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Abstract

The goal of this project, is to come up with a su�cient background so that we can approach

the current literature of research possessing the necessary tools and detailed understand-

ing. We will concern ourselves with analyzing the discontinuous galerkin method (DGM)

by looking at its background and formulation. We will deal with the theory of mathemat-

ical outlook of these equations �rst and then solutions. This will cause us to emphasize

more on the tools of mathematics that are very important in the of development, analyz-

ing and successful utilization of the �nite di�erence method for the non-linear systems

of conservation laws, in particular for problems involving Shallow Water Equations. The

derivation of these equations will be provided. Also the shallow water equations will be

given in both conservative and non-conservative form. The main type of method used

in the approximation of di�erential equations of this kind will be given i.e the �nite dif-

ference method. We will later formulate the solutions to the shallow water equation in

MATLAB.
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1 Introduction

The world we live in is in nature a very complicated one. �it o�en we can not explain
what is happening or perhaps how it happened. But by the help of mathematics we can
predict the future occurrences, one is because mathematics is cheaper since instead of
running experiments everyday we use mathematical equations to predict the future. Sec-
ondly this problems are so complex in nature such that when we relate them to partial
di�erence equations (PDEs) we more o�en than not have non-linearities or complica-
tions coming from the pdes themselves or the from the boundaries that is when we have
complicated boundaries [1]. For that reason its is evident we can not solve them analyti-
cally and that’s why we need numerical solutions, that means we try to get approximate
solutions as accurate as possible.

Figure 1. An image showing di�erent world problems that can be related to pdes.

In Figure (1), the first image shows the Solai tragedy that occurred in Kenya. The second
one shows a tra�ic situation in an intersection. The third one simulates a bullet in motion,
while the last shows a linear accelerator used the to treat cancer.
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1.1 Numerical methods

Numerical methods are procedures or techniques that are used to approximate mathe-
matical processes (an example of a mathematical process is an integral). They are schemes
that are applied to find an approximation when analytical answers are either absent or
impossible to find. Numerical methods for all partial di�erential equations (PDEs) is
made up of two parts: First a space discretisation that transforms the system of PDEs
into a system of ODEs and the second is a time discretisation that transforms the system
of ODEs into a series of algebraic equations that can be solved using techniques of linear
algebra [2].

When modeling the physical world, conservation becomes a fundamental principle to be
applied which stretches from quantum mechanics, continuum mechanics to gravitational
physics, having prominent examples that include the famous Navier’s equations of elas-
ticity, Euler equations of gas dynamics, Einstein’s equations of gravitation and Maxwell’s
equations of electromagnetics.

It therefore does not come as a surprise why there is deep research in the area of math-
ematical analysis of conservation laws whose stretches back to the Leibniz. The process
that involve developing accurate and e�icient computational methods used to solve such
problems have taken the center stage of scientific pioneers including von Neumann, Lax,
and Lions. However, even if a problem may appear very simple, a detail investigation
reveals serious hurdles when we a�empt to understand the most basic conservation law
together with the nature of the solutions.

1.1.1 Why are numerical methods necessary?

When we find an exact solution to a problem and in a shorter time than forever, then
we say that the problem is "analytically solvable”. For instance, “Victor has 2 mangoes
while James has 3 mangoes, how many mangoes do they have together?” is solvable
analytically. It’s 5. Exactly 5.

Precisely solving such problems is what we o�en think that mathematicians are busy
doing, however more o�en than not scientists stumble on problems that can’t be solved
analytically. In real sense “mathematics” widely involves finding an answer rather than
the answer. While it could be hard to find the exact answer, we can try to find answers
which are “arbitrary precise”. This is like saying, you can determine an approximate so-
lution and the more computer time you are willing to invest, the closer that approximate
answer will be to the correct answer. This trick is called the “numerical method”. Nu-
merical methods are rather strange: they determine solutions close to the exact answer
without ever knowing what that answer is in the first place. So that there is actually an
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answer: we require numerical methods because majority of problems are not solvable
analytically and we know that these methods work because each one of them method
comes with a proof that it works.

The choice of a particular numerical method to use in solving a certain problem, depends
on the ease in applying it to that particular problem, the ability of the method to produce
accurate results when compared to other numerical methods and the consistency of the
numerical methods.

1.2 Conservation laws

Systems of hyperbolic conservation consists of nonlinear and time dependent systems of
pdes with simple structure. In one-dimensional space the equations are of the form

∂

∂ t
u(x, t)+

∂

∂x
f u(x, t) = 0. (1)

Here u is a vector of m-dimension and represent quantities which are conserved state
variables for example momentum, energy dynamics and mass problem. Even more pre-
cisely, u j represents the state variables density function at position j. The explanation is
that at time t the integral

∫ x2
x1

u j(x, t)dx equals to all the quantity in the interval (x1,x2)

of state variable.

When we say that we are conserving the state variables we are trying to say that the
integral

∫
∞

−∞
u j(x, t)dx is supposed to be fixed respecting t .These functions u j themselves

at time t which stand for how the state variables are distributed changes with time. We
are assuming that for equation (1) when we know u(x, t) at a certain points and time
enables determination of the flux, of every state variable (x, t).

The functions of the flux are typically functions of u, which are nonlinear that leads to
systems (nonlinear) of PDEs. Generally it’s impossible to determine the actual solutions
to the equations, therefore the necessity to formulate and discuss numerical schemes for
ge�ing those solutions which are approximate.

As a example of equations we are looking at in our entire investigations, we look at a
conservation law, typically wri�en as

∂u/∂ t +∂ f (u)/∂x = 0, (0,1)× (0,T ) (2)
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together wit initial condition

u(x,0) = u0(x) (3)

subject to some periodic boundary conditions. Suppose that the partition of (0,1) is given
by {I j}N

j=1 , with

4 j = x j+1/2− x j−1/2,

to find the element’s center we use

x j =
(x j−1/2 + x j+1/2

2
,

if (2) and (15) are multiplied by an arbitrary function say v(x) then integrating by parts
over I j, we obtain the weak problem statement, that is

∫
I j

∂tuvdx =
∫

I j

f (u)v′dx+ f [u(x+
j− 1

2
, t)]v(x+

j− 1
2
, t)− f [u(x−

j+ 1
2
, t)]v(x−

j+ 1
2
, t) (4)

∫
I j

u(x,0)v(x)dx =
∫

I j

u0(xv(x)dx (5)

where x+
j− 1

2
and x−

j− 1
2

represents the limit from the right and the le� respectively.

The problem statement is that we find a solution uh to u for every t ∈ (0,T ), with v(x)
and uh(x, t) belonging to semi-finite dimesion space

V K
h = {v ∈ L1(0,1) : v|I j ∈ PK(I j), j = 1,2, ...,N} (6)

This means that, in the space dimension V K
h , uh and v are polynomials of degree K. Since

uh and v are both discontinuos at x+
j− 1

2
and x−

j− 1
2
, then the ambiguity in the terms of (4)

which involves the non-linear fuxes f [u(x j+ 1
2
, t)] and f [u(x j− 1

2
, t)] should be substituted

by numerical fuxes which entirely depends on uh at x j+ 1
2

and x j− 1
2

I.e
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f̄ j+ 1
2
= f̄ (uh|−j+ 1

2
,uh|+j+ 1

2
), f̄ j− 1

2
= f̄ (uh|−j− 1

2
,uh|+j− 1

2
) (7)

which is yet to be chosen. Therefore if we use Legendre’s polynomials Pm to expand the
approximation uh in terms of basis functions

uh|I j =
K

∑
m=0

um j(t)Pm(
2(x− x j)

4 j
), ∀ j = 1,2, ...,N, (8)

Then the test functions vh are considered to be equal to the functions of the basis, that
is, v(x) = {Pm}K

m=0,[3], wheres at the same time we invoke the orthogonality property of
Legendre’s polynomials

∫ 1

−1
Pm(ψ)Pl(ψ)dψ =

2
2l +1

δml (9)

where

ψ =
2(x− x j)

4 j

δml=

{
1, m=l

0, otherwise

the weak form becomes

dul j(t)
dt

=
2l +1
4 j

∫ 1

−1
f [uh(ψ, t)]P′l (ψ)dψ +

2l +1
4 j

(−1)l f+j−1/2− f−j+1/2

ul j(0) =
2l +1

2

∫ 1

−1
u0(ψ)P′l(ψ)dψ, ∀land j

Notice that we apply the property

Pl(−1) = (−1)l, Pl(1) = 1
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1.2.1 Why study Conservation laws

There are multiple reasons as to why we consider this particular group of equations alone:

1. Majority of problems in engineering and science involve conservation and eventually
ends to partial di�erential equations of this group.

2. There exists technicalities that come with finding solutions to these systems which
don’t exist any other place and has to looked at with precision when coming up with
numerical schemes. Methods concerned with basic FD approximations might be okay
with finer solutions however can produce horribly wrong outcomes when there is
presence of discontinuities.

