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ABSTRACT 

The scarcity of patient samples, curse-of-dimensionality and class imbalance of the available DNA 
microarray chips remain big hindrances for researchers to accurately and reliably classify cancerous 
tissues without overfitting. Moreover, these challenges are magnified when resource (computational 
power and memory) constrained devices like smart phones, tablets, and personal digital assistants are 
used to mine these datasets, rendering effective portable microarray data mining a very difficult task 
to achieve. Thus, gene selection and classification have turned out to be the most researched topics in 
DNA microarray based cancer diagnosis. An effective gene selection phase derives an informative gene 
subset from otherwise a highly dimensional dataset to reduce noise, computational overheads and model 
overfitting. On the other hand, an enhanced learning and classification phase builds a model that 
accurately and reliably classify a given DNA patient sample. This research has formulated a novel 
memetic approach: Excited-(E)-Adaptive Cuckoo Search-(ACS)-Intensification Dedicated Grey Wolf 
(IDGWO), i.e. EACSIDGWO for optimal gene selection. EACSIDGWO is an algorithm where the step 
size of ACS and the nonlinear control strategy of parameter !→of the IDGWO are innovatively made 
adaptive via the concept of the complete voltage and current responses of a direct current (DC) excited 
resistor-capacitor (RC) circuit. Since the population has a higher diversity at early stages of the proposed 
EACSIDGWO algorithm, both the ACS and IDGWO are jointly involved in local exploitation. 
Furthermore, to enhance mature convergence at later stages of the proposed algorithm, the role of ACS 
is switched to global exploration while the IDGWO is still left conducting the local exploitation. The 
performance of EACSIDGWO as a gene selector is evaluated on six standard DNA microarray chips 
derived from Irvine (UCI) repository namely Ovarian Cancer(4000 genes), Central Nervous System 
Cancer (7129 genes), Colon Cancer (2000 genes), Breast Cancer Wisconsin(prognosis) (33 genes), 
Breast Cancer Wisconsin(diagnostic) (30 genes) and SPECTF Heart Cancer (44 genes). The 
EACSIDGWO achieved the most compact informative gene subsets along with the highest 
classification accuracies as follows: Ovarian Cancer (274 genes, 100%), Central Nervous System 
Cancer (1208 genes, 72%), Colon Cancer (538 genes, 91%), Breast Cancer Wisconsin (prognosis) (5 
genes, 87%), Breast Cancer Wisconsin (diagnostic) (3 genes, 98%) and SPECTF Heart Cancer (4 genes, 
88%). Extended Binary Cuckoo Search (EBCS), the second best state-of-the-art published algorithm, 
attained the following: Ovarian Cancer (1811 genes, 99%), Central Nervous System Cancer (3446 
genes, 67%), Colon Cancer (988 genes, 89%), Breast Cancer Wisconsin (prognosis) (6 genes, 86%), 
Breast Cancer Wisconsin (diagnostic) (3 genes, 97%) and SPECTF Heart Cancer (6 genes, 86%). The 
results indicate that the proposed technique has comprehensive superiority in reducing the size of 
informative gene subsets as well as locating the most significant optimal gene subsets. To improve the 
performance of the classification phase (the last stage of the DNA microarray-based cancer analysis), 
another novel hybrid model is proposed. This model is based on particle swarm optimization (PSO), 
principal component analysis (PCA) and multiclass support vector machine (MCSVM) i.e. PSO-PCA-
LGP-MCSVM. The MCSVM adopts a novel hybrid Linear-Gaussian-Polynomial (LGP) kernel 
formulated in this research. The hybrid LGP kernel innovatively combines the advantages of three 
standard kernels (Linear, Gaussian and Polynomial) in a novel manner, where a Gaussian kernel 
embedding a Polynomial kernel is linearly combined with a Linear kernel. To reveal the superior global 
gene extraction, prediction and learning ability of this model against three single kernel-based models: 
PSO-PCA-L-MCSVM (using a single Linear kernel), PSO-G-MCSVM (using a single Gaussian kernel) 
and PSO-P-MCSVM (using a single Polynomial kernel), four datasets: Colon cancer, Acute 
Lymphoblastic Leukemia-Acute myeloid Leukemia (ALL-AML), St. Jude Leukemia dataset and Lung 
cancer were used. Adopting three extended evaluation metrics (G-mean, Accuracy (Acc) and F-score) 
the proposed model achieved the following: Colon Cancer (G-mean: 0.88, Acc: 0.88, F-score: 0.87), 
ALL-AML (G-mean: 0.94, Acc: 0.94, F-score: 0.94), Lung Cancer (G-mean: 0.99, Acc: 0.97, F-score: 
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0.96) and St. Jude Leukemia dataset (G-mean: 0.97, Acc: 0.96, F-score: 0.90). The PSO-G-MCSVM, 
the second best published model, attained the following: Colon Cancer (G-mean: 0.82, Acc: 0.82, F-
score: 0.82), ALL-AML (G-mean: 0.94, Acc: 0.94, F-score: 0.94), Lung Cancer (G-mean: 0.98, Acc: 
0.96, F-score: 0.93) and St. Jude Leukemia dataset (G-mean: 0.97, Acc: 0.95, F-score: 0.85). 
Considering the reported compact informative gene subsets selection along with the very high 
classification accuracy, it is evident that the proposed models are promising DNA microarray data 
mining tools for both cost effective computers and online servers ,as well as resource constrained mobile 
devices.  
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CHAPTER ONE: INTRODUCTION 

1.1 Background to the Study 

The DNA microarrays (chips) have largely transformed the approach of conducting scientific 
research for genome analysis. Microarray slides have facilitated simultaneous recording of 
thousands of gene expression levels, which consequently has enabled many researchers acquire 
unprecedented insights of the living organism mechanism on a wider genome scale [1]. 

These microarray chips have facilitated parallel monitoring of thousands of gene expressions 
under distinct conditions like in a sample of a biological tissue or on an experimental time 
stamp. The genome, which is a group of genes belonging to an organism, influences every form 
of development, functioning and even susceptibility of an organism to certain disorders and 
diseases [2]. 

Genetic mutations are the major underlying causes of the many existing disorders and diseases. 
Thus, both gene activities and gene interactions need to be determined in order to examine the 
biochemical mechanism [3] [4]. 

The DNA chips are widely applied in various scientific disciplines of Medicine and Biology. 
Currently, the various studies utilizing microarray chips include gene co-regulation, clinical 
diagnosis, gene function discovery, differential gene expression and patterns of gene activity 
under different chemical treatment [1] [5]. 

Gene expression profiling entails taking note of which genes are unaltered under certain 
conditions. Though perceived as the most basic microarray application, it is one study that 
reveals useful biological insights about an organism’s genome [3] [6]. 

A group of genes sharing related regulatory patterns under a given condition can also share 
related biological functions. Furthermore, a given gene expression profile can be key in 
determining diseased or abnormal cellular functions which makes it a necessary tool in the 
current clinical research, especially in cancer diagnosis [7] [8]. 

Globally, cancer has adversely affected the society. Cancer is defined as a cluster of around 
100 distinct diseases that can attack any part of the body, and largely characterized by 
unrestricted rise in the number of abnormal cells. It is considered the leading cause of mortality 
and morbidity worldwide, more so in third-world countries like Kenya [9] [10]. 

A timely diagnosis combined with target specific therapies has proved to be effective in cancer 
treatment and thus increasing the survival rate of cancer patients [11]. Currently, many 
researchers are actively developing systems that can speed up the cancer diagnostic process by 
aiding in the medical investigations phase using the gene-based biomarkers [1]. 

DNA microarray chips provide deeper insights of a number of genetic alterations that are 
related to cancer [8].Moreover, these chips are widely being applied in toxicological prediction 
studies, gene mapping with their respective encoded proteins, drug response analysis, 
identification of molecular targets for drugs and pharmacogenomics applications [12] [13] [14]. 
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The following are scientific objectives addressed by the current microarray research : 

i) Detection of genes that are co-expressed. 
ii) Mapping of active regions within a genome to facilitate testing of the internal 

metabolism of an organism. 
iii) Determining of gene expression profiles that might be early biomarkers of a given 

disease. 
iv) Classification of various types of tissues using the disease response i.e. early disease 

discovery. 
v) Determining gene expression profiles that will aid in differentiating biological 

entities. 
vi) Studying gene activity patterns in various different stress conditions. 

Though DNA microarray chips have proved key in the cancer diseases diagnosis, they have an 
inherently enormous raw data whose handling and processing poses a great challenge to 
existing machine learning tools [1] [2]. 

A consideration of DNA microarray experiments and the various processes undertaken in 
generating the microarray data is outlined in the subsequent subsections. 

1.1.1 DNA Microarray chips 

DNA microarray chips is a technology initially developed by Patrick H. Brown Laboratory 
[15] i.e. cDNA Microarrays in 1995 and Affymetrix i.e. High-Density Oligonucleotide arrays 
in 1966 [16]. 

The DNA microarray chips have proved to be powerful tools in genomics. They have enabled 
scientific researchers to assess activities and interactions existing within tens of thousands of 
genes concurrently. This is a milestone in comparison to classical molecular biological tools, 
which facilitates an assessment of one or a small set of genes [17] [18]. Since the microarray 
chips facilitates an understanding of processes within living organisms at molecular level, it is 
a promising tool with many applications in the field of medicine and biology [19] [20]. 

Currently, microarray data analysis is one of the major research areas in bioinformatics. A 
DNA microarray chip enables scientists to conduct experiments on thousands of genes 
simultaneously with the aim of evaluating gene expression patterns. For the first time, these 
chips have revolutionized the study of human genomics by enabling scientists to monitor 
expressions of thousands of genes concurrently [21] [22]. 

1.1.2 Microarray experiment 

A DNA microarray chip is a glass microscope slide with fixed spots of synthesized DNA 
molecular strands. One DNA chip consists of ten thousands of spots, where each spot 
corresponds to a single gene. 

High-density oligonucleotide chips [23] and spotted arrays [24] are some of the variations of a 
microarray technologies that are in existence. Mostly, this microarray technology is used to 
compare two different samples i.e. an unknown sample and a control sample with the aim of 
determining the mRNA abundance [25] . 
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The DNA microarrays are used to monitor variations in gene expressions levels during 
upregulations or down regulations processes. The Expression of genetic information is 
described in two phases i.e. the transcription and the translation phases as depicted in Figure 
1.1 [26]. 

 

 

Figure 1.1: Gene expression[26] 

The main steps undertaken in the preparation of microarray data are shown in Figure 1.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Stages for  microarray data preparation 

First and foremost, mRNA is extracted from a selected tissue or a given cell line. Furthermore, 

the extracted mRNA is utilized in the production of a sample, which is labelled with fluorescent 

nucleotides (which are red or green in color). The labelled sample is hybridized simultaneously 

Selection of a scientific research area for investigation 

Design of an experiment and selection of an microarray chip 

Hybridization and scanning of spots 

Image processing 

Data matrix derivation 
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to derive multiple DNA sequences that are affixed in an organized array structure mounted on 

a solid surface. 

Further, the populated microarray is scanned using a microscope and the resulting fluorescent 

on every spot of the microarray is determined. The quantity of each mRNA in the originally 

selected sample is presumed to be directly proportional to the amount of the measured label. 

Finally, an image analysis software is used to derive an image from the hybridized microarray 

surface. Digitization of the red-to-green fluorescence is carried out to determine the ratio output 

values that will indicate the gene expression values. Figure 1.3 [27] outlines the processes of a 

typical microarray experiment. 

 

Figure 1.3: Steps followed during a microarray experiment [27] 

1.1.3 Microarray gene expression matrix 

The microarray data is normally depicted as a gene expression matrix. The rows of the matrix 

represent the genes while the columns outline different tissue samples, development phases or 

drug treatments. Each cell of the matrix contains a value corresponding to the gene expression 

level under a specific sample condition [28]. 

The gene expression matrix 0 can be described by an 1×3 matrix. The rows depict the 

expression patterns of genes i.e. 45, 47, … , 49 while the columns depict the expression profile 
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of considered samples i.e. :5, :7, … , :; . The value <=> is the measured expression level 

corresponding to gene !	in sample  @. Thus the definition of 0 can be represented by Equation 

1.1 

			0 =

<55 <57 … <5;
<75
⋮

<77
⋮

… <7;
⋱ ⋮

<95 <97 … <9;
⃪
4=	! = 1,2, … , 1;
:>	@ = 1,2, … , 3  

1.1 

 

 

1.1.4 Processing and analyzing microarray data 

The microarray experiments normally generate raw data consisting of images derived from the 

hybridized arrays as depicted by Figure 1.4 [29]. 

 

Figure 1.4: Microarray image[29] 

To obtain numerical values that can constitute the gene expression matrix, the hybridized 

signals are transformed using salient data processing techniques [27]. Microarrays can reveal 

critical biological information such as the specific gene expression patterns associated with 

malignant tissues of many cancer disease types. However, interpretation of the derived data is 

key in microarray data analysis. Though very critical, interpretation of microarray data is 

normally affected by a number of factors not limited to statistical variations encountered during 

gene value estimation, management of huge microarray data and lack of sufficient knowledge 

on gene functions and their interactions [30]. 



6	
	

1.2 Motivation for this research 

By facilitating a concurrent measurement of tens of thousands of genes, the DNA microarray 
chips have paved way for the discovery of useful biological information regarding interactions 
at molecular level within an organism [1]. Moreover, these chips have facilitated the 
development of diverse and attractive clinical tools for disease diagnosis. 

Clinical diagnosis entails the discovery of disease informative genes and the selection of the 
right diagnosis based on the discovered informative genes. Currently, the main research 
objective for the DNA microarray data analysis is the formulation of generic techniques for 
cancer disease classification [19]. This is mainly because, the microarray chips generate 
unprecedented biological information regarding the pathology and disease progression, 
molecular level changes, resistance and response to specific administered therapies [3]. 

Accurate and timely cancer disease diagnosis and the classification of its subtypes are the main 
challenges facing the medical field today [11]. Cancer diagnosis is mainly based on 
morphological properties of diseased/malignant tissues. However, classifications that solely 
rely on these morphological features have proved to be insufficient [18].This is because tumors 
that are morphologically similar can be categorized into distinct classes using the gene 
expression profiles [14]. 

It is a well-established fact that systematic pattern deviations of gene expressions within a 
specific type of cell is directly correlated with some biological variations belonging to a 
specific cancer type. However, to make use of this well-defined fact in the fight against cancer, 
selection  of a small number of predictive genes  from the highly dimensional microarray data 
is paramount [16]. 

Currently, there are three major research areas considered in the microarray data analysis as 
outlined below. 

1.2.1 Class comparison 

This research area considers the development of various techniques to analyze the DNA 
microarray chips with aim of determining differentially expressed genes among selected tissue 
samples. It is an area mainly focusing on the establishment of the upregulated or downregulated 
genes [31] [32]. The outcome of this research mainly helps the scientific and the medical world 
to interpret the genetic differences existing between diseases and their subtypes. Researchers 
in this field mainly use statistical analysis techniques like the ANOVA, z- and t-tests [33] [34]. 

1.2.2 Class discovery 

Researchers in this area mainly focuss on developing approaches that can identify similar gene 
expression patterns and group these genes into functionally related gene expression classes [35] 
[36]. Many unsupervised approaches like self-organizing maps (SOMs) hierarchical clustering 
have been utilized in this research area [37]. However, since the considered microarray chips 
in this research are inherently highly dimensional with correlated genes, in many cases the 
derived clusters may not necessarily reveal all the needed information for biological 
discrimination [37]. 
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1.2.3 Class prediction 

Researchers in this area develop enhanced prognostic and diagnostic tools that  incorporate 
supervised machine learning and soft computing techniques for the management of various 
diseases [8]. 

Some of the recent studies in this area [1] have revealed that the DNA microarray chips are 
promising tools for the cancer disease diagnosis. These studies strongly suggested that the gene 
expression profiles could be utilized in the classification of tissue samples. These studies 
pointed out that the disease identification especially cancer disease classification is the most 
considered area of application for the DNA microarray chips. 

However, these high-throughput functional genomic tools i.e. the DNA chips are highly 
dimensional (contain a vast number of genes in the range of tens of thousands) with limited 
sample space (in the range of hundreds) which has demanded development of techniques which 
are low-demanding in terms of computing resources, fast and efficient in dimensionality 
reduction prior to cancer classification.  

Though a number of soft computing and pattern recognition tools have been reported to handle 
this challenge, a number of them suffer from the risk of overfitting and are computationally 
expensive. Thus, the main objective of this research is to develop versatile hybrid soft 
computing and pattern recognition tools to aid in predicting the class of unknown samples 
quickly and accurately. 

Soft computing tools are proficient in utilizing artificial intelligence to handle the uncertainty 
and precision posed by the highly dimensional and unsymmetrically structured DNA 
microarray chips. Though promising, a good number of the existing soft computing tools are 
inherently slow in computation, converge prematurely and suffer from a large and complex  
search space resulting from the highly dimensional DNA data [38].  

To overcome the aforementioned challenges and still apply these promising tools in the DNA 
microarray data analysis for cancer disease diagnosis, this research considers formulation of 
novel hybridization techniques for existing computing and pattern recognition. Efficient 
hybridization will not only overcome the individual shortcomings of the combined soft 
computing tools but also portray superior diversification and intensification capabilities while 
handling the DNA microarray gene data.   

1.3 Research questions 

This research tries to answer the following research questions: 

i) How can the concept of a complete current response of DC excited RC circuit be 

adopted to overcome the local optimal trapping and strike a better balance between 

exploration and exploitation in grey wolf optimization based feature selection, for 

effective gene selection and improved classification accuracy in DNA microarray 

based cancer data? 
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ii) How can the step-size of the cuckoo search algorithm be made adaptive via the 

concept of a complete voltage response of DC excited RC circuit in order to 

improve both its convergence speed and search ability? 

iii) How can the EBGWO be hybridized with the ACS in order to strike an optimal 

balance between the EBGWO’s exploitation and exploration capabilities? 

iv) How can an adaptive hybrid kernel using three standard kernels (linear, Gaussian 
and Polynomial kernels) be formulated for the multi-class SVM classifier inorder 
to effectively classify DNA microarray based cancer data?  

1.4 Research objectives 

The main objective of this research is to develop versatile and suitable decision models to 

effectively analyze DNA microarrays that are; imbalanced, highly dimensional with low 

sparcity and genes that are directly or indirectly correlated. Specifically, this research is focused 

on the following objectives: 

i) To improve the stability, diversity and robustness of the existing binary grey wolf 

optimization gene selector in highly dimensional DNA microarray based cancer 

data via the concept of the complete current response of DC excited RC circuit (i.e. 

EBGWO ). 

ii) To make the step-size of the cuckoo-search algorithm adaptive (i.e. ACS) via the 

concept of a complete voltage response of DC excited RC circuit with the aim of 

improving both its convergence speed and search ability in DNA microarray based 

cancer disease classification. 

iii) To optimally strike a balance between the EBGWO’s exploitation and exploration 

capabilities by hybridizing it with the ACS algorithm. 

iv) To improve the SVM’s (a commonly utilized classifier in the DNA microarray 
based cancer classification) learning and classification capability by innovatively 
hybridizing its three standard kernels (i.e. linear, Gaussian and polynomial kernels). 

1.5 Researcher’s contribution 

From the literature review, a number of researchers are actively involved in the analysis of 
DNA microarray cancer chips. This is because DNA microarray chips have portrayed huge 
potential in the fight against cancer.  

The Microarray experiments are generating voluminous amount of data that is directly linked 
to genetic mutations resulting from a specific cancer disease. Thus, it is desirable to build 
reliable diagnostic tools that are based on these potential chips in order to speed up the cancer 
diagnosis and classification process. 
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Though microarray chips are promising in the fight against cancer, they are associated with a 
number of computational issues that need to be addressed for the whole process to be deemed 
successful. These challenges include the identification of genes that are differentially expressed 
for a specific cancer classification, efficient classification of these imbalanced microarray data 
and determining the existing relationships among the gene expression profiles. 

Dimensionality reduction has been identified as a key issue in designing reliable cancer 
diagnostic tools. So far, a number of gene selection techniques have been reported to tackle 
this issue. Majority of these approaches fall under the filter and wrapper categories. Though 
filter approaches are computationally efficient and fast compared to wrappers, they are 
classifier independent and ignore possible interactions among microarray genes making them 
inefficient for the microarray classification task. 

 On the other hand, wrappers provide attractive classification accuracies compared to filters, 
but they have a high computation cost resulting to slow convergence. This renders wrappers 
too inefficient for microarray classification task. 

Thus, it is evident that neither a single filter approach nor wrapper approach can offer optimal 
dimensionality reduction for the DNA microarray chips. Both approaches need to be either 
improved or hybridized in order for them to be effective in the dimensionality reduction of 
microarray datasets. 

The workflow adopted for this research is outlined in Figure 1.5. The colored lines depict the 
roadmap followed in this research. From Figure 1.5, this research made three notable 
contributions, which are summarized in the following subsections. 
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Figure 1.5: Workflow for the conducted Research 
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The mains contributions made in this research are summarized in subsections 1.5.1, 1.5.2 and 
1.5.3 respectively. 

1.5.1 EBGWO: An Excited Binary Grey Wolf Optimizer for Feature Selection in Highly 

Dimensional Datasets 

To select a subset of informative genes from the highly dimensional DNA microarray chips, a 

novel excited binary grey wolf optimization (EBGWO) based wrapper utilizing the K-NN 

classifier is presented in Chapter 3. To overcome the local minima trapping of the existing 

BGWO that normally results into semi-optimal solutions, in the proposed EBGWO, a new 

position-updating criterion is formulated. The new position updating criterion utilizes the 

fitness values of vectors G5
→, G7

→and GH
→  to determine the new candidate individuals. These 

vectors are derived from the union of scalars G5, G7 and GH  respectively of the existing BGWO. 

Moreover, to make full use of and strike a better balance between exploration and exploitation, 

which is also a challenge in the BGWO, a novel nonlinear control strategy is formulated. This 

non-linear strategy innovatively decreases parameter !→ via the concept of the complete 

current response of a direct current (DC) excited resistor-capacitor (RC) circuit. One induction 

algorithm i.e. the K-Nearest Neighbor (K-NN) is utilized in the proposed wrapper approach to 

evaluate the classification performance of subset of genes selected by the EBGWO, using 5-

fold cross-validation technique. 

The performance of EBGWO as a gene selector is evaluated on 7 standard DNA microarray 

chips derived from Irvine (UCI) repository namely Brain Tumour1 (5920 genes), Brain 

Tumour2 (30367 genes), Central Nervous System Cancer (7129 genes), Diffuse Large B-Cell 

Lymphoma (DLBL) (5469 genes), Leukemia (7129 genes), Colon Cancer (2000 genes) and 

Lung Cancer(12600). The EBGWO achieved the most compact informative gene subsets along 

with the highest classification accuracies as follows: Brain Tumour1 (501 genes, 92%), Brain 

Tumour2 (1151 genes, 88%), Central Nervous System Cancer (710 genes, 83%), DLBL (426 

genes, 100%), Leukemia (649 genes, 90%), Colon Cancer (143 genes, 92%) and Lung 

Cancer(1005 genes, 98%). Binary Grey Wolf Optimization 2 (BGWO2), the second best state-

of-the-art published algorithm, attained the following: Brain Tumour1 (1343 genes, 89%), 

Brain Tumour2 (3083 genes, 85%), Central Nervous System Cancer (2175 genes, 78%), DLBL 

(1408 genes, 98%), Leukemia (1805 genes, 87%), Colon Cancer (455 genes, 90%) and Lung 

Cancer(2413 genes, 97%).On average, the proposed EBGWO algorithm attained a reduced 

informative gene subset with 655 genes along with a classification accuracy of 92%. On the 
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other hand, on average the BGWO2 (second best algorithm) attained a reduced informative 

gene subset with 1812 genes along with a classification accuracy of 89%. Thus in comparison 

with BGWO2 (the current best gene selector that is based on the GWO algorithm), on 

average the proposed EBGWO algorithm reduced the number of selected genes from 

1812 to 655 (i.e. a further reduction of 1157 genes) while improving the classification 

accuracy from 89% to 92% (i.e. an improvement by 3%). 

1.5.2 E-ACS-IDGWO: An Innovative Excited-ACS-IDGWO Algorithm for Optimal 

Biomedical Data Feature Selection 

Though the proposed EBGWO wrapper has proved attractive in selecting informative genes 

from the highly dimensioned DNA microarray datasets due to its enhanced stability and 

diversity capabilities, it does not strike an optimal balance between exploitation and exploration 

during the search process. This is because exploitation and exploration are two contradicting 

principles, which must be balanced efficiently in order to achieve an improved performance of 

a metaheuristic. Moreover, attaining an optimal balance between these antagonist principles is 

difficult with a single metaheurist. To attain the required optimal balance between exploitation 

and exploration, another innovative excited-ACS-IDGWO complementary hybrid model 

comprising of two improved wrappers i.e. adaptive cuckoo search algorithm (ACS) and 

intensification dedicated grey wolf optimizer (IDGWO) (a variant of the EBGWO wrapper 

presented in Chapter 3) and using the SVM classifier is presented in Chapter 4. The proposed 

model innovatively adopts the concept of the complete voltage and current responses of a direct 

current (DC) excited resistor-capacitor (RC) circuit to nonlinearly control parameter #→ of 

IDGWO and the step size of ACS. To handle the higher diversity of the search space during 

the early stages, both the ACS and IDGWO are jointly involved in the local exploitation. 

Conversely, to promote mature convergence during later stages of the search space, the role of 

ACS is shifted to global exploration while the IDGWO is left carrying out local exploitation. 

