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Abstract

In this project we focus on the construction of partially duplicated fractional factorial

designs. Factors involved in these designs are at two levels. In the first part of this work

we discuss partially duplicated fractional factorial designs that permit estimation of main

effects and two factor interactions only. In part two of this work, we construct partially

duplicated fractional factorial designs that permit estimation of main effects, two-factor

and three-factor interactions only assuming high order interactions to be absent. Designs

presented in this project have as many as ten factors. The method of construction,

analysis, test procedure and block designs is illustrated and can be used in any of the

designs presented in this work.
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1 Introduction

1.1 Concept of Factorial Designs

Factorial designs, sometimes referred to as Industrial designs were and are still widely
used in experiments to study the effect of factors, that is, the significant factors. They
also allow one to study the effect of their interactions. For Instance, in clinical trials, one
would like to determine if the combination(Interaction) of different type of drugs is
efficient in curing a disease.Factorial designs are also used in product development,
designing processes and quality improvement of products.

Factorial designs are economical and saves on time as compared to experiments done
factor by factor popularly known as one-factor-at-a-time (OFAT) experiments. Such
experiments involve alternating the level of one factor at a time while adjusting for the
other factor levels. Consequently, one will require additional resources and time. It is
important to note that this type of experiment does not allow one to study for
interactions. Complete factorials can be considered when the number of factors is
sufficiently small. Full factorials contain all possible combination of levels for the factors
involved.

In the case of an experiment involving large number of factors and/or limited resources
to perform a full factorial, under reasonable assumption the experimenter can adopt to
run a fraction of the complete factorial design. Consider a ap Factorial design where a
implies the number of levels and p the number of factors. These factors can be at two
or more levels. Throughout we shall only discuss designs with factors at two levels. To
illustrate the usefulness of a fractional factorial design, consider a 29 factorial design. A
complete factorial will involve 512 runs which in real life may not be “practical”
considering resources like money and time. However, one can adopt a fraction of the
above design, say 1

25 of the 29 factorial to get 16 runs which is much practical. Such
designs are referred to as Fractional Factorial Designs and are much more economical
and time-saving. Fractional factorial experiments are widely used in screening designs-
designs meant to help identify significant or rather active factors from a number of
factors.

Running an unreplicated complete or fractional factorial design with the focus of
identifying significant effects only as a way of miminising on cost could lead to biased
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results while making inference during analysis. This is as a result of not obtaining an
estimate for the pure error. Again, assumption made on high-order interactions to be
considered as negligible so as to obtain an estimate for the experimental error could be
misleading as some of the assumed interactions may not be negligible or absent.
Disregarding some of these interactions could lead to an experimental error variance that
is biased. One proposed method of obtaining a better estimate for the error variance is
duplicating some of the treatment combinations in the design.

Certainly, complete duplication provides a better estimate for the error variance.
However, it is not cost effective due to the additional runs and thus partial duplication
is a good alternative. Partial duplication provides for an unbiased estimate of the error
variance and estimates of effects which are more specific and reliable.

1.2 Literature review

The concept of factorial design was first presented by Fisher (1935) in his book “The
Designs of Experiments”.

Yates (1935) contributed to the concept of factorial design introduced by Fisher (1935) by
suggesting an algorithm which could be used to estimate the effects involved in a
particular factorial design. This algorithm is now widely used and is known as the Yate’s
algorithm.

An experiment can either be symmetrical factorial or asymmetrical factorial. Bose and
Kishen (1940) studied in detail symmetrical factorial designs and addressed the problem
of confounding in such designs highlighting the usefulness of partial confounding. Only
symmetrical factorials will be addressed in this project, that is, experiments whose
factors occur at the same number of levels.

Bose (1947) extended the work by Bose and Kishen (1940) on symmetrical factorial
experiments giving the mathematical theory behind symmetric factorial designs.

Running a complete factorial experimentwithmany factors requiresmany observations(runs).
To obtain the error d.f. we shall need to replicate the experiment. Fractional factorial de-
signs have become extremely popular and have been explored widely by researchers such
as Plackett and Burman, 1946; Dykstra, 1959; Patel, 1961 and Montgomery, 2001 among
many others.
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Plackett and Burman (1946) obtained orthogonal fractional factorial designs that could
be used to estimate main effects only assuming that all other interactions were absent.
These designs were used extensively by researchers like Ottieno (1984), Odhiambo (1985)
and Manene (1987) among others for computing optimum expected number of runs in
Group Screening Designs (GSD) when we have error in observations.

Daniel (1957) during the convocation of the American Society for Quality Control,
proposed an error estimation method of partially duplicating a subset of the treatment
combinations.

Later on Dykstra (1959) extended the conversation by giving an experimental plan and
method of analysis of designs with factors at two levels with partial duplication involved.

Dykstra (1960) extended his work done in 1959 to partial duplication of Response Surface
Designs to clear the uncertainty of whether variability remains constant or increases
away from a center point resulting to a biased estimate of the error. Dykstra showed
that obtaining duplicates over the experimental area could solve that uncertainty or the
fear of variance increasing away from the center point.

Patel (1963) extended Dykstra’s work (1959) giving the experimental plan, test
procedures and block design for 2p designs that had been duplicated partially. Patel’s
designs provided for fewer runs than the corresponding Dykstra’s designs. Both Patel
and Dykstra duplicated partially in their designs so as to allow for estimation of the error
variance.

Pigeon and McAllister (1989) discussed how it was possible to have partial duplication
without interfering with the orthogonality of main effects.

Liau (2008) extended thework by Pigeon andMcAllister (1989) by presenting construction
techniques on how to get the orthogonal main effect plan with some set of duplicated
points.

Liau and Chai (2009) re-examined the 1
8 fraction of 27 design by Snee (1985) where 2 refers

to the number of levels and 7 the number of factors. Snee’s design had four points
duplicated. After Liau and Chai re-analysed the design they found out that had the
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points not been duplicated, the significant effects would have been different. They also
concluded that partially duplicated designs are more robust and efficient in screening
experiments.

Tsai and Liao (2011) extended the proposed 2p symmetrical factorial by Liau and Chai
(2009) to obtain optimality in partially replicated mixed factorial experiments.

Patel (1963) and Dykstra (1959) studied designs that allowed for estimation up to
two-factor interactions. Plackett-Burman designs assumed no interaction in effects. In
this project, we are going to include partial duplication in the proposed fractional factorial
designs that allow for estimation of effects up to three-factor interaction as some of these
interactions assumed to be absent could be actually active.

1.3 Statement of The Problem

It is a commonly accepted practice to obtain an estimate of the error by regarding high
order interactions absent and pooling their d.f. and Sum of Squares to be for error.
However, some of these interactions may actually be present leading to a biased estimate
of the error. Moreover, we may not understand the extent to which the error term is
biased (Dykstra,1959).

Here we are going to show how estimation of effects was done in Patel’s work- estimation
of effects up-to two-factor interactions usingmatrix approach- and extend to designs that
estimate up to three factor interactions.

1.4 Objectives of the Study

The main aim of this project is to construct partially duplicated fractional factorial
designs with as fewer runs as possible.

The specific objectives of the study are are:

i) To construct partially duplicated fractional factorial designs which allow for estimation
up-to two factor interactions.

ii) To construct partially duplicated fractional factorial designs which allow for estimation
up-to three factor interactions.
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1.5 Methodology

1.5.1 Definition of Effects

Consider a factorial experiment with p factors F1, . . . ,Fp each at two levels and factors
that appear at x1, . . . ,xp levels. Let xi the level of the ith factor be coded as 0, 1 for 1≤ i≤ p.
That is, xi = 0,1 for i = 1, . . . , p
Let the combination of levels of the p factors, that is, the treatment combinations be
denoted by

f x1
1 , . . . , f xp

P or (x1, . . . ,xP) (1.1)

The design described above is a 2p factorial design. Consider a 22 design. The treatment
combinations are (1), f1 , f2 , f1 f2. The same treatments can be represented as (0,0),
(1,0), (0,1) and (1,1). In a 23 design the eight treatments are (1), f1 , f2 , f1 f2 , f3 , f1 f3

, f2 f3 and f1 f2 f3 also presented as (0,0,0), (1,0,0), (0,1,0), (1,1,0), (0,0,1), (1,0,1),
(0,1,1) and (1,1,1).

The parameters in a 22 design are µ , F1 , F2 , F1F2 and their estimates are denoted by µ̂ ,
F̂1 , F̂2 and ˆF1F2 respectively. They are given by the following equations:-

µ̂ =
[µ]

4
=

1
4
[(1)+ f1 + f2 + f1 f2]

F̂1 =
[F1]

4
=

1
4
[−(1)+ f1 − f2 + f1 f2] (1.2)

F̂2 =
[F2]

4
=

1
4
[−(1)− f1 + f2 + f1 f2]

ˆF1F2 =
[F1F2]

4
=

1
4
[(1)− f1 − f2 + f1 f2]

where [µ], [F1] , [F2] and [F1F2] are contrasts in the actual observation values of the above
treatments.
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The parameters in a 3 factor experiment are µ , F1 ,F2 , F3 , F1F2 , F1F3 , F2F3 and F1F2F3.
Their estimates are defined by the following eight equations:-

µ̂ =
1
8
[(1)+ f1 + f2 + f1 f2 + f3 + f1 f3 +2 f3 + f1 f2 f3]

F̂1 =
1
8
[(−1)+ f1 − f2 + f1 f2 − f3 + f1 f3 − f2 f3 + f1 f2 f3]

F̂2 =
1
8
[(−1)− f1 + f2 +1 f2 − f3 − f1 f3 + f2 f3 + f1 f2 f3]

F̂3 =
1
8
[(−1)− f1 − f2 − f1 f2 + f3 + f1 f3 + f2 f3 + f1 f2 f3] (1.3)

ˆF1F2 =
1
8
[(1)− f1 − f2 + f1 f2 + f3 − f1 f3 − f2 f3 + f1 f2 f3]

ˆF1F3 =
1
8
[(1)− f1 + f2 − f1 f2 − f3 + f1 f3 − f2 f3 + f1 f2 f3]

ˆF2F3 =
1
8
[(1)+ f1 − f2 − f1 f2 − f3 − f1 f3 + f2 f3 + f1 f2 f3]

ˆF1F2F3 =
1
8
[(−1)+ f1 + f2 − f1 f2 + f3 − f1 f3 − f2 f3 + f1 f2 f3]

From equations (1.2) we can see that µ̂ + F̂1 is the average of the observations at high
level of factor F1 and µ̂ − F̂1 is the average of observations corresponding to the low level
of F1. The same is true for F2. Using the same logic we can reason for equations (1.3).

µ̂ + ˆF1F2 is the average of the observations at the low level of both factors and at the high
level of both factors whereas µ̂ − ˆF1F2 is the average of observations at high level of F1

and high level of F2. The same argument can be used in equations (1.3).

Let B=

1 −1

1 1

 and B(2) = B⊕B be the direct product of matrix B.

Equation (1.2) can be derived as

E

(1)
f1

⊕

(1)
f2

= B(2)

 I

F1

⊕

 I

F2

 (1.4)

where (1).(1) = (1), (1). f1 = f1 = f1.(1), I.I = I , I.F1 = F1 = F1.I and I = µ
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Solving for equation (1.4) we get

E


(1)

f1

f2

f1 f2

=

1 −1

1 1

⊕

1 −1

1 1




µ

F1

F2

F1F2

 (1.5)

Now,

1 −1

1 1

⊕

1 −1

1 1

=


1×1 1×−1 −1×1 −1×−1

1×1 1×1 −1×1 −1×1

1×1 1×−1 1×1 1×−1

1×1 1×1 1×1 1×1

=


1 −1 −1 1

1 1 −1 −1

1 −1 1 −1

1 1 1 1


(1.6)

Replace equation (1.6) in equation (1.5) to get

E


(1)

f1

f2

f1 f2

=


1 −1 −1 1

1 1 −1 −1

1 −1 1 −1

1 1 1 1




µ

F1

F2

F1F2

 (1.7)

Getting the inverse of the above matrix in (1.7) gives us the equation of the estimates as


µ̂

F̂1

F̂2

ˆF1F2

=
1
4


1 1 1 1

−1 1 −1 1

−1 −1 1 1

1 −1 −1 1




(1)

f1

f2

f1 f2

 (1.8)

Note these equations are similar to those given in equation (1.2).

Similarly, for the 3-factor experiment we can proceed as follows.

Let B=

1 −1

1 1

 and B(3) = B⊕B⊕B be the direct product of matrix B.
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E

(1)
f1

⊕

(1)
f2

⊕

(1)
f3

= B(3)

 I

F1

⊕

 I

F2

⊕

 I

F3

 (1.9)

Solving the left-hand side of equation (1.9) to get

E



(1)

f1

f2

f1 f2

f3

f1 f3

f2 f3

f1 f2 f3



=

1 −1

1 1

⊕

1 −1

1 1

⊕

1 −1

1 1





µ

F1

F2

F1F2

F3

F1F3

F2F3

F1F2F3



(1.10)

Equation (1.10) reduces to

E



(1)

f1

f2

f1 f2

f3

f1 f3

f2 f3

f1 f2 f3



=



1 −1 −1 1 −1 1 1 −1

1 1 −1 −1 −1 −1 1 1

1 −1 1 −1 −1 1 −1 1

1 1 1 1 −1 −1 −1 −1

1 −1 −1 1 1 −1 −1 1

1 1 −1 −1 1 1 −1 −1

1 −1 1 −1 1 −1 1 −1

1 1 1 1 1 1 1 1





µ

F1

F2

F1F2

F3

F1F3

F2F3

F1F2F3



(1.11)
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Getting the inverse of the matrix in (1.11), the equations below follow

µ̂

F̂1

F̂2

ˆF1F2

F̂3

ˆF1F3

ˆF2F3

ˆF1F2F3



=
1
8



1 1 1 1 1 1 1 1

−1 1 −1 1 −1 1 −1 1

−1 −1 1 1 −1 −1 1 1

1 −1 −1 1 1 −1 −1 1

−1 −1 −1 −1 1 1 1 1

1 −1 1 −1 −1 1 −1 1

1 1 −1 −1 −1 −1 1 1

−1 1 1 −1 1 −1 −1 1





(1)

f1

f2

f1 f2

f3

f1 f3

f2 f3

f1 f2 f3



(1.12)

The corresponding equations in (1.12) above are the same as those in equations (1.3).

Therefore, we can write the expectation equations in (1.4) and (1.9) in a more generalized
form for more than two factors as

E

(1)
f1

⊕

(1)
f2

⊕

(1)
f3

⊕·· ·⊕

(1)
fP

=B(p)

 I

F1

⊕

 I

F2

⊕

 I

F3

⊕·· ·⊕

 I

Fp

 (1.13)

1.5.2 Construction of The Design

We are going to consider linear equations of the form L = f1x1 + f2x2 + · · ·+ fpxp where
fi = 0,1 for i = 1,2, . . . , p.
The number of non-zero co-efficients of the levels x1, . . . ,xp is known as the weight of the
linear form L.

Consider a set of k linearly independent equations

L1 = f11x1+ f12x2 + · · ·+ f1pxp = b1

L2 = f21x1+ f22x2 + · · ·+ f2pxp = b2

...

Lk = fk1x1+ fk2x2 + · · ·+ fkpxp = bk

where fτ j; τ = 1,2, . . . ,k and j = 1,2, . . . , p.
The Lτ ’s in this project are chosen such that each linear function is of weight ≥ 3. All
linear combinations of Lτ ’s gives 2k −1 linear forms
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λ1L1+λ2L2+ . . .+ λkLk

where λτ = 0,1; τ = 1,2, . . . ,k and (λ1, . . . ,λk) ̸= (0, . . . ,0).
The number of treatments which when written as column vectors constitute an
orthogonal array of strength 2 is 2p−k given by the 2k −1 linear forms.

In treatment combinations each level of every factor appears the same number of times.
Also, any combination of levels corresponding to a pair of factors occurs equally (Rao,
1950). Lτ = bτ (mod 2) generates the combination of levels denoted by (x1, . . . ,xP) given
in (1.1) where bτ = 0,1 for τ = 1,2, . . . ,k. It therefore follows that Lτ for τ = 1,2, . . . ,k
are the generators of the design giving the fractional design.

Now let B = (bτm) be a non-singular matrix with entries 0, 1 (mod 2) for τ = 1, . . . ,k
and m = 1, . . . ,k. Then the treatment combinations given by the k linearly independent
equations

L1 = 0,b11,b12, . . . ,b1k

L1 = 0,b21,b22, . . . ,b2k (1.14)
... (mod 2)

LK = 0,bk1,bk2, . . . ,bkk

gives the fraction of the design. The total number of treatment combination given by
equation (1.14) is (k+1)2p−k.

We are going to repeat any of the k+ 1 set of k equations in (1.14) so as to construct a
partially duplicated fractional factorial design.
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2 Partially Duplicated Fractional Factorial Designs
which allow for Estimation up to Two-Factor
Interactions

2.1 Introduction

In this chapter, fractional factorial designs which allow for estimation of effects up to
two-fator interactions are presented. We consider experiments involving five factors up
to ten factors. The construction plan, test method of significance and the block design is
illustrated. Thematrix method is used to obtain estimates for effects under consideration.

2.2 Five Factors Experiment involving 24+8 = 32 Runs

2.2.1 Constuction of the Design

Consider a design with treatment combinations (x1,x2,x3,x4,x5) which satisfy the
simultaneous equations

x1 + x2 + x3 = 0,1,0
x1 + x4 + x5 = 0,0,1

mod 2. The first set of treatment combination to the equations

x1 + x2 + x3 = 0
x1 + x4 + x5 = 0

mod 2 are (0,0,0,0,0), (0,0,0,1,1), (1,1,0,1,0), (1,1,0,0,1), (1,0,1,1,0), (1,0,1,0,1),
(0,1,1,0,0) and (0,1,1,1,1).