3. Even though only a handful of exact solutions are known, there in so much informa-
tion about the mathematical nature of these problems including their answers. Ex-
ploiting this facts helps come up with be�er methods that beat some of the numerical
di�iculties experienced with more basic approaches [4].

1.3 Early Numerical methods for Conservation laws

One of the earliest development in an a�empt to solve conservation laws was the Dis-
continuous Galerkin (DG) method. DG methods were originally developed around 1970s
[5] as a way of solving partial di�erential equations numerically [4] . In 1973 Reed and
Hill [6] discovered a DG method to solve the NEUTRON TRANSPORT EQUATION (NTE)
equation.

σu+∇(au) = f (10)

where σ ,a(x) ∈ R and u is to be found

This equation has roots going back more than a century ago to the Boltzamann’s equation
[7].

N j

N
=

w̄ je
−E j
kT

∑ w̄ je
−Ei
kT

which was formulated initially to facilitate the study of kinetic theory of gases. Further
study of radiation transport in atmosphere lead to several analytical Solutions the trans-
port problems in early 1930s. The physics surrounding these problems, however, caused a
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Figure 2. WH Reed

Figure 3. TR Hill

confinement in interest to one dimensional semi-infinite medium geometries. During the
advent of nuclear chain reactors in 1940s there became interest involving neutral particle
transport problems in a wider range of configurations in geometry which were found in
the applications of nuclear reactor and radiation shielding. A number of good analytical
methods to solve the transport problems who pursued since the 1940s. The Weiner-Hopf
method [8], singular eigenfunction expansions among other analytical methods provided
a great deal of input into the general nature of the transport processes through the study
of greatly idealized configurations, which included the Milne problem.

At the same time there was an increase in sophisticated numerical methods which began
being developed, concurrent with the rapidly increasing use of digital computers as a
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computational power. Among these numerical methods the discontinuous galerkin was
conceived.

Until their most recent development these method made it’s way into the heart of compu-
tational fluid dynamics where they found use in a wide variety of applications including
but has not been limited to nonlinear conservation laws, the compressible Navier-stokes
equation and Hamilton Jacobi-like equations.

This quest, however, is far from trivial simply because of two main reasons

1. The first is that the exact solution of ( nonlinear) purely convective problems develops
discontinuities in finite time;

2. the second is that these solutions might display a very rich and sophisticated structure
near such discontinuities.

Thus,when constructing numerical methods for these problems, it must be guaranteed
that the discontinuities of the approximate solution are those which are physically rele-
vant. In addition, it must be ensured that the appearance of a discontinuity in the approx-
imated solution does not bring about sparious oscillations that tamper with the quality
of the approximation;on the other hand, when ensuring this, the method must remain
accurate enough near that discontinuity in order to capture the possibly rich structure of
the exact solution.

Owing to their finite element nature, the DG methods have the following main advan-
tages over other classical finite volume and finite di�erence methods:

1. The real order of accuracy of Discontinuous Galerkin methods entirely depends on
the exact solution; DG methods of arbitrarily high formal order of accuracy can be
obtained by choosing a suitable degree of approximating polynomials.

2. DG methods are highly parallelizable. since the elements are discontinuous,the mass
matrix is block diagonal and since the blocks and the number of degrees of freedom
are equal inside the corresponding elements, the blocks can be inverted (by using a
symbolic manipulation or by hand) once and for all.

3. DG handles adaptive techniques as polishing of the grid can be achieved without tak-
ing considering the continuity restriction typical of conforming finite element meth-
ods. Moreover, the degree of approximately polynomial can be easily Transformed
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from one element to the other without losing generality. Adaptivity is of much im-
portance in hyperbolic problems considering the complexity of the structure of the
discontinuities.

1.3.1 The original DG method for the neutron transport problem

The original finite element method was introduced in 1973 by Reed and Hill for solving
the neutron transport equation (10).The usefullness of the method was recognised by
LeSaint and Raviart who in 1974 published its first mathematical analysis. To display the
method, we multiply the equation by a test function v and integrate over an arbitrary
subset of Ω say,K. A�er a formal integration by parts, we get

σ(u,v)K− (u,a.∇v)K +(a.nku,v)dK = ( f ,v)K

where nk denotes the outward unit normal of dK, and

(u,v)K =
∫

K
uvdx

,

(w,v)dK =
∫

dK
wvds.

Next, we construct a triangulation τh =K of Ω, and take our approximate solution uh to be
a polynomial of degree at most k on each elements of the triangulation. The approximate
solution uh is then determined as the unique solution of the following weak formulation:

∀k ∈ τh :

σ(uh,v)K− (uh,a.∇v)K)+(h,v)dK = ( f ,v)K, ∀v ∈ Pk(K),

where Pk(K) denotes the space of polynomials of degree at most k on the element Ka
and h on the numerical flux given by

h(x) = a.nK(x) lim
s→0

uh(x− sa).

Note that the value lim
s→0

(x−sa) is nothing but the value of uh upstream the characteristic

direction a. As a consequence the degree of freedom of the approximate solution uh in
the element K can be computed in terms of the values of uh upstream the characteristics
hi�ing dK. In other words, the approximate solution uh can be computed element by
element when the elements are suitably ordered according to the characteristic direction
a.
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1.3.2 The DG method for ODEs

The first analysis of the DG method as applied to ordinary di�erential equations, was
performed in 1974 by LeSaint and Raviart [9] who showed that the method is strongly
stable of order 2k+1 at mesh points, and that the Gauss-Radau discretization of the DG
method is also of order 2k+ 1 when polynomials (piecewise) of degree k are applied. It
is rather interesting that about a year later before the introduction of the DG method by
Reed and Hill, another mathematician, Hulme had studied a method for ordinary di�er-
ential equations which word is same week formulation as the DG method but employed
a continuous approximate solution uh; this method is, however,of order k at mesh points.

A study of global error control for ordinary di�erential equations for DG method was
done in 1994 by Estep and French. Another work on DG methods for ODEs was car-
ried out in 1981 by Delfour, Hager and Trochu; they introduced a class of DG methods
which are proven to give an order of accuracy up to 2k+2 at the mesh points. Recently,
Schotzau and Schwab have obtained a new estimate on the size of time step needed to
solve the implicit system of equations determined by the DG method by way of a simple
fixed point iteration method.

In 1988,Johnson [10] gave an analysis of error control for the DG method for harder ODEs.
And lastly, in 1996, Bo�cher and Rannacher introduced a new global error control method
for ODEs by using the DG method.

With a variety of well-tested and successfully applied methods, one cannot help but ask
why there is any need to consider another method. To embrace this, let us take o� by
trying to understand the strengths and weaknesses of the standard methods. we will
consider how one-dimensional conservation law for the solution u(x, t)

∂u
∂ t

+
∂ f
∂x

= h, x ∈Ω (11)

corresponding to a set of boundary and initial condition on, ∂Ω. Where f = flux and
h(x, t) is a function which has been prescribed. To come up with any numerical method
that solves a pde calls for consideration of two factors

1. How to represent u using the approximation uh?
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2. In which manner does this approximation get to fit the Partial Di�erential Equation
(PDE)?

This draws the line between separate methods giving di�erent properties.

Consider a very simple method used over the years and perhaps for the oldest time,
called the FDM. Here, xk, is given in space and using di�erence methods we approximate
derivatives; i.e,

dug(xk, t)
dt

+
fg(xk+1, t)− fg(xk−1, t)

gk +gk−1 = h(xk, t), (12)

where ug is solution and fg is flux numerically approximated, wheres

gk = xk+1− xk,

represents size of grid. To construct a FDM we need, within the surrounding of every
point xk, the flux and its soution are therefore considered as approximated numerically
using polynomials.

x ∈ [k−1,k+1] : ug(x, t) =
2

∑
i=0

ai(t)(x− xk)i, fg(x, t) =
2

∑
i=0

bi(t)(x− xk)i,

wheres ai(t) and bi(t) are calculated ensuring the approximated function exists at points
, xk. pu�ing this approximation in equation (11), gives the residual

x ∈ [xK−1,xk+1] : Rh(x, t) =
∂uh

∂ t
+

∂ fh

∂x
−g(x, t).

Clearly,
Rh(x, t) 6= 0,

In the table below we give the summary of methods. By a look at it one should remember
that this comparison only look at some basic problems and that many of those problems
which have been addressed and restrictions can be rectified and overcome in a variety
of ways. In addition, the comparison gives an insight of which shortcoming one should
struggle to resolve when trying to come up with a new method.
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Method FDM FVM FEM DG-FEM

Complex Geometries × X X X

hp-adaptivity and High-order accuracy X × X X

Explicit semi-discrete form X X × X

Conservation laws X X (X) X

Elliptic problems X (X) X X
Table 1. Generic properties of methods used in discretizing partial di�erential equations

On the table aXshows success, while× shows that there is a shortcoming in that method.
finally, (X) shows that the method, when subjected to modifications, can be used to solve
search problems but it should not the recommended for as a natural choice.

