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Abstract

In asset pricing, explicit models are being constructed for the flow of market information.
Financial markets are making use of such models as a basis for asset pricing. With increased
globalization of financial markets, investors and traders are becoming more interested in
multi-asset products. Options that consist of a portfolio of assets are of interest to investors
because they provide diversification across a number of market segments and assets. They
are also cheaper in comparison to a portfolio that consists of similar single asset options.
With these developments, financial markets are faced with the challenge of determining
suitable prices for these multi-asset options.
This study looks at the valuation of such options incorporating information using a stochas-
tic volatility model. An approximate price for multi-asset options is derived using the
notion of comonotonicity and Wishart processes under the information-based asset pricing
framework. The results show that the information flow rate parameter plays a significant
role in the prices obtained in the model based on Brody, Hughson and Macrina’s asset
pricing framework. The prices obtained using the model give a relatively close fit to the
prices observed in the market.
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1. Introduction

1.1. Background of the study
With the globalization of financial markets, modern financial markets are facing an increas-
ing level of complexity due to the rise in financial innovations that are designed to cater
to the new market trends, (Khraisha and Arthur, 2018). Increased integration of financial
markets has led to financial instruments which depend on more than one underlying asset
becoming common. One such innovation relates to multi-asset options which, unlike stan-
dard options with one underlying asset, are based on several underlying asset. There has
been an increase in the number of multi-asset options trading in financial markets. These
options depend on the underlying assets’ volatility and correlations. This means that, due
to the underlying assets’ correlation, there is increased multiple risk exposure to banks and
other financial institutions.
The 2007-2009 financial crisis threatened the global financial markets with complete col-
lapse as banks reduced the loans issued to businesses and other entities, (Thakor, 2015).
It is regarded as the most severe period of financial difficulty since the Great Depression
that occurred in the 1930s. The recession was partially a result of the financial institutions’
co-movement illustrated on some of the financial markets’ vulnerabilities. It was also due
to increased innovations in financial products that led to increased multiple risks in the
industry. This led to researchers in the field of mathematical finance to identify pricing
models which are able to capture multiple sources of risk.
This study proposes to evaluate multi-asset European options which are a type of derivative
instrument. In particular, the pricing of options that are dependent on several underlying
assets incorporating information is examined. Options are a type of financial derivative, the
value of which is based on the expectation of a change in the price of an underlying asset.
It is a contract between a buyer and a seller in which the holder is entitled to trade in an
underlying asset but is not obligated to do so at a pre-agreed price within a specified period
of time. European call options offer the option holder the right to purchase the particular
underlying asset, and the option can only be exercised at maturity.
In a multi-asset environment the balance between flexibility and tractability is very sensitive.
The model should have enough flexibility to capture the features that are observable in actual
option prices. In the case of several underlying assets, this may be a challenge since both
the behavior of the individual assets and the joint behavior of the assets need to be taken
into account. The need for mathematical structures to compute the option prices and the
ability to calibrate the model to market prices is vital.
The multi-asset Black-Scholes model is one instance of a model used in pricing options
whose underlying assets depend on one another (Bos and Ware, 2000). The model equations
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are solved by making a substitution of the time-varying parameters with their constant
averages. Another extension of the Black-Scholes model is the multi-dimensional Black-
Scholes model where 𝑛 assets are modelled using multi-dimensional geometric Brownian
motion dynamics resulting in an approximate option price, (Carmona and Durrleman, 2006).
The multi-dimensional Black-Scholes model assumes that options pay linear combinations
of asset prices at maturity.
While the multi-asset Black-Scholes model pricing problem in a standard gaussian world
may be already complex, the computation procedure is compounded by the significant
evidence of variations from normality. Following the stock market crash in October 1987,
variation in volatility has shown substantial deviations from normality, (Bernhardt and
Eckblad, 2013). The downside of models used for pricing based on an inaccurate assumption
of log-normality is the possibility of getting biased prices.

Strike price
Tim

e t
o m

atu
rity

Im
plied volatility

Figure 1: Volatility surface

Figure 1 illustrates the Black-Scholes model volatility surface. The main characteristic of
the volatility surface is that options with a lower strike price tend to have a higher im-
plied volatility. The volatility smile emerges from the fact that there are different implied
volatilities for options with different strikes and maturities, (Wu and Elliott, 2017). The
Black-Scholes assumption of constant volatility is invalidated by the volatility smile. How-
ever, it is inherently difficult to estimate stochastic volatility from historical data on asset
returns because such states cannot be explicitly measured. Stochastic volatility models are
often used to explain the dispersiveness of asset prices with respect to an underlying random
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process, (Aït-Sahalia et al., 2020).
The multi-asset Heston model is an example of a stochastic volatility model that can capture
multiple sources of risk, (Dimitroff et al., 2011; Gouriéroux and Sufana, 2010; Recchioni
and Scoccia, 2014). It is an improvement on the multi-asset Black-Scholes model since it
makes the stochastic volatility assumption. Furthermore, the model assumes that correlation
exists between the underlying price of assets and volatility. The multi-asset Heston model
is thus able to identify various characteristics of financial information which the multi-asset
Black-Scholes model cannot. A multi-asset Heston model can be such that the single assets
are affine Heston models, (Dimitroff et al., 2011).
However, since the assumptions about the variance process and the asset price process
indicate an ad hoc nature, the reliability of the multi-asset Heston model is questionable.
In addition, the model’s variance process follows a Cox-Ingersoll-Ross process, (Cox et
al., 1985). The multi-dimensional Black-Scholes model also shows an ad hoc nature by
assuming that the asset prices follow an Ito process which is adapted to a filtration generated
by multi-dimensional Brownian motions. This implies that the Brownian filtration in the
models is seen to contain all relevant information and none that is irrelevant.
The Brownian filtration is pre-specified in the multi-asset extensions of the Black-Scholes
model and the Heston model. In some aspects, this seems unsatisfactory because the
Brownian filtration is generally considered to be cumulative information, learned over time
evolution. In addition, the filtration does not take into account the nature of the information,
and why this type of randomness provides useful information rather than noise is not clear.
The arrival of any information relating to an expected cash flow from a particular asset is
likely to have a substantial effect on the pricing decisions of the market traders. Due to
this occurence, this study looks at the information-based asset pricing framework which is
based on Brody et al.’s asset pricing approach where the information available in the market
is taken into account, (Brody et al., 2008; Macrina, 2006).
In financial markets, the most important factor in deciding the changes in the price of
derivatives is the disclosure of financial information. Derivative prices change in reaction
to the introduction of new of information (whether real, partially true, false, or bogus)
in the financial market, and they change again when the information is modified. The
information-based asset pricing framework shows that asset price movements are in part
due to the information on what the investor expects about the future cash flows associated
with the asset and other information about the real value of the particular asset.
The information-based asset pricing framework will be studied based on the BS-BHM
model proposed by Brody et al. and the BS-BHM updated model proposed by Mutĳah
et al., (Brody et al., 2008; Mutĳah et al., 2012). The BS-BHM model is based on the
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framework develop by Brody, Hughson and Macrina from a Black-Scholes perspective. A
different result for the asset price process dynamics was later obtained by Mutĳah et al. in
their work which led to the authors coming up with the BS-BHM updated model.
The models adopt an incomplete information approach and the market information process is
specified. An assumption is made that the market information process generates the market
filtration from which the asset price dynamics are derived explicitly, (Brody et al., 2011).
The information flow rate parameter is assumed to be constant. The models are inspired by
the idea that, given the information circulating in the market, asset prices are determined
by future cash flow expectations. The information-based asset pricing framework further
assumes that market traders can only obtain partial noisy information about the associated
cash flow.
The underlying asset price dynamics and volatility stochastic differential equations are not
pre-specified in the information-based framework. In addition, the volatility process is seen
to be stochastic, (Brody et al., 2008). Rather than imposing on the dynamics of volatility and
the correlation model on the assets, the two are deduced from basic assumptions involving
the related returns. The presence of an asset pricing kernel and the presence of an arbitrage-
free market enable the use of a risk neutral probability measure, Q, (Macrina and Parbhoo,
2010). This allows for risk-neutral pricing in the single asset case.
The aim of this study is to introduce and study a multi-asset extension of the information-
based asset pricing framework from a Black-Scholes perspective. The notion of comono-
tonicity is used to obtain an approximate price for the multi-asset extension. Deelstra et
al. and Dhaene et al., used the notion of comonotonicity on a basket option to obtain the
price based on the Black-Scholes model, (Deelstra et al., 2004; Dhaene et al., 2020). With
a suitable choice of parameter values, it is possible to derive the Black-Scholes model from
the information-based framework. It is for this reason that the study finds an approach used
for the Black-Scholes basket option to be suitable for pricing the multi-asset information-
based framework. A lower bound and upper bound for the price is obtained using the notion
of comonotonicity, this has been shown to be a useful tool in option pricing, (Chen et al.,
2008).
In addition to using the theory of comonotonicity, this study examines a Wishart process-
based multi-asset model that assumes stochastic volatility between the underlying assets, as
well as between their volatilities. Gourieroux and Sufana introduced the Wishart process into
finance using a model where the process is used to describe the dynamics of the covariance
matrix with the assumption that the asset price noises are independent, (Gouriéroux and
Sufana, 2010). The study aims to develop multi-asset models which are tractable and in the
one-dimensional case reduce to the corresponding single asset model.
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A variance-in-mean effect is included in the asset price equation in the multi-asset model and
the variance matrix is assumed to obey a Wishart process that is a multivariate extension of
the CIR model. The CIR model is based on Wishart processes introduced by Bru which are
able to capture the stochastic volatility and stochastic correlation between the underlying
asset prices, (Bru, 1991). In the model, scalar variances are extended into covariance
matrices as opposed to vectors of log-variances. The scale parameter underlying the
conditional expectation of the asset covariance matrix in the Wishart distribution allows
both correlations and variances to change with time stochastically.
Wishart processes have emerged as an efficient tool for modelling stochastic covariance
structures. However, since they involve matrix processes, their numerical simulation may
be difficult. Due to the flexibility of the models with a Wishart process in their system
of dynamic equations, it makes it possible to have a better fit of the market data. The
process allows the modelling of the dynamics of the volatilities and the evolution of co-
volatilities. Risks in financial market are usually represented and measured by volatility
and covalitility matrices. By modelling the dynamics of these matrices, Wishart processes
can be used to analyse multivariate financial risk which makes them suitable to be used in
risk management.
The asset price process and the volatility process which follows a Wishart process obtained
in the multi-asset information-based framework are discretized to make the model suitable
for numerical simulation. Various authors including Gauthier and Possamai have discretized
multivariate stochastic volatility models, in particular the multifactor Heston model to obtain
a simpler form that allows for numerical simulation, (Gauthier and Possamai, 2009). A
multifactor Heston model consists of a single risky asset and several volatility processes
which are assumed to be stochastic.
This study also looks at the estimation of parameters and measures parameter sensitivity
using Greeks. Greeks are a series of risk measures that indicate the sensitivity of an option
to time-value decay, variations in volatility, and price movements of its underlying security.
They measure the sensitivity of derivative prices to variations in the parameters. This study
looks at the following greeks: delta, gamma, vega, rho and theta.
The estimation of stochastic volatility from historical data on asset returns is inherently
difficult because such states cannot be explicitly measured. In this study, a non linear
filtering technique is used for the estimation of volatility in the multi-asset stochastic
volatility models. In particular, the extended Kalman filter and particle filter also known as
the sequential monte carlo approach are used. The state space model is first derived and for
a specific discrete approximation of the model, a sequential method based on particle filters
may be used estimate volatility.
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1.2. Statement of the problem

The information-based asset pricing framework observes the emergence of information,
and its role as a driver of price dynamics is examined. The framework suggests a different
approach aimed at improving the downside of the Black-Scholes and Heston models. In these
two models, the Brownian filtration is considered to contain all the relevant information,
and no irrelevant information. The unsatisfactory side of this approach is that it illustrates
that the prices move as if they were spontaneous. However, in reality, a trend is expected in
asset price processes.
The behaviors of investors is what forms the prices of assets when trading occurs. This
study extends the information-based asset pricing model to the multi-asset case. This is
because investors are becoming interested in investing in more than one asset due to the
integration of financial markets. In addition, the options market is a constantly changing
market which can allow investors to hedge and minimize the risk exposure of current
positions. The traders and the hedgers would have to fully comprehend the option’s Greeks
to do so. Greeks indicate the sensitivity of the price of the option to a specific risk source.
This study derives the Greeks under the information-based model.
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1.3. Objectives of the study

1.3.1. General Objective
The main objective of this work is to develop an appropriate model to be used in pricing
derivatives incorporating the aspect of information in a multi-asset framework. The price
of the derivative is constructed with a correlation between the underlying assets’ price
processes and the variance processes.

1.3.2. Specific Objectives
Specifically, the study aims;
i) To derive a suitable model for option pricing in a multi-asset framework.
In the derivatives market, it is observed that the implied volatility of options is not constant.
This is because the volatility of an option at any moment is itself a stochastic quantity. An
appropriate stochastic volatility model is obtained in the multi-asset framework.
ii) To model the dynamics of an option pricing model where the variance process
depends on time and information in a multi-asset framework.
Asset prices change as time progresses. Asset price dynamics contain enough detail to
specify the probability distributions of future prices. Previous studies have modelled the
volatility without considering information. By adding information, this study improves on
model accuracy in a multi-asset framework.
iii) To price the derivative whose asset dynamics’ volatility parameter depends on time
and information in a multi-asset framework.
Here, a Black-Scholes type formula for the price that is used to compute the value of a
derivative in the multi-asset framework putting emphasis on analytic tractability is deduced.
iv) To find the best estimates for the model parameters.
A sensitivity analysis is performed to test the effect that a variation in the value of parameters
has on the model. The sensitivity of the model in the multi-asset framework is investigated
in regards to the information flow-rate parameter which is not known. This is necessary in
determining the region in the space of the parameter for which an incorrect value of the
flow-rate parameter yields significant errors in pricing of multi-asset European call options.
v) To compare the volatility obtained in an asset where information is incorporated
and that where information is fixed in a multi-asset framework.
A comparison is done between the volatility in the pricing formula obtained under the
multi-asset Heston model and multi-asset information-based asset pricing framework. By
doing so, the study is able to determine the impact that information has on the asset price.
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1.4. Significance of the study

Due to the globalization of financial markets, trading in several assets is becoming popular.
This study obtains the price of a multi-asset option by incorporating the information available
in the market. This improves on the existing asset pricing models as an investor is able to
obtain the price of a multi-asset European option incorporating information.
Volatility has become a popular area of financial research, through the use of stochastic
volatility models, the valuation actuary is able to obtain a closer match to the asset prices
that are observed in the market. The risk control actuary is also able to identify the risk
areas which may have been overlooked. By extending these models to the multi-asset case,
better risk management practices will be adopted by financial institutions.
Options may also be used to hedge out risk in the financial markets. Speculators and hedgers
often find it more attractive to trade in options rather than the underlying assets due to the
reduced loss associated with options. As illustrated in the 2007-2008 recession, incorrect
pricing of assets may result in a financial crisis which may eventually harm the overall
economy. For a given initial deposit, options offer potentially higher returns since they can
be traded on a higher leverage level compared to stocks.
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2. Literature Review

The use of mathematics in financial modeling is attributed to Louis Bachelier dissertation
that was based on speculation in markets in Paris, (Davis and Etheridge, 2006). However,
studies on the behavior of assets over time found the equation proposed by Bachelier to be
unsatisfactory as it allowed asset prices to be negative yet they were always observed to be
positive.
Samuelson introduced the use of geometric Brownian motion in stock prices, (Samuelson,
1965). Samuelson used two parameters whose values were not known to denote the interest
rate and the expected return. He discounted the expected value of the distribution taking
into account all the possible values on maturity if the holder chooses to exercise it. This
was later shown to be an inaccurate approach and an improvement was made by taking the
option price to be a function of the asset price, (Samuelson et al., 1969). The resulting
option pricing formula was shown to be dependent on the utility function curve that is
assumed for a normal investor.
There was a major development in the field of financial economics in 1973 through Black
and Scholes who derived a formula for option pricing, (Black and Scholes, 1973). Their
work showed that if options are correctly priced, then arbitrage opportunities would not
exist, that is, investors would not be guaranteed to make a profit by taking short or long
positions in the underlying stocks and their options. The Black-Scholes model uses this as
its basis in its option pricing framework.
Linders obtains an approximate price for a basket option using the theory of comonotonicity
in a multivariate Black-Scholes model, (Linders, 2013). The basket option consists of
underlying asset prices which have a lognormal distribution and are dependent on each
other. An assumption is made of a structure of comonotonic dependence between the
underlying asset prices. If they are all increasing or decreasing functions of the same
random source, random variables are said to be commonotonic.
By making use of a synthetic share price, Linders obtains the basket option curve where
the upper and lower bound obtained based on the notion of comonotonicity are combined
to obtain an approximate price. It is shown that the first two moments of the option curve
coincide with those of an actual basket option and a distribution can also be derived for
this synthetic share price. He demonstrated that the dependence structure between the
underlying assets plays a role in the price for a basket option.
The multivariate option pricing approach is regarded as a benchmark pricing approach for
other extensions in the Black-Scholes model. The basket option is decomposed into a linear
mix of one dimensional option prices for particular strike prices, (Chen et al., 2008). This
results in a tractable model that is used to determine the upper and lower bounds for the
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basket option price. The two bounds are then combined using an appropriately chosen
weighting factor to give an approximate multivariate Black-Scholes model price.
The crucial assumption underlying the Black-Scholes model is that volatility is constant,
(Black and Scholes, 1973). The second assumption is that the markets are efficient, which
implies that people cannot consistently predict the market direction. In addition, it is
assumed the underlying asset does not pay dividends on the option. In reality, a majority of
companies pay their shareholders dividends. The original Black-Scholes model was later
improved to include dividends, (Merton, 1973).
An assumption is also made regarding the interest rates; they are assumed to be constant
and their value known; the risk-free rate is used to represent this rate. The model also
assumed log-normally distributed asset prices which follow a geometric Brownian motion
and European type of options which are only exercised on the expiry date. No transaction
costs are incurred during the purchase of options and liquidity are also assumed.
In the real world, several of the assumptions that underlie the Black-Scholes model are
violated to some extent, (Zuzana, 2018). Empirical studies illustrate that the constant
volatility assumption made is not realistic (Blattberg and Gonedes, 1974; Scott, 1987).
Hobson and Rogers introduced a class of models with non-constant volatility, (Hobson and
Rogers, 1998). They propose the concept of stochastic volatility by expressing the volatility
using exponentially-weighted moments of the historical log price. The paper does not
introduce a new source of randomness as is done in other approaches, (Heston, 1993; Scott,
1987) . This means that the market remains complete in the proposed model.
Ball and Torous illustrate that the correlation amongst financial quantities vary with time
and are not stable, (Ball and Torous, 2000). In addition, Loretan and English show the
presence of a connection between volatility and correlation, correlations amongst financial
assets are seen to be high in periods of high volatility in the market, (Loretan and English,
2000). However, the price of options based on a number of assets are normally determined
with the assumption of constant instantaneous correlations between assets.
The multi-asset Heston model assumes that volatility is stochastic which makes it an im-
provement to the multi-asset Black-Scholes model, (Gouriéroux and Sufana, 2010). It is an
extension of the Heston model which is used in option pricing and is today among the most
commonly utilized stochastic volatility models in the financial market, (Heston, 1993). The
model depicts an alternative closed-form solution for determining option prices that aims
at overcoming the weaknesses in the Black-Scholes model.
The Heston model allows for volatility to be stochastic which means that the volatility
parameter has a stochastic process of its own. The Hull and White model is an example
of a stochastic volatility model that was derived before the Heston model (Hull and White,
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1987). In their original work, Hull and White analyzed their model and its predictions for
option value using numerical methods to approximate the stochastic differential equation.
The authors found that the prices obtained from the Black-Scholes model are often higher
than the empirical price and the extent of this overpricing increases with an increase in time
to maturity.
The assumptions underlying the Heston model include the following; the volatility of the
underlying asset is itself a random variable, there are two Brownian motions: one for the
underlying asset, and one for the variance; stochastic volatility models are thus two-factor
models, the two processes are assumed to be correlated, the stochastic volatility is also
assumed to be mean reverting, a frictionless market with no taxes or transaction costs is
also assumed.
The extended Heston model demonstrates that highly reliable results for the price of Eu-
ropean options can be obtained by the introduction of stochastic correlations, (Teng et al.,
2018). This implies that stochastic correlations greatly improve the performance of the
Heston model. The stochastic correlations are driven by stochastic differential equations.
Monte Carlo simulation is used to simulate the price of the European call options.
Based on empirical evidence, Das et al., found that stochastic volatility models perform
better than other models that can be used to model the volatility smile such as models that
introduce jumps into the asset process, (Das et al., 1999). Despite stochastic volatility
models outperforming the models that introduce jumps in the asset process, they noted that
none of these models constituted an adequate explanation for volatility smiles.
In the models by Backus et al., it is shown that non-normality is allowed for by the
introduction of kurtosis and skewness directly in the price of the option (David et al.,
1997). It is shown that skewness can also be introduced in stochastic volatility models
by allowing for correlation between the driving processes of the asset price stochastic
differential equation and the volatility stochastic differential equation. A different approach
of obtaining skewness by the introduction of jumps into the process that drives the underlying
asset price is also illustrated by the authors.
The Heston model is extended to the multi-asset case by making use of Wishart processes.
Wishart processes were first studied by Bru as an extension of square Bessel processes,
Bru (1991). Bru realized that Wishart processes have a Wishart distribution which is a
multivariate extension of the 𝜒2 distribution. A 𝜒2 distribution is derived from a sum
of squares of independent standard normal random variables. The Wishart distribution
plays a key role in the analysis of estimated covariance matrices. However, their numerical
simulation can be difficult, because they make use of matrix processes.
Gourieroux assumes that the volatility matrix follows a Wishart autoregressive process in
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the pricing of derivatives with multivariate stochastic volatility, (Gourieroux, 2006). The
specification of the volatility matrix under this process is an extension of the CIR dynamic
in the multivariate framework which ensures that the matrix is always positive, (Cox et al.,
1985). Stochastic covariance structures can be efficiently modelled using Wishart processes.
The Wishart process can be obtained from the CIR process by extending it to the multivariate
case. Gourieroux shows that Wishart processes are ideal for modeling multivariate risk
which arises in multi-asset options due to the dependence structure betwen the underlying
assets. The author extends the CIR stochastic volatility model to the multi-asset case by
considering a risk-free interest rate and two risky assets. A risk premium is introduced in
the return equation and the stochastic volatility matrix process uses Wishart dynamics in
the model.
The information-based asset pricing framework by Brody et al. is an improvement on the
Black-Scholes model and Heston model which tend to be ad hoc, (Brody et al., 2008). The
framework shows that fluctuations in asset prices are partially due to information on what
the investor believes about the asset-related potential cash flows and other information on
the actual value of the asset in question. This means that, as opposed to being an input into
the transactions, the asset price should be an output of the decisions that affect the future
transactions.
An incomplete information approach is adopted in the information-based asset pricing
framework, this is contrary to the complete market assumption made by the Black-Scholes
model, (Macrina, 2006). In a complete market, the information in the Brownian filtration
is seen to be made up of only useful information and nothing that is not useful. The
weakness of this approach is price movements happen as if they are random, which is
contradictory to the fact that price changes have more structure. The market filtration in
the information-based framework is assumed to be generated by the market information
process. The dynamics for the asset price are then derived from the market filtration.
To make the multi-asset information-based model suitable for numerical simulation, it is
discretized using an approach applied to the multifactor Heston model by Gauthier and Pos-
samai and Kloeden and Platen, (Gauthier and Possamai, 2009; Kloeden and Platen, 1999).
The Euler and Ornstein-Uhlenbeck are reviewed by the authors and a new discretization ap-
proach which is based in the Heston’s Quadratic Exponential scheme is proposed, (Gauthier
and Possamai, 2009). Empirical studies show that the proposed discretization approach is
efficient in discretizing Wishart processes. A multifactor Heston model is made up of one
risky asset and more than one variance process, (Da Fonseca et al., 2008).
Chen et al., price European call options and study Greek letters of options under a fuzzy
environment by assuming that the asset return is a Gaussian fuzzy number, (Chen et al.,
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2019). The sensitivity of call options to a parameter in the Heston model can be obtained by
first-order and second-order derivatives of the in-the-money probabilities, (Rouah, 2013). A
new Greek, omega is proposed to describe the influence of the skewness parameter on a new
European call option price under a skew Brownian motion, (Zhu & He, 2017). Simulation
can be effectively used as a valuable tool to estimate the options price derivatives, that is
the Greeks under the Heston model where volatility is assumed to be stochastic, (Shafi et
al., 2018).
Javaheri et al. define filtering as an iterative method that allows the estimation of the
parameters of a model when the latter depends on a large amount of observable and
unobservable data, (Javaheri et al., 2003). They present various filtering techniques which
are used to obtain estimates for the stochastic volatility parameters from the underlying
asset prices. In their study, an algorithm is constructed which includes a transition equation
connecting two consecutive non-observable states and a measurement equation which relates
this hidden state to the data observed. Empirical results based on the S&P500 time-series
from 1996 to 2001 showed that the particle filter outperforms the other filters and that the
extended Kalman filter becomes unreliable when the model becomes highly nonlinear.
Wang et al. use the consistent extended Kalman filter in the Heston model to estimate volatil-
ity by first discretizing the stochastic differential equations to make numerical simulation
easier, (Wang et al., 2018). The extended Kalman filter linearizes the nonlinear equations
in the model by making use of jacobian matrices, (Ewald et al., 2018). To compensate for
the linearization error, the consistent extended Kalman filter is introduced so as to increase
the accuracy of the estimation process.
Li et al. use particle filtering to estimate volatility in a stochastic volatility model in a discrete
time framework (Li et al., 2015). Karamé uses several particle filters and a Hamilton filter
to estimate unobserved state variables from stochastic volatility models, (Karamé, 2018).
The particle filter is used to determine an estimate for the unobserved volatility and the
hamilton filter reduces variation in the monte carlo estimates obtained. This study extends
these approaches to the information-based asset pricing framework.

13



3. Multi-asset option pricing

3.1. Modelling volatility in a multi-asset framework

In the derivatives market, it is observed that the volatility of option prices changes with time
implying that the volatility of an option at any moment is itself stochastic. This invalidates
the assumption of the Black-Scholes model that volatility is constant. An appropriate
stochastic volatility model in this case the Heston model is examined. This work also shows
that the Black-Scholes model can be obtained from the Heston model. The study first looks
at the single asset model and then extends to the multi-asset case. The stochastic variance
process in the multi-asset Heston model is assumed to follow a Wishart process.

3.1.1. Asset pricing model with constant volatility
The Black-Scholes model is used to price options where volatility is assumed to be constant.
The geometric Brownian motion shows the evolvement of the price of assets over time. It
has the following SDE:

𝑑𝑆𝑡 = `𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑊𝑡 (3.1.1)

where;
𝑡 denotes the current time,
𝑊𝑡 denotes a Weiner process or Brownian motion,
𝑆𝑡 represents the current asset price,
` is the drift term,
𝜎 denotes the asset price volatility.
Under Q, the Black-Scholes model can be rewritten by substituting ` with 𝑟 in equation
3.1.1 as follows:

𝑑𝑆𝑡 = 𝑟𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑊𝑡 (3.1.2)

The European call price is as follows:

𝐶𝐵𝑆𝑀𝑝𝑟𝑖𝑐𝑒 = 𝑆𝑡Φ(𝑑1) − 𝐾𝑒−𝑟 (𝑇−𝑡)Φ(𝑑2) (3.1.3)

where:

𝑑1 =

𝑙𝑛

(
𝑆𝑡
𝐾

)
+

(
𝑟 + 1

2𝜎
2

)
(𝑇 − 𝑡)

𝜎
√
𝑇 − 𝑡

(3.1.4)
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and

𝑑2 =

𝑙𝑛

(
𝑆𝑡
𝐾

)
+

(
𝑟 − 1

2𝜎
2

)
(𝑇 − 𝑡)

𝜎
√
𝑇 − 𝑡

= 𝑑1 − 𝜎
√
𝑇 − 𝑡 (3.1.5)

𝐾 is the strike price,
𝑇 is period to expiry,
𝑟 is the risk-free rate of interest,
and

Φ(𝑥) = 𝑃[𝑍 ≤ 𝑥], 𝑍 ∼ 𝑁 [0, 1]

Considering the multi-asset case with 𝑛 assets, the asset price dynamics under Q are given
as:

𝑑𝑆𝑖 (𝑡) = 𝑟𝑆𝑖 (𝑡)𝑑𝑡 + 𝜎𝑖𝑆𝑖 (𝑡)𝑑𝑊𝑖 (𝑡)

for 𝑖 = 1, 2..., 𝑛.
There’s correlation between 𝑑𝑊𝑖 and 𝑑𝑊 𝑗 for 𝑖 ≠ 𝑗 as follows:

𝐸
[
𝑑𝑊𝑖 (𝑡)𝑑𝑊 𝑗 (𝑡)

]
= 𝜌𝑖 𝑗𝑑𝑡

where the correlation coefficient is 𝜌𝑖 𝑗 .
The price of the 𝑖𝑡ℎ asset is obtained as follows:

𝑆𝑖 (𝑡) = 𝑆𝑖 (0)𝑒(𝑟−
1
2𝜎

2
𝑖
)𝑡+𝜎𝑖𝑑𝑊𝑖 (𝑡) (3.1.6)

From equation 3.1.6, it follows that:

log
𝑆𝑖 (𝑇)
𝑆𝑖 (0)

∼ 𝑁
(
(𝑟 − 1

2
𝜎2
𝑖 )𝑇, 𝜎2

𝑖 𝑇

)
(3.1.7)

Using the result in equation 3.1.7, the option price 𝐶𝑖 [𝐾,𝑇] is given by:

𝐶𝑖 [𝐾,𝑇] = 𝑆𝑖 (0)Φ(𝑑𝑖,1) − 𝐾𝑒−𝑟𝑇Φ(𝑑𝑖,2) (3.1.8)

where

𝑑𝑖,1 =

𝑙𝑛

(
𝑆𝑖 (0)
𝐾

)
+

(
𝑟 + 1

2𝜎
2
𝑖

)
𝑇

𝜎𝑖
√
𝑇

(3.1.9)
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and

𝑑𝑖,2 =

𝑙𝑛

(
𝑆𝑖 (0)
𝐾

)
+

(
𝑟 − 1

2𝜎
2
𝑖

)
𝑇

𝜎𝑖
√
𝑇

= 𝑑𝑖,1 − 𝜎𝑖
√
𝑇 (3.1.10)

To obtain the price of the multi-asset Black-Scholes model with 𝑛 underlying assets, the
study proceeds as follows:
Let:

𝑆(𝑡) =
𝑛∑︁
𝑖=1

𝑐𝑖𝑆𝑖 (𝑡) (3.1.11)

where 𝑐𝑖 are constant nonnegative weights and 𝑆𝑖 (𝑡) denotes the 𝑖𝑡ℎ underlying asset.
An approximate value for the option price is obtained by combining the upper bound option
price and the lower bound option price.
The upper bound option price is obtained as follows:

𝐶𝑐 [𝐾] = 𝑒−𝑟𝑇𝐸Q
[
𝑚𝑎𝑥{𝑆𝑐 − 𝐾, 0}

]
where:

𝑆𝑐 = 𝑐1𝐹
−1
𝑆1

(𝑈) + ... + 𝑐𝑛𝐹−1
𝑆𝑛

(𝑈) (3.1.12)

and𝑈 ∼ 𝑈 [0, 1].

