said to be integral if for every open set U ⊆ X , the ring
OX(U) is an integral domain.

Example 3.3.4. Let X = Spec(R) be an a�ne scheme. We say X is irreducible if and only
if the nilradical nil R o f R is prime. Further, X is reduced if and only if nil R = 0 and X is
integral if and only if R is an integral domain.

Proposition 3.3.5. A scheme is integral if and only if it is both reduced and irreducible.

Proof. An integral scheme is clearly a reduced scheme. Suppose X is not irreducible,
then we can �nd two non-empty disjoint open subsetsU1 andU2 such that O(U1∪U2) =

O(U1)×O(U2) is not an integral domain. So irreducible is implied by integral.

In the other direction, suppose that X is reduced and irreducible. Let U ⊆ X be an open
subset, and suppose that there are elements f ,g ∈ O(U) such that f g = 0. Let Y = {x ∈
U | fx ∈mx}, and Z = {x ∈U | gx ∈mx}. Then Y and Z are closed subsets, and Y ∪Z =U.

But X is irreducible soU is irreducible, so one ofY or Z is equal toU, sayY =U. But then
the restriction of f to any open a�ne subset of U will be nilpotent, thus 0, therefore f is
0, an indication that X is integral.

De�nition 3.3.6. If a scheme X can be covered by open subsets Spec(Ri) such that Ri is
a Noetherian ring, then the scheme X is locally Noetherian. X is Noetherian if it is locally
Noetherian and quasi-compact. Equivalently, X is Noetherian if it can be covered by a �nite
number of open a�ne subsets Spec(Ri), where Ri a Noetherian ring.

Proposition 3.3.7. A scheme X is locally Noetherian if and only if for every open a�ne
Scheme X = Spec(R), R is a Noetherian ring. In particular, an a�ne scheme X = Spec(R)
is Noetherrian scheme if and only if the ring R is a Noetherian ring.
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For the proof we can refer to [Hart77]

Example 3.3.8. Quasi-projective varieties are Noetherian schemes: In particular we have
the following:

1. algebraic curves.

2. elliptic curves.

3. Shimura varities

4. K3 surfaces

5. cubic surfaces.

−1 −0.5 0 0.5 1 1.5 2

−2

−1

0

1

2

Figure 15. cubic plane curve

Lemma 3.3.9. Let X = Spec R be an a�ne scheme. Then

X irreducible⇐⇒ Nil R is prime

X reduced⇐⇒ Nil R = 0

X integral⇐⇒ R integral.

De�nition 3.3.10. Let f : X → Y be a morphism of schemes. We say f is locally of �nite
type if there is a covering of Y by open a�ne subsets Vi = Spec(Bi), such that for each i, we
can cover f−1(Vi) by open a�ne subsetsUi j = Spec(Ri j),where eachRi j is �nitely generated
Bi- algebra. We say the morphism f is of �nite type if in addition we can cover each f−1(Vi)

by a �nite number of the Ui j.

De�nition 3.3.11. Let f : X →Y a morphism of schemes. We say f is a �nite morphism if
there is a covering of Y by open a�ne subsets Vi = Spec(Bi), such that for each i, f−1(Vi) is
a�ne, equal to Spec(Ri), where Ri is a Bi− algebra which is a �nitely generated Bi-module.
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Example 3.3.12. SupposeV is a variety over algebraically closed �eld k, then the associated
scheme t(V ) is an integral Noetherian scheme of �nite type over k. In fact, we can cover V
by a �nite number of open a�nes of the form Spec(Ri), where each Ri is an integral domain
and a �nitely generated k-algebra, thus Noetherian.

Example 3.3.13. Suppose p ∈V is a point of a varietyV,with local ringOp, then Spec(Op)

is an integral Noetherian scheme, which is not of �nite type over k in general.

Open and closed sub-schemes.

De�nition 3.3.14. We say that an open sub-scheme of a scheme X is a scheme T, whose
topological space is an open subset of X and whose structure sheaf OT is isomorphic to the
restriction OX |T of the structure sheaf of X .

De�nition 3.3.15. An open immersion is a morphism f : X →Y which induces an isomor-
phism of X with an open subscheme of Y.

A closed immersion is said to be a morphism f : Y → X of schemes such that a homeomor-
phism of sp(Y ) onto a closed subset of sp(X) is induced by f , and moreover the induced
map f � : OX → f�OY of sheaves on X is surjective.