The performance of the proposed model is compared with those of four state-of-art wrappers. 

The proposed technique emerged to be superior in attaining a good learning from a few samples 

and optimally deriving a reduced feature subset from the information-rich datasets.  

The superiority of the proposed E-ACS-IDGWO is further proved via a number of statistical 

approaches like ranking techniques and statistical analysis.The performance of EACSIDGWO 

as a gene selector is evaluated on six standard DNA microarray chips derived from Irvine (UCI) 

repository namely Ovarian Cancer (4000 genes), Central Nervous System Cancer (7129 genes), 

Colon Cancer (2000 genes), Breast Cancer Wisconsin (prognosis) (33 genes), Breast Cancer 
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Wisconsin (diagnostic) (30 genes) and SPECTF Heart Cancer (44 genes). The EACSIDGWO 

achieved the most compact informative gene subsets along with the highest classification 

accuracies as follows: Ovarian Cancer (274 genes, 100%), Central Nervous System Cancer 

(1208 genes, 72%), Colon Cancer (538 genes, 91%), Breast Cancer Wisconsin (prognosis) (5 

genes, 87%), Breast Cancer Wisconsin (diagnostic) (3 genes, 98%) and SPECTF Heart Cancer 

(4 genes, 88%). Extended Binary Cuckoo Search (EBCS), the second best state-of-the-art 

published algorithm, attained the following: Ovarian Cancer (1811 genes, 99%), Central 

Nervous System Cancer (3446 genes, 67%), Colon Cancer (988 genes, 89%), Breast Cancer 

Wisconsin (prognosis) (6 genes, 86%), Breast Cancer Wisconsin (diagnostic) (3 genes, 97%) 

and SPECTF Heart Cancer (6 genes, 86%). On average, the proposed EACSIDGWO algorithm 

attained a reduced informative gene subset with 339 genes along with a classification accuracy 

of 89%. On the other hand, on average the EBCS (second best algorithm) attained a reduced 

informative gene subset with 1043 genes along with a classification accuracy of 87%. Thus in 

comparison with EBCS (the current best improved version of the Binary Cuckoo Search 

algorithm), on average the proposed EBGWO algorithm reduced the number of selected 

genes from 1043 to 339 (i.e. a further reduction of 704 genes) while improving the 

classification accuracy from 87% to 89% (i.e. an improvement by 2%). 

 

1.5.3 PSO-PCA-LGP-MCSVM: Particle Swarm Optimized Hybrid Kernel-Based 

Multiclass Support Vector Machine for Microarray Cancer Data Analysis 

From the results presented in section 1.4.2, the proposed hybrid EACSIDGWO algorithm 

achieved an optimal balance between exploitation and exploration during the search thus 

overcoming EBGWO’s shortcoming. However, this wrapper adopted the SVM classifier (a 

commonly utilized classifier in DNA microarray based cancer classification) whose 

performance is largely dependent on the kernel adopted for it as well as tuning of the kernel 

parameters. Moreover, utilizing a single kernel function based MCSVM classifier in a given 

application such as gene expression data does not attain both a good learning ability, proper 

global feature extraction ability and a better generalization capability. Thus, to enhance both 

the learning and classification ability of the SVM classifier a particle swarm optimized hybrid 

kernel-based multi-class support vector machine i.e. PSO-PCA-LPG-MCSVM is presented in 

Chapter 5. In this model, particle swarm optimization (PSO) algorithm, principal component 

algorithm (a gene extractor) and multiclass support vector machine (MCSVM) that is based on 
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a hybrid kernel i.e. linear-gaussian-polynomial (LGP) are combined. The major contribution 

of this work is the novel hybrid kernel i.e. LGP that combines the advantages of three standard 

kernels (linear, Gaussian and polynomial) in a novel manner; where the linear kernel is linearly 

combined with a Gaussian kernel that is embedding a polynomial kernel. Further, the validity 

of the proposed kernel is proved.  

The effectiveness of the proposed model is revealed by carrying out a number of experiments 

and obtained results compared with those of three single kernel-based models i.e. PSO-PCA-

L-MCSVM, PSO-PCA-G-MCSVM and PSO-PCA-P-MCSVM that utilize the standard alone 

linear, polynomial and Gaussian kernels respectively. Two dual and two multiclass imbalanced 

DNA microarray datasets that are publicly available were utilized. The obtained experimental 

results in terms of three extended evaluation  metrics i.e. G-mean, F-score and accuracy reveal 

how superior the proposed model is in terms of global feature extraction, learning and 

prediction , compared to the other standalone kernel-based models. 

	To reveal the superior global gene extraction, prediction and learning ability of this model 

against three single kernel-based models: PSO-PCA-L-MCSVM (using a single Linear kernel), 

PSO-G-MCSVM (using a single Gaussian kernel) and PSO-P-MCSVM (using a single 

Polynomial kernel), four datasets: Colon cancer (2000 genes), Acute Lymphoblastic 

Leukemia-Acute myeloid Leukemia (ALL-AML) (7129 genes), St. Jude Leukemia dataset 

(12558 genes) and Lung cancer(3312 genes) were used. Adopting three extended evaluation 

metrics (G-mean, Accuracy (Acc) and F-score) the proposed model achieved the following: 

Colon Cancer (G-mean: 0.88, Acc: 0.88, F-score: 0.87), ALL-AML (G-mean: 0.94, Acc: 0.94, 

F-score: 0.94), Lung Cancer (G-mean: 0.99, Acc: 0.97, F-score: 0.96) and St. Jude Leukemia 

dataset (G-mean: 0.97, Acc: 0.96, F-score: 0.90). The PSO-G-MCSVM, the second best 

published model, attained the following: Colon Cancer (G-mean: 0.82, Acc: 0.82, F-score: 

0.82), ALL-AML (G-mean: 0.94, Acc: 0.94, F-score: 0.94), Lung Cancer (G-mean: 0.98, Acc: 

0.96, F-score: 0.93) and St. Jude Leukemia dataset (G-mean: 0.97, Acc: 0.95, F-score: 0.85). 

On average, the proposed PSO-PCA-LPG-MCSVM algorithm attained the following for the 

four datasets: G-mean: 0.95, Acc: 0.94 and F-score: 0.92. On the other hand, on average the 

PSO-G-MCSVM (second best published model) attained the following for the four datasets: 

G-mean: 0.93, Acc: 0.92 and F-score: 0.89. Thus in comparison with PSO-G-MCSVM (the 

second best published model), on average the proposed PSO-PCA-LPG-MCSVM model 

improved both the G-mean and Acc by 0.02 (2%) and F-score by 0.03 (3%). 
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1.6 Organization of Dissertation 

Chapter One: Gives an introduction of the DNA microarray chips and the biological of DNA 

microarray data analysis is presented. The necessity of applying DNA microarray data analysis 

in both biomedical and clinical research with the aim of developing robust techniques for 

cancer disease diagnosis is articulated. The contribution of this research is also outlined in this 

section. 

Chapter Two: A detailed literature review covering the various dimensionality reduction 

techniques developed for DNA microarray data analysis is presented. The motivation for the 

proposed research is also given. The research gaps identified in the literature are also discussed 

Chapter Three: Presents a detailed account of the excited binary grey wolf optimizer and its 

application as an efficient feature selector in the highly dimensional DNA microarray datasets. 

Chapter Four: Presents a detailed account of the excited-ACS-IDGWO algorithm and its 

application as a feature selector in various biomedical datasets. 

Chapter Five: Presents a detailed account of the particle swarm optimized hybrid kernel-based 

multiclass support vector machine and its application in the DNA microarray data analysis. 

Chapter Six: The significant contributions and the main findings of this work are highlighted 

in this chapter. Moreover, the scope for further work in this area of research is also presented. 

  



16	
	

CHAPTER TWO: LITERATURE REVIEW 

2.1 Introduction 

Due to the ever-increasing data dimensions experienced in the world today, many contexts such 
as medicine, machine learning and informatics are facing a number of challenges. However, 
dimensionality reduction can be regarded a basic technique to these feature-rich data, since by 
deriving and utilizing informative features only, processing of these data with existing tools 
will be facilitated. 

DNA microarray chips are acquired from cells and tissues by taking into consideration the 
existing differences among the genes, which has proved to be useful in the diagnosis of diseases 
as well as tumors. However, due to a vast number of genes with a few samples existing in these 
DNA chips, selection of the most informative genes is still a difficult but important task[39]. 

Among the various existing machine learning approaches, feature/attribute selection as well as 
data classification are two essential tasks, which play a critical role in promoting human health; 
ranging from the detection of both voice and emotion to illness detection[40] [41]. 

In the medical field, effective informative genes selection can to a large extent enhance the 
prediction of the cancer disease as well as its diagnosis. After a successful gene selection, a 
specific classifier is utilized to discriminate healthy people from people suffering from cancer 
based on the expression levels of the selected genes. 

So far, a number of researchers have proposed feature selection techniques to handle these 
feature-rich microarray chips.These techniques can be grouped into: filters, wrappers and 
hybrid techniques. Furthermore, reseachers have recently proposed new approaches like 
ensemble techniques to enhance both the process of gene selection as well as cancer disease 
classification. 

In this chapter is a detailed account of the most utilized approaches that handle the DNA 
microarray datasets. The chapter starts by outlining a broad overview of the highly dimensional 
microarray data and attribute selection (Section 2.2 and Section 2.3). In section 2.4, a review 
of the state-of-art techniques falling within the filter category is given. In the three subsequent 
sections i.e. 2.5, 2.6 and 2.7 a description of the wrappers, hybrid and embedded techniques is 
presented. In each of these sections, several works reported on these approaches is also 
presented. In section 2.8, a review of the ensemble approaches recently reported in literature is 
outlined. Finally, in section 2.9 inferences drawn and the identification of the contribution of 
this research are presented. 

2.2 Intrinsic features of highly dimensioned data 

In this era, data is a critical resource in both industrial production and scientific research. Data 
is generated in various ways and at different costs. In fact, determining the most suitable and 
efficient data extraction technique is key to providing a solution. Each existing technique has 
its own merits and demerits. Additive noise and elevated costs are two demerits that these 
techniques may possess[38]. 
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Moreover, since data quality as well its inherent features may affect the outcome of 
classification, it is important to fully understand the data under investigation. The common 
characteristics of highly dimensional data are presented in the subsequent subsections. 

2.2.1 Many features 

To recognize patterns, some quantitative features are derived from real world patterns and 
utilized in describing these patterns digitally.  Though measurements of a vast number of these 
features can be derived from the existing patterns in the real world, only a few of them are 
documented taking into consideration their associated necessity, storage devices as well as the 
accessibility of resources required for extraction.  

The main objective of feature/attribute selection is to derive a subset of informative 
features/attributes from all the recorded features. The selected features should enable 
researchers to fully describe and optimally classify the considered patterns.  

Theoretically, a higher classification rate can be attained by using a vast number of 
attributes/features [42]. However, in practice, with the limited training samples, using a vast 
number of attributes can slow the learning phase as well as elevate the computational burden 
of this problem. This is because the presence of redundant or irrelevant attributes confuse the 
learning algorithm [42]. 

In this era, the number of attributes in the generated data has increased considerably. For 
instance, the prostate dataset; a DNA chip with only two classes has 10,509 genes. On the other 
hand, the 11_tumour dataset has 11 classes and 12,533 genes. 

Many researchers have pointed out that despite the existence of vast number of attributes, a 
large portion of these attributes are either not relevant or are redundant to the classes under 
consideration. Thus, it is possible to attain an effective learning process by utilizing the only 
informative features.  

Moreover, an excessively complex model results when a dataset contains a large number of 
features compared to samples. This in return leads to overfitting. In scenarios where it is not 
practical to increase the size of the training subset, it is key to reduce the number of features. 
This will considerably improve the classifier’s overall performance. 

Thus feature selection entails shrinking the dimensions of a dataset by identifying a subset of 
informative features (features required by the classifier) from the whole original feature set 
contained in the dataset [43]. The identified informative feature subset should optimally 
describe the dataset being processed. This implies that only redundant, irrelevant and noisy 
features are eliminated. 

Generally, the possible number of informative attribute subsets will increase exponentially (2I, 
whereby  J is the number of attributes originally contained in the dataset) with the dimension 
of the dataset [44]. Thus, determining the optimal subset of informative attributes is normally 
a difficult task; a reason why the problem of feature selection is considered NP-hard [45]. 

2.2.2 Limited sample size 

According to the research findings in [46], to accomplish a classification task with K classes  
and J features effectively, at least 10×J×K samples are required for training. For example, 
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40000 training samples are needed for the DNA microarray colon dataset which has only two 
classes (K = 2) and 2000 genes (J = 2000). However, in total this dataset has only 62 
observations. Thus, the limited number of observations (samples) is the most significant 
challenge concerning highly dimensional DNA chips [47]. 

2.2.3 Imbalance within dataset classes 

Class imbalance normally occurs if in a given DNA chip, the number of available samples in  
a given class greatly supersedes the available sample of the other classes. In such a dataset, the 
class with the least sample size is termed the minority class. For a dataset with two classes, the 
negative class is termed as the majority class while positive class is deemed minority. 

In most classification tasks, the classifiers assume that the training samples contain equal 
number of classes. Hence, when these classifiers are subjected to imbalanced data, they will be 
trained based on the majority class samples. This will consequently lead to a poor prediction 
performance of the minority class samples due to improper training [38]. 

The ratio of the total number of samples in the majority class of the dataset, JLMN=OP9, to the 
total number of samples in the  minority class of the dataset, JLMNQ;P9 is referred to as the 
ratio of imbalance and is defined by Equation 2.1 [46]. 

 

RS =
JLMN=OP9

JLMNQ;P9	
 2.1 

To identify the samples of the minority class is still a big challenge. The majority class normally 
have a greater influence and the improper classification of samples within the minority class 
leads to elevated risks [46]. 

For example, the sample size of the positive class in the cancer disease diagnosis is relatively 
smaller compared to that of the negative class. It is important to point out that the identification 
of the positive class samples is of great importance to researchers [47]–[50].Table 2.1 presents 
the imbalance ratio of ten standard cancer microarray datasets. 

Table 2.1: Imbalance ratio of 10 standard cancer microarray datasets 

DATASET IMBALANCE RATIO 
Brain_Tumors 15.00 
Breast_Cancer 1.1 

CNS 1.857 
Colon 1.818 

Leukemia 1.780 
Prostate_Cancer 1.04 

SRBCT 2.64 
Gli 2.27 

Lung_Cancer 23.17 
Ovarian 1.78 

In the literature, a number of techniques have been suggested to try and improve the 
classification rate of existing classifiers that are utilized in tackling the problem of class 
imbalance. The proposed approaches can be broadly categorized as follows [38], [46]: 
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a)  Classifier-independent preprocessing techniques 

In this category, two techniques are employed to rebalance the distribution of class sample 
sizes within the training set. The first technique is termed as over-sampling where researchers 
try adding more samples to the class with few samples. Another technique is under-sampling 
where researchers try to remove some samples from the class with a higher number of samples. 
It is evident that both techniques try to introduce some balance to the classes[46]. 

In [38], HTSS (an under-sampling approach) is proposed to derive suitable training subsets for 
datasets with imbalanced classes. 

b) Algorithm modifications 

Utilizing solutions that are specific, these approaches attempt to enhance the performance of 
classifiers with the aim of matching it with imbalanced datasets. In [51], an ensemble approach 
is proposed to improve the classifier performance when dealing with imbalanced datasets. 

c)  Ensemble learning techniques 

These techniques utilize multiple classifiers’ results. For instance, in [52] a technique is 
proposed where by imbalanced data is first rebalanced and then multiple classifiers are utilized 
for classification. Finally a combination of the results of the individual classifiers is done. 

2.2.4 Label noise/Mislabling 

The data retrieved from practical real-world applications is full of noise. This noise can arise 
due to the use of defective appliances for measurement or sometimes irregularities during the 
transmission. Noisy data can adversely affect classifier’s performance. This implies that the 
classifier’s performance largely depends on the quality of the training data [38]. 

Foremost, label noise or mislabeling can arise due to insufficient data for labelling [51], [53], 
[54]. An example of a significantly low quality training data is reported in [55], [56]. Normally, 
after data collection, an expert carries out the labelling. The labelling phase can be prone to 
human error since it is solely dependent on the opinion of the engaged expert; sometimes two 
experts can allocate different labels to the same sample. 

Mislabling normally alters the number of samples within a given class. This challenge is 
common in the medical field. This is because determining the incident rate of a given disease 
in a given population is a great objective in the medical field. Moreover, due to the limited 
sample sizes experienced in medical research, a slight change in the number of observations 
will lead to biased measurements[38]. 

Feature selection based on ranking techniques are among the approaches that are negatively 
affected by label noise. This is because rankers can either overlook the significance of a given 
attribute or try to select an irrelevant attribute as appropriate. 

In literature, a number of researchers have proposed various techniques to handle the label 
noise. The proposed approaches can be categorized as follows[57]: 

a) Label noise robust approaches 

These techniques attempt to tackle the noise label problem by reducing overfitting. Some 
examples of such techniques are the bagging and boosting approaches [58]. 
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b) Data cleansing techniques 

These techniques try to eliminate samples suspected to be mislabeled. Various techniques have 
been proposed to spot and filter the samples that have been mislabeled. For instance, the 
technique of detecting outliers and the isolation of classified data points are some of these 
techniques [38]. 

c) Label-noise tolerant learning techniques 

These approaches cope with the noise through a modelling step. In [59], for example, a 
modification of the loss function is proposed to handle the noise. 

2.2.5 The intrinsic features of DNA microarray datasets 

A Gene expression profile is a fundamental concept in genetics. Genes are atomic genetic 
inheritance units within a genome. They hold information pertaining to the corporal features of 
an individual [30]. 

The DNA gene expression can either transfer a given property or reject it for an individual. In 
the field of bioinformatics, research on gene expression profile is key to effective prediction 
and diagnosis of a number of diseases like cancer. 

The DNA microarray data is widely utilized for cancer detection. Taking into consideration the 
gene variations that may be useful for tumors and disease diagnosis, the microarray data is 
extracted from cells and tissues [13]. However, these DNA chips normally contain a vast 
number of genes and a limited sample size. These characteristics hinder an effective gene 
selection process from these data. Moreover, these data are prone to overfitting due to their 
inherent few samples. For instance, the DNA breast cancer dataset has 24,481 genes from just 
60 samples[38]. 

The curse of dimensionality is another challenge attributed to the microarray datasets. This 
challenge arises because the extent of the vector of these genes is extremely large, which in 
most cases confuses the classifier during the learning process. 

Like most of the highly dimensional datasets, the DNA microarray datasets have the class 
imbalance problem. As already mentioned, the standard classification algorithms assume 
balanced classes within a dataset. Consequently, these learning algorithms yield deceptive 
classification results when subjected to imbalanced datasets such as the DNA data. This is 
because the training being carried out will be skewed to the majority class, which will 
subsequently make the trained classifiers largely classify the samples of the minority class as 
samples contained in the majority class. 

Considering the suggested machine learning approaches, attribute selection process is key to 
the successful classification of highly dimensioned datasets. For instance, in medicine the 
utilization of a proper feature selection process can to a large extent improve both the prediction 
as well as the diagnosis of the cancer disease[38]. After carrying out an efficient gene selection 
process, an identified classifier is employed to differentiate between healthy and unhealthy 
(cancerous) tissues using the selected profiles of gene expression. The importance of selecting 
genes comes with an extra effort of deriving an informative subset of genes which can be 
representative to the original DNA microarray dataset . 
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In bioinformatics, researchers are mainly involved in developing and testing optimal and 
efficient gene selection techniques with a minimal computational burden (complexity). An 
optimal gene selection technique not only derives a smaller set  of representative genes from 
the whole DNA microarray data but also improves the results and performance of the 
subsequent classification stage [60]. 

2.3 The Feature selection process 

Currently, feature selection has become a fundamental research area in the context of highly 
dimensional datasets. In the past, various feature selection techniques were proposed to handle 
the classical data. However, with the ever-increasing dimensions of datasets the existing feature 
selection approaches become inappropriate.  

The traditional datasets with a few 10s of attributes are rapidly being replaced by big datasets 
with tens of 1000s of features. These highly dimensioned datasets are evident in bioinformatics, 
text processing and combinatorial chemistry. 

Among the tens of thousands of features attributed to these datasets, a number of them are not 
relevant (unrelated) to the labels within the dataset classes. Thus, data preprocessing is a very 
crucial stage in attaining accurate and reliable classification when handling these big 
datasets[61]. Selecting informative features by eliminating those that are redundant and 
irrelevant is a difficult but important steps towards obtaining an appropriate classifier[57]. 

In bioinformatics, a number of recent studies have pointed out that majority of the measured 
genes within a given DNA chip experiment are normally not directly related to the 
classification validity of the classes of that dataset. To prevent this curse of dimensionality, it 
is important to remove genes that are both not relevant as well as redundant prior to the 
classification phase. 

In this regard, feature selection has been termed as the most important preprocessing phase in 
medicine and bioinformatics. For instance, determining the risk factors of cancer deaths and 
optimally selecting informative features for diagonising the cancer disease has proved to be  a 
major application of the selection of representative genes in the field of medicine. An 
informative feature subset is strongly correlated with the class labels while at the same time 
uncorrelated to other features[55]. 

In literature, various feature selection techniques have been reported to preprocess the highly 
dimensional datasets. Normally, the relation existing between the utilized function and the 
utilized classifier can be broadly categorized as follows: filters, wrappers, embedded 
techniques and the hybrid versions [59]. 

In the subsequent sections and subsections, a detailed presentation of the proposed methods is 
presented. 

2.4 Filter Approaches 

To select an informative feature subset, these approaches employ evaluation metrics that are 
based on independent and statistical methods. Without the utilization of data mining 
techniques, these approaches only utilize the inherent features of the data to select relevant and 
informative features. In other words, filters do not require a feedback from learning algorithms 
[38]. 
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Figure 2.1 depicts the flowchart of a filter based feature selection process. 

 

Figure 2.1: Filter based feature selection process 

Filter techniques are fast; making them suitable for highly dimensioned datasets. However, 
since they are classifier independent the classification accuracy yielded by their informative 
features is low[62] [63]. 
A filter technique can either be univariate or multivariate.  Univariate techniques use one 
evaluation metric in determining the relevance of a given attribute. Those attributes with the 
highest rank values become members of the informative subset. On the other hand, multivariate 
techniques utilize the relation among dataset features to select informative features [61]. 
 
In general, multivariate filter techniques are slower compared to their univariate counterparts. 
F-Score(FS) [64] and Information Gain (IG) [65] are two widely utilized univariate filter 
approaches. On the other hand ReliefF [66], mRmR[67] and FCBF[68] are the three mostly 
used multivariate filter approaches. 
 
Moreover, the filters can also be categorized as follows: statistical based, similarity based and 
those based on information theoretical. 

2.4.1 Approaches based on similarity  

These approaches evaluate the significance of an attribute by considering its ability in 
maintaining the data similarity. However, most of these techniques are not able to tackle 
attribute redundancy because they normally determine the relevance of attributes on an 
individual basis[69]. 

For a supervised attribute selection process, similarity of samples can be obtained from data 
labels while the attribute selection that is not supervised, various distance metrics are used [69]. 

2.4.1.1 The Relief and extended relief (ReliefF) approaches 

Relief [66], a similarity based technique, is widely applied to numerical and nominal attributes. 
This approach uses searches for attributes that are correlated to a given class. According to 
relief technique, an attribute is informative if it has a bigger difference among observations of 
different classes and a similar value among observations of the same class [66]. 
The relief approach starts by choosing a random observation and then uses the Euclidean 
distance to determine both the “near miss” and “near hit”. The near hit are observations with 
minimal Euclidean distances among observations of the same class while the near miss are 
observations with minimal Euclidean distances among observations of different classes [70]. 
 
Initially weights of all features are set to zero but during each execution of the algorithm are 
updated using Equation 2.2[71]. 

T<U4ℎWQ = T<U4ℎWQX5 − Z<!WQ − J<!1[Q\]
7
+	 Z<!WQ − J<!1_Q``]

7
 2.2 

Filter Approach 
DNA Microarray 

Dataset Classifier 
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The weight associated with each attribute will increase if its Euclidean distance from near 
observations within the same class is less in comparison with the Euclidean distance from near 
observations within a different class of the same dataset and vice versa. 

M vectors of relevance are generated by M iterations of the relief technique using M random 
observations and dividing the T<U4ℎW component by M, which is the evaluation metric used 
to determine informative attributes. Thus, attributes whose vector of relevance is higher than 
the set threshold become members of the subset of informative features. 

However, the relief approach cannot handle noisy and incomplete data. Moreover, this 
technique was formulated for two-class datasets and thus cannot handle multi-class datasets 
[71]. In trying to overcome these shortcomings, the reliefF which is an extension of the relief 
technique was formulated  [66]. 

2.4.1.2 The Fisher’s score technique 

This approach selects a subset of attributes whose data points have very large distances in 
unrelated classes and smaller distances within the same class [72]. 

Consider an attribute aQ of an M-class dataset. If an observation set of attributes U is in the b\c 
class aQ

d and aQ
d = ed. Where b = 1,2,3… . ,M and ag

d and ag are mean of  the aQ
d and aQ. 

Equation 2.3 then defines the F-score,Z  of a given attribute [72]. 

Z(aQ) =
ed(ag

d − ag)7N
dj5

(k − ag
d)7l∈m]

n
N
dj5

 2.3 

The numerator in Equation 2.3 indicates the discrimination between two classes while the 
denominator depicts the scattering in each class. If the F-score of an attribute is higher, then its 
discrimination power will be higher. Finally, features that attain F-scores that are higher than 
the set threshold become members of the informative subset. 