The second set of treatment combinations satisfying the equations

x1 + x2 + x3 = 1
x1 + x4 + x5 = 0
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mod 2 are (0,1,0,0,0), (0,0,1,0,0), (0,0,1,1,1), (0,1,0,1,1), (1,0,0,0,1), (1,1,1,0,1),
(1,1,1,1,0) and (1,0,0,1,0). Similarly, for the third set the treatment combinations are
(0,0,0,1,0), (0,0,0,0,1), (1,1,0,1,1), (1,1,0,0,0), (1,0,1,1,1), (1,0,1,0,0), (0,1,1,1,0)
and (0,1,1,0,1) which satisfy the equations

x1 + x2 + x3 = 0
x1 + x4 + x5 = 1 (mod 2)

The defining relation is

I = F1F2F3 = F1F4F5 = F2F3F4F5

The aliased sets are

(F1,F2F3,F4F5), (F2,F1F3), (F3,F1F2), (F4,F1F5), (F5,F1F4), (F2F5,F3F4), (F2F4,F3F5)

Listing only up to two factor interactions.
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2.2.2 Method of Analysis

Expected responses ϕ(x1,x2,x3,x4,x5) expressed as a linear function of the grand
average, main and two-factor interaction effects

ϕ



0 0 0 0 0

0 0 0 1 1

1 1 0 1 0

1 1 0 0 1

1 0 1 1 0

1 0 1 0 1

0 1 1 0 0

0 1 1 1 1

0 0 0 0 0

0 0 0 1 1

1 1 0 1 0

1 1 0 0 1

1 0 1 1 0

1 0 1 0 1

0 1 1 0 0

0 1 1 1 1

0 1 0 0 0

0 0 1 0 0

0 0 1 1 1

0 1 0 1 1

1 0 0 0 1

1 1 1 0 1

1 1 1 1 0

1 0 0 1 0

0 0 0 1 0

0 0 0 0 1

1 1 0 1 1

1 1 0 0 0

1 0 1 1 1

1 0 1 0 0

0 1 1 1 0

0 1 1 0 1



=



µ F1 F2F3 F4F5 F3 F1F2 F2 F1F3 F4 F1F5 F5 F1F4 F2F5 F3F4 F2F4 F3F5

1 −1 1 1 −1 1 −1 1 −1 1 −1 1 1 1 1 1

1 −1 1 1 −1 1 −1 1 1 −1 1 −1 −1 −1 −1 −1

1 1 −1 −1 −1 1 1 −1 1 −1 −1 1 −1 −1 1 1

1 1 −1 −1 −1 1 1 −1 −1 1 1 −1 1 1 −1 −1

1 1 −1 −1 1 −1 −1 1 1 −1 −1 1 1 1 −1 −1

1 1 −1 −1 1 −1 −1 1 −1 1 1 −1 −1 −1 1 1

1 −1 1 1 1 −1 1 −1 −1 1 −1 1 −1 −1 −1 −1

1 −1 1 1 1 −1 1 −1 1 −1 1 −1 1 1 1 1

1 −1 1 1 −1 1 −1 1 −1 1 −1 1 1 1 1 1

1 −1 1 1 −1 1 −1 1 1 −1 1 −1 −1 −1 −1 −1

1 1 −1 −1 −1 1 1 −1 1 −1 −1 1 −1 −1 1 1

1 1 −1 −1 −1 1 1 −1 −1 1 1 −1 1 1 −1 −1

1 1 −1 −1 1 −1 −1 1 1 −1 −1 1 1 1 −1 −1

1 1 −1 −1 1 −1 −1 1 −1 1 1 −1 −1 −1 1 1

1 −1 1 1 1 −1 1 −1 −1 1 −1 1 −1 −1 −1 −1

1 −1 1 1 1 −1 1 −1 1 −1 1 −1 1 1 1 1

1 −1 −1 1 −1 −1 1 1 −1 1 −1 1 −1 1 −1 1

1 −1 −1 1 1 1 −1 −1 −1 1 −1 1 1 −1 1 −1

1 −1 −1 1 1 1 −1 −1 1 −1 1 −1 −1 1 −1 1

1 −1 −1 1 −1 −1 1 1 1 −1 1 −1 1 −1 1 −1

1 1 1 −1 −1 −1 −1 −1 −1 1 1 −1 −1 1 1 −1

1 1 1 −1 1 1 1 1 −1 1 1 −1 1 −1 −1 1

1 1 1 −1 1 1 1 1 1 −1 −1 1 −1 1 1 −1

1 1 1 −1 −1 −1 −1 −1 1 −1 −1 1 1 −1 −1 1

1 −1 1 −1 −1 1 −1 1 1 1 −1 −1 1 −1 −1 1

1 −1 1 −1 −1 1 −1 1 −1 −1 1 1 −1 1 1 −1

1 1 −1 1 −1 1 1 −1 1 1 1 1 1 −1 1 −1

1 1 −1 1 −1 1 1 −1 −1 −1 −1 −1 −1 1 −1 1

1 1 −1 1 1 −1 −1 1 1 1 1 1 −1 1 −1 1

1 1 −1 1 1 −1 −1 1 −1 −1 −1 −1 1 −1 1 −1

1 −1 1 −1 1 −1 1 −1 1 1 −1 −1 −1 1 1 −1

1 −1 1 −1 1 −1 1 −1 −1 −1 1 1 1 −1 −1 1



γ

where

γ
T = [µ,F1,F2F3,F4F5,F3,F1F2,F2,F1F3,F4,F1F5,F5,F1F4,F2F5,F3F4,F2F4,F3F5]
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The first linear equation follows

ϕ[0,0,0,0,0] = µ −F1 −F2 −F3 −F4 −F5 +F1F2 +F1F3 +F1F4

+F1F5 +F2F3 +F2F4 +F2F5 +F3F4 +F3F5 +F4F5
(2.1)

The other equations can be written in a similar manner.

Consider the model given in (1.13). Performing the Kronecker Product on the Left-hand
and Right-hand side of the model we obtain

ϕ[x1, . . . ,xp] = µ +
p

∑
i=1

ρ(xi)Fi + ∑
i,i′=1,2,...,p

i<i′

ρ(xi)ρ(xi′)FiFi′ (2.2)

(for up to two-factor interaction)

ϕ[x1, . . . ,xp] = µ+
p

∑
i=1

ρ(xi)Fi+ ∑
i,i′=1,2,...,p

i<i′

ρ(xi)ρ(xi′)FiFi′+ ∑
i,i′,i′′=1,2,...,p

i<i′<i′′

ρ(xi)ρ(xi′)ρ(xi′′)FiFi′Fi′′

(2.3)
(for up to three-factor effects)
where

E[y(x1, . . . ,xp)] = ϕ[x1, . . . ,xP]

for ρ(xi) =−1; xi = 0 and ρ(xi) = 1; xi = 1.

Using equation (2.2) one is able to obtain equation (2.1). The column vector of expected
response is given by ϕ . Then from either equation (2.2) or (2.3) it follows

ϕ = Xγ

where X is the matrix of constants and γ the column vector of factors. Let the estimate
of γ be γ̂ . Then γ̂ is obtained as follows

γ̂ = (XT X)−1(XT y) (2.4)
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The X matrix of co-efficients in our 25 design is

X =



µ F1 F2F3 F4F5 F3 F1F2 F2 F1F3 F4 F1F5 F5 F1F4 F2F5 F3F4 F2F4 F3F5

1 −1 1 1 −1 1 −1 1 −1 1 −1 1 1 1 1 1

1 −1 1 1 −1 1 −1 1 1 −1 1 −1 −1 −1 −1 −1

1 1 −1 −1 −1 1 1 −1 1 −1 −1 1 −1 −1 1 1

1 1 −1 −1 −1 1 1 −1 −1 1 1 −1 1 1 −1 −1

1 1 −1 −1 1 −1 −1 1 1 −1 −1 1 1 1 −1 −1

1 1 −1 −1 1 −1 −1 1 −1 1 1 −1 −1 −1 1 1

1 −1 1 1 1 −1 1 −1 −1 1 −1 1 −1 −1 −1 −1

1 −1 1 1 1 −1 1 −1 1 −1 1 −1 1 1 1 1

1 −1 1 1 −1 1 −1 1 −1 1 −1 1 1 1 1 1

1 −1 1 1 −1 1 −1 1 1 −1 1 −1 −1 −1 −1 −1

1 1 −1 −1 −1 1 1 −1 1 −1 −1 1 −1 −1 1 1

1 1 −1 −1 −1 1 1 −1 −1 1 1 −1 1 1 −1 −1

1 1 −1 −1 1 −1 −1 1 1 −1 −1 1 1 1 −1 −1

1 1 −1 −1 1 −1 −1 1 −1 1 1 −1 −1 −1 1 1

1 −1 1 1 1 −1 1 −1 −1 1 −1 1 −1 −1 −1 −1

1 −1 1 1 1 −1 1 −1 1 −1 1 −1 1 1 1 1

1 −1 −1 1 −1 −1 1 1 −1 1 −1 1 −1 1 −1 1

1 −1 −1 1 1 1 −1 −1 −1 1 −1 1 1 −1 1 −1

1 −1 −1 1 1 1 −1 −1 1 −1 1 −1 −1 1 −1 1

1 −1 −1 1 −1 −1 1 1 1 −1 1 −1 1 −1 1 −1

1 1 1 −1 −1 −1 −1 −1 −1 1 1 −1 −1 1 1 −1

1 1 1 −1 1 1 1 1 −1 1 1 −1 1 −1 −1 1

1 1 1 −1 1 1 1 1 1 −1 −1 1 −1 1 1 −1

1 1 1 −1 −1 −1 −1 −1 1 −1 −1 1 1 −1 −1 1

1 −1 1 −1 −1 1 −1 1 1 1 −1 −1 1 −1 −1 1

1 −1 1 −1 −1 1 −1 1 −1 −1 1 1 −1 1 1 −1

1 1 −1 1 −1 1 1 −1 1 1 1 1 1 −1 1 −1

1 1 −1 1 −1 1 1 −1 −1 −1 −1 −1 −1 1 −1 1

1 1 −1 1 1 −1 −1 1 1 1 1 1 −1 1 −1 1

1 1 −1 1 1 −1 −1 1 −1 −1 −1 −1 1 −1 1 −1

1 −1 1 −1 1 −1 1 −1 1 1 −1 −1 −1 1 1 −1

1 −1 1 −1 1 −1 1 −1 −1 −1 1 1 1 −1 −1 1
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Thus

XT X =



µ F1 F2F3 F4F5 F3 F1F2 F2 F1F3 F4 F1F5 F5 F1F4 F2F5 F3F4 F2F4 F3F5

32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 32 −16 −16 0 0 0 0 0 0 0 0 0 0 0 0

0 −16 32 0 0 0 0 0 0 0 0 0 0 0 0 0

0 −16 0 32 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 32 −16 0 0 0 0 0 0 0 0 0 0

0 0 0 0 −16 32 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 32 −16 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −16 32 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 32 −16 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −16 32 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 32 −16 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −16 32 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 32 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 32 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 32 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32



XT y =



[µ]

[F1]

[F2F3]

[F4F5]
...

[F3F5]


where

γ
T = [µ,F1,F2F3,F4F5,F3,F1F2,F2,F1F3,F4,F1F5,F5,F1F4,F2F5,F3F4,F2F4,F3F5]

We now have all the parts defined in (2.4), that is, XT X and XT y matrices.
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Finding the inverse of the corresponding matrices in XT X matrix, we get estimates for
the effects as shown below


F̂1

ˆF2F3

ˆF4F5

=


32 −16 −16

−16 32 0

−16 0 32


−1

[F1]

[F2F3]

[F4F5]

=
1

64


4 2 2

2 3 1

2 1 3




[F1]

[F2F3]

[F4F5]


Effects F2F3 and F4F5 are estimated with the same efficiency which is higher than the
efficiency used to estimate the main effect F1.

 F̂3

ˆF1F2

=

 32 −16

−16 32

−1 [F3]

[F1F2]

=
1

48

2 1

1 2

 [F3]

[F1F2]


 F̂2

ˆF1F3

,
 F̂4

ˆF1F5

,
 F̂5

ˆF1F4

 are estimated by the matrix 1
48

2 1

1 2

.
The correlated effects in sets (F2,F1F3), (F3,F1F2), (F4,F1F5), (F5,F1F4) are estimated
with the same efficiency.

It is clear that the effects above are estimable and thus we can term them as correlated
effects as opposed to aliased effects.
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Estimate of effects

µ̂ =
1

32
[µ] ˆF1F2 =

1
48

[[F3]+2[F1F2]]

F̂1 =
1

64
[[4[F1]+2[F2F3]+2[F4F5]] ˆF1F3 =

1
48

[[F2]+2[F1F3]]

F̂2 =
1

48
[[2[F2]+ [F1F3]] ˆF1F4 =

1
48

[[F5]+2[F1F4]]

F̂3 =
1

48
[[2[F3]+ [F1F2]] ˆF1F5 =

1
48

[[F4]+2[F1F5]]

F̂4 =
1

48
[[2[F4]+ [F1F5]] ˆF2F5 =

1
32

[[F2F5]]

F̂5 =
1

48
[[2[F5]+ [F1F4]] ˆF2F4 =

1
32

[[F2F4]]

ˆF3F4 =
1

32
[F3F4] ˆF3F4 =

1
32

[F3F5]

ˆF4F5 =
1

32
[F4F5]

Significance Test
The error sum of squares is given by

SSe =
1
2
{

8

∑
i=1

(y(.)i − y(..)i )2}

and
E(SSe) = 8σ

2

Here y1, . . . ,y8 are the duplicated treatments whereas (.) and (..) denote the two
observations. The test statistic say for F2 is given as

t =

∣∣∣∣∣∣ F̂2√
var(F̂2)

∣∣∣∣∣∣=
∣∣∣∣∣∣
[2[F2]+[F1F3]

48√
2×SSe
48×8

∣∣∣∣∣∣> t α

2
(2.5)

which is said to be significant at α level of significance and non-significant otherwise.
t α

2
is the value of t distribution with eight degrees of freedom. The t-distribution is used

when the sample size is small say p < 30.

Block Design
There are two ways in which to obtain the block design. We can decide to have three
blocks with unequal number of treatments. One of the blocks can be allocated 16
treatments that arise as a result of the 8 duplicated treatments while the other two blocks
each get 8 treatment combinations.
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Four blocks could also be considered in this design. Each block will have an equal number
of treatments. One of the four blocks could result wholly from the repeated treatments,
that is, the duplicates are put in one separate block from the others.

2.3 Six Factor Experiment involving 32+8 = 40 Runs

Consider a design with treatment combinations (x1,x2,x3,x4,x5,x6) which satisfy the
simultaneous equations

x1 + x2 + x3 = 0,1,0,0
x1 + x4 + x5 = 0,0,1,0
x1 + x4 + x6 = 0,0,0,1

(mod 2)

2.3.1 Constuction of the Design

We first get the treatment combinations satisfying the equations

x1 + x2 + x3 = 0
x1 + x4 + x5 = 0
x1 + x4 + x6 = 0 (mod 2)

which give the first set of treatment combinations that are duplicated. From this first set
we can easily obtain the second, the third and the fourth set of treatment
combinations satisfying the corresponding set of simultaneous equations.

Adding 1 (mod 2) in the x1, x4 and x6 position of the first set we obtain the second set.
Adding 1 (mod 2) in the x1, x2 and x6 position of the first set we obtain the third set.
Adding 1 (mod 2) in the x1, x2 and x5 position of the first set we obtain the fourth set.
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Below follows the treatment combinations in each set.

st1
(0,0,0,0,0,0)

(1,0,1,1,0,1)

(1,1,0,0,1,1)

(0,1,1,1,1,0)

(1,1,0,1,0,0)

(1,0,1,0,1,0)

(0,1,1,0,0,1)

(0,0,0,1,1,1)

st2
(1,0,0,1,0,1)

(0,0,1,0,0,0)

(0,1,0,1,1,0)

(1,1,1,0,1,1)

(0,1,0,0,0,1)

(0,0,1,1,1,1)

(1,1,1,1,0,0)

(1,0,0,0,1,0)

st3
(1,1,0,0,0,1)

(0,1,1,1,0,0)

(0,0,0,0,1,0)

(1,0,1,1,1,1)

(0,0,0,1,0,1)

(0,1,1,0,1,1)

(1,0,1,0,0,0)

(1,1,0,1,1,0)

st4
(1,1,0,0,1,0)

(0,1,1,1,1,1)

(0,0,0,0,0,1)

(1,0,1,1,0,0)

(0,0,0,1,1,0)

(0,1,1,0,0,0)

(1,0,1,0,1,1)

(1,1,0,1,0,1)

The defining relation is

I = F1F2F3 = F1F4F5 = F2F4F6 = F3F5F6 = F2F3F4F5 = F1F3F4F6 = F1F2F5F6

The correlated sets of factors are

(F1,F2F3,F4F5), (F2,F1F3,F4F6), (F3,F1F2,F5F6), (F4,F1F5,F2F6), (F5,F1F4,F3F6), (F6,F2F4,F3F5),
(F1F6,F3F4,F2F5).

2.3.2 Method of Analysis

Using equation (2.4),we have the X matrix of co-efficients, XT X and XT y matrices as
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X =



µ F1 F2F3 F4F5 F2 F1F3 F4F6 F4 F1F5 F2F6 F3 F1F2 F5F6 F5 F1F4 F3F6 F6 F2F4 F3F5 F1F6 F3F4 F2F5

1 −1 1 1 −1 1 1 −1 1 1 −1 1 1 −1 1 1 −1 1 1 1 1 1

1 1 −1 −1 −1 1 1 1 −1 −1 1 −1 −1 −1 1 1 1 −1 −1 1 1 1

1 1 −1 −1 1 −1 −1 −1 1 1 −1 1 1 1 −1 −1 1 −1 −1 1 1 1

1 −1 1 1 1 −1 −1 1 −1 −1 1 −1 −1 1 −1 −1 −1 1 1 1 1 1

1 1 −1 −1 1 −1 −1 1 −1 −1 −1 1 1 −1 1 1 −1 1 1 −1 −1 −1

1 1 −1 −1 −1 1 1 −1 1 1 1 −1 −1 1 −1 −1 −1 1 1 −1 −1 −1

1 −1 1 1 1 −1 −1 −1 1 1 1 −1 −1 −1 1 1 1 −1 −1 −1 −1 −1

1 −1 1 1 −1 1 1 1 −1 −1 −1 1 1 1 −1 −1 1 −1 −1 −1 −1 −1

1 −1 1 1 −1 1 1 −1 1 1 −1 1 1 −1 1 1 −1 1 1 1 1 1

1 1 −1 −1 −1 1 1 1 −1 −1 1 −1 −1 −1 1 1 1 −1 −1 1 1 1

1 1 −1 −1 1 −1 −1 −1 1 1 −1 1 1 1 −1 −1 1 −1 −1 1 1 1

1 −1 1 1 1 −1 −1 1 −1 −1 1 −1 −1 1 −1 −1 −1 1 1 1 1 1

1 1 −1 −1 1 −1 −1 1 −1 −1 −1 1 1 −1 1 1 −1 1 1 −1 −1 −1

1 1 −1 −1 −1 1 1 −1 1 1 1 −1 −1 1 −1 −1 −1 1 1 −1 −1 −1

1 −1 1 1 1 −1 −1 −1 1 1 1 −1 −1 −1 1 1 1 −1 −1 −1 −1 −1

1 −1 1 1 −1 1 1 1 −1 −1 −1 1 1 1 −1 −1 1 −1 −1 −1 −1 −1

1 1 1 −1 −1 −1 1 1 −1 −1 −1 −1 −1 −1 1 −1 1 −1 1 1 −1 1

1 −1 −1 1 −1 −1 1 −1 1 1 1 1 1 −1 1 −1 −1 1 −1 1 −1 1

1 −1 −1 1 1 1 −1 1 −1 −1 −1 −1 −1 1 −1 1 −1 1 −1 1 −1 1

1 1 1 −1 1 1 −1 −1 1 1 1 1 1 1 −1 1 1 −1 1 1 −1 1

1 −1 −1 1 1 1 −1 −1 1 1 −1 −1 −1 −1 1 −1 1 −1 1 −1 1 −1

1 −1 −1 1 −1 −1 1 1 −1 −1 1 1 1 1 −1 1 1 −1 1 −1 1 −1

1 1 1 −1 1 1 −1 1 −1 −1 1 1 1 −1 1 −1 −1 1 −1 −1 1 −1

1 1 1 −1 −1 −1 1 −1 1 1 −1 −1 −1 1 −1 1 −1 1 −1 −1 1 −1

1 1 −1 1 1 −1 −1 −1 −1 1 −1 1 −1 −1 −1 −1 1 −1 1 1 1 −1

1 −1 1 −1 1 −1 −1 1 1 −1 1 −1 1 −1 −1 −1 −1 1 −1 1 1 −1

1 −1 1 −1 −1 1 1 −1 −1 1 −1 1 −1 1 1 1 −1 1 −1 1 1 −1

1 1 −1 1 −1 1 1 1 1 −1 1 −1 1 1 1 1 1 −1 1 1 1 −1

1 −1 1 −1 −1 1 1 1 1 −1 −1 1 −1 −1 −1 −1 1 −1 1 −1 −1 1

1 −1 1 −1 1 −1 −1 −1 −1 1 1 −1 1 1 1 1 1 −1 1 −1 −1 1

1 1 −1 1 −1 1 1 −1 −1 1 1 −1 1 −1 −1 −1 −1 1 −1 −1 −1 1

1 1 −1 1 1 −1 −1 1 1 −1 −1 1 −1 1 1 1 −1 1 −1 −1 −1 1

1 1 −1 −1 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1 −1 −1 −1 −1 1 1

1 −1 1 1 1 −1 1 1 −1 1 1 −1 1 1 −1 1 1 1 1 −1 1 1

1 −1 1 1 −1 1 −1 −1 1 −1 −1 1 −1 −1 1 −1 1 1 1 −1 1 1

1 1 −1 −1 −1 1 −1 1 −1 1 1 −1 1 −1 1 −1 −1 −1 −1 −1 1 1

1 −1 1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 −1 −1 1 −1 −1

1 −1 1 1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 −1 −1 −1 1 −1 −1

1 1 −1 −1 −1 1 −1 −1 1 −1 1 −1 1 1 −1 1 1 1 1 1 −1 −1

1 1 −1 −1 1 −1 1 1 −1 1 −1 1 −1 −1 1 −1 1 1 1 1 −1 −1
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XT X =