𝑆𝑐 =

𝑛∑︁
𝑖=1

𝑐𝑖𝑆𝑖 (0)𝑒𝑥𝑝
[ (
𝑟 −

𝜎2
𝑖

2

)
𝑇 + 𝜎𝑖

√
𝑇𝑁−1(𝑈)

]
Using the result from 3.1.7:

𝐹−1
𝑆𝑖

(𝑝) = 𝑆𝑖 (0)𝑒𝑥𝑝
[ (
𝑟 −

𝜎2
𝑖

2

)
𝑇 + 𝜎𝑖

√
𝑇𝑁−1(𝑝)

]
(3.1.13)

The upper bound price is given as:

𝐶𝑐 [𝐾] =
𝑛∑︁
𝑖=1

𝑐𝑖𝐶𝑖 [𝐾∗𝑐
𝑖 ]

=

𝑛∑︁
𝑖=1

𝑐𝑖

(
𝑆𝑖 (0)Φ(𝑑𝑐𝑖,1) − 𝐾

∗𝑐
𝑖 𝑒

−𝑟𝑇Φ(𝑑𝑐𝑖,2)
)

(3.1.14)
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where

𝐾∗𝑐
𝑖 = 𝑆𝑖 (0)𝑒𝑥𝑝

[(
𝑟 −

𝜎2
𝑖

2

)
𝑇 + 𝜎𝑖

√
𝑇𝜙−1

(
𝐹𝑆𝑐 (𝐾)

) ]
(3.1.15)

The value of 𝐹𝑆𝑐 (𝐾) is obtained from:

𝑛∑︁
𝑖=1

𝑐𝑖𝐾
∗𝑐
𝑖 = 𝐾

and

𝑑𝑐𝑖,1 =

𝑙𝑛

(
𝑆𝑖 (0)
𝐾∗𝑐
𝑖

)
+

(
𝑟 + 1

2𝜎
2
𝑖

)
𝑇

𝜎𝑖
√
𝑇

𝑑𝑐𝑖,2 = 𝑑
𝑐
𝑖,1 − 𝜎𝑖

√
𝑇

The lower bound price is as follows:

𝐶 𝑙 [𝐾] = 𝑒−𝑟𝑇𝐸Q
[
𝑚𝑎𝑥{𝑆𝑙 − 𝐾, 0}

]
where:

𝑆𝑙 =

𝑛∑︁
𝑖=1

𝑐𝑖E[𝑆𝑖 |Λ]

and

Λ =

𝑛∑︁
𝑖=1

_𝑖 ln
𝑆𝑖

𝑆𝑖 (0)

with _𝑖 > 0 being given as:
_𝑖 = 𝑐𝑖𝑆𝑖 (0)𝑒𝑟𝑇

𝑆𝑙 =

𝑛∑︁
𝑖=1

𝑐𝑖𝑆𝑖 (0)𝑒𝑥𝑝
[(
𝑟 −

𝜎2
𝑖

2
𝑟2𝑖

)
𝑇 + 𝑟𝑖𝜎𝑖

√
𝑇𝑁−1(𝑈)

]
The lower bound price is thus given as:

𝐶 𝑙 [𝐾] =
𝑛∑︁
𝑖=1

𝑐𝑖𝑒
−𝑟𝑇E

[
𝑚𝑎𝑥(𝑉𝑖 − 𝐾∗𝑙

𝑖 , 0)
]

with:

𝑉𝑖 = 𝑆𝑖 (0)𝑒𝑥𝑝
[(
𝑟 −

𝜎2
𝑖

2
𝑟2𝑖

)
𝑇 + 𝑟𝑖𝜎𝑖

√
𝑇𝑁−1(𝑈)

]
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It follows that:

𝐶 𝑙 [𝐾] =
𝑛∑︁
𝑖=1

𝑐𝑖
(
𝑆𝑖 (0)Φ(𝑑𝑙𝑖,1) − 𝐾

∗𝑙
𝑖 𝑒

−𝑟𝑇Φ(𝑑𝑙𝑖,2)
)

(3.1.16)

where

𝐾∗𝑙
𝑖 = 𝑆𝑖 (0)𝑒𝑥𝑝

[(
𝑟 −

𝜎2
𝑖

2
𝑟2𝑖

)
𝑇 + 𝑟𝑖𝜎𝑖

√
𝑇𝑁−1 (𝐹𝑆𝑙 (𝐾)) ] (3.1.17)

with

𝑟𝑖 =

∑𝑛
𝑗=1 _ 𝑗 𝜌𝑖, 𝑗𝜎𝑗

𝜎Λ
(3.1.18)

and

𝜎Λ =

√√√ 𝑛∑︁
𝑖=1

_2
𝑖
𝜎2
𝑖
+ 2

𝑛∑︁
𝑖=1, 𝑗<1

_𝑖_ 𝑗 𝜌𝑖, 𝑗𝜎𝑖𝜎𝑗 (3.1.19)

The value of 𝐹𝑆𝑙 (𝐾) is obtained from:

𝑛∑︁
𝑖=1

𝑐𝑖𝐾
∗𝑙
𝑖 = 𝐾

and

𝑑𝑙𝑖,1 =

𝑙𝑛

(
𝑆𝑖 (0)
𝐾∗𝑙
𝑖

)
+

(
𝑟 + 1

2𝜎
2
𝑖
𝑟2
𝑖

)
𝑇

𝑟𝑖𝜎𝑖
√
𝑇

𝑑𝑙𝑖,2 = 𝑑
𝑙
𝑖,1 − 𝑟𝑖𝜎𝑖

√
𝑇

A linear combination of the upper and lower bounds given by equation 3.1.14 and equation
3.1.16 respectively gives an approximate price as follows:

𝐶 [𝐾] = 𝑒−𝑟𝑇𝐸Q
[
𝑚𝑎𝑥{𝑆 − 𝐾, 0}

]
= 𝑧𝐶 𝑙 [𝐾] + (1 − 𝑧)𝐶𝑐 [𝐾] 𝑓 𝑜𝑟 𝑎𝑙𝑙 𝐾 ≥ 0. (3.1.20)

where 0 ≤ 𝑧 ≤ 1.
The cumulative distribution function 𝐹

𝑆
of 𝑆 is given as:

𝐹
𝑆
(𝑥) = 𝑧𝐹𝑆𝑙 (𝑥) + (1 − 𝑧)𝐹𝑆𝑐 (𝑥), 𝑓 𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ R.
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and

𝑧 =
E[𝑢(𝑆𝑐)] − E[𝑢(𝑆)]
E[𝑢(𝑆𝑐)] − E[𝑢(𝑆𝑙)]

This implies that E[𝑢(𝑆)] = E[𝑢(𝑆)].
where

𝑢(𝑥) =
(
𝑥 − E[𝑢(𝑆)]

)2
3.1.2. Asset pricing model with stochastic volatility
The Heston model is a popular stochastic volatility model where an assumption is made
that the underlying asset price has a stochastic variance, 𝑉𝑡 , that follows a CIR process. The
model is represented by the following dynamic system of equations:

𝑑𝑆𝑡 = 𝑟𝑆𝑡𝑑𝑡 +
√︁
𝑉𝑡𝑆𝑡𝑑𝑊

𝑆
𝑡 (3.1.21)

𝑑𝑉𝑡 = ^(\ −𝑉𝑡)𝑑𝑡 + [
√︁
𝑉𝑡𝑑𝑊

𝜎
𝑡 (3.1.22)

(𝑑𝑊𝑆
𝑡 𝑑𝑊

𝜎
𝑡 ) = 𝜌𝑑𝑡

where [, \, ^ are constants and 𝜌 denotes the correlation coefficient.
The mean reversion of the variance process which is evident in the market is allowed for by
the term ^(\ − 𝑣). The asset price is dependent on a drift and a variance, which is similar
to the Black-Scholes model.
The Heston model’s European call option price is as follows:

𝐶𝐻𝑒𝑠𝑡𝑜𝑛 = 𝑆𝑘𝑒
−𝑞(Δ𝑘)𝑃1 − 𝐾𝑒−𝑟 (Δ𝑘)𝑃2 (3.1.23)

where 𝑃 𝑗 ( 𝑗 = 1, 2) are the risk-adjusted probabilities of 𝑥𝑡 = 𝑙𝑛( 𝑆𝑡
𝑆𝑡−1

).

𝑃 𝑗 =
1

2
+ 1

𝜋

∫ ∞

0
𝑅𝑒
𝑒−𝑖𝜙𝑙𝑛𝐾 𝑓 𝑗 (𝜙; 𝑥𝑘 , 𝑉𝑘 )

𝑖𝜙
𝑑𝜙

for 𝑗 = 1, 2.

The characteristic functions 𝑓 𝑗 (𝜙; 𝑥𝑘 , 𝑉𝑘 ) in the probabilities are given by:

𝑓 𝑗 (𝜙; 𝑥𝑘 , 𝑉𝑘 ) = 𝑒𝑖𝜙𝑙𝑛𝐾+𝐴 𝑗 (𝜙,Δ𝑘)+𝐵 𝑗 (𝜙,Δ𝑘)𝑉𝑘
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where
𝐵 𝑗 (𝜙,Δ𝑘) =

𝑏 𝑗 − 𝜌𝜎𝜙𝑖 + 𝑑 𝑗
𝜎2

[
1 − 𝑒𝑑 𝑗 (Δ𝑘)

1 − 𝑔 𝑗𝑒𝑑 𝑗 (Δ𝑘)

]
𝐴 𝑗 (𝜙,Δ𝑘) = 𝑟𝜙𝑖(Δ𝑘) +

𝑎

𝜎2

[
(𝑏 𝑗 − 𝜌𝜎𝜙𝑖 + 𝑑 𝑗 ) − 2𝑙𝑛

(
1 − 𝑒𝑑 𝑗 (Δ𝑘)

1 − 𝑔 𝑗𝑒𝑑 𝑗 (Δ𝑘)

)]
𝑔 𝑗 =

𝑏 𝑗 − 𝜌𝜎𝜙𝑖 + 𝑑 𝑗
𝑏 𝑗 − 𝜌𝜎𝜙𝑖 − 𝑑 𝑗

𝑑 𝑗 =

√︃
(𝜌𝜎𝜙𝑖 − 𝑏 𝑗 )2 − 𝜎2(2𝑢 𝑗𝜙𝑖 − 𝜙2)

and 𝑖 =
√
−1, Δ𝑘 = 𝑇 − 𝑘 , 𝑢1 = 1

2 , 𝑢2 = −1
2 , 𝑎 = ^\, 𝑏1 = ^ − 𝜌𝜎, 𝑏2 = ^ and 𝜙 is called

the integration variable or node.
The Black-Scholes model can be obtained from the Heston model by making use of the
assumption of constant volatility. That is if 𝑉𝑡 = 𝜎2, then equation 3.1.21 reduces to:

𝑑𝑆𝑡 = 𝑟𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑊𝑆
𝑡 (3.1.24)

Equation 3.1.24 is the same equation for the Black-Scholes asset pricing model as given in
equation 3.1.2 with 𝑑𝑊𝑆

𝑡 = 𝑑𝑊𝑡 .
The Heston model can be extended to the multi-asset framework by making use of Wishart
processes. Let 𝛼 ≥ 0, _ be a one-dimensional Brownian motion and 𝑥0 ≥ 0.

𝑑𝑍𝑡 = 2
√︁
𝑍𝑡𝑑_𝑡 + 𝛼𝑑𝑡, 𝑋0 = 𝑥0 (3.1.25)

A strong solution of equation 3.1.25 is called a square Bessel process with parameter 𝛼.
For the general Wishart process, let 𝐵𝑊𝑡 be a matrix of standard Brownian motions in R𝑛×𝑛,
Ω, 𝑀,𝑄 ∈ R𝑛×𝑛, the Wishart stochastic differential equation is given by:

𝑑𝑋𝑡 =
[
ΩΩ> + 𝑀𝑋𝑡 + 𝑋𝑡𝑀>]

𝑑𝑡 +
√︁
𝑋𝑡𝑑𝐵

𝑊
𝑡 𝑄 +𝑄>(𝑑𝐵𝑊𝑡 )>

√︁
𝑋𝑡 (3.1.26)

𝑄 denotes a matrix whose value determines the degree of variation in the state variable 𝑋 ,
𝑀 determines the speed at which the variable returns to it’s mean value, and

ΩΩ> = 𝛽𝑄>𝑄 (3.1.27)

where 𝛽, 𝛽 > 𝑛−1, is an integer denoting the degrees of freedom determining the magnitude
of the drift of 𝑄>𝑄 from zero.
Let 𝑆𝑡 be a vector of asset prices while Σ𝑡 denotes the volatility matrix of 𝑛 assets. Under
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the multi-asset model, the SDEs are given by:

𝑑 log 𝑆𝑡 =
[
` +

(
𝑇𝑟 (𝐷1Σ𝑡), ..., 𝑇𝑟 (𝐷𝑛Σ𝑡)

)>]
𝑑𝑡 + Σ

1/2
𝑡 𝑑𝑊 𝑠

𝑡 (3.1.28)

𝑑Σ𝑡 =
(
ΩΩ> + 𝑀Σ𝑡 + Σ𝑡𝑀

>)
𝑑𝑡 + Σ

1/2
𝑡 𝑑𝑊𝜎

𝑡 𝑄 +𝑄>(𝑑𝑊𝜎
𝑡 )>Σ

1/2
𝑡 (3.1.29)

where 𝑊 𝑠
𝑡 is an n-dimensional vector and 𝑊𝜎

𝑡 is an (𝑛, 𝑛) matrix, the elements in both are
independent standard Brownian motions. The volatility matrix, Σ𝑡 , dynamics correspond
to the continuous time Wishart autoregressive process. A volatility-in-mean effect is added
to capture the tendency for the volatility and the asset prices moving together.
The Laplace transform of equation 3.1.29 is what is needed to solve the pricing equation
for the European call option.
Considering the one-dimensional case, that is the case where 𝑛 = 1, the equations 3.1.28
and 3.1.29 become:

𝑑 log 𝑆𝑡 = (` + 𝛿𝜎2
𝑡 )𝑑𝑡 + 𝜎𝑡𝑑𝑊𝑆

𝑡 , (3.1.30)

𝑑 (𝜎2
𝑡 ) = (𝑤2 + 2𝑚𝜎2

𝑡 )𝑑𝑡 + 2𝑞𝜎𝑡𝑑𝑊
𝜎
𝑡 (3.1.31)

where 𝛿𝜎2
𝑡 denotes the risk premium.

By setting 𝑉𝑡 = 𝜎2
𝑡 , 𝑤 =

√
^\, 𝑚 = − ^

2 and 𝑞 =
[

2 , the variance process in equation 3.1.31 is
reduced to the Heston variance process represented by the dynamic equation 3.1.22.
To make the dynamic system represented in equation 3.1.28 and 3.1.29 suitable for numerical
simulation, discretization is performed.
Ito’s lemma is used to to discretize the asset dynamic equation as follows:

𝑑 ln(𝑒−`𝑡𝑆𝑡) =
𝜕 ln(𝑒−`𝑡𝑆𝑡)

𝜕𝑡
𝑑𝑡 + 𝜕 ln(𝑒

−`𝑡𝑆𝑡)
𝜕𝑆𝑡

𝑑𝑆𝑡 +
1

2

𝜕2 ln(𝑒−`𝑡𝑆𝑡)

𝜕𝑆
2
𝑡

(
𝑑𝑆𝑡

)2
Rearranging equation 3.1.28:

𝑑𝑆𝑡 = 𝑆𝑡
[
` +

(
𝑇𝑟 (𝐷1Σ𝑡), ..., 𝑇𝑟 (𝐷𝑛Σ𝑡)

)>]
𝑑𝑡 + 𝑆𝑡Σ1/2

𝑡 𝑑𝑊 𝑠
𝑡 (3.1.32)

(𝑑𝑆𝑡)
2
= (𝑆𝑡)

2
Σ𝑡𝑑𝑡

𝜕𝑙𝑛(𝑒−`𝑡𝑆𝑡)
𝜕𝑡

= −`, 𝜕𝑙𝑛(𝑒−`𝑡𝑆𝑡)
𝜕𝑆𝑡

=
1

𝑆𝑡
,

𝜕2𝑙𝑛(𝑒−`𝑡𝑆𝑡)

𝜕𝑆
2
𝑡

= − 1

𝑆
2
𝑡
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𝑑𝑙𝑛(𝑒−`𝑡𝑆𝑡) = −`𝑑𝑡 + 1

𝑆𝑡
𝑑𝑆𝑡 −

1

2𝑆
2
𝑡

(
𝑑𝑆𝑡

)2
𝑑𝑙𝑛(𝑒−`𝑡𝑆𝑡) = −`𝑑𝑡 + 1

𝑆𝑡

(
𝑆𝑡

[
𝑟 +

(
𝑇𝑟 (𝐷1Σ𝑡), ..., 𝑇𝑟 (𝐷𝑛Σ𝑡)

)>] )
𝑑𝑡 + Σ

1/2
𝑡 𝑑𝑊 𝑠

𝑡 ) −
1

2𝑆
2
𝑡

(
𝑆
2
𝑡 Σ𝑡𝑑𝑡

)
𝑑𝑙𝑛(𝑒−`𝑡𝑆𝑡) = −`𝑑𝑡 +

(
` +

(
𝑇𝑟 (𝐷1Σ𝑡), ..., 𝑇𝑟 (𝐷𝑛Σ𝑡)

)>)
𝑑𝑡 + Σ

1/2
𝑡 𝑑𝑊 𝑠

𝑡 −
Σ𝑡𝑑𝑡

2

𝑑𝑙𝑛(𝑒−`𝑡𝑆𝑡) =
(
𝑇𝑟 (𝐷1Σ𝑡), ..., 𝑇𝑟 (𝐷𝑛Σ𝑡)

)>
𝑑𝑡 + Σ

1/2
𝑡 𝑑𝑊 𝑠

𝑡 −
Σ𝑡

2
𝑑𝑡

𝑑 [𝑙𝑛(𝑒−`𝑡𝑆𝑡)] =
(
𝑇𝑟 (𝐷1Σ𝑡), ..., 𝑇𝑟 (𝐷𝑛Σ𝑡)

)>
𝑑𝑡 + Σ

1/2
𝑡 𝑑𝑊 𝑠

𝑡 −
Σ𝑡

2
𝑑𝑡 (3.1.33)

Integrating equation 3.1.33 over the interval [𝑡, 𝑡 + Δ𝑡] results in:∫ 𝑡+Δ𝑡

𝑡

𝑑 [𝑙𝑛(𝑒−`𝑠𝑆𝑠)] =
∫ 𝑡+Δ𝑡

𝑡

(
𝑇𝑟 (𝐷1Σ𝑠), ..., 𝑇𝑟 (𝐷𝑛Σ𝑠)

)>
𝑑𝑠 +

∫ 𝑡+Δ𝑡

𝑡

Σ
1/2
𝑠 𝑑𝑊 𝑠

𝑠 −
∫ 𝑡+Δ𝑡

𝑡

Σ𝑠

2
𝑑𝑠∫ 𝑡+Δ𝑡

𝑡

𝑑 [𝑙𝑛(𝑒−`𝑠𝑆𝑠)] = 𝑙𝑛
(
𝑒−`(𝑡+Δ𝑡)𝑆(𝑡+Δ𝑡)

)
− 𝑙𝑛

(
𝑒−`𝑡𝑆𝑡

)
The predictor corrector scheme proposes to first handle the time integral in a centered
manner, that is:∫ 𝑡+Δ𝑡

𝑡

(
𝑇𝑟 (𝐷1Σ𝑠), ..., 𝑇𝑟 (𝐷𝑛Σ𝑠)

)>
𝑑𝑠 ≈ Δ𝑡

2

( (
𝑇𝑟 (𝐷1Σ𝑡+Δ𝑡), ..., 𝑇𝑟 (𝐷𝑛Σ𝑡+Δ𝑡)

)>
+

(
𝑇𝑟 (𝐷1Σ𝑡), ..., 𝑇𝑟 (𝐷𝑛Σ𝑡)

)>)
∫ 𝑡+Δ𝑡

𝑡

Σ
1/2
𝑠 𝑑𝑊 𝑠

𝑠 ≈
√
Δ𝑡

√︁
Σ𝑡𝐺

where 𝐺 denotes a matrix of independent standard gaussian random variables.∫ 𝑡+Δ𝑡

𝑡

Σ𝑠𝑑𝑠 ≈
Δ𝑡

2

(
Σ𝑡+Δ𝑡 + Σ𝑡

)
Thus, the following scheme is obtained:

log

[
𝑒−`(𝑡+Δ𝑡)𝑆𝑡+Δ𝑡

𝑒−`𝑡𝑆𝑡

]
=
Δ𝑡

2

( (
𝑇𝑟 (𝐷1Σ𝑡+Δ𝑡), ..., 𝑇𝑟 (𝐷𝑛Σ𝑡+Δ𝑡)

)>+(
𝑇𝑟 (𝐷1Σ𝑡), ..., 𝑇𝑟 (𝐷𝑛Σ𝑡)

)>)
+
√
Δ𝑡

√︁
Σ𝑡𝐺 − Δ𝑡

4

(
Σ𝑡+Δ𝑡 + Σ𝑡

)
(3.1.34)
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Despite that the continuous-time process of the discounted price may be a martingale, the
scheme given by equation 3.1.34 isn’t. This implies that the discretized scheme for the asset
price may not always be free of arbitrage.
The martingale correction modifies equation 3.1.34 to be such that:

E

[
𝑒−`Δ𝑡𝑆𝑡+Δ𝑡 |𝑆𝑡

]
= 𝑆𝑡

It follows that:

𝑒𝑥𝑝

[
𝑙𝑜𝑔

[
𝑒−`(𝑡+Δ𝑡)𝑆𝑡+Δ𝑡

𝑒−`𝑡𝑆𝑡

] ]
= 𝑒𝑥𝑝

[
Δ𝑡

2

( (
𝑇𝑟 (𝐷1Σ𝑡+Δ𝑡), ..., 𝑇𝑟 (𝐷𝑛Σ𝑡+Δ𝑡)

)>
+

(
𝑇𝑟 (𝐷1Σ𝑡), ..., 𝑇𝑟 (𝐷𝑛Σ𝑡)

)>)
+
√
Δ𝑡

√︁
Σ𝑡𝐺 − Δ𝑡

4

(
Σ𝑡+Δ𝑡 + Σ𝑡

) ]
[
𝑒−`(𝑡+Δ𝑡)𝑆𝑡+Δ𝑡

𝑒−`𝑡𝑆𝑡

]
=

[
𝑒−`Δ𝑡𝑆𝑡+Δ𝑡

𝑆𝑡

]
𝑒−`Δ𝑡𝑆𝑡+Δ𝑡 = 𝑆𝑡 𝑒𝑥𝑝

[
Δ𝑡

2

( (
𝑇𝑟 (𝐷1Σ𝑡+Δ𝑡), ..., 𝑇𝑟 (𝐷𝑛Σ𝑡+Δ𝑡)

)>
+

(
𝑇𝑟 (𝐷1Σ𝑡), ..., 𝑇𝑟 (𝐷𝑛Σ𝑡)

)>)
+
√
Δ𝑡

√︁
Σ𝑡𝐺 − Δ𝑡

4

(
Σ𝑡+Δ𝑡 + Σ𝑡

) ]
E

[
𝑒−`Δ𝑡𝑆𝑡+Δ𝑡 |𝑆𝑡

]
= E

[
E

[
𝑒−𝑟Δ𝑡𝑆𝑡+Δ𝑡 |𝑆𝑡 , 𝑉𝑡+Δ𝑡

] ]
= 𝑆𝑡 𝑒𝑥𝑝

(
− Δ𝑡

4
Σ𝑡

)
E

[
𝑒𝑥𝑝(−Δ𝑡

4

(
Σ𝑡+Δ𝑡

)
) × E𝑡

[
𝑒𝑥𝑝

[√
Δ𝑡

√︁
Σ𝑡𝐺

+ Δ𝑡

2

( (
𝑇𝑟 (𝐷1Σ𝑡+Δ𝑡), ..., 𝑇𝑟 (𝐷𝑛Σ𝑡+Δ𝑡)

)>
+

(
𝑇𝑟 (𝐷1Σ𝑡), ..., 𝑇𝑟 (𝐷𝑛Σ𝑡)

)>)
|Σ𝑡+Δ𝑡

]
= 𝑆𝑡 𝑒𝑥𝑝

(
− Δ𝑡

4
Σ𝑡

)
E

[
𝑒𝑥𝑝(−Δ𝑡

4

(
Σ𝑡+Δ𝑡

)
)×

E𝑡

[
𝑒𝑥𝑝

(√
Δ𝑡

√︁
Σ𝑡𝐺

)
|Σ𝑡+Δ𝑡

]
E𝑡

[
𝑒𝑥𝑝

(
Δ𝑡

2

( (
𝑇𝑟 (𝐷1Σ𝑡+Δ𝑡), ..., 𝑇𝑟 (𝐷𝑛Σ𝑡+Δ𝑡)

)>
+

(
𝑇𝑟 (𝐷1Σ𝑡), ..., 𝑇𝑟 (𝐷𝑛Σ𝑡)

)>)
|Σ𝑡+Δ𝑡

]
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E𝑡

[
𝑒𝑥𝑝

(√
Δ𝑡

√︁
Σ𝑡𝐺

)
|Σ𝑡+Δ𝑡

]
= 𝑒𝑥𝑝

(
Δ𝑡Σ𝑡

2

)

E𝑡

[
𝑒𝑥𝑝

(
Δ𝑡

2

( (
𝑇𝑟 (𝐷1Σ𝑡+Δ𝑡), ..., 𝑇𝑟 (𝐷𝑛Σ𝑡+Δ𝑡)

)> +
(
𝑇𝑟 (𝐷1Σ𝑡), ..., 𝑇𝑟 (𝐷𝑛Σ𝑡)

)>)
|Σ𝑡+Δ𝑡

]
= 𝑒𝑥𝑝

(
Δ𝑡

2

( (
𝑇𝑟 (𝐷1Σ𝑡+Δ𝑡), ..., 𝑇𝑟 (𝐷𝑛Σ𝑡+Δ𝑡)

)> +
(
𝑇𝑟 (𝐷1Σ𝑡), ..., 𝑇𝑟 (𝐷𝑛Σ𝑡)

)>)

E

[
𝑒−`Δ𝑡𝑆𝑡+Δ𝑡 |𝑆𝑡

]
= 𝑆𝑡 𝑒𝑥𝑝

(
− Δ𝑡

4
Σ𝑡 +

Δ𝑡

2

(
𝑇𝑟 (𝐷1Σ𝑡), ..., 𝑇𝑟 (𝐷𝑛Σ𝑡)

)>)
E

[
𝑒𝑥𝑝

(
− Δ𝑡

4

(
Σ𝑡+Δ𝑡

)
+

(
Δ𝑡Σ𝑡

2

)
+

(
Δ𝑡

2

( (
𝑇𝑟 (𝐷1Σ𝑡+Δ𝑡), ..., 𝑇𝑟 (𝐷𝑛Σ𝑡+Δ𝑡)

)>
+

(
𝑇𝑟 (𝐷1Σ𝑡), ..., 𝑇𝑟 (𝐷𝑛Σ𝑡)

)>)
|Σ𝑡

]
= 𝑆𝑡 𝑒𝑥𝑝

(
Δ𝑡

4
Σ𝑡 +

Δ𝑡

2

(
𝑇𝑟 (𝐷1Σ𝑡), ..., 𝑇𝑟 (𝐷𝑛Σ𝑡)

)>)
E

[
𝑒𝑥𝑝

(
− Δ𝑡

4

(
Σ𝑡+Δ𝑡

)
+

(
Δ𝑡

2

( (
𝑇𝑟 (𝐷1Σ𝑡+Δ𝑡), ..., 𝑇𝑟 (𝐷𝑛Σ𝑡+Δ𝑡)

)>)
|Σ𝑡

]
Let

𝑀 = E

[
𝑒𝑥𝑝

(
− Δ𝑡

4

(
Σ𝑡+Δ𝑡

)
+

(
Δ𝑡

2

( (
𝑇𝑟 (𝐷1Σ𝑡+Δ𝑡), ..., 𝑇𝑟 (𝐷𝑛Σ𝑡+Δ𝑡)

)>)
|Σ𝑡

]
If the scheme in equation 3.1.34 is modified as follows:

𝑙𝑜𝑔

[
𝑒−`(𝑡+Δ𝑡)𝑆𝑡+Δ𝑡

𝑒−`𝑡𝑆𝑡

]
= −𝑙𝑜𝑔 𝑀 − Δ𝑡

2

(
𝑇𝑟 (𝐷1Σ𝑡), ..., 𝑇𝑟 (𝐷𝑛Σ𝑡)>

)
− Δ𝑡

4
Σ𝑡

+ Δ𝑡

2

( (
𝑇𝑟 (𝐷1Σ𝑡+Δ𝑡), ..., 𝑇𝑟 (𝐷𝑛Σ𝑡+Δ𝑡)

)> +
(
𝑇𝑟 (𝐷1Σ𝑡), ..., 𝑇𝑟 (𝐷𝑛Σ𝑡)

)>)
+
√
Δ𝑡

√︁
Σ𝑡𝐺 − Δ𝑡

4

(
Σ𝑡+Δ𝑡 + Σ𝑡

)
(3.1.35)

then the martingale condition would be satisfied.
To discretize the variance process, integrating equation 3.1.29, over the interval [𝑡, 𝑡 + Δ𝑡]
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yields: ∫ 𝑡+Δ𝑡

𝑡

𝑑Σ𝑠 =

∫ 𝑡+Δ𝑡

𝑡

(
ΩΩ> + 𝑀Σ𝑠 + Σ𝑠𝑀

>)
𝑑𝑠 +

∫ 𝑡+Δ𝑡

𝑡

Σ
1/2
𝑠 𝑑𝑊𝜎

𝑠 𝑄

+
∫ 𝑡+Δ𝑡

𝑡

𝑄>(𝑑𝑊𝜎
𝑠 )>Σ

1/2
𝑠

(3.1.36)

An approximation to equation 3.1.36 is done using a slightly modified Euler scheme as
follows:∫ 𝑡+Δ𝑡

𝑡

𝑑Σ𝑠 =

∫ 𝑡+Δ𝑡

𝑡

ΩΩ>𝑑𝑠 +
∫ 𝑡+Δ𝑡

𝑡

𝑀Σ𝑠𝑑𝑠 +
∫ 𝑡+Δ𝑡

𝑡

Σ𝑠𝑀
>𝑑𝑠 +

∫ 𝑡+Δ𝑡

𝑡

Σ
1/2
𝑠 𝑑𝑊𝜎

𝑠 𝑄

+
∫ 𝑡+Δ𝑡

𝑡

𝑄>(𝑑𝑊𝜎
𝑠 )>Σ

1/2
𝑠

∫ 𝑡+Δ𝑡

𝑡

𝑑Σ𝑠 ≈ Σ𝑡+Δ𝑡 − Σ𝑡∫ 𝑡+Δ𝑡

𝑡

ΩΩ>𝑑𝑠 ≈ Δ𝑡 ΩΩ>

∫ 𝑡+Δ𝑡

𝑡

𝑀Σ𝑠𝑑𝑠 ≈ Δ𝑡𝑀Σ𝑡∫ 𝑡+Δ𝑡

𝑡

Σ𝑠𝑀
>𝑑𝑠 ≈ Δ𝑡𝑀>Σ𝑡∫ 𝑡+Δ𝑡

𝑡

√
Σ𝑠𝑑𝑊

𝜎
𝑠 𝑄 ≈

√
Δ𝑡

√︁
Σ𝑡𝐺𝑄∫ 𝑡+Δ𝑡

𝑡

𝑄>(𝑑𝑊𝜎
𝑠 )>

√
Σ𝑠 ≈ 𝑄>𝐺>√Δ𝑡

√︁
Σ𝑡

Σ𝑡+Δ𝑡 = Σ𝑡 + Δ𝑡 ΩΩ> + Δ𝑡𝑀Σ𝑡 + Δ𝑡𝑀>Σ𝑡 +
√
Δ𝑡

√︁
Σ𝑡𝐺𝑄 +𝑄>𝐺>√Δ𝑡

√︁
Σ𝑡

Thus:

Σ𝑡+Δ𝑡 = Σ𝑡 +
(
ΩΩ> + 𝑀Σ𝑡 + 𝑀>Σ𝑡

)
Δ𝑡 +

√
Δ𝑡

√︁
Σ𝑡𝐺𝑄 +𝑄>𝐺>√Δ𝑡

√︁
Σ𝑡 (3.1.37)

Equation 3.1.37 is referred to as a discretized Wishart process and can be used to simulate
Σ for any fixed step size Δ𝑡 > 0. This process can become negative definite since the
square root is no longer well defined. A solution to this problem is to make use of the full
truncation scheme which involves taking the positive value of the variance denoted by Σ+

𝑡 ,
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that is Σ+
𝑡 = 𝑚𝑎𝑥(0,Σ𝑡). Thus:

Σ𝑡+Δ𝑡 = Σ𝑡 +
(
ΩΩ> + (Σ𝑡)+𝑀 + 𝑀>(Σ𝑡)+

)
Δ𝑡 +

√︁
(Σ𝑡)+𝐺𝑄

√
Δ𝑡

+𝑄>𝐺>√Δ𝑡
√︁
(Σ𝑡)+

(3.1.38)

Equation 3.1.38 can be written as:

Σ𝑡+Δ𝑡 = Σ𝑡 +
(
𝛽𝑄𝑄> + (Σ𝑡)+𝑀 + 𝑀>(Σ𝑡)+

)
Δ𝑡 +

√︁
(Σ𝑡)+𝐺𝑄

√
Δ𝑡

+𝑄>𝐺>√Δ𝑡
√︁
(Σ𝑡)+

(3.1.39)

The price of an option written on log 𝑆𝑡 and Σ𝑡 can be obtained as follows:

𝐶log 𝑆𝑡 ,Σ𝑡

(
𝑡, Z , ℎ

)
= 𝑒−𝑟ℎ𝑒𝑥𝑝

[
Z> log 𝑆𝑡 + 𝑇𝑟

(
𝐴(ℎ)Σ𝑡

)
+ 𝑐(ℎ)

]
where:

𝐴(ℎ) =
(
𝜑𝐴12(ℎ) + 𝐴

2
2(ℎ)

)−1 (
𝜑𝐴11(ℎ) + 𝐴

2
1(ℎ)

)
with (

𝐴11(ℎ) 𝐴12(ℎ)
𝐴21(ℎ) 𝐴22(ℎ)

)
= 𝑒ℎ

(
𝑀 +𝑄>𝜌Z> −2𝑄>𝑄

1
2

(
Z Z> − ∑𝑛

𝑖=1 Z𝑖𝐷𝑖
)

−
(
𝑀> + Z 𝜌>𝑄

))
and

𝑐(ℎ) = − 𝛽
2
𝑇𝑟

[
𝑙𝑜𝑔

(
𝜑𝐴12(ℎ) + 𝐴

2
2(ℎ)

)
+ ℎ𝑀> + ℎZ (𝜌>𝑄)

]
+ ℎ𝑟 (Z>𝐼 − 1)

𝐴(0) = 𝜑, 𝑏(0) = Z and c(0)=0.
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3.2. Dynamics of an option pricing model where the variance process depends on time and
information in a multi-asset framework

Here, the asset price process dynamics and the variance process dynamics for the information-
based framework are looked at and the derivation is extended to the multi-asset case.