2.4.1.3 Laplacian score 

This is an approach,which selects attributes that preserve the structure of the manifold [73]. To 
utilize this approach, the following three steps are required: 

i) Construction of affinity matrix 

The construction of the affinity matrix is conducted as follows: 

o !, @ = <k)
pqXpr s

\

0, tWℎ<1uU:<
	 , Uv	w=	U:	!	M<M@<1	tv	Wℎ<	)	

− 3<!1<:W	3<U4ℎ@tL1	tv	w>	 
 

2.4 

Where W is a desirable constant.  

ii) diagonal matrix 

Equation 2.5 depicts the definition of the diagonal matrix 
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Oj5

 2.5 

Then Equation 2.6 gives the expression for matrix L 

y!W1Ukz = x − o 2.6 

 

iii) Computation of the Laplacian score of each feature, v<!WQ 

{!)|!wU!3}pP9~ 	�~=\] =
v<!Wg

Ä
. y!W1Ukz. v<!Wg	

v<!Wg
Ä
Å�~=\Ç	

 2.7 

Where v<!Wg	 is defined by Equation 2.8 

v<!Wg	 	= v<!WQ −
v<!WQ

Äx5

1Äx5
. 1 2.8 

Since the Laplacian score is considered to be a ranking technique, the top b attributes with least 
scores become members of the informative subset. 

2.4.2 Statistical techniques 

These approaches utilize various statistical criteria to select informative attributes. Majority of 
these techniques are based on preset statistical criteria to remove uninformative attributes. Due 
to their low computational cost, they are suitable for pre-processing highly dimensional 
datasets. However, like similarity-based techniques they are unable to tackle redundant features 
[38]. 

2.4.2.1 Feature selection technique based on correlation (CFS) 

CFS, a multivariate selection technique, was proposed in [74]. CFS evaluates attributes as per 
a correlation measure that is based on a given heuristic evaluation criterion that favors attributes 
with a higher correlation within a class. 

The heuristic “merit” for an informative feature subset o containing É attributes is defined by 
Equation 2.9 

KZo`pP9~(S) 	=
É. 1p�

É + É É − 1 	. 1��
 2.9 

Where 1�� is the average attribute-attribute correlation while 1p� is the mean attribute class 
correlation. To compute the 1p� and 1��, CFS utilizes symmetrical uncertainty [75]. 

2.4.2.2 Low Variance 

This technique eliminates attributes whose variance is below a set threshold. With low 
variance, an attribute whose value is constant for all the observations, is deemed non-
informative and its variance is normally zero[38]. 
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2.4.2.3 The t-Score 

This approach is determined by taking into consideration the mean, standard deviation and the 
sample values of attributes for each class as defined by Equation 2.10. 

Ö̀ pP9~(vQ) 	=
ÜQ

á − ÜQ
X

àQ
á(âQá)7 + àQ

X(âQX)7
àQ

á + àQ
X

 
2.10 

Where àá and àX depict the sample size in the positive and negative classes respectively. ÜQ
á 

and ÜQ
X represent the means of the class labels. âQá is the positive class’ standard deviation, 

while âQX is the negative class’ standard deviation. 

This technique is only applicable to two-class datasets i.e. binary classification. It is important 
to point out that this technique is categoized as a ranker; thus features with higher T-score 
values are conidered informative [76]. 

2.4.3 Information theoretical-based approaches 

These approaches evaluate the significance of each attribute by using various heuristic filter 
techniques. They mainly maximize attribute relevance while minimizing attribute redundancy. 
Because most of these approaches are only applicable to discrete data, a discretization phase is 
required if data values are continuous [77]. 

Unlike statistical-based and similarity-based filter techniques, which were insufficient when 
handling datasets full of redundant features, information theoretical-based techniques have the 
ability to tackle the redundancy problem. 

2.4.3.1 FCBF (Fast correlation-based filter) 

FCBF, a multivariate based feature approach, incorporates mutual information to handle highly 
dimensioned datasets [69].FCBF employs the symmetrical uncertainty (SU) measure (refer to 
Equation 2.11 below) to detect redundant as well as irrelevant attributes, and in evaluating the 
correlation between attribute-attribute and attribute-class [68]. 

oä(ã, R) 	= 2
R0(ã, R)

Z ã + Z(R)
 2.11 

Where Z ã  and Z R  depict the entropy of two attributes and R0(ã, R) represent the 
information gain. 

Foremost, this technique picks a subset of attributes with a high correlation with class by the 
utilization of the SU. Then, after eliminating redundant attributes, relevant attributes to the 
class are retained. 

2.4.3.1 mRMR (Minimum redundancy-maximum relevance) filter 

This is another multivariate filter technique utilizing mutual information (MI) in evaluating the 
level of correlation existing between attribute-attribute and attribute-class. This technique 
retains features whose relevance is maximum with respect to a given class and their redundancy 
is minimum in regards to other features[67]. 
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The score for an unselected attribute v<!Wd is given by Equation 2.12. 

owt1<Nå_å v<!Wd = R v<!Wd; ç −
1
o

R(v<!Wd; v<!WO)
�~=\é∈}

 2.12 

Where attribute relevance is given by R v<!Wd; ç  and R(v<!Wd; v<!WO) depicts the mutual 
information between feature v<!Wd and feature v<!WO. 

2.4.3.2 Information gain 

This univariate technique utilizes information to evaluate attributes. The entropy concept, from 
information theory, is used to derive the information [38]. In other words, R0 for an attribute 
v<!WQ in set od is defined by Equation 2.13. 

R0 od, v<!WQ = ã − ã(o�~=\]	 = è)

}êëqí]	jì
}n

îjï=ñó~`(�~=\])

 
2.13 

Where ò!|L<:(v<!WQ) is a set of values that can be allocated to v<!WQ.  

Entropy ã(o�~=\]	 = è) is defined by Equation 2.14. 

ã o = − àá |t47 àá − àX |t47 àX  2.14 

Where àá depicts the ratio of positive class observations to the dataset’s total observations and 
àX is the ratio of negative class observations to the sample size of the dataset. 

After computing the R0 of each attribute, attributes are sorted based on their ranks. Finally, 
features that meet a given set threshold are selected. 

2.5 Wrapper Approaches 

These techniques select desired attributes by utilizing both the results and performance of a 
classifier in evaluating the significance of the attribute subsets. 

They utilize a search algorithm to derive the optimal subset of informative features from among 
the possible subsets. The random (stochastic) search and the greedy search are the commonly 
utilized search mechanisms [78]. 

The employed classifier evaluates each possible subset proposed by the utilized search 
technique. The accuracy rate is considered the fitness index of this subset of features.  

The greedy search techniques are single-track based approaches that are highly prone to the 
local optima trapping. Both the sequential forward selection (SFS) technique as well as the 
sequential backward selection (SBS) approach are two main greedy search techniques. 
However, the stochastic search techniques select suitable features randomly. 

The flowchart of attribute selection using wrappers is depicted by Figure 2.2. 
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Figure 2.2: Flowchart of Wrapper based feature selector 

Metaheuristics are the main stochastic search techniques. The commonly utilized 
metaheuristics in the selection of features include grey wolf optimization (GWO), particle 
swarm optimization (PSO), ant colony optimization (ACO), gravitational search algorithm 
(GSA) and genetic algorithm (GA). 

Since wrappers utilize a classifier’s accuracy in evaluation, they normally attain accuracy rates 
relatively higher compared to the filters [79].However, a number of reseachers have pointed 
out that wrappers are slow and have a high computational burden when subjected to highly 
dimensional datasets [80] [81]. 

In the subsequent subsections, a discussion of the aforementioned metaheuristics is presented. 

2.5.1 ACO and ABACOH 

ACO is motivated by the traits exhibited by ants that are looking for food [82]. Though dumb 
and blind, ants are capable of determining a path whose distance is shorter from their nest to 
the source of food. This is possible because they can track the remaining pheromone by liasing 
with each other and sharing the information of the identified path. Thus, the intensity of the 
pheromone and its associated evaporation in the rarely used paths can enable these ants select 
the path with the least distance. 

To utilize ACO as an attribute selector, the feature selection problem must be formulated 
graphically whereby nodes that depict the attributes used are on the graph. Foremost, the ants’ 
initial position is randomly picked on this graph. Next, the subsequent node for each ant is 
computed by Equation 2.14 [83]. 

ô=>p W =
ö=>õ	ú=>ù

ö=Oõ	ú=OùO
0							tWℎ<1uU:<

				Uv	!	!3É	@	!1<	3tÉ<:	Wℎ!W	!1<	!ÉMU::U@|<			 2.15 

If the w\c	ant is in position ! during time W, it might be in position @ at time (W + 1) with a 
probability ô=>p. ö=> is intensity of the pheromone at the edge between node ! and node @. ú=> 
depicts the cost incurred in moving from ! to @. à and Ü are parameters which govern the 
significance of the trace against vision. 

The trace added to edge (!@) by the w\c	ant is computed by Equation 2.16 [83] 

Δö=>p =
ü
Zp

0							tWℎ<1uU:<
Uvw\c	ant		traverses	edge	 !@ 	in	Öp		 2.16 

Zp denotes the cost of taking the path passed by the w\c	ant and branch (!@) belongs to that 
path. Öp is the tour for the w\c	ant. Thus, the trace all the ants add to edge !@  is given by 
Equation 2.17 [83]. 

Original dataset Wrapper technique Classifier 
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Δö=>p = Δö=>p
;

5

 2.17 

The size of the swarm of ants is represented by 3 . 

Taking into consideration all these relations, another pheromone intensity generated on the 
edges between ! and @ can be computed by Equation 2.18 [83]. 

ö=> 3<u = 1 − e ö=> t|É + Δö=>p 2.18 

e is an evaporation coefficient for the pheromone intensity that guards against excessive 
accumulation of the trace.  

If a vast number of ants use a given path, the trace of that given path is incremented while if a 
limited number ants traverse a path, the trace will evaporate gradually[83]. 

In the recent past, a number of techniques based on the ACO have been proposed for the feature 
selection problem. The proposed binary version of ACO i.e. BACO has reported an attractive 
classification rate and relatively higher convergence speed. 

However, it has been reported too that the BACO has a limitation when handling the feature 
selection problem. This is because, each ant located at ! can only determine a subsequent 
attribute. In addition, if this ant is ignored or is unable to select this attribute, it cannot be able 
to investigate the same attribute in subsequent nodes [83]. 

To address these shortcomings, ABACOH was proposed in 2013[83].This technique combines 
BACO and discrete ACO. In the ABACOH,  ô=>p is redefined as depicted by Equation 2.19 
[83]. 

ô=_l,>_´p =
ö=_l,>_´õ	ú=¨,>_´

ù

ö=_l,O_ìõ	ú=_lO_ìù + ö=_l,O_5õ	ú=_lO_5ùO
0							tWℎ<1uU:<

				Uv	≠Æ!ÉMU::U@|<			 2.19 

 Equation 2.19 gives a specification of the probability required to pick a bit whose value Ø ∈
{0,1} within the subsequent point for the w\c	ant during timestamp W and located at k ∈ {0,1} 
of point !. Moreover,	ö=_ì,>_5 ,ö=_ì,>_ì, ö=_5,>_5 and ö=_5,>_ì	denote the intensity of pheromone 
available in the paths that connect  nodes ! and @ on (0 to 1), (0 to 0), (1 to 1) and (1 to 0) 
edges[75]. 

The ABACOH enables a given ant to search among all attributes thus resolving the major 
challenge of ACO. 

2.5.2 PSO 

The particle swarm optimization approach i.e. (PSO) [84] is motivated by the social traits 
exhibited by birds. It is one of the commonly adopted optimization algorithms due to its 
superior global search ability, relatively cheap computational complexity and few parameters 
to set. 

With  PSO, each possible outcome is a given particle within the selected swarm and whose 
position within the identified search space is depicted by a given vector kO: 
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kO = (k5O, k7
O, … , k≤

O) 2.20 

Where É depicts the extent of this search space. 

The particles within the swarm traverses this search space in search of the best result and 
Equation 2.21 [84] represents their velocity. 

òO = (ò5
O, ò7

O, … , ò≤
O) 2.21 

Taking into consideration both the experiences of a given swarm particle and those of its 
neighbours, then the velocity and location of that particle are updated as follows [84]: 

k≤
O W + 1 = k≤

O W + ò≤
O(W + 1) 2.22 

ò≤
O W + 1 = ≥ ∗ ò≤

O W + e5 ∗ 1!3É5 )@<:W≤O − k≤
O W + e7

∗ 1!3É7 4@<:W≤O − k≤
O W  

2.23 

Where W and É denotes the W\c generation and the É\c extent of this search space respectively. 
≥ denotes the inertia weighting factor dedicated to controlling the influence of the previous 
velocity on the next velocity. e5 as well as e7 depict the speedup constraints. 1!3É5 and 1!3É7 
are values randomly generated and whose distribution is uniform in [0,1]. )@<:W≤O represent 
the best outcome attained by particle ≠ within the É\c dimension, and 4@<:W≤O  is the optimal 
result attained by this whole swarm in the É\c dimension.  

The PSO algorithm stops when a desired outcome is attained, or the sum of generations reaches 
a predefined value. 

2.5.3 IBGSA 

The gravitational search algorithm (GSA) is motivated by gravity and mass [85]. 

According to the law proposed by Newton, every particle existing within the universe exerts a 
force on adjacent particles. This force is commensulate to product of the particles’ masses and 
indirectly commensulate to the square root of their respective distances [86].  

Recently, the GSA has gained attention because it has an attractive efficiency when tackling a 
number of optimization problems. Its binary version i.e. BGSA was suggested in 2010 [87]. 

To ensure that  BGSA is not trapped in the local optimum while tackling the feature selection 
problem, IBGSA (an enhanced BGSA)was suggested in 2014[88]. 

For a system with 3 particles, the position of the ≠\c agent in the IBGSA is formulated in 
Equation 2.24 [87]. 

kO = k5O, k7
O, k9

O … , k≤
O 						≠ = 1,2,3, … , 3 2.24 

Where k9
O denotes the position of the dimension 1 belonging to mass ≠. É indicates the search 

space dimension. 

After computing the fitness of the current population, the mass of each agent can be determined 
as per Equation 2.25 [87]. 
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yO(W) =
vUWï=ñ_O(W) − ut1:Wï=ñ(W)

vUWï=ñ_O(W) − ut1:Wï=ñ(W);
=j5

 2.25 

Where yO(W) and vUWï=ñ_O(W) denotes the mass and the fitness value of the ≠\c agent during time 
W. The ut1:Wï=ñ(W) is given by Equation 2.26 [87]. 

ut1:Wï=ñ(W) = max vUWï=ñé W 				≠ ∈ {1,2,3, … , 3}		 2.26 

Utilizing the gravity law, resultant forces exerted on the ≠\c agent by heavier agents are 
computed as per Equation 2.27 [87] 

Z≤
O(W) = 1!3ÉQ0 W

yO W yQ W
SOQ W + ≥

Q∈d>~`\,Q∑O

(k≤
Q W − k≤

O(W)) 2.27 

b@<:W comprises of b superior agents with better fitness values. The fitness function is a 
function of time starting at b0 and its value reduces with time. 

The law defining the accelerating movement of the agent is computed using Equation 2.28 
[87]. 

!≤
O W =

Z≤
O W

yO W
= 1!3ÉQ0 W

yQ W
SOQ W + ≥

Q∈d>~`\,Q∑O

(k≤
Q W − k≤

O(W)) 2.28 

Finally, Equation 2.29 [87] is used to update the speed of each agent. 

ò≤
O W + 1 = 1!3ÉO ∗ ò≤

O W + !≤
O W  2.29 

1!3ÉO and 1!3ÉQ are numbers randomly generated and whose distribution is uniform in the 
span [0,1] and ≥ represents a small value. The hamming distance associated with agents ≠ and 
U is represented by SOQ W  and is calculated as per Equation 2.30 [87]. 

SOQ W =
1
3

(k≤
Q W − k≤

O(W))
;

≤j5

 2.30 

0 W  is a function of time termed as gravitational constant. Its initial value is 0(0) and it 
normally decays with time. 

The agents’ position varies in accordance with some probability i.e. the transfer function 
represented by Equation 2.31 [87] 

Ö∏ ò≤
O W = π + 1 − π ∗ tanh	 ò≤

O W  2.31 

In Equation 2.30, π is computed using Equation 2.32. 

π = 45(1 − <(
∏ª
º7)) 2.32 

Where 45 is constant and 47 is time constant whose definition is dependent on the application 
of this algorithm. Zp denotes the failure counter. This failure is experienced when a given 
monitored result remains constant after a generation. 

The agents traverse the search space according to Equation 2.33. 
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k≤
O W + 1 =

wtM)|<M<3W	k≤
O W 			Uv	1!3É < Ö∏ ò≤

O W

k≤
O W 							tWℎ<1uU:<

 2.33 

One of the notable differences between IBGSA and BGSA is the attractive elitism trait where 
by the position of an agent is altered only if then newer position possesses a fitter or an equal 
value of the previous location. 

Equation 2.34 defines this elitism property. 

yO W + 1 =
yO W + 1 			Uv	vUW_ò!|(yO W + 1 ) ≤ vUW_ò!|(yO W )

yO W 							tWℎ<1uU:<  2.34 

 

IBGSA algorithm is halted when a number of measures are taken into consideration. 

2.5.4 BGWO and CBGWO 

The grey wolf optimizer (GWO) is among the new memetic approaches formulated by Mirjalili 
[89]. This algorithm is motivated by social ranking and hunting traits portrayed by a pack of 
between 5 to 12 grey wolves. 

With the GWO algorithm, the pack is categorized as follows: alpha (Ü) which is the overall 
leader of the pack, beta (à) which is the second leader in command, delta (ø) which is the third 
leader in command and the remaining wolves of the pack are termed as omega (≥). The Ü wolf 
is mainly involved in decision-making. The à wolf in most cases assists the Ü wolf in the 
decision-making process or other critical activities. The ø wolf is normally engagd in guiding 
the remaining ≥ wolves. 

In formulating the GWO algorithm, the best three solutions attained are termed as the Ü, àand 
ø respectively, while the remaining solutions are regarded as ≥. Moreover, the whole process 
of searching for the prey as well as hunting is advanced by the three leaders (Ü, à	and ø) and 
the ≥ follow them. 

The pack’s encircling behavior in hunting a prey is expressed by Equation 2.35. 

G W + 1 = G¿ W − a. x 2.35 

Where G¿ denotes the location of the prey while a is termed as a coefficient vector . The value 
x is determined using Equation 2.36. 

x = K. G¿ W − G W  2.36 

K is another coefficient vector . The location of the grey wolf is denoted by G and the number 
of generations is given by W. 

a and K are determined using Equations 2.37 and 2.38 respectively. 

a = 2. !. 15 − ! 2.37 

K = 2. 17 
 

2.38 

The two independent random values i.e. 15 and 17 have a uniform distribution in the range [0, 
1]. 
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The encircling coefficient	!, balances the trade-off between diversification and intensification. 
In this algorithm, the coefficient ! linearly decays from value two to value 0 as per Equation 
2.39. 

! = 2(1 −
W
Ö

) 2.39 

Where W is the current generation while Ö is the total number of generations. 

The three leaders i.e. Ü, à	and ø are deemed to be aware of the probable location of the prey. 
Thus, these leaders lead the ≥ wolves to the optimal solution. 

Equation 2.40 expresses the mathematical formulation of the new position of the wolf. 

G(W + 1) = (
G5 + G7 + GH

3
) 2.40 

Where G5, G7 and GH are formulated in Equations 2.41, 2.42 and 2.43 

G5 = Gõ − a5. xõ  2.41 

G7 = Gù − a7. xù  2.42 

GH = G¡ − aH. x¡  2.43 

Where Gõ, Gù and G¡ are the position of the Ü, à and ø wolves during iteration W. a5, a7 and 
aH are computed as per Equation 2.35 ,and xõ,	xù and x¡ are expressed by Equations 2.44, 
2.45 and 2.46. 

xõ = K5. Gõ − G  2.44 

xù = K7. Gù − G  2.45 

x¡ = KH. G¡ − G  2.46 

The three coefficients  K5, K7 and KH are determined using Equation 2.38. 

To tackle optimization problems such as feature selection which are binary in nature, Emary et 
al [90] formulated 2 binary versions of GWO i.e. the first one BGWO1 and the second 
BGWO2. Generally, BGWO is simple, flexible, has few parameters that require setting. 
Moreover, in comparison to other binary optimization approaches it is more adaptable to 
various problems. 

However, it has a major shortcoming in that the wolves in most cases get held-up in the local 
optimum. This is largely attributed to the tendency of all the ≥ wolves trying to advance 
towards the locations of the Ü, à	and ø leaders. This normally leads to insufficient diversity 
and hinders mature convergence [91]. 

In trying to overcome these challenges, in 2018 Jingwei et al [91] suggested a new competitive 
BGWO  i.e. CBGWO. The main idea of CBGWO is motivated by the concept of competiveness 
nature among couples within the pack of wolves. To implement this competition concept, a 
random pairwise selection of wolves from the pack is conducted. For instance, a pack 
containing J wolves, will be randomly divided into	J 2 wolves. Next, a competition between 
the two wolves in each of the derived couples is carried out. This implies that each wolf will 
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participate once in this competition. The competition will yield two categories of wolves i.e. 
winners and losers. Winners are those wolves with better values in comparison to their counter 
parts in each couple. On the contrary, the losers have worse values in comparison to their 
counter parts in their respective couples. 

These winners automatically become candidates of the subsequent generation without any 
position update. However, the respective positions of losers are updated by learning from their 
counterpart winners. Consequently, only J 2 wolves in the pack that will be updated. 

In the CBGWO, the modified Equations 2.42-2.44 are expressed in Equations 2.47-2.49. 

xõ = K5. Gõ − (G¬ − Gñ)  2.47 

xù = K5. Gù − (G¬ − Gñ)  2.48 

x¡ = K5. G¡ − (G¬ − Gñ)  2.49 

Where G¬ is the wolf deemed to be the winner while Gñ is the loser. 

From Equations 2.47-2.49 the positions of wolves deemed to be losers are updated by learning 
from their respective winners. Consequently, losers not only take guidance from the overall 
leaders of the pack i.e. Ü, à	and ø but also from the couple winners in their decision to move 
towards the prey.Thus, the CBGWO approach exhibits a better search within the search space. 

Leader enhancement 

The three leaders (Ü, à	and ø) play a critical role in the CBGWO. They guide the rest of the 
pack in search for the prey. To ensure that the CBGWO is not stuck in the local optimum like 
the BGWO, the	Ü, à	and ø wolves update their positions as per the enhancement strategy 
depicted by Equation 2.50. 

{≤ =
1!3É 0,1 , Uv	√ ≥ 1!3É

G≤
z, tWℎ<1uU:<

 2.50 

Where √ is the change rate, 1!3É 0,1  is a number randomly generated which is either a 0 or  
1, 1!3É is a number randomly generated and is normally distributed uniformly in the range 
[0,1] and Gz is the leader which is either Ü, à	or ø. 

In the CBGWO, the √ linearly decreases from 0.9 to 0 as expressed by Equation 2.51. 

√ = 0.9 − 0.9(
W
Ö
) 2.51 

W is the current generation while Ö is the total number of generations. 

From Equation 2.51 a bigger √ at the start of the search process will facilitate adequate changes 
within the positions thus enhancing diversification. However during higher iteration values, 
when √ is small, exploitation is enhanced. 

Since there are only three leaders i.e. Ü, à	and ø in the CBGWO, implying only three wolves 
get updated during each iteration using Equation 2.50. This approach tries to maintain a 
relatively low computational cost. 
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Finally, if the newly generated leader is established to be fitter than the current leader, the 
current leader is replaced. Otherwise, the current leader is immediately transfered to the next 
iteration. 

2.6 Hybrid techniques 

These approaches combine filters and wrappers. Foremost, the size of the original feature set 
is reduced by a filter technique, after which a wrapper is employed on this reduced feature set. 
The accuracy achieved by the hybrid approaches is higher than that of filters [92]. In addition, 
these techniques have a higher speed with lower computational complexity in comparison to 
wrappers; thus making them suitable candidates for selecting informative features in highly 
dimensioned datasets[93]. 

Figure 2.3 depicts the flowchart of attribute selection using the hybrid techniques. 

 

 

Figure 2.3: Common flowchart in Hybrid feature selectors 

An approach hybridizing SVM-RFE with mRMR is proposed by authors in [94]. The results 
of this technique proved superior to SVM-RFE, mRMR and a couple of techniques they used. 
In 2011, another hybrid approach for text categorization was proposed [95]. This approach 
combined the information gain (IG) and genetic algorithm (GA). 

Chuang et al [96] hybridized CFS with the novel TGA i.e, Taguchi-genetic algorithm for 
selecting features using 11 DNA microarray chips. The performance of the proposed CFS-
TGA algorithm was attractive in terms of computational complexity and classification rate. 

In [97], a hybrid of GA adopting dynamic setting of parameters i.e. GADP and ∆7 as a feature 
selector is proposed. Foremost, the GADP is employed to generate various feature subsets and 
then ∆7 is employed to select the final features. This approach was used for gene selection in 
DNA microarray datasets. 

Shreem et al [98] hybridized two filters i.e. ReliefF and mRMR with the genetic algorithm 
(GA). They termed the technique as R-m-GA. In 2015, authors in [99] hybridized the 
information gain (IG) with a binary version of differential algorithm (DE).  

In 2019, authors in [100] combined MI i.e. mutual information filter approach and RFE i.e. 
recursive feature elimination approach for feature selection of three standard datasets obtained 
from the UCI dataset repository. 