µ F1 F2F3 F4F5 F2 F1F3 F4F6 F4 F1F5 F2F6 F3 F1F2 F5F6 F5 F1F4 F3F6 F6 F2F4 F3F5 F1F6 F3F4 F2F5

40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 40 −24 −24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 −24 40 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 −24 8 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 40 −24 −24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 −24 40 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 −24 8 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 40 −24 −24 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −24 40 8 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −24 8 40 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 40 −24 8 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −24 40 8 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 8 8 40 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 40 −24 8 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 −24 40 8 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 8 8 40 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 −24 8 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −24 40 8 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 8 40 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 8 8

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 40 8

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 8 40



XT y =



[µ]

[F1]

[F2F3]

[F4F5]
...

[F3F5]



γ
T = [µ,F1,F2F3,F4F5,F2,F1F3,F4F6,F3,F1F2,F5F6,F4,F1F5,F2F6,F5,F1F4,F3F6,F6,F2F4,F3F5,F1F6,F3F4,F2F5]

We have now defined all the matrices as per equation (2.4). Finding the inverse of the
subsequent matrices in XT X we can estimate the effects as shown below


40 −24 −24

−24 40 8

−24 8 40


−1

=
1

96


6 3 3

3 4 1

3 1 4

 ,


40 −24 8

−24 40 8

8 8 40


−1

=
1
64


3 2 −1

2 3 −1

−1 −1 2
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and


40 8 8

8 40 8

8 8 40


−1

=
1

244


6 −1 −1

−1 6 −1

−1 −1 6


The matrix:

1
244


6 −1 −1

−1 6 −1

−1 −1 6

gives estimates for


F1F6

F3F4

F2F5


The correlated effects in set (F1F6,F3F4,F2F5) are estimated with the same efficiency.

1
96


6 3 3

3 4 1

3 1 4

gives estimates for


F1

F2F3

F4F5

 ,


F2

F1F3

F4F6

 ,


F4

F1F5

F2F6


The efficiency used to estimate the interactions F2F3, F4F5, F1F3, F4F6, F1F5 and F2F6

is higher than the efficiency used to estimate the main effects F1, F2 and F4. The main
effects F1, F2 and F4 are estimated with the same efficiency.

1
64


3 2 −1

2 3 −1

−1 −1 2

gives estimates for


F3

F1F2

F5F6

 ,


F5

F1F4

F3F6

 ,


F6

F2F4

F3F5


The main effects F3, F5, F6 and the interactions F1F2, F1F4 and F2F4 are all estimated with
the same efficiency which is lower than the efficiency attained for effects F5F6, F3F6 and
F3F5.

Using equation (2.4) we obtain the estimates of the effects as


F̂1

ˆF2F3

ˆF4F5

=
1

96


6 3 3

3 4 1

3 1 4




[F1]

[F2F3]

[F4F5]
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F̂2

ˆF1F3

ˆF4F5

=
1

96


6 3 3

3 4 1

3 1 4




[F2]

[F2F3]

[F4F6]




F̂3

ˆF1F2

ˆF5F6

=
1

64


3 2 −1

2 3 −1

−1 −1 2




[F3]

[F1F2]

[F5F6]




F̂4

ˆF1F5

ˆF2F6

=
1

96


6 3 3

3 4 1

3 1 4




[F4]

[F1F5]

[F2F6]




F̂5

ˆF1F4

ˆF3F6

=
1

64


3 2 −1

2 3 −1

−1 −1 2




[F5]

[F1F4]

[F3F6]




F̂6

ˆF2F4

ˆF3F5

=
1

64


3 2 −1

2 3 −1

−1 −1 2




[F6]

[F2F4]

[F3F5]




ˆF1F6

ˆF3F4

ˆF2F5

=
1

244


6 −1 −1

−1 6 −1

−1 −1 6



[F1F6]

[F3F4]

[F2F5]
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Estimate of effects

µ̂ =
1
40

[µ] ˆF1F6 =
1

244
[6[F1F6]− [F3F4]− [F2F5]]

F̂1 =
1
96

[6[F1]+3[F2F3]+3[F4F5]] ˆF2F3 =
1

96
[3[F1]+4[F2F3]+ [F4F5]]

F̂2 =
1
96

[6[F2]+3[F1F3]+3[F4F6]] ˆF2F4 =
1

64
[2[F6]+3[F2F4]− [F3F5]]

F̂3 =
1
64

[3[F3]+2[F1F2]− [F5F6]] ˆF2F5 =
1

244
[[F1F6]− [F3F4]+6[F2F5]]

F̂4 =
1
96

[6[F4]+3[F1F5]+3[F2F6]] ˆF2F6 =
1

96
[3[F4]+ [F1F5]+4[F2F6]]

F̂5 =
1
64

[3[F5]+2[F1F4]− [F3F6]] ˆF3F4 =
1

224
[−[F1F6]+6[F3F4]− [F2F5]]

F̂6 =
1
64

[3[F6]+2[F2F4]− [F3F5]] ˆF3F5 =
1

64
[−[F6]− [F2F4]+2[F3F5]]

ˆF1F2 =
1
64

[2[F3]+3[F1F2]− [F5F6]] ˆF3F6 =
1

64
[−[F5]− [F1F4]+2[F3F6]]

ˆF1F3 =
1
96

[3[F2]+4[F1F3]+ [F4F6]] ˆF4F5 =
1

96
[3[F1]+ [F2F3]+4[F4F5]]

ˆF1F4 =
1
64

[2[F5]+3[F1F4]− [F3F6]] ˆF4F6 =
1

96
[3[F2]+ [F1F3]+4[F4F6]]

ˆF1F5 =
1
96

[3[F4]+4[F1F5]+ [F2F6]] ˆF5F6 =
1

64
[−[F3]− [F1F2]+2[F5F6]]

2.4 Seven Factor Experiment involving 40+8 = 48 Runs

Consider a design with treatment combinations (x1,x2,x3,x4,x5,x6,x7) which satisfy the
simultaneous equations

x1 + x4 + x5 = 0,0,1,1,1
x1 + x3 + x7 = 0,1,0,1,1
x1 + x2 + x6 = 0,1,1,0,1
x2 + x3 + x4 = 0,1,1,1,0

(mod 2)

2.4.1 Constuction of the Design

We first get the treatment combinations satisfying the equations

x1 + x4 + x5 = 0
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x1 + x3 + x7 = 0
x1 + x2 + x6 = 0
x2 + x3 + x4 = 0

(mod 2)

which give the first set of treatment combinations that are then duplicated. From this
first set we can easily obtain the second, third, fourth and fifth set of treatment
combinations satisfying the corresponding set of simultaneous equations.

Adding 1 (mod 2) in x1 and x4 position of the first set we obtain the second set. Adding 1
(mod 2) in the x1 and x3 position of the first set we obtain the third set. Adding 1 (mod 2)
in the x1 and x2 position of the first set we obtain the fourth set. Adding 1 (mod 2) in x1

position of the first set we obtain the fifth set. Below follows the treatment combinations
for each set.

st1
(0,0,0,0,0,0,0)

(0,0,1,1,1,0,1)

(0,1,0,1,1,1,0)

(0,1,1,0,0,1,1)

(1,0,0,0,1,1,1)

(1,0,1,1,0,1,0)

(1,1,0,1,0,0,1)

(1,1,1,0,1,0,0)

st2
(1,0,0,1,0,0,0)

(1,0,1,0,1,0,1)

(1,1,0,0,1,1,0)

(1,1,1,1,0,1,1)

(0,0,0,1,1,1,1)

(0,0,1,0,0,1,0)

(0,1,0,0,0,0,1)

(0,1,1,1,1,0,0)

st3
(1,0,1,0,0,0,0)

(1,0,0,1,1,0,1)

(1,1,1,1,1,1,0)

(1,1,0,0,0,1,1)

(0,0,1,0,1,1,1)

(0,0,0,1,0,1,0)

(0,1,1,1,0,0,1)

(0,1,0,0,1,0,0)

st4
(1,1,0,0,0,0,0)

(1,1,1,1,1,0,1)

(1,0,0,1,1,1,0)

(1,0,1,0,0,1,1)

(0,1,0,0,1,1,1)

(0,1,1,1,0,1,0)

(0,0,0,1,0,0,1)

(0,0,1,0,1,0,0)

st5
(1,0,0,0,0,0,0)

(1,0,1,1,1,0,1)

(1,1,0,1,1,1,0)

(1,1,1,0,0,1,1)

(0,0,0,0,1,1,1)

(0,0,1,1,0,1,0)

(0,1,0,1,0,0,1)

(0,1,1,0,1,0,0)

The defining relation is

I = F1F4F5 = F1F3F7 = F1F2F6 = F2F3F4 = F2F5F7 = F3F5F6 = F4F6F7 = F3F4F5F7

=F2F4F5F6 = F1F2F3F5 = F2F3F6F7 = F1F2F4F7 = F1F3F4F6 = F1F5F6F7

The correlated sets of factors are

(F1,F4F5,F2F6,F3F7), (F2,F3F4,F1F6,F5F7), (F3,F2F4,F1F7,F5F6), (F4,F2F3,F1F5,F6F7), (F5,F1F4,F3F6,F2F7),
(F6,F1F2,F3F5,F4F7), (F7,F1F3,F4F6,F2F5).
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2.4.2 Method of Analysis

Using equation (2.4),we have the X matrix of constants, XT X and XT y matrices as

X=



µ 1 45 26 37 2 34 16 57 3 24 17 56 4 23 15 67 5 14 36 27 6 12 35 47 7 13 46 25
1 −1 1 1 1 −1 1 1 1 −1 1 1 1 −1 1 1 1 −1 1 1 1 −1 1 1 1 −1 1 1 1
1 −1 1 1 1 −1 1 1 1 1 −1 −1 −1 1 −1 −1 −1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1
1 −1 1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 1 −1 −1 −1 1 −1 −1 −1 −1 1 1 1
1 −1 1 1 1 1 −1 −1 −1 1 −1 −1 −1 −1 1 1 1 −1 1 1 1 1 −1 −1 −1 1 −1 −1 −1
1 1 −1 −1 −1 −1 1 1 1 −1 1 1 1 −1 1 1 1 1 −1 −1 −1 1 −1 −1 −1 1 −1 −1 −1
1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1 1
1 1 −1 −1 −1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1 1 −1 1 1 1 1 −1 −1 −1
1 1 −1 −1 −1 1 −1 −1 −1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1 1 −1 1 1 1
1 −1 1 1 1 −1 1 1 1 −1 1 1 1 −1 1 1 1 −1 1 1 1 −1 1 1 1 −1 1 1 1
1 −1 1 1 1 −1 1 1 1 1 −1 −1 −1 1 −1 −1 −1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1
1 −1 1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 1 −1 −1 −1 1 −1 −1 −1 −1 1 1 1
1 −1 1 1 1 1 −1 −1 −1 1 −1 −1 −1 −1 1 1 1 −1 1 1 1 1 −1 −1 −1 1 −1 −1 −1
1 1 −1 −1 −1 −1 1 1 1 −1 1 1 1 −1 1 1 1 1 −1 −1 −1 1 −1 −1 −1 1 −1 −1 −1
1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1 1
1 1 −1 −1 −1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1 1 −1 1 1 1 1 −1 −1 −1
1 1 −1 −1 −1 1 −1 −1 −1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1 1 −1 1 1 1
1 1 −1 1 1 −1 −1 −1 1 −1 −1 −1 1 1 1 −1 1 −1 1 1 1 −1 −1 1 −1 −1 −1 −1 1
1 1 −1 1 1 −1 −1 −1 1 1 1 1 −1 −1 −1 1 −1 1 −1 −1 −1 −1 −1 1 −1 1 1 1 −1
1 1 −1 1 1 1 1 1 −1 −1 −1 −1 1 −1 −1 1 −1 1 −1 −1 −1 1 1 −1 1 −1 −1 −1 1
1 1 −1 1 1 1 1 1 −1 1 1 1 −1 1 1 −1 1 −1 1 1 1 1 1 −1 1 1 1 1 −1
1 −1 1 −1 −1 −1 −1 −1 1 −1 −1 −1 1 1 1 −1 1 1 −1 −1 −1 1 1 −1 1 1 1 1 −1
1 −1 1 −1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 1 −1 −1 1 1 1 1 1 −1 1 −1 −1 −1 1
1 −1 1 −1 −1 1 1 1 −1 −1 −1 −1 1 −1 −1 1 −1 −1 1 1 1 −1 −1 1 −1 1 1 1 −1
1 −1 1 −1 −1 1 1 1 −1 1 1 1 −1 1 1 −1 1 1 −1 −1 −1 −1 −1 1 −1 −1 −1 −1 1
1 1 1 1 −1 −1 −1 −1 1 1 1 −1 1 −1 −1 −1 1 −1 −1 −1 1 −1 −1 −1 1 −1 1 1 1
1 1 1 1 −1 −1 −1 −1 1 −1 −1 1 −1 1 1 1 −1 1 1 1 −1 −1 −1 −1 1 1 −1 −1 −1
1 1 1 1 −1 1 1 1 −1 1 1 −1 1 1 1 1 −1 1 1 1 −1 1 1 1 −1 −1 1 1 1
1 1 1 1 −1 1 1 1 −1 −1 −1 1 −1 −1 −1 −1 1 −1 −1 −1 1 1 1 1 −1 1 −1 −1 −1
1 −1 −1 −1 1 −1 −1 −1 1 1 1 −1 1 −1 −1 −1 1 1 1 1 −1 1 1 1 −1 1 −1 −1 −1
1 −1 −1 −1 1 −1 −1 −1 1 −1 −1 1 −1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 1 1 1
1 −1 −1 −1 1 1 1 1 −1 1 1 −1 1 1 1 1 −1 −1 −1 −1 1 −1 −1 −1 1 1 −1 −1 −1
1 −1 −1 −1 1 1 1 1 −1 −1 −1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 −1 1 1 1
1 1 1 −1 1 1 1 −1 1 −1 −1 −1 1 −1 −1 −1 1 −1 −1 1 −1 −1 1 1 1 −1 −1 1 −1
1 1 1 −1 1 1 1 −1 1 1 1 1 −1 1 1 1 −1 1 1 −1 1 −1 1 1 1 1 1 −1 1
1 1 1 −1 1 −1 −1 1 −1 −1 −1 −1 1 1 1 1 −1 1 1 −1 1 1 −1 −1 −1 −1 −1 1 −1
1 1 1 −1 1 −1 −1 1 −1 1 1 1 −1 −1 −1 −1 1 −1 −1 1 −1 1 −1 −1 −1 1 1 −1 1
1 −1 −1 1 −1 1 1 −1 1 −1 −1 −1 1 −1 −1 −1 1 1 1 −1 1 1 −1 −1 −1 1 1 −1 1
1 −1 −1 1 −1 1 1 −1 1 1 1 1 −1 1 1 1 −1 −1 −1 1 −1 1 −1 −1 −1 −1 −1 1 −1
1 −1 −1 1 −1 −1 −1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 1 −1 −1 1 1 1 1 1 −1 1
1 −1 −1 1 −1 −1 −1 1 −1 1 1 1 −1 −1 −1 −1 1 1 1 −1 1 −1 1 1 1 −1 −1 1 −1
1 1 1 1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1
1 1 1 1 1 −1 1 −1 1 1 −1 1 −1 1 −1 1 −1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1
1 1 1 1 1 1 −1 1 −1 −1 1 −1 1 1 −1 1 −1 1 1 −1 −1 1 1 −1 −1 −1 −1 1 1
1 1 1 1 1 1 −1 1 −1 1 −1 1 −1 −1 1 −1 1 −1 −1 1 1 1 1 −1 −1 1 1 −1 −1
1 −1 −1 −1 −1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1
1 −1 −1 −1 −1 −1 1 −1 1 1 −1 1 −1 1 −1 1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1
1 −1 −1 −1 −1 1 −1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 −1 1 1 −1 −1 1 1 1 1 −1 −1
1 −1 −1 −1 −1 1 −1 1 −1 1 −1 1 −1 −1 1 −1 1 1 1 −1 −1 −1 −1 1 1 −1 −1 1 1
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X
T

X
=

                                                           µ
1

45
26

37
2

34
16

57
3

24
17

56
4

23
15

67
5

14
36

27
6

12
35

47
7

13
46

25
48
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XT y =



[µ]

[F1]

[F4F5]

[F2F6]
...