3.2.1. Information-based asset pricing framework model dynamics
The information-based model is modelled under the probability space (Ω, F ,Q). F𝑡 denotes
the market filtration.
An assumption is made on the presence of an existing kernel for pricing which is assumed
to be adapted to F𝑡 and that the market is free of arbitrage opportunities. Arbitrage
opportunities exploit the price difference between two markets to make a profit. These
assumptions allow for the use of a risk neutral measure.
A return, 𝑋𝑇 , that is expected to happen at time 𝑇 is considered. The value of 𝑋𝑇 will only
be known at maturity and at current time, 𝑡, it’s value is given as follows:

𝑆𝑡 = 𝑃𝑡𝑇E[𝑋𝑇 |F𝑡] (3.2.1)

where 𝑃𝑡𝑇 denotes the discount factor.
Equation 3.2.1 is the discounted conditional expectation of 𝑋𝑇 under Q. An assumption is
made that a given quantity of partial information that relates to the value of the return is
available at an earlier period of time.
The asset price is determined by the expectation of discounted returns involved, subject to
the information available. By making use of a Brownian bridge, it is possible to create
explicit formulas, and semi-analytical terms for derivative prices.
To ensure that the market information process reveals the value of the return at maturity, it
is taken to be a function of the return, that is:

b𝑡 = 𝑓 (𝑋𝑇 )

Prior to maturity, b𝑡 contains only partial information relating to the return.
The market information process denoted by{b𝑡}0≤𝑡≤𝑇 is given by:

b𝑡 = 𝛾𝑡𝑋𝑇 + 𝛽𝑡𝑇 (3.2.2)

where 𝑋𝑇 ∼ 𝑁 [0, 1].
The information process given in equation 3.2.2 has two terms; the first term, 𝛾𝑡𝑋𝑇 is the
market signal which contains the true market information, and the second term, 𝛽𝑡𝑇 denotes
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the market noise.
{𝛽𝑡𝑇 }0≤𝑡≤𝑇 is a Q Brownian bridge over the interval

[
0, 𝑇

]
with 𝛽0𝑇 = 0 and 𝛽𝑇𝑇 = 0. It

follows that:
𝐸 [𝛽𝑡𝑇 ] = 0

and
𝑉𝑎𝑟 [𝛽𝑡𝑇 ] =

𝑡 (𝑇 − 𝑡)
𝑇

A Brownian bridge is used to represent market noise because at the beginning, all the market
information is used in asset pricing but as time goes by, new information is revealed and this
is accounted for by increasing the variance of the bridge for the first half of its trajectory.
When the return value is revealed at maturity, the variance value is equal to 0. The
information flow rate parameter, 𝛾 denotes the speed with which the true value of 𝑋𝑇 is
revealed. If it is low, then it imples that the value of 𝑋𝑇 is hidden until almost at maturity
while if the value of 𝛾 is high, then, the value of the return is revealed quickly.
An assumption is made that 𝑋𝑇 and the Brownian bridge are independent. It follows that:

𝛽𝑡𝑇 = 𝑊𝑡 −
𝑡

𝑇
𝑊𝑇

Thus:
𝛽𝑡𝑇 ∼ 𝑁

(
0,
𝑡 (𝑇 − 𝑡)
𝑇

)
The information about the real value of 𝑋𝑇 will increase steadily, as this happens, the
masking factors will also initially increase in value but will in the long run vanish as the
maturity date nears.
𝛽𝑡𝑇 is not adapted to the market filtration process. Thus, 𝛽𝑡𝑇 can be seen as representing
speculation, rumour, overreaction or any other misrepresentation that may occur relating to
financial transactions.
The dynamics of the asset price process satisfies the following SDE;

𝑑𝑆𝑡 = 𝑟𝑡𝑆𝑡𝑑𝑡 + Γ𝑡𝑇𝑑𝑊𝑡

In this study, an assumption will be made that 𝑟𝑡 which denotes the interest rate at time 𝑡 is
a constant implying that 𝑟𝑡 = 𝑟. Thus;

𝑑𝑆𝑡 = 𝑟𝑆𝑡𝑑𝑡 + Γ𝑡𝑇𝑑𝑊𝑡 (3.2.3)
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where:
Γ𝑡𝑇 = 𝑃𝑡𝑇

𝛾𝑇

𝑇 − 𝑡𝑉𝑡 (3.2.4)

and 𝑉𝑡 denotes the conditional variance of 𝑋𝑇 .
Let:

𝑋𝑡𝑇 = E
[
𝑋𝑇/b𝑡

]
=

∫ ∞

0
𝑥𝜋𝑡 (𝑥)𝑑𝑥

where 𝜋𝑡 (𝑥) denotes the conditional probability density for the random variable 𝑋𝑇 such
that:

𝜋𝑡 (𝑥) =
𝑑

𝑑𝑥
Q

[
𝑋𝑇 ≤ 𝑥/b𝑡

]
𝑑𝜋𝑡 (𝑥) =

𝛾𝑇

𝑇 − 𝑡
(
𝑥 − 𝑋𝑡𝑇

)
𝜋𝑡 (𝑥)𝑑𝑍𝜋𝑡

where 𝑍𝜋𝑡 denotes a Brownian motion.
Since 𝑉𝑡 is the conditional variance, its value depends on the market information process at
time 𝑡, that is:

𝑉𝑡 = E
[ (
𝑋𝑇/b𝑡 − E

[
𝑋𝑇/b𝑡

] )2]
= E

[ (
𝑋𝑇/b𝑡

)2] − (
E
[
𝑋𝑇/b𝑡

] )2
=

∫ ∞

0
𝑥2𝜋𝑡 (𝑥)𝑑𝑥 − 𝑋2

𝑡𝑇 (3.2.5)

The process {𝑊𝑡}0≤𝑡≤𝑇 is given as:

𝑊𝑡 = b𝑡 −
∫ 𝑡

0

1

𝑇 − 𝑠 (𝛾𝑇𝑋𝑠𝑇 − b𝑠)𝑑𝑠 (3.2.6)

Differentiating both sides of equation 3.2.6 with respect to 𝑡 gives:

𝑑𝑊𝑡 = 𝑑b𝑡 −
1

𝑇 − 𝑡 (𝛾𝑇𝑋𝑡𝑇 − b𝑡)𝑑𝑡 (3.2.7)

By rearranging equation 3.2.7, the SDE for the market information process is as follows:

𝑑b𝑡 =
1

𝑇 − 𝑡

(
𝛾𝑇𝑋𝑡𝑇 − b𝑡

)
𝑑𝑡 + 𝑑𝑊𝑡 (3.2.8)
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The SDE for 𝑋𝑡𝑇 is given as:

𝑑𝑋𝑡𝑇 =
𝛾𝑇

𝑇 − 𝑡𝑉𝑡
[

1

𝑇 − 𝑡 (b𝑡 − 𝛾𝑇𝑋𝑡𝑇 )𝑑𝑡 + 𝑑b𝑡
]

(3.2.9)

Rearranging equation 3.2.9 leads to:

𝑑𝑋𝑡𝑇 =
𝛾𝑇

𝑇 − 𝑡𝑉𝑡
[
𝑑b𝑡 −

1

𝑇 − 𝑡 (𝛾𝑇𝑋𝑡𝑇 − b𝑡)𝑑𝑡
]

Thus:
𝑑𝑋𝑡𝑇 =

𝛾𝑇

𝑇 − 𝑡𝑉𝑡𝑑𝑊𝑡

𝑉𝑡 is a function of 𝜋𝑡 (𝑥) and 𝑋𝑡𝑇 . Applying Ito’s lemma to equation 3.2.5 gives:

𝑑𝑉𝑡 =
𝜕𝑉𝑡

𝜕𝜋𝑡 (𝑥)
𝑑𝜋𝑡 (𝑥) +

𝜕𝑉𝑡

𝜕𝑋𝑡𝑇
𝑑𝑋𝑡𝑇 +

1

2

𝜕2𝑉𝑡

𝜕𝑋2
𝑡𝑇

(
𝑑𝑋𝑡𝑇

)2
𝜕𝑉𝑡

𝜕𝜋𝑡 (𝑥)
=

∫ ∞

0
𝑥2𝑑𝑥,

𝜕𝑉𝑡

𝜕𝑋𝑡𝑇
= −2𝑋𝑡𝑇 ,

𝜕2𝑉𝑡

𝜕𝑋2
𝑡𝑇

= −2(
𝑑𝑋𝑡𝑇

)2
=

( 𝛾𝑇
𝑇 − 𝑡𝑉𝑡𝑑𝑊𝑡

)2
=

(
𝛾𝑇

𝑇 − 𝑡

)2
𝑉2
𝑡 𝑑𝑡

𝑑𝑉𝑡 =

( ∫ ∞

0
𝑥2𝑑𝑥

)
𝑑𝜋𝑡 (𝑥) + (−2𝑋𝑡𝑇 )𝑑𝑋𝑡𝑇 +

1

2
(−2)

(
𝑑𝑋𝑡𝑇

)2
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𝑑𝑉𝑡 =

( ∫ ∞

0
𝑥2𝑑𝑥

) (
𝛾𝑇

𝑇 − 𝑡
(
𝑥 − 𝑋𝑡𝑇

)
𝜋𝑡 (𝑥)𝑑𝑊𝑡

)
+ (−2𝑋𝑡𝑇 )

(
𝛾𝑇

𝑇 − 𝑡𝑉𝑡𝑑𝑊𝑡

)
+ 1

2
(−2)

(
𝛾𝑇

𝑇 − 𝑡

)2
𝑉2
𝑡 𝑑𝑡

=

(
𝛾𝑇

𝑇 − 𝑡

∫ ∞

0
𝑥2𝑑𝑥

) ( (
𝑥 − 𝑋𝑡𝑇

)
𝜋𝑡 (𝑥)𝑑𝑊𝑡

)
− 2𝑋𝑡𝑇

(
𝛾𝑇

𝑇 − 𝑡𝑉𝑡𝑑𝑊𝑡

)
−

(
𝛾𝑇

𝑇 − 𝑡

)2
𝑉2
𝑡 𝑑𝑡

=

(
𝛾𝑇

𝑇 − 𝑡

∫ ∞

0
𝑥2𝑑𝑥

) ( (
𝑥𝜋𝑡 (𝑥)𝑑𝑊𝑡 − 𝑋𝑡𝑇𝜋𝑡 (𝑥)𝑑𝑊𝑡

) )
− 2𝑋𝑡𝑇

(
𝛾𝑇

𝑇 − 𝑡𝑉𝑡𝑑𝑊𝑡

)
−

(
𝛾𝑇

𝑇 − 𝑡

)2
𝑉2
𝑡 𝑑𝑡

=

(
𝛾𝑇

𝑇 − 𝑡

( ∫ ∞

0
𝑥3𝜋𝑡 (𝑥)𝑑𝑥 − 𝑋𝑡𝑇

∫ ∞

0
𝑥2𝜋𝑡 (𝑥)𝑑𝑥

)
𝑑𝑊𝑡

)
− 2𝑋𝑡𝑇

(
𝛾𝑇

𝑇 − 𝑡𝑉𝑡𝑑𝑊𝑡

)
−

(
𝛾𝑇

𝑇 − 𝑡

)2
𝑉2
𝑡 𝑑𝑡

=

(
𝛾𝑇

𝑇 − 𝑡

( ∫ ∞

0
𝑥3𝜋𝑡 (𝑥)𝑑𝑥 − 𝑋𝑡𝑇

∫ ∞

0
𝑥2𝜋𝑡 (𝑥)𝑑𝑥

)
𝑑𝑊𝑡

)
− 2𝑋𝑡𝑇

(
𝛾𝑇

𝑇 − 𝑡

( ∫ ∞

0
𝑥2𝜋𝑡 (𝑥)𝑑𝑥 − 𝑋2

𝑡𝑇

)
𝑑𝑊𝑡

)
−

(
𝛾𝑇

𝑇 − 𝑡

)2
𝑉2
𝑡 𝑑𝑡

=

(
𝛾𝑇

𝑇 − 𝑡

( ∫ ∞

0
𝑥3𝜋𝑡 (𝑥)𝑑𝑥 − 𝑋𝑡𝑇

∫ ∞

0
𝑥2𝜋𝑡 (𝑥)𝑑𝑥

)
𝑑𝑊𝑡

)
− 2

(
𝛾𝑇

𝑇 − 𝑡 𝑋𝑡𝑇
∫ ∞

0
𝑥2𝜋𝑡 (𝑥)𝑑𝑥 + 2𝑋3

𝑡𝑇

)
𝑑𝑊𝑡

)
−

(
𝛾𝑇

𝑇 − 𝑡

)2
𝑉2
𝑡 𝑑𝑡

=

(
𝛾𝑇

𝑇 − 𝑡

( ∫ ∞

0
𝑥3𝜋𝑡 (𝑥)𝑑𝑥 − 𝑋𝑡𝑇

∫ ∞

0
𝑥2𝜋𝑡 (𝑥)𝑑𝑥

− 2𝑋𝑡𝑇

∫ ∞

0
𝑥2𝜋𝑡 (𝑥)𝑑𝑥 + 2𝑋3

𝑡𝑇

)
𝑑𝑊𝑡

)
−

(
𝛾𝑇

𝑇 − 𝑡

)2
𝑉2
𝑡 𝑑𝑡

=

(
𝛾𝑇

𝑇 − 𝑡

( ∫ ∞

0
𝑥3𝜋𝑡 (𝑥)𝑑𝑥 − 3𝑋𝑡𝑇

∫ ∞

0
𝑥2𝜋𝑡 (𝑥)𝑑𝑥 + 2𝑋3

𝑡𝑇

)
𝑑𝑊𝑡

)
−

(
𝛾𝑇

𝑇 − 𝑡

)2
𝑉2
𝑡 𝑑𝑡

Let

^𝑡 = E
[ (
𝑋𝑇 − E

[
𝑋𝑇

] )3]
=

∫ ∞

0
𝑥3𝜋𝑡 (𝑥)𝑑𝑥 − 3𝑋𝑡𝑇

∫ ∞

0
𝑥2𝜋𝑡 (𝑥)𝑑𝑥 + 2𝑋3

𝑡𝑇

Thus

𝑑𝑉𝑡 =

(
𝛾𝑇

𝑇 − 𝑡 ^𝑡𝑑𝑊𝑡

)
−

(
𝛾𝑇

𝑇 − 𝑡

)2
𝑉2
𝑡 𝑑𝑡

The deterministic nonnegative process {𝑔𝑡}0≤𝑡≤𝑇 is defined by:

𝑔𝑡 = 𝛾𝑡 +
1

𝑇 − 𝑡

∫ 𝑡

0
𝛾𝑠𝑑𝑠
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If 𝛾 is a constant, then:
𝑔𝑡 =

𝛾𝑇

𝑇 − 𝑡 (3.2.10)

The dynamics for 𝑉𝑡 are therefore given as:

𝑑𝑉𝑡 = −𝑔2𝑡 𝑉2
𝑡 𝑑𝑡 + 𝑔𝑡^𝑡𝑑𝑊𝑡 (3.2.11)

3.2.2. Multi-asset information-based asset pricing framework model dynamics

Proposition 3.1. The joint dynamics of 𝑆𝑡 and Σ𝑡 under the multi-asset model are given
by:

𝑑𝑆𝑡 =
[
𝑟𝑆𝑡 +

(
𝑇𝑟 (𝐷1Σ𝑡), ..., 𝑇𝑟 (𝐷𝑛Σ𝑡)

)>]
𝑑𝑡 + 𝑃𝑡𝑇𝑔𝑡Σ𝑡𝑑𝑊𝑆

𝑡 (3.2.12)

𝑑Σ𝑡 =
(
ΩΩ> + 𝑀Σ𝑡 + Σ𝑡𝑀

>)
𝑑𝑡 +

√
Σ𝑡𝑑𝑊

𝜎
𝑡 𝑄 +𝑄>(𝑑𝑊𝜎

𝑡 )>
√
Σ𝑡 (3.2.13)

where 𝑊𝑆
𝑡 is an 𝑛-dimensional vector and 𝑊𝜎

𝑡 is an (𝑛, 𝑛) matrix. The elements in both
are independent unidimensional standard Brownian motions. 𝑟 is a constant n-dimensional
vector denoting the risk-free rate of interest, 𝐷𝑖, 𝑖 = 1, . . . , 𝑛,Ω, 𝑀,𝑄 are (𝑛, 𝑛) matrices
with Ω invertible. 𝑃𝑡𝑇 and 𝑔𝑡 are both n-dimensional vectors.

Proof. Using Ito’s lemma, it is shown that the variance process for the information-based
asset pricing framework takes a similar form to the square Bessel process which is the one
dimensional Wishart process.
Substituting for the value of Γ𝑡𝑇 given by equation 3.2.4 and 𝑔𝑡 given by equation 3.2.10,
the asset price dynamics given by equation 3.2.3 can be rewritten as:

𝑑𝑆𝑡 = 𝑟𝑆𝑡𝑑𝑡 + 𝑃𝑡𝑇𝑔𝑡𝑉𝑡𝑑𝑊𝑡 (3.2.14)

The dynamics for the variance process are as given in equation 3.2.11.
Let 𝛽𝑡 denote the coefficient of skewness at time 𝑡 such that:

𝛽𝑡 =
^𝑡

𝑉
3/2
𝑡

Substituting for ^𝑡 in equation 3.2.11 gives:

𝑑𝑉𝑡 = −𝑔2𝑡 𝑉2
𝑡 𝑑𝑡 + 𝑔𝑡𝛽𝑡𝑉

3/2
𝑡 𝑑𝑊𝑡 (3.2.15)

Using Ito’s lemma, let 𝑋𝑡 = 𝑉−1
𝑡 , the following result is obtained:

𝑑𝑋𝑡 =
𝜕𝑋𝑡

𝜕𝑡
𝑑𝑡 + 𝜕𝑋𝑡

𝜕𝑉𝑡
𝑑𝑉𝑡 +

1

2

𝜕2

𝜕𝑉2
𝑡

(
𝑑𝑉𝑡

)2
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𝜕𝑋𝑡

𝜕𝑡
= 0,

𝜕𝑋𝑡

𝜕𝑉𝑡
= −𝑉−2

𝑡 ,
𝜕2𝑋𝑡

𝜕𝑉2
𝑡

= 2𝑉−3
𝑡(

𝑑𝑉𝑡
)2

= 𝛽2𝑡 𝑣
2
𝑡 𝑉

3
𝑡 𝑑𝑡

𝑑𝑋𝑡 = −𝑉−2
𝑡 (−𝑣2𝑡 𝑉2

𝑡 𝑑𝑡 + 𝑔𝑡𝛽𝑡𝑉
3/2
𝑡 𝑑𝑊𝑡) +𝑉−3

𝑡 (𝑑𝑉𝑡)2

= −𝑉−2
𝑡 (−𝑔2𝑡 𝑉2

𝑡 𝑑𝑡) + (−𝑉−2
𝑡 ) (𝑔𝑡𝛽𝑡𝑉3/2

𝑡 𝑑𝑊𝑡) +𝑉−3
𝑡 (𝛽2𝑡 𝑔2𝑡 𝑉3

𝑡 𝑑𝑡)
= 𝑔2𝑡 𝑑𝑡 − 𝛽𝑡𝑔𝑡𝑉

−1/2
𝑡 𝑑𝑊𝑡 + 𝛽2𝑡 𝑔2𝑡 𝑑𝑡

= 𝑔2𝑡 (1 + 𝛽2𝑡 )𝑑𝑡 − 𝛽𝑡𝑔𝑡𝑉
−1/2
𝑡 𝑑𝑊𝑡

= 𝑔2𝑡 (1 + 𝛽2𝑡 )𝑑𝑡 − 𝛽𝑡𝑔𝑡
√︁
𝑋𝑡𝑑𝑊𝑡

Thus, the variance process for the single asset case can be given as:

𝑑𝑋𝑡 = 𝑔
2
𝑡 (1 + 𝛽2𝑡 )𝑑𝑡 − 𝛽𝑡𝑔𝑡

√︁
𝑋𝑡𝑑𝑊𝑡 (3.2.16)

where 𝑋−1
𝑡 denotes the inverse of the variance process.

The dynamics of the volatility matrix Σ𝑡 in equation 3.2.13 represents a continuous-time
process of stochastic matrices which correspond to the continuous time WAR.
A volatility-in-mean effect is introduced in the drift to account for the risk premium and to
capture the tendency for the volatility and the stock prices moving together by introducing
interactions between covolatilities and expected returns. The drift in equation 3.2.12 is an
affine function of factor volatilities and co-volatilities:

𝐸𝑡 (𝑑𝑆𝑖,𝑡) =
[
𝑟𝑆𝑖,𝑡 + 𝑇𝑟 (𝐷𝑖Σ𝑡)

]
𝑑𝑡, 𝑖 = 1, ..., 𝑛, (3.2.17)

𝐸𝑡 is the expectation conditional on the information available at time t.
Considering the one-dimensional case, that is the case where 𝑛 = 1, the equations 3.2.12
and 3.2.13 become:

𝑑𝑆𝑡 = (𝑟𝑆𝑡 + 𝛿𝑉𝑡)𝑑𝑡 + 𝑃𝑡𝑇𝑔𝑡𝑉𝑡𝑑𝑊𝑡 (3.2.18)

and

𝑑 (𝑉𝑡) = (𝑤2 + 2𝑚𝑉𝑡)𝑑𝑡 + 2𝑞
√︁
𝑉𝑡𝑑𝑊𝑡 (3.2.19)

respectively.
The variance process can be seen to be a CIR process and the model is reduced to the
one-dimensional information-based model.
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Considering the two-dimensional case, the Wishart process in equation 3.2.13 is given as:

𝑑Σ𝑡 = 𝑑

(
Σ11
𝑡 Σ12

𝑡

Σ12
𝑡 Σ22

𝑡

)
=

[ (
Ω11 Ω12

Ω21 Ω22

) (
Ω11 Ω21

Ω12 Ω22

)
+

(
𝑀11 𝑀12

𝑀21 𝑀22

) (
Σ11
𝑡 Σ12

𝑡

Σ12
𝑡 Σ22

𝑡

)
+(

Σ11
𝑡 Σ12

𝑡

Σ12
𝑡 Σ22

𝑡

) (
𝑀11 𝑀21

𝑀12 𝑀22

) ]
dt+

(
Σ11
𝑡 Σ12

𝑡

Σ12
𝑡 Σ22

𝑡

)1
2

(
𝑑𝑊11

𝑡 𝑑𝑊12
𝑡

𝑑𝑊21
𝑡 𝑑𝑊22

𝑡

) (
𝑄11 𝑄12

𝑄21 𝑄22

)
+

(
𝑄11 𝑄21

𝑄12 𝑄22

)
(
𝑑𝑊11

𝑡 𝑑𝑊21
𝑡

𝑑𝑊12
𝑡 𝑑𝑊22

𝑡

) (
Σ11
𝑡 Σ12

𝑡

Σ12
𝑡 Σ22

𝑡

)1
2

Let 𝜎𝑡 = Σ
1
2
𝑡 =

(
Σ11
𝑡 Σ12

𝑡

Σ12
𝑡 Σ22

𝑡

)1
2

=

(
𝜎11
𝑡 𝜎12

𝑡

𝜎12
𝑡 𝜎22

𝑡

)
this implies that 𝜎2

𝑡 = Σ𝑡 =

(
(𝜎11

𝑡 )2 + (𝜎12
𝑡 )2 𝜎11

𝑡 𝜎
12
𝑡 + 𝜎12

𝑡 𝜎
22
𝑡

𝜎11
𝑡 𝜎

12
𝑡 + 𝜎12

𝑡 𝜎
22
𝑡 (𝜎12

𝑡 )2 + (𝜎22
𝑡 )2

)
(
Σ11
𝑡 Σ12

𝑡

Σ12
𝑡 Σ22

𝑡

)1
2

(
𝑑𝑊11

𝑡 𝑑𝑊12
𝑡

𝑑𝑊21
𝑡 𝑑𝑊22

𝑡

) (
𝑄11 𝑄12

𝑄21 𝑄22

)
=

(
𝜎11
𝑡 𝜎12

𝑡

𝜎12
𝑡 𝜎22

𝑡

) (
𝑑𝑊11

𝑡 𝑑𝑊12
𝑡

𝑑𝑊21
𝑡 𝑑𝑊22

𝑡

) (
𝑄11 𝑄12

𝑄21 𝑄22

)

=

[
𝜎11
𝑡 𝑑𝑊

11
𝑡 𝑄11 + 𝜎12

𝑡 𝑑𝑊
21
𝑡 𝑄11 + 𝜎11

𝑡 𝑑𝑊
12
𝑡 𝑄21 + 𝜎12

𝑡 𝑑𝑊
22
𝑡 𝑄21

𝜎12
𝑡 𝑑𝑊

11
𝑡 𝑄11 + 𝜎22

𝑡 𝑑𝑊
21
𝑡 𝑄11 + 𝜎12

𝑡 𝑑𝑊
12
𝑡 𝑄12 + 𝜎22

𝑡 𝑑𝑊
22
𝑡 𝑄21

𝜎11
𝑡 𝑑𝑊

11
𝑡 𝑄12 + 𝜎12

𝑡 𝑑𝑊
21
𝑡 𝑄12 + 𝜎11

𝑡 𝑑𝑊
12
𝑡 𝑄22 + 𝜎12

𝑡 𝑑𝑊
22
𝑡 𝑄22

𝜎12
𝑡 𝑑𝑊

11
𝑡 𝑄12 + 𝜎22

𝑡 𝑑𝑊
21
𝑡 𝑄12 + 𝜎12

𝑡 𝑑𝑊
12
𝑡 𝑄22 + 𝜎22

𝑡 𝑑𝑊
22
𝑡 𝑄22)

]
(
𝑄11 𝑄21

𝑄12 𝑄22

) (
𝑑𝑊11

𝑡 𝑑𝑊21
𝑡

𝑑𝑊12
𝑡 𝑑𝑊22

𝑡

) (
Σ11
𝑡 Σ12

𝑡

Σ12
𝑡 Σ22

𝑡

)1
2

=

(
𝑄11 𝑄21

𝑄12 𝑄22

) (
𝑑𝑊11

𝑡 𝑑𝑊21
𝑡

𝑑𝑊12
𝑡 𝑑𝑊22

𝑡

) (
𝜎11
𝑡 𝜎12

𝑡

𝜎12
𝑡 𝜎22

𝑡

)

=

[
𝜎11
𝑡 𝑑𝑊

11
𝑡 𝑄11 + 𝜎11

𝑡 𝑑𝑊
12
𝑡 𝑄21 + 𝜎12

𝑡 𝑑𝑊
21
𝑡 𝑄11 + 𝜎12

𝑡 𝑑𝑊
22
𝑡 𝑄21

𝜎11
𝑡 𝑑𝑊

11
𝑡 𝑄12 + 𝜎11

𝑡 𝑑𝑊
12
𝑡 𝑄22 + 𝜎12

𝑡 𝑑𝑊
21
𝑡 𝑄12 + 𝜎12

𝑡 𝑑𝑊
22
𝑡 𝑄22

𝜎12
𝑡 𝑑𝑊

11
𝑡 𝑄11 + 𝜎12

𝑡 𝑑𝑊
12
𝑡 𝑄21 + 𝜎22

𝑡 𝑑𝑊
21
𝑡 𝑄11 + 𝜎22

𝑡 𝑑𝑊
22
𝑡 𝑄21

𝜎12
𝑡 𝑑𝑊

11
𝑡 𝑄12 + 𝜎12

𝑡 𝑑𝑊
12
𝑡 𝑄22 + 𝜎22

𝑡 𝑑𝑊
21
𝑡 𝑄12 + 𝜎22

𝑡 𝑑𝑊
22
𝑡 𝑄22)

]
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𝑑Σ11
𝑡 = (Ω2

11 +Ω2
12 + 2𝑀11Σ11)𝑑𝑡 + 2𝜎11

𝑡 (𝑑𝑊11
𝑡 𝑄11 + 𝑑𝑊12

𝑡 𝑄21) + 2𝜎12
𝑡 (𝑑𝑊21

𝑡 𝑄11 + 𝑑𝑊22
𝑡 𝑄21)

𝑑Σ12
𝑡 = (Ω11Ω21 +Ω12Ω22 + 2𝑀12Σ12)𝑑𝑡 + 𝜎11

𝑡 (𝑑𝑊11
𝑡 𝑄12 + 𝑑𝑊12

𝑡 𝑄22) + 𝜎12
𝑡 (𝑑𝑊21

𝑡 𝑄12 + 𝑑𝑊22
𝑡 𝑄22

+ 𝑑𝑊11
𝑡 𝑄11 + 𝑑𝑊12

𝑡 𝑄21) + 𝜎22
𝑡 (𝑑𝑊21

𝑡 𝑄11 + 𝑑𝑊22
𝑡 𝑄21)

𝑑Σ22
𝑡 = (Ω2

22 +Ω2
21 + 2𝑀22Σ22)𝑑𝑡 + 2𝜎12

𝑡 (𝑑𝑊11
𝑡 𝑄12 + 𝑑𝑊12

𝑡 𝑄22) + 2𝜎22
𝑡 (𝑑𝑊21

𝑡 𝑄12 + 𝑑𝑊22
𝑡 𝑄22)

Proposition 3.2. The infinitesimal generator associated with the Wishart process in equa-
tion 3.2.13 is given by:

LΣ = 𝑇𝑟
[
(𝛽𝑄>𝑄 + 𝑀Σ + Σ𝑀>)𝐷 + 2Σ𝐷𝑄>𝑄𝐷

]
(3.2.20)

where
𝐷 =

(
𝜕

𝜕Σ𝑖 𝑗

)
1≤𝑖, 𝑗≤𝑛

Proof. The following equations are used to generate the infinitesimal generator of the
process:

𝑑 < Σ11,Σ11 >𝑡 = (𝑑Σ11) (𝑑Σ11)
= 4(𝜎11

𝑡 )2𝑄2
11𝑑𝑡 + 4(𝜎12

𝑡 )2𝑄2
21𝑑𝑡 + 4(𝜎12

𝑡 )2𝑄2
11𝑑𝑡 + 4(𝜎11

𝑡 )2𝑄2
21𝑑𝑡

= 4Σ11
𝑡 [𝑄2

11 +𝑄
2
21]

𝑑 < Σ12,Σ12 >𝑡 = Σ11
𝑡 [𝑄2

11 +𝑄
2
22] + Σ12

𝑡 [𝑄11𝑄12 +𝑄21𝑄22] + Σ22
𝑡 [𝑄2

11 +𝑄
2
21]

𝑑 < Σ22,Σ22 >𝑡 = 4𝑄2
12 [𝜎

2
12 + 𝜎2

22] + 4𝑄2
22 [𝜎

2
12 + 𝜎2

22]𝑑𝑡
= 4Σ22

𝑡 [𝑄2
12 +𝑄

2
22]𝑑𝑡

𝑑 < Σ11,Σ12 >𝑡 =
(
2Σ11

𝑡 (𝑄11𝑄12 +𝑄21𝑄22) + 2Σ12
𝑡 (𝑄2

11 +𝑄
2
21)

)
𝑑𝑡

𝑑 < Σ11,Σ22 >𝑡 = 4Σ12
𝑡 (𝑄11𝑄12 +𝑄21𝑄22)𝑑𝑡

𝑑 < Σ12,Σ22 >𝑡 = 2(Σ12
𝑡 (𝑄2

12 +𝑄
2
22) + Σ22

𝑡 (𝑄11𝑄12 +𝑄21𝑄22)𝑑𝑡
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The trace of the matrix 2Σ𝑡𝐷𝑄
𝑇𝑄𝐷 is as follows:

𝑇𝑟 [2Σ𝑡𝐷𝑄𝑇𝑄𝐷] = 2𝑇𝑟 [Σ𝑡𝐷𝑄𝑇𝑄𝐷]

= 2Σ11
𝑡 (𝑄2

11 +𝑄
2
21)

𝜕2

(𝜕Σ11)2

+ 2

(
Σ11
𝑡 (𝑄2

12 +𝑄
2
22) + 2Σ12

𝑡 (𝑄11𝑄12 +𝑄21𝑄22) + Σ22
𝑡 (𝑄2

11 +𝑄
2
21)

)
𝜕2

(𝜕Σ12)2

+ 2Σ22
𝑡 (𝑄2

12 +𝑄
2
22)

𝜕2

(𝜕Σ22)2

+ 4

(
Σ11
𝑡 (𝑄11𝑄12 +𝑄21𝑄22) + Σ12

𝑡 (𝑄2
11 +𝑄

2
21)

)
𝜕2

𝜕Σ11Σ12

+ 4Σ12
𝑡 (𝑄11𝑄12 +𝑄21𝑄22)

𝜕2

𝜕Σ11Σ22

+ 4

(
Σ12
𝑡 (𝑄2

12 +𝑄
2
22) + 2Σ22

𝑡 (𝑄11𝑄12 +𝑄21𝑄22)
)

𝜕2

𝜕Σ12Σ22

and

LΣ = 𝑇𝑟
[
(ΩΩ> + 𝑀Σ + Σ𝑀>)𝐷] + 1

2

(
< Σ11,Σ11 >𝑡

𝜕2

(𝜕Σ11)2

+ 2 < Σ12,Σ12 >𝑡
𝜕2

(𝜕Σ12)2
+ < Σ22,Σ22 >𝑡

𝜕2

(𝜕Σ22)2
+ 4 < Σ11,Σ12 >𝑡

𝜕2

𝜕Σ11Σ12

+ 2 < Σ11,Σ22 >𝑡
𝜕2

𝜕Σ11Σ22
+ 4 < Σ12,Σ22 >𝑡

𝜕2

𝜕Σ12Σ22

)
In order to discretize the asset price process, for every 𝑡 ∈ R+, Δ𝑡 > 0, equation 3.2.12 is
integrated over the interval [𝑡, 𝑡 + Δ𝑡]:∫ 𝑡+Δ𝑡

𝑡

𝑑𝑆𝑢 =

∫ 𝑡+Δ𝑡

𝑡

[
𝑟𝑆𝑢 +

(
𝑇𝑟 (𝐷1Σ𝑢), ..., 𝑇𝑟 (𝐷𝑛Σ𝑢)

)>]
𝑑𝑢 +

∫ 𝑡+Δ𝑡

𝑡

𝑃𝑢𝑇𝑔𝑢Σ𝑢𝑑𝑊𝑢

=

∫ 𝑡+Δ𝑡

𝑡

𝑟𝑆𝑢𝑑𝑢 +
∫ 𝑡+Δ𝑡

𝑡

[ (
𝑇𝑟 (𝐷1Σ𝑢), ..., 𝑇𝑟 (𝐷𝑛Σ𝑢)

)>]
𝑑𝑢 +

∫ 𝑡+Δ𝑡

𝑡

𝑃𝑢𝑇𝑔𝑢Σ𝑢𝑑𝑊𝑢

(3.2.21)

To make equation 3.2.21 suitable for numerical simulation, a slightly modified Euler scheme
is used as follows: ∫ 𝑡+Δ𝑡

𝑡

𝑑𝑆𝑢 ≈ 𝑆𝑡+Δ𝑡 − 𝑆𝑡
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∫ 𝑡+Δ𝑡

𝑡

𝑟𝑆𝑢𝑑𝑢 ≈ 𝑟Δ𝑡𝑆𝑡∫ 𝑡+Δ𝑡

𝑡

[ (
𝑇𝑟 (𝐷1Σ𝑢), ..., 𝑇𝑟 (𝐷𝑛Σ𝑢)

)>]
𝑑𝑢 ≈ Δ𝑡

[ (
𝑇𝑟 (𝐷1Σ𝑡), ..., 𝑇𝑟 (𝐷𝑛Σ𝑡)

)>]
∫ 𝑡+Δ𝑡

𝑡

𝑃𝑢𝑇𝑔𝑢Σ𝑢𝑑𝑊𝑢 ≈ 𝑃𝑡𝑇𝑔𝑡Σ𝑡
√︁
Δ𝑡𝐺

Thus:

𝑆𝑡+Δ𝑡 = 𝑆𝑡 + 𝑟Δ𝑡𝑆𝑡 + Δ𝑡
[ (
𝑇𝑟 (𝐷1Σ𝑡), ..., 𝑇𝑟 (𝐷𝑛Σ𝑡)

)>]
+ 𝑃𝑡𝑇𝑔𝑡Σ𝑡

√
Δ𝑡𝐺 (3.2.22)

Equation 3.2.22 can be used to simulate 𝑆 for any fixed step size Δ𝑡 > 0. This process can
become negative definite since the square root is no longer well defined. A solution to this
problem is to make use of the full truncation scheme which involves taking the positive
value of the variance such that:

𝑆𝑡+Δ𝑡 = 𝑆𝑡 + 𝑟Δ𝑡𝑆𝑡 + Δ𝑡𝑆𝑡
[ (
𝑇𝑟 (𝐷1Σ

+
𝑡 ), ..., 𝑇𝑟 (𝐷𝑛Σ

+
𝑡 )

)>]
+ 𝑃𝑡𝑇𝑔𝑡Σ+

𝑡

√
Δ𝑡𝐺 (3.2.23)

For the variance process, the discretization process is done by using the same approach used
in the Heston model resulting in the discretized Wishart process given in equation 3.1.38.
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3.3. Asset pricing in an information-based framework

The study starts with a valuation formula for an option written on one underlying asset and
extends to the case of an option written on 𝑛 underlying assets. The two approaches for the
information-based asset pricing framework; that is the BS-BHM model and the BS-BHM
updated model are looked at.
Risk-neutral pricing is used where the model has one underlying asset. The notion of
comonotonicity is used for the case of 𝑛 underlying assets by obtaining a lower bound and
an upper bound for the price by assuming a comonotonic dependence structure between the
underlying assets. The approach is based on the assumption that an increase in the value of
one of the variables results in an increase in the value of all the variables.