A hybrid approach termed as FSCBAS was proposed in [101]. This technique combined the 
clustering approach with a modified binary ant system (BAS). 

Another hybrid approach was proposed in [102]. Foremost, a filter approach based on V-WSP 
is used to derive the top attributes. Then PSO wrapper approach is utilized in the selection of 
the final informative features. 

In [103], a new hybrid approach  combining five filters i.e. mRMR, IG, CFS, corrFeatureEval 
and oneRFeatureEval with genetic algorithm is proposed for selecting informative feature 
using three biomedical datasets. 

Original 
dataset Filter Classifier Wrapper 
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A memetic comprising of the relief  technique and ACO i.e. ant colony optimization wrapper 
is proposed by authors in [104]. The proposed approach was used as a feature selector in DNA 
chip data as well as classifying tumor data. 

A summary of the described hybrid approaches along with the category of data, the type of 
data used and the original reference is presented in Table 2.2. 

Table 2.2: Hybrid techniques for feature selection in highly dimensional datasets 

 

2.7 Embedded techniques 

With these approaches, the process of selecting features is embedded within the machine 
learning technique [105], i.e. the learning phase and the feature selection phase are 2 
inseparable processes. These approaches are faster compared to wrappers. However, their 
associated computational burden is larger than those of filters but lower than those of wrappers 
[106]. 

In [107], an embedded based feature selector is proposed for highly dimensional cancer 
datasets. Though it achieved an attractive performance, it requires repeated training of the SVM 
i.e. support vector machine. 

In 2010, a kernel-penalized support vector machine (KP-SVM) was proposed by [108].This 
approach carries out feature selection by penalizing the use attribute in the SVM’s dual 
formula. 

In the year 2012, an iterative feature perturbation (IFP) technique was proposed for feature 
selection in [109]. The IFP adopts backward elimination and a given metric to determine non-
informative features. It also takes into consideration the effect of every attribute on the 
performance of a classifier in a noisy environment. 

In 2018, authors in [110] proposed KP-CSSV feature selector. This approach is inspired by the 
kernel-penalized support vector machine (KP-SVM) to tackle the challenge of class imbalance 
in DNA microarray datasets. 

In the year 2019, an embedded based feature selector was proposed in [111]. This technique 
features the weighted Gini index technique to handle the class imbalance challenge in 
classifications tasks. 
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A MGRFE feature selection technique was proposed in [112]. This technique is based on a 
novel embedded integer-coded GA technique to derive informative genes in DNA chip data. 

A summary of the embedded based feature selection techniques discussed above is presented 
in Table 2.3. 

Table 2.3: Embedded techniques for selection of features in highly dimensional datasets 

 

2.8 Ensemble techniques 

Highly dimensional data may not only contain an immense number of data as well as attributes, 
but also face challenges such as feature redundancy, nonlinearities and noise. Due to this, one 
technique that achieves superior performance in one dataset cannot be deemed efficient in all 
highly dimensioned datasets. A number of techniques need to work together [38]. 

Thus, researchers have also been attracted towards developing ensemble feature 
selection/classification techniques. By utilizing ensemble approaches, chances of settling on 
the wrong solution are minimized and learning techniques that get trapped in the local minima 
can achieve better approximations[113]. 

In ensemble approaches, instead of taking into consideration the outcomes of a single approach 
as final, a number of approaches are applied to these data and then their results are combined. 

Figures 2.4 and 2.5 depict the commonly utilized ensemble frameworks in feature selection for 
highly dimensional datasets. 
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Figure 2.4: Instance one of ensemble approaches (feature selection) 

	

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: Instance two of ensemble approaches (classification) 
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In Figure 2.4, the results of a number of filter techniques on highly dimensional datasets are 
integrated together in various ways to derive the final informative feature subset. This approach 
requires an integration criterion to merge the features selected by every filter approach 
considered. 

In Figure 2.5, a number of filters are applied independently to the highly dimensional datasets. 
Then the feature subset selected by each filter is fed to a classifier. Eventually, after the 
classification phase, an integrator is applied to combine the outcomes of every classifier 
considered[114]. 

Yang et al [115] formulated an ensemble approach termed as MCF-RFE  i.e. multi-criteria 
fusion (MCF) combined with recursive feature elimination  (RFE) to tackle the microarray 
attribute selection challenge. The motivation of the approach comes from the combination of 
RFE search technique and various principles. 

A filter ensemble combined with another classifier ensemble was proposed by Bolon et al 
[116]. The filter ensemble comprises of several filters such as INTERACT, information gain 
(IG) and CFS etc. 

In [71], a hybrid-ensemble technique to select informative genes in DNA microarray chips is 
proposed. Foremost, three filters i.e. IG, F-score and relief are employed to select gene subsets 
individually. Then these subsets are combined prior to feeding the result to IBGSA for the final 
informative gene selection. 

In 2014, authors in [114], proposed four ensemble approaches i.e E1-nk, E1-ns, E1-cp and E2. 
These approaches are attractive because they incorporate a number of responses from filter 
techniques. 

In [113], an ensemble approach comprising of IG, reliefF and CFS is proposed. This approach 
achieved a desirable classification accuracy in comparison to two other ensemble approaches. 

A hybrid ensemble approach termed as HM-ABACOH is proposed in [70].Foremost, the results 
of reliefF, IG and FCBF are integrated before feeding the combined results to the ABACOH, a 
wrapper for the final selection of features. The performance of this approach was evaluated on 
7 DNA microarray chips. 

In [114], four filters i.e. Cons, relief, CFS and IG are combined with various classifiers using 
ensemble approaches. To evaluate their performance evaluation, a number of DNA microarray 
datasets are used. 

In 2017, a new type of hybrid-ensemble approach was proposed by [59]. In this approach, 
FCBF technique (a filter approach) was used at the initial stage to reduce the dimension of 
highly dimensional dataset. Then two wrappers i.e. ABACO and IBGSA are independently 
applied for further reduction of the selected features. Finally, the features selected by these two 
wrappers are combined to derive the informative feature subset. 

Authors in [79] proposed another hybrid-ensemble framework whereby each filter approach 
generates its selected features. Then each of the reported attribute subset is provided to a 
number of wrappers for further feature reduction. Finally, the outputs of the wrappers are 
combined to derive the informative feature subset. Figure 2.6 depicts the flowchart of this 
model. 



40	
	

In 2018, an ensemble approach utilizing the t-test as well as nested GA technique was proposed 
to select attributes in highly dimensioned datasets [117]. 

In 2019, authors of [118] having examined various feature selection approaches, concluded 
that ensemble approaches are more robust in comparison to single approaches in feature 
selection of highly dimensional datasets. 

Another ensemble-based technique utilizing bits from the k-mean approaches was proposed by 
[119]. This approach is termed as the feature co-association ensemble (FCE) and was used to 
select informative attributes from the UCI repository datasets. 

In [120], an ensemble approach combining 3 attribute selection techniques  i.e. XGBoost, chi-
square and maximum information coefficient is proposed for attribute selection in two-class 
highly dimensioned datasets. 

Authors of [121] proposed an ensemble feature selection approach that combines four filters to 
identify the robust risk factors for the diabetic kidney disease (DKD). This was achieved by 
striking a balance between the predictability and the stability of the system. 

A summary of the ensemble techniques utilized as feature selectors in highly dimensional 
datasets is presented in Table 2.4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6: Framework of hybrid-ensemble technique 
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Table 2.4: Ensemble-based techniques used for attribute selection in highly dimensional 
datasets 

	

2.9 Analysis and discussion 

2.9.1 Commonly utilized DNA microarray datasets 

Table 2.5 represents ten commonly utilized DNA microarray datasets for feature selection 
tasks. From the table, it is evident that all the datasets are richly endowed with genes but their 
sample sizes is limited. Moreover, the Colon dataset has the least number of genes with sixty-
two observations. On the other hand, the Breast Cancer dataset has largest number of genes 
with 97 samples. 
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Table 2.5: Commonly utilized DNA chips for benchmarking 

 

2.9.2 Commonly utilized criteria for performance evaluation 

The seven commonly utilized evaluation criteria in feature selection for highly dimensional 
datasets are discussed below. 

Correct classification rate(CCR): is the ratio of test observations correctly classified to the total 
number of available test observations. It is expressed by Equation 2.52. 

KKS =
#	tv	wt11<wW|Ø	w|!::UvU<É	W<:W	:!M)|<:

#	tv	!ò!U|!@|<	W<:W	:!M)|<:
 2.52 

 

The higher the KKS, the more significance the selected feature subset is in the KKS; thus the 
subset will be considered as informative subset. 

Sensitivity and specificity are two criteria used in evaluating the performance of binomial (two-
class) classifications. Taking into consideration a two-class dataset whose classes are labelled 
as positive and negative, then TP,FP, TN and FN can be defined as follows: 

TP- test observations classified correctly as positive. 

FP- test observations incorrectly classified as positive. 

TN- test observations correctly classified as negative. 

FN- test observations incorrectly classified as negative. 

Utilizing TP, FP, TN and FN, then geometric mean, specificity, sensitivity and Mathew’s 
correlation coefficient can be defined as follows: 

o<3:UWUòUWØ =
Öô

Öô + ÖJ
 

 
2.53 

o)<wUvUwUWØ =
Öô

Öô + ÖJ
 

 
2.54 
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0<tM<W1Uw	M<!3 = o<3:UWUòUWØ×o)<wUvUwUWØ 
 

2.55 

yKK =
Öô×ÖJ − Zô×ZJ

(Öô + Zô)(Öô + ZJ)(ÖJ + Zô)(ÖJ + ZJ)
 

 
2.56 

The feature reduction rate (Z9) is another commonly utilized evaluation criterion defined by 
Equation 2.57. 

Z9 =
JLM∏~=\ó9~` − JLM}~ñ~p\~≤_∏~=\ó9~`

JLM∏~=\ó9~`
 

 
2.57 

Where JLM∏~=\ó9~` is the total sum of attributes in a dataset and JLM}~ñ~p\~≤_∏~=\ó9~` is the 
sum of selected attributes. In reference to Equation 2.55, the closer Z9  is to one, the more 
suitable is the corresponding feature selection algorithm for that dataset. Moreover, the bigger 
the value of Z9, the lesser the computational burden of the corresponding feature selection 
algorithm. 

A number of authors have pointed out since the Z9 alone cannot clearly portray either the 
strength or weakness of a given feature selection technique, an alternative criterion is required. 
Thus, the geometric mean utilizing aKK and Z9 was formulated and is expressed in Equation 
2.58. 

0y = aKK×	Z9 
 

     2.58 

2.9.3 Normalization of data 

Normalization of data is a preprocessing stage where data values within a given dataset are 
assigned values in the interval [0, 1]. With this technique; all attributes within the dataset are 
assigned one weight when computing the distance existing between datasets. 

2.9.4 Analysis of filter techniques 

Tables 2.6 and 2.7 depict the average classification accuracy over 10 different runs of nine 
filters on eight commonly utilized microarray datasets. Table 2.6 show the results when the 
SVM classifier is utilized while Table 2.7 present the results when the KNN classifier is 
utilized. 

From Tables 2.6 and 2.7, it is evident that Prostate microarray dataset is the most challenging 
dataset in comparison to the other seven datasets. This is because this dataset has a vast number 
of genes (i.e. 12600) and a few samples (i.e. 21). Moreover, the test data for this dataset was 
derived from a number of different datasets making it to have a shift problem . However, from 
the two Tables (i.e. 2.6 and 2.7), the FCBF and the T-score filters achieved acceptable results 
on this dataset. 

It is evident that the SVM classifier achieved higher classification accuracies in comparison to 
the KNN counterpart. From the two Tables, the FCBF filter (a theoretical-based filter 
technique), achieved higher classification accuracies in comparison to the other seven filter 
approaches. 
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It is important to point out the filters utilized in Tables 2.6 and 2.7 are rankers except the FCBF 
and the CFS, which assign a value to each attribute that represent the importance of the attribute 
to the classes of the dataset. Thus for all the considered filters, top 100 features were selected 
as informative features. The considered filter approaches might achieve better classification 
accuracies if this threshold value (i.e. 100) is changed. Generally, determining the optimal 
threshold value for effective feature selection is still a challenge for ranking based feature 
selection. 

Thus, achieving optimal filter-based feature selection solely depends on filter technique 
adopted, the threshold value set for the ranking techniques and the classifier algorithm utilized. 

Table 2.6: Experimental results for nine filters combine with the SVM classifier (10-fold 
cross validation) 

 

Table 2.7: Experimental results for nine filters combine with the KNN classifier (10-fold 
cross validation) 

 

2.9.5 Analysis of hybrid techniques 

Table 2.8 presents the performance of a number of hybrid techniques that have been previously 
utilized in selecting genes and classifying various types of Cancer in microarray chips. 

From the table it is evident that hybrid techniques are superior in terms of the classification 
accuracy rate and the quantity of genes selected. It has been established that hybrid approaches 
tackle the overfitting as well as the curse of dimensionality well by foremost utilizing the filter 
techniques to shrink the dimensionality of these chips in the preprocessing phase. 

To tackle the overfitting problem in supervised machine learning, application of the LOOCV 
i.e. leave-one-out cross-validation is highly recommended. With the LOOCV, a part of the 
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considered dataset is held out as a test bench. This test set is set aside for the final validation, 
but a validation set is not required when cross-validation is adopted. 

It is important to point out that fitting of parameters for feature selection and Cancer 
classification problem is still challenging. This is because, it is dependent on the considered 
DNA microarray dataset, adopted feature selection technique and the classifier. Thus, different 
DNA microarray datasets will have different parameter values, which are not universal to all 
algorithms. 

In trying to tackle the parameter fitting challenge, majority of the researchers manually fine-
tune the parameter values. A number of various values are tried until accepted results are 
reached. This approach is normally time-consuming and in many cases sub-optimal results are 
arrived at. 

From Table 2.8, a hybrid of CFS and GA selected the highest number of genes i.e. 195 for the 
Lung dataset, while a combination of IG and GA attained 100% accuracy with the least number 
of genes i.e. 9 for the same dataset. 

A hybrid of FCBF, GA and PSO selected a subset with the largest count of genes for the 
DLBCL dataset (i.e. 3204) in comparison with the other considered approaches. 

For the Colon dataset, a combination of ∆7 −test and GA attained the highest rate of 
classification (i.e. 100%) and a set with the least count of genes (i.e. 8). 

A hybrid comprising of mRMR, GBC and GA reported the highest accuracy rate (i.e. 100%) 
with the least number of genes (i.e. 6) for the SRBCT microarray dataset. 

Moreover, a probabilistic random function combined with PSO reported the least accuracy 
value and a set with the highest count of genes for the Colon, Leukemia 1 and Lymphoma 
datasets. 

It is evident that GA is mostly utilized wrapper technique in literature.  Among the utilized 
wrappers, GA attained the most attractive classification value and sets with the least count of 
selected genes. From Table 2.8, GA attained 100% accuracy on most DNA microarray datasets 
in five out of six reported hybrid approaches. 

All techniques employing the ACO wrapper attained classification accuracies greater than 90% 
with selected genes less than 15 in number. 

The ABC achieved a classification accuracy of more than 98% and sets whose gene count is 
less than 15 in all the reported techniques. However, a combination of ACO and the SVM 
classifier achieved 100% accuracy. PSO reported an accuracy of 100% in 2 out of 4 reported 
approaches. Nevertheless, this technique reported sets with a relatively higher count of genes 
in comparison to other suggested wrapper approaches. 

Though the Firefly, Cuckoo Search and Grey Wolf algorithms have been reported to perform 
incredibly in optimization tasks, they have not been utilized as wrappers in selecting 
informative genes for the DNA microarray chip data classification. 
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Table 2.8: Performance evaluation of suggested hybrid techniques for selecting genes 
and classifying types of cancer in DNA chips 

Filter Wrapper Classifier Datasets Accuracy Number of 
genes 

selected  

Year Reference 

MI 
Maximization 

GA SVM Colon 83.41 202 2017 [123] 

∆7 −test GA SVM Colon 100 8 2011 [97] 
DLBCL 100 6 
SRBCT 100 8 
Leukemia1 100 5 

CFS GA KNN SRBCT 100 29 2011 [96] 
Prostate 99.22 24 
Lung 98.42 195 

Laplacian and 
Fisher score 

GA SVM SRBCT 100 18 2017 [124] 
Leukemia1 100 15 
Prostate 96.3 14 
Breast 100 2 
DLBCL 100 9 

KNN SRBCT 91.6 NAN 
Leukemia1 97.2 NAN 
Prostate 95.6 NAN 
Breast 95.5 NAN 
DLBCL 97.9 NAN 

NB SRBCT 98.2 NAN 
Leukemia1 93.1 NAN 
Prostate 93.4 NAN 
Breast 100 NAN 
DLBCL 95.8 NAN 

Fisher criteria ACO SVM Leukemia1 95.95 3 2016 [125] 
Prostate 98.35 14 

KNN Leukemia1 94.30 3 
Prostate 99.25 15 

NB Leukemia1 95.95 4 
Prostate 99.40 10 

MI ACO FC Colon 100 NAN 2018 [126] 
Leukemia 1 100 NAN 
Prostate 90.85 NAN 

Fisher criterion BA1 SVM SRBCT 85 6 2018 [127] 
Prostate 94.1 6 

KNN SRBCT 100 6 
Prostate 97.1 6 

NB SRBCT 100 6 
Prostate 97.1 6 

ICA ABC NB Colon 98.14 16 2017 [128] 
Leukemia1 98.68 12 
Leukemia2 97.33 15 
Lung 92.45 24 

mRMR ABC SVM Colon 96.77 15 2018 [129] 
 
 
 
 
 

SRBCT 100 10 
Leukemia1 100 14 
Leukemia2 100 20 
Lung 100 8 
Lymphoma 100 5 

CFS PSO NB Colon 94.89 4 2018 [130] 
SRBCT 100 34 
Leukemia1 100 4 
Leukemia2 100 6 
Lymphoma 100 24 
MILL 100 30 
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Breast 100 10 
Probabilistic 
random 

PSO KNN Colon 84.38 60 2016 [131] 
Leukemia1 89.29 100 
Lymphoma 87.71 50 

RFR BHA BC Colon 91.93 3 2016 [132] 
MILL 98.61 5 

Fisher-Markov 
Selector 

BA2 SVM SRBCT 100 6 2013 [133] 
Prostate 98.3 12 
Lung 98.4 16 

Symmetrical 
Uncertainty 

HSA NB Colon 87.53 9 2016 [134] 
SRBCT 99.89 37 
Leukemia1 100 26 
Leukemia2 100 24 
Lymphoma 100 10 
MILL 98.97 10 

Logarithmic 
transformation 

GOA NN Colon 95 NAN 2017 [135] 
Leukemia1 94 NAN 

FCBF PSO+GA SVM Colon 96.3 1000 2017 [136] 
DLBCL 100 3204 

mRMR GBC+GA SVM Colon 98.38 10 2015 [137] 
SRBCT 100 6 
Leukemia1 100 4 
Leukemia2 100 8 
Lung 100 4 
Lymphoma 100 4 

 

2.9.6 Analysis of the hybrid-ensemble techniques 

As already, mentioned, with ensemble approaches, the results of various techniques are 
combined and the result of each constituent approach affects the final result. 

2.9.6.1 Hybrid-ensemble type 1 

The hybrid-ensemble approach proposed in [92] is one of the ensemble techniques whose 
performance is attractive when dealing with highly dimensional datasets. In this ensemble 
approach, feature reduction is foremost carried out by two filter approaches i.e. ReliefF and 
FCBF, then two wrappers are employed independently on the already dimensionally reduced 
data to select informative genes. Finally, the two subsets of informative genes derived by these 
wrappers are integrated together as shown in Figure 2.13. 
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Figure 2.7: Scheme of hybrid-ensemble type 1 

In this study, IBGSA  as well as ABACOH techniques which attained attractive performances 
when handling data with large dimensions in [70] and [71] were utilized as the two wrappers 
in the scheme presented in Figure 2.7. In this study, the results of a number of various filter 
techniques have been compared to determine the most suitable filter approach. Moreover, a 
comparison of the results using the OR and AND operators as the integrators has been carried 
out to determine the most suitable integration technique. 

2.9.6.1.1 Selecting the most suitable filter and integration technique 

To identify the most suitable filter approach and integration technique, the outcome of 
identifying a number of various filter-based techniques and two integration operators i.e. OR 
and AND were considered. The outcome of this comparison is given in Tables 2.8 and 2.9 for 
the OR and the AND integrators respectively. In this experiment, the validation technique was 
utilized whereby 2/3 of the data and the remaining 1/3 were adopted for the training and testing 
phases respectively.   

All the filter approaches except FCBF utilized in Tables 2.9 and 2.10 are rankers. Foremost, 
rankers assign a value (i.e. a rank) to every attribute and then sort all the features as per the 
assigned values. Consequently, these approaches need a threshold value to select informative 
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features. In the experiment carried, a threshold value of 0.004 was adopted for all the filter 
techniques. Moreover, all the reported results were evaluated using the KNN classifier whereby 
k was set to 1. 

From Tables 2.9 and 2.10, for the Colon dataset (with 62 samples and 2000 genes) the 
HMEBO-FCBF ensemble achieved the highest values for the ACC, MCC, GM and SP. The 
HMEBA-IG technique attained the top values for both the GMEAN as well as SN with this 
dataset. 

For the Leukemia dataset with 72 samples and 7129 genes, the proposed HEMO-F-score 
ensemble technique attained the top values for both ACC, GM and MCC. However, the 
HEMO-FCBF approach attained the highest values for the SP and SN. 

The Prostate cancer dataset with 10509 genes and 102 observations is deemed to be  
challenging. This is because it is derived from a number of different tests and has the data drift 
problem [71]. Though challenging, the HMEBO-FCBF ensemble technique attained the 
highest ACC, MCC, SP, GMEAN and GM for this data. However, for the SN parameter the 
HEMO-Relief technique reported the top value. 

For the considered Lung cancer dataset containing 12,533 genes and sample size of 181, the 
HMEBO-FCBF technique attained the best values for the ACC, SN, SP, GMEAN and GM. 
However, for the MCC parameter, the HMEBO-F-score attained the most attractive value. 

For the Ovarian microarray dataset with15, 154 and 253 samples, a dataset with the highest 
count of genes among all the considered datasets, the proposed HEMO-FCBF technique 
attained a score of 1.00 for the ACC, SN, SP, GMEAN and MCC. For the MC parameter, this 
ensemble approach attained a score of 0.999, which is still the best result in comparison to 
those reported by other techniques. 

Considering the average values attained for all the five evaluation metrics (see Tables 2.9 and 
2.10), the HMEBO-FCBF ensemble technique has proved to be superior compared to the other 
techniques for the five DNA microarray datasets. Moreover, the FCBF filter technique with 
the OR integrator attained the best results. 
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Table 2.9: Experimental results for hybrid-ensemble techniques combined with KNN 
and utilizing the AND integrator   
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Table 2.10: Experimental results for hybrid-ensemble techniques combined with KNN 
and utilizing the OR integrator 
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2.9.6.2 Hybrid-ensemble type 2 

 

 
Figure 2.8: Scheme of hybrid-ensemble type 2 

Reference [79] has tackled the feature selection problem in highly dimensional datasets by 
proposing a framework derived from the hybrid-ensemble techniques. This authors’ scheme is 
presented in Figure 2.8. 

In this framework, each line tries to reduce the dimensions of these highly dimensioned 
datasets. Foremost, each filter approach outputs a subset of features, in which the dimension of 
a dataset is largely reduced. Then, the informative features associated with the highest reported 
accuracy are selected by metaheuristic approaches. Thirdly, the outcome of the attribute 
selection process of every line are merged using various integrators like the AND and OR logic 
operators. Eventually, the accuracy of this scheme is computed using a specific classifier. 
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After considered a number of filter approaches, the authors  settled on the FCBF and reliefF 
filter approaches for their scheme. Moreover, they utilized the IBGSA approach as the wrapper 
in this framework. 

To select the informative features, a simple voting technique was adopted. With this technique 
a wrapper repeats for 4 times, and if the total occurrences in which a given attribute is selected 
as informative is more than the total occurrences is not picked, the attribute will be picked; 
otherwise it will not. 

As already pointed out, ranking based filter approaches such as the ReliefF technique require 
one to supply a threshold value for them to select of features. Table 2.11 presents the 
experimental results achieved by setting different threshold values for the ReliefF technique. 
Three different classifiers i.e. SVM, k-nearest neighbor (KNN) and the decision tree (DT) were 
utilized.  

The values for   Öℎ5, Öℎ7	and Öℎ7 were set as 0.0066, 0.009 and 0.02 respectively. The value 
for  Öℎ� was set equal to the count of attributes returned by the adopted FCBF technique. 

Moreover, Table 2.11 presents the error rate of three considered classifiers i.e. DT, SVM and 
KNN and the total count of selected attributes by each of the proposed hybrid-ensemble 
technique (in brackets). From the results presented, KNN yielded the most attractive results in 
comparison to the other classifiers. Moreover, scenarios 1 and 2 reported the least count of 
selected attributes and classification error rate in comparison to scenarios 3 and 4. 

It is evident that an increase in the threshold value reduces the classification accuracy of the 
classifiers. This is because this increase facilitates the selection of redundant and irrelevant 
features in highly dimensional datasets. 

Table 2.11: Experimental results for hybrid-ensemble techniques for different threshold 
values of the ReliefF filter approach  
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2.10 Summary of the recently suggested attribute selection techniques for the DNA 

microarray chip analysis 

 

Figure 2.9: Recently suggested attribute selection techniques for the DNA microarray 
chip analysis 

A complete assessment of the state-of-the-art attribute selection techniques for the DNA 
microarray data can be found in [138]. In this review, since 2008 many contributions fall under 
the category of filters (see Figure 2.9). The wrappers have been largely avoided due to their 
large computational cost and high chances of overfitting. Though embedded techniques were 
not largely utilized during the infant stages of classifying DNA chips, a number of contributions 
have been made in the recent past.  