[F2F5]


γ

T = [µ,F1,F4F5,F2F6,F3F7,F2,F3F4,F1F6,F5F7,F3,F2F4,F1F7,F5F6,F4,F2F3,F1F5,F6F7,F5,F1F4,F3F6,

F2F7F6,F1F2,F3F5,F4F7,F7,F1F3,F4F7,F7,F1F3,F4F6,F2F5]

Wehave now defined theXT X andXT ymatrices as per equation (2.4). Finding the inverse
of the corresponding matrices in XT X we estimate for effects as


48 16 16

16 48 16

16 16 48


−1

=
1

160


4 −1 −1

−1 4 −1

−1 −1 4

 ,


48 0 0 −32

0 48 16 16

0 16 48 −16

−32 16 −16 48



−1

=
1

64


4 −2 2 4

−2 3 −2 −3

2 −2 3 3

4 −3 3 6



and


40 0 −32 −32

0 48 16 16

−32 16 48 16

−32 16 16 48



−1

=
1

96


10 −4 6 6

−4 4 −3 −3

6 −3 6 3

6 −3 3 6


The matrix:

1
160


4 −1 −1

−1 4 −1

−1 −1 4

gives estimates for


F4F5

F2F6

F3F7


The correlated effects in set (F4F5,F2F6,F3F7) are estimated with the same efficiency.
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1
64


4 −2 2 4

−2 3 −2 −3

2 −2 3 3

4 −3 3 6

 gives estimates for


F2

F3F4

F1F6

F5F7

 ,


F3

F2F4

F1F7

F5F6

 ,


F4

F2F3

F1F5

F6F7


The effects F3F4, F1F6, F2F4, F1F7, F2F3 and F1F5 are estimated with a higher efficiency
than the corresponding effects in the same set. Factors F5F7, F5F6 and F6F7 are estimated
with a lower efficiency. Main effects F2, F3 and F4 are estimated with a higher efficiency
than F5F7, F5F6 and F6F7 but a lower efficiency than the efficiency attained for F3F4, F1F6,
F2F4, F1F7, F2F3 and F1F5.

1
96


10 −4 6 6

−4 4 −3 −3

6 −3 6 3

6 −3 3 6

gives estimates for


F5

F1F4

F3F6

F2F7

 ,


F6

F1F2

F3F5

F4F7

 ,


F7

F1F3

F4F6

F2F5

 ,

Effects F1F4, F1F2 and F1F3 are estimated with a higher efficiency than the corresponding
effects in the same set. Effects F3F6, F2F7, F3F5, F4F7, F4F6 and F2F5are estimated with
a higher efficiency than the main effects F5, F6 and F7 but a lower efficiency than the
efficiency attained for effects F1F4, F1F2 and F1F3.

µ̂ =
1

48
[µ] F̂1 =

1
48

[F1]

2.5 Eight Factor Experiment involving 48+16 = 64 Runs

Consider a design with treatments (x1,x2,x3,x4,x5,x6,x7,x8) which satisfy the simulta-
neous equations

x1 + x3 + x6 = 0,0,1
x2 + x5 + x7 = 0,0,1
x4 + x6 + x7 = 0,1,0
x3 + x5 + x8 = 0,1,1

(mod 2)
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2.5.1 Construction of The Design

The B matrix obtained here is dissimilar to that described in equation (1.14) that gives
the construction plan. We are going to get a B matrix that is non-singular for a subset
of the linear equations given. For example, linear equations x2 + x5 + x7 and x4 + x6 + x7

infer aliasing of F7, F2F5 and F4F6 effects. Clearly, the B matrix in equations

x2 + x5 + x7 = 0,0,1
x4 + x6 + x7 = 0,1,0

is non-singular, thus the effects under consideration are said to be estimable.

The treatment combinations satisfying

x1 + x3 + x6 = 0
x2 + x5 + x7 = 0
x4 + x6 + x7 = 0
x3 + x5 + x8 = 0

(mod 2)

are given in set one denoted as st1. The treatments in st1 are repeated and thus 16 d.f are
used to estimate the error variance.

If we add 1 (mod2) in x1, x6 and x8 position of the first set, we get the second set. If we
add 1 (mod2) in x6, x7 and x8 position of the first set, we get the third set.
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Treatment combinations

st1
(0,0,0,0,0,0,0,0)

(0,0,0,1,1,0,1,1)

(0,0,1,0,1,1,1,0)

(0,0,1,1,0,1,0,1)

(0,1,0,0,1,0,0,1)

(0,1,0,1,0,0,1,0)

(0,1,1,0,0,1,1,1)

(0,1,1,1,1,1,0,0)

(1,0,0,0,1,1,1,1)

(1,0,0,1,0,1,0,0)

(1,0,1,0,0,0,0,1)

(1,0,1,1,1,0,1,0)

(1,1,0,0,0,1,1,0)

(1,1,0,1,1,1,0,1)

(1,1,1,0,1,0,0,0)

(1,1,1,1,0,0,1,1)

st2
(1,0,0,0,0,1,0,1)

(1,0,0,1,1,1,1,0)

(1,0,1,0,1,0,1,1)

(1,0,1,1,0,0,0,0)

(1,1,0,0,1,1,0,0)

(1,1,0,1,0,1,1,1)

(1,1,1,0,0,0,1,0)

(1,1,1,1,1,0,0,1)

(0,0,0,0,1,0,1,0)

(0,0,0,1,0,0,0,1)

(0,0,1,0,0,1,0,0)

(0,0,1,1,1,1,1,1)

(0,1,0,0,0,0,1,1)

(0,1,0,1,1,0,0,0)

(0,1,1,0,1,1,0,1)

(0,1,1,1,0,1,1,0)

st3
(0,0,0,0,0,1,1,1)

(0,0,0,1,1,1,0,0)

(0,0,1,0,1,0,0,1)

(0,0,1,1,0,0,1,0)

(0,1,0,0,1,1,1,0)

(0,1,0,1,0,1,0,1)

(0,1,1,0,0,0,0,0)

(0,1,1,1,1,0,1,1)

(1,0,0,0,1,0,0,0)

(1,0,0,1,0,0,1,1)

(1,0,1,0,0,1,1,0)

(1,0,1,1,1,1,0,1)

(1,1,0,0,0,0,0,1)

(1,1,0,1,1,0,1,0)

(1,1,1,0,1,1,1,1)

(1,1,1,1,0,1,0,0)

The defining relation is

I = F1F3F6 = F2F5F7 = F4F6F7 = F3F5F8 = F1F3F4F7 = F1F5F6F8 = F2F4F5F6

=F2F3F7F8 = F1F2F4F8F

The correlated sets of factors are

(F1,F3F6), (F2,F5F7), (F3,F1F6,F5F8), (F4,F6F7) (F5,F2F7,F3F8), (F6,F1F3,F4F7), (F7,F2F5,F4F6),
(F2F8,F1F4,F3F7), (F1F8,F5F6,F2F4), (F1F5,F6F8), (F1F6,F5F8), (F2F3,F7F8), (F1F2,F4F8).

The factorial effects F8, F3F5, F1F7 and F3F4 are estimated orthogonally.

2.5.2 Method of Analysis

We define our matrices as per equation (2.4).
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From our XT X matrix we get the inverse of the matrices as follows


64 −32 0

−32 648 32

0 32 64


−1

=
1

128


3 2 −1

2 4 −2

−1 −2 3

 ,


64 −32 −32

−32 64 0

−32 0 64


−1

=
1

128


4 2 2

2 3 1

2 1 3

 ,


64 32 32

32 64 0

32 0 64


−1

=
1

128


4 −2 −2

−2 3 1

−2 1 3

 ,

 64 −32

−32 64

−1

=
1

96

2 1

1 2

 ,

and 64 32

32 64

−1

=
1

96

 2 −1

−1 2


The matrix:

1
128


3 2 −1

2 4 −2

−1 −2 3

gives estimates for


F3

F1F6

F5F8

 ,


F5

F2F7

F3F8



Effects F3, F5, F5F8 and F3F8 are estimated with the same efficiency which is higher than
the efficiency attained for F1F6 and F2F7. F1F6 and F2F7 are estimated with the same
efficiency.

1
128


4 2 2

2 3 1

2 1 3

gives estimates for


F6

F1F3

F4F7

 ,


F7

F2F5

F4F6


The effects F1F3, F4F7, F2F5 and F4F6 are estimated with the same efficiency which is
higher than the efficiency attained for F6 and F7. F6 and F7 are estimated with the same
lower efficiency.
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1
128


4 −2 −2

−2 3 1

−2 1 3

 gives estimates for


F2F8

F1F4

F3F7

 ,


F1F8

F5F6

F2F4


The effects F1F4, F3F7, F5F6 and F2F4 are estimated with the same efficiency which is
higher than the efficiency attained by F2F8 and F1F8. Effects F2F8 and F1F8 are estimated
with the same efficiency.

1
96

2 1

1 2

gives estimates for

 F2

F5F7

 ,

 F4

F6F7

 ,

 F1

F3F6



1
96

 2 −1

−1 2

gives estimates for

F1F5

F6F8

 ,

F1F6

F5F8

 ,

F2F3

F7F8

 ,

F1F2

F4F8


The sets of correlated effects, (F1,F3F6), (F2,F5F7), (F4,F6F7), (F1F2,F4F8), (F1F5,F6F8),
(F1F6,F5F8) and (F2F3,F7F8) are estimated with the same efficiency.

µ̂ =
1

64
[µ] ˆF3F5 =

1
64

[F3F5]

ˆF1F7 =
1

64
[F1F7] ˆF3F5 =

1
64

[F3F5]

ˆF3F4 =
1

64
[F3F4]

2.6 Nine Factor Experiment involving 64+16 = 80 Runs

Consider a design with treatments (x1,x2,x3,x4,x5,x6,x7,x8,x9) which satisfy the
simultaneous equations

x1 + x2 + x3 = 0,0,1,1
x1 + x4 + x5 = 0,1,0,1
x1 + x6 + x7 = 0,1,1,0
x2 + x4 + x8 = 0,0,0,1
x4 + x6 + x9 = 0,1,1,1

(mod 2)
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2.6.1 Constuction of The Design

The B matrix is obtained using the same procedure described in the eight
factor experiment.

We first get the treatment combinations belonging to the first set. If we add 1 (mod2) in
x4, x7 and x8 position of the first set, we get the second set. If we add 1 (mod2) in x1, x4

and x8 position of the first set, we get the third set. If we add 1 (mod2) in x1, x6 and x8

position of the first set, we obtain the fourth set.

Treatment combinations

st1
(0,0,0,0,0,0,0,0,0)

(0,1,1,0,0,0,0,1,0)

(0,1,1,0,0,1,1,1,1)

(0,1,1,1,1,0,0,0,1)

(0,1,1,1,1,1,1,0,0)

(0,0,0,0,0,1,1,0,1)

(0,0,0,1,1,0,0,1,1)

(0,0,0,1,1,1,1,1,0)

(1,1,0,1,0,1,0,0,0)

(1,1,0,0,1,0,1,1,0)

(1,1,0,1,0,0,1,0,1)

(1,1,0,0,1,1,0,1,1)

(1,0,1,1,0,1,0,1,0)

(1,0,1,1,0,0,1,1,1)

(1,0,1,0,1,0,1,0,0)

(1,0,1,0,1,1,0,0,1)

st2
(0,0,0,1,0,0,1,1,0)

(0,1,1,1,0,0,1,0,0)

(0,1,1,1,0,1,0,0,1)

(0,1,1,0,1,0,1,1,1)

(0,1,1,0,1,1,0,1,0)

(0,0,0,1,0,1,0,1,1)

(0,0,0,0,1,0,1,0,1)

(0,0,0,0,1,1,0,0,0)

(1,1,0,0,0,1,1,1,0)

(1,1,0,1,1,0,0,0,0)

(1,1,0,0,0,0,0,1,1)

(1,1,0,1,1,1,1,0,1)

(1,0,1,0,0,1,1,0,0)

(1,0,1,0,0,0,0,0,1)

(1,0,1,1,1,0,0,1,0)

(1,0,1,1,1,1,1,1,1)

st3
(1,0,0,1,0,0,0,1,0)

(1,1,1,1,0,0,0,0,0)

(1,1,1,1,0,1,1,0,1)

(1,1,1,0,1,0,0,1,1)

(1,1,1,0,1,1,1,1,0)

(1,0,0,1,0,1,1,1,1)

(1,0,0,0,1,0,0,0,1)

(1,0,0,0,1,1,1,0,0)

(0,1,0,0,0,1,0,1,0)

(0,1,0,1,1,0,1,0,0)

(0,1,0,0,0,0,1,1,1)

(0,1,0,1,1,1,0,0,1)

(0,0,1,0,0,1,0,0,0)

(0,0,1,0,0,0,1,0,1)

(0,0,1,1,1,0,1,1,0)

(0,0,1,1,1,1,0,1,1)

st4
(1,0,0,0,0,1,0,1,0)

(1,1,1,0,0,1,0,0,0)

(1,1,1,0,0,0,1,0,1)

(1,1,1,1,1,1,0,1,1)

(1,1,1,1,1,0,1,1,0)

(1,0,0,0,0,0,1,1,1)

(1,0,0,1,1,1,0,0,1)

(1,0,0,1,1,0,1,0,0)

(0,1,0,1,0,0,0,1,0)

(0,1,0,0,1,1,1,0,0)

(0,1,0,1,0,1,1,1,1)

(0,1,0,0,1,0,0,0,1)

(0,0,1,1,0,0,0,0,0)

(0,0,1,1,0,1,1,0,1)

(0,0,1,0,1,1,1,1,0)

(0,0,1,0,1,0,0,1,1)

The defining relation for the fraction is

I = F1F2F3 = F1F4F5 = F1F6F7 = F2F4F8 = F4F6F9 = F3F5F8

=F5F7F9 = F2F3F4F5 = F2F3F6F7 = F4F5F6F7 = F1F3F4F8

=F1F2F5F8 = F1F5F6F9 = F1F4F7F9 = F2F6F8F9 = F3F7F8F9
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The correlated sets of factors are

(F1,F2F3,F4F5,F6F7), (F2,F1F3,F4F8), (F3,F1F2,F5F8), (F4,F1F5,F2F8,F6F9) (F5,F1F4,F7F9,F3F8),
(F6,F1F7,F4F9), (F7,F1F6,F5F9), (F8,F2F4,F3F5), (F9,F5F7,F4F6), (F1F8,F3F4,F2F5), (F1F9,F5F6,F4F7),
(F2F6,F3F7,F8F9), (F2F7,F3F6), (F2F9,F6F8), (F3F9,F7F8).

2.6.2 Method of Analysis

We define our matrices as per equation (2.4). The inverse of the sub-matrices in XT X
matrix are used to obtain estimates for the corresponding effects as shown below;

The matrix:
80 −16 −16 −16

−16 80 16 16

−16 16 80 16

−16 16 16 80



−1

=
1

512


7 1 1 1

1 7 −1 −1

1 −1 7 −1

1 −1 −1 7

 is used to estimate


F1

F2F3

F4F5

F6F7


(2.6)

The effects in equation (2.6) are estimated using the same efficiency.

In a similar way, the matrix


80 −16 −48 16

−16 80 48 48

−48 48 80 16

−16 48 16 80



−1

=
1

128


3 0 2 −1

0 4 −2 −2

2 −2 4 0

−1 −2 0 3

 is used to estimate


F4

F1F5

F2F8

F6F9

 ,


F5

F1F4

F7F9

F3F8


(2.7)

In equation (2.7), the effects F4, F5, F6F9 and F3F8 are estimated with a higher efficiency
than the efficiency attained for F1F5, F2F8, F1F4 and F7F9 . Effects F1F5, F2F8, F1F4 and
F7F9 are estimated with the same efficiency.
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Similarly the matrix


80 −16 −48

−16 80 48

−48 48 80


−1

=
1

192


4 −1 3

−1 4 −3

3 −3 6

 is used to estimate


F2

F1F3

F4F8

 ,


F7

F1F6

F5F9


(2.8)

In equation (2.8), the effects F2, F7, F1F3 and F1F6 are estimated with a higher efficiency
than the efficiency attained for effects F4F8 and F5F9 . Effects F4F8 and F5F9 are estimated
with the same efficiency.

The other matrices used for estimating the effects follow below;


80 −16 16

−16 80 48

16 48 80


−1

=
1

128


2 1 −1

1 3 −2

−1 −2 3

 is used to estimate


F6

F1F7

F4F9

 ,


F3

F1F2

F5F8

 (2.9)

In equation (2.9), effects F1F7, F4F9, F1F2 and F5F8 are estimated with the same efficiency
which is lower than the efficiency attained for F6 and F3.


80 −48 16

−48 80 16

16 16 80


−1

=
1

128


3 2 −1

2 3 −1

−1 −1 2

 is used to estimate


F8

F2F4

F3F5

 ,


F9

F5F7

F4F6


(2.10)

In equation (2.10), effects F3F5 and F4F6 are estimated with the same efficiency. The
effects F8, F9, F2F4 and F5F7 are estimated with a lower efficiency than the one attained
for F3F5 and F4F6.


80 48 48

48 80 16

48 16 80


−1

=
1

192


6 −3 −3

−3 4 1

−3 1 4

 is used to estimate


F1F8

F3F4

F2F5

 ,


F1F9

F5F6

F4F7

 (2.11)
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In equation (2.11), the effects F3F4, F2F5, F5F6 and F4F7 are estimated with a higher
efficiency than the efficiency attained for F1F8 and F1F9. Effects F1F8 and F1F9 are
estimated with same efficiency which is lower compared to the efficiency attained for
other effects in the same set.


80 16 16

16 80 16

16 16 80


−1

=
1

448


6 −1 −1

−1 6 −1

−1 −1 6

 is used to estimate


F2F6

F3F7

F8F9

 (2.12)

Effects in equation (2.12) are estimated using the same efficiency.

80 16

16 80

−1

=
1

384

 5 −1

−1 5

 is used to estimate

F2F7

F3F6

 ,

F2F9

F6F8

 ,

F3F9

F7F8

 (2.13)

The effects in equation (2.13) are estimated using the same efficiency.

µ̂ =
1

80
[µ]

2.7 Ten Factor Experiment involving 64+16 = 80 Runs

Consider a design with treatments (x1,x2,x3,x4,x5,x6,x7,x8,x9,x10) which satisfy the
simultaneous equations

x1 + x2 + x3 = 0,0,1,1
x1 + x4 + x5 = 0,1,0,1
x1 + x6 + x7 = 0,1,1,0
x2 + x4 + x8 = 0,0,0,1
x4 + x6 + x9 = 0,1,1,1
x2 + x7 + x10 = 0,1,1,1

(mod 2)
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2.7.1 Construction of The Design

The B matrix is obtained using the same procedure described in the eight factor
experiment.

We get the treatment combinations belonging to the first set that we then duplicate. If
we add 1 (mod2) in x5, x6 and x10 position of the first set, we get the second set. If we add
1 (mod2) in x3, x7 and x9 position of the first set, we get the third set. If we add 1 (mod2)
in x3, x4 and x10 position of the first set, we obtain the fourth set.