1.3.3 The Standard Galerkin method for the heat equation

We will briefly look into the standard Galerkin finite element method for the approximate
solution of initial-boundary value problem for the heat equation (note that the method
is equally applicable to similar equations),

ut−∆u = f

in Ω, for t > O

u = 0 on dΩ, for t > 0 with u(.,0) = v

where Ω is a domain in the set of reals with smooth boundary dΩ, and where u = u(x, t),
ut denotes du/dt , and

∆ =
d

∑
j=1

d2

dx2
j

the Laplacian. Before we proceed with the discussion of this problem we need to revise
on some basic material around the finite element method for its corresponding stationary
problem, the Dirichlet problem for Poisson’s equation,

−∆u = f
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in Ω, with u = 0, on dΩ. using variational formulation of this problem, we shall define
an approximation of the solution u.as a function uh which belongs to a finite dimensional
linear space Sh of functions of x with certain properties. This function, is the simplest
case a continuous, piecewise linear function on some partition of Ω, will be a solution
of finance system of linear algebra equation. We show basic error estimates for this
approximate solution in energy at least square norms. Looking back at the parabolic
problem which we first write in a weak form, we continue to discretize this problem, first
in the special variable x, which gate is result in an approximate solution uh(., t) in the
finite element space Sh, for t ≥ 0, as a solution of an initial value problem for a finite-
dimensional system of ordinary di�erential equations. We then define the fully discrete
approximation by application of some finite di�erence time stepping method to this finite
dimensional initial value problem. This yields an approximate solution U = Uh which
belongs to Sh at discrete-time levels. Errors estimates will be derived for both the special
and fully discrete solutions.

1.4 Objectives

1. To study and understand previous works done on numerical methods for partial dif-
ferential equations of conservation laws.

2. To study and understand the finite di�erence method (FDM) including its formulation
and application.

3. To study and understand the shallow water equations and successfully apply FDM.

1.5 Outline

The outline of the thesis is as follows:

Chapter 2: Having research on the earlier numerical methods for PDEs, this chapter
will focus on the strides made towards achieving the ultimate goal. The discontinuous
galerkin method will be considered in particular where we will look at how the method
has been applied in a�empts to solve nonlinear equations like the Parabolic, Maxwell’s
and Visco-elastic flows in the recent past. We will briefly present other original numerical
methods and describe their theoretical and computational developments in the frame-
work of linear hyperbolic systems.

In addition we will review the application of the Finite Di�erence method in various equa-
tions including but not limited to the Viscid Shallow Water equations and the Isothermal
Euler equations.
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Chapter 3: In this chapter we will discuss the finite di�erence method in details, it’s
development will be considered. We will derive the and shallow water equations in non-
conservative and conservative form and then using finite di�erence method we will solve
it.

Chapter 4: For be�er understanding of how the finite di�erence method works we will
run simulations of the results in chapter 3 using the MATLAB so�ware before concluding
our study in chapter 5.
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2 Literature Review

Although the original DG method has been known since 1973, it was only recent that DG
method have evolved in such a way that made them suitable for use in computational
fluid dynamics and the aforementioned applications.

2.1 Early applications of the Discontinuous Galerkin method

Apart from the application of the Discontinuous galerkin method to the neutron transport
equation and the ODEs, further applications of this method to analyze wave propagation
within elastic medium was done between 1975 and 1977 by Oden and Wellford [8], it was
also applied to optimal control in 1978 by Delfour and Trochu [11]. Other applications
include

2.1.1 Time discretization of parabolic equations

In 1978, Jamet [12] applied the DG method to disctretize parabolic equations in time
where he showed that the method was of order k. From there other authors have studied
the method. In 1985, K. Eriksson, C. Johnson and V.Thomee [12] proved that the method
was of order 2k+ 1 at the nodes. Later Erikson and Johnson did further studies where
they looked at the issue of error control in a series of articles starting from 1987 and
completing it in 1995. In 1997, Babuska and Makridakis [13] looked at the e�ects of
adaptive mechanisms on stability of the method.

2.1.2 Visco-elastic flows

For the first time in 1989 the DG method by Reed and Hill was applied on numerical
computation of viscoelastic flows by Fortin [14]. Basically he wanted to apply the DG
method to itutive laws which involved relating the extra-stress tensor in terms of ve-
locity. Fortin together with other mathematicians revisited the development of the idea
while Baaijiens, Bogaerds and Verbeeten [15] studied the failures and the successes of the
methods in viscoelastic fluid analysis. A very recent application of the DG method to this
problem was pursued by Sun, Smith, Armstrong and brown [16] in 1998. Mathematical
analysis on these methods have been conducted in 1992 by Baranger and Sandri[17], in
1995 by Baranger and Wardi[18], in 1997 by Baranger and MachMoum [19] and in 1998
by Baranger, Bahhar and Sandri [20].
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2.1.3 DG method for Maxwell’s equations

The Maxwell’s equations represent one of the most concise and elegant ways to state
the fundamentals of magnetism and electricity. From the Maxwell’s equations it has
become possible to develop majority of the working relationships in the field of partial
di�erential equations. Due to the concise nature, they cover a high level of mathematical
sophistication.as a new development, the DG method has found use in this equations.
The equations of magneto-hydrodynamics, which includes the Maxwell’s equations, has
been discretized by DG methods.

Apart from the application of the Discontinuous galerkin method to the neutron transport
equation and the ODEs, further applications of this method to analyze wave propagation
within elastic medium was done between 1975 and 1977 by Oden and Wellford [8], it was
also applied to optimal control in 1978 by Delfour and Trochu [11]

2.2 Preliminaries

In this section we discuss some Numerical methods which have over the years been used
in finding the solutions of Partial Di�erential equations.

2.2.1 Finite Volume Method

Recall that in the solution of linear problem [21] using the finite element method we
normally solve simultaneous algebraic equations.

Ka = f

If the matrix of coe�icients is non singular then we have a unique solution. For problems
which are not linear we require to get a collection of algebraic equations; but those are
the brightly questions will always be non-linear, and they are indicated as

φ(a) = f −P(a) = 0

Here a is a collection of parameters used for discretization, f is a vector that does not
depend on a while P depends on a. There can be multiple solutions for this equations .
This means that if we get a solution that solution may or may not be the solution we are
looking for. To achieve realistic answers we need to take physical look at the structure of
the equations and run an algorithm that increases stepwise from the know solution. Such
increments are fundamental if the constitutive law that relates changes in both strain and
stress dependent on the route or if there are bifurcations in the path or di�erent branches
on some stages of the load .
The problem needs to be put miniature format as the solution of
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φn+1 = φ(an+1) = fn+1−P(an+1) = 0

which starts o� at a nearby solution

a = an,φn = 0, f = fn

and is o�en brought about by the variations in the function fk to

fk+1 = fk +4 fk

The process of determining the change4an such that

an+1 = an +4an

is the main objective and generally the increments4 fn are kept reasonably small so that
the dependence of the path is followed. Nevertheless, those incremental procedures be-
comes useful in an a�empt to have minimal number of iterations and also when following
the correct path physically. Apparently following the path 4 fn will have both positive
and negative as shown in Figure (??). Here if the function φ decreases it may cause a
typical non-uniqueness and consequently increase as a increases. In a single increment
of f we can obtain solutions in small non-linearity and independence on the path, i.e,
with

fk = 0,

4 fk = fk+1 = f

2.2.2 Finite Element Method

For the numerical solutions for PDEs using the finite di�erent methods, the di�erential
system is replaced by the metric system A, which is usually square and has real elements.
The linear equations system inrequiring the solution is
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n

∑
j=1

ai jx j = bi(i = 1,2,3, ...,n)

which can be wri�en as a matrix system

Ax = b

Where A is a matrix with rows and columns and the elements

ai j

are all real numbers. The vectors b and x have any components. As usual the problem
involves finding x where A and b are given. We get a unique solution which can be wri�en
in the form.

x = A−1b

here A is non-singular, which is same as saying A has non-vanishing determinant. Since
the matrix is just aa reprentation of a di�erential system, then A is sparse and contains a
definite structure (given by the non-zero elements). The method that involves inventing
A, in particular when the order the matrix is large (ie order n), is dependent largely on
the structured A. Numerous techniques of inverting Aare available. As n becomes larger
and larger, the methods of iniversion becomes more and more e�icient.