Thus, it is important to note that the recent review reveals a trend to combine techniques in the 
ensemble or hybrid approaches (depicted by “Other” in Figure 2.9). 

2.11 Inferences drawn 

  To date, optimal gene selection and accurate classification of a given patient sample are the 

most sought topics in a DNA microarray based cancer disease diagnosis.This is because an 

effective gene selection phase derives a reduced informative gene subset from the gene-rich 

DNA microarray datasets which subsequently minimizes noise, computational overheads as 

well as model overfitting. On the other hand, an improved learning and classification stage 
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builds an effective classifier that achieves a reliable and accurate classification of a DNA 

patient sample. 

Optimal gene selection requires a stable, diverse and robust gene selector. This can only be 

achieved by a wrapper that maturely converges during the search process and thus ensuring an 

exhaustive search of the whole population of DNA microarray genes. On the other hand, 

mature convergence demands striking of a proper and optimal balance between exploitation 

and exploration in the design of a metaheuristic. Exploitation and exploration are two must 

attain antagonistic principles that pose a big challenge in striking a proper balance between 

them in the design metaheuristics. A reason why utilizing single-based metaheuristic wrappers 

have proved inadequate in solving the feature selection problem in DNA microarray based 

cancer disease diagnosis. Thus, researchers are keen on new unions of existing feature selection 

approaches such as hybrid or ensemble techniques. This is because the hybrid or ensemble 

techniques enhance adequately the robustness of the final informative gene subset, which is 

also a trending research topic in this area. 

It is desirable that the techniques selected to form the ensemble algorithm are diverse, i.e. the 

consituent algorithms of the ensemble should be able to return outputs that are different and 

enough when handling the sample of data. Nevertheless, if this sample of data is changed, it is 

preferable that the considered approaches attain similar outputs i.e. an attribute regarded as 

stability. Thus, research on the stability and diversity of ensemble attribute selection need to 

be carried out.	Moreover, new demands are emerging in society for instance in the area of real-

time processing and distributed learning, where a critical gap that needs to be researched upon 

is developing. 

Designing an efficient gene selector without enhancing both the learning and classification 

phase will still render the DNA microarray based cancer classification pipeline 

incomplete.Though currently the SVM is a promising classifier in DNA microarray data 

classification, its performance largely depends on the kernel adopted for this classifier as well 

as tuning of the kernel parameters. The linear, polynomial and Gaussian kernels are the three 

standard kernels commonly adopted by a large number of researchers for this classifier. The 

linear kernel function has a better extraction of global features from samples, the polynomial 

kernel has good generalization ability and the gaussian kernel (the most widely used kernel) 

has a good learning ability among all the single kernel functions. Thus, it is evident that 

utilizing a single kernel function based MCSVM classifier in a given application such as gene 
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expression data may neither attain good learning ability, proper global feature extraction ability 

and a better generalization capability.To date, this has necessitated a combinination of two or 

more of these standard kernel functions. 

In trying to address the issue of stability and diversity in feature selection using wrappers, an 

excited binary grey wolf optimizer (EBGWO) based wrapper approach is proposed in Chapter 

3 for the selection of informative genes and cancer type classification using the highly 

dimensional DNA datasets. To make full use of/ and strike an effective balance between 

diversification and intensification of the existing BGWO, a novel electrically inspired 

nonlinear strategy for the control parameter !→ of the BGWO is proposed. In this strategy, the 

value of !→ is decreased via the concept of the complete current response of the direct current 

(DC) excited resistor-capacitor (RC) circuit. Since the proposed strategy allocates a large 

number of generations to diversification in comparison to intensification, the convergence 

speed of the EBGWO algorithm is heightened while reducing the local optimal trapping effects. 

To enhance diversity and improve the quality of the reported solutions a weighting scheme 

utilizing the fitness values of the three leaders of the pack (alpha(α), beta(β) and delta(δ)), that 

of the currently considered wolf and that worst wolf is adopted. Finally, to maintain and 

strengthen the social hierarchy of the pack, a fitness-value based position-updating criterion is 

used.  

Although the proposed EBGWO is able to report a subset with the least number of features 

while maintaining an attractive classification accuracy, it does not attain an optimal balance 

between exploitation and exploration. This is because exploration of search domain and 

exploitation of optimal solutions are two conflicting principles that difficult to attain in single-

metaheuristic based wrappers. In trying to achieve the required optimal balance between the 

two, a new memetic excited (E) -adaptive cuckoo search (ACS)-intensification dedicated grey 

wolf optimizer (IDGWO) i.e. EACSIDGWO algorithm is proposed in chapter 4. The 

EACSIDGWO algorithm hybridizes IDGWO (a variant of the EBGWO) and another new 

improved cuckoo search algorithm i.e. ACS.The step size of ACS is also innovatively made 

adaptive via the concept of complete voltage response of the direct current (DC) excited 

resistor-capacitor (RC) circuit. Since the diversity of the population is higher during the early 

stages of proposed EACSIDGWO algorithm, both the ACS and IDGWO jointly carry out local 

exploitation during these stages. However, to enhance mature convergence during later stages 

of the proposed algorithm, the role of ACS is switched to global exploration while the IDGWO 

is still left carrying out local exploitation. 



57	
	

Finally, to enhance the performance of the classification phase (the last stage of the DNA 

microarray-based cancer analysis), a novel hybrid linear-gaussian-polynomial (LGP) kernel-

based multiclass support vector machine i.e. LGP-MCSVM is proposed in chapter five. The 

hybrid LGP kernel innovatively combines the advantages of three standard kernels (linear, 

gaussian and polynomial); where the linear kernel is linearly combined with a gaussian kernel 

embedding the polynomial kernel.  
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CHAPTER THREE: AN EXCITED BINARY GREY WOLF OPTIMIZER FOR 

FEATURE SELECTION IN HIGHLY DIMENSIONAL DATASETS 

3.1 Introduction 

The major challenge in analysing big data is the elevated count of features. Out of the many 
features, only a small subset is useful in distinguishing observations belonging to different 
classes while majority of the features will be either noise, irrelevant or redundant. Foremost, 
features that are irrelevant result into noise generation in the analysis of these big data. In 
addition, they normally lead to elevated dataset dimensions and a further computational burden 
in both the classification as well as the clustering operations. Consequently, all these attributes 
hinder attaining a higher classification accuracy. Thus, superior approaches are needed to 
identify diverse features, compute the relationship between the features and optimally select 
informative attributes from these highly dimensioned datasets [60]. 

For a given dataset with J attributes, there exists  2I	possible candidate subsets. The main 
objective of formulating various attribute selectors is to be able to determine a shrinked and 
optimal subset which can attain the highest precision among all the possible candidate subsets. 

Since the scope of possible results is wide and the size of the set of responses is on the increase 
due to the ever-increasing count of features, determining the optimal subset of J  informative 
features is extremely difficult and costly [140]. 

Attribute selection techniques can be broadly categorized into two i.e.  filters and wrappers. 
Filter approaches utilizes the distance, dependency, information theory and mutual information 
in carrying out attribute selection [141]. Unlike filters, wrappers utilize classifiers as the 
learning technique in optimizing the classification outcome by selecting the informative 
attributes. In most cases, filter techniques are often faster compared to wrappers, which is 
largely attributed to their reduced computational complexity [142]. Nevertheless, wrapper 
techniques can usually offer better performances compared to filters [143]. Wrappers apply 
metaheuristic optimization approaches, such as binary genetic algorithm (BGA) [144], binary 
version of grey wolf optimization (BGWO) [90], binary ant colony optimization (BACO) 
[145], binary version of particle swarm optimization (BPSO) [146], to select the optimal 
informative  feature subsets. 

BGWO is among the recently suggested attribute selection approaches. This technique usually 
attains an attractive performance compared to other existing conventional approaches[90] . 
Nontheless, the wolves’ new locations are solely depend on the their leaders’ experience i.e. 
delta, alpha and beta, which normally leads to ill-timed convergence. Moreover, an absolute 
balance between the diversification  and intensification is still a big problem with the BGWO 
[91]. 

This chapter proposes a new excited binary version grey wolf optimizer (EBGWO) whose main 
objective is to improve the performance of existing BGWO [90] in selecting informative 
features in highly dimensioned microarray datasets. Foremost, to overcome the insufficiency 
of the existing BGWO in regard to the criterion used to update the wolves’ positions, which is 
good at intensification but poor at diversification, a new position-updated equation utilizing 
the fitness values of vectors G5, G7  and GH is proposed to determine new candidate individuals. 
Moreover, inspired by the concept of the complete current response of a direct current (DC) 
excited resistor-capacitor (RC) circuit, another new nonlinear criterion to control parameter !  
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is introduced to ensure full use of and balance the diversification and intensification of the 
existing BGWO technique. 

The performance of EBGWO is tested using seven standard gene expression datasets. To assess 
the appropriateness of suggested method, the performance of EBGWO is contrasted with those 
of five state-of-the-art binary metaheuristic algorithms i.e. BPSO, BGWO1, BDE, BGWO2 
and BGA. It is evident from the achieved results that the proposed technique has a lower 
computational burden while maintaining a comparative performance in selecting features. 

The rest of this chapter is arranged as follows. A summary of the GWO algorithm is presented 
in section 3.2. The proposed excited grey wolf optimizer (EGWO) is presented in section 3.3. 
The binary version of EGWO i.e.  Excited binary grey wolf optimizer (EBGWO) is presented 
in section 3.4. Section 3.5 reports the experimental setting and a discussion of the obtained 
results. Finally, a conclusion and further works are given in section 3.6.  

3.2 Grey Wolf Optimization (GWO) 

GWO is a recently proposed optimization technique [89]. In nature, grey wolves live in groups 
ranging between 5 to 12. GWO mimics the behaviour portrayed by these grey wolves while 
hunting and searching of a prey. In GWO, to simulate the leadership hierarchy in a pack, the 
population is divided into 4 classes of wolves i.e. Beta (à), omega (≥), alpha (Ü), and delta 
(ø). The Ü wolf is the overall pack leader and is largely engaged in decision-making. The à 
wolf is the second in command and it usually assists the Ü wolf in planning the various pack 
endevours. The ø wolf, the third in command, dominates the ≥ wolves. The 3 leaders i.e. Ü, à 
and ø guide the hunting (optimization) while the remaining omega wolves (≥) follow them 
[147].  

3.3 Excited Grey Wolf Optimization (EGWO) 

3.3.1 Nonlinearly controlling parameter # via the complete current response of the dc 

excited RC circuit 

It is a well-established fact that for population-based metaheuristics, both exploration 
(diversification) and exploitation (intensification) are conducted concurrently. 

Exploration is termed as the ability of a population-based metaheuristic to examine new areas 
within the defined search space with the aim of determining the global optima. On the hand, 
exploitation is the ability to utilize the information of already identified individuals in deriving 
better individuals [148], [149]. 

In every population-based metaheuristic, both exploration (diversification) and exploitation 
(intensification) abilities are attained by applying specific operators. 

In the conventional GWO algorithm, parameter ! plays a critical role in striking a balance 
between diversification and intensification of an individual candidate search [148]. A big value 
of ! enhances global diversification, on the other hand its smaller value promotes local 
intensification. Thus, selection of a suitable control strategy for parameter ! is critical in 
attaining an effective balance between local exploitation and global exploration. From 
literature, one proved way to achieve the required balance is critically studying the control of 
parameter !. To date, various approaches have been proposed to control the conventional 
GWO’s parameter !	[148], [149], [150]. 
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However, in the conventional GWO, ! linearly decreases from 2 to	0 using Equation (2.39). 
Since GWO incorporates a highly complicated nonlinear search process, the utilized linear 
control of parameter !  doesn’t clearly portray the real search process [148]. In addition, [150] 
suggested that the performance of GWO would improve if parameter ! is nonlinearly 
controlled. 

Motivated by both the above consideration and the complete current response of a direct current 
(DC) excited resistor-capacitor (RC) circuit[151], a novel nonlinear control strategy for 
parameter ! is proposed in this paper. 

The complete current response of the RC circuit to a sudden application of a dc voltage source, 
with the assumption that the capacitor is initially not charged is given in Equation 3.1. 

																																																																									U(W) = »…
å
(( 5

~í
) )  3.1 

 

Where ö = S×K is the time constant that expresses the rapidity with which the value if U 
decreases from the initial value »…

å
 to zero over time.	À̀  is value of a constant DC voltage while 

S and K are the resistor and capacitor values of the circuit. 

We adopt this concept i.e. the exponential decay of 	U over time to develop a new nonlinear 
control strategy of parameter ! (refer to Equation 2.39) as presented in Equation 3.2. 

!Q,\ = !Q;Q\Q=ñ×(
y!kRW<1	 − W
y!kRW<1

) ],í 3.2 

 

Where !Q,\ is the computed value of the  ! assigned to grey wolf U during iteration 		W. y!kRW<1 
indicates the total count of generations and  !Q;Q\Q=ñ is the initial value of the control parameter 
!. öQ,\ is a nonlinear modulation index assigned to the grey wolf U during iteration W.  

In ensuring that !Q,\ is proportional to the fitness value of grey wolf U during iteration  W, a new 
formulation of  the value of the nonlinear modulation index öQ,\ is given in Equation 3.3. 

 

öQ,\ =
(ZÜ\ + 	Zà\ + Zø\

3 ) − ZG\

(ZÜ\ + 	Zà\ + Zø\
3 ) − Zu\

 
3.3 

 

Where ZÜ\, 	Zà\ and Zø\ are fitness values of  Ü, à and ø wolves (the 3 leaders) respectively 
during the current iteration W. ZG\  is the fitness value of grey wolf U during iteration W and 
finally  Zu\	is the worst fitness value among the omega (≥) wolves during iteration W . 

Consequently, a5, a7 and aH are determined using Equation 3.4 which is a variant of Equation 
2.37. 
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a = 2. !Q,\. 15 − !Q,\ 3.4 

 

From the literature of conventional GWO [89], when a is less than 1 the wolves are compelled 
to attack the current prey (intensification) and  when  a	is greater than 1 the wolves are 
compelled to move away from the current prey with the hope of finding another fitter prey. 
This implies that a smaller value of ! advances local intensification while a larger value 
enhances global diversification. 

According to Equation 2.39 of the conventional GWO algorithm, it is evident that 1 2  of the 

iterations are committed to diversification and the other 1 2 to intensification. This strategy 
fails to consider the effect of effective balancing between these 2 conflicting milestones in 
ensuring accurate approximation of the global optimum. 

The nonlinear control strategy of parameter ! proposed in Equation 3.2, tries to overcome this 
challenge by adopting a variant of decay function to facilitate a proper balance between 
diversification and intensification. Since this strategy allocates a large proportion of the 
iterations to global exploration compared to local exploitation, the convergence speed of the 
proposed EGWO algorithm is enhanced while minimizing the local minima trapping effect. 

Moreover, since the proposed scheme is correlated to the fitness values of the each grey wolve 
in the search space and the current count of generations, diversity and the quality of the 
solutions is enhanced. 

3.3.2 Socially Strengthened Hierarchy via a Fitness-value based position-updating 

criterion 

In the conventional GWO, social order is the cornerstone in both the internal governance as 
well as the hunting patterns of the pack [152]. All the wolves within the pack conduct hunting 
under the close guidance of the Ü, à and ø wolves. An assumption that these 3 leaders have a 
better understanding of the prey’s position is made. Consequently, the omega (≥) wolves 
update their locations with the help of these three leaders during the hunting process. This 
implies that the conditions of the Ü, à and ø wolves are key in updating the whole pack. 
Meanwhile, the higher the rank a wolf attains during the search, the closer it gets to the global 
optimum. 

In addition, all the wolves including the three leaders utilize Equation 2.40 to update their 
positions. That is to say the Ü wolf will utilize the lowly ranked  à and ø wolves to update its 
position. Likewise, à wolf will utilize the lowly ranked  ø wolf to update itself. Since the 
conditions of the à and ø wolves are worse compared to that of the Ü wolf, there are higher 
chances that the two wolves will compel the Ü wolf to move away from the global optimum. 
Likewise, à wolf may also be misled by the ø wolf. Ultimately, the accumulative error will 
have an adverse effect on updating the positions of all the wolves in the pack and the 
convergence efficiency of the GWO will drastically reduce[152]. 

On the other hand, since all the omega (≥) wolves are attracted towards the  Ü, à and ø wolves, 
they may prematurely converge due to limited exploration within the search space. Thus, the 
conventional GWO is good at intensification but poor at diversification. 
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Thus, to overcome the GWO’s premature converge and still maintain the social hierarchy of 
the pack, a different scheme for updating both the dominant (Ü, à and ø) and the omega (≥) 
wolves is needed. To attain this, a new position-updated equation utilizing the fitness values of 
vectors G5, G7  and GH is utilized in determining new candidate individuals. 

Foremost, for each wolf in the pack, vectors	Gï~p5, Gï~p7 and Gï~pH  are computed using 
Equations 3.5 to 3.7 

 

Gï~p5 = G5(≠)
≤

Oj5

 
3.5 

 

Gï~p7 = G7(≠)
≤

Oj5

 
3.6 

 

Gï~pH = GH(≠)
≤

Oj5

 
3.7 

 

Where É is the dimension of the search space and G5 ≠ , G7(≠) and GH(≠) are determined using 
Equations 2.41 to 2.43 respectively. 

Next, the fitness values ZGï~p5, ZGï~p7 and ZGï~pH	for vectorsGï~p5, Gï~p7 and Gï~pH 
respectively are determined and the one with the best fitness forms the new position as depicted 
by Equations 3.8 to 3.9. 

[vUWW<:W, ôt:] = MU3 ZGï~p(=)

H

=j5

	 
3.8 

	

G W + 1 = Gï~p(=)

H

=j5 	ŒP`

	 

       3.9 

 

3.4 Excited Binary Grey Wolf Optimization (EBGWO) 

The selection of features (FS) is a significant challenge in machine learning as well as pattern 
recognition areas. Guided by a given evaluation criterion, FS aims at deriving a subset with 
least count of  the most informative features [153], [152]. 

Thus, FS is a broad-based optimization challenge that is characterized by huge computations. 
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Since the FS problem utilizes a binary search space, conversion of the proposed continuous 
EGWO to binary i.e. EBGWO is required. One of the commonly adopted approach for this 
transformation is the utilization of transfer functions[152], [153]. 

In these experiments, the transfer function utilized in converting the real values of each solution 
to binary is depicted by Equation 3.10. 

 

GO W + 1 = 1, Uv	o GO W + 1 > –,			
0,					tWℎ<1uU:<																			

	 
3.10 

 

Where – ∈ [0,1] depict a random threshold and o is the considered sigmoid function as 
expressed by Equation 3.11. 

 

o k =
1

1 + exp	(−10(k − 0.5))
	  3.11 

GO W + 1 =1 imply that the ≠\c element of G(W + 1) is selected as an informative attribute while  
GO W + 1 =0 imply that the corresponding ≠\c element is ignored. 

For instance, if  G W + 1 = [0.55, 0.21, 0.35,0.8] and – = 0.5, the output of Equation 3.21 
becomes G W + 1 = [1, 0, 0,1] which imply that the 1`\	and 4\c features be selected while the 
2;≤	and 39≤ features will be ignored. 

By doing so, the number of features is greatly reduced without adversely affecting the 
performance in terms of classification accuracy. 

Because  FS task aims at attaining better classification accuracy with the utilization of fewer 
attributes, the objective function ZUW utilized in this paper is given by Equation 3.12 [153]. 

ZUW = ‘ ∗
o
J

− ( 1 − ‘ ∗ aww) 
 3.12 

Where aww  is indicates the accuracy of a given classifier, o  is the count of features in the 
derived subset and J  is the total count of features within the dataset. Thus, FS is turned into 
a problem of determining the least value of Equation 3.12. 

Herein, ‘ and 1 − ‘  are weights corresponding to the feature subset size and average accuracy 
respectively. The parameter of ‘ in Equation 3.12 is set 0.2 [153]. 

The pseudocode of the proposed excited binary grey wolf optimizer (EBGWO) algorithm is 
presented in Algorithm 3.1. 

Algorithm 1: Pseudo-code for the EBGWO  
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Input: labelled gene dataset D, Total number of iterations y!kRW<1, Population size N, Initial 
value of the control parameter !Q;Q\Q=ñ  
Output:  Optimal Individual’s position Gõ , Best fitness value Fit (Gõ) 
1. Randomly initialize N individuals’ positions to establish a population 
2. Using Equation (3.12), evaluate the fitness of all wolves, Fit (G) 
3. [~, Index] =Sort (ZUW	(G), ′a:w<3É′) 
4. ZÜ =ZUW	(G)’;≤~l(5) 
5. Zβ =ZUW	(G)’;≤~l(7) 
6. Zδ =ZUW	(G)’;≤~l(H) 
7. Zw =ZUW	(G)’;≤~l(I) 
8. Gõ=G(R3É<k(1)) 
9. Gù=G(R3É<k(2)) 
10. G¡=G(R3É<k(3)) 
11. For t=1 To y!kRW<1 
12.    For i=1 To N 
13.         Determine !Q,\ using Equation (3.2) 
14.        Compute Gï~p5, Gï~p7 and Gï~pH using 

      Equations (3.5)-(3.7) 
15.       Generate Gï~p5

;~¬,	Gï~p7
;~¬ and 

      Gï~pH
;~¬using Equation (3.10) 

16.      Evaluate the fitness values ZGï~p5, 	ZGï~p7  and ZGï~pH	of the binary 
vectorsGï~p5

;~¬	Gï~p7
;~¬and   Gï~pH

;~¬	respectively using  Equation (3.12) 
17.    Determine the minimum value(fittest)  of the  

   three evaluated fitness values  and its Index 
   using Equations (3.8) 

 18.            If (fittest<ZUW	(G)’;≤~l(Q)) Then 
 19.        ZUW	(G)’;≤~l(Q)= fittest 
20.       Update G’;≤~l(Q) using Equation (3.9) 
   End If 
21. Next i 
22.       Repeat steps 3 to 10 
23. Next t 
  

3.5 Experimental Results and Discussion 

All the computations were conducted on a Windows 10 Home Single Language 64-bit 

operating system; processor Intel(R) Core (TM) i7-3770CPU processor speed of 3.4GHZ; 

12GB of RAM. All the considered approaches were implemented and executed using 

MATLAB 2017 environment. 

3.6 Dataset description 

In order to evaluate the effectiveness of the proposed technique, seven standard DNA chips 

derived from Irvine (UCI) repository were utilized. The datasets were selected to have a variety 
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of observations (sample-size), genes and classes as prototypical of various issues. Table 3.1 

outlines the detailed distribution of instances, genes and classes for each considered dataset. 

Table 3.1: Microarray datasets used in the experiments 

Dataset No. of Instances No. of Genes No. of Classes 

Brain_Tumour1 90 5920 5 
Brain_Tumour2 50 10367 4 

CNS 60 7129 2 
DLBCL 77 5469 2 

Leukemia 72 7129 2 
Colon 62 2000 2 

Lung Cancer 203 12600 4 
 

3.7 Parameter setting 

The proposed EBGWO is benchmarked with 2 novel versions of BGWO i.e. BGWO2 and 

BGWO1 [90], BPSO [146], BDE and BGA [146]. The optimizer-specific settings of the 

considered algorithms are presented in Table 3.2. 

Table 3.2: Parameter settings for each considered algorithm 

Algorithm Year Parameter settings 
EBGWO New N=10, y!kRW<1 = 100,	!Q;Q\Q=ñ = 2 

BGWO1 [90] 2016 N=10, y!kRW<1 = 100,	!Q;Q\Q=ñ = 2 
BGWO2 [90] 2016 N=10, y!kRW<1 = 100,	!Q;Q\Q=ñ = 2 
BPSO [146] 2019 N=10, y!kRW<1 = 100,	K5 = K7 = 2,	ÀN=l = 6, 

TN=l = 0.9, , TNQ; = 0.4 
BDE [146] 2019 N=10, y!kRW<1 = 100,	KS = 0.9 
BGA [146] 2019 N=10, y!kRW<1 = 100,	KS = 0.8, MR=0.01 

 
Additionally, all the considered algorithms are repeated over 10 noncorrelated runs (i.e. N) to 

ensure statistical significance and stability of the achieved results. Furthermore, the commonly 

utilized 10-fold cross validation scheme is used to split the considered DNA chips into training 

and testing [154]. y!kRW<1 indicates the maximum number of iterations, !Q;Q\Q=ñ depicts the 

initial value of factor ! that controls the balancing between exploitation and exploration. TN=l 

and , TNQ;  are the maximum and minimum inertia weights respectively.The inertia weight 

also strikes a balance between exploitation and exploration in the BPSO algorithm.  K5 is a 

cognitive acceleration constant  while K7 is a social acceleration constant. K5 allows the 

definition of the ability of the group to be influenced by the best personal solutions attained 

over the iterations. On the other hand, K7 allows the definition of the group to be influenced by 

the best global solution attained over the iterations. ÀN=l is the maximum velocity that each 

particle can stochastically be accelerated towards its previous best position(personal best) and 
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towards the best solution of the group (global best). KS is the crossover probability that controls 

the diversity of the BDE algorithm i.e. it controls the number of elements that can change in 

the algorithm. In the BGA algorithm, KS and MR are the crossover and mutation rates 

respectively. The crossover rate controls the swapping of solutions with others within 

chromosomes while the mutation rate controls the change of parts of one solution randomly, 

which increases the diversity of the population and thus providing a mechanism of avoiding 

trapping in the local optimum. 