De�nition 3.3.16. We de�ne a closed subscheme of a scheme X as an equivalence class of
closed immersions, where f : Y → X and i : Y � → X such that f � = f ◦ i.

Example 3.3.17. If R is a ring, and p is an ideal of R. Let X = Spec(R) andY = Spec(R/p).
Then a morphism of schemes f : Y → X which is a closed immersion is induced by the ring
homomorphism R → R/p. We say f is a homeomorphism of Y onto the closed subset V (p)

of X , and the map of structure sheaves OX → f∗OY is surjective since it is surjective on the
stalks, which are localizations of R and R/p, respectively. So then, for any ideal p⊆ R there is
a structure of closed subscheme on the closed set V (p)⊆ X . In particular, every closed subset
Y of X has many closed subscheme structures, which correspond to all the ideals p where
V (p) =Y. The upshot is, every closed subscheme structureY of an a�ne scheme X originates
from an ideal in the same manner.

Example 3.3.18. If R = k[x,y], where k is a �eld, then Spec(R) = A2
k is the a�ne plane

over k. The ideal p= (xy) produces a reducible subscheme, which consists of the union of the
x and y-axes. The ideal p= (x2) gives a subscheme structure which has the nilpotents on the
y-axis.

The ideal p= (x2,xy) produces another subscheme structure on the y-axis, which has nilpo-
tents only in the local ring at the origin. This subscheme is said to have the origin as an
embedded point.

Example 3.3.19. If V is an a�ne variety over the �eld k, and Q a closed sub-variety, then Q
corresponds to a prime ideal p in the a�ne coordinate ring R ofV. If X = t(V ) and Y = t(Q)
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are the associated schemes, then X = Spec(R) andY = t(Q) is the closed sub-scheme de�ned
by p. For every n ≥ 1 let Yn be the closed sub-scheme of X corresponding to the ideal pn, then
Y1 = Y, but for every n > 1, Yn is a non-reduced scheme structure on the closed set Y, which
has no correspondence to any sub-variety of V.

Yn is called the nth in�nitesimal neighborhood of Y in X and the scheme Yn exhibit properties
of the embedding of Y in X .

Example 3.3.20. If X is a scheme, and Y is a closed subset. Then in general Y contains
many possible closed sub-scheme structures. However, there is one which is "smaller" than
any other, which we call the reduced induced closed sub-scheme structure.

We give a universal property of reduced induced sub-scheme structure.

De�nition 3.3.21. Let S be a scheme, and let X ,Y be schemes over S, i.e., schemes with
morphisms to S.We de�ne the �bred product ofX andY over S, denotedX×Y, to be a scheme,
together with morphisms ρ1 : X ×SY → X and ρ2 : X ×SY →Y,which makes a commutative
diagram with the given morphisms X → S and Y → S, such that given any scheme Z over S,
and given morphisms commutative diagram with morphisms X → S and Y → S, then there
exists a unique morphism f : Z → X and g : Z → Y which makes a commutative diagram
with the given morphisms X → S and Y → S, then θ : Z → X ×S Y such that f = ρ1 ◦ θ ,

and g = ρ2 ◦θ . The morphism ρ1 and ρ2 are called the projection morphisms of the �bred
product onto its factors.

Let X and Y be schemes given without reference to any base scheme S.We take S = Spec(Z)
and de�ne the product of X and Y, denoted X ×Y, to be X ×Spec(ZY.

Theorem 3.3.22. Let X and Y be any two schemes over a scheme S. There exists a �bred
product X ×S Y , which is unique up to unique isomorphism.

The proof of Theorem 3.3.20 can be found in [Hart77]

De�nition 3.3.23. If f : X →Y is a morphism of scheme, and y ∈Y is a point. If k(y) is the
residue �eld of y, and let Spec k(y)→ Y be the natural morphism. Then we de�ne the �bre
of the morphism f over the point y to be the scheme

Xy = X ×Y Spec k(y).

3.4 Dimension of a scheme

3.4.1 Definition,first properties.



33

De�nition 3.4.1. LetX be a scheme. The dimension of X (denoted as dim X )is its dimension
as a topological space.

Let Y be an irreducible closed subset of X . The codimension of Y in X which we denote by
codim (Y,X) is the supremum of all integers n such that there exists a chain

Y = Y0 ⊂ Y1 . . .⊂ Yn

of distinct irreducible closed subsets of X , which begins from with Y .

Let Z be any closed subset of X , one de�nes

codim(Z,X) = inf
Y⊆Z

(Y,X)

, the in�mum taken over all closed irreducible subsets of Z.