2.2.3 Parabolic Equations

Many problems that require numerical solution in physics and engineering involve special
cases of linear parabolic partial di�erential equation given by

α
∂u
∂ t

=
∂

∂x
a

∂u
∂x)

+b
∂u
∂x)
− cu (13)

Which is only valid within some region R of the (x,t) space. Inside this region, the func-
tions, α and a are strictly positive wheres c is non-negative,

The region is usually one of the three types given in the figures
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Figure 4. Semi-infinite plane

[−∞ < x <+∞]× [t ≥ 0]

.

This region leads to an initial value problem called the Cauchy problem which consists

of equation (13) together with initial condition given by

u = f (x),

(−∞ < x <+∞)

at t = 0

2.2.4 Numerical Fluxes

For the problem to be defined completely, the remaining task is to choose the flux func-
tion (or the flow). According to Cockburn [22], we construct schemes which are pertur-
bations of what is called the monotone schemes. By carrying out the perturbations on
the monotone schemes, we can a�ain be�er accuracy which maintainthe properties of
both instabilty and convergence. As a result, when discretization of space is constant,
K = 0, the scheme of integration has to be monotonous

du0 j(t)
dt

=
f̄ j+1/2− f̄ j−1/2

2
, ∀ j = 1, ...,N

u0 j(0)
1
2

∫ 1

−1
u0(ψ)dψ
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This is the definition of a monotonous scheme if f̄ (a,b) is a monotone flux, consistent
and Lipschitz continuous. This means that

1. f̄ (a,b) is locally Lipschitz, and with consistency f (u) flux i.e f̄ (u,u) = f (u)

2. f̄ (a,b) is a nondecreasing function of its frst argument

3. f̄ (a,b) is a nonincreas- ing function of its second argument.

An example of a numerical flux is the Lax-Friedrichs [23] f̄ LLF which are confidered to
be

f̄ LLF(a,b) =

{
1
2 [ f (a)+ f (b)−C(b−a)]

C = max| f ′(s)|, min(a,b)≤ s≤ max(a,b)



21

Figure 5. The quarter Plane

[x≥ 0]× [t ≥ 0]

.

The problem is an initial value problem which consist of a equation (13) together with

the initial condition given by

u = f (x),(0≤ x <+∞)

at t = 0
Where the boundary condition is at

x = 0, t ≥ 0

this consists of

a0(0, t)u+a1(O, t)
∂u
∂x

= a2(O, t)

where

a0(0, t)>> 0,a1(O, t)<< 0anda0−a1 > o
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Figure 6. The open rectangle

[0≤ x≤ 1]× [t ≥ 0]

.

Here the problem is made up of equation (13) together with the initial condition

u = f (x)(0≤ x≤ 1

at t = 0
together with the boundary conditions

a0(0, t)u+a1(0, t)
∂u
∂x

= a2(0, t)

at x = o, t ≥ 0,

and

B0(1, t)u+B1(1, t)
∂u
∂x

= B2(1, t)

at x = 1, t ≥ O,

where the conditions for a,s are the same as those in (b) and where

B0(1, t)≥ 0,B1(1, t)≥ 0

and B0−B1 > 0.



23

3 Numerical Solution of Shallow-water equation

3.1 Finite Di�erence Method

In this discussion [4] we will begin with numerical methods for partial di�erential equa-
tions. Consider the following initial-boundary-value problem

ut = vuxx (14)

u(x,0) = F(x),x ∈ [0,1] (15)

u(0, t) = a(t),v(1, t) = b(t), t ≥ 0 (16)

where
f (0) = a(0)

and
f (1) = b(0)

Of course this problem can be solved analytically. For illustration purposes we shall at-
tempt to solve it numerically [24]. Our method involves reducing the problem above into
a discrete problem which we will be able to solve. We start o� by discretizing the spatial
domain and we do that by placing a grid over it. By discretizing it means that we are
going to approximate the solution using discrete quantity or quantities (in this case the
solution(s)). To conveniently do so, introduce a fairly uniform grid, post spaced as

4x =
1
M

To refer to one of the points in a grid it is best we call the points

xk,k = 0, ...,M

where
xk = k4x,k = 0, ...,M
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Figure 7. Grid on the time space domain

.

Similarly, we discretize time domain by placing a grid on the access with grid spacing4t .
The resulting grid is called the time-space domain as shown in Figure (7).

For our case the space-time domain is going to be approximated by a la�ice of points in
the Figure 7. We will try to approximate the solution to the problem at this points on the
la�ice. Here we let un

k be a function defined on the point (k4x,n4t) or the la�ice point
(k,n). The function un

k will be considered to be the approximation of the solution to the
problem (14) on the grid.
Noting that since

ut(x, t) = lim
4t→0

u(x, t +4t)−u(x, t)
4t

then an approximation of ut(k4x,n4t) can begin by

un+1
k −un

k
4t

.

un+1
k −un

k
4t

(17)
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In a similar way we can approximate uxx at (k4x,n4t) by

un
k+1−2un

k +un
k−1

4x2 (18)

To check that indeed this is a reasonable approximation consider that

(ux)
n
k+1/2− (ux)

n
k−1/2

4x

is an approximation for (uxx)
n
k , and that (ux)

n
k+1/2, and (ux)

n
k−1/2, can be approximated

using

un
k+1−un

k

4x

and

un
k−un

k−1

4x

respectively. Then

(uxx)
n
k ≈

(ux)
n
k+1/2− (ux)

n
k−1/2

4x
(19)

or

(uxx)
n
k ≈

un
k+1−un

k
4t − un

k−un
k−1

4t

4t
(20)

therefore the expression given by (17) and (18) approximates the pde (14) at the point
(k4x,n4t) using

un+1
k −un

k
4t

= u
un

k+1−2un
k +un

k−1

4x2 (21)

or
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un+1
k = un

k +u
4t
4x2 (u

n
k+1−2un

k +un
k−1) (22)

Finally, we are able to see that the initial condition and boundary conditions of the prob-
lem are also reasonably approximated by

u0
k = f (k4x),k = 0, ...,M (23)

un+1
0 = a((n = 1)4t),n = 0, ... (24)

and

un+1
M = b((n = 1)4t),n = 0, ... (25)

Our task will be to obtain the approximation to the problem (14) together with its initial
and boundary conditions by solving problem (22)-(25). //

We begin by choosing

1. 4x (or M) and

2. 4t

which are the ones to decide both the behavior and the accuracy of our solution.

If we temporary assume these details, we see that:

-Equation (23) gives u0
k for k = 0, ...,M;

-Equation (22) with n = 0 can be used to find u1
k for k = 1, ...,M−1;

and eventually,
-Equations (24) and (25) are used to determine u1

0 and u1
M.
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Therefore, equations (22) (24) and (25) use the details at n = 0 to find u at the first Time
Step.

Since u1
k ,k = 0, ...,M is known , then equations (22) (24) and (25) can be applied to deter-

mine u for n = 2 .

Continuing this process we can determine un
k ,k = 0, ...,M upto any desired time step n.

Notice that it was not possible to determine u1
0 and u1

M using equation (22), because one
of the subscripts k+ 1 and k− 1 would have gone beyond the bounds ( � 0 or  1) for
either one of the calculations. Thus it will always be necessary to have some boundary
treatment equations (24) and (25). In this case the treatment was very easy and obvious
which is not always the case.

This is now the scheme to approximate the solution to the initial-boundary value problem
and we call it the explicit scheme since it is possible to solve for the variable at the
(n+1)st time level explicitly.

3.2 The Shallow-Water Equations

The shallow-water equations (SWE) (also called the Saint-Venant equations), are a set
of nonlinear hyperbolic equations, describing a thin layer of fluid having constant den-
sity within a hydro-static balance [25]. The layer is bounded from above by a free surface
and below by the bo�om topography.

These equations exhibit a variety of features, simply because they have infinite number of
conservation laws. For instance to describe accurately the exact propagation of a tsunami
until the wave reaches the shore we can use the shallow-water equations [25]. However
while close enough or right at the shore, a model that is more complicated is required.

Another application of a shallow water equation model is to evaluate circulation pa�erns
and minimum and maximum tides at the inside of the region in relation to a tidal force
at the open boundaries of that region. These pa�erns of circulation are of basic inter-
est in a model to analyze the transportation of di�erent species in the environmental
applications[26].

3.2.1 Derivation of shallow-water equations
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The SWE’s are derived from laws of physics on conservation-of-momentum and conservation-
of-mass (the Navier-Stokes equations). These are harmonized into a set of non-linear
di�erential equations [27].

To develop the shallow-water equations, we can begin with the Euler’s equations with no
surface tension,

free surface condition:

p = 0,
Dη

Dt
=

∂η

∂t
+~v.5η = w, on z = η(x,y, t), (26)

momentum equation:

D~u
Dt

+
1
ρ
5 p+g~z = 0, (27)

continuity equation:

5 .~u = 0, (28)

bo�om boundary condition:

~u.5 (z+h(x,y)) = 0, on z =−h(x,y) (29)

Here, ρ is the density, η is the vertical displacement of the free surface,~u = (u,v,w) is the
velocity in three-dimensions, p the pressure, g the gravitational acceleration and h(x,y)
the bo�om topography. As shown in figure (8)
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Figure 8. Methodical illustration of the Euler’s system.