A wrapper technique based on the K-Nearest  Neighbour (K-NN) classifier [90], [153] is used 

in selecting genes in this chapter. The K-NN classifier (whereby k is set to 5) is adopted to 

obtain the classification accuracy of the solutions. 

Tables 3.3 to 3.9 presents the achieved results of all the techniques considered for the attribute 

selection task using the gene expression datasets whose details are presented in Table 3.1. 

 
The following information is presented in each column of Tables 3.3 to 3.9: 

i) Algorithm: presents the abbreviations of the considered techniques i.e. Excited Binary 
Grey Wolf Optimizer (EBGWO), Binary Grey Wolf Optimizer 1(BGWO1), and Binary 
Grey Wolf Optimizer 2 (BGWO2) 

ii) y!k_aww: Maximum Accuracy value obtained when a given algorithm is repeated for 10 
independent runs. 

iii) yU3_aww: Minimum Accuracy value obtained when a given algorithm is repeated for 10 
independent runs. 

iv) aò4_aww: Is the average of all the accuracy values obtained when a given algorithm is 
repeated for 10 independent runs. 

v) y!k_Jv<!W: Is the largest count of attributes reported by a given technique during the 
10 independent runs. 

vi) yU3_Jv<!W: Is the largest count of features reported by a given technique during the 10 
independent runs. 

vii) aò4_Jv<!W: Is the average of all the count of attributes reported by a given technique 
during the 10 independent runs. 

viii) Dataset: Captures the datasets utilized in conducting the experiments as articulated in 
Table 3.1. 
 
 

Table 3.3: Experimental Results for Brain_Tumour1 dataset 

Algorithm Accuracy Number of Genes Dataset 
y!k_aww yU3_aww aò4_aww y!k_Jv<!W yU3_Jv<!W aò4_Jv<!W 

EBGWO 
(New) 

0.933 0.911 0.919 673 440 501.9 Brain_Tumour1 
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BGWO1 
[90] 

0.889 0.856 0.871 3831 2952 3356.9 

BGWO2 
[90] 

0.911 0.878 0.894 1656 1094 1343.3 

BPSO 
[156] 

0.854 0.823 0.843 2972 2763 2863.9 

BDE 
[156] 

0.864 0.834 0.854 3017 2737 2937.6 

BGA 
[156] 

0.869 0.844 0.859 2950 2840 2889.4 

Values in bold represent the best result and values in italic denote the worst in each column, 
respectively. 

 

 

 

 

 

 

 

Table 3.4: Experimental Results for Brain_Tumour2 dataset 

Algorithm Accuracy Number of Genes Dataset 
y!k_aww yU3_aww aò4_aww y!k_Jv<!W yU3_Jv<!W aò4_Jv<!W 

EBGWO 
(New) 

0.920 0.84 0.884 2811 712 1151.5 Brain_Tumour2 

BGWO1 
[90] 

0.840 0.820 0.838 7415 6103 6813.4 

BGWO2 
[90] 

0.880 0.820 0.846 4019 2528 3083.8 

BPSO 
[156] 

0.800 0.780 0.798 5126 5090 5122.4 

BDE 
[156] 

0.728 0.713 0.714 5198 5076 5172.3 

BGA 
[156] 

0.767 0.753 0.752 5139 5039 5089.5 

Values in bold represent the best result and values in italic denote the worst in each column, 
respectively. 

 

 

Table 3.5: Experimental Results for CNS dataset 

Algorithm Accuracy Number of Genes Dataset 
y!k_aww yU3_aww aò4_aww y!k_Jv<!W yU3_Jv<!W aò4_Jv<!W 
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EBGWO 
(New) 

0.85 0.8 0.827 1020 564 710.3 CNS 

BGWO1 
[90] 

0.783 0.750 0.760 4942 4217 4606.4 

BGWO2 
[90] 

0.800 0.750 0.780 2502 1842 2175.8 

BPSO 
[156] 

0.767 0.733 0.737 3502 3486 3487.6 

BDE 
[156] 

0.693 0.663 0.683 3530 3478 3521.9 

BGA 
[156] 

0.727 0.707 0.717 3528 3428 3501.7 

Values in bold represent the best result and values in italic denote the worst in each column, 
respectively. 

 

 

 

 

 

 

 

 

Table 3.6: Experimental Results for DLBCL dataset 

Algorithm Accuracy Number of Genes Dataset 
y!k_aww yU3_aww aò4_aww y!k_Jv<!W yU3_Jv<!W aò4_Jv<!W 

EBGWO 
(New) 

1.000 0.987 0.997 534 333 426.7 DLBCL 

BGWO1 
[90] 

0.987 0.961 0.971 3706 2826 3343.4 

BGWO2 
[90] 

1.000 0.948 0.986 1700 1002 1408.3 

BPSO 
[156] 

0.919 0.891 0.901 2703 2672 2675.1 

BDE 
[156] 

0.885 0.869 0.882 2732 2687 2721.4 

BGA 
[156] 

0.906 0.883 0.896 2709 2699 2685.1 

Values in bold represent the best result and values in italic denote the worst in each column, 
respectively. 
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Table 3.7: Experimental Results for Leukemia dataset 

Algorithm Accuracy Number of Genes Dataset 
y!k_aww yU3_aww aò4_aww y!k_Jv<!W yU3_Jv<!W aò4_Jv<!W 

EBGWO 
(New) 

0.931 0.889 0.903 913 524 649.8 Leukemia 

BGWO1 
[90] 

0.861 0.833 0.849 5065 3897 4428.5 

BGWO2 
[90] 

0.889 0.847 0.874 2141 1618 1805.5 

BPSO 
[156] 

0.828 0.809 0.814 3516 3505 3514.9 

BDE 
[156] 

0.782 0.751 0.784 3537 3527 3531.2 

BGA 
[156] 

0.801 0.782 0.792 3501 3461 3481.8 

Values in bold represent the best result and values in italic denote the worst in each column, 
respectively. 

 

 

 

 

 

 

 

 

Table 3.8: Experimental Results for Colon dataset 

Algorithm Accuracy Number of Genes Dataset 
y!k_aww yU3_aww aò4_aww y!k_Jv<!W yU3_Jv<!W aò4_Jv<!W 

EBGWO 
(New) 

0.935 0.903 0.919 220 103 143.4 Colon 

BGWO1 
[90] 

0.887 0.855 0.865 1316 1096 1189.4 

BGWO2 
[90] 

0.919 0.871 0.900 622 351 455.2 

BPSO 
[156] 

0.849 0.829 0.839 986 931 936.5 

BDE 
[156] 

0.810 0.780 0.794 995 955 965.3 

BGA 
[156] 

0.881 0.875 0.878 990 984 987.3 

Values in bold represent the best result and values in italic denote the worst in each column, 
respectively. 
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Table 3.9: Experimental Results for Lung Cancer dataset 

Algorithm Accuracy Number of Genes Dataset 
y!k_aww yU3_aww aò4_aww y!k_Jv<!W yU3_Jv<!W aò4_Jv<!W 

EBGWO 
(New) 

0.985 0.970 0.977 1148 781 1005.5 Lung Cancer 

BGWO1 
[90] 

0.966 0.941 0.951 7598 6621 7211 

BGWO2 
[90] 

0.975 0.956 0.966 2672 2167 2413.2 

BPSO 
[156] 

0.936 0.931 0.935 6196 6179 6180.7 

BDE 
[156] 

0.931 0.921 0.924 6256 6218 6226.8 

BGA 
[156] 

0.952 0.939 0.945 6235 6214 6218.2 

Values in bold represent the best result and values in italic denote the worst in each column, 
respectively. 

 

3.8 Conclusion 

In this chapter, an excited binary grey wolf optimizer (EBGWO) is proposed to solve the 

feature selection problem in the gene-rich DNA microarray datasets. In the proposed algorithm, 

the concept of the complete current response of a direct current (DC) excited resistor capacitor 

(RC) circuit are innovatively utilized to make the non-linear control strategy of parameter ! of 

the GWO adaptive. Since this scheme allocates a large proportion of the number of iterations 

to global exploration compared to local exploitation, the convergence speed of the proposed 

EGWO algorithm is enhanced while minimizing the local minima trapping effect. Moreover, 

since the proposed scheme assigns each wolf a value of parameter ! that is proportional its 

fitness values in both the search space and the current iteration (generation), diversity and the 

quality of the solutions is improved as well.  

To overcome premature converge (a limitation  of existing versions of GWO algorithms) and 

still maintain the social hierarchy of the pack, a new position-updated equation utilizing the 

fitness values of vectors G5, G7  and GH is proposed in determining new candidate individuals. 

As a feature selector, EBGWO is compared with five metaheuristic algorithms i.e.  BGWO1, 

BGWO2, BPSO, BDE and BGA that are in existence. The obtained experimental results 

revealed that EBGWO yielded the best performance and overtook the other algorithms. 

EBGWO not only attained the highest classification accuracy, but also selected subsets with 
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the least number of informative features (genes). In conclusion, the proposed EBGWO is 

successful, and more appropriate to be used as a feature selector in highly dimensional datasets. 

For further works, various chaotic maps can be adopted in fine-tuning the parameters of the 

EBGWO. Utilizing EBGWO as a hybrid filter-wrapper for selecting features seeking to 

evaluate the generality of the attributes selected will be another useful contribution. Moreover, 

EGWO can be adopted in other areas that require optimization like knapsack, training a neural 

network and numerical problems. 

Though the proposed EBGWO wrapper has proved attractive in selecting informative genes 

from the highly dimensioned DNA microarray datasets, it does not attain an optimal balance 

between exploitation and exploration during the search process.This is because exploitation 

and exploration are two contradicting principles, which must be balanced efficiently in order 

to achieve an improved performance of a metaheuristic. Moreover, attaining an optimal balance 

between these antagonist principles is difficult with a single metaheuristic [162]. In tying to 

attain the required optimal balance between exploitation and exploration, another novel hybrid 

wrapper combining a variant of the proposed EBGWO and adaptive cuckoo search is proposed 

in the next chapter. 
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CHAPTER FOUR: AN INNOVATIVE EXCITED-ACS-IDGWO ALGORITHM FOR 

OPTIMAL BIOMEDICAL DATA FEATURE SELECTION 

4.1 Introduction 

Currently, there is a growing research interest in developing and deploying population-based 

metaheuristics to tackle combinatorial optimization challenges. This is because they are simple, 

flexible with an inexpensive computational cost, and gradient-free[155]. Many researchers have 

applied these optimization algorithms in various research domains because of their ability to 

achieve best solutions. 

The optimization challenge grows bigger when tackling highly dimensioned datasets. This is 

because these datasets have a vast feature space with many classes. Due to the presence of 

redundant and non-informative attributes within these datasets, the process of effective machine 

learning greatly hindered. Thus, the construction of efficient classifiers with high predictive 

power largely depends on selection of informative features[44]. 

Feature selection (FS) is one of the main steps in data preprocessing that aims at selecting a 

subset of attributes out of the whole dataset resulting into removal of noisy non-informative and 

redundant features. This in turn increases the accuracy of a considered classifier or clustering 

model [156]. 

FS algorithms can be broadly categorized into two classes: filter and wrapper 

techniques[157],[158]. Filters include techniques independent of classifiers and work directly 

on presented data. Moreover, these methods in many situations determine the correlations 

between features. On the contrary, wrapper approaches engage classifiers and mainly determine 

interactions between dataset features. From literature, wrapper approaches have proved to be 

superior compared to filters for classification algorithms[159],[160]. 

To utilize wrapper-based techniques, three key factors need to be outlined: considered classifiers 

(i.e. (KNN), SVM), evaluation criteria for the identified feature subset, and a search technique 

utilized in determining a subset of optimal features [161]. 

Many researchers have pointed out that determining an optimal subset of attributes is not only 

challenging but computationally expensive as well. Though, in the recent past, metaheuristics 

have proved to be reliable and efficient tools in tackling many optimization tasks (e.g., 
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engineering designs problems, machine learning, feature selection, and data mining), they are 

not efficient in solving problems with high computational burden[158],[162], [163],[164] . 

In the recent past, various metaheuristic search techniques have been adopted for FS using 

highly dimensioned datasets. Some of these metaheuristics are the GWO [90], [165], GA [166], 

PSO[164], ACO[83], DEA [143], CSA[153], and DA[167]. Though, many of these algorithms 

have already made an important contribution in the field of feature selection, in many cases, 

they offer acceptable solutions without a guarantee of determining optimal solutions since they 

do not explore the entire search space[164]. 

Some of the new modifications that have been suggested to improve the performance of these 

metaheuristics include chaotic maps[168], evolutionary methods [169], sine cosine algorithms 

[170], biogeography-based optimization, and local searches [171]. 

While designing or utilizing a metaheuristic, it should be noted that diversification and 

intensification are two contradicting principles that must be balanced efficiently in order to 

achieve an improved performance of the metaheuristic [162]. 

With regard to this, one promising option is developing a memetic approach whereby an 

integration of (at least) 2 techniques is done with the objective of enhancing the overall 

performance. 

Motivated by this, various hybrid algorithms have been suggested in the recent past to solve a 

variety of optimizations and feature selection problems [60]. However, to enhance 

diversification and intensification of these hybrid algorithms, exploration and fine-tuning within 

their basic constituent algorithms is needed prior to hybridization [172].This emphasizes, too, 

that there are a number of techniques lying within these memetic algorithms that are yet to be 

investigated. 

Firstly, the technique of combining one or more nature-inspired algorithms (NIAs) needs to be 

determined. Secondly, the criterion of determining how many NIAs need to be combined within 

the search space has to be accomplished. Thirdly, the method of determining the application 

area upon which the proposed memetic algorithm will be applied has to be done. Finally, the 

criterion of applying the memetic algorithm in a specific domain has to be accomplished [24]. 
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Although the proposed EBGWO in chapter 3 is able to report a subset with the least number of 

features while maintaining an attractive classification accuracy, it does not attain an optimal 

balance between exploitation and exploration. This is because exploration of search domain and 

exploitation of optimal solutions are two conflicting principles that must be considered when 

modelling metaheuristics.Inspired by this, this chapter proposes a new hybrid algorithm called 

Excited- (E-) Adaptive Cuckoo Search- (ACS-) Intensification Dedicated Grey Wolf 

Optimization (IDGWO), i.e., EACSIDGWO algorithm to solve the feature selection problem in 

biomedical science. In the proposed algorithm, the concept of the complete voltage and current 

responses of a direct current (DC) excited resistor capacitor (RC) circuit is innovatively utilized 

to make the step size of ACS and the nonlinear control strategy of parameter ! of the IDGWO 

adaptive. Since the population has a higher diversity during early stages of the proposed 

algorithm, both the ACS and IDGWO are jointly utilized to attain accelerated convergence. 

However, to enhance mature convergence while striking an effective balance between 

exploitation and exploration in latter stages, the role of ACS is switched to global exploration 

while the IDGWO is still left conducting the local exploitation. 

The remainder of this chapter is organized as follows: Section 4.2 discusses the existing 

literature within the same research domain. Section 4.3 presents the background information of 

the CS and the GWO, respectively, where their inspirations and mathematical models are given 

emphasis. The continuous version of the proposed EACSIDGWO algorithm is presented in 

Section 4.4 while the details of its binary version are given in Section 4.5. The experimental 

methodology considered in this chapter is presented in Section 4.6 while the results on feature 

selection are discussed in Section 4.7. Finally, the conclusion is given in Section 4.8. 

4.2 Related Works 

4.2.1. Review of Hybridization of GWO with Other Search Algorithms 

 Combining two or more metaheuristics to attain better solutions is currently a new insight in 

the area of optimization. In the literature, many researchers have utilized GWO in the field of 

hybrid metaheuristics. For instance, in [173], a hybrid of GWO and ABC is proposed to improve 

performance of a complex system. In [174], GWO is hybridized with ant lion optimizer (ALO) 

for wrapper feature selection. Alomoush et al. [175] proposed a hybrid of GWO and harmony 

search (HS). In this memetic, GWO updates the bandwidth and pitch adjustment rate in HS, 
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which in return improves the global optimization abilities of the hybrid algorithm. In [176], 

Arora et al. combined GWO with the crow search algorithm (CSA). The performance of the 

derived memetic as a feature selector is evaluated using 21 datasets. The obtained results reveal 

that the combined algorithm is superior in solving complex optimization algorithms. In [177], a 

novel combination between GWO and PSO is utilized as a load-balancing technique in the 

cloud-computing arena. The conclusions point out that the hybrid algorithm improved both the 

convergence speed and the simplicity in comparison with other algorithms. Zhu et al. [178] 

hybridized GWO with differential evolution (DE). The hybrid algorithm was tested on 23 

different functions and a nondeterministic polynomial hard problem. The obtained results 

indicate that this combination achieved superior exploration. In [179], a new memetic 

combining the exploration ability of the fireworks algorithm (FWA) with the exploitation ability 

of GWO is proposed. Utilizing 16 benchmark functions with varied dimensions and 

complexities, the experimental results indicate that the hybrid algorithm attained attractive 

global search abilities and convergence speeds. 

4.2.2. Review of Hybridization of CS with Other Search Algorithms.  

Utilizing the concept of random and best agents within a population, Cheng et al. [180] 

developed an ensemble cuckoo search variant combining three different CS approaches that 

coexist within the entire search domain. These CS variants actively compete to derive superior 

generations for numerical optimization. To maintain population diversity, he introduced an 

external archive. The statistical results obtained reveal that the ensemble CS attained attractive 

converge speeds as well as robustness. In [181], GWO is hybridized with CS, i.e., GWOCS for 

the extraction of parameters for different PV cell models situated in different conditions. Zhang 

et al. [182] developed an ensemble CS algorithm that foremost divides a population into two 

smaller groups and then utilizes CS and differential evolution (DE) on the derived subgroups 

independently. The subgroups are free to share useful information by division. Further, the CS 

and DE algorithms can freely utilize each other’s merits to complement their weaknesses. This 

approach proved to balance the quality of solutions and the computation consumption. In [182], 

CS is hybridized with a covariance matrix adaptation evolution approach, i.e., CMA-CS to 

improve the performance of CS in different optimization problems. 

Despite the advantages portrayed by the aforementioned hybrid GWO and CS metaheuristics 

for optimization and feature selection, superior hybrid approaches can be achieved if the single 
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GWO and CS algorithms are improved prior to hybridization. Furthermore, the no-free-lunch 

(NFL) theorem has logically proved that there has been, is, and will be no single metaheuristic 

capable of solving all optimization and feature selection problems[181]. While a given 

metaheuristic can show an attractive performance on specific datasets, its performance might 

degrade when applied to similar or different types of datasets [182]. Thus, there is still a dire 

need to improve existing algorithms or develop new ones to solve problems that require function 

optimization as well as selection of features efficiently. 

4.3 Standard Cuckoo Search (CS) 

4.3.1 Inspiration of CS 

The following subsections describe the inspiration of the CS algorithm. 

4.3.1.1 The Behavior of Cuckoo Birds 

 To date, more than a thousand different species of birds are in existence in nature [183]. For 

most of these species, the female birds lay eggs in nests they have built themselves [184]. 

However, there exist some types of birds that do not build nests of their own, but instead lay 

their eggs in other different species’ nests, leaving the responsibility of taking care of their eggs 

to the host birds. The cuckoos are the most famous of these brood parasites [185]. 

There are three types of brood parasites: intraspecific brood parasites, cooperative breeding, and 

nest takeover [38].The cuckoo strategy is full of amazing traits; foremost, it replaces one host 

egg with its own to increase the chances of its egg being hatched by the host bird. Next, it tries 

to mimic the pattern and color(s) of this host eggs with the aim of reducing the chances of its 

egg being noticed and discarded by the host bird. It is also important to point out that the timing 

of laying its egg is amazing since it cleverly selects a nest where a host bird has just laid eggs, 

implying that the cuckoo’s egg will hatch prior to the host eggs. The first action taken by the 

hatched cuckoo is evicting the host eggs that are yet to hatch out of the nest by blind propelling 

in order to increase its chances of being fed well by the host bird [185]. In addition, this young 

cuckoo mimics the call of host chicks thus enhancing more access to the food provided by the 

host bird [186]. 

However, if this host bird is able to identify the cuckoo’s egg, it can either discard it from the 

nest or quit this nest to build a completely new nest in a different location. 
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4.3.1.2 $%′'( Flights 

 From literature, many researchers have shown that the behavior of many flying animals, birds, 

and insects can be demonstrated by a {<′òØ flight [187],[188],[189],[190]. {<′òØ   flights are 

evident when some birds, insects, and animals follow a long path with sudden turns in 

combination with random-short moves [190].These {<′òØ  flights have been successfully 

applied in optimization [188],[190],[191],[192]. A {<′òØ  flight is a random walk characterized 

with step lengths whose distribution is according to a heavy-tailed probability distribution. 

4.3.2 Cuckoo Search (CS) Algorithm 

CS is a metaheuristic swarm-based global optimization based on cuckoos that was proposed 

by Yang and Deb in 2009.The CS combines the obligate brood parasitic nature of cuckoos 

with the {<′òØ  flight existing in fruit flies and some birds [193]. There are three basic 

idealized rules for the CS, namely: 

(i) A female cuckoo lays one egg at a time and puts it in a randomly chosen nest. 

(ii) The best nests with high-quality eggs (highest fitness/solutions) will carry over to 

the next generations. 

(iii) The number of available host nests is kept fixed, and the host bird can discover the 

egg laid by the female cuckoo (alien egg) with a probability ô= ∈ [0,1]. Depending 

on the value of ô=, the host bird can either throw away the alien egg or abandon the 

nest. An assumption that only a fraction of ô= nests are replaced by new ones. 

Based on the above rules, an illustration of the CS is shown in Algorithm 1. 

Algorithm 1: Pseudo-code for the standard CS 
1 Begin: 
2  Initialize ô= = 0.25 
3  Define objective functionv k , k = (k5, k7, … , k≤), where É is the number of 

 dimensions 

4 Generate initial population of 3 host bird nests,GQ(U = 1,2, … , 3) 

5 while 4 ≤ 4N=l or any other stopping criteria  
6 Generate a new cuckoo (solution) randomly via  {<′òØ  flight according to Equation (4.1) 

7 Evaluate the fitness of the new cuckoo,ZQ 
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8 Randomly choose a nest from among the host nests 3	(For example ≠) 

9 if ZQ > ZO then 
10     Replace nest j by the new cuckoo U 
11 end 
12 Abandon a fraction of ô= worst nests and generate new ones according to Equation (4.6) 

13 Keep best solutions(or those nests with quality solutions) 

14 Rank these solutions, then keep the current best 
15 end while 
16 Report the final best 
17 end 

 

4.3.2.1 Mathematical modelling of the standard CS 

Considering Algorithm 1, the standard CS has three major steps [194], [195], [196]: 

i) Exploitation (intensification) by the use of  {<′òØ  flight random walk (LFRW) 

ii) Exploration (diversification) using biased selective random walk (BSRW) 

iii) Elitist scheme via greedy selection 

4.3.2.2 Intensification Using $%′'(  Flight Random Walk (LFRW). 

In this phase, new solutions are generated around the current best solution, which in return 

enhances the speed of the local search. This phase is achieved via the LFRW that is generally 

presented in Equation 4.1 where the step size is derived from the {<′òØ  distribution. 

 GQ,º~;á5 = GQ,º~; + Ü ⊕ Le’vy(λ) 4.1 
 

Where GQ,º~; is the U\c nest in the 4<3\c generation and GQ,º~;á5 is a new nest generated by the 

{<′òØ flight.	⊕ implies entry-wise multiplications and Ü is the step size where Ü > 0 and is 

formulated in Equation 4.2.The formula in Equation 4.2 ensures that a new solution will be close 

to the current best-solution. 

 Ü = Üì×(GQ,º~; − G>~`\) 4.2 
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Where G>~`\ is the current solution and Üì is a scaler that is set to 0.01 in the standard CSA [38, 

49].	{<′òØ	(λ) is a random number derived from the {<′òØ  distribution and is formulated in 

Equation 4.3. 

 
Le’vy λ ~

‡×‘

·
5
‚
 

4.3 

Where λ is a constant whose value is 1.5 as suggested by Yang is in the standard CS [39]. ‘ and 

· are random numbers derived from a normal distribution whose mean and standard deviation 

is 1.	‡ is a parameter computed in Equation 4.4. 

 

‡ =
⌈(1 + λ)×sin	(‰×λ2 )

⌈(1 + λ
2 ×λ×2

‚X5
7 )

5
‚

 

4.4 

Where ⌈ is a gamma function. The final form of {<′òØ	(λ)  flight random walk (LFRW) is a 

combination of equations 4.1 to 4.4 as presented in equation 4.5. 

 
GQ,º~;á5 = GQ,º~; + Üì 	

‡×‘

·
5
‚
	(GQ,º~; − G>~`\) 

4.5 

 

4.3.2.2 Diversification by the use of biased-selective random walk (BSRW) 

In this phase, new solutions are randomly generated in locations far from the current best 

solution. An approach that ensures that the CSA is not trapped in the local optimum thus 

enhancing suitable diversity and exploration of the entire search space [196]. This phase of the 

CSA is achieved by utilizing the BSRW which is efficient in exploring the entire search space 

especially when it is large since the step-size in the {<′òØ	flight is much longer in the long run 

[194],[196]. 