3.3.1. Notion of comonotonicity in a multi-asset information-based framework
Let:

𝐷𝑡 =

𝑛∑︁
𝑖=1

𝑐𝑖𝑆𝑖,𝑡 (3.3.1)

where 𝑐𝑖 denotes the weight and (𝑆1,𝑡 , ..., 𝑆𝑛,𝑡) are assumed to be comonotonic, which implies
that an increase in the price of one asset results in all the other asset prices increasing at the
same time.
Let Σ denote the variance-covariance matrix such that:

Σ =

©«
Σ1,1 Σ1,2 · · · Σ1,𝑛

Σ2,1 Σ2,2 · · · Σ2,𝑛
...

...
. . .

...

Σ𝑛,1 Σ𝑛,2 · · · Σ𝑛,𝑛

ª®®®®®¬
The upper bound price is obtained as follows:

𝐶𝑢 [𝐾] = 𝐸Q
[
𝑚𝑎𝑥{𝐷𝑢 − 𝐾, 0}

]
where:

𝐷𝑢 =

𝑛∑︁
𝑖=1

𝑐𝑖𝐹
−1
𝑆𝑖,𝑡

(𝑈) (3.3.2)

𝑈 ∼ 𝑈 [0, 1].
The lower bound price is given by:

𝐶 𝑙 [𝐾] = 𝐸Q
[
𝑚𝑎𝑥{𝐷 𝑙 − 𝐾, 0}

]
(3.3.3)
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where:

𝐷 𝑙 =

𝑛∑︁
𝑖=1

𝑐𝑖E[𝑆𝑖,𝑡 |Ψ] (3.3.4)

and

Ψ =

𝑛∑︁
𝑖=1

𝜓𝑖 ln
𝑆𝑖,𝑡

𝑆𝑖,0
(3.3.5)

with 𝜓𝑖 > 0 being given as:
𝜓𝑖 = 𝑐𝑖𝑆𝑖,0𝑒

𝑟𝑡 (3.3.6)

The upper and lower bound are combined using a linear association to obtain the price of
the multi-asset derivative as follows:

𝐶 [𝐾] = 𝑧𝐶 𝑙 [𝐾] + (1 − 𝑧)𝐶𝑢 [𝐾] 𝑓 𝑜𝑟 𝑎𝑙𝑙 𝐾 ≥ 0. (3.3.7)

𝑧 represents an interpolation weight given as:

𝑧 =
𝑉 (𝐷𝑢)] −𝑉 (𝐷)]
𝑉 (𝐷𝑢)] −𝑉 (𝐷 𝑙)]

(3.3.8)

3.3.2. Pricing multi-asset options under the BS-BHM model

Proposition 3.3. The price of a European call option under the BS-BHM model is given as
follows:

𝐶𝑏ℎ𝑚 = 𝑆0𝑒
𝜑+ 1

2 𝛿
2
Φ(𝑑1) − 𝐾Φ(−𝑑2)

where:

𝑑1 =
log

( 𝑆0
𝐾

)
+ 𝜑

𝛿
+ 𝛿

and
𝑑2 = 𝑑1 − 𝛿

Proof. Under the BS-BHM model, the value for 𝑆𝑡 is given as:

𝑆𝑡 = 𝑆0 𝑒𝑥𝑝

(
𝑟𝑡 − 1

2
𝑣2𝑇 + 1

2

𝑣
√
𝑇

𝛾2𝜏 + 1
+ 𝛾𝜏𝑣

√
𝑇

𝑡 (𝛾2𝜏 + 1)
b𝑡

)
(3.3.9)

where 𝜏 = 𝑡𝑇
𝑇−𝑡 and 𝑣 is a constant.

Introducing logs in equation 3.3.9 leads to:

log

(
𝑆𝑡

𝑆0

)
=

(
𝑟𝑡 − 1

2
𝑣2𝑇 + 1

2

𝑣
√
𝑇

𝛾2𝜏 + 1
+ 𝛾𝜏𝑣

√
𝑇

𝑡 (𝛾2𝜏 + 1)
b𝑡

)
(3.3.10)
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Equation 3.3.10 follows the lognormal distribution given as:

log

(
𝑆𝑡

𝑆0

)
∼ 𝑁

[
𝑟𝑡 − 1

2
𝑣2𝑇 + 1

2

𝑣
√
𝑇

𝛾2𝜏 + 1
,

(
𝛾𝜏𝑣

√
𝑇

𝑡 (𝛾2𝜏 + 1)

)2 (
𝛾2𝑡2 + 𝑡 (𝑇 − 𝑡)

𝑇

)]
(3.3.11)

Let:

𝜑 = 𝑟𝑡 − 1

2
𝑣2𝑇 + 1

2

𝑣
√
𝑇

𝛾2𝜏 + 1

and

𝛿2 =

(
𝛾𝜏𝑣

√
𝑇

𝑡 (𝛾2𝜏 + 1)

)2 (
𝛾2𝑡2 + 𝑡 (𝑇 − 𝑡)

𝑇

)
This implies that:

log

(
𝑆𝑡

𝑆0

)
∼ 𝑁

[
𝜑, 𝛿2

]
(3.3.12)

𝑆𝑡 ∼ 𝑁
[
𝑆0𝑒

𝜑, 𝑆0
2𝑒2𝜑+𝛿

2

(
𝑒𝛿

2 − 1

)]
Let 𝐶𝑏ℎ𝑚 denote the value of the derivative at the current time 𝑡.

𝐶𝑏ℎ𝑚 = 𝐸Q
[
𝑚𝑎𝑥{𝑆𝑡 − 𝐾, 0}

]
(3.3.13)

Equation 3.3.9 can be re-written as follows:

𝑆𝑡 = 𝑒𝑥𝑝

(
log 𝑆0 + 𝑟𝑡 −

1

2
𝑣2𝑇 + 1

2

𝑣
√
𝑇

𝛾2𝜏 + 1
+ 𝛾𝜏𝑣

√
𝑇

𝑡 (𝛾2𝜏 + 1)
b𝑡

)
(3.3.14)

Define 𝛼 = log 𝑆0 + 𝜑.
Substituting for the value of 𝛼 in equation 3.3.14 gives:

𝑆𝑡 = 𝑒
𝛼+𝛿𝑍 (3.3.15)

Let 𝐾 = 𝑒𝛼+𝛿𝑧, making 𝑧 to be the subject leads to:

𝑧 =
log𝐾 − 𝛼

𝛿

=
log𝐾 − log 𝑆0 − 𝜑

𝛿

=
log

(
𝐾
𝑆0

)
− 𝜑

𝛿
(3.3.16)
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Substituting for the values of 𝑆𝑡 and 𝐾 in equation 3.3.13 gives:

𝐶𝑏ℎ𝑚 = 𝐸Q
[
𝑚𝑎𝑥{𝑒𝛼+𝛿𝑍 − 𝑒𝛼+𝛿𝑧, 0}

]
= 𝑒𝛼+𝛿𝑧𝐸Q

[
𝑚𝑎𝑥{𝑒𝛿(𝑍−𝑧) − 1, 0}

]
= 𝑒𝛼+𝛿𝑧

∫ ∞

−∞
𝑚𝑎𝑥{𝑒𝛿(𝑦−𝑧) − 1, 0} 𝑓 (𝑦)𝑑𝑦

= 𝑒𝜑+𝛿𝑧
[ ∫ ∞

𝑧

𝑒𝛿(𝑦−𝑧) 𝑓 (𝑦)𝑑𝑦 −
∫ ∞

𝑧

𝑓 (𝑦)𝑑𝑦
]

= 𝑒𝛼+𝛿𝑧
[
𝑒−𝛿𝑧

∫ ∞

𝑧

𝑒𝛿𝑦 𝑓 (𝑦)𝑑𝑦 −
∫ ∞

𝑧

𝑓 (𝑦)𝑑𝑦
]

(3.3.17)

where 𝑓 (𝑦) = 1√
2𝜋
𝑒−

1
2 𝑦

2

𝐶𝑏ℎ𝑚 = 𝑒𝛼+𝛿𝑧
[
𝑒−𝛿𝑧

∫ ∞

𝑧

1
√
2𝜋
𝑒𝛿𝑦−

1
2 𝑦

2
𝑑𝑦 −

∫ ∞

𝑧

1
√
2𝜋
𝑒−

1
2 𝑦

2
𝑑𝑦

]
= 𝑒𝛼+𝛿𝑧

[
𝑒−𝛿𝑧+

1
2 𝛿

2
∫ ∞

𝑧

1
√
2𝜋
𝑒−

1
2 (𝑦−𝛿)

2
𝑑𝑦 −

∫ ∞

𝑧

1
√
2𝜋
𝑒−

1
2 𝑦

2
𝑑𝑦

]
= 𝑒𝛼+𝛿𝑧

[
𝑒−𝛿𝑧+

1
2 𝛿

2
Φ(𝛿 − 𝑧) −Φ(−𝑧)

]
= 𝑒𝛼+

1
2 𝛿

2
Φ(𝛿 − 𝑧) − 𝑒𝛼+𝛿𝑧Φ(−𝑧) (3.3.18)
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𝛼 + 1

2
𝛿2 = log 𝑆0 + 𝜑 + 1

2
𝛿2 (3.3.19)

𝛿 − 𝑧 = 𝛿 −
log

(
𝐾
𝑆0

)
− 𝜑

𝛿

=
𝛿2 + log

( 𝑆0
𝐾

)
+ 𝜑

𝛿

=
log

( 𝑆0
𝐾

)
+ 𝜑

𝛿
+ 𝛿

= 𝑑1 (3.3.20)

𝛼 + 𝛿𝑧 = log 𝑆0 + 𝜑 + 𝛿
log

(
𝐾
𝑆0

)
− 𝜑

𝛿

= log𝐾 (3.3.21)

−𝑧 = −
log

(
𝐾
𝑆0

)
− 𝜑

𝛿

=
log

( 𝑆0
𝐾

)
+ 𝜑

𝛿

= 𝑑1 − 𝛿
= 𝑑2 (3.3.22)

Substituting for equations 3.3.19, 3.3.20, 3.3.21 and 3.3.22 in equation 3.3.18 gives:

𝐶𝑏ℎ𝑚 = 𝑒log 𝑆0+𝜑+
1
2 𝛿

2
Φ(𝑑1) − 𝑒log𝐾Φ(−𝑑2)

= 𝑆0𝑒
𝜑+ 1

2 𝛿
2
Φ(𝑑1) − 𝐾Φ(−𝑑2) (3.3.23)

Equation 3.3.23 represents the valuation formula for the derivative price under the BS-BHM
model. This formula is similar to that obtained in the Black-Scholes model.

Proposition 3.4. The price of a multi-asset European call option under the BS-BHM model
is given as follows:

𝐶 [𝐾] = 𝑧𝐶 𝑙 [𝐾] + (1 − 𝑧)𝐶𝑢 [𝐾]
where:

𝐶𝑢 [𝐾] =
𝑛∑︁
𝑖=1

𝑐𝑖
[
𝑆𝑖,0𝑒

𝜑𝑖+ 1
2 𝛿𝑖

2
Φ(𝑑𝑢𝑖,1) − 𝐾

𝑢
𝑖 Φ(𝑑𝑢𝑖,2)

]
and

𝐶 𝑙 [𝐾] =
𝑛∑︁
𝑖=1

𝑐𝑖
[
𝑆𝑖,0𝑒

𝜑𝑖+ 1
2 𝛿𝑖

2
Φ(𝑑𝑙𝑖,1) − 𝐾

𝑙
𝑖Φ(𝑑𝑙𝑖,2)

]
Proof. Considering the multi-asset information-based asset pricing framework under the
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BS-BHM model, let

𝑆𝑖,𝑡 = 𝑆𝑖,0 𝑒𝑥𝑝

(
𝑟𝑡 − 1

2
𝑣2𝑖 𝑇 + 1

2

𝑣𝑖
√
𝑇

𝛾2
𝑖
𝜏 + 1

+ 𝛾𝑖𝜏𝑣𝑖
√
𝑇

𝑡 (𝛾2
𝑖
𝜏 + 1)

b𝑖,𝑡

)
(3.3.24)

𝜌𝑖, 𝑗 denote the correlation coefficient such that:

𝜌𝑖, 𝑗 = 𝐶𝑜𝑟𝑟

[
𝛾𝑖𝜏𝑣𝑖

√
𝑇

𝑡 (𝛾2
𝑖
𝜏 + 1)

b𝑖,𝑡 ,
𝛾 𝑗𝜏𝑣𝑖

√
𝑇

𝑡 (𝛾2
𝑗
𝜏 + 1)

b 𝑗 ,𝑡+𝑠

]
where 𝑠 ≥ 0.

Σ𝑖, 𝑗 = 𝐶𝑜𝑣

[
𝛾𝑖𝜏𝑣𝑖

√
𝑇

𝑡 (𝛾2
𝑖
𝜏 + 1)

b𝑖,𝑡 ,
𝛾 𝑗𝜏𝑣𝑖

√
𝑇

𝑡 (𝛾2
𝑗
𝜏 + 1)

b 𝑗 ,𝑡+𝑠

]
and

𝐹−1
𝑆𝑖,𝑡

(𝑈) = 𝑆𝑖,0 𝑒𝑥𝑝
(
𝑟𝑡−1

2
𝑣2𝑖 𝑇+

1

2

𝑣𝑖
√
𝑇

𝛾2
𝑖
𝜏 + 1

+ 𝛾𝑖𝜏𝑣𝑖
√
𝑇

𝑡 (𝛾2
𝑖
𝜏 + 1)

√︂
𝛾2
𝑖
𝑡2 + 𝑡 (𝑇 − 𝑡)

𝑇
𝑁−1(𝑈)

)
(3.3.25)

The upper bound price is given as follows:

𝐶𝑢 [𝐾] =
𝑛∑︁
𝑖=1

𝑐𝑖
[
𝑆𝑖,0𝑒

𝜑𝑖+ 1
2 𝛿𝑖

2
Φ(𝑑𝑢𝑖,1) − 𝐾

𝑢
𝑖 Φ(𝑑𝑢𝑖,2)

]
(3.3.26)

Using the result from equation 3.3.11 gives:

𝐾𝑢𝑖 = 𝑆𝑖,0𝑒𝑥𝑝

[
𝑟𝑡 − 1

2
𝑣2𝑖 𝑇 + 1

2

𝑣𝑖
√
𝑇

𝛾2
𝑖
𝜏 + 1

+ 𝛾𝑖𝜏𝑣𝑖
√
𝑇

𝑡 (𝛾2
𝑖
𝜏 + 1)

√︂
𝛾2
𝑖
𝑡2 + 𝑡 (𝑇 − 𝑡)

𝑇
𝑁−1 (𝐹𝐷𝑢 (𝐾)) ]

(3.3.27)
Let

𝜑𝑖 = 𝑟𝑡 −
1

2
𝑣2𝑖 𝑇 + 1

2

𝑣𝑖
√
𝑇

𝛾2
𝑖
𝜏 + 1

(3.3.28)

and

𝛿𝑖 =

(
𝛾𝑖𝜏𝑣𝑖

√
𝑇

𝑡 (𝛾𝑖2𝜏 + 1)

)√︄(
𝛾2
𝑖
𝑡2 + 𝑡 (𝑇 − 𝑡)

𝑇

)
(3.3.29)

Substituting equation 3.3.28 and 3.3.29 into 3.3.27 gives:

𝐾𝑢𝑖 = 𝑆𝑖,0𝑒𝑥𝑝

[
𝜑𝑖 + 𝛿𝑖𝑁−1 (𝐹𝐷𝑢 (𝐾)) ] (3.3.30)
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𝐹𝐷𝑢 (𝐾) is determined using the relation:

𝑛∑︁
𝑖=1

𝑐𝑖𝐾
𝑢
𝑖 = 𝐾 (3.3.31)

and

𝑑𝑢𝑖,1 =

log

(
𝑆𝑖,0
𝐾𝑢
𝑖

)
+ 𝜑𝑖

𝛿𝑖
+ 𝛿𝑖,

𝑑𝑢𝑖,2 = 𝑑
𝑢
𝑖,1 − 𝛿𝑖

The variance of 𝐷𝑢 is as follows:

𝑉 [𝐷𝑢] =
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑐𝑖𝑐 𝑗𝑆𝑖,0𝑆 𝑗 ,0𝑒
(2𝜑𝑖𝜑 𝑗+𝛿𝑖𝛿 𝑗 ) [𝑒𝛿𝑖𝛿 𝑗 − 1

]
The price 𝐶 𝑙 [𝐾] can be expressed as:

𝐶 𝑙 [𝐾] =
𝑛∑︁
𝑖=1

𝑐𝑖
[
𝑆𝑖,0𝑒

𝜑𝑖+ 1
2 𝛿𝑖

2
Φ(𝑑𝑙𝑖,1) − 𝐾

𝑙
𝑖Φ(𝑑𝑙𝑖,2)

]
(3.3.32)

where

𝐾 𝑙𝑖 = 𝑆𝑖,0𝑒𝑥𝑝

[
𝑟𝑡 − 1

2
𝑣2𝑖 𝑇 + 1

2

𝑣𝑖
√
𝑇

𝑦2
𝑖
𝛾2
𝑖
𝜏 + 1

+ 𝑦𝑖𝛾𝑖𝜏𝑣𝑖
√
𝑇

𝑡 (𝑦2
𝑖
𝛾2
𝑖
𝜏 + 1)

√︂
𝑦2
𝑖
𝛾2
𝑖
𝑡2 + 𝑡 (𝑇 − 𝑡)

𝑇
𝑁−1 (𝐹𝐷𝑙 (𝐾)) ]

(3.3.33)
Let

𝜑𝑖∗ = 𝑟𝑡 −
1

2
𝑦2𝑖 𝑣

2
𝑖 𝑇 + 1

2

𝑦𝑖𝑣𝑖
√
𝑇

𝛾2
𝑖
𝜏 + 1

(3.3.34)

and

𝛿𝑖∗ =

(
𝑦𝑖𝛾𝑖𝜏𝑣𝑖

√
𝑇

𝑡 (𝛾2
𝑖
𝜏 + 1)

)√︄(
𝛾2
𝑖
𝑡2 + 𝑡 (𝑇 − 𝑡)

𝑇

)
(3.3.35)

Substituting equation 3.3.34 and 3.3.35 into equation 3.3.33 gives:

𝐾 𝑙𝑖 = 𝑆𝑖,0𝑒𝑥𝑝

[
𝜑𝑖∗ + 𝛿𝑖∗𝑁−1 (𝐹𝐷𝑙 (𝐾)) ] (3.3.36)

with

𝑦𝑖 =

∑𝑛
𝑗=1 𝜓 𝑗 𝜌𝑖, 𝑗𝛿 𝑗

𝜎Ψ
(3.3.37)
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and

𝜎2
Ψ
=

𝑛∑︁
𝑖=1

𝜓2
𝑖 𝛿

2
𝑖 + 2

𝑛∑︁
𝑖=1, 𝑗<𝑖

𝜓𝑖𝜓 𝑗 𝜌𝑖, 𝑗𝛿𝑖𝛿 𝑗 (3.3.38)

𝐹𝐷𝑙 (𝐾) is determined using the relation:

𝑛∑︁
𝑖=1

𝑐𝑖𝐾
𝑙
𝑖 = 𝐾 (3.3.39)

and

𝑑𝑙𝑖,1 =

𝑙𝑜𝑔

(
𝑆𝑖,0

𝐾 𝑙
𝑖

)
+ 𝜑𝑖∗

𝛿𝑖∗
+ 𝛿𝑖∗ ,

𝑑𝑙𝑖,2 = 𝑑
𝑙
𝑖,1 − 𝛿𝑖∗

The variance for 𝐷 𝑙 is as follows:

𝑉 [𝐷 𝑙] =
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑐𝑖𝑐 𝑗𝑆𝑖,0𝑆 𝑗 ,0𝑒
(2𝜑+𝛿𝑖∗𝛿 𝑗∗ )

[
𝑒𝛿𝑖∗𝛿 𝑗∗ − 1

]
3.3.3. Pricing multi-asset options under the BS-BHM updated model

Proposition 3.5. The price of a European call option under the BS-BHM updated model is
given as follows:

𝐶𝑢𝑝𝑑𝑎𝑡𝑒𝑑 = 𝑆Φ(𝑑1) − 𝐾𝑒−(𝐴+
𝐵2

2 )Φ(𝑑2)
where:

𝑑1 =

𝑙𝑜𝑔

(
𝑆0
𝐾

)
+ 𝐴

𝐵
+ 𝐵

and
𝑑2 = 𝑑1 − 𝐵

Proof. Under the BS-BHM updated model, the value for 𝑆𝑡 is as follows:

𝑆𝑡 = 𝑆0 𝑒𝑥𝑝

(
𝑟𝑡 − 1

2

𝛾2𝜏

𝛾2𝜏 + 1
𝑣2𝑇 + 𝛾𝜏𝑣

√
𝑇

𝑡 (𝛾2𝜏 + 1)
b𝑡

)
(3.3.40)

The lognormal distribution for 𝑆𝑡
𝑆0

is given by:

log

(
𝑆𝑡

𝑆0

)
∼ 𝑁

[
𝑟𝑡 − 1

2

𝛾2𝜏

𝛾2𝜏 + 1
𝑣2𝑇,

(
𝛾𝜏𝑣

√
𝑇

𝑡 (𝛾2𝜏 + 1)

)2 (
𝛾2𝑡2 + 𝑡 (𝑇 − 𝑡)

𝑇

)]
(3.3.41)

45



Let:
𝐴 = 𝑟𝑡 − 1

2

𝛾2𝜏

𝛾2𝜏 + 1
𝑣2𝑇

and

𝐵 =
𝛾𝜏𝑣

√
𝑇

𝑡 (𝛾2𝜏 + 1)

√︄(
𝛾2𝑡2 + 𝑡 (𝑇 − 𝑡)

𝑇

)
log

(
𝑆𝑡

𝑆0

)
∼ 𝑁

[
𝐴, 𝐵2

]
(3.3.42)

𝑆𝑡 ∼ 𝑁
[
𝑆0𝑒

𝐴, 𝑆0
2𝑒2𝐴

(
𝑒𝐵

2 − 1

)]
Thus:

𝑆𝑡 = 𝑆0𝑒
𝐴+𝐵𝑍 (3.3.43)

where 𝑍 ∼ 𝑁 [0, 1].
Equation 3.3.41 a density function given as follows:

𝑓

(
𝑆𝑡

𝑆0

)
=

1

𝐵
√
2𝜋

( 𝑆𝑡
𝑆0

) 𝑒𝑥𝑝 ( − 1

2

[
𝑙𝑜𝑔

( 𝑆𝑡
𝑆0

)
− 𝐴

𝐵

]2)
(3.3.44)

Let 𝐶𝑢𝑝𝑑𝑎𝑡𝑒𝑑 denote the derivative price under the BS-BHM updated model with one
underlying asset. It follows that:

𝐶𝑢𝑝𝑑𝑎𝑡𝑒𝑑 = 𝐸Q
[
𝑚𝑎𝑥{𝑆𝑡 − 𝐾, 0}

]
(3.3.45)

An assumption is made that there’s a default-free deterministic interest rate.

𝐶𝑢𝑝𝑑𝑎𝑡𝑒𝑑 =

∫ ∞

0
𝑚𝑎𝑥{𝑆𝑡 − 𝐾, 0} 𝑓 (𝑠𝑡)𝑑𝑠𝑡

=

∫ ∞

𝐾

{𝑆𝑡 − 𝐾, 0} 𝑓 (𝑠𝑡)𝑑𝑠𝑡

Using the result from equation 3.3.43, it follows that;

𝑍 =
𝑙𝑜𝑔

( 𝑆𝑡
𝑆0

)
− 𝐴

𝐵

For the lower bound, when 𝑆𝑡 = 𝐾;

𝑍 =
𝑙𝑜𝑔

(
𝐾
𝑆0

)
− 𝐴

𝐵
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𝐶𝑢𝑝𝑑𝑎𝑡𝑒𝑑 =

∫ ∞
𝑙𝑜𝑔

(
𝐾
𝑆0

)
−𝐴

𝐵

(𝑆0𝑒𝐴+𝐵𝑍 − 𝐾) 𝑓 (𝑧)𝑑𝑧

=

∫ ∞
𝑙𝑜𝑔

(
𝐾
𝑆0

)
−𝐴

𝐵

𝑆0𝑒
𝐴+𝐵𝑍 𝑓 (𝑧)𝑑𝑧 −

∫ ∞
𝑙𝑜𝑔

(
𝐾
𝑆0

)
−𝐴

𝐵

𝐾 𝑓 (𝑧)𝑑𝑧

=

∫ ∞
𝑙𝑜𝑔

(
𝐾
𝑆0

)
−𝐴

𝐵

𝑆0𝑒
𝐴+𝐵𝑍 𝑓 (𝑧)𝑑𝑧 − 𝐾

∫ ∞
𝑙𝑜𝑔

(
𝐾
𝑆0

)
−𝐴

𝐵

𝑓 (𝑧)𝑑𝑧

𝑓 (𝑧) = 1
√
2𝜋
𝑒−

𝑧2

2

𝐶𝑢𝑝𝑑𝑎𝑡𝑒𝑑 = 𝑆0𝑒
𝐴

∫ ∞
𝑙𝑜𝑔

(
𝐾
𝑆0

)
−𝐴

𝐵

𝑒𝐵𝑍
1

√
2𝜋
𝑒−

𝑧2

2 𝑑𝑧 − 𝐾
∫ ∞
𝑙𝑜𝑔

(
𝐾
𝑆0

)
−𝐴

𝐵

1
√
2𝜋
𝑒−

𝑧2

2 𝑑𝑧

= 𝑆0𝑒
𝐴

∫ ∞
𝑙𝑜𝑔

(
𝐾
𝑆0

)
−𝐴

𝐵

𝑒𝐵𝑍−
𝑧2

2
1

√
2𝜋
𝑑𝑧 − 𝐾

∫ ∞
𝑙𝑜𝑔

(
𝐾
𝑆0

)
−𝐴

𝐵

1
√
2𝜋
𝑒−

𝑧2

2 𝑑𝑧

𝐵𝑍 − 𝑧2

2
=
𝐵2

2
− (𝑧 − 𝐵)2

2
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𝐶𝑢𝑝𝑑𝑎𝑡𝑒𝑑 = 𝑆0𝑒
𝐴

∫ ∞
𝑙𝑜𝑔

(
𝐾
𝑆0

)
−𝐴

𝐵

𝑒
𝐵2

2 − (𝑧−𝐵)2
2

1
√
2𝜋
𝑑𝑧 − 𝐾

∫ ∞
𝑙𝑜𝑔

(
𝐾
𝑆0

)
−𝐴

𝐵

1
√
2𝜋
𝑒−

𝑧2

2 𝑑𝑧

= 𝑆0𝑒
𝐴+ 𝐵22

∫ ∞
𝑙𝑜𝑔

(
𝐾
𝑆0

)
−𝐴

𝐵

𝑒−
(𝑧−𝐵)2

2
1

√
2𝜋
𝑑𝑧 − 𝐾

∫ ∞
𝑙𝑜𝑔

(
𝐾
𝑆0

)
−𝐴

𝐵

1
√
2𝜋
𝑒−

𝑧2

2 𝑑𝑧

= 𝑆0𝑒
𝐴+ 𝐵22 𝑃

[
𝑁 (𝐵, 1) >

𝑙𝑜𝑔

(
𝐾
𝑆0

)
− 𝐴

𝐵

]
− 𝐾𝑃

[
𝑁 (0, 1) >

𝑙𝑜𝑔

(
𝐾
𝑆0

)
− 𝐴

𝐵

]

= 𝑆0𝑒
𝐴+ 𝐵22

(
1 −Φ

( 𝑙𝑜𝑔( 𝐾
𝑆0

)
− 𝐴

𝐵
− 𝐵

))
− 𝐾

(
1 −Φ

( 𝑙𝑜𝑔( 𝐾
𝑆0

)
− 𝐴

𝐵

))

= 𝑆0𝑒
𝐴+ 𝐵22 Φ

(
𝐵 −

𝑙𝑜𝑔

(
𝐾
𝑆0

)
− 𝐴

𝐵

)
− 𝐾Φ

( 𝐴 − 𝑙𝑜𝑔
(
𝐾
𝑆0

)
𝐵

)

= 𝑆0𝑒
𝐴+ 𝐵22 Φ

( 𝑙𝑜𝑔( 𝑆0
𝐾

)
+ 𝐴

𝐵
+ 𝐵

)
− 𝐾Φ

( 𝑙𝑜𝑔( 𝑆0
𝐾

)
+ 𝐴

𝐵

)

= 𝑆0Φ

( 𝑙𝑜𝑔( 𝑆0
𝐾

)
+ 𝐴

𝐵
+ 𝐵

)
− 𝐾𝑒−

(
𝐴+ 𝐵22

)
Φ

( 𝑙𝑜𝑔( 𝑆0
𝐾

)
+ 𝐴

𝐵

)
Thus:

𝐶𝑢𝑝𝑑𝑎𝑡𝑒𝑑 = 𝑆Φ(𝑑1) − 𝐾𝑒−(𝐴+
𝐵2

2 )Φ(𝑑2) (3.3.46)

where

𝑑1 =

𝑙𝑜𝑔

(
𝑆0
𝐾

)
+ 𝐴

𝐵
+ 𝐵

and
𝑑2 = 𝑑1 − 𝐵

Proposition 3.6. The price of a multi-asset European call option under the BS-BHM up-
dated model is given as follows:

𝐶 [𝐾] = 𝑧𝐶 𝑙 [𝐾] + (1 − 𝑧)𝐶𝑢 [𝐾]

where:

𝐶𝑢 [𝐾] =
𝑛∑︁
𝑖=1

𝑐𝑖
(
𝑆𝑖Φ(𝑑𝑖,1) − 𝐾𝑢𝑖 𝑒−(𝐴𝑖+

𝐵2
𝑖
2 )Φ(𝑑𝑖,2)

)
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and

𝐶 𝑙 [𝐾] =
𝑛∑︁
𝑖=1

𝑐𝑖
(
𝑆𝑖Φ(𝑑𝑖,1) − 𝐾 𝑙𝑖 𝑒−(𝐴𝑖+

𝐵2
𝑖
2 )Φ(𝑑𝑖,2)

)
Proof. Let

𝑆𝑖,𝑡 = 𝑆𝑖,0 𝑒𝑥𝑝

(
𝑟𝑡 − 1

2

𝛾2
𝑖
𝜏

𝛾2
𝑖
𝜏 + 1

𝑣2𝑖 𝑇 + 𝛾𝑖𝜏𝑣𝑖
√
𝑇

𝑡 (𝛾𝑖2𝜏 + 1)
b𝑖,𝑡

)
(3.3.47)

The correlation between the 𝑖𝑡ℎ asset and 𝑗 𝑡ℎ asset is given by:

𝜌𝑖, 𝑗 = 𝐶𝑜𝑟𝑟

[
𝛾𝑖𝜏𝑣𝑖

√
𝑇

𝑡 (𝛾2
𝑖
𝜏 + 1)

b𝑖,𝑡 ,
𝛾 𝑗𝜏𝑣𝑖

√
𝑇

𝑡 (𝛾2
𝑗
𝜏 + 1)

b 𝑗 ,𝑡+𝑠

]
𝑠 ≥ 0 and 𝜌𝑖, 𝑗 is assumed to be constant for all time periods.