For the initial step of deriving the shallow-water equations, we consider the global con-
servation of mass. We first integrate the continuity equation (28) vertically,

0 =
∫

η

−h
[5.~u]dz, (30)

=
∫

η

−h
[
∂u
∂x

+
∂v
∂y

+
∂w
∂ z

]dz, (31)

=
∂

∂x

∫
η

−h
udz−u|z=η

∂η

∂x
+u|z=−h

∂ (−h)
∂x

,+
∂

∂y

∫
η

−h
vdz−v|z=η

∂η

∂y
+v|z=−h

∂ (−h)
∂x

,+w|z=η−w|z=−h,

(32)

applying the bo�om boundary condition (29) we get

0 =
∂

∂x

∫
η

−h
udz−u|z=η

∂η

∂x
+

∂

∂y

∫
η

−h
vdz− v|z=η

∂η

∂y
+w|z=η . (33)

Using the surface condition (26), equation (33) becomes

∂η

∂ t
+

∂

∂x

∫
η

−h
udz+

∂

∂y

∫
η

−h
vdz = 0 (34)

The next step involves making the long-wave approximation where we assuming that
the length of the wave is way longer than the fluid depth. However, perturbations are
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not assumed to have small amplitudes, so that we can keep nonlinear terms. The verti-
cal acceleration term in (27) can be neglected all through the long-wave approximation,
and derive the hydro-static pressure by integrating only the vertical component of the
momentum equation (27),

∫
η

z

∂ p
∂ z

dz =−
∫

η

z
ρgdz (35)

p(x,y,η , t)− p(x,y,z, t) =−ρg(η(x,y, t)− z) (36)

p(x,y,z, t) = ρg(η(x,y, t)− z). (37)

here we used the surface condition p(x,y,η , t) = 0.

Assuming that there exist no vertical variations in (u,v), and using the expression of the
hydro-static pressure (37), the momentum equations (horizontally) of the shallow-water
system are found as follows,

∂u
∂ t

+u
∂u
∂x

+ v
∂u
∂y

+g
∂η

∂x
= 0 (38)

∂v
∂ t

+u
∂v
∂x

+ v
∂v
∂y

+g
∂η

∂y
= 0 (39)

The mass conservation given by (34) becomes

∂η

∂ t
+

∂

∂x
[(η +h)u]+

∂

∂y
[(η +h)v] = 0. (40)

The equations (38), (39) and (40) are the Conservative Shallow-water equations.

For one-dimensional (say in the x-axis) flow, the Shallow-water equation in conservative
form is

∂u
∂ t

+
∂F(u)

∂x
= R(x,u) (41)
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ut +Fx = R, in (0,L)× (0,T ), (42)

with

u(x, t) =

h

q

 ,

F(w) =

 q
q2

h + gh2

2


in which u is the velocity, h depth of flow, q = uh, discharge and g gravitational acceler-
ation.

The right side of (42)is the sources and sinks of the momentum.

R(x,w) =

 0

gh(D−B(x))

=

 0

ghH ′(x)

 (43)

with D =−zx,

where zx = bed slope and it is the spatial partial derivative of the bo�om elevation z. The
loss of friction S f is to be determined using an empirical formula [28].

Alternatively we can derive the one-dimensional SWE by contemplating a fluid (water) in
a unit width channel. It is an assumption that the vertical velocity can be neglected while
the velocity u(x, t) horizontally is fixed through the entire cross sectional of the bed. This
can be considered to be the case for significantly smaller waves with the length of the
wave greater than it’s depth. Further the fluid is assumed to have constant density ρ

so that it is incompressible. The depth of fluid is given by h(x, t) and velocity by u(x, t)
which are variables whose solution we seek. As shown in the figure below.

From Figure (3.2), at t all the mass in x1 ≤ x≤ x2 can be wri�en as
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Figure 9. The graph of h(x, t)

∫ x2

x1

ρh(x, t)dx.

At each point, the Density of momentum is ρu(x, t)h(x, t)

From the equation of conservation-of-mass the constant ρ is dropped which leads to the
form

ht +[uh]x = 0 (44)

Since also momentum is conserved we can write in the form of the gas dynamics equation

(ρhu)t +(ρhu2 + p)x = 0.

We determine the pressure p by the hydrostatic law, which states that the pressure at
distance (h− y) below the surface is ρg(h− y), where g is the constant of gravitation.
This pressure is caused by the weight of fluid above that point.
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Taking the integral over the interval 0≤ y≤ h(x, t) we get the total pressure that occurs
at particular points in time and space.

In the momentum flux the correct pressure term is

p =
1
2

ρgh2

Cancelling ρ from this form we get

(hu)t +(hu2 +
1
2

gh2)x = 0 (45)

Collecting equations (44) and (45) then writing as a system of di�erential equations we
get

 h

hu


t

+

 uh

hu2 + 1
2gh2


x

= 0

.

3.3 Solution of the Shallow-Water Equation

Since mathematical model is a simplification of a physical problem, it is not known be-
forehand if its solution exists or it is unique or even if it can be obtained accurately. The
existence and uniqueness of a solution is determined by the e�iciency of the conditions,
which depends on the system tigated and the solution. This section demonstrates numer-
ical solutions to the Shallow-Water Equations (SWE) using the Finite Di�erence method
for time and space discretization variables. Here we introduce a linearization error to en-
able us evaluate approximate and "(almost) accurate" numerical solutions [27]. Accurate
numerical solutions can only be obtained by repositioning the mesh points e�iciently to
reduce the linearization error. Finding the solution for the SWE allows someone derive
two necessary unknown components, height, h(x, t) of the wave and its velocity, u(x, t),
which are individually functions of both space x and time t .

For a wave propagating through an incompressible media of density ρ , we can use given
initial boundary conditions to calculate a collection of time-stepped numerical solutions,
which provides us with a set of solutions to the unknown velocity and height of the wave.
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Initial Data

We will consider one hump of water as in (44), using the Initial condition

h(x,0) = 1+
1
5

exp−2x2
(46)

the Boundary condition for height and velocity of −8≤ x≤ 8,

gravitational force g = 0.98,

and
h(xa, t) = h(xb, t) = 1

u(xa, t) = u(xb, t) = 0

The integer N ∈ Z+ is the number of steps for both the space and spatial index i, for
1≤ i≤ N +1.

The step size is

δ =
xb− xa

N
. (47)

Thus
xi = xa +(i−1)δ ,

x1 = xa

and
xN+1 = xb

, and there will exist N1 nodes for N small intervals.

Equally for the time, M ∈ Z is the total number of steps. For time t j, j ∈ Z+ : 1 < j ≤M.

3.3.1 FDMs FOR THE SOLUTION OF 1-D SSWE IN NONCONSERVATIVE FORM

ORDER- 1 EXPLICIT SCHEME

Consider the equation
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wn+1
i j = (I−ρAx4x)wn

i j

If we combine the operators in the parenthesis into one operator, L, then the operands L
equals the values of w at three nodes. Since forward di�erences are used explicitly with
respect to t and x, the explicit scheme can be denoted by FFF. The truncation error has
equal order as4t and4x. If4x is replaced by centered di�erence δx/2, the new 5-point
scheme is unstable, bringing an additional order-2 viscosity term, vO2w, is required on the
right side. The accuracy in this case is of the same order as (4x)2 and stability condition
is

(ρAx)
24t ≤ 4v

v
4t

(4x)2 ≤
1
4
,

where ρAx is the spectral radius of matrix Ax

If we replace upwind di�erence in place of4x, the stability condition becomes

4t ≤ (4x)2

4v+(ρAx)4x

ORDER-2 EXPLICIT SCHEME

wn+1
i j = (I−ρAx4x +

ρAx

2
(I +ρAx)42

x +
ρ2

2
(Ax4x))wn

i j

This is a scheme of 9-points with an accuracy of order same to (4x)
2 [29].

3.3.2 Developing the di�erence equations

In order to develop the corresponding di�erence Shallow-Water equations (44) and (45)

term-wise, we first assume that we know the values of h(x, t) and u(x, t) at time t j−1 and
then find those values at time t j. To accurately analyze 2–dimension shallow water equa-
tions however it is best to use the Generalized Finite Di�erence method (GFDM) [30].