To find new solutions that are far from the current best solution, foremost, a trial solution is 

obtained by using a mutation of the current best solution and a differential step size from two 

solutions selected randomly. Then a new solution is derived from a crossover operator between 

the current best solution and the two trial solutions [196].The formulation of the BSRW is given 

in Equation 4.6 [195]. 
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 GQ,º~;á5 =
GQ,º~; + :× k=,O,º~; − k>,O,º~; 	uUWℎ	ô=

GQ,º~;	uUWℎ	Wℎ<	1<M!U3U34	ô=
 

4.6 

Where ! and @ are two random indexes, : is a random number in the range [0, 1] and ô= is the 

probability discovery whose best value is 0.25 [193], [196] . 

4.3.2.3 Elitist scheme via greedy selection 

After each random walk process, the cuckoo search algorithm utilizes the greedy strategy to 

select solutions with better fitness values that will be passed to the next generation. This 

facilitates maintenance of good solutions [196]. 

4.4 Excited -Adaptive Cuckoo Search- Intensification dedicated Grey Wolf Optimization 

(EACSIDGWO) 

In general, effective balancing between diversification (global search) and intensification (local 

search) in a metaheuristic plays a beneficial and crucial role in achieving excellent performance 

of an algorithm [199], [200], [201]. However, it is difficult to achieve this balance with a single 

metaheuristic (for example either using CSA or GWO) [199], [200]. For instance, CSA is 

efficient at exploring the promising area of the whole search space (diversification) but 

ineffective at fine-tuning the end of the search space (exploitation/intensification) [202], [203]. 

On the other hand, GWO is good at intensification (exploitation) but inefficient at diversification 

(exploration) [180], [148]. 

For this reason, to enhance mature convergence while ensuring that the required effective 

balance between diversification and intensification is met, a hybrid algorithm called Excited- 

Adaptive Cuckoo Search-Intensification Dedicated Grey Wolf Optimization (EACSIDGWO) 

utilizing the strengths of each algorithm (i.e. CSA’s diversification and GWO’s intensification 

abilities) is proposed in this thesis. Moreover, the adaptability of the proposed EACSIDGWO 

is guided innovatively by the complete voltage and current responses of a dc excited RC circuit 

(whose analysis results in first order differential equations) that find continual applications in 

electronics, communications and control systems [151]. 
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4.4.1 Adaptive Cuckoo Search (ACS) 

4.4.1.1 Adaptive step size via the complete voltage response of the dc excited RC circuit 

From the details of the standard CS algorithm presented in section 4.3, it is evident that the 

algorithm lacks a criterion to control its step size through the iteration process. Control of the 

step size is key in guiding the CS algorithm to reach either its global maxima or minima [196], 

[204]. 

Inspired by the complete voltage response of a direct current (dc) excited RC circuit which 

increases with time, a novel mechanism to control the step size is proposed. Contrary to prior 

research [196], [204]where the step size decays with generations, in this research the step size 

grows with generations with the aim of strengthening the diversification (exploration) ability of 

the CS, which is a component of the proposed EACSIDGWO algorithm. 

The solution to first order differential equation of the direct current excited RC circuit motivated 

the formulation of a new variant of ACS in this chapter.  

The complete voltage response of the RC circuit to a sudden application of a dc voltage source, 

with the assumption that the capacitor is initially not charged is given in Equation 4.7. 

 
ò W =

0, W < 0
À̀ 1 − <X\  ,							W > 0 

4.7 

Where ö = S ∗ K is the time constant, which expresses the rapidity with which the voltage ò W  

rises to the value of À̀  which is a constant dc voltage source. S and K are the equivalent 

resistance and capacitance in the circuit. 

Considering the situation when W > 0, Equation 4.7 can be rewritten as presented in Equation 

4.9 

 ò W = À̀ 1 − (<X\)  4.8 

 ò W = À̀ (1 − (
1
<\
) ) 4.9 
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As W → ∞, the component 5
~í
→ 0 forcing ò W → ∞ → À̀ . We adopt this concept i.e. the 

exponential growth of ò W  to control the step size of the cuckoo search algorithm by introducing 

the proposed Equation 4.10. 

 :W<)º~;á5 = :W<)_=l×(1 − (
4<3_=l − 4<3

4<3_=l
) ) 4.10 

Where 4<3 is the current generation (iteration), :W<)_=l is the upper bound of the step size 

:W<) and 4<3_=l is the maximum number of generations (iterations). 

To ensure that the  :W<)º~;á5 is proportional to the fitness of a given individual nest within the 

search space in the current generation, the non-linear modulation index ö is formulated in 

Equation 4.11. 

 

öQ	,º~; =

Ü;~`\�º~;
+ β;~`\�º~; + δ;~`\�º~;

3 − i;~`\�º~;
Ü;~`\�º~;

+ β;~`\�º~; + δ;~`\�º~;
3 − worst;~`\�º~;

 

4.11 

Where öQ	,º~; is the the non-linear modulation index for U\c nest in generation 4<3, Ü;~`\�º~;
is 

the fitness value of the alpha(Ü) nest (overall best nest) in generation 4<3,	β;~`\�º~; is the 

fitness value of the beta (β) nest (2nd best nest) in generation 4<3, δ;~`\�º~; is the fitness value 

of the delta (δ) nest (3rd best nest) in generation 4<3, i;~`\�º~; is the fitness value of the U\c nest 

in generation 4<3  and worst;~`\�º~; is the fitness value of the worst nest among the remaining 

omega(≥) nests (i.e. nests whose fitness values do not feature among the top three fitness 

values). 

Thus, Equation 4.10 is further modified as Equation 4.12. 

 :W<)Q	,º~;á5 = :W<)_=l×(1 − (
4<3_=l − 4<3

4<3_=l
) ]	,ÁëË) 4.12 

Where :W<)Q	,º~;á5 is the step size for the for U\c nest in generation		4<3 + 1.   

From Equation 4.12, the step size :W<)Q	,º~;á5 is non-linearly increasing from relatively small 

values to values close to :W<)_=l . The reason for proposing a non-linearly increasing strategy 
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are as follows. Foremost, at the early stages of the proposed EACSIDGWO algorithm, whereby 

ACS is a component, the population has a higher diversity. A higher diversity imply a stronger 

ability to explore the global space. Our aim at this point is to accelerate convergence. Therefore, 

the value of the step size :W<)Q	,º~;á5  is set to a smaller value.  

It is important to point out that the anticipated accelerated convergence is a joint effort attained 

by foremost setting the :W<)Q	,º~;á5 of the ACS to a small value at early stages, and utilizing the 

IDGWO (a variant of the EGWO algorithm whose details are presented in section 3.3) whose 

core task is exploitation.  

On the other hand, since the proposed EACSIDGWO algorithm is a hybrid algorithm where the 

ACS cooperatively works with the IDGWO, all the nests will be attracted to the global optima 

i.e. the alpha (Ü)	nest at the later stage. This will compel them to converge prematurely without 

being given enough room to explore the search space. Such a situation will lead the nests away 

from a local optimum, and encourage diversification. For this reason, the value of the step size 

:W<)Q	,º~;á5 is set to a larger value i.e. :W<)_=l. In this thesis the :W<)_=l is set to 1. 

In other words, the main reason for proposing a non-linearly increasing step size :W<)Q	,º~;á5 is 

that its small values at the initial stages of the proposed EACSIDGWO algorithm facilitates 

“local exploitation” while its larger values in the later stages will facilitate “global exploration”. 

The ACS can then be modeled as presented in Equation 4.13. 

 GQ,º~;á5 = GQ,º~; + 1!3É3×	:W<)Q,º~;á5 4.13 

Equation 4.13 is a formulation of the new search space for the ACS from the current solution. 

Moreover, if this step size is considered proportional to the global best solution, then Equation 

4.13 can be formulated as given in Equation 4.14. 

 GQ,º~;á5 = GQ,º~; + 1!3É3×	:W<)Q,º~;á5*(GQ,º~; − Gº>~`\,º~;) 4.14 

Where Gº>~`\,º~; is the global best solution among all GQ for U = 1,2, … , 3 at generation 4<3 

,and 3 is the number of host bird nests. 

Thus, from Equations 4.10 – 4.14 it is evident that the diversification ability of the ACS is 

heightened as the number of generations (4<3) approach the maximum number of generations 
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(4<3_=l). This is because the value of the step size rapidly increases towards the set maximum 

value of step (:W<)_=l). 

4.4.2 Intensification dedicated grey wolf optimizer (IDGWO) 

4.4.2.1 Nonlinearly controlling parameter # via the complete current response of the dc 

excited RC circuit 

It is evident from sub-section 2.4.4 that parameter  ! plays a critical role in balancing the 

diversification (exploration) and the intensification (exploitation) of a search agent. 

A large value of control parameter ! facilitates diversification while a smaller value of this 

parameter facilitates intensification. Thus, a suitable selection of the control parameter !  can 

enhance a good balance between global diversification (exploration) and local intensification 

(exploitation). 

In the original GWO (described in section 2.4.4), the value of ! linearly decreases from 2 to 0.( 

refer to Equation 2.39). However, the search process of the GWO algorithm is both non-linear 

and complicated, which cannot be truly reflected by the linear control strategy of ! presented in 

Equation 2.39. 

In addition, Mittal [150] proposed that an attractive performance can be attained if parameter ! 

is non-linearly decreased rather than decreased linearly. 

Inspired by the complete current response of a direct current (dc) excited RC circuit which 

decreases with time, a novel nonlinear adjustment mechanism of control parameter !  is 

formulated in this chapter. 

The complete current response of the RC circuit to a sudden application of a dc voltage source, 

with the assumption that the capacitor is initially not charged is given in Equation 4.15. 

 U W =
À̀
S
((
1
<\
) ) 4.15 

As W → ∞, the component 5
~í
→ 0 forcing U W → ∞ → 0. Using this concept i.e. the exponential 

decay of U W  to formulate a novel improved strategy i.e. Equation 4.16 to generate the values 

for control parameter	!. 
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 !Q,º~;=!P×(
º~;Èq¨Xº~;

º~;Èq¨
) ],ÁëË 4.16 

Where 4<3 is the current generation (iteration),  !P is the initial higher value of parameter	! 

and 4<3_=l is the maximum number of generations (iterations).	öQ,º~; is the non-linear 

modulation index described earlier by Equation 4.11. 

Consequently, vector a is computed as given in Equation 4.17. 

 a=2!Q,º~;. 15 − !Q,º~; 4.17 

 

Equation 4.16 is a non-linear decreasing control parameter for 		!Q,º~; whose initial upper limit 

is equal to the value !P while its final lower limit is zero. 

 From the original literature of GWO, the value a < 1 compels the grey wolves to move 

towards the prey (exploitation) while a > 1 compels them to move away from the prey in 

search of a fitter prey (exploration).Thus, setting !P to 1 will always force the wolves to move 

to the prey which will enable us dedicate modified GWO algorithm, a component of proposed 

EACSIDGWO, for intensification. 

4.4.2.2 Enhanced mature convergence via a fitness value based position-updating 

criterion 

Both diversification and intensification are crucial for population-based optimization algorithms 

[150]. However, from the detailed account of the conventional GWO ( refer to section 2.4.4), it 

is evident that all the other wolves are attracted towards the three leaders Ü, β and δ , a scenario 

that will force the algorithm to converge prematurely without attaining sufficient diversification 

of the search space. In other words, the conventional GWO is prone to pre-mature convergence. 

 In reference to the position-updated criterion of GWO described by Equation 4.11, a new 

candidate individual is obtained by moving the old individual towards the best leader (	Ü	ut|v), 

the second best leader (	β	ut|v) and the third best leader (	δ	ut|v). This approach will force all 

the other grey wolves to crowd in a reduced section of the search space that might be different 

from the optimal region, and without giving them a leeway to escape from such a region. In an 
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effort to overcome this major drawback, in this chapter a scheme that promotes mature 

convergence is devised. 

Instead of averaging values of vectors	G5, G7 and GH (a form of recombining them) as a 

mechanism of updating the wolves’ positions (refer to Equation 2.40), this chapter makes full 

use of information of their fitness values as a criteria of arriving at new positions for the wolves. 

Foremost the search agents of the populations  G5, G7 and GH  are computed as given in 

Equations 4.18 - 4.20. 

 			G5(U, ≠) = GÍ(≠) − a5. xÍ 4.18 

 G7(U, ≠) = GÎ(≠) − a7. xÎ 4.19 

 GH(U, ≠) = GÏ(≠) − aH. xÏ 4.20 

Where U = 1,2, … , 3 and ≠ = 1,2, … , É. 3 is the population size while É is the dimension of the 

search space. 

Next, the fitness value for each search agent  in each of the derived populations i.e.  G5,	G7 and 

GH is evaluated. Further a new population with the fittest values is derived from these three 

populations i.e. G5,	G7 and GH. 

Equations 4.21-4.22 represents the process undertaken to derive this new population.  

 
[ZUWN=l, R3É<k] = max	( GOvQ,º~;

H

Oj5

) 
4.21 

 
GQ,º~;á5 = GO	],ÁëË

H

Oj5 ’;≤~l

 
4.22 

Where GO	],ÁëË is vector ≠ computed using search agent U during iteration	4<3, GOvQ,º~; is the 

fitness value of vector  GO	],ÁëË.   

4.4.3 Proposed EACSIDGWO (Continuous version) 

The Excited-ACSIDGWO cooperatively combines the adaptive cuckoo search (ACS) and the 

intensification-dedicated grey wolf optimization (IDGWO). In the EACSIDGWO algorithm, 
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the ACS is actively involved in intensification (exploitation) during the early stage when the 

population has higher diversity and diversification at later stages. On the other hand, the 

IDGWO is only actively involved in intensification in all the stages of the proposed algorithm. 

By doing so, an effective balance between diversification and intensification is achieved. In 

addition, mature convergence is enhanced which in the end leads to high quality solutions. 

4.4.4 Proposed EACSIDGWO (Binary version) 

Selection of features is binary by nature [61]. Therefore, the proposed EACSIDGWO algorithm 

cannot be utilized in selection of features without further modifications. 

In the proposed EACSIDGWO algorithm, the new positions of the search agents will have 

continuous solutions, which must be converted into corresponding binary values. 

In this chapter, this conversion is achieved by foremost applying squashing of the continuous 

solutions in each dimension using a sigmoid (S-shaped) transfer function [205].This compels 

the search agents to move into a binary search space as depicted by Equation 4.23. 

 o =
1

1 +	<X5ì(ÌÓ],ÁëËXì.Ô)
 

4.23 

Where G≤
Q,º~; is a continuous-valued position of the U\c search agent in the É\c dimension 

during generation 4<3. 

The output o  of the sigmoid transfer function is still a continuous value and thus it has to be the 

threshold to reach the binary-value one. Normally, the sigmoid function maps smoothly the 

infinite input to a finite output [205].To arrive at the binary solution when a sigmoid function is 

used, the commonly stochastic threshold is applied as presented in Equation 4.24. 

 Ø≤
Q,º~; =

0			Uv	1!3É < 	o
1			Uv	1!3É ≥ 	o 4.24 

 
çQ,º~; = Ø≤

Q,º~;

;

Qj5

 
4.25 

Where Ø≤
Q,º~; is the binary updated position at generation 4<3 in the É\c dimension and 1!3É 

is a random number drawn from a uniform distribution ∈ [0,1]. çQ,º~; is the equivalent binary 

vector of the U\c search agent at generation 4<3. 
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Using this approach, the original solutions remain in the continuous domain of the proposed 

EACSIDGWO algorithm and can be converted to binary when need arises. 

The pseudocode of the binary version of the proposed EACSIDGWO algorithm is presented in 

Algorithm 3. 

Algorithm 3: Pseudo-code for the EACSIDGWO ( Binary Version) 

Input: labelled biomedical dataset D, MaxIter, ACS and IDGWO parameters value, number of host 

bird nests (3), number of dimensions (features) É, Lower bound ({>) and Upper bound (ä>)  

Output: Best Fitness , Best Search Agent 

1 for each nest i (i =1, 2...n) do 

2   for each dimension j(j=1,2,…,d) do 

3    GO
Q,ì=random number drawn from [{>, ä>] 

4   end 

5 Convert continuous values of GQ,ì to binary using Eq. 4.23, 4.24 and 4.25 

6 Train a classifier to evaluate the accuracy of the equivalent binary vector of  GQ,ì and store the 

value in GvQ,ì 

7 end 

8 [~, Index]=Sort (	Gv	ì, ′É<:w<3É′) 

9 Ü;~`\�ì
=	Gv	ì(R3É<k(1)) 

10 β;~`\�ì=	Gv	ì(R3É<k(2)) 

11 δ;~`\�ì=	Gv	ì(R3É<k(3)) 

12 worst;~`\�ì=	Gv	ì(R3É<k(3)) 

13 Ü;~`\ì=	G	ì(R3É<k(1)) 
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14 β;~`\ì=	G	ì(R3É<k(2)) 

15 δ;~`\ì=	G	ì(R3É<k(3)) 

16 While (4<3 ≤ y!kRW<1) 

17     for each nest i (i =1, 2...n) do 

18       Calculate öQ	,º~; and :W<)Q	,º~;á5 using 

      Eq. 4.11 and 4.12 respectively 

19      Generate a new cuckoo nest GQ,º~;á5  

     using Eq. 4.14 

20 Convert continuous values of GQ,º~;á5 to binary using Eq. 4.23, 4.24 and 4.25 

21 Train a classifier to evaluate the accuracy of the equivalent binary vector of  GQ,º~;á5 and store 

the value in GvQ,º~;á5 

22 if( GvQ,º~;á5 > 	GvQ,ì) then 

23 				GvQ,ì= GvQ,º~;á5 

24 			GQ,ì=GQ,º~;á5 

25 end 

26   end 

27 Repeat step 8 to 15 

28 for each nest i (i =1, 2...n) do 

29 Calculate öQ	,º~; and !Q	,º~; using  Eq. 4.11 and 4.16 respectively 

30   for each dimension j(j=1,2,…,d) do 

31 Calculate coefficients a and K as shown in Eq. 4.16 and Eq. 4.10 respectively 
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32 Compute vectorsG5],ÁëË(≠),	G7],ÁëË(≠) and 	GH],ÁëË(≠) using Eq. 4.18, 4.19 and 4.20 respectively. 

33 end 

34 Convert continuous values of G5],ÁëË, G7],ÁëË	and	GH],ÁëË to binary using Eq. 4.23, 4.24 and 4.25 

35 Consecutively, train a classifier to evaluate the accuracies of the equivalent binary vectors of 

G5],ÁëË, G7],ÁëË	and	GH],ÁëË and store the value in G5vQ,º~;, G7vQ,º~;	!3É	GHvQ,º~; respectively. 

36 Determine GQ,º~;á5 using equations 4.21 and 4.22 respectively 

37 end 

38 Repeat step 8 to 15 

39 Abandon a fraction of ô= worst nests and generate new ones according to Equation (4.6) 

40 Keep best solutions(or those nests with quality solutions) 

41 Repeat step 8 to 15 

 end 

42 Best Search Agent=Ü;~`\ì 

43 Best Fitness=Ü;~`\�ì
 

4.5 Experimental Methodology 

In this section, detailed accounts of the biomedical datasets, evaluation metrics, proposed fitness 

function and the parameter setting for the considered metaheuristic algorithms are outlined. 

4.5.1 Considered Biomedical Datasets 

To validate the performance of the considered metaheuristic algorithms, six benchmark 

biomedical datasets extracted from the UCI Irvine Machine [206] were utilized. Each dataset 

has two classes and the performance of each of these algorithms is evaluated based on its ability 

to classify these classes correctly. Details of these datasets are given in Table 4.1. 

Table 4.1: Considered Biomedical Datasets 
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Dataset Number of Features Number of Cases 
Breast Cancer Wisconsin 

(Prognosis) 
33 198 

Breast Cancer Wisconsin 
(Diagnostic) 

30 569 

SPECTF Heart 44 267 
Ovarian Cancer 4000 216 

CNS 7129 60 
Colon 2000 62 

 

4.5.2 Evaluation Metrics 

For the considered feature selection problem, the following evaluation metrics were utilized to 

compare the performance of each considered feature selection technique. 

Average Accuracy (Avg_Acc ) : It is one of the commonly used classification metric that 

represents the number of correctly classified instances by using a particular feature set. The 

mathematical formulation of this metric is given in Equation 4.26. 

 
aò4_aww	 =

1
J

1
b

I

Qj5

awwO

d

Oj5

 
(4.26) 

Where J is the number of times (runs) a given metaheuristic algorithm is run, b represents the 
number folds utilized and awwO is the accuracy reported during fold ≠. awwO is defined in 
Equation 4.27. 
 
 awwO =

ÖôO + ÖJO
ÖôO + ÖJO + ZôO + ZJO

 

 

4.27 

Where TP and FN denote the number of positive samples in fold ≠ , that are accurately and 

falsely predicted, respectively, and TN and FP represent the number of negative samples in the 

same fold that are predicted accurately and wrongly, respectively [207]. 

Average Feature Length (Avg_NFeat)-This metric characterizes the average length of selected 
features to the total number of features in the dataset. Equation 4.28 gives its mathematical 
formulation. 
 

aò4_JZ<!W	 =
1
J

o<|_Z<!WQ

I

Qj5

 

 

4.28 

Where o<|_Z<!WQ is the number of selected features in the testing dataset during run U. 
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Minimum Accuracy (Min_Acc) - Is the least value of accuracy reported during N runs. Equation 

4.29 depicts its formulation. 

 
yU3_aww = min	( aò4_w1t::awwO

I

Oj5

) 

 

4.29 

Where aò4_w1t::awwQ is given by Equation 4.30 
 

aò4_w1t::awwQ =
1
b

awwO

d

Oj5

 

 

4.30 

Maximum Accuracy (Max_Acc) - Is the largest value of accuracy reported during N runs. Its 

mathematical formulation is given by Equation 4.31. 

 
y!k_aww = max	( aò4_w1t::awwO

I

Oj5

) 
4.31 

Maximum Features Selected (Max_NFeat) - Is the largest number of selected features during N 

runs. Equation 4.32 gives its mathematical formulation. 

 
y!k_JZ<!W = max	( o<|_Z<!WQ

I

Qj5

) 
4.32 

Minimum Features Selected (Min_NFeat) - Is the least number of selected features during N 

runs. Equation 4.33 gives its mathematical formulation. 

 
yU3_JZ<!W = min	( o<|_Z<!WQ

I

Qj5

) 
4.33 

4.5.3 Evaluation of the classifier 

Since the Support Vector machine classifier has already made immense contributions in the 

field of microarray-based cancer classification [207], it was adopted in this paper to evaluate the 

classification accuracy using the selected subset of features returned by the various considered 

metaheuristic feature selection approaches. The Matlab fitcsvm function that trains and cross-

validates an SVM model was adopted in this thesis. The specified kernel scale parameter is set 

to “auto” to allow the function select the appropriate scale factor using a heuristic search. 
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With the SVM classifier, the data items are mapped points in an 3 −dimensional feature space 

( i.e. 3=number of features) and the each feature’s value is a value of a given coordinate. The 

final output of this classifier is an optimal hyperplane which can be used to classify new cases 

[153], [207]. 

However, the performance of the SVM classifier is highly dependent on the selection of its 

kernel function [153], [207].A reason why  experiments were conducted using various kernels 

in this thesis. 

Selecting a suitable kernel is both dataset and problem specific and selected experimentally 

[153], [207]. Based on the conducted experiments, suitable kernel functions were selected for 

the considered datasets. The considered datasets and their suitable kernel functions are presented 

in Table 4.2. More information of selecting suitable SVM kernel functions is presented in [207]. 
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Table 4.2: Selection of suitable kernel functions 

Dataset Kernel function 

Breast Cancer Wisconsin  (Prognosis) Radial Basis Function (RBF) 

Breast Cancer Wisconsin (Diagnostic) Radial Basis Function (RBF) 

SPECTF Heart Radial Basis Function (RBF) 

Ovarian Cancer Linear Function 

CNS Linear Function 

Colon Linear Function 

4.5.4 Fitness function 

The main aim of a feature selection exercise is to discover a subset of features from the whole 

set of existing features in a given dataset such that, the considered optimization algorithm is able 

to achieve the highest possible accuracy using that subset. For instance, in datasets with many 

features (attributes), the objective is to minimize the number of selected features while 

improving the classification accuracy of the feature selection approach. 

In classifications tasks, there exists higher chances that two feature subsets containing different 

number of features will have the same accuracy [153].However, if a subset with a large number 

of features is discovered earlier by a given optimization algorithm, it is likely that the one with 

least features will be ignored [153]. 

In trying to overcome this challenge, a fitness function proposed in [153] to evaluate the 

classification performance of optimization algorithms for feature selection tasks is adopted. This 

fitness function is given in Equation 4.34. 

 
ZUW = Ü ∗

S
J

− à ∗ aò4_w1t::awwQ 
4.34 

Where J  represents the total number of features within a given dataset, S  represents the 

number of selected features during run U and aò4_w1t::awwQ is the average crossvalidation 

accuracy reported during run U	(refer to Equation 4.30). à and Ü are two weights corresponding 

to the significance of the classification quality and the subset length respectively. In this paper, 

à is set to 0.8 and Ü = 0.2  as adopted from [153]. 
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It is important to point out that both terms are normalized by dividing by their largest possible 

values i.e. the number of selected features S  is divided by the total number of features J , 

and average accuracy aò4_w1t::awwQ is divided by the value 1. 

4.5.5 Parameter setting for the considered feature selection techniques 

The performance of the proposed EACSIDGWO algorithm was compared to those of Extended 

Binary Cuckoo Search (EBCS), Binary Anti-Colony Optimization (BACO), Binary Genetic 

Algorithm (BGA) and Binary Particle Swarm Optimization (BPSO) that were reported earlier 

in [153]. 