Remark 3.4.2. The dim X depends only on the topological space structure of X

Remark 3.4.3. In general the equality dimY + codim(Y,X) = dimX does not hold, even
if X is an integral a�ne scheme. Take X = Spec(A) where A = R[x] and R = K[[t]]. Then

the prime ideal µ = (tx−1) of A satis�es ht µ = 1, but A/µ � R
�

1
t

�
is a �eld,hence is of

dimension 0. Nevertheless dim A = dimR+1 = 2

Similarly the dimension of a dense open subset of X = Spec(A)might be strictly smaller

than the dim X : for example,take Spec(A) = k[[t]], then dim
�

A
�

1
t

��
= 0, thus the

dimension of D(t)⊂ Spec(A) is 0.

Proposition 3.4.4. Let X = Spec A. The dimension of X , dimX is the Krull dimension
dim A of A.

Recall that the Krull dimension of a ring A is the supremum of ht µ for µ ∈ Spec A,where
the ht µ of a prime ideal µ is the supremum of all n such that there exists a chain

µ0 ⊂ . . .⊂ µn = µ

of distinct prime ideals of A. Also ht µ = dim Aµ

Proof. An irreducible closed subset of Spec A is of the form V (µ) with µ prime. Now
for ideals p,m equal to their radicals (e.g. prime ideals),the equalityV (p)⊂V (m) is equiv-
alent to p⊃m,hence the result.
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Example 3.4.5. The dimension of An
k is n ( this follows from the fact that for any Noetherian

ring A, dim A[x1, . . . ,xn] = n+dim A). The same is true for Pn
k .

Example 3.4.6. The dimension of Spec Z is 1 ( likewise for any principal ideal domain).

Example 3.4.7. The dimension of Spec(k) or Spec(k[ξ ]) is zero for any �eld k

Example 3.4.8. Some rings of dimension 1 are not Noetherian (take a ring of integers of
QQp, some Noetherian rings are not of �nite dimension.

3.4.2 Dimension and Schemes of finite type over a field

We give the main result in the following theorem; a consequence of a di�icult but impor-
tant result in commutative algebra.

Theorem 3.4.9. Let X be an integral scheme of �nite type over a �eld k, with function �eld
k. Then

(1) dim X is �nite, equal to the transcendence degree trdeg(K/k) of K over k.

(2) For any non empty open subset U of X , dim X = dim U

(3) For any closed point p ∈ X , dim X = dimOX ,p

Proof. We have that (2) follows from (1) since X and U have the same function
�eld. To prove (1), we remark that if (Ui) is an open cover of X , then U and Ui have
the same function and dim X = supi(dim Ui); therefore it is enough to prove (1), When
X = Spec(A) is a�ne, where A is a �nitely generated k− algebra with quotient �eld k.

Now the formula dim A = trdeg(K/k) is a classical result in commutative algebra. It is a
consequence of Noether’s normalization lemma: there exists y1, . . . ,yr ∈ A, algebraically
independent over k, such that A is a �nite module over k[y1, . . . ,yr].

To prove (3) we may assume using (2) that X is a�ne. Then the result follows from the
formula

dim(A/µ)+htµ = dimA

which holds for any �nitely generated k− algebra A and any prime ideal µ of A (another
consequence of Noether’s normalization lemma).

Remark 3.4.10. If X is any scheme of �nite type over a �eld k, write X = ∪r
i=1Yi the

decomposition of X into irreducible closed subsets, and giveYi its structure of reduced scheme,
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then the dimension of each Yi can be computed using the formula with the transcendence
degree, because each Yi can now be considered as an integral scheme. Then we have

dim X = sup
1≤i≤r

dim Yi

indeed any closed irreducible subset Y of X satis�es Y = ∪1≤i≤r(Y ∩Yi), hence Y ∩Yi = Y
for some i,that is Y ⊂ Yi, therefore any descending chain of irreducible closed subsets of X is
contained in some Yi

We give another consequence of the above principle that extends theorem 3.4.10 to non
integral schemes. Let us say that a Noetherian scheme is pure if each irreducible compo-
nent of Y has the same dimension.

Proposition 3.4.11. Let X be a scheme of �nite type over a �eld k. Then

(1) For a non empty open subset U , we have dim U = dim X if U is dense or if X is pure.

(2) If X is pure, any closed irreducible subset Y of X satis�es

dim Y + codim (Y,X) = dim X

Proof.