Forward di�erence for time
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d
dt

h(x, t) =⇒
h(xi, t j)−h(xi, t j−1)

ψ

=⇒
hi, j−hi, j−1

ψ

and by product rule

d
dt
[h(x, t)u(x, t)] = h(x, t)

d
dt

u(x, t)+u(x, t)
d
dt

h(x, t)

=⇒ h(xi, t j−1)
d
dt

u(xi, t j−1)+u(xi, t j−1)
d
dt

h(xi, t j−1)

=⇒ hi, j−1
ui, j−ui, j−1

ψ
+ui, j−1

hi, j−hi, j−1

ψ

Central di�erence for space

d
dx

[u(x, t)h(x, t)] = u(x, t)
d
dx

h(x, t)+h(x, t)
d
dx

u(x, t)

=⇒ u(xi, t j−1)
d
dx

h(xi, t j)+h(xi, t j−1)
d
dx

u(xi, t j)

=⇒ ui, j−1
hi+1, j−hi−1, j

2δ
+hi, j−1

ui+1, j−ui−1, j

2δ

and by product rule

d
dx

[h(x, t)u2(x, t)+
1
2

gh2(x, t)] =
d
dx

[h(x, t)u2(x, t)]+
1
2

g
d
dx

h2(x, t)

where using chain rule and product rule

d
dx

[h(x, t)u2(x, t)] = h(x, t)
d
dx

u2(x, t)+u2(x, t)
d
dx

h(x, t)
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= 2h(x, t)u(x, t)
d
dx

u(x, t)+u2(x, t)
d
dx

h(x, t)

=⇒ 2hi, j−1ui, j−1
ui+1, j−ui−1, j

2δ
+u2

i, j−1
hi+1, j−hi−1, j

2δ

=⇒ hi, j−1ui, j−1
ui+1, j−ui−1, j

δ
+u2

i, j−1
hi+1, j−hi−1, j

2δ

and for the second term in the equation

d
dx

1
2

gh2(x, t) = 2
1
2

gh(x, t)
d
dx

h(x, t)

= ghi, j−1
hi+1, j−hi−1, j

2δ

Therefore the corresponding di�erence equations of (44)and (45) are as follows.

 hi, j−hi, j−1
ψ

hi, j−1
ui, j−ui, j−1

ψ
+ui, j−1

hi, j−hi, j−1
ψ



+

 ui, j−1
hi+1, j−hi−1, j

2δ
+hi, j−1

ui+1, j−ui−1, j
2δ

hi, j−1ui, j−1
ui+1, j−ui−1, j

δ
+u2

i, j−1
hi+1, j−hi−1, j

2δ
+ghi, j−1

hi+1, j−hi−1, j
2δ

=

0

0


or in discrete form for mass

hi, j−hi, j−1

ψ
+ui, j−1

hi+1, j−hi−1, j

2δ
+hi, j−1

ui+1, j−ui−1, j

2δ
= 0 (48)

and momentum

hi, j−1
ui, j−ui, j−1

ψ
+ui, j−1

hi, j−hi, j−1

ψ
+hi, j−1ui, j−1

ui+1, j−ui−1, j

δ

+u2
i, j−1

hi+1, j−hi−1, j

2δ
+ghi, j−1

hi+1, j−hi−1, j

2δ
= 0

(49)
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Multiplying (48) by ui, j−1

ui, j−1
hi, j−hi, j−1

ψ
+u2

i, j−1
hi+1, j−hi−1, j

2δ
+

ui, j−1hi, j−1
ui+1, j−ui−1, j

2δ

(50)

Subtracting (50) from (49)

ui, j−1
hi, j−hi, j−1

ψ
+u2

i, j−1
hi+1, j−hi−1, j

2δ
+hi, j−1

ui+1, j−ui−1, j

2δ
= 0

hi, j−1
ui, j−ui, j−1

ψ
+ui, j−1hi, j−1

ui+1, j−ui−1, j

2δ
+ghi, j−1

hi+1, j−hi−1, j

2δ
= 0

(51)

Removing the u2
i, j−1 element from first part of (51) by dividing all through by ui, j−1

hi, j−hi, j−1

ψ
+ui, j−1

hi+1, j−hi−1, j

2δ
+hi, j−1

ui+1, j−ui−1, j

2δ
= 0

hi, j−1
ui, j−ui, j−1

ψ
+ui, j−1hi, j−1

ui+1, j−ui−1, j

2δ
+ghi, j−1

hi+1, j−hi−1, j

2δ
= 0

(52)

Multiplying the equations (52) by 2δψ

2δ (hi, j−hi, j−1)+ψui, j−1(hi+1, j−hi−1, j)+ψhi, j−1(ui+1, j−ui−1, j) = 0

2δhi, j−1(ui, j−)+ψui, j−1hi, j−1(ui+1, j−ui−1, j)+ψghi, j−1(hi+1, j−hi−1, j) = 0
(53)

Multiplying out the terms in (53)

2δhi, j−2δhi, j−1+ψui, j−1hi+1, j−ψui, j−1hi−1, j +ψhi, j−1ui+1, j−ψhi, j−1ui−1, j = 0 (54)

and in the second one
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2δhi, j−1ui, j−2δhi, j−1ui, j−1 +ψui, j−1hi, j−1ui+1, j−
ψui, jhi, j−1ui−1, j +ψghi, j−1hi+1, j−ψghi, j−1hi−1, j = 0

(55)

Moving the known terms to right hand side for (54)

2δhi, j−ψui, j−1hi+1, j +ψui, j−1hi−1, j−ψhi, j−1ui+1, j +ψhi, j−1ui−1, j = 2δhi, j (56)

and (55)

2δhi, j−1ui, j +ψui, j−1hi, j−1ui+1, j−ψui, j−1hi, j−1ui−1, j+

ψghi, j−1hi+1, j−ψghi, j−1hi−1, j = 2δhi, j−1ui, j−1
(57)

3.3.3 RESULTS

Taking for example N = 6, we will find the initial solution for the discretized linear equa-
tions:

For i = 1

2δh1, j−ψu1, j−1h2, j +ψu1, j−1h0, j−ψh1, j−1u2, j +ψh1, j−1u0, j = 2δh1, j−1 (58)

and

2δh1, j−1u1, j +ψu1, j−1h1, j−1u2, j−ψu1, j−1h1, j−1u0, j+

ψgh1, j−1h2, j−ψgh1, j−1h0, j = 2δh1, j−1u1, j−1
(59)

For i = 2

2δh2, j−ψu2, j−1h3, j +ψu2, j−1h1, j−ψh2, j−1u3, j +ψh2, j−1u1, j = 2δh2, j−1 (60)
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and

2δh2, j−1u2, j +ψu2, j−1h2, j−1u3, j−ψu2, j−1h2, j−1u1, j+

ψgh2, j−1h3, j−ψgh2, j−1h1, j = 2δh2, j−1u2, j−1
(61)

For i = 3

2δh3, j−ψu3, j−1h4, j +ψu3, j−1h2, j−ψh3, j−1u4, j +ψh3, j−1u2, j = 2δh3, j−1 (62)

and

2δh3, j−1u3, j +ψu3, j−1h3, j−1u4, j−ψu3, j−1h3, j−1u2, j+

ψgh3, j−1h4, j−ψgh3, j−1h2, j = 2δh3, j−1u3, j−1
(63)

For i = 4

2δh4, j−1−ψu4, j−1h5, j +ψu4, j−1h3, j−ψh4, j−1u5, j +ψh4, j−1u3, j = 2δh4, j (64)

and

2δh4, j−1u4, j +ψu4, j−1h4, j−1u5, j−ψu4, j−1h4, j−1u3, j+

ψgh4, j−1h5, j−ψgh4, j−1h3, j = 2δh4, j−1u4, j−1
(65)

For i = 5

2δh5, j−ψu5, j−1h6, j +ψu5, j−1h4, j−ψh5, j−1u6, j +ψh5, j−1u4, j = 2δh5, j (66)

and
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2δh5, j−1u5, j +ψu5, j−1h5, j−1u6, j−ψu5, j−1h5, j−1u4, j+

ψgh5, j−1h6, j−ψgh5, j−1h4, j = 2δh5, j−1u5, j−1
(67)

Applying the boundary conditions at I = (a,b) = (0,6), we get the initial velocity to be
zero, i.e

u(xa, t) = u(xb, t) = 0,

and the initial height is

h(xa, t) = h(xb, t) = 1,

so that

u0, j = u6, j = 0,

h0, j = h6, j = 1.