Σ𝑖, 𝑗 = 𝐶𝑜𝑣

[
𝛾𝑖𝜏𝑣𝑖

√
𝑇

𝑡 (𝛾2
𝑖
𝜏 + 1)

b𝑖,𝑡 ,
𝛾 𝑗𝜏𝑣𝑖

√
𝑇

𝑡 (𝛾2
𝑗
𝜏 + 1)

b 𝑗 ,𝑡+𝑠

]
and

𝐹−1
𝑆𝑖,𝑡

(𝑈) = 𝑆𝑖,0 𝑒𝑥𝑝
(
𝑟𝑡 − 1

2

𝛾2
𝑖
𝜏

𝛾2
𝑖
𝜏 + 1

𝑣2𝑖 𝑇 + 𝛾𝑖𝜏𝑣𝑖
√
𝑇

𝑡 (𝛾2
𝑖
𝜏 + 1)

√︂
𝛾2
𝑖
𝑡2 + 𝑡 (𝑇 − 𝑡)

𝑇
𝑁−1(𝑈)

)
(3.3.48)

The upper bound price 𝐶𝑢 [𝐾] can be expressed as:

𝐶𝑢 [𝐾] =
𝑛∑︁
𝑖=1

𝑐𝑖
(
𝑆𝑖Φ(𝑑𝑖,1) − 𝐾𝑢𝑖 𝑒−(𝐴𝑖+

𝐵2
𝑖
2 )Φ(𝑑𝑖,2)

)
(3.3.49)

with

𝑑𝑖,1 =

𝑙𝑜𝑔

(
𝑆0
𝐾𝑢
𝑖

)
+ 𝐴𝑖

𝐵𝑖
+ 𝐵𝑖,

𝑑𝑖,2 = 𝑑𝑖,1 − 𝐵𝑖

Using the result from equation 3.3.11:

𝐾𝑢𝑖 = 𝑆𝑖𝑒𝑥𝑝

[
𝑟𝑡 − 1

2

𝛾2
𝑖
𝜏

𝛾2
𝑖
𝜏 + 1

𝑣2𝑖 𝑇 +
(
𝛾𝑖𝜏𝑣𝑖

√
𝑇

𝑡 (𝛾𝑖2𝜏 + 1)

)√︄(
𝛾2
𝑖
𝑡2 + 𝑡 (𝑇 − 𝑡)

𝑇

)
𝜙−1

(
𝐹𝐷𝑢 (𝐾)

) ]
(3.3.50)

Let

𝐴𝑖 = 𝑟𝑡 −
1

2

𝛾2
𝑖
𝜏

𝛾2
𝑖
𝜏 + 1

𝑣2𝑖 𝑇 (3.3.51)
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and

𝐵𝑖 =

(
𝛾𝑖𝜏𝑣𝑖

√
𝑇

𝑡 (𝛾𝑖2𝜏 + 1)

)√︄(
𝛾2
𝑖
𝑡2 + 𝑡 (𝑇 − 𝑡)

𝑇

)
(3.3.52)

𝐹𝐷𝑢 (𝐾) is determined using the relation in equation 3.3.31.
The variance of 𝐷𝑢 is as follows:

𝑉 [𝐷𝑢] =
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑐𝑖𝑐 𝑗𝑆𝑖,0𝑆 𝑗 ,0𝑒
(2𝐴𝑖𝐴 𝑗+𝐵𝑖𝐵 𝑗 ) [𝑒𝐵𝑖𝐵 𝑗 − 1

]
The price 𝐶 𝑙 [𝐾] can be expressed as:

𝐶 𝑙 [𝐾] =
𝑛∑︁
𝑖=1

𝑐𝑖
(
𝑆𝑖Φ(𝑑𝑖,1) − 𝐾 𝑙𝑖 𝑒−(𝐴𝑖+

𝐵2
𝑖
2 )Φ(𝑑𝑖,2)

)
(3.3.53)

with

𝑑𝑖,1 =

𝑙𝑜𝑔

(
𝑆0

𝐾 𝑙
𝑖

)
+ 𝑟𝑡 − 1

2
𝛾2
𝑖
𝜏

𝛾2
𝑖
𝜏+1𝑣

2
𝑖
𝑦𝑖𝑇

𝑦𝑖𝐵𝑖
+ 𝑦𝑖𝐵𝑖, (3.3.54)

𝑑𝑖,2 = 𝑑𝑖,1 − 𝑦𝑖𝐵𝑖 (3.3.55)

where

𝐾 𝑙𝑖 = 𝑆𝑖𝑒𝑥𝑝

[
𝑟𝑡 − 1

2

𝛾2
𝑖
𝜏

𝛾2
𝑖
𝜏 + 1

𝑣2𝑖 𝑦𝑖𝑇 +
(
𝑦𝑖𝛾𝑖𝜏𝑣𝑖

√
𝑇

𝑡 (𝛾𝑖2𝜏 + 1)

)√︄(
𝛾2
𝑖
𝑡2 + 𝑡 (𝑇 − 𝑡)

𝑇

)
𝜙−1

(
𝐹𝐷𝑙 (𝐾)

) ]
(3.3.56)

with 𝑦𝑖 as given in equation 3.3.37 and 𝜎2
𝛾 given in equation 3.3.38.

𝐹𝐷𝑙 (𝐾) is determined using the relation in equation 3.3.39.

3.3.4. Information-based framework model dynamics as a special case of the Black-Scholes
model

The Black-Scholes asset pricing model can be recovered from the information-based frame-
work model dynamics.
The asset price process {𝑆𝑡}(0≤𝑡≤𝑇) can be obtained by rearranging equation 3.1.2 as follows:

𝑑𝑆𝑡

𝑆𝑡
= 𝑟𝑑𝑡 + 𝜎𝑑𝑊𝑡

𝑑 log 𝑆𝑡 = 𝑟𝑑𝑡 + 𝜎𝑑𝑊𝑡
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Using Ito’s lemma, let 𝑏 = log 𝑆𝑡 :

𝑑𝑏 =
𝜕𝑏

𝜕𝑡
𝑑𝑡 + 𝜕𝑏

𝜕𝑆𝑡
𝑑𝑆𝑡 +

1

2

𝜕2𝑏

𝜕𝑆2𝑡

(
𝑆𝑡

)2
𝜕𝑏

𝜕𝑡
= 0,

𝜕𝑏

𝜕𝑆𝑡
=

1

𝑆𝑡
,

𝜕2𝑏

𝜕𝑆2𝑡
= − 1

𝑆2𝑡(
𝑑𝑆𝑡

)2
= 𝜎2𝑑𝑆2𝑡 𝑑𝑡

𝑑 log 𝑆𝑡 =
1

𝑆𝑡
𝑑𝑆𝑡 −

1

𝑆2𝑡

(
𝑑𝑆𝑡

)2
𝑑 log 𝑆𝑡 =

1

𝑆𝑡
𝑆𝑡

(
𝑟𝑑𝑡 + 𝜎𝑑𝑊𝑡

)
− 1

2𝑆2𝑡
𝜎2𝑆2𝑡 𝑑𝑡

=
(
𝑟𝑑𝑡 + 𝜎𝑑𝑊𝑡

)
− 1

2
𝜎2𝑑𝑡

=
(
𝑟 − 1

2
𝜎2)𝑑𝑡 + 𝜎𝑑𝑊𝑡 (3.3.57)

Integrating both sides of equation 3.3.57 from 0 to 𝑡 gives:∫ 𝑡

0
𝑑 𝑙𝑜𝑔 𝑆𝑟 =

∫ 𝑡

0

(
𝑟 − 1

2
𝜎2

)
𝑑𝑟 +

∫ 𝑡

0
𝜎𝑑𝑊𝑟

log 𝑆𝑡 − log 𝑆0 =

(
𝑟 − 1

2
𝜎2

)
𝑑𝑡 + 𝜎𝑊𝑡

log

(
𝑆𝑡

𝑆0

)
=

(
𝑟 − 1

2
𝜎2

)
𝑑𝑡 + 𝜎𝑊𝑡

𝑆𝑡 = 𝑆0 𝑒𝑥𝑝

[(
𝑟 − 1

2
𝜎2

)
𝑡 + 𝜎𝑊𝑡

]
(3.3.58)

Considering the case where 𝛾2𝑇 = 1, the asset pricing model in equation 3.3.40 reduces to:

𝑆𝑡 = 𝑆0 𝑒𝑥𝑝

[(
𝑟 − 1

2
𝑣2

)
𝑡 + 𝑣b𝑡

]
(3.3.59)

Equation 3.3.59 takes a similar form to the Black-Scholes asset pricing model given in
equation 3.3.58 with 𝜎 = 𝑣 and𝑊𝑡 = b𝑡 .
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4. Parameter estimation and non-linear filtering

4.1. Estimation of model parameters

Parameters in the models discussed in the previous sections will be estimated using MLE,
pseudo-MLE and the method of moments.

4.1.1. Maximum likelihood estimation
The method of MLE can be used to estimate parameters in the Black-Scholes model and
the information-based asset pricing framework.
Let:

𝑥𝑡𝑘 =

(
𝑆𝑡𝑘

𝑆𝑡𝑘−1

)
(4.1.1)

For discrete time points 𝑡𝑘 , 𝑘 = 1, 2, ..., equation 3.3.58 can be written as:

𝑆𝑡𝑘 = 𝑆𝑡𝑘−1 𝑒𝑥𝑝

[(
𝑟 − 1

2
𝜎2

)
Δ𝑡 + 𝜎Δ𝑊

]
(4.1.2)

where Δ𝑡 = 𝑡𝑘 − 𝑡𝑘−1 and Δ𝑊 = 𝑊𝑡𝑘 −𝑊𝑡𝑘−1 .
Taking the logs of equation 4.1.2:

log 𝑆𝑡𝑘 − log 𝑆𝑡𝑘−1 =

(
𝑟 − 1

2
𝜎2

)
Δ𝑡 + 𝜎Δ𝑊 (4.1.3)

The mean and variance of equation 4.1.3 are as follows:

log 𝑆𝑡𝑘 − log 𝑆𝑡𝑘−1 ∼ 𝑁
[(
𝑟 − 1

2
𝜎2

)
Δ𝑡, 𝜎2Δ𝑡

]
(4.1.4)

The parameter to be estimated in the BSM is 𝜎.
Given that there are 𝑁 observations, the log likelihood function is given by:

𝐿 (𝜎) =
𝑁∑︁
𝑘=1

log 𝑓𝜎 (𝑥𝑡𝑘 ) (4.1.5)

where

𝑓𝜎 (𝑥𝑡𝑘 ) =
1

𝜎𝑥𝑡𝑘

√
2𝜋Δ𝑡

𝑒𝑥𝑝

(
−

[log 𝑥𝑡𝑘 − (𝑟 − 1
2𝜎

2)Δ𝑡]2

2𝜎2Δ𝑡

)
(4.1.6)

Using the method of MLE, the derivative of equation 4.1.5 is taken with respect to the
unknown parameters and equating the result to zero.
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The mean can be estimated using:

ˆ𝑚𝑒𝑎𝑛 =

(
𝑟 − 1

2
�̂�2

)
Δ𝑡 (4.1.7)

The estimate for the parameter 𝜎 is obtained from the ˆ𝑚𝑒𝑎𝑛 as follows:

ˆ𝑚𝑒𝑎𝑛 =
𝑛∑︁
𝑘=1

log 𝑥𝑡𝑘
𝑁

= 𝑥 (4.1.8)

Equation 4.1.7 is equated to equation 4.1.8 and a solution is found for 𝜎.
In the information-based asset pricing framework, the parameters to be estimated are 𝛾 and
𝑣. Two models will be considered: the BS-BHM model and the BS-BHM updated model.
In the BS-BHM model, the MLE is done as follows:
For discrete time points, equation 3.3.9 can be written as:

𝑆𝑡𝑘 = 𝑆𝑡𝑘−1 𝑒𝑥𝑝

(
𝑟Δ𝑡 − 1

2
𝑣2𝑇 + 1

2

𝑣
√
𝑇

𝛾2𝜏 + 1
+ 𝛾𝜏𝑣

√
𝑇

Δ𝑡 (𝛾2𝜏 + 1)
b𝑡𝑘

)
Taking the logs of equation 4.1.1:

log 𝑆𝑡𝑘 = log 𝑆𝑡𝑘−1 + 𝑟Δ𝑡 − 1

2
𝑣2𝑇 + 1

2

𝑣
√
𝑇

𝛾2𝜏 + 1
+ 𝛾𝜏𝑣

√
𝑇

Δ𝑡 (𝛾2𝜏 + 1)
b𝑡𝑘 (4.1.9)

where
𝜏 =

Δ𝑡𝑇

𝑇 − Δ𝑡

Equation 4.1.9 has the following distribution:

log
(
𝑥𝑡𝑘

)
∼𝑁

[
𝑟Δ𝑡 − 1

2
𝑣2𝑇 + 1

2

𝑣
√
𝑇

𝛾2𝜏 + 1
,

(
𝛾𝜏𝑣

√
𝑇

Δ𝑡 (𝛾2𝜏 + 1)

)2
(
𝛾2Δ𝑡2 + Δ𝑡 (𝑇 − Δ𝑡)

𝑇

)]
(4.1.10)

Let

𝐴
′
= 𝑟Δ𝑡 − 1

2
𝑣2𝑇 + 1

2

𝑣
√
𝑇

𝛾2𝜏 + 1
(4.1.11)

and

𝐵
′2 =

(
𝛾𝜏𝑣

√
𝑇

Δ𝑡 (𝛾2𝜏 + 1)

)2
𝛾2Δ𝑡2 + Δ𝑡 (𝑇 − Δ𝑡)

𝑇

)
(4.1.12)
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This implies that:

log
(
𝑥𝑡𝑘

)
∼ 𝑁

[
𝐴

′
, 𝐵

′2

]
(4.1.13)

From equation 4.1.13, 𝑥𝑡𝑘 has the following distribution:

𝑓𝛾,𝑣
(
𝑥𝑡𝑘

)
=

1

𝐵
′
𝑥𝑘
√
2𝜋
𝑒𝑥𝑝

(
− 1

2

[
log 𝑥𝑡𝑘 − 𝐴

′

𝐵
′

]2)
(4.1.14)

The log likelihood function is given by:

𝐿 (𝛾, 𝑣) =
𝑁∑︁
𝑘=1

log 𝑓𝛾,𝑣 (𝑥𝑡𝑘 ) (4.1.15)

The derivative of equation 4.1.15 is taken with respect to the unknown parameters and
equating the result to zero.
The mean can be estimated using:

ˆ𝑚𝑒𝑎𝑛
′
= 𝐴

′ (4.1.16)

and the variance can be estimated as:

ˆ𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒
′
= 𝐵

′2 (4.1.17)

The estimates for the parameters are obtained from the ˆ𝑚𝑒𝑎𝑛
′ and ˆ𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

′.

ˆ𝑚𝑒𝑎𝑛
′
= 𝑥 (4.1.18)

and
ˆ𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

′
=

𝑁∑︁
𝑘=1

(log 𝑥𝑡𝑘 − ˆ𝑚𝑒𝑎𝑛
′)2

𝑁
(4.1.19)

Equation 4.1.16 is equated to equation 4.1.18 and similarly, equation 4.1.17 is equated to
equation 4.1.19 to obtain estimates for 𝛾 and 𝑣.
In the BS-BHM updated model, the parameters to be estimated are 𝛾 and 𝑣. Using the
method of MLE, the estimation of the parameters is done as follows:
For discrete time points in equation 3.3.40 gives:

𝑆𝑡𝑘 = 𝑆𝑡𝑘−1 𝑒𝑥𝑝

(
𝑟Δ𝑡 − 1

2

𝛾2𝜏

𝛾2𝜏 + 1
𝑣2𝑇 + 𝛾𝜏𝑣

√
𝑇

Δ𝑡 (𝛾2𝜏 + 1)
b𝑡𝑘

)
(4.1.20)
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Equation 4.1.20 leads to:

log
(
𝑥𝑡𝑘

)
∼𝑁

[
𝑟Δ𝑡 − 1

2

𝛾2𝜏

𝛾2𝜏 + 1
𝑣2𝑇,

(
𝛾𝜏𝑣

√
𝑇

Δ𝑡 (𝛾2𝜏 + 1)

)2
(
𝛾2Δ𝑡2 + Δ𝑡 (𝑇 − Δ𝑡)

𝑇

)]
(4.1.21)

Let

𝐴∗ = 𝑟Δ𝑡 − 1

2

𝛾2𝜏

𝛾2𝜏 + 1
𝑣2𝑇 (4.1.22)

and

𝐵∗2 =

(
𝛾𝜏𝑣

√
𝑇

Δ𝑡 (𝛾2𝜏 + 1)

)2 (
𝛾2Δ𝑡2 + Δ𝑡 (𝑇 − Δ𝑡)

𝑇

)
(4.1.23)

This implies that:

log
(
𝑥𝑡𝑘

)
∼ 𝑁

[
𝐴∗, 𝐵∗2

]
(4.1.24)

The log likelihood function is given by:

𝐿 (𝛾, 𝑣) =
𝑛∑︁
𝑘=1

log 𝑓𝛾,𝑣 (𝑥𝑡𝑘 ) (4.1.25)

The derivative of equation 4.1.25 is taken with respect to the unknown parameters and
equating the result to zero.
The mean can be estimated using:

ˆ𝑚𝑒𝑎𝑛∗ = 𝐴∗ (4.1.26)

and the variance can be estimated as:

ˆ𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒∗ = 𝐵∗2 (4.1.27)

The estimates for the parameters 𝛾 and 𝑣 are obtained from the ˆ𝑚𝑒𝑎𝑛∗ and ˆ𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒∗.

ˆ𝑚𝑒𝑎𝑛∗ = 𝑥 (4.1.28)
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and

ˆ𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒∗ =
𝑁∑︁
𝑘=1

(log 𝑥𝑡𝑘 − ˆ𝑚𝑒𝑎𝑛∗)2

𝑁
(4.1.29)

Equation 4.1.26 is equated to equation 4.1.28 and similarly, equation 4.1.27 is equated to
equation 4.1.29 to obtain estimates for 𝛾 and 𝑣.

4.1.2. Pseudo-maximum likelihood estimation
This technique is used to estimate parameters in the Heston model, an assumption is made
that the volatility parameter,𝑉𝑡 has been extracted. The unknown parameters to be estimated
are ^, \, [ and 𝜌.
The Heston model is specified by the SDEs given by equation 3.1.21 and equation 3.1.22.
An approximation is made to equation 3.1.22 over the interval [0, 𝑇] such that:

𝑑𝑉𝑡 = ^(\ −𝑉𝑡)𝑑𝑡 + [
√︁
𝑉𝑡−Δ𝑡𝑑𝑊

𝜎
𝑡 (4.1.30)

An assumption is made that 𝑉𝑡 remains constant in a small time interval [𝑡 − Δ𝑡, 𝑡), where
Δ𝑡 represents the sampling step.
From equation 4.1.30, it follows that:

𝑉𝑡 −𝑉𝑡−Δ𝑡 = ^
∫ 𝑡

𝑡−Δ𝑡
(\ −𝑉𝑠)𝑑𝑠 + [

√︁
𝑉𝑡−Δ𝑡

∫ 𝑡

𝑡−Δ𝑡
𝑑𝑊𝜎

𝑠 (4.1.31)

The discretized model corresponding to 4.1.31 is given as:

𝑉𝑡 = 𝑒
−^Δ𝑡𝑉𝑡−Δ𝑡 + \ [1 − 𝑒−^Δ𝑡] + Y𝑡 𝑓 𝑜𝑟 𝑡 = 1, 2, ..., 𝑇

where 𝐸 [Y𝑡] = 0, 𝐸 [Y𝑡Y𝑠] = 0 for 𝑠 ≠ 𝑡 and

𝐸 [Y2𝑡 ] =
∫ 𝑡

𝑡−Δ𝑡
𝑒−2^Δ𝑡 (𝑡−𝜏)[2𝑉 (𝑡 − Δ𝑡)𝑑𝜏

=
1

2
[2^−1(1 − 𝑒−2^Δ𝑡)𝑉𝑡−Δ𝑡

and

𝑉𝑎𝑟 [Y𝑡] =
1

2
[2^−1(1 − 𝑒−2^Δ𝑡)𝑉𝑡−Δ𝑡
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The pseudo log-likelihood function of Y𝑡 is given as follows:

𝑙𝑜𝑔 𝐿(^, \, [) = −
𝑛∑︁
𝑘=1

[
1

2
𝑙𝑜𝑔{𝑉𝑎𝑟 (Y𝑡)} +

1

2
𝑉𝑎𝑟−1(Y𝑡){𝑉𝑘 − 𝑒−^Δ𝑡𝑉𝑘−1 − \ (1 − 𝑒−^Δ𝑡)}2

]
By differentiating the log-likelihood with respect to the parameters ^, \ and [, the following
result is obtained:

ˆ̂ = − 1

Δ𝑡
𝑙𝑜𝑔(𝛽1), \̂ = 𝛽2 𝑎𝑛𝑑 [̂2 =

2ˆ̂𝛽3

1 − 𝛽21

where

𝛽1 =
𝑛−2

∑𝑛
𝑘=1𝑉𝑘

∑𝑛
𝑘=1𝑉

−1
𝑘−1 − 𝑛

−1 ∑𝑛
𝑘=1𝑉𝑘𝑉

−1
𝑘−1

𝑛−2
∑𝑛
𝑘=1𝑉𝑘−1

∑𝑛
𝑘=1𝑉

−1
𝑘−1 − 1

,

𝛽2 =
𝑛−1

∑𝑛
𝑘=1𝑉𝑘𝑉

−1
𝑘−1 − 𝛽1

(1 − 𝛽1)𝑛−1
∑𝑛
𝑘=1𝑉

−1
𝑘−1

,

𝛽3 = 𝑛
−1

𝑛∑︁
𝑘=1

{𝑉𝑘 −𝑉𝑘−1𝛽1 − 𝛽2(1 − 𝛽1)2}𝑉−1
𝑘−1

Once the parameters ^, [ and \ have been estimated, the estimation of 𝜌 can be done. By
applying Ito’s lemma, equation 3.1.21 can be written as:

𝑑 ln 𝑆𝑡 = (𝑟 − 1

2
𝑉𝑡)𝑑𝑡 +

√︁
𝑉𝑡𝑑𝑊

𝑆
𝑡

To remove correlation between equation 3.1.21 and equation 3.1.22, let:

𝑑𝑊𝑆
𝑡 = 𝜌𝑑𝑊𝜎

𝑡 +
√︁
1 − 𝜌2𝑑𝑊𝐵

𝑡 (4.1.32)

where𝑊𝜎
𝑡 and𝑊𝐵

𝑡 are uncorrelated Brownian motions.
This leads to:

𝑑 ln 𝑆𝑡 = (𝑟 − 1

2
𝑉𝑡)𝑑𝑡 +

√︁
𝑉𝑡

(
𝜌𝑑𝑊𝜎

𝑡 +
√︁
1 − 𝜌2𝑑𝑊𝐵

𝑡

)
= (𝑟 − 1

2
𝑉𝑡)𝑑𝑡 +

√︁
𝑉𝑡𝜌𝑑𝑊

𝜎
𝑡 +

√︁
𝑉𝑡

√︁
1 − 𝜌2𝑑𝑊𝐵

𝑡 (4.1.33)

From equation 3.1.22, it follows that:√︁
𝑉𝑡𝑑𝑊

𝜎
𝑡 =

1

[

(
𝑑𝑉𝑡 − ^(\ −𝑉𝑡)𝑑𝑡

)
(4.1.34)
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Substituting equation 4.1.34 into equation 4.1.33 gives:

𝑑 ln 𝑆𝑡 = (𝑟 − 1

2
𝑉𝑡)𝑑𝑡 +

𝜌

[

(
𝑑𝑉𝑡 − ^(\ −𝑉𝑡)𝑑𝑡

)
+

√︁
𝑉𝑡

√︁
1 − 𝜌2𝑑𝑊𝐵

𝑡 (4.1.35)

An approximation for ln 𝑆𝑡 can be obtained as follows:

ln 𝑆𝑡 = ln 𝑆𝑡−1 +
[
𝑟 − 1

2
𝑉𝑡−Δ𝑡 −

𝜌

[
^(\ −𝑉𝑡−Δ𝑡)

]
Δ𝑡 + 𝜌

[

(
𝑉𝑡 −𝑉𝑡−Δ𝑡

)
+ b𝑡 (4.1.36)

where 𝐸 [b𝑡] = 0, 𝐸 [b𝑡b𝑠] = 0, if 𝑡 ≠ 𝑠, and 𝐸 [b2𝑡 ] = 𝑉𝑡−Δ𝑡 (1 − 𝜌2)Δ𝑡.
An assumption is made that b𝑡 follows a normal distribution, thus:

b𝑡 ∼ 𝑁
(
0, 𝑉𝑡−Δ𝑡 (1 − 𝜌2)Δ𝑡

)
(4.1.37)

In this case, the pseudo log-likelihood function will be given as:

log 𝐿 (𝜌) = −
𝑛∑︁
𝑘=1

[
1

2
𝑙𝑜𝑔{𝑉𝑎𝑟 (b𝑘 )} +

1

2
𝑉𝑎𝑟−1(b𝑘 ){𝑏}2

]
(4.1.38)

where

𝑏 = 𝑙𝑛𝑆𝑡𝑘 − 𝑙𝑛𝑆𝑡𝑘−1 +
[
𝑟 − 1

2
𝑉𝑘−1 −

𝜌

[
^(\ −𝑉𝑘−1)

]
Δ𝑘 + 𝜌

[

(
𝑉𝑘 −𝑉𝑘−1

)
(4.1.39)

The estimate for 𝜌 can then be obtained by obtaining the derivative of equation 4.1.38 with
respect to 𝜌 and equating it to zero. The second derivative can be obtain to check that the
estimator is indeed a maximum point.

𝑏2 =

(
𝑙𝑛𝑆𝑡𝑘 − 𝑙𝑛𝑆𝑡𝑘−1 +

[
𝑟 − 1

2
𝑉𝑘−1 −

𝜌

[
^(\ −𝑉𝑘−1)

]
Δ𝑘 + 𝜌

[

(
𝑉𝑘 −𝑉𝑘−1

) )2
=

(
𝑙𝑛𝑆𝑡𝑘 − 𝑙𝑛𝑆𝑡𝑘−1 + (𝑟 − 1

2
𝑉𝑘−1)Δ𝑘 −

𝜌

[
^(\ −𝑉𝑘−1)Δ𝑘 +

𝜌

[

(
𝑉𝑘 −𝑉𝑘−1

) )2
=

(
𝑙𝑛𝑆𝑡𝑘 − 𝑙𝑛𝑆𝑡𝑘−1 + (𝑟 − 1

2
𝑉𝑘−1)Δ𝑘 −

𝜌

[

[
^(\ −𝑉𝑘−1)Δ𝑘 −

(
𝑉𝑘 −𝑉𝑘−1

) ] )2
=

(
𝑙𝑛𝑆𝑡𝑘 − 𝑙𝑛𝑆𝑡𝑘−1 + (𝑟 − 1

2
𝑉𝑘−1)Δ𝑘

)2
− 2

(
𝑙𝑛𝑆𝑡𝑘 − 𝑙𝑛𝑆𝑡𝑘−1 + (𝑟 − 1

2
𝑉𝑘−1)Δ𝑘

)
×

𝜌

[

[
^(\ −𝑉𝑘−1)Δ𝑘 −

(
𝑉𝑘 −𝑉𝑘−1

) ]
+

(
𝜌

[

)2 [
^(\ −𝑉𝑘−1)Δ𝑘 −

(
𝑉𝑘 −𝑉𝑘−1

) ]2
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𝜕

𝜕𝜌
log 𝐿 (𝜌) = − 𝜕

𝜕𝜌

𝑛∑︁
𝑘=1

[
1

2
𝑙𝑜𝑔{𝑉𝑎𝑟 (b𝑘 )} +

1

2
𝑉𝑎𝑟−1(b𝑡){𝑏}2

]
= − 𝜕

𝜕𝜌

𝑛∑︁
𝑘=1

1

2
𝑙𝑜𝑔{𝑉𝑎𝑟 (b𝑘 )} −

𝜕

𝜕𝜌

𝑛∑︁
𝑘=1

1

2
𝑉𝑎𝑟−1(b𝑡){𝑏}2

= − 𝜕

𝜕𝜌

𝑛∑︁
𝑘=1

1

2
𝑉𝑎𝑟−1(b𝑘 ){𝑏}2

= −
𝑛∑︁
𝑘=1

1

2
𝑉𝑎𝑟−1(b𝑘 )

𝜕

𝜕𝜌
{𝑏}2

𝜕

𝜕𝜌
log 𝐿 (𝜌) = −

𝑛∑︁
𝑘=1

1

2
𝑉𝑎𝑟−1(b𝑘 )

𝜕

𝜕𝜌

[(
𝑙𝑛𝑆𝑡𝑘 − 𝑙𝑛𝑆𝑡𝑘−1 + (𝑟 − 1

2
𝑉𝑘−1)Δ𝑘

)2
− 2

(
𝑙𝑛𝑆𝑡𝑘 − 𝑙𝑛𝑆𝑡𝑘−1 + (𝑟 − 1

2
𝑉𝑘−1)Δ𝑘

)
𝜌

[

[
^(\ −𝑉𝑘−1)Δ𝑘 −

(
𝑉𝑘 −𝑉𝑘−1

) ]
+

(
𝜌

[

)2 [
^(\ −𝑉𝑘−1)Δ𝑘 −

(
𝑉𝑘 −𝑉𝑘−1

) ]2]
= −

𝑛∑︁
𝑘=1

1

2
𝑉𝑎𝑟−1(b𝑘 )

[
𝜕

𝜕𝜌

(
𝑙𝑛𝑆𝑡𝑘 − 𝑙𝑛𝑆𝑡𝑘−1 + (𝑟 − 1

2
𝑉𝑘−1)Δ𝑘

)2
− 2

𝜕

𝜕𝜌

(
𝑙𝑛𝑆𝑡𝑘 − 𝑙𝑛𝑆𝑡𝑘−1 + (𝑟 − 1

2
𝑉𝑘−1)Δ𝑘

)
𝜌

[

[
^(\ −𝑉𝑘−1)Δ𝑘 −

(
𝑉𝑘 −𝑉𝑘−1

) ]
+ 𝜕

𝜕𝜌

(
𝜌

[

)2 [
^(\ −𝑉𝑘−1)Δ𝑘 −

(
𝑉𝑘 −𝑉𝑘−1

) ]2]
= −

𝑛∑︁
𝑘=1

1

2
𝑉𝑎𝑟−1(b𝑘 )

[
− 2

(
𝑙𝑛𝑆𝑡𝑘 − 𝑙𝑛𝑆𝑡𝑘−1 + (𝑟 − 1

2
𝑉𝑘−1)Δ𝑘

)
×

1

[

[
^(\ −𝑉𝑘−1)Δ𝑘 −

(
𝑉𝑘 −𝑉𝑘−1

) ]
+

(
2𝜌

[2

) [
^(\ −𝑉𝑘−1)Δ𝑘 −

(
𝑉𝑘 −𝑉𝑘−1

) ]2]
Equating the derivative of the log-likelihood with respect to 𝜌 to zero and solving for 𝜌:

𝜕

𝜕𝜌
log 𝐿 (𝜌) = 0
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−
𝑛∑︁
𝑘=1

1

2
𝑉𝑎𝑟−1(b𝑘 )

[
− 2

(
𝑙𝑛𝑆𝑡𝑘 − 𝑙𝑛𝑆𝑡𝑘−1 + (𝑟 − 1

2
𝑉𝑘−1)Δ𝑘

)
1

[

[
^(\ −𝑉𝑘−1)Δ𝑘 −

(
𝑉𝑘 −𝑉𝑘−1

) ]
+
(
2𝜌

[2

) [
^(\ −𝑉𝑘−1)Δ𝑘 −

(
𝑉𝑘 −𝑉𝑘−1

) ]2]
= 0

[
− 2

𝑛∑︁
𝑘=1

1

2
𝑉𝑎𝑟−1(b𝑘 )

(
𝑙𝑛𝑆𝑡𝑘 − 𝑙𝑛𝑆𝑡𝑘−1 + (𝑟 − 1

2
𝑉𝑘−1)Δ𝑘

)
1

[

[
^(\ −𝑉𝑘−1)Δ𝑘 −

(
𝑉𝑘 −𝑉𝑘−1

) ]
+

(
2𝜌

[2

) 𝑛∑︁
𝑘=1

1

2
𝑉𝑎𝑟−1(b𝑘 )

[
^(\ −𝑉𝑘−1)Δ𝑘 −

(
𝑉𝑘 −𝑉𝑘−1

) ]2]
= 0

𝜌

𝑛∑︁
𝑘=1

𝑉𝑎𝑟−1(b𝑘 )
[
^(\ −𝑉𝑘−1)Δ𝑘 −

(
𝑉𝑘 −𝑉𝑘−1

) ]2
= − [

𝑛∑︁
𝑘=1

𝑉𝑎𝑟−1(b𝑘 )
(
𝑙𝑛𝑆𝑡𝑘 − 𝑙𝑛𝑆𝑡𝑘−1 + (𝑟 − 1

2
𝑉𝑘−1)Δ𝑘

) (
^(\ −𝑉𝑘−1)Δ𝑘 −

(
𝑉𝑘 −𝑉𝑘−1

) )

𝜌 =

−[∑𝑛
𝑘=1𝑉𝑎𝑟

−1(b𝑘 )
(
𝑙𝑛𝑆𝑡𝑘 − 𝑙𝑛𝑆𝑡𝑘−1 + (𝑟 − 1

2𝑉𝑘−1)Δ𝑘
) (
^(\ −𝑉𝑘−1)Δ𝑘 −

(
𝑉𝑘 −𝑉𝑘−1

) )
∑𝑛
𝑘=1𝑉𝑎𝑟

−1(b𝑘 )
[
^(\ −𝑉𝑘−1)Δ𝑘 −

(
𝑉𝑘 −𝑉𝑘−1

) ]2
(4.1.40)

thus, an estimate of 𝜌 can be obtained from equation 4.1.40.