(1) If X is irreducible, we may assume it is reduced, hence integral and we apply Theo-
rem 3.4.10. In general, let X = ∪1≤i≤rYi be the decomposition of X into irreducible
subsets. Then any non empty open subset U of X meets Yi for some i. If X is pure,
then dim X = dim Y and dim U = dim (U ∩Yi) because U ∩Yi is a non empty open
subset of the irreducible scheme Yi. Now assume that U is dense (but not necessar-
ily pure.) Then U ∩Yi = /0 for any i = 1, . . . ,r because each Yi, contains a non
empty open subset of X . Thus dim (U ∩Yi) = dimYi by the previous argument. Since
dim U = sup1≤i≤r dim(U ∩Yi) and dim X = sup1≤i≤r dim Yi and we are done.

(2) Since Y is contained in some irreducible component of X is pure, we may assume X
irreducible. Let U be an a�ne open subset of X containing some point of Y , then
dim X = dim U and dim Y = dim(Y ∩U) by 1. Moreover codim (Y,X) = codim(Y ∩
U, X ∩U). Indeed Z �−→ Z ∩U is a strictly increasing bijection between irreducible
closed subsets of U. containing Y ∩U . Therefore we may assume X = Spec A a�ne
and Y =V (µ) with µ = Spec A. Now the formula follows from

dim(A/µ)+htµ = dim A

which holds for any k - algebra of �nite type.
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Proposition 3.4.12. Let X be a scheme of �nite type over a �eld k. Then the closed points
of X are dense.

Again, this is false in general, e.g., X = Spec((k[[t]]).

Proof. We assume that X is integral. Let U = Spec(A) be a�ne open subset of X .

Then A has a maximal ideal, that is there exists a point x ∈U which is closed in U. By a
theorem, we have dimOX ,P = dimOU,P = dim U = dim X . This shows that x is closed in
any open a�ne subset Spec(B) of X . Therefore x is closed in X , and any non empty open
subset of X has a closed point. Another approach consists of the fact that a point is closed
in X if and only if its residue �eld is a �nite extension of k.

3.4.3 Morphisms and Dimension

Here again the ’intuitive’ results are false in general. For a counter example we con-
sider a morphism f : Y → X which might be surjective with dim Y ≤ dim X e.g. Y =

Spec(k((t)))⊕k), X = Spec(k[[t]]). Then X is of dimension 1,Y is of dimension 0, but the
morphism Y → X induced by the homomorphism k[[t]]→ k((t))⊕ k, f (t) �→ ( f (t), f (0)
is surjective. The situation is a bit be�er in 2 cases: finite morphisms and morphisms
between schemes of finite type over a field. We capture the result in the Theorem 3.4.13
with the assumption that ‘surjective’ is of course necessary ( for example a closed immer-
sion is a finite morphism.)

Theorem 3.4.13. Let f : Y → X be a �nite, surjective morphism of Noetherian schemes.
Then dim Y = dim X .

sketch proof. We can reduce immediately to the case when X andY are a�ne. Let
f : Spec(Y )→ Spec(X) be a �nite and surjectivemorphism, we show that dim X = dim Y.
Suppose that Spec(Y ) and Spec(X) are reduced, replacing the homomorphism i : X → Y
by Xred → Yred (which is �nite as well).In essence, it is related to the “going-up" theorem:
If X is a subring of Y with Y/X �nite, then for any pair of ideals p1 ⊂ p2 of X , and any
ideal P1 of Y lying over p1, there is an ideal p2 ⊃ p1 of Y lying over p2

We give another result in the Theorem 3.4.14 coming from commutative algebra.

Theorem 3.4.14. Let f : Y → X be a morphism of Noetherian schemes. Let y ∈ Y and
x ∈ f (y). Let Yx be the �bre of Y at x. Then

dim OY,y ≤ dim OX ,x +dimxYx
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(dimx Yx is the dimension of the local ring of the �bre Yx at x). A special case is when x, y
are closed points of integral schemes of �nite type over a �eld. Then the inequality means
dim Y −dim X ≤ dim Yx.

Proof. One reduces immediately to the a�ne case Y = Spec(B), X = Spec(A); then it
is the formula dim Bµ ≤ dim Ap +dim (Bµ ⊗A k(p)) which holds for each prime ideal µ

of B and its inverse image p ∈ Spec(A)

We give a more precise result for schemes of finite type over a field.

Theorem 3.4.15. Let f : Y → X be a dominant morphism of integral schemes of �nite type
over a �eld k. Set e = dim Y − dim X . Then there is a non empty open subset U of Y such
that for any x ∈ f (U), the dimension of the �ber Ux is e.