Treatment combinations

st1
(0,0,0,0,0,0,0,0,0,0)

(0,0,0,0,0,1,1,0,1,1)

(0,0,0,1,1,0,0,1,1,0)

(0,0,0,1,1,1,1,1,0,1)

(0,1,1,0,0,0,0,1,0,1)

(0,1,1,0,0,1,1,1,1,0)

(0,1,1,1,1,0,0,0,1,1)

(0,1,1,1,1,1,1,0,0,0)

(1,1,0,0,1,0,1,1,0,0)

(1,1,0,0,1,1,0,1,1,1)

(1,1,0,1,0,0,1,0,1,0)

(1,1,0,1,0,1,0,0,0,1)

(1,0,1,0,1,0,1,0,0,1)

(1,0,1,0,1,1,0,0,1,0)

(1,0,1,1,0,0,1,1,1,1)

(1,0,1,1,0,1,0,1,0,0)

st2
(0,0,0,0,1,1,0,0,0,1)

(0,0,0,0,1,0,1,0,1,0)

(0,0,0,1,0,1,0,1,1,1)

(0,0,0,1,0,0,1,1,0,0)

(0,1,1,0,1,1,0,1,0,0)

(0,1,1,0,1,0,1,1,1,1)

(0,1,1,1,0,1,0,0,1,0)

(0,1,1,1,0,0,1,0,0,1)

(1,1,0,0,0,1,1,1,0,1)

(1,1,0,0,0,0,0,1,1,0)

(1,1,0,1,1,1,1,0,1,1)

(1,1,0,1,1,0,0,0,0,0)

(1,0,1,0,0,1,1,0,0,0)

(1,0,1,0,0,0,0,0,1,1)

(1,0,1,1,1,1,1,1,1,0)

(1,0,1,1,1,0,0,1,0,1)

st3
(0,0,1,0,0,0,1,0,1,0)

(0,0,1,0,0,1,0,0,0,1)

(0,0,1,1,1,0,1,1,0,0)

(0,0,1,1,1,1,0,1,1,1)

(0,1,0,0,0,0,1,1,1,1)

(0,1,0,0,0,1,0,1,0,0)

(0,1,0,1,1,0,1,0,0,1)

(0,1,0,1,1,1,0,0,1,0)

(1,1,1,0,1,0,0,1,1,0)

(1,1,1,0,1,1,1,1,0,1)

(1,1,1,1,0,0,0,0,0,0)

(1,1,1,1,0,1,1,0,1,1)

(1,0,0,0,1,0,0,0,1,1)

(1,0,0,0,1,1,1,0,0,0)

(1,0,0,1,0,0,0,1,0,1)

(1,0,0,1,0,1,1,1,1,0)

st4
(0,0,1,1,0,0,0,0,0,1)

(0,0,1,1,0,1,1,0,1,0)

(0,0,1,0,1,0,0,1,1,1)

(0,0,1,0,1,1,1,1,0,0)

(0,1,0,1,0,0,0,1,0,0)

(0,1,0,1,0,1,1,1,1,1)

(0,1,0,0,1,0,0,0,1,0)

(0,1,0,0,1,1,1,0,0,1)

(1,1,1,1,1,0,1,1,0,1)

(1,1,1,1,1,1,0,1,1,0)

(1,1,1,0,0,0,1,0,1,1)

(1,1,1,0,0,1,0,0,0,0)

(1,0,0,1,1,0,1,0,0,0)

(1,0,0,1,1,1,0,0,1,1)

(1,0,0,0,0,0,1,1,1,0)

(1,0,0,0,0,1,0,1,0,1)

The defining relation for the fraction is

I = F1F2F3 = F1F4F5 = F1F6F7 = F2F4F8 = F4F6F9 = F3F5F8 = F5F7F9 = F2F3F4F5

=F2F3F6F7 = F4F5F6F7 = F1F3F4F8 = F1F2F5F8 = F1F5F6F9 = F1F4F7F9 = F2F6F8F9

=F3F7F8F9 = F2F7F10 = F3F6F10 = F1F3F7F10 = F1F2F6F10 = F4F7F8F10 = F5F6F8F10

=F3F4F9F10 = F1F8F9F10 = F2F5F9F10
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The correlated sets of factors are

(F1,F2F3,F4F5,F6F7), (F2,F1F3,F4F8,F7F10), (F3,F1F2,F6F10,F5F8), (F4,F1F5,F2F8,F6F9)

(F5,F1F4,F7F9,F3F8), (F6,F1F7,F3F10,F4F9), (F7,F1F6,F5F9,F2F10), (F8,F2F4,F3F5), (F9,F5F7,F4F6),
(F10,F3F6,F2F7), (F1F8,F3F4,F2F5,F9F10), (F1F9,F5F6,F4F7,F8F10), (F1F10,F3F7,F2F6,F8F9),
(F2F9,F6F8,F5F10), (F3F9,F7F8,F4F10).

2.7.2 Method of Analysis

The effects in this design are estimated using the following equations.

The set of effects in (F1,F2F3,F4F5,F6F7) are estimated using equation (2.6). The set of
effects in (F2,F1F3,F4F8,F7F10), (F3,F1F2,F6F10,F5F8), (F4,F1F5,F2F8,F6F9) (F5,F1F4,F7F9,F3F8),
(F6,F1F7,F3F10,F4F9) and (F7,F1F6,F5F9,F2F10) are estimated using equation (2.7).
Effects in (F8,F2F4,F3F5), (F9,F5F7,F4F6) and (F10,F3F6,F2F7) are estimated using
equation (2.10). The effects (F2F9,F6F8,F5F10) and (F3F9,F7F8,F4F10) are estimated using
(2.12).

The matrix
80 48 48 −16

48 80 16 16

48 16 80 16

−16 16 16 80



−1

=
1

128


7 −4 −4 3

−4 4 2 −2

−4 2 4 −2

3 −2 −2 3

 gives estimates for


F1F8

F3F4

F2F5

F9F10

 ,


F1F9

F5F6

F4F7

F8F10

and


F1F10

F3F7

F2F6

F8F9



The effects F9F10, F8F10 and F8F9 are estimated with the same efficiency which is higher
than the efficiency attained for other effects in similar sets. Effects F3F4, F2F5, F5F6, F4F7,
F3F7 and F2F6 are estimated with the same efficiency which higher than the efficiency
attained for effects F1F8, F1F9 and F1F10 but lower than the efficiency attained for the
effects F9F10, F8F10 and F8F9. Effects F1F8, F1F9 and F1F10 are estimated with the lowest
efficiency in comparison to the efficiency attained for other effects in similar sets.

µ̂ =
1

80
[µ]
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3 Partially Duplicated Fractional Factorial Designs
which allow for Estimation up to Three-Factor
Interactions

3.1 Six Factor Experiment involving 48+16 = 64 Runs

Consider a design with treatment combinations (x1,x2,x3,x4,x5,x6) which satisfy the
simultaneous equations

x1 + x2 + x3 + x4 = 0,1,0
x1 + x2 + x5 + x6 = 0,0,1

(mod 2)

3.1.1 Constuction of the Design

We first get the treatment combinations satisfying the equations

x1 + x2 + x3 + x4 = 0
x1 + x2 + x5 + x6 = 0

(mod 2)

which give the first set of treatment combinations that are then repeated. From this first
set we can easily obtain the second and third set of treatment combinations satisfying
the corresponding set of simultaneous equations.

If we add 1 (mod2) in x3 or x4 position of the first set, we get the second set. If we add
1 (mod2) in x5 or x6 position of the first set, we get the third set. Below follows the
treatment combinations that are obtained.
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st1
(0,0,0,0,0,0)

(0,0,0,0,1,1)

(0,0,1,1,1,1)

(0,0,1,1,0,0)

(0,1,1,0,1,0)

(0,1,1,0,0,1)

(0,1,0,1,1,0)

(0,1,0,1,0,1)

(1,1,0,0,0,0)

(1,1,0,0,1,1)

(1,1,1,1,0,0)

(1,0,1,0,0,1)

(1,0,1,0,1,0)

(1,0,0,1,1,0)

(1,0,0,1,0,1)

(1,1,1,1,1,1)

st2
(0,0,0,1,0,0)

(0,0,0,1,1,1)

(0,0,1,0,1,1)

(0,0,1,0,0,0)

(0,1,1,1,1,0)

(0,1,1,1,0,1)

(0,1,0,0,1,0)

(0,1,0,0,0,1)

(1,1,0,1,0,0)

(1,1,0,1,1,1)

(1,1,1,0,0,0)

(1,0,1,1,0,1)

(1,0,1,1,1,0)

(1,0,0,0,1,0)

(1,0,0,0,0,1)

(1,1,1,0,1,1)

st3
(0,0,0,0,0,1)

(0,0,0,0,1,0)

(0,0,1,1,1,0)

(0,0,1,1,0,1)

(0,1,1,0,1,1)

(0,1,1,0,0,0)

(0,1,0,1,1,1)

(0,1,0,1,0,0)

(1,1,0,0,0,1)

(1,1,0,0,1,0)

(1,1,1,1,0,1)

(1,0,1,0,0,0)

(1,0,1,0,1,1)

(1,0,0,1,1,1)

(1,0,0,1,0,0)

(1,1,1,1,1,0)

The defining relation is

I = F1F2F3F4 = F1F2F5F6 = F3F4F5F6

The correlated sets of factors are

(F1,F2F3F4,F2F5F6), (F2,F1F3F4,F1F5F6), (F3,F1F2F4,F4F5F6), (F4,F1F2F3,F3F5F6), (F5,F1F2F6,F3F4F6),
(F6,F1F2F5,F3F4F5), (F1F2,F3F4,F5F6), (F1F3,F2F4), (F1F4,F2F3), (F1F5,F2F6), (F1F6,F2F5),
(F3F5,F4F6), (F3F6,F4F5), (F2F3F5,F1F4F5,F1F3F6,F2F4F6), (F1F3F5,F1F4F6,F2F3F6,F2F4F5).

3.1.2 Method of Analysis

Using equation (2.4), we partition our XT X matrix and find the inverse of each sub-matrix
so as to obtain the estimates of the effects.
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The matrix:
64 32 32

32 64 0

32 0 64


−1

=
1

128


4 −2 −2

−2 3 1

−2 1 3

gives estimates for


F1

F2F3F4

F2F5F6

 ,


F2

F1F3F4

F1F5F6

 ,


F1F2

F3F4

F5F6



Factors F2F3F4, F2F5F6, F1F3F4, F1F5F6, F3F4 and F5F6 are estimated with the same
efficiency. Factors F1, F2 and F1F2 are also estimated with the same efficiency.

However, factors (F1,F2,F1F2) are estimated with a lower efficiency than the efficiency
attained for (F2F3F4,F2F5F6,F1F3F4,F1F5F6,F3F4,F5F6).

64 32 0

32 64 32

0 32 64


−1

=
1

128


3 −2 1

−2 4 −2

1 −2 3

estimates


F3

F1F2F4

F4F5F6

 ,


F4

F1F2F3

F3F5F6

 ,


F5

F1F2F6

F3F4F6

 ,


F6

F1F2F5

F3F4F5



Factors F3, F4F5F6, F4, F3F5F6, F5, F3F4F6, F6 and F3F4F5 are estimated with the same
efficiency. Factors F1F2F4, F1F2F3, F1F2F6 and F1F2F5 are also estimated with the same
efficiency.

Factors (F3,F4F5F6,F4,F3F5F6,F5,F3F4F6,F6,F3F4F5) are estimated with a higher
efficiency than the efficiency attained by factors (F1F2F4,F1F2F3,F1F2F6,F1F2F5).

64 32

32 64

−1

=
1

96

 2 −1

−1 2

 is used to estimate

F1F3

F2F4

 ,

F1F4

F2F3

 ,

F1F5

F2F6

 ,

F1F6

F2F5



The factors (F1F3,F2F4,F1F4,F2F3,F1F5,F2F6,F1F6,F2F5) above are estimated with the
same efficiency.

The matrix: 
64 0 32 32

0 64 32 32

32 32 64 0

32 32 0 64



−1

is used to estimate


F2F3F5

F2F4F6

F1F3F6

F1F4F5

 ,


F1F3F5

F1F4F6

F2F3F6

F2F4F5
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However, factors (F2F3F5,F2F4F6) are only estimablewith the assumption of factors (F1F3F6,F1F4F5)

being absent. Similarly, factors (F1F3F6,F1F4F5) are estimable with the assumption of
factors (F2F3F5,F2F4F6) being absent. That is,

The matrix64 0

0 64

−1

=
1

64

1 0

0 1

estimates

F2F3F5

F2F4F6

assuming

F1F3F6

F1F4F5

 to be absent. The vice versa is true.

The factors involved in this matrix are estimated with the same efficiency.

µ̂ =
1

64
[µ]

3.2 Seven Factor Experiment involving 64+16 = 80 Runs

Consider a design with treatment combinations (x1,x2,x3,x4,x5,x6) which satisfy the
simultaneous equations

x1 + x2 + x3 + x4 = 0,1,0,0
x1 + x2 + x5 + x7 = 0,0,1,0
x1 + x3 + x5 + x6 = 0,0,0,1

(mod 2)

3.2.1 Constuction of the Design

We first get the treatment combinations satisfying the equations

x1 + x2 + x3 + x4 = 0
x1 + x2 + x5 + x7 = 0
x1 + x3 + x5 + x6 = 0

(mod 2)

which give the first set of treatment combinations that are then repeated. From this first
set we can easily obtain the second, third and fourth set of treatment combinations
satisfying the corresponding set of simultaneous equations.
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If we add 1 (mod2) in x4 position of the first set, we get the second set. If we add 1 (mod2)
in x7 position of the first set, we get the third set. If we add 1 (mod2) in x6 position of the
first set, we get the fourth set. Below follows the sets of treatment combinations.

st1
(0,0,0,0,0,0,0)

(0,0,0,0,1,1,1)

(0,0,1,1,0,1,0)

(0,0,1,1,1,0,1)

(0,1,0,1,0,0,1)

(0,1,0,1,1,1,0)

(0,1,1,0,0,1,1)

(0,1,1,0,1,0,0)

(1,1,0,0,0,1,0)

(1,1,0,0,1,0,1)

(1,0,1,0,0,0,1)

(1,0,1,0,1,1,0)

(1,0,0,1,0,1,1)

(1,0,0,1,1,0,0)

(1,1,1,1,0,0,0)

(1,1,1,1,1,1,1)

st2
(0,0,0,1,0,0,0)

(0,0,0,1,1,1,1)

(0,0,1,0,0,1,0)

(0,0,1,0,1,0,1)

(0,1,0,0,0,0,1)

(0,1,0,0,1,1,0)

(0,1,1,1,0,1,1)

(0,1,1,1,1,0,0)

(1,1,0,1,0,1,0)

(1,1,0,1,1,0,1)

(1,0,1,1,0,0,1)

(1,0,1,1,1,1,0)

(1,0,0,0,0,1,1)

(1,0,0,0,1,0,0)

(1,1,1,0,0,0,0)

(1,1,1,0,1,1,1)

st3
(0,0,0,0,0,0,1)

(0,0,0,0,1,1,0)

(0,0,1,1,0,1,1)

(0,0,1,1,1,0,0)

(0,1,0,1,0,0,0)

(0,1,0,1,1,1,1)

(0,1,1,0,0,1,0)

(0,1,1,0,1,0,1)

(1,1,0,0,0,1,1)

(1,1,0,0,1,0,0)

(1,0,1,0,0,0,0)

(1,0,1,0,1,1,1)

(1,0,0,1,0,1,0)

(1,0,0,1,1,0,1)

(1,1,1,1,0,0,1)

(1,1,1,1,1,1,0)

st4
(0,0,0,0,0,1,0)

(0,0,0,0,1,0,1)

(0,0,1,1,0,0,0)

(0,0,1,1,1,1,1)

(0,1,0,1,0,1,1)

(0,1,0,1,1,0,0)

(0,1,1,0,0,0,1)

(0,1,1,0,1,1,0)

(1,1,0,0,0,0,0)

(1,1,0,0,1,1,1)

(1,0,1,0,0,1,1)

(1,0,1,0,1,0,0)

(1,0,0,1,0,0,1)

(1,0,0,1,1,1,0)

(1,1,1,1,0,1,0)

(1,1,1,1,1,0,1)

The defining relation is

I = F1F2F3F4 = F1F2F5F7 = F1F3F5F6 = F3F4F5F7 = F2F4F5F6 = F2F3F6F7 = F1F4F6F7

The correlated sets of factors are

(F1,F2F3F4,F2F5F7,F3F5F6,F4F6F7), (F2,F1F3F4,F1F5F7,F4F5F6,F3F6F7),
(F3,F1F2F4,F1F5F6,F4F5F7,F2F6F7), (F4,F1F2F3,F3F5F7,F2F5F6,F1F6F7,),
(F5,F1F2F7,F1F3F6,F3F4F7,F2F4F6), (F6,F1F3F5,F2F4F5,F2F3F7,F1F4F7),
(F7,F1F2F5,F3F4F5,F2F3F6,F1F4F6), (F1F2,F3F4,F5F7), (F1F3,F2F4,F5F6), (F1F4,F2F3,F6F7),
(F1F5,F2F7,F3F6), (F1F6,F3F5,F4F7), (F1F7,F2F5,F4F6), (F2F6,F4F5,F3F7),
(F1F2F6,F3F4F6,F5F6F7,F2F3F5,F1F4F5,F1F3F7,F2F4F7)
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3.2.2 Method of Analysis

This design involves both singular and non-singular matrices used to obtain estimates of
the effects. In the case of singular matrices, that is, non-invertible matrices, we are going
to use Moore-Penrose inverse.

Let x ∈ Rm×n and y ∈ Rm be given. We find x ∈ Rn that solves the linear equation

Ax = y

Suppose m = n and A is an invertible matrix, then the unique solution is

x = A−1y

Now we consider a case where the solution does not exists. A possible alternative is
getting the set of all vectors x′ that minimise ∥Ax

′ − y∥, that is,

min
x∈Rn

∥Ax
′
− y∥

Moore-Penrose inverse gives the set x
′ ∈ Rn that minimize ∥Ax′− y∥. It can be shown

minx∈Rn ∥Ax
′ − y∥ always has a solution.

Therefore, if the linear equation Ax = y has solutions, then x
′
= A+y is an exact solution

and has the least possible value where A+ ∈ Rn×m is the Moore-Penrose pseudoinverse
of A.

The matrix A+ is called the pseudoinverse of matrix A if it satisfies the following
conditions:

1. AA+A = A

2. A+AA+ = A+

3. (AA+)T = AA+

4. (A+A)T = A+A

Moore-Penrose inverse is used in equations that lack solutions like those involving
singular matrices.
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For



80 48 48 48 −16

48 80 16 16 16

48 16 80 16 16

48 16 16 80 16

−16 16 16 16 80


, the pseudoinverse is 1

8192



28 10 10 10 −26

10 95 −33 −33 9

10 −33 95 −33 9

10 −33 −33 95 9

−26 9 9 9 79


(3.1)

For



80 48 48 16 16

48 80 16 48 −16

48 16 80 −16 48

16 48 −16 80 16

16 −16 48 16 80


, the pseudoinverse is 1

256



8 −4 −4 0 0

−4 4 3 0 −1

−4 3 1 −1 0

0 0 −1 2 1

0 −1 0 1 2


(3.2)

For



80 48 16 16 −16

48 80 48 48 16

16 48 80 16 48

16 48 16 80 48

−16 16 48 48 80


, the pseudoinverse is 1

2048



48 −28 −4 −4 20

−28 35 5 5 −25

−4 5 19 −13 0

−4 5 −13 19 0

20 −25 0 0 27


(3.3)

For



80 48 48 48 16 16 −16

48 80 16 16 48 −16 16

48 16 80 16 −16 48 16

48 16 16 80 48 48 16

16 48 −16 48 80 16 48

16 −16 48 48 16 80 48

−16 16 16 16 48 48 80



, the pseudoinverse is 1
8192



28 10 10 14 0 0 −22

10 47 15 −27 10 −22 15

10 15 47 −27 −22 10 15

14 −27 −27 55 14 14 −27

0 10 −22 14 28 0 10

0 −22 10 14 0 28 10

−22 15 15 −27 10 10 47


(3.4)
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The effects in (F1,F2F3F4,F2F5F7,F3F5F6,F4F6F7) are estimated using equation (3.1). F1 is
estimated using a higher efficiency compared to the other effects. Effects F2F3F4, F2F5F7

and F3F5F6 are estimated with the same efficiency which is lower compared to the
efficiency attained by effects in the same set.