The unknown terms therefore are u1, j,u2, j,u3, j,u4, j,u5, j,h1, j,h2, j,h3, j,h4, j,h5, j and the
ten equations can be simplified as:

For i = 1

2δh1, j−ψu1, j−1h2, j−ψh1, j−1u2, j = 2δh1, j−1−ψu1, j−1

2δh1, j−1u1, j +ψu1, j−1h1, j−1u2, j +ψgh1, j−1h2, j = 2δh1, j−1u1, j−1 +ψgh1, j−1
(68)

For i = 2
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2δh2, j−ψu2, j−1h3, j+

ψu2, j−1h1, j +ψh2, j−1u3, j−
ψh2, j−1u1, j = 2δh2, j−1

(69)

and

2δh2, j−1u2, j +ψu2, j−1h2, j−1u3, j−
ψu2, j−1h2, j−1u1, j−

ψgh2, j−1h1, j = 2δh2, j−1u2, j−1

(70)

For i = 3

2δh3, j−ψu3, j−1h4, j +ψu3, j−1h2, j−ψh3, j−1u4, j +ψh3, j−1u2, j = 2δh3, j−1 (71)

and

2δh3, j−1u3, j +ψu3, j−1h3, j−1u4, j−ψu3, j−1h3, j−1u2, j+

ψgh3, j−1h4, j−ψgh3, j−1h2, j = 2δh3, j−1u3, j−1
(72)

For i = 4

2δh4, j−ψu4, j−1h5, j +ψu4, j−1h3, j−ψh4, j−1u5, j +ψh4, j−1u3, j = 2δh4, j (73)

and

2δh4, j−1u4, j +ψu4, j−1h4, j−1u5, j−ψu4, j−1h4, j−1u3, j+

ψgh4, j−1h5, j−ψgh4, j−1h3, j

= 2δh4, j−1u4, j−1

(74)
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For i = 5

2δh5, j +ψu5, j−1h4, j +ψh5, j−1u4, j = 2δh5, j−1 +ψu5, j−1 (75)

and

2δh5, j−1u5, j−ψu5, j−1h5, j−1u4, j−ψgh5, j−1h4, j

= 2δh5, j−1u5, j−1−ψgh5, j−1
(76)

Ordering and Sorting the above
0 ψh1, j−1 0 0 0 2δ ψu1, j−1 0 0 0

2δψh1, j−1 ψu1, j−1h1, j−1 0 0 0 0 ψgh1, j−1 0 0 0
−ψh2, j−1 0 ψh2, j−1 0 0 −ψu2, j−1 2δ ψu2, j−1 0 0

−ψu2, j−1h2, j−1 2δh2, j−1 ψu2, j−1h2, j−1 0 0 −ψgh2, j−1 0 0 0 0
0 −ψh3, j−1 0 ψh3, j−1 0 0 −ψu3, j−1 2δ ψu3, j−1 0
0 −ψu3, j−1−h3, j−1 2δh3, j−1 ψu3, j−1h3, j−1 0 0 −ψgh3, j−1 0 ψgh3, j−1 0
0 0 −ψh4, j−1 0 ψh4, j−1 0 0 −ψu4, j−1 2δ ψu4, j−1
0 0 ψu4, j−1h4, j−1 2δh4, j−1 ψu4, j−1h4, j−1 0 0 −ψgh4, j−1 0 ψgh4, j−1
0 0 0 −ψh5, j−1 0 0 0 0 −ψu5, j−1 2δ

0 0 0 −ψu5, j−1h5, j−1 2δh5, j−1 0 0 0 −ψgh5, j−1 0




u1, j

u2, j

u3, j

u4, j

u5, j

h1, j

h2, j

h3, j

h4, j

h5, j
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=



2δh1, j−1−ψu1, j−1

2δh1, j−1u1, j−1 +ψgh1, j−1

2δh2, j−1

2δh2, j−1u2, j−1

2δh3, j−1

2δh3, j−1u3, j−1

2δh4, j

2δh4, j−1u4, j−1

2δh5, j +ψu5, j−1

2δh5, j−1u5, j−1−ψgh5, j−1


If we let

A=


0 ψh1, j−1 0 0 0 2δ ψu1, j−1 0 0 0

2δψh1, j−1 ψu1, j−1h1, j−1 0 0 0 0 ψgh1, j−1 0 0 0
−ψh2, j−1 0 ψh2, j−1 0 0 −ψu2, j−1 2δ ψu2, j−1 0 0

−ψu2, j−1h2, j−1 2δh2, j−1 ψu2, j−1h2, j−1 0 0 −ψgh2, j−1 0 0 0 0
0 −ψh3, j−1 0 ψh3, j−1 0 0 −ψu3, j−1 2δ ψu3, j−1 0
0 −ψu3, j−1−h3, j−1 2δh3, j−1 ψu3, j−1h3, j−1 0 0 −ψgh3, j−1 0 ψgh3, j−1 0
0 0 −ψh4, j−1 0 ψh4, j−1 0 0 −ψu4, j−1 2δ ψu4, j−1
0 0 ψu4, j−1h4, j−1 2δh4, j−1 ψu4, j−1h4, j−1 0 0 −ψgh4, j−1 0 ψgh4, j−1

0 0 0 −ψh5, j−1 0 0 0 0 −ψu5, j−1
0 0 0 −ψu5, j−1h5, j−1 2δh5, j−1 0 0 0 −ψgh5, j−1 0

 ,

X =



u1, j

u2, j

u3, j

u4, j

u5, j

h1, j

h2, j

h3, j

h4, j

h5, j



,
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b =



2δh1, j−1−ψu1, j−1

2δh1, j−1u1, j−1 +ψgh1, j−1

2δh2, j−1

2δh2, j−1u2, j−1

2δh3, j−1

2δh3, j−1u3, j−1

2δh4, j

2δh4, j−1u4, j−1

2δh5, j +ψu5, j−1

2δh5, j−1u5, j−1−ψgh5, j−1



,

These equations now have the form

AX = b.

This linear form can be solved, starting with the known initial conditions.

For j = 1

A =



0 ψh1,0 0 2δ ψu1,0 0

2δψh1,0 ψu1,0h1,0 0 0 ψgh1,0 0

−ψh2,0 0 ψh2,0 −ψu2,0 2δ ψu2,0

−ψu2,0h2,0 2δh2,0 ψu2,0h2,0 −ψgh2,0 0 ψgh2,0

0 −ψh3,0 0 0 −ψu3,0 2δ

0 −ψu3,0−h3,0 2δh3,0 0 −ψgh3,0 0


,

X =



u1,1

u2,1

u3,1

h1,1

h2,1

h3,1
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and

b =



2δh1,0−ψu1,0

2δh1,0u1,0 +ψgh1,0

2δh2,0

2δh2,0u2,0

2δh3,0−ψu3,0

2δh3,0u3,0−ψgh3,0


,

3.4 Numerical Simulation Results

In this section we are discussing the outcomes of FDM for shallow water equations as dis-
played graphically using MATLAB. We consider the results within space interval [−8,8]
with N +1 been the total number of points in that interval including the two ends, that
is the le� end x1 =−8, and right end xN+1 = 8.

The unknowns here are u(x, t) the velocity, h(x, t) which is the depth of water. Boundary
conditions:

u(1; t) = u(N +1; t) = 0

and
h(1; t) = h(N +1; t) = 1

where t=time. The initial conditions are

h(x,0) = 1+1/5exp(−2x(k)2)

and
u(x,0) = 0

The element δ will represent space step and is given by

δ =
(8− (−8))

N

The element ψ represent the time step size. The Dimension of our coe�icient matrix A
will be a 2N by 2N and b will be 2N by 1.
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Results

Figure 10. 3D graph of height h against time using finite di�erence.

Figure (10) describes water height contours at di�erent time interval. It is a 3D repre-
sentation of how h changes at di�erent times steps realtime. It is seen than the solution
starts o� at the edge as a lump, it then develops a depression at the peak of the lump
immediately. As time goes by the there is a significant split forming two lumps that move
apart as the wave is headed to the edge of the bed. When wave has reached the boundary
at time t = 10 the two wave bounces o� the wall of the bed converging back towards the
middle but this time with less momentum and less height.
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Figure 11. 2D graph of height h against time using finite di�erence.

Figure (11) is concurrent with figure 9. It shows the propagation of the wave in two di-
mension from an overhead view. It shows how the wave moves from the original point at
time t = 0 spli�ing into two forming a ridge that is notably becoming wider as time in-
creases. The waves are diverging up to the boundary where it experiences perturbations.
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Figure 12. 3D graph of discharge hu against time using finite di�erence.

Figure (12) describes water discharge contours at di�erent interval time. It is a 3D repre-
sentation of how discharge hu changes at di�erent times steps. It is seen that the solution
starts o� at the edge as a plane, it then develops a depression and a lump immediately.
As time goes by the two tends to fla�en while the wave is headed to the edge of the bed.
Just when they are about to balance the wave has reached the boundary at time t = 10
where things escalate as the wave bounces back towards the original position.

Having given a generalized description of both the solutions of height and discharge. We
are going to discuss particular observations at specific times
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Figure 13. Graph of h at t = 0

h = 1.2.

Starting with the initial condition h(x,0) = 1+ 1/5exp(−2x2),u(x,0) = 0, Figure (15)

shows the initial height at time t = 0. Here the wave starts o� as a simple lump of height.