4.1.3. Method of moments
The method of moments can also be used to estimate parameters in the information-based
asset pricing model.
The log 𝑥𝑡𝑘 where 𝑥𝑡𝑘 is as defined in 4.1.1 are assumed to be independent of each other and
denote the log of the ratio of the underlying asset prices.
Given that there are 𝑁 observations, the first sample moment which denotes the sample
mean is given as:

𝑚1 =
1

𝑁

𝑁∑︁
𝑘=1

log 𝑥𝑡𝑘 (4.1.41)
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Similarly, the second sample moment is given as:

𝑚2 =
1

𝑁

𝑁∑︁
𝑘=1

(
log 𝑥𝑡𝑘

)2 (4.1.42)

Suppose that `∗1 and `∗2 denote the first and second moments respectively for the BS-BHM
model. Using equation 4.1.10, it follows that:

`∗1 = 𝐸 [log 𝑥𝑡𝑘 ]

= 𝑟Δ𝑡 − 1

2
𝑣2𝑇 + 1

2

𝑣
√
𝑇

𝛾2𝜏 + 1
(4.1.43)

and

`∗2 = 𝐸 [log 𝑥𝑡𝑘 ]
= 𝑉𝑎𝑟 [log 𝑥𝑡𝑘 ] +

(
𝐸 [log 𝑥𝑡𝑘 ]

)2
=

(
𝛾𝜏𝑣

√
𝑇

Δ𝑡 (𝛾2𝜏 + 1)

)2 (
𝛾2Δ𝑡2 + Δ𝑡 (𝑇 − Δ𝑡)

𝑇

)
+

(
𝑟Δ𝑡 − 1

2
𝑣2𝑇 + 1

2

𝑣
√
𝑇

𝛾2𝜏 + 1

)2
(4.1.44)

The next step is to equate the sample moments to the moments from the BS-BHM model
as follows:

𝑚1 = `
∗
1

𝑚1 = 𝑟Δ𝑡 − 1

2
𝑣2𝑇 + 1

2

𝑣
√
𝑇

𝛾2𝜏 + 1
(4.1.45)

Making 𝑣2 to be the subject:

𝑣2 =
2(𝑚1 − 𝑟Δ𝑡)

𝑇
− 𝑣

√
𝑇

(𝛾2𝜏 + 1)𝑇
(4.1.46)
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Similarly:

𝑚2 = `
∗
2

=

(
𝛾𝜏𝑣

√
𝑇

Δ𝑡 (𝛾2𝜏 + 1)

)2 (
𝛾2Δ𝑡2 + Δ𝑡 (𝑇 − Δ𝑡)

𝑇

)
+

(
𝑟Δ𝑡 − 1

2
𝑣2𝑇 + 1

2

𝑣
√
𝑇

𝛾2𝜏 + 1

)2
(4.1.47)

=

(
𝛾𝜏𝑣

√
𝑇

Δ𝑡 (𝛾2𝜏 + 1)

)2 (
𝛾2Δ𝑡2 + Δ𝑡 (𝑇 − Δ𝑡)

𝑇

)
+ 𝑚2

1

𝑣2 =
(𝑚2 − 𝑚2

1)Δ𝑡 (𝛾
2𝜏 + 1)2

𝛾2𝜏2(𝛾2Δ𝑡𝑇 + (𝑇 − Δ𝑡))
(4.1.48)

Equating equation 4.1.55 and equation 4.1.56 yields:

2(𝑚1 − 𝑟Δ𝑡)
𝑇

− 𝑣
√
𝑇

(𝛾2𝜏 + 1)𝑇
=

(𝑚2 − 𝑚2
1)Δ𝑡 (𝛾

2𝜏 + 1)2

𝛾2𝜏2(𝛾2Δ𝑡𝑇 + (𝑇 − Δ𝑡))
(4.1.49)

Making 𝑣 to be the subject:

𝑣 =
(𝛾2𝜏 + 1)𝑇

√
𝑇

[
2(𝑚1 − 𝑟Δ𝑡)

𝑇
−

(𝑚2 − 𝑚2
1)Δ𝑡 (𝛾

2𝜏 + 1)2

𝛾2𝜏2(𝛾2Δ𝑡𝑇 + (𝑇 − Δ𝑡))

]
(4.1.50)

Suppose that `1 and `2 denote the first and second moments respectively for the BS-BHM
updated model. Using equation 4.1.21, it follows that:

`1 = 𝐸 [log 𝑥𝑡𝑘 ]

= 𝑟Δ𝑡 − 1

2

𝛾2𝜏

𝛾2𝜏 + 1
𝑣2𝑇 (4.1.51)

and

`2 = 𝐸 [log 𝑥𝑡𝑘 ]
= 𝑉𝑎𝑟 [log 𝑥𝑡𝑘 ] +

(
𝐸 [log 𝑥𝑡𝑘 ]

)2
=

(
𝛾𝜏𝑣

√
𝑇

Δ𝑡 (𝛾2𝜏 + 1)

)2 (
𝛾2Δ𝑡2 + Δ𝑡 (𝑇 − Δ𝑡)

𝑇

)
+

(
𝑟Δ𝑡 − 1

2

𝛾2𝜏

𝛾2𝜏 + 1
𝑣2𝑇

)2
(4.1.52)

The next step is to equate the sample moments to the moments from the BS-BHM updated
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model as follows:

𝑚1 = `1

𝑚1 = 𝑟Δ𝑡 −
1

2

𝛾2𝜏

𝛾2𝜏 + 1
𝑣2𝑇 (4.1.53)

Making 𝑣2 to be the subject:

𝑣2 =
2(𝑟Δ𝑡 − 𝑚1) (𝛾2𝜏 + 1)

𝛾2𝜏𝑇
(4.1.54)

𝑣2 =
2(𝑟Δ𝑡 − 𝑚1)

𝑇
+ 2(𝑟Δ𝑡 − 𝑚1)

𝛾2𝜏𝑇
(4.1.55)

Similarly:

𝑚2 = `2

=

(
𝛾𝜏𝑣

√
𝑇

Δ𝑡 (𝛾2𝜏 + 1)

)2 (
𝛾2Δ𝑡2 + Δ𝑡 (𝑇 − Δ𝑡)

𝑇

)
+

(
𝑟Δ𝑡 − 1

2

𝛾2𝜏

𝛾2𝜏 + 1
𝑣2𝑇

)2
=

(
𝛾𝜏𝑣

√
𝑇

Δ𝑡 (𝛾2𝜏 + 1)

)2 (
𝛾2Δ𝑡2 + Δ𝑡 (𝑇 − Δ𝑡)

𝑇

)
+ 𝑚2

1

𝑣2 =
(𝑚2 − 𝑚2

1)Δ𝑡 (𝛾
2𝜏 + 1)2

𝛾2𝜏2(𝛾2Δ𝑡𝑇 + (𝑇 − Δ𝑡))
(4.1.56)

Equating equation 4.1.55 and equation 4.1.56 yields:

2(𝑟Δ𝑡 − 𝑚1) (𝛾2𝜏 + 1)
𝛾2𝜏𝑇

=
(𝑚2 − 𝑚2

1)Δ𝑡 (𝛾
2𝜏 + 1)2

𝛾2𝜏2(𝛾2Δ𝑡𝑇 + (𝑇 − Δ𝑡))
2(𝑟Δ𝑡 − 𝑚1)

𝑇
=

(𝑚2 − 𝑚2
1)Δ𝑡 (𝛾

2𝜏 + 1)
𝜏(𝛾2Δ𝑡𝑇 + (𝑇 − Δ𝑡))

Making 𝛾2 to be the subject:

2𝜏(𝑟Δ𝑡 − 𝑚1) (𝛾2Δ𝑡𝑇 + (𝑇 − Δ𝑡)) = Δ𝑡𝑇 (𝑚2 − 𝑚2
1) (𝛾

2𝜏 + 1)
2𝜏𝛾2Δ𝑡𝑇 (𝑟Δ𝑡 − 𝑚1) + 2𝜏(𝑟Δ𝑡 − 𝑚1) (𝑇 − Δ𝑡) = Δ𝑡𝑇𝛾2𝜏(𝑚2 − 𝑚2

1) + Δ𝑡𝑇 (𝑚2 − 𝑚2
1)

𝛾2 =
Δ𝑡𝑇 (𝑚2 − 𝑚2

1) − 2𝜏(𝑟Δ𝑡 − 𝑚1) (𝑇 − Δ𝑡)
2𝜏Δ𝑡𝑇 (𝑟Δ𝑡 − 𝑚1) − Δ𝑡𝑇𝜏(𝑚2 − 𝑚2

1)
(4.1.57)
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Thus:

𝛾 =

√︄
Δ𝑡𝑇 (𝑚2 − 𝑚2

1) + 2𝜏(𝑟Δ𝑡 − 𝑚1) (𝑇 − Δ𝑡)
2𝜏Δ𝑡𝑇 (𝑟𝑡 − 𝑚1) − Δ𝑡𝑇𝜏(𝑚2 − 𝑚2

1)
(4.1.58)

Substituting equation 4.1.57 into equation 4.1.55, an estimate for 𝑣 can be obtained as
follows:

𝑣2 =
2(𝑟Δ𝑡 − 𝑚1)

𝑇
+
2(𝑟Δ𝑡 − 𝑚1)

[
2Δ𝑡 (𝑟Δ𝑡 − 𝑚1) − Δ𝑡 (𝑚2 − 𝑚2

1)
]

Δ𝑡𝑇 (𝑚2 − 𝑚2
1) + 2𝜏(𝑟Δ𝑡 − 𝑚1) (𝑇 − Δ𝑡)

(4.1.59)

Thus:

𝑣 =

√√
2(𝑟Δ𝑡 − 𝑚1)

𝑇
+
2(𝑟Δ𝑡 − 𝑚1)

[
2Δ𝑡 (𝑟Δ𝑡 − 𝑚1) − Δ𝑡 (𝑚2 − 𝑚2

1)
]

Δ𝑡𝑇 (𝑚2 − 𝑚2
1) + 2𝜏(𝑟Δ𝑡 − 𝑚1) (𝑇 − Δ𝑡)

(4.1.60)

4.1.4. Measurement of parameter sensitivity
An option’s delta measures the variation in the price of an option with respect to changes
in the underlying asset assuming that the other parameters are unchanged at that time. It is
defined as follows:

𝑑𝑒𝑙𝑡𝑎 =
𝜕 𝑓

𝜕𝑆

where 𝑓 is a function denoting the option price and 𝑆 denotes the underlying asset price.
For the Black-Scholes model, it is given as:

𝑑𝑒𝑙𝑡𝑎 = Φ(𝑑1)

Proposition 4.1. A European call option’s delta under the BS-BHM model is given as
follows:

𝑑𝑒𝑙𝑡𝑎 = 𝑒𝜑+
1
2 𝛿

2

[
Φ(𝑑1)) +

1

𝛿
Φ

′ (𝑑1)
]
+ 𝐾

𝛿𝑆
Φ

′ (−𝑑2) (4.1.61)
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Proof. For the BS-BHM model, delta is computed as follows:

𝑑𝑒𝑙𝑡𝑎 =
𝜕 (𝑆𝑒𝜑+ 1

2 𝛿
2
Φ(𝑑1) − 𝐾Φ(−𝑑2))
𝜕𝑆

=
𝜕 (𝑆𝑒𝜑+ 1

2 𝛿
2
Φ(𝑑1))

𝜕𝑆
− 𝜕 (𝐾Φ(−𝑑2))

𝜕𝑆

= 𝑒𝜑+
1
2 𝛿

2 𝜕 (𝑆Φ(𝑑1))
𝜕𝑆

− 𝐾 𝜕 (Φ(−𝑑2))
𝜕𝑆

= 𝑒𝜑+
1
2 𝛿

2

[
Φ(𝑑1))

𝜕𝑆

𝜕𝑆
+ 𝑆 𝜕 (Φ(𝑑1))

𝜕𝑆

]
− 𝐾 𝜕 (Φ(−𝑑2))

𝜕𝑆

= 𝑒𝜑+
1
2 𝛿

2

[
Φ(𝑑1)) + 𝑆Φ

′ (𝑑1)
𝜕𝑑1

𝜕𝑆

]
+ 𝐾Φ′ (−𝑑2)

𝜕 (𝑑2)
𝜕𝑆

(4.1.62)

The partial derivative of 𝑑1 with respect to 𝑆 is given by:

𝜕𝑑1

𝜕𝑆
=
𝜕 ( log

(
𝑆
𝐾

)
+𝜑

𝛿
+ 𝛿)

𝜕𝑆

=
𝜕 ( log

(
𝑆
𝐾

)
+𝜑

𝛿
)

𝜕𝑆

=
1

𝛿

𝜕 (log
(
𝑆
𝐾

)
)

𝜕𝑆

=
1

𝛿𝑆
(4.1.63)

Substituting for 𝜕𝑑1
𝜕𝑆

as given in equation 4.1.63 into equation 4.1.62 leads to:

𝑑𝑒𝑙𝑡𝑎 = 𝑒𝜑+
1
2 𝛿

2

[
Φ(𝑑1)) +

1

𝛿
Φ

′ (𝑑1)
]
+ 𝐾

𝛿𝑆
Φ

′ (−𝑑2) (4.1.64)

An option’s gamma measures the rate of variation in delta with respect to changes in the
underlying asset assuming that the other parameters are unchanged at that time.
It is useful in assessing delta stability, which can be used to determine the probability of an
option attaining the strike price value at expiry and is given as follows:

𝑔𝑎𝑚𝑚𝑎 =
𝜕2 𝑓

𝜕𝑆2

For the Black-Scholes model, it is given as:

𝑔𝑎𝑚𝑚𝑎 =
Φ(𝑑1)

𝜎𝑆
√
𝑇 − 𝑡
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Proposition 4.2. A European call option’s gamma under the BS-BHM model is given as
follows:

𝑔𝑎𝑚𝑚𝑎 = 𝑒𝜑+
1
2 𝛿

2 1

𝛿𝑆

[
Φ

′ (𝑑1) +
1

𝛿
Φ

′′ (𝑑1)
]
− 𝐾

𝛿𝑆2

[
Φ

′ (−𝑑2)
)
+ 1

𝛿
Φ

′′ (−𝑑2)
]

(4.1.65)

Proof. For the BS-BHM model, gamma is computed as follows:

𝑔𝑎𝑚𝑚𝑎 =
𝜕2(𝑆𝑒𝜑+ 1

2 𝛿
2
Φ(𝑑1) − 𝐾Φ(−𝑑2))
𝜕𝑆2

=
𝜕
(
𝑒𝜑+

1
2 𝛿

2 [
Φ(𝑑1)) + 1

𝛿
Φ

′ (𝑑1)
]
+ 𝐾
𝛿𝑆
Φ

′ (−𝑑2)
)

𝜕𝑆

=
𝜕
(
𝑒𝜑+

1
2 𝛿

2 [
Φ(𝑑1)) + 1

𝛿
Φ

′ (𝑑1)
]

𝜕𝑆
+
𝜕
(
𝐾
𝛿𝑆
Φ

′ (−𝑑2)
)

𝜕𝑆

= 𝑒𝜑+
1
2 𝛿

2 𝜕
( [
Φ(𝑑1)) + 1

𝛿
Φ

′ (𝑑1)
]

𝜕𝑆
+ 𝐾
𝛿

𝜕
( 1
𝑆
Φ

′ (−𝑑2)
)

𝜕𝑆

= 𝑒𝜑+
1
2 𝛿

2

[
𝜕
(
Φ(𝑑1))
𝜕𝑆

+ 1

𝛿

𝜕
(
Φ

′ (𝑑1)
𝜕𝑆

]
+ 𝐾
𝛿

[
Φ

′ (−𝑑2)
) 𝜕 1

𝑆

𝜕𝑆
+ 1

𝑆

𝜕
(
Φ

′ (−𝑑2)
)

𝜕𝑆

]
= 𝑒𝜑+

1
2 𝛿

2

[
Φ

′ (𝑑1)
𝜕𝑑1

𝜕𝑆
+ 1

𝛿
Φ

′′ (𝑑1)
𝜕𝑑1

𝜕𝑆

]
− 𝐾

𝛿

[
Φ

′ (−𝑑2)
) 1
𝑆2

+ 1

𝑆
Φ

′′ (−𝑑2)
𝜕𝑑2

𝜕𝑆

]
= 𝑒𝜑+

1
2 𝛿

2

[
Φ

′ (𝑑1) +
1

𝛿
Φ

′′ (𝑑1)
]
𝜕𝑑1

𝜕𝑆
− 𝐾

𝛿

[
Φ

′ (−𝑑2)
) 1
𝑆2

+ 1

𝑆
Φ

′′ (−𝑑2)
𝜕𝑑1

𝜕𝑆

]
= 𝑒𝜑+

1
2 𝛿

2 1

𝛿𝑆

[
Φ

′ (𝑑1) +
1

𝛿
Φ

′′ (𝑑1)
]
− 𝐾

𝛿𝑆2

[
Φ

′ (−𝑑2)
)
+ 1

𝛿
Φ

′′ (−𝑑2)
]

(4.1.66)

Equation 4.1.66 gives the value for gamma for the BS-BHM information-based model.
The likelihood of variations in implied volatility is measured by vega. Vega measures
the rate of variation in the asset with respect to changes in the assumed level of volatility
assuming that the other parameters are unchanged at that time. Higher volatility results in
options being more expensive because at some point there is a greater chance of reaching
the strike price. It is defined as follows:

𝑣𝑒𝑔𝑎 =
𝜕 𝑓

𝜕𝜎

For the Black-Scholes model, it is given as:

𝑣𝑒𝑔𝑎 = 𝑆
√
𝑇 − 𝑡Φ(𝑑1)

Proposition 4.3. A European call option’s vega under the BS-BHM model is given as
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follows:

𝑣𝑒𝑔𝑎 = (𝑆 + 𝐾)
[
𝑒𝜑+

1
2 𝛿

2 𝜕Φ(𝑑1)
𝜕𝛾

+Φ(𝑑1)𝑒𝜑+
1
2 𝛿

2

[
𝜏𝑣

√
𝑇

𝑡

√︄(
𝛾2𝑡2 + 𝑡 (𝑇 − 𝑡)

𝑇

) [(
2𝛾2

𝛾2𝜏 + 1

)−2
+

(
1

𝛾2𝜏 + 1

)]
+

(
𝛾2𝑡𝜏𝑣

√
𝑇

(𝛾2𝜏 + 1)

) (
𝛾2𝑡2 + 𝑡 (𝑇 − 𝑡)

𝑇

)− 1
2

− 2𝛾𝑣
√
𝑇

(
1

𝛾2𝜏 + 1

)2] ]
(4.1.67)

Proof. For the information-based model, the parameter 𝛾 is seen to give the volatility. This
implies, to compute the vega for the information-based model, a partial derivative of the
price is obtained with respect to 𝛾 as follows:

𝑣𝑒𝑔𝑎 =
𝜕 𝑓

𝜕𝛾

=
𝜕 (𝑆𝑒𝜑+ 1

2 𝛿
2
Φ(𝑑1) − 𝐾Φ(−𝑑2))
𝜕𝛾

=
𝜕𝑆𝑒𝜑+

1
2 𝛿

2
Φ(𝑑1)

𝜕𝛾
− 𝜕 (𝐾Φ(−𝑑2))

𝜕𝛾

= 𝑆
𝜕𝑒𝜑+

1
2 𝛿

2
Φ(𝑑1)

𝜕𝛾
− 𝐾 𝜕Φ(−𝑑2)

𝜕𝛾
(4.1.68)

𝜕𝑒𝜑+
1
2 𝛿

2
Φ(𝑑1)

𝜕𝛾
= 𝑒𝜑+

1
2 𝛿

2 𝜕Φ(𝑑1)
𝜕𝛾

+Φ(𝑑1)
𝜕𝑒𝜑+

1
2 𝛿

2

𝜕𝛾
(4.1.69)

𝜕Φ(𝑑1)
𝜕𝛾

= Φ(𝑑1)
𝜕𝑑1

𝜕𝛾
(4.1.70)

𝜕𝑑1

𝜕𝛾
=

𝜕

(
log

(
𝑆
𝐾

)
+𝜑

𝛿
+ 𝛿

)
𝜕𝛾

=
𝜕 ( 𝜑

𝛿
+ 𝛿)
𝜕𝛾

=
𝜕 ( 𝜑

𝛿
)

𝜕𝛾
+ 𝜕 (𝛿)
𝜕𝛾

(4.1.71)

𝜕 ( 𝜑
𝛿
)

𝜕𝛾
=
1

𝛿

𝜕𝜑

𝜕𝛾
+ 𝜑

𝜕 ( 1
𝛿
)

𝜕𝛾
(4.1.72)
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𝜕𝜑

𝜕𝛾
=

𝜕

(
𝑟𝑡 − 1

2𝑣
2𝑇 + 1

2
𝑣
√
𝑇

𝛾2𝜏+1

)
𝜕𝛾

=

𝜕

(
1
2
𝑣
√
𝑇

𝛾2𝜏+1

)
𝜕𝛾

=
1

2
𝑣
√
𝑇

𝜕

(
1

𝛾2𝜏+1

)
𝜕𝛾

= −2𝛾𝑣
√
𝑇

(
1

𝛾2𝜏 + 1

)2
(4.1.73)

𝜕 ( 1
𝛿
)

𝜕𝛾
=

𝜕

[(
𝛾𝜏𝑣

√
𝑇

𝑡 (𝛾2𝜏+1)

)√︄(
𝛾2𝑡2 + 𝑡 (𝑇−𝑡)

𝑇

)]−1
𝜕𝛾

= (−1)
[(

𝛾𝜏𝑣
√
𝑇

𝑡 (𝛾2𝜏 + 1)

)√︄(
𝛾2𝑡2 + 𝑡 (𝑇 − 𝑡)

𝑇

)]−2 𝜕 ( 𝛾𝜏𝑣
√
𝑇

𝑡 (𝛾2𝜏+1)

)√︄(
𝛾2𝑡2 + 𝑡 (𝑇−𝑡)

𝑇

)
𝜕𝛾

(4.1.74)

𝜕

(
𝛾𝜏𝑣

√
𝑇

𝑡 (𝛾2𝜏+1)

)√︄(
𝛾2𝑡2 + 𝑡 (𝑇−𝑡)

𝑇

)
𝜕𝛾

=

√︄(
𝛾2𝑡2 + 𝑡 (𝑇 − 𝑡)

𝑇

) 𝜕 ( 𝛾𝜏𝑣
√
𝑇

𝑡 (𝛾2𝜏+1)

)
𝜕𝛾

+
(
𝛾𝜏𝑣

√
𝑇

𝑡 (𝛾2𝜏 + 1)

) 𝜕√︄(
𝛾2𝑡2 + 𝑡 (𝑇−𝑡)

𝑇

)
𝜕𝛾

(4.1.75)

𝜕

(
𝛾𝜏𝑣

√
𝑇

𝑡 (𝛾2𝜏+1)

)
𝜕𝛾

=
𝜏𝑣

√
𝑇

𝑡

𝜕

(
𝛾

𝛾2𝜏+1

)
𝜕𝛾

(4.1.76)

𝜕

(
𝛾

𝛾2𝜏+1

)
𝜕𝛾

= 𝛾

𝜕

(
1

𝛾2𝜏+1

)
𝜕𝛾

+
(

1

𝛾2𝜏 + 1

)
𝜕𝛾

𝜕𝛾

= −
(

2𝛾2

𝛾2𝜏 + 1

)−2
+

(
1

𝛾2𝜏 + 1

)
(4.1.77)
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Substituting equation 4.1.77 into equation 4.1.76 gives:

𝜕

(
𝛾𝜏𝑣

√
𝑇

𝑡 (𝛾2𝜏+1)

)
𝜕𝛾

=
𝜏𝑣

√
𝑇

𝑡

[(
2𝛾2

𝛾2𝜏 + 1

)−2
+

(
1

𝛾2𝜏 + 1

)]
(4.1.78)

𝜕

√︄(
𝛾2𝑡2 + 𝑡 (𝑇−𝑡)

𝑇

)
𝜕𝛾

= 𝛾𝑡2
(
𝛾2𝑡2 + 𝑡 (𝑇 − 𝑡)

𝑇

)− 1
2

(4.1.79)

Substituting equation 4.1.79 and equation 4.1.78 into equation 4.1.75 leads to:

𝜕

(
𝛾𝜏𝑣

√
𝑇

𝑡 (𝛾2𝜏+1)

)√︄(
𝛾2𝑡2 + 𝑡 (𝑇−𝑡)

𝑇

)
𝜕𝛾

=
𝜏𝑣

√
𝑇

𝑡

√︄(
𝛾2𝑡2 + 𝑡 (𝑇 − 𝑡)

𝑇

) [(
2𝛾2

𝛾2𝜏 + 1

)−2
+

(
1

𝛾2𝜏 + 1

)]
+

(
𝛾2𝑡𝜏𝑣

√
𝑇

(𝛾2𝜏 + 1)

) (
𝛾2𝑡2 + 𝑡 (𝑇 − 𝑡)

𝑇

)− 1
2

(4.1.80)

Substituting equation 4.1.80 into equation 4.1.74 gives:

𝜕 ( 1
𝛿
)

𝜕𝛾
= (−1)

(
𝛾𝜏𝑣

√
𝑇

𝑡 (𝛾2𝜏 + 1)

)−2 [
𝜏𝑣

√
𝑇

𝑡

(
𝛾2𝑡2 + 𝑡 (𝑇 − 𝑡)

𝑇

)− 1
2
( ( 2𝛾2

𝛾2𝜏 + 1

)−2 + ( 1

𝛾2𝜏 + 1

) )
+

(
𝛾2𝑡𝜏𝑣

√
𝑇

(𝛾2𝜏 + 1)

) (
𝛾2𝑡2 + 𝑡 (𝑇 − 𝑡)

𝑇

)−1 1
2
]

(4.1.81)

Substituting equation 4.1.71 into equation 4.1.70 gives:

𝜕Φ(𝑑1)
𝜕𝛾

= Φ(𝑑1)
(
𝜕 ( 𝜑

𝛿
)

𝜕𝛾
+ 𝜕 (𝛿)
𝜕𝛾

)
(4.1.82)

Substituting equation 4.1.72 into equation 4.1.82 gives:

𝜕Φ(𝑑1)
𝜕𝛾

= Φ(𝑑1)
[(
1

𝛿

𝜕𝜑

𝜕𝛾
+ 𝜑

𝜕 ( 1
𝛿
)

𝜕𝛾

)
+ 𝜕 (𝛿)
𝜕𝛾

]
(4.1.83)

Substituting equation 4.1.73 into equation 4.1.83 gives:

𝜕Φ(𝑑1)
𝜕𝛾

= Φ(𝑑1)
[(
−2𝛾𝑣

√
𝑇

𝛿

(
1

𝛾2𝜏 + 1

)2
+ 𝜑

𝜕 ( 1
𝛿
)

𝜕𝛾

)
+ 𝜕 (𝛿)
𝜕𝛾

]
(4.1.84)

69



Substituting equation 4.1.81 into equation 4.1.84 gives:

𝜕Φ(𝑑1)
𝜕𝛾

= Φ(𝑑1)
[(
−2𝛾𝑣

√
𝑇

𝛿

(
1

𝛾2𝜏 + 1

)2
−

(
𝛾𝜏𝑣

√
𝑇

𝑡 (𝛾2𝜏 + 1)

)−2 [
𝜏𝑣

√
𝑇

𝑡

(
𝛾2𝑡2 + 𝑡 (𝑇 − 𝑡)

𝑇

)− 1
2
( ( 2𝛾2

𝛾2𝜏 + 1

)−2 + ( 1

𝛾2𝜏 + 1

) )
+

(
𝛾2𝑡𝜏𝑣

√
𝑇

(𝛾2𝜏 + 1)

) (
𝛾2𝑡2 + 𝑡 (𝑇 − 𝑡)

𝑇

)−1 1
2
] )

+ 𝜕 (𝛿)
𝜕𝛾

]
(4.1.85)

𝜕𝛿

𝜕𝛾
=

𝜕

(
𝛾𝜏𝑣

√
𝑇

𝑡 (𝛾2𝜏+1)

)√︄(
𝛾2𝑡2 + 𝑡 (𝑇−𝑡)

𝑇

)
𝜕𝛾

(4.1.86)

Substituting equation 4.1.80 into equation 4.1.86 gives:

𝜕𝛿

𝜕𝛾
=
𝜏𝑣

√
𝑇

𝑡

√︄(
𝛾2𝑡2 + 𝑡 (𝑇 − 𝑡)

𝑇

) [(
2𝛾2

𝛾2𝜏 + 1

)−2
+

(
1

𝛾2𝜏 + 1

)]
+

(
𝛾2𝑡𝜏𝑣

√
𝑇

(𝛾2𝜏 + 1)

) (
𝛾2𝑡2 + 𝑡 (𝑇 − 𝑡)

𝑇

)− 1
2

(4.1.87)

Substituting equation 4.1.87 into equation 4.1.85 gives:

𝜕Φ(𝑑1)
𝜕𝛾

= Φ(𝑑1)
[(
−2𝛾𝑣

√
𝑇

𝛿

(
1

𝛾2𝜏 + 1

)2
−

(
𝛾𝜏𝑣

√
𝑇

𝑡 (𝛾2𝜏 + 1)

)−2 [
𝜏𝑣

√
𝑇

𝑡

(
𝛾2𝑡2 + 𝑡 (𝑇 − 𝑡)

𝑇

)− 1
2
( ( 2𝛾2

𝛾2𝜏 + 1

)−2 + ( 1

𝛾2𝜏 + 1

) )
+

(
𝛾2𝑡𝜏𝑣

√
𝑇

(𝛾2𝜏 + 1)

) (
𝛾2𝑡2 + 𝑡 (𝑇 − 𝑡)

𝑇

)−1 1
2
] )

+ 𝜏𝑣
√
𝑇

𝑡

√︄(
𝛾2𝑡2 + 𝑡 (𝑇 − 𝑡)

𝑇

) [(
2𝛾2

𝛾2𝜏 + 1

)−2
+

(
1

𝛾2𝜏 + 1

)]
+

(
𝛾2𝑡𝜏𝑣

√
𝑇

(𝛾2𝜏 + 1)

) (
𝛾2𝑡2 + 𝑡 (𝑇 − 𝑡)

𝑇

)− 1
2
]

(4.1.88)

𝜕𝑒𝜑+
1
2 𝛿

2

𝜕𝛾
= 𝑒𝜑+

1
2 𝛿

2 𝜕 (𝜑 + 1
2𝛿

2)
𝜕𝛾

= 𝑒𝜑+
1
2 𝛿

2

[
1

2

𝜕𝛿2

𝜕𝛾
+ 𝜕𝜑
𝜕𝛾

]
(4.1.89)
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𝜕𝛿2

𝜕𝛾
= 2

𝜏𝑣
√
𝑇

𝑡

√︄(
𝛾2𝑡2 + 𝑡 (𝑇 − 𝑡)

𝑇

) [(
2𝛾2

𝛾2𝜏 + 1

)−2
+

(
1

𝛾2𝜏 + 1

)]
+

(
𝛾2𝑡𝜏𝑣

√
𝑇

(𝛾2𝜏 + 1)

) (
𝛾2𝑡2 + 𝑡 (𝑇 − 𝑡)

𝑇

)− 1
2

(4.1.90)

Substituting equation 4.1.90 and equation 4.1.73 into equation 4.1.89 leads to:

𝜕𝑒𝜑+
1
2 𝛿

2

𝜕𝛾
= 𝑒𝜑+

1
2 𝛿

2

[
𝜏𝑣

√
𝑇

𝑡

√︄(
𝛾2𝑡2 + 𝑡 (𝑇 − 𝑡)

𝑇

) [(
2𝛾2

𝛾2𝜏 + 1

)−2
+

(
1

𝛾2𝜏 + 1

)]
+

(
𝛾2𝑡𝜏𝑣

√
𝑇

(𝛾2𝜏 + 1)

) (
𝛾2𝑡2 + 𝑡 (𝑇 − 𝑡)

𝑇

)− 1
2

− 2𝛾𝑣
√
𝑇

(
1

𝛾2𝜏 + 1

)2]
(4.1.91)

Substituting equation 4.1.91 and equation 4.1.73 into equation 4.1.88 leads to:

𝜕𝑒𝜑+
1
2 𝛿

2
Φ(𝑑1)

𝜕𝛾
= 𝑒𝜑+

1
2 𝛿

2 𝜕Φ(𝑑1)
𝜕𝛾

+Φ(𝑑1)𝑒𝜑+
1
2 𝛿

2

[
𝜏𝑣

√
𝑇

𝑡

√︄(
𝛾2𝑡2 + 𝑡 (𝑇 − 𝑡)

𝑇

) [(
2𝛾2

𝛾2𝜏 + 1

)−2
+

(
1

𝛾2𝜏 + 1

)]
+

(
𝛾2𝑡𝜏𝑣

√
𝑇

(𝛾2𝜏 + 1)

) (
𝛾2𝑡2 + 𝑡 (𝑇 − 𝑡)

𝑇

)− 1
2

− 2𝛾𝑣
√
𝑇

(
1

𝛾2𝜏 + 1

)2]
(4.1.92)

Thus:

𝑣𝑒𝑔𝑎 = (𝑆 + 𝐾)
[
𝑒𝜑+

1
2 𝛿

2 𝜕Φ(𝑑1)
𝜕𝛾

+Φ(𝑑1)𝑒𝜑+
1
2 𝛿

2

[
𝜏𝑣

√
𝑇

𝑡

√︄(
𝛾2𝑡2 + 𝑡 (𝑇 − 𝑡)

𝑇

) [(
2𝛾2

𝛾2𝜏 + 1

)−2
+

(
1

𝛾2𝜏 + 1

)]
+

(
𝛾2𝑡𝜏𝑣

√
𝑇

(𝛾2𝜏 + 1)

) (
𝛾2𝑡2 + 𝑡 (𝑇 − 𝑡)

𝑇

)− 1
2

− 2𝛾𝑣
√
𝑇

(
1

𝛾2𝜏 + 1

)2] ]
(4.1.93)

An option’s rho measures the rate of variation in the asset with respect to changes in the
risk-free rate of interest assuming that the other parameters are unchanged at that time. It
tests the effect of interest-rate fluctuations on the price of an option. Higher interest rates
usually cause call options to be more costly, all other factors being equal. It’s value is
obtained from:

𝑟ℎ𝑜 =
𝜕 𝑓

𝜕𝑟
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For the Black-Scholes model, it is given as:

𝑟ℎ𝑜 = 𝐾 (𝑇 − 𝑡)𝑒−𝑟 (𝑇−𝑡)𝑁 (𝑑2)

Proposition 4.4. A European call option’s rho under the BS-BHM model is as follows:

𝑟ℎ𝑜 = 𝑡𝑆𝑒𝜑+
1
2 𝛿

2

[
Φ(𝑑1) +

1

𝛿
Φ

′ (𝑑1)
]
+ 𝐾 𝑡

𝛿
Φ

′ (−𝑑2) (4.1.94)

Proof. For the BS-BHM model, rho is computed as follows:

𝑟ℎ𝑜 =
𝜕 (𝑆𝑒𝜑+ 1

2 𝛿
2
Φ(𝑑1) − 𝐾Φ(−𝑑2))

𝜕𝑟

=
𝜕𝑆𝑒𝜑+

1
2 𝛿

2
Φ(𝑑1)

𝜕𝑟
− 𝜕𝐾Φ(−𝑑2)

𝜕𝑟

= 𝑆𝑒
1
2 𝛿

2 𝜕𝑒𝜑Φ(𝑑1)
𝜕𝑟

− 𝐾 𝜕Φ(−𝑑2)
𝜕𝑟

= 𝑆𝑒
1
2 𝛿

2

[
Φ(𝑑1)

𝜕𝑒𝜑

𝜕𝑟
+ 𝑒𝜑 𝜕Φ(𝑑1)

𝜕𝑟

]
+ 𝐾Φ′ (−𝑑2)

𝜕𝑑2

𝜕𝑟

= 𝑆𝑒
1
2 𝛿

2

[
𝑒𝜑Φ(𝑑1)

𝜕𝜑

𝜕𝑟
+ 𝑒𝜑Φ′ (𝑑1)

𝜕𝑑1

𝜕𝑟

]
+ 𝐾Φ′ (−𝑑2)

𝜕𝑑1

𝜕𝑟

= 𝑆𝑒𝜑+
1
2 𝛿

2

[
Φ(𝑑1)

𝜕𝜑

𝜕𝑟
+Φ

′ (𝑑1)
𝜕𝑑1

𝜕𝑟

]
+ 𝐾Φ′ (−𝑑2)

𝜕𝑑1

𝜕𝑟
(4.1.95)

𝜕𝜑

𝜕𝑟
=

𝜕

(
𝑟𝑡 − 1

2𝑣
2𝑇 + 1

2
𝑣
√
𝑇

𝛾2𝜏+1

)
𝜕𝑟

= 𝑡 (4.1.96)

𝜕𝑑1

𝜕𝑟
=

𝜕

(
log

(
𝑆
𝐾

)
+𝜑

𝛿
+ 𝛿

)
𝜕𝑟

=

𝜕

(
log

(
𝑆
𝐾

)
+𝜑

𝛿

)
𝜕𝑟

=

𝜕

(
𝜑

𝛿

)
𝜕𝑟

=
1

𝛿

𝜕𝜑

𝜕𝑟

=
𝑡

𝛿
(4.1.97)
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Substituting equation 4.1.96 and equation 4.1.97 into equation 4.1.95 gives:

𝑟ℎ𝑜 = 𝑆𝑡𝑒𝜑+
1
2 𝛿

2

[
Φ(𝑑1) +

1

𝛿
Φ

′ (𝑑1)
]
+ 𝐾 𝑡

𝛿
Φ

′ (−𝑑2) (4.1.98)

Theta measures the rate of variation in the asset as time progresses assuming that the other
parameters are unchanged at that time. The probability of an option being profitable or
in-the-money decreases as time passes. It is defined as follows:

𝑡ℎ𝑒𝑡𝑎 =
𝜕 𝑓

𝜕𝑡

In this case, 𝑡 denotes the time that has elapsed since the start of the derivative contract.
For the Black-Scholes model, theta is given as follows:

𝑡ℎ𝑒𝑡𝑎 = −𝑆Φ(𝑑1)
𝜎

2
√
𝑇 − 𝑡

− 𝑟𝐾𝑒−𝑟 (𝑇−𝑡)Φ(𝑑2)

For the BS-BHM model:

𝑡ℎ𝑒𝑡𝑎 =
𝜕 (𝑆𝑒𝜑+ 1

2 𝛿
2
Φ(𝑑1) − 𝐾Φ(−𝑑2))

𝜕𝑡

=
𝜕 (𝑆𝑒𝜑+ 1

2 𝛿
2
Φ(𝑑1))

𝜕𝑡
− 𝜕 (𝐾Φ(−𝑑2))

𝜕𝑡

= 𝑆
𝜕 (𝑒𝜑+ 1

2 𝛿
2
Φ(𝑑1))

𝜕𝑡
− 𝐾 𝜕 (Φ(−𝑑2))

𝜕𝑡

= 𝑆

[
Φ(𝑑1)

𝜕 (𝑒𝜑+ 1
2 𝛿

2)
𝜕𝑡

+ 𝑒𝜑+ 1
2 𝛿

2 𝜕Φ(𝑑1)
𝜕𝑡

]
+ 𝐾Φ′ (−𝑑2)

𝜕𝑑2

𝜕𝑡

= 𝑆

[
Φ(𝑑1)

𝜕 (𝑒𝜑+ 1
2 𝛿

2)
𝜕𝑡

+ 𝑒𝜑+ 1
2 𝛿

2
Φ

′ (𝑑1)
𝜕𝑑1

𝜕𝑡

]
+ 𝐾Φ′ (−𝑑2)

𝜕𝑑1

𝜕𝑡

(4.1.99)
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4.2. Comparison of volatility in a stochastic volatility model vs volatility in an information-
based asset pricing model in a multivariate framework

This section makes use of non-linear filtering to extract volatility in the Heston model and
the information-based asset pricing model. The system of dynamic equations in the models
are non-linear. This makes it impossible to use linear filtering methods such as the Kalman
filter. The non-linear filtering methods used in this study are the extended Kalman filter and
the particle filter.

4.2.1. Preliminary concepts on non-linear filtering
The extended Kalman filter is an extension of the Kalman filter where Jacobian matrices
are used to linearise the system of dynamic equations.
The state transition equation is as follows:

𝑥𝑘 = 𝑓 (𝑥𝑘−1, 𝑏𝑘−1)

while the measurement equation is given as:

𝑦𝑘 = ℎ(𝑥𝑘 , 𝑐𝑘 )

The extended Kalman filter Jacobian matrices are:

𝐴 =
𝜕 𝑓𝑖

𝜕𝑥 𝑗
(𝑥𝑘−1, 0)

𝑊 =
𝜕 𝑓𝑖

𝜕𝑏 𝑗
(𝑥𝑘−1, 0)

𝐻 =
𝜕ℎ𝑖

𝜕𝑥 𝑗
(𝑥𝑘 , 0)

𝑉 =
𝜕ℎ𝑖

𝜕𝑐 𝑗
(𝑥𝑘 , 0)

The prediction error is given by:

𝑒𝑥𝑘 ≈ 𝑥𝑘 − 𝑥𝑘 , (4.2.1)

while the measurement error is:
𝑒𝑦𝑘 ≈ 𝑦𝑘 − 𝑦𝑘 , (4.2.2)
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Using equations 4.2.1 and 4.2.2, an estimate for 𝑥𝑘 is obtained by:

𝑥𝑘 = 𝑥𝑘 + 𝐾𝑘𝑒𝑦𝑘
= 𝑥𝑘 + 𝐾𝑘 (𝑦𝑘 − 𝑦𝑘 ) (4.2.3)

The particle filter which is based on monte carlo simulation is an approximate bayesian
filtering algorithm. It can be used where the system of dynamic equations is non-linear and
non-gaussian. The rationale underlying the particle filtering technique can be illustrated by
considering an integral of the form:∫

𝑔(𝑥)𝑝(𝑥)𝑑𝑥 = 𝐸 [𝑔(𝑥)] (4.2.4)

To evaluate the integral 4.2.4, an approximation can be made by simulating 𝑛 values,
𝑥 (1) , ..., 𝑥 (𝑛) from the density function 𝑝(𝑥) whose domain integration is performed. It may
be challenging to sample from 𝑝(𝑥) which leads to importance sampling where another
density function, in this case 𝑞(𝑥) is sampled from such that:∫

𝑔(𝑥)𝑝(𝑥)𝑑𝑥 =
∫

𝑔(𝑥) 𝑝(𝑥)
𝑞(𝑥) 𝑞(𝑥)𝑑𝑥

= 𝐸 [𝑔(𝑥)𝑤(𝑥)] (4.2.5)

where 𝑤(𝑥) = 𝑝(𝑥)
𝑞(𝑥) is referred to as a weight.

An approximation to equation 4.2.5 is made as follows:

𝐸 [𝑔(𝑥)𝑤(𝑥)] ≈ 1

𝑁

𝑁∑︁
𝑖=1

𝑔(𝑥 (𝑖))𝑤(𝑥 (𝑖)), (4.2.6)

For this approach to be valid, 𝑞(.) must have the same domain as 𝑝(.)
In most cases, the discrete state transition distribution, 𝑝(𝑥𝑘 |𝑥𝑘−1) is used as the importance
function because it is easy to draw particles from it. The generation of samples should be
done randomly. A better approach is to make use of the recent observations, 𝑦𝑘 since they
carry information about the state 𝑥𝑘 by taking the importance function as 𝑝(𝑥𝑘 |𝑥 (𝑖)𝑘−1, 𝑦𝑘 ).
These particles are then used to approximate the distribution of the unobserved states. At a
discrete time, 𝑘 , a sample of 𝑛 particles is given as follows:

𝑧
(1)
𝑘
, 𝑧

(2)
𝑘
, ..., 𝑧

(𝑛)
𝑘
.

The probability of a particle being sampled depends on the weight, 𝑤 (𝑖)
𝑘

it has been assigned.
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The unobservable state vector 𝑧𝑘 , is driven by noise denoted by 𝑚𝑘 and the observable
vector 𝑦𝑘 is driven by the observation noise denoted by 𝑛𝑘 .
The weight 𝑤 (𝑖)

𝑘
is obtained from:

�̂�
(𝑖)
𝑘

≈ 𝑤 (𝑖)
𝑘−1

𝑝
(
𝑦𝑘 |𝑧(𝑖)0:𝑘

)
𝑝
(
𝑧
(𝑖)
𝑘
|𝑧(𝑖)0:𝑘−1

)
𝑞
(
𝑧
(𝑖)
𝑘
|𝑧(𝑖)
𝑘−1, 𝑦𝑘

) (4.2.7)

The weights are then normalised at time 𝑘 as follows:

�̃�
(𝑖)
𝑘

=
�̂�

(𝑖)
𝑘∑𝑛

𝑙=1 �̂�
(𝑙)
𝑘

(4.2.8)

The unobserved state can then be obtained as follows:

�̂�𝑘 |𝑘 =
𝑛∑︁
𝑖=1

�̃�
(𝑖)
𝑘
𝑧
(𝑖)
𝑘

(4.2.9)

Numerous iterations are performed to approximate the state distributions based on the ran-
dom samples obtained from the set of random numbers used in the monte carlo simulation.
Particle degeneration can be observed when the effective sample size denoted by 𝑁𝑒 𝑓 𝑓 is
less than 𝑛

2 , when this occurs, the particles are resampled as follows:

𝑁𝑒 𝑓 𝑓 =
1∑𝑛

𝑗=1(�̃�
( 𝑗)
𝑘
)2

(4.2.10)

4.2.2. Non-linear filtering in the Heston model
The Brownian motion driving the variance process is correlated with the Brownian motion
driving the asset process in the Heston model. In order to remove correlation from the two
Brownian motions, cholesky decomposition is used.
Using the extended Kalman filter, the measurement equation is given as follows:

ln 𝑆𝑘 = ln 𝑆𝑘−1 +
(
` − 𝜌

[

)
Δ𝑘 + 𝜌

[
𝑉𝑘 +

[
𝜌

[
(^Δ𝑘 − 1) − 1

2
Δ𝑘

]
𝑉𝑘−1

+
√︁
1 − 𝜌2

√
Δ𝑘

√︁
𝑉𝑘−1𝑊𝑘−1

The state transition equations are given by the variance processes:(
𝑉𝑘

𝑉𝑘−1

)
=

(
^\Δ𝑘

0

)
+

(
1 − ^Δ𝑘 0

1 0

) (
𝑉𝑘−1

𝑉𝑘−2

)
+

(
[
√
Δ𝑘𝑉𝑘−1

0

)
𝑍𝑘−1
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The Heston model’s Jacobian matrices are given as:

𝐴 = 1 − ^Δ𝑘
𝑊 = 𝜎

√︁
𝑉𝑘−1

√
Δ𝑘

In order to compute 𝐻, two parameters, 𝑣1 =
√
𝑉0 and 𝑣2 =

√
\ are used giving the following

Jacobian matrices:
𝐻1 =

𝜕ℎ(𝑥𝑘 |𝑘−1, 0)
𝜕𝑣1

=
𝜕ℎ(𝑥𝑘 |𝑘−1, 0)

𝜕𝑉0
2
√︁
𝑉0

𝐻2 =
𝜕ℎ(𝑥𝑘 |𝑘−1, 0)

𝜕𝑣2
=
𝜕ℎ(𝑥𝑘 |𝑘−1, 0)

𝜕\
2
√
\

Substituting ℎ(𝑥𝑘 |𝑘−1, 0) with the Heston model option price leads to:

ℎ(𝑥𝑘 |𝑘−1, 0) = 𝑆𝑒−𝑞𝜏𝑃1 − 𝐾𝑒−𝑟𝜏𝑃2

This results in:
𝐻1 =

𝜕 (𝑆𝑒−𝑞𝜏𝑃1 − 𝐾𝑒−𝑟𝜏𝑃2)
𝜕𝑉0

2
√︁
𝑉0

= 𝑆𝑒−𝑞𝜏
𝜕𝑃1

𝜕𝑉0
2
√︁
𝑉0 − 𝐾𝑒−𝑟𝜏

𝜕𝑃2

𝜕𝑉0
2
√︁
𝑉0

where
𝜕𝑃 𝑗

𝜕𝑉0
=

1

𝜋

∫ ∞

0
𝑅𝑒

[
𝑒−𝑖𝜙 𝑙𝑛 𝐾 𝑓 𝑗 (𝜙; 𝑆𝑘 , 𝑉𝑘 )𝐵 𝑗 (𝜏, 𝜙)

𝑖𝜙

]
𝑑𝜙

and
𝐻2 =

𝜕 (𝑆𝑒−𝑞𝜏𝑃1 − 𝐾𝑒−𝑟𝜏𝑃2)
𝜕\

2
√
\

= 𝑆𝑒−𝑞𝜏
𝜕𝑃1

𝜕\
2
√
\ − 𝐾𝑒−𝑟𝜏 𝜕𝑃2

𝜕\
2
√
\

where
𝜕𝑃 𝑗

𝜕\
=

1

𝜋

∫ ∞

0
𝑅𝑒

[
𝑒−𝑖𝜙 𝑙𝑛 𝐾 𝑓 𝑗 (𝜙; 𝑆𝑘 , 𝑉𝑘 )𝜕𝐴 𝑗 (𝜏, 𝜙)/𝜕\

𝑖𝜙

]
𝑑𝜙

𝜕𝐴 𝑗 (𝜙, 𝜏)
𝜕\

=
^

𝜎2

[
(𝑏 𝑗 − 𝜌𝜎𝜙𝑖 + 𝑑 𝑗 )𝜏 − 2𝑙𝑛

(
1 − 𝑔 𝑗𝑒𝑑 𝑗𝜏

1 − 𝑔 𝑗

)]
In order to apply particle filtering to the Heston model, let 𝑆𝑡 denote the observed asset price
at time 𝑡 and 𝑦𝑡 = log

( 𝑆𝑡
𝑆0

)
. The system of dynamic equations given by equation 3.1.21 and

equation 3.1.22 are used to obtain the state space model to be used in non-linear filtering.
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Applying Ito’s lemma to equation 3.1.21 gives:

𝑑𝑦𝑡 =

(
` − 1

2
𝑉𝑡

)
𝑑𝑡 +

√︁
𝑉𝑡𝑑𝐵𝑡 (4.2.11)

This implies that:

𝑑𝐵𝑡 =
1

√
𝑉𝑡

(
𝑑𝑦𝑡 −

(
` − 1

2
𝑉𝑡

)
𝑑𝑡

)
(4.2.12)

The aim is to estimate the variance process 𝑉𝑡 , for each fixed 𝑡, based on the observations
{𝑦𝑠}0≤𝑠≤𝑡 .
Let:

𝑑𝑍𝑡 =
√︁
1 − 𝜌2𝑑𝑍𝑡 + 𝜌𝑑𝐵𝑡 (4.2.13)

Substituting for the value of 𝑑𝐵𝑡 in equation 4.2.13 from equation 4.2.12:

𝑑𝑍𝑡 =
√︁
1 − 𝜌2𝑑𝑍𝑡 +

𝜌
√
𝑉𝑡

(
𝑑𝑦𝑡 −

(
` − 1

2
𝑉𝑡

)
𝑑𝑡

)
(4.2.14)

where 𝑍𝑡 and 𝐵𝑡 are uncorrelated. Substituting 𝑑𝑍𝑡 in equation 3.1.22:

𝑑𝑉𝑡 = ^(\ −𝑉𝑡)𝑑𝑡 + [
√︁
𝑉𝑡

√︁
1 − 𝜌2𝑑𝑍𝑡 + 𝜌[

(
𝑑𝑦𝑡 −

(
` − 1

2
𝑉𝑡

)
𝑑𝑡

)
(4.2.15)

The Heston model is discretized to obtain it’s discrete-time representation so as to be able
to apply this filtering technique. Equation 4.2.11 and equation 4.2.15 are discretized using
the Euler scheme as follows:

𝑉𝑘 = 𝑉𝑘−1 + ^(\ −𝑉𝑘−1)Δ𝑡) − 𝜌[
(
` − 1

2
𝑉𝑘−1

)
)Δ𝑡

+ [
√︁
𝑉𝑘−1

√︁
1 − 𝜌2Δ𝑍𝑘 + 𝜌[(𝑦𝑘 − 𝑦𝑘−1)) (4.2.16)

Similarly;

𝑦𝑘 = 𝑦𝑘−1 +
(
` − 1

2
𝑉𝑘−1

)
Δ𝑡 +

√︁
𝑉𝑘−1Δ𝐵𝑘 (4.2.17)

Equations 4.2.16 and 4.2.17 represent the state transition and measurement equations re-
spectively which make up the state space model.
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The weight 𝑤 (𝑖)
𝑘

at time 𝑘 is obtained from:

𝑤
(𝑖)
𝑘

= 𝑤
(𝑖)
𝑘−1

𝑝
(
𝑦𝑘 |𝑣 (𝑖)0:𝑘 , 𝑦0:𝑘−1

)
𝑝
(
𝑣
(𝑖)
𝑘
|𝑣 (𝑖)0:𝑘−1, 𝑦0:𝑘−1

)
𝑞
(
𝑣
(𝑖)
𝑘
|𝑣 (𝑖)
𝑘−1, 𝑦𝑘

) (4.2.18)

The importance function is given as:

𝑞
(
𝑣𝑘 |𝑣𝑘−1, 𝑦𝑘

)
= 𝑝

(
𝑣𝑘 |𝑣𝑘−1, 𝑦𝑘

)
(4.2.19)

The mean and variance of equation 4.2.16 are:

`𝑝 = 𝑉𝑘−1 + ^(\ −𝑉𝑘−1)Δ𝑡 − 𝜌[
(
` − 1

2
𝑉𝑘−1

)
)Δ𝑡 + 𝜌[(𝑦𝑘 − 𝑦𝑘−1))

and:

𝜎2
𝑝 = [2𝑉

(𝑖)
𝑘−1(1 − 𝜌

2)Δ𝑡

respectively.
Thus:

𝑝
(
𝑣𝑘 |𝑣𝑘−1, 𝑦𝑘

)
∼ 𝑁

(
`𝑝, 𝜎𝑝

)
(4.2.20)

The next step is to obtain an estimate for 𝑝
(
𝑣𝑘 |𝑣0:𝑘−1, 𝑦0:𝑘−1

)
. Substituting equation 4.2.17

into equation 4.2.16 :

𝑉𝑘 = 𝑉𝑘−1 + ^(\ −𝑉𝑘−1)Δ𝑡 + [
√︁
𝑉𝑘−1

√︁
1 − 𝜌2Δ𝑍𝑘 + 𝜌[

√︁
𝑉𝑘−1Δ𝐵𝑘 (4.2.21)

The mean and variance of equation 4.2.21 are:

`𝑞 = 𝑉𝑘−1 + ^(\ −𝑉𝑘−1)Δ𝑡

and:

𝜎2
𝑞 = [2𝑉𝑘−1Δ𝑡

respectively.
Thus:

𝑝
(
𝑣𝑘 |𝑣0:𝑘−1, 𝑦0:𝑘−1

)
∼ 𝑁

(
`𝑞, 𝜎

2
𝑞

)
(4.2.22)
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The likelihood function is given as:

𝑝
(
𝑦𝑘 |𝑣0:𝑘 , 𝑦0:𝑘−1

)
= 𝑝

(
𝑦𝑘 |𝑣𝑘 , 𝑣𝑘−1, 𝑦𝑘−1

)
(4.2.23)

The mean of equation 4.2.17 is:

`𝑟 = 𝑦𝑘−1 +
(
` − 1

2
𝑉𝑘−1

)
Δ𝑡

and the variance of equation 4.2.17 is:

𝜎2
𝑟 = 𝑉𝑘−1Δ𝑡

Thus:

𝑝
(
𝑦𝑘 |𝑣𝑘 , 𝑣𝑘−1, 𝑦𝑘−1

)
∼ 𝑁

(
`𝑟 , 𝜎

2
𝑟

)
(4.2.24)

The posterior density function can be approximated as follows:

𝑥𝑘 |𝑘 =
𝑛∑︁
𝑖=1

�̃�
(𝑖)
𝑘
𝑥
(𝑖)
𝑘

4.2.3. Non-linear filtering in an information-based framework
Starting with the extended Kalman filter approach, let 𝑉𝑡 represent the variable which is
unobserved.
The Brownian motion driving the asset process is assumed to be independent of the Brow-
nian motion driving the variance process.
The Euler-Maruyama scheme discretization approach can be used to obtain the measurement
and state transition equations by applying it to the SDEs. For a given model:

𝑑𝑋𝑡 = 𝑎(𝑋𝑡)𝑑𝑡 + 𝜎(𝑋𝑡)𝑑𝑊𝑡 (4.2.25)

The scheme discretizes equation 4.2.25 as follows:

𝑋𝑘 = 𝑋𝑘−1 + 𝑎(𝑋𝑘−1)Δ𝑘 + 𝜎(𝑋𝑘−1)
√
Δ𝑘𝑊𝑘−1

over an interval
[
0, 𝑇

]
, and it’s discretized as 0 = 𝑘1 < 𝑘2 < ... < 𝑘𝑚 = 𝑇 with increments

equally spaced Δ𝑘 .

80



By discretizing equation 3.2.14, the following measurement equation is obtained:

𝑆𝑘 = 𝑆𝑘−1 + 𝑟𝑆𝑘−1Δ𝑘 + 𝑣𝑘−1𝑃(𝑘−1)𝑇𝑉𝑘−1
√
Δ𝑘𝑊𝑘−1 (4.2.26)

The discretized variance process is as follows:

𝑉𝑘 = 𝑉𝑘−1 − 𝑣2𝑘−1𝑉
2
𝑘−1Δ𝑘 + 𝑣𝑘−1^𝑘−1

√
Δ𝑘𝑊𝑘−1 (4.2.27)

Let:
𝑓𝑖 (𝑥𝑘−1, 0) = 𝑉𝑘−1 − 𝑣2𝑘−1𝑉

2
𝑘−1Δ𝑘 + 𝑣𝑘−1^𝑘−1

√
Δ𝑘𝑊𝑘−1 (4.2.28)

and
ℎ𝑖 (𝑥𝑘 , 0) = 𝑆0Φ(𝑑1) − 𝐾𝑒−(𝛿+

𝜚2

2 )Φ(𝑑2) (4.2.29)

The Jacobian matrices are derived as follows:

𝐴 =
𝜕

𝜕𝑉𝑘−1
(𝑉𝑘−1 − 𝑣2𝑘−1𝑉

2
𝑘−1Δ𝑘 + 𝑣𝑘−1^𝑘−1

√
Δ𝑘𝑊𝑘−1)

= 1 − 2𝑣2𝑘−1𝑉𝑘−1Δ𝑘 (4.2.30)

𝑊 =
𝜕

𝜕𝑊𝑘−1
(𝑉𝑘−1 − 𝑣2𝑘−1𝑉

2
𝑘−1Δ𝑘 + 𝑣𝑘−1^𝑘−1

√
Δ𝑘𝑊𝑘−1)

= 𝑣𝑘−1^𝑘−1
√
Δ𝑘 (4.2.31)

An estimate for the unobserved state is obtained as follows:

𝑥𝑘 ≈ 𝑥𝑘 + (1 − 2𝑣2𝑘−1𝑉𝑘−1Δ𝑘) (𝑥𝑘−1 − 𝑥𝑘−1) +𝑊𝑏𝑘−1 (4.2.32)

In the information-based asset pricing model, 𝐻 is obtained as follows:

𝐻 =
𝜕ℎ(𝑥𝑘 |𝑘−1, 0)

𝜕𝛾
(4.2.33)

Substituting ℎ(𝑥𝑘 |𝑘−1, 0) with the BS-BHM model option price gives:

ℎ(𝑥𝑘 |𝑘−1, 0) = 𝑆0𝑒𝜑+
1
2 𝛿

2
Φ(𝑑1) − 𝐾Φ(−𝑑2) (4.2.34)

This results in:

𝐻 =

𝜕

(
𝑆0𝑒

𝜑+ 1
2 𝛿

2
Φ(𝑑1) − 𝐾Φ(−𝑑2)

)
𝜕𝛾
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𝐻 = (𝑆 + 𝐾)
[
𝑒𝜑+

1
2 𝛿

2 𝜕Φ(𝑑1)
𝜕𝛾

+Φ(𝑑1)𝑒𝜑+
1
2 𝛿

2

[
𝜏𝑣

√
𝑇

𝑡

√︄(
𝛾2𝑡2 + 𝑡 (𝑇 − 𝑡)

𝑇

) [(
2𝛾2

𝛾2𝜏 + 1

)−2
+

(
1

𝛾2𝜏 + 1

)]
+

(
𝛾2𝑡𝜏𝑣

√
𝑇

(𝛾2𝜏 + 1)

) (
𝛾2𝑡2 + 𝑡 (𝑇 − 𝑡)

𝑇

)− 1
2

− 2𝛾𝑣
√
𝑇

(
1

𝛾2𝜏 + 1

)2] ]
(4.2.35)

The study also extracts volatility from the information-based asset pricing model using
particle filtering. A particle filter algorithm is applied to the discretized representation of
the asset price process and the variance process. An assumption is made that the noise
process driving the asset price process is independent of the noise process driving the
variance process.
The model dynamics will first be discretized so as to make them suitable for the application
of particle filtering. To discretize the asset price process, equation 3.2.14 is integrated over
the interval [𝑘, 𝑘 + Δ𝑘], leading to:∫ 𝑘+Δ𝑘

𝑘

𝑑𝑆𝑠 =

∫ 𝑘+Δ𝑘

𝑘

𝑟𝑆𝑠𝑑𝑠 +
∫ 𝑘+Δ𝑘

𝑘

𝑃𝑠𝑇𝑣𝑠𝑉𝑠𝑑𝑊𝑠∫ 𝑘+Δ𝑘

𝑘

𝑑𝑆𝑠 = 𝑆𝑘+Δ𝑘 − 𝑆𝑘∫ 𝑘+Δ𝑘

𝑘

𝑟𝑆𝑠𝑑𝑠 = 𝑟𝑆𝑘Δ𝑘∫ 𝑘+Δ𝑘

𝑘

𝑃𝑠𝑇𝑣𝑠𝑉𝑠𝑑𝑊𝑠 = 𝑃𝑘𝑇𝑣𝑘𝑉𝑘 (𝑊𝑘+Δ𝑘 −𝑊𝑘 )

= 𝑃𝑘𝑇𝑣𝑘𝑉𝑘
√
Δ𝑘𝑍

where 𝑍 ∼ 𝑁 [0, 1]
Thus, the discretized asset price process is as follows:

𝑆𝑘+Δ𝑘 = 𝑆𝑘 + 𝑟𝑆𝑘Δ𝑘 + 𝑃𝑘𝑇𝑣𝑘𝑉𝑘
√
Δ𝑘𝑍 (4.2.36)

Making Δ𝑘 to be the subject in equation 4.2.36 gives:

Δ𝑘 =
𝑆𝑘+Δ𝑘 − 𝑆𝑘 − 𝑃𝑘𝑇𝑣𝑘𝑉𝑘

√
Δ𝑘𝑍

𝑟𝑆𝑘
(4.2.37)

To discretize the variance process, equation 3.2.11 is integrated over the interval [𝑘, 𝑘+Δ𝑘],
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giving: ∫ 𝑘+Δ𝑘

𝑘

𝑑𝑉𝑠 = −
∫ 𝑘+Δ𝑘

𝑘

𝑔2𝑠𝑉
2
𝑠 𝑑𝑠 +

∫ 𝑘+Δ𝑘

𝑘

𝑔𝑠^𝑠𝑑�̃�𝑠∫ 𝑘+Δ𝑘

𝑘

𝑑𝑉𝑠 = 𝑉𝑘+Δ𝑘 −𝑉𝑘

−
∫ 𝑘+Δ𝑘

𝑘

𝑔2𝑠𝑉
2
𝑠 𝑑𝑠 = −𝑔2𝑘𝑉

2
𝑘 Δ𝑘

∫ 𝑘+Δ𝑘

𝑘

𝑔𝑠^𝑠𝑑𝑊𝑠 = 𝑔𝑘^𝑘

√︃
�̃�𝑘+Δ𝑘 − �̃�𝑘

= 𝑔𝑘^𝑘
√
Δ𝑘𝑍

Thus, the discretized variance process is as follows:

𝑉𝑘+Δ𝑘 = 𝑉𝑘 − 𝑔2𝑘𝑉
2
𝑘 Δ𝑘 + 𝑔𝑘^𝑘

√
Δ𝑘𝑍 (4.2.38)

where 𝑍 ∼ 𝑁 [0, 1]
The mean and variance of equation 4.2.38 are:

`𝑏 = 𝑉𝑘 − 𝑔2𝑘𝑉
2
𝑘 Δ𝑘

and:

𝜎2
𝑏 = 𝑔2𝑘^

2
𝑘Δ𝑘𝑍

respectively.
Thus 𝑞

(
𝑧𝑘 |𝑧𝑘−1

)
has a normal distribution with mean `𝑏 and variance 𝜎2

𝑏
, that is:

𝑞
(
𝑧𝑘 |𝑧𝑘−1

)
∼ 𝑁

(
`𝑏, 𝜎

2
𝑏

)
(4.2.39)

To obtain an estimate for 𝑝
(
𝑧𝑘 |𝑧0:𝑘−1

)
. Equation 4.2.37 is substituted into equation 4.2.38

leading to:

𝑉𝑘+Δ𝑘 = 𝑉𝑘 − 𝑔2𝑘𝑉
2
𝑘

(𝑆𝑘+Δ𝑘 − 𝑆𝑘 − 𝑃𝑠𝑇𝑔𝑘𝑉𝑘√Δ𝑘𝑍
𝑟𝑆𝑘

)
+ 𝑔𝑘^𝑘

√
Δ𝑘𝑍 (4.2.40)
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The mean and variance of equation 4.2.40 are:

`𝑑 = 𝑉𝑘 − 𝑔2𝑘𝑉
2
𝑘

(𝑆𝑘+Δ𝑘 − 𝑆𝑘
𝑟𝑆𝑘

)
and

𝜎2
𝑑 =

(
𝑔2𝑘𝑉

2
𝑘

)2 (𝑃𝑠𝑇𝑔2𝑘𝑉2
𝑘
Δ𝑘𝑍

𝑟2𝑆2
𝑘

)
+ 𝑔2𝑘^

2
𝑘Δ𝑘𝑍

respectively.
Thus:

𝑝
(
𝑧𝑘 |𝑧0:𝑘−1

)
∼ 𝑁

(
`𝑑 , 𝜎

2
𝑑

)
(4.2.41)

The likelihood function is as follows:

𝑝
(
𝑦𝑘 |𝑧0:𝑘

)
= 𝑝

(
𝑦𝑘 |𝑧𝑘 , 𝑧𝑘−1

)
(4.2.42)

The mean and variance of equation 4.2.36 are:

` 𝑓 = 𝑆𝑘 + 𝑟𝑆𝑘Δ𝑘

and
𝜎2
𝑓 = 𝑔

2
𝑘𝑉

2
𝑘 Δ𝑘𝑍

respecively.
Thus, the likelihood function has a normal distribution with mean ` 𝑓 and variance 𝜎2

𝑓
, that

is:

𝑝
(
𝑦𝑘 |𝑧𝑘 , 𝑧𝑘−1

)
∼ 𝑁

(
` 𝑓 , 𝜎

2
𝑓

)
(4.2.43)

Multi-asset stochastic volatility models make use of simulation-based estimation techniques
which are able to estimate the volatility sequentially. This implies that particle filtering can
also be used to extract volatility for the multi-asset information-based stochastic volatility
model as follows:
Let 𝑝𝑡 be a vector representing the log of the ratio of asset prices, such that 𝑝𝑡 =

[𝑝1𝑡 , ..., 𝑝𝑛𝑡]> that is for 𝑖 = 1, ..., 𝑛:

𝑝𝑖𝑡 = 𝑙𝑜𝑔

(
𝑆𝑖𝑡

𝑆𝑖,𝑡−1

)
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where 𝑆𝑖𝑡 denotes the price of the 𝑖𝑡ℎ asset at time 𝑡.
𝑝𝑡 follows a normal distribution given as follows:

𝑝𝑡 = ` + 𝜖𝑡 , 𝜖𝑡 ∼ 𝑁𝑛 (0,Σ𝑡),

where ` is a vector denoting the mean of 𝑝𝑡 , 𝜖𝑡 is an innovation vector and Σ𝑡 denotes the
volatility covariance matrix generated by an inverse Wishart process given by:

Σ−1
𝑡 |Σ𝑡−1 ∼ 𝑊 (𝑘, 𝑘−1𝐴Σ−1

𝑡−1𝐴
>)

𝐴 is a 𝑛×𝑛 autoregressive parameter and𝑊 (𝑘, 𝑘−1𝐴Σ−1
𝑡−1𝐴

>) denotes a Wishart distribution.
This study obtains an estimate for the conditional covariance matrix of 𝑝𝑡 which is known
as the volatility matrix.
Let 𝑦1:𝑘 = {𝑦1, ..., 𝑦𝑘 } be a vector representing the observations upto and including time 𝑘 .
Similarly, let Σ0:𝑘 = {Σ0,Σ1, ...,Σ𝑘 } be a vector representing the covariance matrices upto
and including time 𝑘 . 𝑞(Σ0:𝑘 |𝑦1:𝑘 ) denotes an importance function from which simulation
can be performed from.
The sequential monte carlo method begins by generating Σ

(1)
𝑘
, ...,Σ

(𝑛)
𝑘

from 𝑞(Σ𝑘 |Σ𝑖𝑘−1, 𝑦𝑘 )
and computing the non-normalised weights:

𝑤
(𝑖)
𝑘

=
𝑝(𝑦𝑘 |Σ(𝑖)

𝑘
)𝑝(Σ(𝑖)

𝑘
|Σ(𝑖)
𝑘−1)

𝑞(Σ(𝑖)
𝑘
|Σ(𝑖)
𝑘−1, 𝑦𝑘 )

�̃�
(𝑖)
𝑘−1

The posterior density function for Σ𝑘 can be approximated as follows

𝑝(Σ0:𝑘 |𝑦1:𝑘 ) ≈
𝑛∑︁
𝑖=1

�̃�
(𝑖)
𝑘
Σ
(𝑖)
𝑘
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5. Data Analysis and Results

The data used in this study was obtained from daily SPX European call options data from
yahoo finance (https://www.yahoofinance.com/) starting from 28.01.2019 to 21.06.2019 and
Dow Jones Euro Stoxx 50 obtained from ivolatility.com from 15.01.2019 to 20.09.2019.
R statistical software and Python programming language are used for analysis and graphical
representation of the results obtained in the study. The historical option prices are for SPX
European call options with a total of 250 observations while those for the Dow Jones Euro
Stoxx 50 had a total of 245 observations.
The summary of the data from SPX call options is given in table 1.