Effects in the following sets (F2,F1F3F4,F1F5F7,F4F5F6,F3F6F7), (F3,F1F2F4,F1F5F6,F4F5F7,F2F6F7)

and (F5,F1F2F7,F1F3F6,F3F4F7,F2F4F6) are estimated using equation (3.2). The main
effects F2, F3 and F5 are estimated with the lowest efficiency. The interations F4F5F6,
F3F6F7, F4F5F7, F2F6F7, F3F4F7 and F2F4F6 are estimated with the same efficiency.
Effects F1F5F7, F1F5F6 and F1F3F6 are estimated with the highest efficieny in comparison
to the other effects in the same set.

The correlated effects in sets (F4,F1F2F3,F3F5F7,F2F5F6,F1F6F7,), (F6,F1F3F5,F2F4F5,F2F3F7,F1F4F7)

and (F7,F1F2F5,F3F4F5,F2F3F6,F1F4F6), are estimated using equation (3.3). The main
effects F4, F6 and F7 are estimated with the lowest efficiency. The three-factor
interactions F3F5F7, F2F5F6, F2F4F5, F2F3F7, F3F4F5, and F2F3F6 are estimated with the
same efficiency which is higher compared to the efficiency attained by effects in the same
set.

The effects in the set (F1F2F6,F3F4F6,F5F6F7,F2F3F5,F1F4F5,F1F3F7,F2F4F7) are estimated
using equation (3.4). The factors F1F2F6, F1F4F5, F1F3F7 are estimated with a higher
efficiency compared to the other effects in the same set. EffectsF3F4F6, F5F6F7 andF2F4F7

are estimated with the same efficiency. F2F3F5 is estimated with the lowest efficiency
among the effects in the same set.

The matrix:
80 48 48

48 80 16

48 16 80


−1

=
1

192


6 −3 −3

−3 4 1

−3 1 4

gives estimates for


F1F2

F3F4

F5F7

 ,


F1F3

F2F4

F5F6

 ,


F1F5

F2F7

F3F6



Factors F1F2, F1F3 and F1F5 are estimated with the same efficiency. Factors F3F4, F5F7,
F2F4, F5F6, F2F7 and F3F6 are estimated with same efficiency which is higher than the
efficiency attained for F1F2, F1F3 and F1F5.

The matrix:
80 48 −16

48 80 16

−16 16 80


−1

=
1

128


3 −2 1

−2 3 −1

1 −1 2

gives estimates for


F1F4

F2F3

F6F7

 ,


F1F6

F3F5

F4F7

 ,


F1F7

F2F5

F4F6
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Factors F6F7, F4F7 and F4F6 are estimated with the same efficiency. The efficiency used
is higher than the efficiency attained for the corresponding effects in the same set.

Factors F1F4, F2F3, F1F6, F3F5, F1F7 and F2F5 are estimated with the lowest efficiency.

The matrix:


80 16 16

16 80 16

16 16 80


−1

=
1

448


6 −1 −1

−1 6 −1

−1 −1 6

gives estimates for


F2F6

F4F5

F3F7



Effects F2F6, F4F5 and F3F7 are estimated with the same efficiency.

µ̂ =
1

80
[µ]

3.3 Eight Factor Experiment involving 96+32 = 128 Runs

Consider a design with treatments (x1,x2,x3,x4,x5,x6,x7,x8) which satisfy the
simultaneous equations

x1 + x2 + x3 + x6 = 0,0,1
x2 + x4 + x6 + x8 = 0,1,0
x1 + x2 + x5 + x7 = 0,1,1

(mod 2)

3.3.1 Construction of The Design

The B matrix is obtained using the same procedure described in the eight factor
experiment in the Two-Factor Interactions Designs.

For example, the linear equations x1 + x2 + x3 + x6 and x1 + x2 + x5 + x7 infer aliasing in
the effects F1F2, F3F6 and F5F7.

Clearly, the B matrix in equations
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x1 + x2 + x3 + x6 = 0,0,1
x1 + x2 + x5 + x7 = 0,1,1

is non-singular.

We first get the treatment combinations belonging to the first set that we then duplicate.
If we add 1 (mod2) in x5 or x7 and x4 or x8 position of the first set, we get the second set.
If we add 1 (mod2) in x1 position of the first set or 1 (mod2) in x3 and x5 or x7 position of
the first set, we obtain the third set.
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Treatment combinations

st1
(0,0,0,0,0,0,0,0)

(0,0,1,0,0,1,0,1)

(0,0,1,0,1,1,1,1)

(0,0,1,1,0,1,0,0)

(0,0,1,1,1,1,1,0)

(0,0,0,1,0,0,0,1)

(0,0,0,1,1,0,1,1)

(0,0,0,0,1,0,1,0)

(0,1,0,0,0,1,1,0)

(0,1,0,0,1,1,0,0)

(0,1,0,1,0,1,1,1)

(0,1,0,1,1,1,0,1)

(0,1,1,1,1,0,0,0)

(0,1,1,0,0,0,1,1)

(0,1,1,0,1,0,0,1)

(0,1,1,1,0,0,1,0)

(1,1,0,1,0,0,0,0)

(1,1,0,1,1,0,1,0)

(1,1,0,0,0,0,0,1)

(1,1,0,0,1,0,1,1)

(1,1,1,1,0,1,0,1)

(1,1,1,1,1,1,1,1)

(1,1,1,0,0,1,0,0)

(1,1,1,0,1,1,1,0)

(1,0,1,0,0,0,1,0)

(1,0,1,0,1,0,0,0)

(1,0,1,1,1,0,0,1)

(1,0,1,1,0,0,1,1)

(1,0,0,0,0,1,1,1)

(1,0,0,0,1,1,0,1)

(1,0,0,1,0,1,1,0)

(1,0,0,1,1,1,0,0)

st2
(0,0,0,0,0,0,1,1)

(0,0,1,0,0,1,1,0)

(0,0,1,0,1,1,0,0)

(0,0,1,1,0,1,1,1)

(0,0,1,1,1,1,0,1)

(0,0,0,1,0,0,1,0)

(0,0,0,1,1,0,0,0)

(0,0,0,0,1,0,0,1)

(0,1,0,0,0,1,0,1)

(0,1,0,0,1,1,1,1)

(0,1,0,1,0,1,0,0)

(0,1,0,1,1,1,1,0)

(0,1,1,1,1,0,1,1)

(0,1,1,0,0,0,0,0)

(0,1,1,0,1,0,1,0)

(0,1,1,1,0,0,0,1)

(1,1,0,1,0,0,1,1)

(1,1,0,1,1,0,0,1)

(1,1,0,0,0,0,1,0)

(1,1,0,0,1,0,0,0)

(1,1,1,1,0,1,1,0)

(1,1,1,1,1,1,0,0)

(1,1,1,0,0,1,1,1)

(1,1,1,0,1,1,0,1)

(1,0,1,0,0,0,0,1)

(1,0,1,0,1,0,1,1)

(1,0,1,1,1,0,1,0)

(1,0,1,1,0,0,0,0)

(1,0,0,0,0,1,0,0)

(1,0,0,0,1,1,1,0)

(1,0,0,1,0,1,0,1)

(1,0,0,1,1,1,1,1)

st3
(0,0,0,0,0,0,0,0)

(1,0,1,0,0,1,0,1)

(1,0,1,0,1,1,1,1)

(1,0,1,1,0,1,0,0)

(1,0,1,1,1,1,1,0)

(1,0,0,1,0,0,0,1)

(1,0,0,1,1,0,1,1)

(1,0,0,0,1,0,1,0)

(1,1,0,0,0,1,1,0)

(1,1,0,0,1,1,0,0)

(1,1,0,1,0,1,1,1)

(1,1,0,1,1,1,0,1)

(1,1,1,1,1,0,0,0)

(1,1,1,0,0,0,1,1)

(1,1,1,0,1,0,0,1)

(1,1,1,1,0,0,1,0)

(0,1,0,1,0,0,0,0)

(0,1,0,1,1,0,1,0)

(0,1,0,0,0,0,0,1)

(0,1,0,0,1,0,1,1)

(0,1,1,1,0,1,0,1)

(0,1,1,1,1,1,1,1)

(0,1,1,0,0,1,0,0)

(0,1,1,0,1,1,1,0)

(0,0,1,0,0,0,1,0)

(0,0,1,0,1,0,0,0)

(0,0,1,1,1,0,0,1)

(0,0,1,1,0,0,1,1)

(0,0,0,0,0,1,1,1)

(0,0,0,0,1,1,0,1)

(0,0,0,1,0,1,1,0)

(0,0,0,1,1,1,0,0)



55

The defining relation for the fraction is

I = F1F2F3F6 = F2F4F6F8 = F1F2F5F7 = F3F5F6F7 = F1F3F4F8 = F1F4F5F8F7F8

=F2F3F4F5F7F8

The correlated sets of factors are

(F1,F2F3F6,F2F5F7,F3F4F8), (F2,F1F3F6,F4F6F8,F1F5F7), (F3,F1F2F6,F5F6F7,F1F4F8),
(F4,F2F6F8,F1F3F8) (F5,F1F2F7,F3F6F7), (F6,F1F2F3,F2F4F8,F3F5F7), (F7,F1F2F5,F3F5F6),
(F8,F2F4F6,F1F3F4), (F1F2,F3F6,F5F7), (F1F3,F2F6,F4F8), (F1F6,F2F3), (F2F4,F6F8), (F2F8,F4F6),
(F3F5,F6F7), (F3F7,F5F6), (F1F2F4,F3F4F6,F1F6F8,F4F5F7,F2F3F8),
(F1F2F8,F3F6F8,F1F4F6,F5F7F8,F2F3F4), (F1F3F5,F2F5F6,F2F3F7,F1F6F7,F4F5F8),
(F1F3F7,F2F6F7,F2F3F5,F1F5F6,F4F7F8), (F1F4F5,F2F4F7,F3F5F8,F6F7F8),
(F1F4F7,F2F4F5,F3F7F8,F5F6F8), (F1F5F8,F2F7F8,F3F4F5,F4F6F7), (F1F7F8,F2F5F8,F3F4F7,F4F5F6).

3.3.2 Method of Analysis

Effects F1F4, F3F8, F1F5, F2F7, F1F7, F2F5, F1F8, F3F4, F4F5, F4F7, F5F8 and F7F8 are
orthogonally estimated.

For


128 64 0 0

64 128 64 64

0 64 128 128

0 64 128 128

 , the pseudoinverse is 1
1024


12 −8 2 2

−8 16 −4 −4

2 −4 3 3

2 −4 3 3

 (3.5)

For


128 64 64 0

64 128 0 64

64 0 128 64

0 64 64 128

 , the pseudoinverse is 1
1024


5 1 1 −3

1 5 −3 1

1 −3 5 1

−3 1 1 5

 (3.6)

For


128 64 64 64

64 128 0 0

64 0 128 128

64 0 128 128

 , the pseudoinverse is 1
1024


16 −8 −4 −4

−8 12 2 2

−4 2 3 3

−4 2 3 3

 (3.7)
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For



128 64 64 0 0

64 128 0 64 64

64 0 128 64 64

0 64 64 128 128

0 64 64 128 128


, the pseudoinverse is 1

12544



52 18 18 −16 −16

18 59 −39 0 0

18 −39 59 0 0

−16 0 0 20 20

−16 0 0 20 20


(3.8)

For



128 64 0 64 0

64 128 64 0 64

0 64 128 64 128

64 0 64 128 64

0 64 128 64 128


, the pseudoinverse is 1

12544



52 18 −16 18 −16

18 59 0 −39 0

−16 0 20 0 20

18 −39 0 59 0

−16 0 20 0 20


(3.9)

For


128 0 0 64

0 128 128 64

0 128 128 64

64 64 64 128

 , the pseudoinverse is 1
1024


12 2 2 −8

2 3 3 −4

2 3 3 −4

−8 −4 −4 16

 (3.10)

The effects in sets (F1,F2F3F6,F2F5F7,F3F4F8) are estimated using equation (3.5). Effects
F2F5F7 and F3F4F8 are estimated with the same efficiency which is the highest in that
set. F2F3F6 is estimated with the lowest efficiency among the effects in the same set.

The effects in set (F2,F1F3F6,F4F6F8,F1F5F7) and (F3,F1F2F6,F5F6F7,F1F4F8) are
estimated using equation (3.6). Effects in these sets are estimated with the same
efficiency.

The effects in set (F6,F1F2F3,F2F4F8,F3F5F7) are estimated using equation (3.7). The
main effect F6 is estimated with the lowest efficiency. Effects F2F4F8 and F3F5F7 are
estimated with the same efficiency which is the highest in that set.

Effects in set (F1F2F4,F3F4F6,F1F6F8,F4F5F7,F2F3F8) and (F1F2F8,F3F6F8,F1F4F6,F5F7F8,F2F3F4)

are estimated using equation (3.8). The effects F3F4F6, F1F6F8, F3F6F8 and F1F4F6 are
estimated with the lowest efficiency. Effects F4F5F7, F2F3F8, F5F7F8, F2F3F4 are estimated
with the same efficiency which is higher compared to the efficiency attained for other
effects in the same set.

Effects in set (F1F3F5,F2F5F6,F2F3F7,F1F6F7,F4F5F8) and (F1F3F7,F2F6F7,F2F3F5,F1F5F6,F4F7F8)

are estimated using equation (3.9). The effects F2F5F6, F1F6F7, F2F6F7 and F1F5F6 are
estimated with the lowest efficiency. Effects F2F3F7, F4F5F8, F2F3F5 and F4F7F8 are
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estimated with the same efficiency which is higher compared to the efficiency attained
for other effects in the same set.

Factors in the set (F1F4F5,F2F4F7,F3F5F8,F6F7F8), (F1F4F7,F2F4F5,F3F7F8,F5F6F8),
(F1F5F8,F2F7F8,F3F4F5,F4F6F7) and (F1F7F8,F2F5F8,F3F4F7,F4F5F6) are estimated
using equation (3.10). Factors F2F4F7, F3F5F8, F2F4F5, F3F7F8, F2F7F8, F3F4F5, F2F5F8 and
F3F4F7 are estimated with the same efficiency which is much higher compared to the
efficiency attained for the remaining factors in similar sets. F6F7F8, F5F6F8, F4F6F7 and
F4F5F6 are estimated with the same efficiency. The efficiency used is lower in comparison
to the efficiency attained for other factors in the same set.

The matrix:
128 0 64

0 128 64

64 64 128


−1

=
1

256


3 1 −2

1 3 −2

−2 −2 4

gives estimates for


F5

F1F2F7

F3F6F7

 ,


F7

F1F2F5

F3F5F6



Effects F5, F7, F1F2F7 and F1F2F5 are estimated using the same efficiency that is higher
than the efficiency attained for F3F6F7 and F3F5F6.

The matrix:
128 64 0

64 128 64

0 64 128


−1

=
1

256


3 −2 1

−2 4 −2

1 −2 3

gives estimates for


F8

F2F4F6

F1F3F4

 ,


F1F2

F3F6

F5F7

 ,


F1F3

F2F6

F4F8



Effects F8,F1F3F4, F1F2, F5F7, F1F3 and F4F8 are estimated using the same efficiency that
is higher than the efficiency attained for F2F4F6, F3F6 and F2F6.

The matrix:128 64

64 128

−1

=
1

192

 2 −1

−1 2

 gives estimates

F1F6

F2F3

 ,

F2F4

F6F8

 ,

F2F8

F4F6

 ,

F3F5

F6F7

 ,

F3F7

F5F6



The effects here are estimated using the same efficiency.

µ̂ =
1

128
[µ], ˆF1F4 =

1
128

[F1F4], ˆF3F8 =
1

128
[F3F8], ˆF1F5 =

1
128

[F1F5], ˆF2F7 =
1

128
[F2F7],
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ˆF1F7 =
1

128
[F1F7], ˆF2F5 =

1
128

[F2F5], ˆF1F8 =
1

128
[F1F8], ˆF3F4 =

1
128

[F3F4], ˆF4F5 =
1

128
[F4F5],

ˆF4F7 =
1

128
[F4F7], ˆF5F8 =

1
128

[F5F8], ˆF7F8 =
1

128
[F7F8]

3.4 Nine Factor Experiment involving 96+32 = 128 Runs

Consider a design with treatments (x1,x2,x3,x4,x5,x6,x7,x8,x9) which satisfy the
simultaneous equations

x1 + x3 + x6 + x9 = 0,0,1
x2 + x5 + x7 + x9 = 0,0,1
x4 + x6 + x7 + x9 = 0,1,0
x3 + x5 + x8 + x9 = 0,1,1

(mod 2)

3.4.1 Construction of The Design

The B matrix is obtained using the same procedure described in the eight factor
experiment in the Two-Factor Interactions Designs.