Sketch proof. Shrinking Y and X if necessary, we may assume that Y = Spec(B)
and X = Spec(A) are a�ne. The generic �ber Yn is an integral scheme with the same
function �eld L as Y. Since

trdeg(L/k) = trdeg(L/K)+ trdeg(K/k)

we obtain that dim Yn = e by Theorem 3.4.15, that is L/K is of transcendence degree
e. Let t1, . . . , te be a transcendence base of L/K. Localizing A and B if necessary, we can
assume that t1, . . . , te ∈ B and that B is a �nite module over A[t1, . . . , te] because L is a
�nite �eld extension of K(t1, . . . , te). Set X1 = Spec(A[t1, . . . , te]), then the morphism f
factors through a �nite morphism Y → X1. Now for x ∈ X , the �ber Yx has a �nite and
surjective morphism to the �ber of X1 → X at x; the latter is isomorphic to Ae

k(x), hence is
of dimension e. We conclude the proof by theorem 3.4.14

3.5 Constructions

In this chapter, we define a few useful constructions on schemes.

One of the basic ways to construct new topological spaces from the initial ones is to glue
them together. Similarly, gluing can be done with schemes.

Consider a collection of schemes {Xα} and an open set Xαβ in Xα for each β �= α. If we
also have homomorphisms of schemes

ραβ : Xαβ → Xβα
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with the condition that ραβ = ρ−1
βα

,

ραβ (Xαβ ∩Xαγ) = Xβα ∩Xβγ

and
ρβγ ◦ραβ |(Xαβ∩Xαγ )=ραγ

|Xαβ∩Xαγ

then we can define a new scheme X by identifying the Xα along the maps ραβ .

De�nition 3.5.1. Given morphisms of schemes f : X → S and g : Y → S, the �bre product
of X and Y over S is a scheme X ×S Y together with maps X ×S Y → X and X ×S Y →Y that
makes the following diagram a pullback:

X ×S Y ��

��

X

��
Y �� S

Figure 16. A pullback diagram.

By virtue of the fact that fiber products are pullbacks, they are unique if they exist. Also
we need to note that the fiber product really does depend on the maps f and g, despite
the terminology and notation. We begin our actual constructions by considering a�ine
schemes.

Since a�ine schemes are dual to commutative rings, a pushout of commutative rings,
dualized, would make a perfectly good fiber product of a�ine schemes. The following
diagram is actually a pushout in the category of commutative rings:

R
f ��

��

A

��
B �� A⊗R B

Figure 17. A pushout diagram in commutative rings

where the maps f and g give A and B R- algebra structures, and the tensor product is
taken with this structure in mind. This diagram is a push-out by the universal property
of the tensor product.

Dualizing this we get:

De�nition 3.5.2. Given maps ϑ : Spec(A) → Spec(R) and ϕ : Spec(B) → Spec(R), we
de�ne the �ber product to be

Spec(A)×R Spec(B) := Spec (A⊗R B)

For arbitrary schemes, we simply decompose them into a�ne schemes, apply this de�nition,
and glue them back together using the gluing construction.
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4 Conclusion

4.1 Summary of the dissertation

In this dissertation we have :

1. built the Foundation to the theory of schemes beginning with some basic results on
Algebraic Geometry and some local algebra, the language of categories with exam-
ples followed by an exhibition of Functors with examples then followed by the sheaf
theory.

2. defined the spectrum of a ring, Spec(R) = {prime ideals p ∈ R} and also given the
topology of the spectrum of a ring R.

3. Constructed structure sheaf on rings and subsequently defined an a�ine scheme thus
a ringed space (X ,OX) which is isomorphic to the spectrum of some ring. We have
also given the definition of a scheme thus: a scheme is a locally ringed space (X ,OX)

such that (U,OX |U) is an a�ine scheme.

4. given numerous examples on the spectrum of rings and of a�ine schemes and pro-
vided some properties of schemes. The dissertation has further discussed the dimen-
sion of a scheme and concluded by exhibiting the gluing construction of schemes.

4.2 Future Research Direction

My future research interest is to study:

1. the application of finite rings based algebraic schemes of evolving S-boxes for images
encryption.

2. the application of linear algebraic techniques to construct monochrome visual cryp-
tographic schemes for general access structures and its application to colour images.

3. the numerical tests and theoretical estimations for a Lie-algebraic scheme of discrete
approximations.
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