Strike Price Current Price Implied Volatility

Minimum : 1300 0.0500 0.0000
1st Quartile : 2144 1.1630 0.1440

Median : 2762 88.4500 0.2266
Mean : 2604 339.9730 0.5638

3rd Quartile : 2976 679.9380 0.6914
Maximum : 4100 1478.9000 2.4790
Skewness : -0.1356 0.9953 1.4782
Kurtosis : -0.3954 -0.2731 0.9520

Table 1: SPX options data summary

Table 1 shows the descriptive statistics for the daily figures for the SPX call options. These
include the minimum, quartiles, median, mean, maximum, skewness and kurtosis for the
strike price, current price and implied volatility.
The strike prices are seen to be fairly symmetrical since the skewness value is −0.1356
which lies between −0.5 and 0.5.
The current prices are moderately positively skewed since 0.5 < 0.9953 < 1.
The implied volatilities are seen to be highly positively skewed since 1.4782 > 1 which
implies that they have a long tail that extends to the right. This is consistent with the fact
that data that is skewed to the right in most cases will have the mean being greater than
the median as shown in the table where the mean value given by 0.5638 is greater than the
median given by 0.2266.
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The datasets of the strike price, current price and implied volatility have lighter tails since
the kurtosis of all the three datasets is less than 3.

Figure 2: Histogram of the SPX option strike prices

Figure 2 dispays a histogram for the strike prices which further illustrates the notion that
the strike prices are fairly symmetrical as most of the values lie near the mean of 2, 604.
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Figure 3: Histogram of the SPX option underlying asset price

The histogram in figure 3 emphasizes the fact that the underlying asset prices are positively
skewed since most of the values lie on the right.
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Figure 4: Histogram of the SPX option implied volatility

Figure 4 shows that the implied volatilities are positively skewed since most of the values
lie on the right.

89



The summary of the data from Dow Jones Euro Stoxx 50 call options is given in table 2.

Strike Price Current Price Empirical Price

Minimum : 500 3067 0.001
1st Quartile : 1550 3067 0.001

Median : 1925 3067 796.55
Mean : 1843 3067 731.019

3rd Quartile : 2225 3067 1091.2
Maximum : 2500 3067 2066.2
Skewness : -0.7008 0 -0.02446
Kurtosis : 2.7656 0 2.2744

Table 2: Dow Jones Euro Stoxx 50 options data summary

Table 2 shows the descriptive statistics for the daily figures for the Dow Jones Euro Stoxx
50 call options. These include the minimum, mean, median, quartiles, maximum, skewness
and kurtosis for the strike price, current price and the empirical price.
The strike prices are seen to be moderately negatively skewed since the skewness value is
−0.7008 which lies between −1 and −0.5.
The datasets of the strike price, current price and empirical price have lighter tails since the
kurtosis of all the three datasets is less than 3.
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Figure 5: Histogram of the Dow Jones Euro Stoxx 50 option strike prices

The histogram in figure 5 further illustrates the notion that the strike prices are moderately
negatively skewed as most of the values lie near the mean value of 1, 843.
For the multi-asset options, monte carlo simulation is used to obtain the data used in analysis.

91



5.1. Modelling volatility in a multi-asset framework

A numerical illustration is made between a European call option under the Heston model
and that under the Black-Scholes model. The results from the two models are compared to
the actual price based on data relating to Dow Jones Euro Stoxx 50 European call options.
For the multi-asset option, two assets are considered.

5.1.1. Asset pricing model with constant volatility
To illustrate the Black-Scholes model, the study compares the result obtained using monte
carlo simulation to that obtained using the Black-Scholes model option pricing formula.
For monte carlo simulation, 𝑆 = 100, 𝜎 = 0.2, 𝐾 = 100, 𝑇 = 1, and 𝑟 = 0.01.
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Figure 6: Simulated Black-Scholes model option prices

Figure 6 shows that the variation in the simulated European call option price in the Black-
Scholes model reduces significantly with an increase in the number of simulations. The
black line denotes the Black-Scholes model price while the upper and lower blue line denote
the upper and lower bound respectively.
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Figure 7: Black-Scholes model surface wrt volatility

Figure 7 shows the features of the Black-Scholes model surface based on monte carlo
simulation. The value of the underlying asset price ranges from 50 to 150, time varies from
0.01 to 1 and volatility ranges from 0.1 to 0.2.
The figure disapproves the assumption of the Black-Scholes model of constant volatility, if
the volatility is constant, then the implied volatility surface should be flat. However, looking
at the simulated values, this is not the case as the volatility rates are seen to vary.
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Figure 8: Black-Scholes model surface wrt time to maturity

Figure 8 shows the Black-Scholes model European call price with respect to time to maturity
based on monte carlo simulation. A longer time to maturity implies an increased certainty
in the call option being exercised, this causes a smoother curve.
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European call option prices are also computed using data from Dow Jones Euro Stoxx 50.
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Figure 9: Black-Scholes model price wrt strike price

Figure 36 shows the Black-Scholes model prices plotted against the strike prices, the prices
are seen to decrease as the strike prices increase.
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A comparison between the Black-Scholes model option price and the empirical option price
is given in figure 10.
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Figure 10: Comparison of the Black-Scholes model option prices and the empirical option prices

From figure 10, the prices under the Black-Scholes model are relatively similar to those
from the empirical data. The call prices are relatively similar between the strike prices
1,500 to 2,500.
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For the multi-asset European call option, two assets having equal weights and a correlation
coefficient of 0.4 are considered. 𝑟 is 0.01.

Multi-Asset European Call Option
K 𝑆1,0 𝑆2,0 BSM price

237 190 180 5.50
235 195 185 7.39
232 200 190 9.48
226 205 195 13.87
221 210 200 18.63

Table 3: The multi-asset Black-Scholes model option prices
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Figure 11: The multi-asset Black-Scholes model option prices

Figure 11 illustrates that there’s a general reduction in the option price as the strike price
increases for the multi-asset model.

5.1.2. Asset pricing model with stochastic volatility
For the Heston model, the estimated parameters used were from Albrecher et al., where
𝑣0 = 0.0175, ^ = 1.5768, [ = 0.0398, _ = 0.5751 and 𝜌 = −0.5711, (Albrecher et al., 2007).
This study compares the result obtained using monte carlo simulation to that obtained using
the closed form Heston option pricing formula.
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Figure 12: Simulated Heston model option price

Figure 12 shows the simulated European call option price under the Heston model. There’s
increased variation in the prices as compared to the simulated option price under the Black-
Scholes model as given in figure 6.
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Figure 13: Heston model volatility surface

Figure 13 illustrates the Heston surface, the lower strike prices are seen to have higher
implied volatilities as compared to those with higher strike prices.
To illustrate the use of Wishart process in multi-asset option pricing, the study considers
the case of two assets with parameter values as given in Da Fonseca et al., 2007:

M=

(
−2.5 −1.5
−1.5 −2.5

)
, Q =

(
0.21 −0.14
0.14 0.21

)
[ = 7.14286, 𝑟 = 0, 𝜌 = −0.6 and

Σ0 =

(
0.09 −0.036

−0.036 0.09

)
The price obtained for the multi-asset Heston model using the discounted characteristic
function of the Wishart model is as follows:

Underlying asset price European call price

1,500 68.29
1,800 14.71

Table 4: The multi-asset Heston model option prices
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Figure 14: Wishart processes

Figure 14 shows the progression of the Wishart processes with time. The highest values for
the Wishart process lie between time 0 and time 0.25.
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5.2. Asset pricing in an information-based framework

Dow Jones Euro Stoxx 50 options data is used in this section to obtain option prices based
on the information-based asset pricing framework.
The RMSE test will then be used to determine the goodness of fit of the multi-asset
information-based stochastic volatility model prices to the multi-asset Black-Scholes model
prices as follows:

𝑅𝑀𝑆𝐸 =

√√
𝑛∑︁
𝑘=1

(𝐴𝑘 − 𝑅𝑘 )2
𝑛

where 𝐴𝑘 is the multi-asset Black-Scholes model price and 𝑅𝑘 is the multi-asset information-
based stochastic volatility model price.

5.2.1. BS-BHM model
Comparing the prices obtained from the BS-BHM model to the observed prices, figure 15
shows that the BS-BHM model prices are higher than the observed prices.
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Figure 15: BS-BHM model option prices vs. empirical option prices, 𝛾 = 0.3

The information flow rate, 𝛾 causes a variation in the fit.
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Figure 16: BS-BHM model option prices vs. empirical option prices, 𝛾 = 0.25

In figure 16, 𝛾 has a mean value of 0.25. A reduction in the value of 𝛾 from 0.3 to 0.25

causes an improved fit of the BS-BHM model to the empirical data.
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Figure 17: Black-Scholes model vs. BS-BHM model option prices, 𝛾 = 0.3.

Comparing the BS-BHM model and the Black-Scholes model option price in figure 17, the
BS-BHM model provides a higher price than the Black-Scholes model. The values between
the two models are closer when 𝛾 is varied from 0.3 to 0.25, as shown in figure 18.
The price under the BS-BHM model is higher than that under the Black-Scholes model as
illustrated in 17. Figure 18 shows that the two models give relatively similar prices when 𝛾
is varied from 0.3 to 0.25.
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Figure 18: Black-Scholes model vs. BS-BHM model option prices, 𝛾 = 0.25.

The study shows that with a suitably chosen information flow rate parameter, the goodness
of fit of the BS-BHM model to the empirical data improves significantly.
For the multi-asset European call option, two assets having equal weights and a correlation
coefficient of 0.4 are considered. 𝑟 is 0.01.

Multi-Asset European Call Option
K 𝑆1,0 𝑆2,0 BS-BHM model Price BSM price

237 190 180 5.85 5.50
235 195 185 7.61 7.39
232 200 190 9.55 9.48
226 205 195 13.86 13.87
221 210 200 18.14 18.63

Table 5: Comparison of the multi-asset option prices between the BS-BHM model & the
Black-Scholes model

From table 5, the prices produced from the BS-BHM multi-asset model are comparatively
similar to those produced from the Black-Scholes multi-asset model. For higher strike rates,
the prices for the BS-BHM model are higher, and for lower strike prices, the Black-Scholes
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model prices are higher.
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Figure 19: Comparison of the multi-asset BS-BHM model and the multi-asset BSM

Figure 19 shows that the prices under the multi-asset BS-BHM model are relatively similar
to those obtained from the multi-asset BSM. The RMSE value is 0.2874.
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Figure 20: BS-BHM model volatility surface

Figure 20 shows the features of the BS-BHM model surface based on monte carlo simulation.
This figure illustrates that volatility in the BS-BHM model is stochastic as the volatility is
seen to be varying.

5.2.2. BS-BHM updated model
It is evident from the figure 21 that the values from the BS-BHM updated model are
comparatively higher for all strike prices considered than for the empirical European call
option prices.
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Figure 21: BS-BHM updated model option prices vs. empirical option prices, 𝛾 = 0.3

𝛾 is taken to have a mean value of 0.3 in figure 21.
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Figure 22: BS-BHM updated model option prices vs. empirical option prices, 𝛾 = 0.25

Figure 22 illustrates the effect of a variation in 𝛾 from a mean value of 0.3 to 0.25. The fit
of the BS-BHM updated model price to the empirical data is very similar to that in figure
21. This implies that 𝛾 has a less significant impact on the option prices in the BS-BHM
updated model as compared to the BS-BHM model.
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Figure 23: Black-Scholes model vs. BS-BHM updated model option prices, 𝛾 = 0.3.

Comparing the BS-BHM updated model and the Black-Scholes model option price in figure
23, the BS-BHM updated model provides slightly higher prices than the Black-Scholes
model.
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Figure 24: Black-Scholes model vs. BS-BHM updated model option prices, 𝛾 = 0.25.

The prices for the models are very similar when 𝛾 is varied from 0.3 to 0.25, as shown in
figure 24.
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For the multi-asset European call option, two assets having equal weights and a correlation
coefficient of 0.4 are considered. 𝑟 is 0.01.

Multi-Asset European Call Option
K 𝑆1,0 𝑆2,0 BS-BHM updated model price BSM price

237 190 180 5.90 5.50
235 195 185 7.57 7.39
232 200 190 9.67 9.48
226 205 195 13.61 13.87
221 210 200 18.38 18.63

Table 6: Comparison of the multi-asset option prices between the BS-BHM updated model
& the Black-Scholes model

From table 6, the prices produced from the BS-BHM updated multi-asset model are com-
paratively similar to those produced from the Black-Scholes multi-asset model. For higher
strike rates, the prices for the BS-BHM updated model are higher, and for lower strike
prices, the Black-Scholes model prices are higher.
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Figure 25: Comparison of the multi-asset BS-BHM updated and the multi-asset BSM

Figure 25 shows that the prices under the multi-asset BS-BHM updated are relatively similar
to those obtained from the multi-asset BSM. The RMSE value is 0.2674.
Comparing the RMSE obtained in the multi-asset BS-BHM model to the multi-asset BS-
BHM updated model, the RMSE value in the BS-BHM updated model is lower which
indicates it provides a closer fit to the multi-asset BSM as compared to the multi-asset
BS-BHM model.
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Figure 26: BS-BHM updated volatility surface

Figure 26 shows the features of the BS-BHM updated surface based on monte carlo simu-
lation. This figure illustrates that volatility in the BS-BHM updated model is stochastic.
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5.3. Estimation of model parameters

5.3.1. Maximum likelihood estimation
The estimation of parameters using maximum likelihood estimation is done using daily
historical data for SPX call options.
For the Black-Scholes model, the estimate for 𝜎 is found to be 0.46283.
For the information-based model, the estimates for the parameters 𝛾 and 𝑣 are 0.071 and
𝑣 = 0.001874 respectively.

5.3.2. Method of moments
The data used here relates to SPX call options daily data obtained from yahoo finance.
The method of moments is used to estimate 𝑣 and 𝛾.
Estimation using the method of moments produces an estimate for the volatility parameter,
𝑣 = 0.005047805 and 𝛾 = 0.07104789.
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Figure 27: Information flow rate wrt time

Figure 27 shows that the value of the information flow parameter decreases as time increases.
This is due to the fact that as the maturity period approaches, the rate at which information
about the expected cashflow is revealed decreases as most of the information has already
been revealed to the market participants.
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5.3.3. Measurement of parameter sensitivity
The parameter values used are as follows: 𝐾 takes the values 90, 100 and 110, 𝑆 = 100,
𝑟 = 0.05, 𝑣 = 0.56, 𝑇 = 3, 𝑡 = 1 and 𝛾 = 0.2.
Figure 28 shows that delta is positive for European call options. Delta tends to one when
an option gets further in-the-money and it tends to zero the more the option gets further
out-of-the-money.
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Figure 28: Sensitivity of the option price wrt Delta
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Figure 29: Sensitivity of the option price wrt Gamma

Figure 29 shows that Gamma measures the curvature or convexity of the relationship
between the asset price and the underlying asset price.

The higher the value of Gamma, the higher the options sensitivity to the underlying asset
price.

As an option gets further in-the-money or out-of-the-money, gamma reduces and tends to
zero.
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Figure 30: Sensitivity of the option price wrt Vega

Figure 30 shows that the vega of at-the-money options are the highest. This implies that the
option price is most sensitive to variations in volatility at this point.
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Figure 31: Sensitivity of the option price wrt Rho

The lower the value of Rho, the less sensitive the option price is to changes in interest
rates as shown in figure 31.

For options that are in-the-money, Rho is larger and gradually decreases as the option
moves to become out-of-the-money.
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Figure 32: Sensitivity of the option price wrt Theta

Figure 32 illustrates that the value of theta is lowest when the option is at the money,
this is because the profitability of an option reduces over time.
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5.4. Comparison of volatility in a stochastic volatility model vs volatility in an information-
based asset pricing model

A numerical illustration of volatility extraction in the Heston model and the information-
based asset pricing framework is looked at in this section. Volatility extraction is done
using non-linear filtering in particular using the extended Kalman filter and the particle
filter approach. A comparison will then be done between the results obtained from the
particle filter and the extended Kalman filter.
The RMSE test will be used to assess the goodness of fit of the simulated estimates to the
estimates obtained using non-linear filtering as follows:

𝑅𝑀𝑆𝐸 =

√√
𝑛∑︁
𝑘=1

(𝑂𝑘 − 𝐸𝑘 )2
𝑛

𝑂𝑘 is the simulated volatility and 𝐸𝑘 is the estimated volatility based on non-linear filtering.

5.4.1. Volatility extraction in the Heston model
The estimated parameters used are as follows: 𝑣0 = 0.0175, ^ = 1.5768, [ = 0.0398,
\ = 0.5751, 𝑟 = 0.01 and 𝜌 = −0.5711.
The measurement equation is given by:

𝑦𝑘 =

(
𝑟 − 𝜌

[

)
Δ𝑘 + 𝜌

[
𝑉𝑘 +

[
𝜌

[
(^Δ𝑘 − 1) − 1

2
Δ𝑘

]
𝑉𝑘−1

+
√︁
1 − 𝜌2

√
Δ𝑘

√︁
𝑉𝑘−1𝐵𝑘−1

(5.4.1)

=

(
0.01 + 0.5711

0.0398

)
Δ𝑘 − 0.5711

0.0398
𝑉𝑘 −

[
0.5711

0.0398
(1.5768Δ𝑘 − 1) + 1

2
Δ𝑘

]
𝑉𝑘−1

+
√︁
1 + 0.57112

√
Δ𝑘

√︁
𝑉𝑘−1𝐵𝑘−1 (5.4.2)

The state transition equations are given by:

𝑉𝑘 = ^\Δ𝑘 + (1 − ^Δ𝑘)𝑉𝑘−1 + [
√︁
Δ𝑘𝑉𝑘−1𝑍𝑘−1

= 1.5768 × 0.5751Δ𝑘 + (1 − 1.5768Δ𝑘)𝑉𝑘−1 + 0.0398
√︁
Δ𝑘𝑉𝑘−1𝑍𝑘−1 (5.4.3)

The initial mean is given by 𝑥0 = 0.0175 and the initial covariance is 𝑃− = 0.03982 ×
0.0175Δ𝑘 . 𝑉0 denotes the initial variance level.
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The Jacobian matrices in the extended Kalman filter are obtained as follows:

𝐴𝑘 = 1 − ^Δ𝑘
= 1 − 1.5768Δ𝑘 (5.4.4)

𝑊𝑘 = 0.0398
√︁
𝑉𝑘−1

√
Δ𝑘 (5.4.5)
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Figure 33: Heston model’s simulated volatility

Figure 33 shows the simulated volatility based on monte carlo simulation using the Heston
model. 75 time steps, 𝑘 were considered in the simulation.
The volatility estimates from the extended Kalman filter approach against the simulated
volatility are given in figure 34.
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Figure 34: Heston model’s simulated volatility vs. estimated volatility using the EKF

Figure 34 shows that the extended Kalman filter approach produces estimated volatility
rates that are relatively close to the simulated volatility rates. The RMSE is 0.6475.
In order to apply particle filtering to the Heston model, the weight 𝑤 (𝑖)

𝑘
at time 𝑘 is obtained

as follows:

𝑤
(𝑖)
𝑘

= 𝑤
(𝑖)
𝑘−1

𝑝
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)
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(
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)
`𝑝 = 𝑉𝑘−1 + ^(\ −𝑉𝑘−1)Δ𝑡 − 𝜌[

(
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2
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2
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Figure 35: Heston model’s simulated volatility vs. estimated volatility using the particle filter

Figure 35 illustrates the progression over time between the particle filter volatility estimate
and the simulated volatility in the Heston model. The estimated volatility using particle
filter gives a relatively close fit to the simulated volatility rates and the RMSE is 0.6356.
Under the Heston model, the RMSE value from the particle filter estimates is lower than
that from the extended Kalman filter estimates. This implies that the particle filter is a better
estimate to use for volatility estimation in the Heston model.
Comparing figure 34 to figure 35, it is evident that the estimated volatility rates obtained
from the particle filter approach provide a closer fit to the simulated volatility rates than the
estimated volatility rates from the extended Kalman filter approach in the Heston model.

5.4.2. Volatility extraction in the information-based asset pricing model
Simulated volatility rates are generated using monte carlo simulation. The values of 𝑣𝑘−1
and ^𝑘−1 are taken to be constants with estimated values 0.5 and 0.2 respectively with
𝑟 = 0.01.
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Figure 36: Information-based asset pricing model’s simulated volatility

Figure 36 shows the simulated volatility based on monte carlo simulation. 75 time steps, 𝑘
were considered in the simulation.
Starting with the extended Kalman filter approach the measurement noise is taken to be
0.01 and the state process noise is taken to be 5 × 10−6, these two values make up the value
of 𝑅 and 𝑄 respectively.
Making use of Jacobian matrices:

𝐴 = 1 − 2𝑣2𝑘−1𝑉𝑘−1Δ𝑘

= 1 −𝑉𝑘−1Δ𝑘

and

𝑊 = 𝑣𝑘−1^𝑘−1
√
Δ𝑘

= 0.1
√
Δ𝑘

The volatility process which is the subject of modelling is represented by the state transition
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equation given by:
𝑉𝑘 = 𝑉𝑘−1 − 0.25𝑉2

𝑘−1Δ𝑘 + 0.1
√
Δ𝑘𝐵𝑘−1

and the measurement equation is as follows:

𝑆𝑘 = 𝑆𝑘−1 + 0.1𝑆𝑘−1Δ𝑘 + 0.5𝑃(𝑘−1)𝑇𝑉𝑘−1
√
Δ𝑘𝑊𝑘−1

𝑥0 = 0, 𝑃0 = 1 and 𝑅 ∼ 𝑁 [0, 0.01].
The volatility estimates from the extended Kalman filter approach against the simulated
volatility are given in figure 37. The Jacobian matrices are as follows:

𝐴 = −2𝑔2𝑘−1𝑉𝑘−1Δ𝑘
𝑊 = 𝑔𝑘−1^𝑘−1

√
Δ𝑘

𝐻 = 0

𝑈 = 𝑃𝑘𝑇
_𝑇

𝑇 − 𝑘

�̃�𝑘 is used to approximate the unobserved variables while 𝑦𝑘 is used as an approximation to
the observed variables leading to:

𝑧𝑘 ≈ �̃�𝑘 + 𝐴(𝑧𝑘−1 − �̂�𝑘−1) +𝑊𝑚𝑘−1,

and
𝑦𝑘 ≈ 𝑦𝑘 + 𝐻 (𝑥𝑘 − �̃�𝑘 ) +𝑉𝑛𝑘 .
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Figure 37: Information-based framework simulated volatility vs. estimated volatility using the EKF

Figure 37 shows that the extended Kalman filter approach produces estimated volatility
rates that are relatively close to the simulated volatility rates. The RMSE value is 0.6324.
Using the particle filter approach in the information-based stochastic volatility model, the
following result is obtained:
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Figure 38: Information-based framework simulated volatility vs. estimated volatility using the particle filter

Figure 38 illustrates the progression over time between the particle filter volatility estimate
and the simulated volatility. The estimated volatility using particle filter gives a relatively
close fit to the simulated volatility rates. RMSE value is 0.6194which is lower than the value
obtained from the extended Kalman filter estimates. This implies that the particle filter is a
better approach to volatility estimation in the information-based stochastic volatility model.
Comparing figure 37 to figure 38, it is evident that the estimated volatility rates obtained
from the particle filter approach provide a closer fit to the simulated volatility rates than the
estimated volatility rates from the extended Kalman filter approach.
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Model Filter RMSE

Heston: EKF 0.6475
Particle 0.6356

ISVM: EKF 0.6324
Particle 0.6194

Table 7: RMSE values for the non-linear filters

Table 7 shows the RMSE for the information-based stochastic volatility model are lower for
both the extended Kalman filter and the particle filter estimates as compared to the Heston
model. This means the results from the filters are more accurate from the information-based
stochastic volatility model as compared to the Heston model.
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6. Conclusion and Recommendation

The information-based asset pricing framework is an improvement over the Heston model
and the Black-Scholes model as it views the dynamics of the asset as an emergent phe-
nomenon as opposed to being pre-specified. This research uses the notion of comonotonic-
ity and wishart processes to extend the information-based asset pricing framework to the
multi-asset scenario.
The first objective of using a stochastic volatility model in a multivariate framework is
achieved by looking at the multi-asset Heston model. Wishart processes are used to obtain
the joint dynamics for the asset process and the variance process. The dynamics are then
discretized to allow for numerical simulation. A volatility-in-mean effect is added to capture
the tendency for the volatility and the asset prices moving together and the Laplace transform
is then used to solve the pricing equation for the multi-asset option.
The study looks at the second objective of modelling the dynamics of an asset where the
volatility parameter depends on time and information by considering two approaches of
the information-based asset pricing framework: the BS-BHM model and the BS-BHM
updated model. The price is obtained using risk-neutral pricing in the single-asset case.
The derived price takes a similar representation to the Black-Scholes model. This outcome
motivates the use of the notion of comonotonicity which is applied in deriving the price for
the Black-Scholes model in the multi-asset case.
For the single asset case, the derived information-based stochastic volatility model prices are
consistently greater than their true price for all the strike prices considered. The numerical
results suggest that the information-based stochastic volatility model values are close to the
Black-Scholes model prices. Two assets are considered for the multi-asset option and the
results illustrate that the prices from the multi-asset information-based stochastic volatility
model give a close fit to the multi-asset Black-Scholes model prices.
In pricing the derivatives of an asset where the volatility parameter depends on time and
information in objective three, the RMSE for the BS-BHM updated model takes a value
of 0.2674, this is lower than that of the BS-BHM model which is equal to 0.2874. This
indicates that the BS-BHM updated model is a better model to be used in the information-
based asset pricing framework. A lower RMSE value is indicative of a model that gives a
higher accuracy between the true prices and the model prices.
A change in the information flow parameter has a significant impact on the prices obtained
in the BS-BHM model. A variation in the parameter value from 0.3 to 0.25 resulted in a
better fit of the BS-BHM model to the empirical prices. The study noted that the BS-BHM
updated model was less sensitive to changes in the information flow rate as compared to the
BS-BHM model. A recommendation is made for further research on determing the optimal
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information flow rate parameter to be used in asset pricing.
Objective four is achieved by estimating the model parameters using the method of moments
and maximum likelihood estimation. The result obtained by this study is different from that
obtained by Mutĳah et al., in their estimation of the model parameters using the method of
moments, (Mutĳah et al., 2013). This is due to an imprecision made by Mutĳah et al. in
equating the population moments to the sample moments in their work. Further research
can be done in this area by considering the case where the information flow rate parameter
depends on time. An assumption is made in this research that the information flow rate
parameter is a constant.
The study also finds that, regardless of the model’s disadvantage of assuming that volatility
does not change and pre-specifying the asset price dynamics, the option prices under the
Black-Scholes model provide a good fit to the observed price. This research made use of a
constant interest rate, further research is needed on the use of a varying interest rate in an
information-based stochastic volatility model.
Wishart processes are used to derive the joint dynamics that determine the price for the
multi-asset information-based stochastic volatility model. Ito’s formula is first applied
to the variance process so that it can be written in a form that is consistent with the CIR
process. The multi-asset information-based stochastic volatility model has fewer parameters
as compared to the multi-asset Heston model, this makes the multi-asset information-based
stochastic volatility model easier to implement. In both cases, the multi-asset case reduces
to the respective single asset model by a suitable choice of parameter values.
A volatility matrix is introduced in the asset price equation to take account of the risk
premium and capture the tendency of the asset price and volatility to move together in the
Wishart processes. The volatility matrix parameter takes the value of zero in the multi-asset
information-based stochastic volatility model which in effect means that there’s no account
for the risk premium and the tendency of the asset price and volatility to move together
is not captured. This work recommends for further research in this area to ensure that a
non-zero risk premium can be introduced in the multi-asset case of the information-based
stochastic volatility model.
To assess the sensitivity of the model to changes in the parameter values, the study makes
use of Greeks. Greeks can be used as an effective risk management tool through hedging.
By making use of Greeks such as an option’s delta and gamma, a trader can be able to hedge
his portfolio to minimize his risk exposure. Due to the volatile nature of financial markets
occasioned by the variations in the factors that affect the option price such as the interest
rate, underlying asset price and volatility, the need for sound risk management practices
become essential for option traders.
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In order to compare the volatility obtained in an asset where information is incorporated
and that where information is fixed as outlined in objective five, non-linear filtering is used.
An assumption is made that the Weiner process driving the asset process and the Weiner
process driving the variance process are uncorrelated in the information-based stochastic
volatility model. Further studies need to be carried out in cases where the two Weiner
processes are correlated and whether cholesky decomposition can be used to decorrelate
them.
Volatility has become a popular area of financial research because the inaccurate volatility
estimates lead to inaccurate prices of financial instruments. This may lead to significant
financial losses being incurred by financial institutions, and in the long run, it may result in
insolvency. In order to avoid such scenarios, it is vital to use accurate estimates of volatility
in asset pricing.
This research finds that the particle filter approach to estimating volatility in the information-
based model produces volatility rates that are a close fit to the simulated volatility rates. The
estimated volatilty rates obtained using the extended Kalman filter approach also provide
a relatively close fit to the simulated volatility rates. However, the particle filter is seen to
provide estimated volatility rates that give a better fit to the simulated volatility than the
extended Kalman filter approach.
Despite giving fairly accurate estimates, the particle filter approach to estimating volatility
suffers from the setback that the particle weight variance increases continuously with time.
This is referred to as particle degradation which implies that as iteration continues, the
insignificant particles will consume a significant amount of computation time, which will
not only cause resource wastage, but also affect the final estimates, decreasing the accuracy
of the process.
The resampling technique is adopted in this study to reduce the problem of degradation.
However, this only reduces the problem of degradation. Further research needs to be done
on how to eliminate this problem from the particle filtering approach. The extended Kalman
filter is considered to be a practical method to be applied in modeling volatility as the current
volatility only depends on the previous volatility.
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