We first get the treatment combinations belonging to the first set which we then repeat.
If we add 1 (mod2) in x4 and x8 position of the first set, we obtain the second set. If we
add 1 (mod2) in x1 and x5 position of the first set, we obtain the third set.
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Treatment combinations

st1
(0,0,0,0,0,0,0,0,0)

(0,0,0,0,1,1,0,0,1)

(0,0,0,1,0,1,1,1,1)

(0,0,0,1,1,0,1,1,0)

(0,0,1,1,0,1,0,1,0)

(0,0,1,1,1,0,0,1,1)

(0,0,1,0,0,0,1,0,1)

(0,0,1,0,1,1,1,0,0)

(0,1,0,0,0,1,0,1,1)

(0,1,0,0,1,0,0,1,0)

(0,1,0,1,0,0,1,0,0)

(0,1,0,1,1,1,1,0,1)

(0,1,1,1,0,0,0,0,1)

(0,1,1,1,1,0,0,0,0)

(0,1,1,0,0,1,1,1,0)

(0,1,1,0,1,0,1,1,1)

(1,1,0,1,0,0,0,1,1)

(1,1,0,1,1,1,0,1,0)

(1,1,0,0,0,1,1,0,0)

(1,1,0,0,1,0,1,0,1)

(1,1,1,1,0,0,1,1,0)

(1,1,1,1,1,1,1,1,1)

(1,1,1,0,0,1,0,0,1)

(1,1,1,0,1,0,0,0,0)

(1,0,1,0,0,0,0,1,0)

(1,0,1,0,1,1,0,1,1)

(1,0,1,1,0,1,1,0,1)

(1,0,1,1,1,0,1,0,0)

(1,0,0,0,0,0,1,1,1)

(1,0,0,0,1,1,1,1,0)

(1,0,0,1,0,1,0,0,0)

(1,0,0,1,1,0,0,0,1)

st2
(0,0,0,1,0,0,0,1,0)

(0,0,0,1,1,1,0,1,1)

(0,0,0,0,0,1,1,0,1)

(0,0,0,0,1,0,1,0,0)

(0,0,1,0,0,1,0,0,0)

(0,0,1,0,1,0,0,0,1)

(0,0,1,1,0,0,1,1,1)

(0,0,1,1,1,1,1,1,0)

(0,1,0,1,0,1,0,0,1)

(0,1,0,1,1,0,0,0,0)

(0,1,0,0,0,0,1,1,0)

(0,1,0,0,1,1,1,1,1)

(0,1,1,0,0,0,0,1,1)

(0,1,1,0,1,0,0,1,0)

(0,1,1,1,0,1,1,0,0)

(0,1,1,1,1,0,1,0,1)

(1,1,0,0,0,0,0,0,1)

(1,1,0,0,1,1,0,0,0)

(1,1,0,1,0,1,1,1,0)

(1,1,0,1,1,0,1,1,1)

(1,1,1,0,0,0,1,0,0)

(1,1,1,0,1,1,1,0,1)

(1,1,1,1,0,1,0,1,1)

(1,1,1,1,1,0,0,1,0)

(1,0,1,1,0,0,0,0,0)

(1,0,1,1,1,1,0,0,1)

(1,0,1,0,0,1,1,1,1)

(1,0,1,0,1,0,1,1,0)

(1,0,0,1,0,0,1,0,1)

(1,0,0,1,1,1,1,0,0)

(1,0,0,0,0,1,0,1,0)

(1,0,0,0,1,0,0,1,1)

st3
(1,0,0,0,1,0,0,0,0)

(1,0,0,0,0,1,0,0,1)

(1,0,0,1,1,1,1,1,1)

(1,0,0,1,0,0,1,1,0)

(1,0,1,1,1,1,0,1,0)

(1,0,1,1,0,0,0,1,1)

(1,0,1,0,1,0,1,0,1)

(1,0,1,0,0,1,1,0,0)

(1,1,0,0,1,1,0,1,1)

(1,1,0,0,0,0,0,1,0)

(1,1,0,1,1,0,1,0,0)

(1,1,0,1,0,1,1,0,1)

(1,1,1,1,1,0,0,0,1)

(1,1,1,1,0,0,0,0,0)

(1,1,1,0,1,1,1,1,0)

(1,1,1,0,0,0,1,1,1)

(0,1,0,1,1,0,0,1,1)

(0,1,0,1,0,1,0,1,0)

(0,1,0,0,1,1,1,0,0)

(0,1,0,0,0,0,1,0,1)

(0,1,1,1,1,0,1,1,0)

(0,1,1,1,0,1,1,1,1)

(0,1,1,0,1,1,0,0,1)

(0,1,1,0,0,0,0,0,0)

(0,0,1,0,1,0,0,1,0)

(0,0,1,0,0,1,0,1,1)

(0,0,1,1,1,1,1,0,1)

(0,0,1,1,0,0,1,0,0)

(0,0,0,0,1,0,1,1,1)

(0,0,0,0,0,1,1,1,0)

(0,0,0,1,1,1,0,0,0)

(0,0,0,1,0,0,0,0,1)
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The defining relation for the fraction is

I = F1F3F6F9 = F2F5F7F9 = F4F6F7F9 = F3F5F8F9 = F1F2F3F5F6F7 = F1F3F4F7

=F1F5F6F8 = F2F4F5F6 = F2F3F7F8 = F3F4F5F6F7F8 = F1F2F3F4F5F9 = F1F2F6F7F8F9

=F1F4F5F7F8F9 = F2F3F4F6F8F9 = F1F2F4F8

The correlated sets of factors are

1. (F1,F5F6F8,F3F6F9,F2F4F8,F3F4F7), (F2,F3F7F8,F5F7F9,F1F4F8,F4F5F6),
(F3,F1F6F9,F5F8F9,F1F4F7,F2F7F8), (F4,F6F7F9,F1F3F7,F2F5F6,F1F2F8)

(F5,F2F7F9,F3F8F9,F2F4F6,F1F6F8), (F6,F1F3F9,F4F7F9,F1F5F8,F2F4F5),
(F7,F2F5F9,F4F6F9,F2F3F8,F1F3F4), (F8,F1F2F4,F1F5F6,F2F3F7,F3F5F9),
(F9,F4F6F7,F1F3F6,F2F5F7,F3F5F8), (F1F2,F4F8), (F1F3,F6F9,F4F7), (F1F4,F2F8,F3F7),
(F1F5,F6F8), (F3F9,F1F6,F5F8), (F1F7,F3F4), (F5F6,F1F8,F2F4), (F1F9,F3F6), (F2F3,F7F8),
(F2F6,F4F5), (F5F9,F2F7,F3F8), (F2F9,F5F7), (F3F5,F8F9), (F4F6,F7F9,F2F5), (F4F9,F6F7)

2. (F1F2F3,F2F6F9,F5F6F7,F2F4F7,F1F7F8,F4F5F9,F3F4F8),
(F1F2F5,F1F7F9,F3F6F7,F2F6F8,F1F4F6,F3F4F9,F4F5F8),
(F1F2F7,F1F5F9,F3F5F6,F2F3F4,F1F3F8,F6F8F9,F4F7F8),
(F1F3F5,F5F6F9,F1F8F9,F2F6F7,F4F5F7,F3F6F8,F2F4F9),
(F1F4F9,F3F4F6,F1F6F7,F3F7F9,F2F3F5,F5F7F8,F2F8F9).

3. (F1F2F9,F2F3F6,F1F5F7,F3F4F5,F6F7F8,F4F8F9).

4. (F1F2F6,F2F3F9,F3F5F7,F2F5F8,F1F4F5,F7F8F9,F4F6F8).

3.4.2 Method of Analysis

Effects F1F7, F3F4, F2F6, F4F5, F3F5 and F8F9 are orthogonally estimated.

For



128 64 64 64 0

64 128 0 0 64

64 0 128 128 64

64 0 128 128 64

0 64 64 64 128


, the pseudoinverse is 1

12544



59 18 0 0 −39

18 52 −16 −16 18

0 −16 20 20 0

0 −16 20 20 0

−39 18 0 0 59


(3.11)
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For



128 64 0 0 64

64 128 64 64 0

0 64 128 128 64

0 64 128 128 64

64 0 64 64 128


, the pseudoinverse is 1

12544



52 18 −16 −16 18

18 59 0 0 −39

−16 0 20 20 0

−16 0 20 20 0

18 −39 0 0 59


(3.12)

Equation (3.11) estimates effects



F1

F5F6F8

F3F6F9

F2F4F8

F3F4F7


,



F2

F3F6F8

F5F7F9

F1F4F8

F4F5F6


,



F6

F1F3F9

F4F7F9

F1F5F8

F2F4F5


,



F7

F2F5F9

F4F6F9

F2F3F8

F1F3F4


,



F8

F1F2F4

F1F5F6

F2F3F7

F3F5F9


,



F9

F4F6F7

F1F3F6

F2F5F7

F3F5F8


The main effects estimated using equation (3.11) are estimated with the lowest efficiency
efficiency. The effects F3F6F9, F2F4F8, F5F7F9, F1F4F8, F4F7F9, F1F5F8, F4F6F9, F2F3F8,
F1F5F6, F2F3F7, F1F3F6 and F2F5F7 are estimated with the highest efficiency.

Equation (3.12) is used to estimate the effects



F3

F1F6F9

F5F8F9

F1F4F7

F2F7F8


,



F4

F6F7F9

F1F3F7

F2F5F6

F1F2F8


,



F5

F2F7F9

F3F8F9

F2F4F6

F1F6F8


The main effects estimated using equation (3.12) are estimated with the same efficiency.
The effects F5F8F9, F1F4F7, F1F3F7, F2F5F6, F3F8F9 and F2F4F6 are estimated with the
highest efficiency. Effects F1F6F9, F2F7F8, F6F7F9, F1F2F8, F2F7F9 and F1F6F8 are
estimated with the lowest efficiency.

The matrix:
128 64 0

64 128 64

0 64 128


−1

=
1

256


3 −2 1

−2 4 −2

1 −2 3

estimates


F1F3

F6F9

F4F7

 ,


F4F6

F7F9

F2F5

 ,


F1F4

F2F8

F3F7

 ,


F3F9

F1F6

F5F8

 ,


F5F6

F1F8

F2F4



and


F5F9

F2F7

F3F8
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Effects F1F3,F4F7, F4F6, F2F5, F1F4, F3F7, F3F9, F5F8, F5F6, F2F4, F5F9 and F3F8 are
estimated with a higher efficiency than the efficiency attained for effects F6F9, F7F9, F2F8,
F1F6, F1F8 and F2F7.

The matrix:128 64

64 128

−1

=
1

192

 2 −1

−1 2

estimates

F1F2

F4F8

 ,

F1F5

F6F8

 ,

F1F9

F3F6

 ,

F2F3

F7F8

 ,

F2F9

F5F7

 ,

F4F9

F6F7



The effects here are estimated using the same efficiency.

For



128 64 128 0 64 64 64

64 128 64 64 0 0 128

128 64 128 0 64 64 64

0 64 0 128 64 64 64

64 0 64 64 128 128 0

64 0 64 64 128 128 0

64 128 64 64 0 0 128



, the pseudoinverse is 1
5120



8 0 8 −8 0 0 0

0 7 0 4 −3 −3 7

8 0 8 −8 0 0 0

−8 4 −8 16 4 4 4

0 −3 0 4 7 7 −3

0 −3 0 4 7 7 −3

0 7 0 4 −3 −3 7


(3.13)

The matrix in equation (3.13) estimates effects in set 2. Effects F2F6F9, F1F7F8, F4F5F9

F3F4F8, F1F7F9, F2F6F8 F3F4F9, F4F5F8, F1F2F7, F2F3F4, F6F8F9, F3F5F6, F1F3F5, F1F8F9,
F4F5F7 F2F6F7, F3F4F6, F1F6F7, F2F3F5 and F2F8F9 are estimated with the highest
efficiency compared to any other effect in the corresponding sets. Effects F2F4F7, F5F6F9,
F3F7F9 ,F1F4F6 andF1F3F8 are estimatedwith the lowest efficiency. EffectsF1F2F3, F5F6F7,
F1F2F5 F3F6F7, F1F5F9, F4F7F8 F3F6F8, F2F4F9, F1F4F9 and F5F7F8 are estimated with the
same efficiency.
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For



128 64 0 64 0 0 64

64 128 0 0 64 64 128

0 0 128 0 0 0 0

64 0 0 128 64 64 0

0 64 0 64 128 128 64

0 64 0 64 128 128 64

64 128 0 0 64 64 128



, the pseudoinverse is 1
36864



140 0 0 76 −50 −50 0

0 59 0 −50 0 0 59

0 0 288 0 0 0 0

76 −50 0 140 0 0 −50

−50 0 0 0 59 59 0

−50 0 0 0 59 59 0

0 59 0 −50 0 0 59


(3.14)

The matrix in equation (3.14) estimates effects in set 4. Effect F3F5F7 is estimated with
the lowest efficiency. Effects F2F3F9, F1F4F5, F7F8F9 and F4F6F8 are estimated with the
highest efficiency. F1F2F6 and F2F5F8 are estimated with the same efficiency.

For



128 64 64 64 0 64

64 128 128 0 64 128

64 128 128 0 64 128

64 0 0 128 64 0

0 64 64 64 128 64

64 128 128 0 64 128



, the pseudoinverse is 1
1280



6 0 0 2 −4 0

0 1 1 −1 0 1

0 1 1 −1 0 1

2 −1 −1 5 2 −1

−4 0 0 2 6 0

0 1 1 −1 0 1


(3.15)



64

The matrix in equation (3.15) estimates effects in set 3. Effects F1F2F9 and F6F7F8 are
estimated with the lowest efficiency. Effects F2F3F6, F1F5F7 and F4F8F9 are estimated
with the highest efficiency.

µ̂ =
1

128
[µ], ˆF1F7 =

1
128

[F1F7], ˆF3F4 =
1

128
[F3F4], ˆF2F6 =

1
128

[F2F6], ˆF4F5 =
1

128
[F4F5],

ˆF3F5 =
1

128
[F3F5], ˆF8F9 =

1
128

[F8F9].

3.5 Ten Factor Experiment involving 96+32 = 128 Runs

Consider a design with treatments (x1,x2,x3,x4,x5,x6,x7,x8,x9,x10) which satisfy the
simultaneous equations

x1 + x3 + x6 + x10 = 0,1,0
x2 + x5 + x7 + x9 = 0,0,1
x4 + x6 + x7 + x9 = 0,1,0
x3 + x5 + x8 + x10 = 0,0,1
x1 + x5 + x9 + x10 = 0,1,1

(mod 2)

3.5.1 Construction of The Design

The B matrix is obtained using the same procedure described in the eight factor
experiment in the Two-Factor Interactions Designs.

We first get the treatment combinations belonging to the first set which we then repeat.
If we add 1 (mod2) in x1 and x4 position of the first set, we obtain the second set. If we
add 1 (mod2) in the x5 position of the first set, we obtain the third set.
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Treatment combinations

st1
(0,0,0,0,0,0,0,0,0,0)

(0,0,0,0,1,1,1,0,0,1)

(0,0,0,1,0,1,1,1,1,1)

(0,0,0,1,1,0,0,1,1,0)

(0,0,1,1,0,1,0,1,0,0)

(0,0,1,1,1,0,1,1,0,1)

(0,0,1,0,0,0,1,0,1,1)

(0,0,1,0,1,1,0,0,1,0)

(0,1,0,0,0,1,0,1,1,1)

(0,1,0,0,1,0,1,1,1,0)

(0,1,0,1,0,0,1,0,0,0)

(0,1,0,1,1,1,0,0,0,1)

(0,1,1,1,0,0,0,0,1,1)

(0,1,1,1,1,1,1,0,1,0)

(0,1,1,0,0,1,1,1,0,0)

(0,1,1,0,1,0,0,1,0,1)

(1,1,0,1,0,0,1,1,0,1)

(1,1,0,1,1,1,0,1,0,0)

(1,1,0,0,0,1,0,0,1,0)

(1,1,0,0,1,0,1,0,1,1)

(1,1,1,1,0,0,0,1,1,0)

(1,1,1,1,1,1,1,1,1,1)

(1,1,1,0,0,1,1,0,0,1)

(1,1,1,0,1,0,0,0,0,0)

(1,0,1,0,0,0,1,1,1,0)

(1,0,1,0,1,1,0,1,1,1)

(1,0,1,1,0,1,0,0,0,1)

(1,0,1,1,1,0,1,0,0,0)

(1,0,0,0,0,0,0,1,0,1)

(1,0,0,0,1,1,1,1,0,0)

(1,0,0,1,0,1,1,0,1,0)

(1,0,0,1,1,0,0,0,1,1)

st2
(1,0,0,1,0,0,0,0,0,0)

(1,0,0,1,1,1,1,0,0,1)

(1,0,0,0,0,1,1,1,1,1)

(1,0,0,0,1,0,0,1,1,0)

(1,0,1,0,0,1,0,1,0,0)

(1,0,1,0,1,0,1,1,0,1)

(1,0,1,1,0,0,1,0,1,1)

(1,0,1,1,1,1,0,0,1,0)

(1,1,0,1,0,1,0,1,1,1)

(1,1,0,1,1,0,1,1,1,0)

(1,1,0,0,0,0,1,0,0,0)

(1,1,0,0,1,1,0,0,0,1)

(1,1,1,0,0,0,0,0,1,1)

(1,1,1,0,1,1,1,0,1,0)

(1,1,1,1,0,1,1,1,0,0)

(1,1,1,1,1,0,0,1,0,1)

(0,1,0,0,0,0,1,1,0,1)

(0,1,0,0,1,1,0,1,0,0)

(0,1,0,1,0,1,0,0,1,0)

(0,1,0,1,1,0,1,0,1,1)

(0,1,1,0,0,0,0,1,1,0)

(0,1,1,0,1,1,1,1,1,1)

(0,1,1,1,0,1,1,0,0,1)

(0,1,1,1,1,0,0,0,0,0)

(0,0,1,1,0,0,1,1,1,0)

(0,0,1,1,1,1,0,1,1,1)

(0,0,1,0,0,1,0,0,0,1)

(0,0,1,0,1,0,1,0,0,0)

(0,0,0,1,0,0,0,1,0,1)

(0,0,0,1,1,1,1,1,0,0)

(0,0,0,0,0,1,1,0,1,0)

(0,0,0,0,1,0,0,0,1,1)

st3
(0,0,0,0,1,0,0,0,0,0)

(0,0,0,0,0,1,1,0,0,1)

(0,0,0,1,1,1,1,1,1,1)

(0,0,0,1,0,0,0,1,1,0)

(0,0,1,1,1,1,0,1,0,0)

(0,0,1,1,0,0,1,1,0,1)

(0,0,1,0,1,0,1,0,1,1)

(0,0,1,0,0,1,0,0,1,0)

(0,1,0,0,1,1,0,1,1,1)

(0,1,0,0,0,0,1,1,1,0)

(0,1,0,1,1,0,1,0,0,0)

(0,1,0,1,0,1,0,0,0,1)

(0,1,1,1,1,0,0,0,1,1)

(0,1,1,1,0,1,1,0,1,0)

(0,1,1,0,1,1,1,1,0,0)

(0,1,1,0,0,0,0,1,0,1)

(1,1,0,1,1,0,1,1,0,1)

(1,1,0,1,0,1,0,1,0,0)

(1,1,0,0,1,1,0,0,1,0)

(1,1,0,0,0,0,1,0,1,1)

(1,1,1,1,1,0,0,1,1,0)

(1,1,1,1,0,1,1,1,1,1)

(1,1,1,0,1,1,1,0,0,1)

(1,1,1,0,0,0,0,0,0,0)

(1,0,1,0,1,0,1,1,1,0)

(1,0,1,0,0,1,0,1,1,1)

(1,0,1,1,1,1,0,0,0,1)

(1,0,1,1,0,0,1,0,0,0)

(1,0,0,0,1,0,0,1,0,1)

(1,0,0,0,0,1,1,1,0,0)

(1,0,0,1,1,1,1,0,1,0)

(1,0,0,1,0,0,0,0,1,1)
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The defining relation for the fraction is

I = F1F3F6F10 = F2F5F7F9 = F4F6F7F9 = F3F5F8F10 = F1F5F9F10 = F1F3F4F7F9F10

=F1F5F6F8 = F3F5F6F9 = F2F4F5F6 = F2F3F7F8F9F10 = F1F2F7F10 = F1F4F5F6F7F10

=F1F3F8F9 = F1F2F3F4F5F10 = F1F2F6F7F8F9 = F2F3F6F7 = F1F4F5F7F8F9 = F3F4F5F7

=F6F8F9F10 = F2F3F4F6F8F10 = F1F2F4F6F9F10 = F1F2F3F5F7F8 = F1F3F4F6F7F8

=F1F2F4F8 = F2F3F4F9 = F2F5F6F7F8F10 = F4F7F8F10 = F2F4F5F8F9F10

The correlated set of factors are

1. (F1,F2F4F8,F2F7F10,F3F6F10,F3F8F9,F5F6F8,F5F9F10),
(F4,F1F2F8,F2F3F9,F6F7F9,F7F8F10,F2F5F6,F3F5F7)

2. (F2,F1F4F8,F1F7F10,F3F4F9,F3F6F7,F4F5F6,F5F7F9),
(F7,F2F5F9,F4F6F9,F1F2F10,F2F3F6,F3F4F5,F4F8F10),
(F8,F3F5F10,F1F5F6,F1F3F9,F6F9F10,F1F2F4,F4F7F10),
(F10,F1F2F7,F1F3F6,F1F5F9,F3F5F8,F4F7F8,F6F8F9).