Figure 14. Graph of discharge hu at t = 0
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Figure (16) shows the graph of discharge hu using finite di�erence at t = 0. The solution
is just a straight line in 2D since we start with water in stationary positionat u(x,0) = 0
so that discharge hu = 0.

Figure 15. Graph of h at t = 0.9091

The lump distorts and begin to divide at the center. Consequently there is development
of two wave like lumps.

Figure 16. Graph of discharge hu at t = 0.9091
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At time t = 0.9091, the solution for discharge hu the wave develops a depression and a
lump that moves in di�erent direction.

Figure 17. Graph of h at t = 2.9293

The lumps are moving further apart approaching the boundaries at time t = 2.9293.

Figure 18. Graph of discharge hu at t = 2.9293

At time t = 2.9293, for discharge hu the depression and the lump tends to diminish as
they move far apart towards the boundary.
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Figure 19. Graph of h at t = 6.4646

Upon reaching the boundaries the graph for h, shows that the water bounces of the wall
and converges towards the center.

Figure 20. Graph of discharge hu at t = 6.4646

Equally for the graph of discharge hu the wave too experiences similar perturbations.
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Figure 21. Graph of h at t = 10

This is a representation of the wave at the final time step for height h. Here the wave
bounces o� the walls and begin to move towards the center.

Figure 22. Graph of hu at t = 10

This is a representation of the wave at the final time step for discharge hu.



55

4 Conclusion

My current research has looked at the numerical methods to solve partial di�erential
methods (pdes) of conservation laws. In particular we have expounded on the Finite dif-
ference (FD) method as our main methodology. We have applied this to solve the shallow
water equations and results have been given adequately. We have established that it was
possible to find the height and the velocity of the wave at di�erent times using the FD
method.

Having looked a particular cases of finite di�erence method and discontinuous galerkin
methods as a numerical processes of solving partial di�erential equations we are at a
be�er position to give a general overview of these methods as compared to analytical
ones of seeking the solution. It has been established that ge�ing an analytical solution
for problem which are highly nonlinear is not possible one, and as such it is only practical
to seek numerical schemes that can be able to solve the issue. For the shallow water
equations for instance, finding the height and the velocity of the wave could have not
been possible if we had depended on the analytical means. Di�erent parameters were
only utilized as we made assumptions that led to the formulation and application of the
finite di�erence equation.

The finite di�erence method has proven itself of having the ability to give very good
solutions which possesses an upper hand for improved accuracy by giving the optimal
mesh adjustment.

4.1 Future research

Towards the end of the research, we have only considered Shallow Water Equatios in
one dimension. Further work would build on applying uniform mesh refinement, local
mesh refinement and applying finite di�erence method to higher orders (1.5D, 2D and 3D)
while appplying mesh refinement to each. It will also be a great boost in development on
ongoing research work surrounding application of the finite di�erence to solve the Dam
break problem.
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A MATLAB codes

clear; clc; close all; N =300; % number of steps in space
M = 100; % number of steps in time
maxt = 25;
t=linspace(0,maxt,M);
zeta=(maxt/M); % time step size
% draw profile g = 9.8; % gravitational constant,
delta = 16/N;
u(:,:) = zeros(N + 1,M); % create space for velocity
h(:,:) = zeros(N + 1,M); % creat space for height
x = -8 : delta : 8; % space step and range
u(1, :) = 0;u(N +1, :) = 0; % velocity boundary conditions
u(:,1) = 0; % initial velocity
h(1,:) = 1; h(N + 1,:) = 1; % height boundary conditions
% initial displacement conditions for k = 2 : N
h(k,1) = 1+1/5∗ exp(−2∗ x(k).2); %Initial conditions end

% matrices for solving A = zeros(2 * (N - 1), 2 * (N - 1)); b = zeros(2 * (N - 1) 1);
for j = 2 : M A(1, N) = 2*delta ;
A(1,N + 1) = zeta*u(2,j-1);
A(1, 2) = zeta * h(2, j - 1);
%the first equation for i = 1 b(1, 1) = 2 * delta * h(2, j - 1) + zeta* u(2, j - 1) * h(1, j) + zeta
* h(2, j - 1) * u(1, j)
A(2, 1) = 2 * delta * h(2, j - 1);
A(2, 2) = zeta * u(2, j -1) * h(2, j - 1);
%the second equation for i=1 A(2,N + 1) = zeta * g * h(2, j - 1);
b(2, 1) = 2 * delta * h(2, j - 1) * u(2, j -1) + zeta * u(2, j - 1) * h(2, j - 1) *u(1, j) + zeta * g *
h(2, j - 1) * h(1, j);
A(2 * N - 3, 2 * N - 2) = 2 * delta;
A(2 * N - 3,N - 2 + N - 1) = -zeta * u(N,j - 1);
A(2 *N - 3,N - 1 - 1) = -zeta * h(N,j - 1);
%the first equation for i=3 b(2 *N -3, 1) = 2 * delta *h(N, j-1)-zeta *u(N, j-1) *h(N +1, j)-
zeta*h(N,j-1) * u(N + 1, j);
A(2 * N - 2,N - 1) = 2 * delta * h(N, j - 1);
A(2 * N - 2,N - 1 - 1) = -zeta *u(N, j - 1) * h(N, j - 1);
A(2 * N - 2,N - 2 + N - 1) = -zeta * g * h(N, j - 1);
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%the second equation for i=3 b(2 *N -2, 1) = 2 * delta * h(N, j -1) * u(N, j -1)-zeta * u(N, j
-1) * h(N, j -1) *u(N + 1, j) - zeta * g * h(N, j- 1) * h(N + 1, j);
for i = 3 : N - 1

A(2∗ i−3,N−2+ i) = 2∗delta;
A(2∗ i−3,N−2+ i+1) = zeta∗u(i, j−1);
A(2∗ i−3,N−2+ i−1) =−zeta∗u(i, j−1);
A(2∗ i−3, i+1−1) = zeta∗h(i, j−1);
A(2∗ i−3, i−1−1) =−zeta∗h(i, j−1);
%the first equation for i = 2 b(2∗ i−3,1) = 2∗delta∗h(i, j−1);
A(2∗ i−2, i−1) = 2∗delta∗h(i, j−1);
A(2∗ i−2, i+1−1) = zeta∗u(i, j−1)∗h(i, j−1);
A(2∗ i−2, i−1−1) =−zeta∗u(i, j−1)∗h(i, j−1);
A(2∗ i−2,N−2+ i+1) = zeta∗g∗h(i, j−1);
A(2∗ i−2,N−2+ i−1) =−zeta∗g∗h(i, j−1);
%the second equation for i = 2 b(2∗ i−2,1) = 2∗delta∗h(i, j−1)∗u(i, j−1);
end

% solving y=Ab;
y=Ab;
% applying the solution to the velocity and height spaces
u(2 : N, j) = y(1 : N−1);h(2 : N, j) = y(N : 2∗N−2);
end

figure
plot(x, h(:, 1),’ b-’);
title(’h at t=0’);
axis([-8 8 0.8 1.8]);

figure
plot(x,h(:,25),’b-’);
title(’h at t=1.2060’);
axis([-8 8 0.8 1.8]);

figure
plot(x,h(:,50),’b-’);
title(’h at t=2.4623’);
axis([-8 8 0.8 1.8]);



62

figure
plot(x,h(:,75),’b-’);
title(’h at t=3.7186’);
axis([-8 8 0.8 1.8]);

figure
plot(x,h(:,100),’b-’);
title(’h at t=4.9749’);
axis([-8 8 0.8 1.8]);

figure
plot(x,h(:,1).*u(:,1),’r-’);
title(’h*u at t=0’);
axis([-8 8 0.8 1.8]);

figure
plot(x,h(:,25).*u(:,25),’r-’);
title(’h*u at t=1.2060’);
axis([-8 8 0.8 1.8]);

figure
plot(x,h(:,50).*u(:,50),’r-’);
title(’h*u at t=2.4623’);
axis([-8 8 0.8 1.8]);

figure
plot(x,h(:,75).*u(:,75),’r-’);
title(’h*u at t=3.7186’);
axis([-8 8 0.8 1.8]);

figure
plot(x,h(:,100).*u(:,100),’r-’);
title(’h*u at t=4.9749’);
axis([-8 8 0.8 1.8]);
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[T,X] = meshgrid(t,x);

figure
title(’the meshgrid in 3 dimensions’);
surf(T,X,h)
colorbar
xlabel(’Time’)
ylabel(’Length’)
zlabel(’Height’)

figure
surf(T,X,u)
colorbar
xlabel(’Time’)
ylabel(’Length’)
zlabel(’Height’)

figure
surf(T,X,h .*u)
colorbar
xlabel(’Time’)
ylabel(’Length’)
zlabel(’Height’)

figure
pcolor(T,X,h)
colormap(hsv(64))
colorbar
xlabel(’Time’)
ylabel(’Length’)
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