3. (F3,F1F6F10,F1F8F9,F2F4F9,F2F6F7,F4F5F7,F5F6F9,F5F8F10),
(F6,F1F3F10,F4F7F9,F1F5F8,F3F5F9,F2F4F5,F2F3F7,F8F9F10).

4. (F5,F1F6F8,F1F9F10,F2F4F6,F2F7F9,F3F4F7,F3F6F9,F3F8F10).

5. (F9,F1F3F8,F1F5F10,F2F3F4,F2F5F7,F3F5F6,F4F6F7,F6F8F10).

6. (F1F2F3,F1F4F9,F1F6F7,F2F6F10,F2F8F9,F3F4F8,F3F7F10,F4F5F10,F5F7F8).

7. (F1F2F5,F1F4F6,F1F7F9,F2F6F8,F2F9F10,F3F4F10,F3F7F8,F4F5F8,F5F7F10).

8. (F1F3F5,F1F4F7,F1F6F9,F1F8F10,F2F4F10,F2F7F8,F3F6F8,F3F9F10,F5F6F10,F5F8F9).

9. (F1F2,F4F8,F7F10), (F6F10,F8F9,F1F3), (F2F3,F6F7,F4F9).

10. (F1F6,F3F10,F5F8), (F1F9,F3F8,F5F10), (F2F5,F7F9,F4F6), (F3F4,F2F9,F5F7).

11. (F1F8,F2F4,F3F9,F5F6).

12. (F1F10,F2F7,F3F6,F5F9), (F3F5,F6F9,F8F10,F4F7).

13. (F1F4,F2F8), (F6F8,F9F10).

14. (F1F7,F2F10), (F4F10,F7F8).

15. (F2F6,F3F7,F4F5).
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3.5.2 Method of Analysis

Effects F1F7, F3F4, F2F6, F4F5, F3F5 and F8F9 are orthogonally estimated.

For



128 128 64 64 64 0 0

128 128 64 64 64 0 0

64 64 128 128 128 64 64

64 64 128 128 128 64 64

64 64 128 128 128 64 64

0 0 64 64 64 128 128

0 0 64 64 64 128 128


, the pseudoinverse is

1
1024



3 3 −1 −1 −1 1 1

3 3 −1 −1 −1 1 1

−1 −1 2 2 2 −1 −1

−1 −1 2 2 2 −1 −1

−1 −1 2 2 2 −1 −1

1 1 −1 −1 −1 3 3

1 1 −1 −1 −1 3 3


(3.16)

The matrix in equation (3.16) estimates effects in set 1. Effects F2F7 f10,F3F6F10, F3F8F9,
F2F3F9, F6F7F9 and F7F8F10 are estimated with a higher efficiency than the efficiency
attained for corresponding effects in the same sets. Factors F1, F2F4F8, F5F6F8, F5F9F10,
F4, F1F2F8, F2F5F6 and F3F5F7 are estimated with the same efficiency which is lower than
the efficiency attained for F2F7 f10,F3F6F10, F3F8F9, F2F3F9, F6F7F9 and F7F8F10

For



128 128 64 64 128 0 64

128 128 64 64 128 0 64

64 64 128 128 64 64 0

64 64 128 128 64 64 0

128 128 64 64 128 0 64

0 0 64 64 0 128 64

64 64 0 0 64 64 128


, the pseudoinverse is
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1
73984



59 59 0 0 59 −61 0

59 59 0 0 59 −61 0

0 0 120 120 0 0 −100

0 0 120 120 0 0 −100

59 59 0 0 59 −61 0

−61 −61 0 0 −61 259 166

0 0 −100 −100 0 166 276


(3.17)

The matrix in equation (3.17) is used to estimate effects in set 2. The effects F2, F1F4F8,
F3F6F7, F1F2F10, F4F6F9, F4F8F10, F8, F1F2F4, F6F9F10, F1F2F7, F1F3F6 and F4F7F8 are
estimated with the highest efficiency. Effects F5F7F9, F3F4F5,F3F5F10 and F1F5F9 are
estimated with the lowest efficiency. Effects F4F5F6, F2F5F9,F1F5F6 and F3F5F8 are
estimated with the same efficiency.

For



128 64 64 64 128 0 64 64

64 128 128 128 64 64 0 0

64 128 128 128 64 64 0 0

64 128 128 128 64 64 0 0

128 64 64 64 128 0 64 64

0 64 64 64 0 128 64 64

64 0 0 0 64 64 128 128

64 0 0 0 64 64 128 128



, the pseudoinverse is

1
28672



45 0 0 0 45 −46 0 0

0 20 20 20 0 0 0 0

0 20 20 20 0 0 0 0

0 20 20 20 0 0 0 0

45 0 0 0 45 −46 0 0

−46 0 0 0 −46 84 26 26

0 0 0 0 0 26 37 37

0 0 0 0 0 26 37 37



(3.18)

The matrix in equation (3.18) is used to estimate effects in set 3. The effects F1F6F10,
F1F8F9, F2F4F9, F6, F8F9F10 and F2F3F7 are estimated with the highest efficiency com-
pared to the efficiency attained for other effects in corresponding sets. Effects F5F6F9,
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F5F8F10, F2F4F5 and F1F5F8 are estimated with the same efficiency. The effectsF3, F2F6F7,
F1F3F10 and F4F7F9 are estimated with the same efficiency. Effects F3F5F9 and F4F5F7 are
estimated with the lowest efficiency.

For



128 0 0 0 64 0 64 64

0 128 128 128 64 128 64 64

0 128 128 128 64 128 64 64

0 128 128 128 64 128 64 64

64 64 64 64 128 64 128 128

0 128 128 128 64 128 64 64

64 64 64 64 128 64 128 128

64 64 64 64 128 64 128 128



, the pseudoinverse is

1
4096



48 4 4 4 −11 4 −11 −11

4 3 3 3 −3 3 −3 −3

4 3 3 3 −3 3 −3 −3

4 3 3 3 −3 3 −3 −3

−11 −3 −3 −3 7 −3 7 7

4 3 3 3 −3 3 −3 −3

−11 −3 −3 −3 7 −3 7 7

−11 −3 −3 −3 7 −3 7 7



(3.19)

The matrix in equation (3.19) is used to estimate effects in set 4. The effects F1F6F8,
F1F9F10, F2F4F6 and F3F4F7 are estimated with the highest efficiency compared to the
efficiency attained for other effects in the same set. Effects F2F7F9, F3F6F9 and F3F8F10

are estimated with the same efficiency. The main effect F5 is estimated with the lowest
efficiency compared to the efficiency attained for other effects in the same set.
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For



128 64 0 64 64 64 64 0

64 128 64 128 0 0 128 0

0 64 128 64 64 64 64 0

64 128 64 128 0 0 128 0

64 0 64 0 128 128 0 0

64 0 64 0 128 128 0 0

64 128 64 128 0 0 128 0

0 0 0 0 0 0 0 128



, the pseudoinverse is

1
73984



315 0 −263 0 38 38 0 0

0 52 0 52 0 0 52 0

−263 0 315 0 38 38 0 0

0 52 0 52 0 0 52 0

38 0 38 0 100 100 0 0

38 0 38 0 100 100 0 0

0 52 0 52 0 0 52 0

0 0 0 0 0 0 0 578



(3.20)

Thematrix in equation (3.20) is used to estimate effects in set 5. The effectsF1F3F8, F2F3F4

and F4F6F7 are estimated with the highest efficiency compared to the efficiency attained
for other effects in the same set. Effects F2F5F7 and F3F5F6 are estimated with the same
efficiency. Effects F9 and F1F5F10 are estimated with the same efficiency. Effect F6F8F10

is estimated with the lowest efficiency in comparison to the efficiency attained for other
effects in the same set.

For



128 64 128 64 0 128 64 64 0

64 128 64 128 0 64 128 0 64

128 64 128 64 0 128 64 64 0

64 128 64 128 0 64 128 0 64

0 0 0 0 128 0 0 0 0

128 64 128 64 0 128 64 64 0

64 128 64 128 0 64 128 0 64

64 0 64 0 0 64 0 128 64

0 64 0 64 0 0 64 64 128



, the pseudoinverse is
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1
6144



5 0 5 0 0 5 0 0 −5

0 5 0 5 0 0 5 −5 0

5 0 5 0 0 5 0 0 −5

0 5 0 5 0 0 5 −5 0

0 0 0 0 48 0 0 0 0

5 0 5 0 0 5 0 0 −5

0 5 0 5 0 0 5 −5 0

0 −5 0 −5 0 0 −5 21 15

−5 0 −5 0 0 −5 0 15 21



(3.21)

The matrix in equation (3.21) is used to estimate effects in set 6. The effects F1F2F3,
F1F4F9, F1F6F7, F2F6F10, F3F4F8 and F3F7F10 are estimated with the highest efficiency
compared to the efficiency attained for other effects in the same set. Effects F4F5F10

and F5F7F8 are estimated with the same efficiency. F2F8F9 is estimated with the lowest
efficiency in comparison to the efficiency attained for other effects in the same set.

For



128 0 64 0 0 64 0 128 64

0 128 64 128 128 64 128 0 64

64 64 128 64 64 128 64 64 0

0 128 64 128 128 64 128 0 64

0 128 64 128 128 64 128 0 64

64 64 128 64 64 128 64 64 0

0 128 64 128 128 64 128 0 64

128 0 64 0 0 64 0 128 64

64 64 0 64 64 0 64 64 128



, the pseudoinverse is



72

1
82944



104 0 0 0 0 0 0 104 80

0 0 0 0 0 0 0 0 0

0 0 131 0 0 131 0 0 −134

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 131 0 0 131 0 0 −134

0 0 0 0 0 0 0 0 0

104 0 0 0 0 0 0 104 80

80 0 −134 0 0 −134 0 80 236



(3.22)

The matrix in equation (3.22) is used to estimate effects in set 7. The effects F1F4F6,
F2F6F8, F2F9F10 and F3F7F8 are estimated with the highest efficiency compared to the
efficiency attained for other effects in the same set. Effects F1F2F5 and F4F5F8 are esti-
mated with the same efficiency. F2F8F9 is estimated with the lowest efficiency. Effects
F1F7F9 and F3F4F10 are estimated with the same efficiency. F5F7F10 is estimated with the
lowest efficiency in comparison to the efficiency attained for other effects in the same set.

For



128 128 0 64 0 128 128 64 64

128 128 0 64 0 128 128 64 64

0 0 128 64 128 0 0 64 64

64 64 64 128 64 64 64 128 128

0 0 128 64 128 0 0 64 64

128 128 0 64 0 128 128 64 64

128 128 0 64 0 128 128 64 64

64 64 64 128 64 64 64 128 128

64 64 64 128 64 64 64 128 128



, the pseudoinverse is
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1
4096



3 3 0 −3 0 3 3 −3 −3

3 3 0 −3 0 3 3 −3 −3

0 0 12 −5 12 0 0 −5 −5

−3 −3 −5 7 −5 −3 −3 7 7

0 0 12 −5 12 0 0 −5 −5

3 3 0 −3 0 3 3 −3 −3

3 3 0 −3 0 3 3 −3 −3

−3 −3 −5 7 −5 −3 −3 7 7

−3 −3 −5 7 −5 −3 −3 7 7



(3.23)

The set (F1F2F6,F1F3F7,F1F4F5,F2F3F10,F2F5F8,F4F6F8,F4F9F10,F6F7F10,F7F8F9) is
estimated using equation (3.23). The effects F1F2F6, F1F3F7, F1F2F6 and F1F3F7 are
estimated with a higher efficiency compared to the efficiency attained for other effects
in the same set. Effects F2F3F10, F6F7F10 and F7F8F9 are estimated with the same
efficiency. F1F4F5 and F2F5F8 are estimated with the same efficiency which is lower than
the efficiency attained for other effects in the same set.

For



128 0 64 64 64 0 0 0 64 64

0 128 64 64 64 128 128 128 64 64

64 64 128 128 128 64 64 64 0 0

64 64 128 128 128 64 64 64 0 0

64 64 128 128 128 64 64 64 0 0

0 128 64 64 64 128 128 128 64 64

0 128 64 64 64 128 128 128 64 64

0 128 64 64 64 128 128 128 64 64

64 64 0 0 0 64 64 64 128 128

64 64 0 0 0 64 64 64 128 128



, the pseudoinverse is
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1
128000



288 −88 64 64 64 −88 −88 −88 136 136

−88 0 0 0 0 0 0 0 0 0

64 0 92 92 92 0 0 0 0 0

64 0 92 92 92 0 0 0 0 0

64 0 92 92 92 0 0 0 0 0

−88 0 0 0 0 0 0 0 0 0

−88 0 0 0 0 0 0 0 0 0

−88 0 0 0 0 0 0 0 0 0

136 0 0 0 0 0 0 0 167 167

136 0 0 0 0 0 0 0 167 167



(3.24)

The matrix in equation (3.24) is used to estimate effects in set 8. The effects F1F4F7,
F2F7F8, F3F6F8 and F3F9F10 are estimated with a higher efficiency in comparison to the
efficiency attained for other effects in the same set. Effects F1F6F9, F1F8F10 and F2F4F10

are estimated with th same efficiency. F5F6F10 and F5F8F9 are estimated with the same
efficiency. The effect F1F3F5 is estimated with a lower efficiency compared to the
efficiency atttained for other effects in the same set.

For


128 128 64

128 128 64

64 64 128

 , the pseudoinverse is 1
384


1 1 −1

1 1 −1

−1 −1 4

 (3.25)

The matrix in equation (3.25) is used to estimate effects in set 9. The effects F1F2, F4F8,
F6F10, F8F9, F2F3 and F6F7 are estimated with a higher efficiency than the efficiency
attained for F7F10, F1F3 and F4F9. Effects F7F10, F1F3 and F4F9 are estimated with the
same efficiency.

For


128 128 64 0

128 128 64 0

64 64 128 64

0 0 64 128

 , the pseudoinverse is 1
1024


3 3 −4 2

3 3 −4 2

−4 −4 16 −8

2 2 −8 12

 (3.26)

Equation (3.26) is used to estimate effects in set 11. Effects F1F8 and F2F4 are estimated
with a higher efficiency than the efficiency attained for other effects in the same set. F3F9

is estimated with a lower efficiency compared to the efficiency attained for other effects
in the same set.
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For


128 64 64 0

64 128 128 64

64 128 128 64

0 64 64 128

 , the pseudoinverse is 1
256


3 −1 −1 1

−1 1 1 −1

−1 1 1 −1

1 −1 −1 3

 (3.27)

Equation (3.27) is used to estimate effects in set 12. Effects F2F7, F3F6, F6F9 and F8F10 are
estimated with a higher efficiency than the efficiency attained for F1F10, F5F9, F3F5 and
F4F7. The effects F1F10, F5F9, F3F5 and F4F7 are estimated with the same efficiency.

For


128 128 0

128 128 0

0 0 128

 , the pseudoinverse is 1
512


1 1 0

1 1 0

0 0 4

 (3.28)

The matrix in equation (3.28) is used to estimate effects in set 15. The effects F2F6 and
F3F7 are estimated with a higher efficiency than the efficiency attained for F4F5.

For

128 128

128 128

 , the pseudoinverse is 1
512

1 1

1 1

 (3.29)

The matrix in equation (3.29) is used to estimate effects in set 13. The effects here are
estimated using the same efficiency.

The matrix:


128 64 0

64 128 64

0 64 128


−1

=
1

256


3 −2 1

−2 4 −2

1 −2 3

gives estimates for


F1F6

F3F10

F5F8

 ,


F1F9

F3F8

F5F10

 ,


F2F5

F7F9

F4F6

 ,


F3F4

F2F9

F5F7


Effects F1F3,F4F7, F4F6, F2F5, F1F4, F3F7, F3F9, F5F8, F5F6, F2F4, F5F9 and F3F8 are
estimated with a higher efficiency. Effects F6F9, F7F9, F2F8, F1F6, F1F8 and F2F7 are
estimated with a lower efficiency.

The matrix:128 64

64 128

−1

=
1

192

 2 −1

−1 2

 gives estimates for

 F1F7

F2F10

 and

F4F10

F7F8


The effects here are estimated using the same efficiency.
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4 Conclusions and Recommendations

4.1 Conclusions

This current study extends Patel’s designs that permit estimation of factors up to
two-factor interactions only to designs that permit estimation of factors up to
three-factor interactions assuming higher order interactions to be absent.

The method of construction and analysis of these designs is given. The linear forms are
chosen such that each is of weight ≥ 4. By the weight of a linear form we mean the
number of non-zero co-efficients. The linear equations provided are arbitrary selected.
Consequently, correlated effects will depend on the fraction (defining contrast) used for
the duplicated designs. The motivation to choose equations of weight ≥ 4 is to allow
estimation of the grand mean, main effects, two-factor and three-factor interactions.

In the construction of designs involving estimation of factors up to three factor
interactions, some matrices involved tend to be singular. In such a case, we make use of
Moore-Penrose inverse to estimate effects in that particular matrix. We also check on a
universal construction method of fractional designs that enable estimation up to m factor
interactions (m < p).

The method of obtaining blocks and the test procedure discussed in subsection 2.2.2 on
"Method of Analysis" can be applied to all designs in this study. Similar method of
construction can be used to obtain designs involving more than ten factors.

Two ways of obtaining the block designs are provided. The test procedure on how to
estimate σ2 and how to test for the significance of an effect is shown. The efficiency
used to estimate for each factor is discussed in the designs presented.

These type of designs can be used in screening experiments where there errors in
observations to identify active factors. They can also be used in mixture experiments-
experiments that involve mixing the proportion of two or more components to make an
end product.
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4.2 Recommendations

In this study, we consider designs whose factors occur only at two levels. One can
extend these designs to fractional factorial designs whose factors occur at three levels and
that allow estimation of factors up to three-factor interactions with partial duplication
considered.

This work involves symmetrical factorial designs- designswhose factors occur at the same
number of levels. It would be interesting to study asymmetrical factorial designs also
known as mixed factorials- designs whose factors are not at the same number of levels-
that are partially duplicated and that permit estimation of factors up to three-factor
interactions.
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