Table 4.3 indicates the selected parameter values for both the proposed BEACSIDGWO 

algorithm and each of other algorithms as reported in [153]. In this chapter, all the experiments 

were conducted using Matlab 2017 running on Windows 10 operating system on a HP desktop 

with Intel(R) Core (TM) i7-3770CPU @ 3.4GHZ with 12.0GB of RAM. 

Table 4.3: Selection of parameter values for the considered approaches 

Algorithm Parameter values 

EACSIDGWO 

  (New) 

:W<)_=l = 1,	!P = 1, ô==0.25 

EBCS [153] JNó\ = 10, = 1, Ü = 1, ô==0.4 

BACO [153] ΓQ;Q\Q=ñ = 0.1, Ü = 1, ) = 0.1 

BGA [153] y9 = 0.1, K9 = 0.1 

BPSO [153] K5 = 1, K7 = 2, ≥Q;Q\Q=ñ = 0.9,  	

≥ï=9´X�P9 = 0.9 

 

:W<)_=l is the maximum value set for the random step size in this research. The random step 

size determines how far a random waker can go for a given number of iterations.Thus; this 

parameter controls the balancing between exploitation and exploration. For the Cuckoo Search 

algorithm, the number of host nests available is fixed. Thus, the host bird can discover the alien 

egg with a probability ô= whose value is set to 0.25 in this research. JNó\ is the number of 
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mutations .  is the mean or expectation of an occurrence of a given event during a unit interval. 

Ü is the step size which is normally related to the scales of the problem at hand. For the problem 

at hand, the probability of ants choosing a given path is proportional to the pheromone 

concentration on that path i.e Ü = 1.   For the BACO algorithm, ) is the rate of pheromone 

evaporation and ΓQ;Q\Q=ñ is the initial cost of the ant tour length. For the BGA and BPSO 

parameters, refer to an explanation given for Table 3.2. 

To be consistent with the setup proposed in [18], the population size for the proposed 

EACSIDGWO was set to 30. Then the algorithm was run 10 times to perform the feature 

selection task for each considered dataset. In addition, each run terminated when 10000 fitness 

function evaluations were attained. This approach, allowed the proposed algorithm to utilize the 

fitness function at an equal number of times.  

4.6 Results  

To examine the diversification and intensification of the proposed EACSIDGWOA, detailed 

comparative study is presented in this section. The efficiency and the optimization performance 

of the proposed algorithm has been verified by comparing and analyzing its results with those 

of four other state-of-the-art optimization algorithms. The experimental classification results 

have been probed through statistical tests, comparative analysis and ranking methods. 

Tables 4.4-4.9 provides the performance of all the considered optimizations approaches for 

feature selection using the datasets described in subsection 4.5.1. It is important to point out that 

the best result achieved in each column for all the considered biomedical datasets is highlighted 

in bold while the worst is italicized. 

To prove that the proposed EACSIDGWO is superior over the other four-optimization 

algorithms, Wilcoxon rank-sum test i.e. a non-parametric statistical test is also performed. The 

statistical results for the ), ℎ and Ú values obtained from the pairwise comparisons of the four 

groups are tabulated in Table 4.10. Tables 4.11-4.12 present a comparison of the overall ranking 

of the results obtained from the considered algorithms. 

Table 4.4: Experimental results for the ovarian cancer dataset 

Algorithm Accuracy Number Of Features 
y!k_aww yU3_aww aò4_aww y!k_JZ<!W yU3_JZ<!W aò4_JZ<!W 
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Values in bold represent the best result and values in italic denote the worst in each column, 
respectively. 
 

	  

EACSIDGWO 
(New) 

1.000 1.000 
 

1.000 
 

292 
 

264 274.8 
 

EBCS [153] 0.991 0.991 0.991 1855 1747 1811.6 

BACO [153] 0.991 0.986 0.990 1971 1912 1945.7 

BGA [153] 0.991 0.991 0.991 1830 1755 1887.3 

BPSO [153] 0.991 0.986 0.990 1913 1777 1857 
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Table 4.5: Experimental results for the breast cancer Wisconsin (Diagnostic) dataset 

Values in bold represent the best result and values in italic denote the worst in each column, 
respectively. 

 
Table 4. 6: Experimental results for the breast cancer Wisconsin (Prognosis) dataset 

Algorithm Accuracy Number Of Features 
y!k_aww yU3_aww aò4_aww y!k_JZ<!W yU3_JZ<!W aò4_JZ<!W 

EACSIDGWO 
(New) 

0.879 0.864 0.873 7 3 5.6 

EBCS [153] 0.874 0.828 0.856 8 4 6.2 

BACO [153] 0.818 0.768 0.794 12 5 8.4 

BGA [153] 0.874 0.793 0.843 10 4 6.5 

BPSO [153] 0.848 0.798 0.821 11 4 8.3 

Values in bold represent the best result and values in italic denote the worst in each column, 
respectively. 

Table 4. 7: Experimental results for the SPECTF Heart dataset 

Algorithm Accuracy Number Of Features 
y!k_aww yU3_aww aò4_aww y!k_JZ<!W yU3_JZ<!W aò4_JZ<!W 

EACSIDGWO 
(New) 

0.884 0.861 0.875 6 3 4.5 

EBCS [153] 0.873 0.846 0.861 8 5 6.2 

BACO [153] 0.846 0.813 0.831 15 10 12.1 

BGA [153] 0.884 0.846 0.866 11 4 8.4 

BPSO [153] 0.865 0.846 0.854 15 9 10.9 

Values in bold represent the best result and values in italic denote the worst in each column, 
respectively. 

 

 

Algorithm Accuracy Number Of Features 
y!k_aww yU3_aww aò4_aww y!k_JZ<!W yU3_JZ<!W aò4_JZ<!W 

EACSIDGWO 
(New) 

0.977 0.974 0.975 3 3 3 

EBCS [153] 0.981 0.974 0.973 4 3 3.1 

BACO  [153] 0.972 0.960 0.969 8 6 7 

BGA [153] 0.975 0.965 0.972 6 3 3.6 

BPSO [153] 0.981 0.963 0.974 8 3 5.4 
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Table 4.8: Experimental results for the CNS dataset 

Algorithm Accuracy Number Of Features 
y!k_aww yU3_aww aò4_aww y!k_JZ<!W yU3_JZ<!W aò4_JZ<!W 

EACSIDGWO 
(New) 

0.767 0.700 0.718 1623 807 1208.1 

EBCS [153] 0.667 0.667 0.667 3490 3391 3446.7 

BACO [153] 0.667 0.650 0.660 3589 3432 3522.9 

BGA [153] 0.683 0.667 0.668 3566 3438 3489.7 

BPSO [153] 0.667 0.667 0.667 3547 3359 3474.3 

Values in bold represent the best result and values in italic denote the worst in each column, 
respectively. 
 

Table 4.9: Experimental results for the colon dataset 

Algorithm Accuracy Number Of Features 
y!k_aww yU3_aww aò4_aww y!k_JZ<!W yU3_JZ<!W aò4_JZ<!W 

EACSIDGWO 
(New) 

0.919 0.887 0.905 637 397 538.5 

EBCS [153] 0.903 0.871 0.887 1016 961 988.7 

BACO [153] 0.903 0.871 0.881 1002 932 976 

BGA [153] 0.887 0.871 0.882 1003 944 962.8 

BPSO [153] 0.887 0.855 0.879 1003 933 971.2 

Values in bold represent the best result and values in italic denote the worst in each column, 
respectively. 
 

4.7 Discussion 

4.7.1 Investigation of the obtained classification results 

From Tables 4.4-4.9, the following observations can be made. 

i) The proposed EACSIDGWO algorithm outperformed all the other considered 

algorithms in terms of classification accuracy for all the utilized datasets. It recorded the 

highest classification accuracy on the three highly dimensioned datasets (i.e. Ovarian, 

CNS and Colon) as well as the remaining three small sample sized datasets. This 

promising performance is largely attributed to the cooperative exploitation conducted by 

ACS and IDGWO components of the proposed algorithm during the early generations, 
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as well as the single-handedly exploitation and exploration by IDGWO and ACS 

respectively at later generations. 

ii) For four datasets i.e. Ovarian, Heart, CNS and Colon, the proposed algorithm attained a 

value for aò4_aww that is larger than the value for y!k_aww attained by the EBCS. 

EBCS is a variant of Cuckoo Search, which is a component of the proposed 

EACSIDGWO algorithm. This superior performance proves the competency of the 

proposed approach to efficiently determine the optima within the search space. 

iii) With regard to the average feature length ( aò4_JZ<!W	), the proposed B-

EACSIDGWO algorithm demonstrated a superior performance by selecting the least 

number of features compared to the other algorithms. According to the results reported 

in Tables 4.4-4.9, the proposed algorithm performed better on all the considered datasets.  

iv) In comparison with the original number of features in the considered datasets, there is a 

notable reduction in the number selected features by the proposed approach. For 

instance, the actual number of features in ovarian cancer, CNS and Colon cancer datasets 

is 4000, 7129 and 2000 respectively, whereas the number of selected features by the 

proposed EACSIDGWO is 274.8, 1208.1 and 538.5 respectively. 

This clearly indicates the proposed algorithm is able to reduce the number of features as well as 

locate the most significant optimal feature subsets. The strength of the proposed EACSIDGWO 

lies in its well-formulated algorithm (refer to section 4.5) that enhances both its diversification 

and intensification capabilities which enables it to eliminate redundant (non-informative) 

attributes and then actively search within the high-performance regions of the feature space. 

4.7.2 Statistical analysis 

The superiority of the proposed EACSIDGWO algorithm has been verified via Wilcoxon rank-

sum test i.e. a non-parametric test with a significance level of 5%. The results obtained for the 

pairwise comparison of the four groups are presented in Table 4.10. Observations from Table 

4.10 reveal the statistical significance of the obtained experimental results for all the considered 

datasets. This clearly indicates that the proposed approach has an attractive performance in 

relation to the other four approaches. Thus, the overall statistical results by the new algorithm 

are highly significant when compared to the results of the four algorithms for all the considered 

datasets. 
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4.7.3 Ranking methods 

Tables 4.10 - 4.12 outlines a detailed ranking of all the considered algorithms with their 

respective comparative analysis. The ranking is based on maximum accuracy (y!k_aww), 

minimum accuracy (yU3_aww), average accuracy (aò4_aww), maximum number of selected 

features (y!k_JZ<!W), minimum number of selected features (yU3_JZ<!W), and average 

number of selected features (aò4_JZ<!W). From the ranking, it is evident that the proposed 

EACSIDGWO algorithm obtained the best values in all these measures for all the datasets. 

Considering the final ranks, the proposed algorithm attained an attractive performance whose 

overall rank value is 37.This clearly reveals the superiority of EACSIDGWO algorithm in 

relation to the four state-of-the-art algorithms. 

Table 4.10: Using Wilcoxon’s rank sum test at Û = Ù. Ùı to compare EACSIDGWO with 
other algorithms 

Dataset Wilcoxon’s rank 
sum test 

EBCS Vs 
EACSIDGWO 

(New) 

BACO Vs 
EACSIDGWO 

(New) 

BGA Vs 
EACSIDGWO 

(New) 

BPSO Vs 
EACSIDGWO 

(New) 
Ovarian Cancer p value 0.000181651 0.000181651 0.000182672 0.000181651 

h value 1.000000000 1.000000000 1.000000000 1.000000000 
z value 3.743255786 3.743255786 3.741848283 3.743255786 

Breast Cancer 
Wisconsin 

(Diagnostic) 

p value 0.022591996 0.000146767 0.017044126 0.000582314 
h value 1.000000000 1.000000000 1.000000000 1.000000000 
z value 2.28026466 3.796476695 2.38575448 3.439721266 

Breast Cancer 
Wisconsin 
(Prognosis) 

p value 0.000730466 0.0001707 0.00073729 0.000174624 
h value 1.000000000 1.0000000 1.00000000 1.000000000 
z value 3.377881495 3.758843896 3.375323463 3.753152986 

SPECTF Heart p value 0.000321376 0.000176611 0.000176611 0.000177611 
h value 1.000000000 1.000000000 1.000000000 1.000000000 
z value 3.597430949 3.750317207 3.750317207 3.748901726 

CNS p value 0.000182672 0.000182672 0.000182672 0.000182672 
h value 1.000000000 1.000000000 1.000000000 1.000000000 
z value 3.741848283 3.741848283 3.741848283 3.741848283 

COLON p value 0.000182672 0.000182672 0.000182672 0.000181651 
h value 1.000000000 1.000000000 1.000000000 1.000000000 
z value 3.741848283 3.741848283 3.741848283 3.743255786 
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Table 4. 11: Overall ranking of considered algorithms 

Algorithm Measures Datasets 
Ovaria

n 
Cancer 

Breast 
Cancer 

Wisconsin 
(Diagnostic

) 

Breast 
Cancer 

Wisconsin 
(Prognosis) 

SPECTF 
Heart 

CN
S 

Colon Sum 
of 

ranks 

Overall 
rank 

Total 
sum 

Final 
ranks 

EACSIDGWO 
(New) 

y!k_aww 1 2 1 1 1 1 7 1 37 1 
yU3_aww 1 1 1 1 1 1 6 1 
aò4_aww 1 1 1 1 1 1 6 1 
y!k_JZ<!W 1 1 1 1 1 1 6 1 
yU3_JZ<!W 1 1 1 1 1 1 6 1 
aò4_JZ<!W 1 1 1 1 1 1 6 1 

EBCS y!k_aww 2 1 2 3 3 2 13 2 84 2 
yU3_aww 2 1 2 2 2 2 11 2 
aò4_aww 2 2 2 3 3 2 14 2 
y!k_JZ<!W 3 2 2 2 2 4 15 2 
yU3_JZ<!W 2 1 2 3 3 5 16 2 
aò4_JZ<!W 2 2 2 2 2 5 15 2 

BACO y!k_aww 2 4 4 4 2 2 18 4 138 5 
yU3_aww 3 4 5 3 3 2 20 4 
aò4_aww 3 5 5 5 4 4 26 5 
y!k_JZ<!W 5 4 5 4 5 2 25 5 
yU3_JZ<!W 5 2 3 5 3 2 20 3 
aò4_JZ<!W 5 5 5 5 5 4 29 5 

 
 
Table 4.12: Overall ranking of considered algorithms  

Algorithm Measures Datasets 
Ovarian 
Cancer 

Breast 
Cancer 

Wisconsin 
(Diagnostic) 

Breast 
Cancer 

Wisconsin 
(Prognosis) 

SPECTF 
Heart 

CNS Colon Sum 
of 

ranks 

Overall 
rank 

Total 
sum 

Final 
ranks 

BGA y!k_aww 2 3 2 1 2 3 13 2 95 3 
yU3_aww 2 2 5 2 2 2 15 3 
aò4_aww 2 4 3 2 2 3 16 3 

y!k_JZ<!W 2 3 3 3 4 3 18 3 
yU3_JZ<!W 3 1 2 2 4 4 16 2 
aò4_JZ<!W 3 3 3 3 3 2 17 3 

BPSO y!k_aww 2 1 3 3 3 3 15 3 110 4 
yU3_aww 3 3 2 2 2 3 15 3 
aò4_aww 3 2 4 4 3 5 21 4 

y!k_JZ<!W 4 4 4 4 3 3 22 4 
yU3_JZ<!W 4 1 2 4 2 3 16 2 
aò4_JZ<!W 3 4 4 4 3 3 21 4 

 

4.8 Conclusion 

This chapter proposed a new hybrid Excited (E) - Adaptive Cuckoo Search (ACS)-

Intensification Dedicated Grey Wolf Optimizer (IDGWO) i.e. EACSIDGWO algorithm which 

tries to overcome the challenge of semi-optimal balancing between exploitation and exploration 

depicted by the EBGWO algorithm proposed in chapter three in solving the feature selection 
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problem in biomedical science. In the EACSIDGWO algorithm, the concept of the complete 

voltage and current responses of a direct current (DC) excited resistor capacitor (RC) circuit are 

innovatively utilized to make the step size of ACS and the non-linear control strategy of 

parameter ! of the IDGWO (a variant of the EBGWO algorithm proposed in chapter 3) adaptive. 

Since the population has a higher diversity during early stages of the proposed algorithm, both 

the ACS and IDGWO are jointly utilized to attain accelerated convergence. However, to 

enhance mature convergence while striking an effective balance between exploitation and 

exploration in latter stages, the role of ACS is switched to global exploration while the IDGWO 

is still left conducting the local exploitation. In order to test the efficiency of the proposed 

EACSIDGWO as a feature selector, six standard biomedical datasets from the University of 

California at Irvine (UCI) repository were utilized. The experimental results obtained prove that 

the proposed algorithm is superior to the state-of-the-art feature selection techniques i.e. BACO, 

BGA, BPSO and EBCSA in attaining a good learning from fewer instances, and optimal feature 

selection from information-rich biomedical data, all these while maintaining a high 

classification accuracy of the utilized data. In future, utilizing this hybrid algorithm as a filter-

feature selection approach seeking to evaluate the generality of the selected features will be a 

valuable contribution. 

 Though this chapter proposed a superior informative feature selector, which attains optimal 

balancing between exploitation and exploration in solving the feature selection challenge in 

highly dimensional DNA microarray datasets, still the performance of the classification phase 

need to be improved for the microarray based cancer disease classification pipeline to be 

complete. 

Thus, to enhance both the learning and classification ability of the SVM classifier i.e. a 

commonly adopted classifier in microarray based cancer disease classification; the next chapter 

proposes a novel adaptive hybrid kernel for this classifier. 	  
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CHAPTER FIVE: PARTICLE SWARM OPTIMIZED HYBRID KERNEL BASED 

MULTI-CLASS SUPPORT VECTOR MACHINE FOR MICROARRAY CANCER 

DATA ANALYSIS 

5.1 Introduction 

Cancer is a disorder caused by excessive and uncontrolled cell division in a body. A total of 9.6 

million people died of cancer in 2018 [208]. As a matter of fact, death due to cancer can be 

reduced to nearly half if the cancer types are detected early and the right treatment administered 

in time. However, it is still a challenge for researchers to effectively diagnose cancer on the 

basis of morphological structure since different cancer types exhibit thin differences [209]. 

This challenge encourages application of data mining techniques, especially the use of gene -

expression data in determining the types of cancer cells. The level of gene expression can duly 

indicate the activity of a gene in a body cell based on the number of messenger ribonucleic acids 

(mRNAs). It is well known to contain information about the disease that may be in the gene 

sample, which may help experts in treating or preventing the disease [210]. 

Though next generation sequencing (NGS) especially RNA-sequencing (RNA-Seq) are slowly 

replacing microarrays when analyzing and identifying complex mechanism in gene expression 

e.g. in the gene-expression based cancer classification problem, they are relatively expensive 

compared to microarrays. Since microarrays have been used for a long time, there exists robust 

statistical and operational methods for their processing [57], [211]–[219].In addition, many 

significant microarray experiments have been conducted and are publicly available to the 

research community [60], [220]–[225]. For microarrays, there exists large and well-maintained 

repositories that have collected these type of data for long. While the pre-processing and analysis 

steps of microarray data are mostly standardized, the establishment of RNA-Seq data analysis 

techniques are still ongoing in the field of transcriptomics. Because of these reasons, to date 

microarrays are still utilized in many gene-expressions based cancer classification studies as 

presented in the most recent survey of hybrid feature selection methods in microarray gene 

expression for data for cancer classification [60], [226]–[228]. 

The DNA microarray technology has the capability of determining the expression level of 

thousands of genes concurrently in a given experiment, which so far has facilitated the 

development of cancer classification by the use of gene expression data [57], [211]–[219]. 
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Clinical decision support is the most recent application of DNA microarrays in the medical 

domain. This support can take the form of disease diagnosis or predicting clinical outcomes in 

response to a treatment. Currently, the two major areas in medicine that are drawing much 

attention in this regard are management of cancer and other contagious diseases [229]. 

With the rapid development of artificial intelligence (AI), machine-learning algorithms such as 

artificial neural network (ANN), support vector machine (SVM), K-nearest neighbor (KNN) , 

many researchers have immensely applied them in the gene-expression base cancer diagnosis. 

For instance, the artificial neural networks (ANN) have been proposed for the microarray gene 

classification due to their superior ability to map input-output structured data. Khan and Meltzer 

utilized the ANN in analyzing microarray gene data from patients with small round blue-cell 

tumours [215]. Bevilacqua and Tommasi developed an accurate classifier model based on the 

feed-forward ANN for estrogen receptor (ER) +/- metastasis recurrence of breast cancer tumours 

[230]. Chen and Cheng [231] also modeled a classifier for microarray gene data using ANN 

ensembles that were based on filtering of samples. In all these studies attractive classification 

accuracies were obtained.  

Furey proposed an SVM based on a simple kernel to carry out gene expression data analysis, 

which turned out to perform remarkably [232]. Vanitha utilized SVM alongside mutual 

information gained (MI-SVM) for feature selection [217]. In his research, he used various SVM 

models; linear SVM, radial basis function (RBF) SVM, Quadratic SVM and Polynomial SVM. 

He further compared the results obtained from the proposed scheme with the k-nearest neighbor 

(K-NN) and ANN classifier results. Based on the obtained result, utilization of the MI-SVM 

obtained better results compared to K-NN and ANN, and even in some datasets, 100% accuracy 

was achieved. 

Based on these previous researches, it is evident that SVM has already made an important 

contribution in the field of microarray-based cancer classification. However, many researchers 

have pointed out that though the SVM is a promising classifier in microarray-based cancer 

classification, its performance solely depends on three aspects; the penalty parameter C of this 

classifier, the type of kernel utilized and its parameters [233]–[237]. 

To improve the classification accuracy of the SVM classifier, some techniques have been 

presented to search for the optimal model parameters, such as the grid-search and the gradient 

descent [208]. Although, these approaches have proven their effectiveness in the corresponding 
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experiments, in most cases they fall into the local optimum point easily and have a defect of low 

efficiency [208], [224]. 

Recently, some meta-heuristic techniques, such as particle swarm optimization (PSO), genetic 

algorithm (GA), bat algorithm (BA) and dragonfly algorithm (DA) have attained promising 

results when utilized in tuning SVM classifier’s parameters [41]. However, most of these 

research has not been applied to gene-expression based cancer analysis. In addition, they only 

focus on SVM with a single kernel function. Though some research [233] point out that 

combining multiple kernel functions can achieve better performance compared to a single kernel 

function, little research has provided an in-depth formulation and analysis of the performance 

of a multi-class support vector machine (MCSVM) with a combined kernel function. Thus, there 

would a definite need to systematically study the complex optimization problem in the MCSVM 

classifier with a combined kernel applicable to gene-expression based cancer classification. 

Considering  PSO is easy to implement, has a few parameters to adjust, is computationally 

efficient compared to other optimization techniques [238] ,and existence of few studies on 

MCSVM classifier with combined kernels in microarray-based cancer classification, this 

chapter proposes a novel gene-expression based cancer classification model i.e. PSO-PCA-

LGP-MCSVM. This model is based on particle swarm optimization (PSO), principal component 

analysis (PCA) and multi-class support vector machine (MCSVM) with a novel hybrid kernel 

function i.e. linear-gaussian-polynomial (LGP) kernel. 

The objective of this Chapter is to construct a MCSVM classifier with three different standard 

kernel functions (linear, gaussian and polynomial). Use PCA to reduce the dimensional 

complexity of the considered microarray datasets and optimize all the parameters of this model 

using PSO. 

The overall structure of this chapter takes the form of five sections, inclusive of the introduction. 

The remaining part of this chapter proceeds as follows: A detailed presentation of the proposed 

model is presented in section 5.2. Section 5.3 deals with the considered cancer microarray 

datasets. Section 5.4 focusses on the experimental results and discussions. Finally, conclusions 

and recommendations are given in section 5.5.  
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5.2 PSO-PCA-LGP-MCSVM PRINCIPLES 

5.2.1. Normalization 

Microarray gene expressions can differ by an order of magnitude. Thus, it is necessary to 

normalize these data to improve the performance of subsequent microarray data analysis stages 

like gene selection/feature extraction, clustering, and classification [208]. 

In this chapter, the microarray gene expressions are linearly transformed from the interval 

GNQ;, GN=l → 0,1  uniformly utilizing Equation  5.1 [208]; 

 GÄ =
G − GNQ;

GN=l − GNQ;
 5.1 

Where, GÄ is the new normalized value of the gene expression level,	G is the value of the gene 

expression level before normalization, while GN=l and GNQ; respectively declare the largest and 

least values of all the data in an attribute (gene) to be normalized. 

Since the min-max normalization has the advantage of preserving exactly all the relationships 

among the original gene data values and does not introduce any bias [208], it is considered in 

this chapter. 

5.2.2 Principal component analysis (PCA)  

One of the major challenges encountered in working with DNA microarray data is their high 

dimensionality that is coupled with a relatively small sample size. While there is a plethora of 

crucial information that can be derived from these large datasets, their high dimensional nature 

can often hide the critical information. Thus, a process that can reduce the dimensionality 

complexity of this type of data is required. In addition, a dimensionality reduction step will 

minimize errors obtained in the subsequent classification stage [208], [218], [238]–[240]. 

In this chapter, principal component analysis (PCA) that includes the calculation of variance of 

proportion for eigenvector is used. The steps of this algorithm are as follows: 

a) Let GÄ(the normalized microarray gene expression data) be the input matrix for PCA. 

Each row vectors of  GÄ represent the normalized expression gene values for each of the 

genes. 

b) Compute the mean (centroid)  G of each gene ≠ using Equation 5.2 where the sum goes 

through all y samples (tissues): 
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G =

1
y

GÄ
QO

_

Qj5

 
5.2 

Where y is the number of tissues and GÄ
QOis gene ≠ data. 

c) Compute the covariances (degree to which the genes are linearly correlated) as per 

Equation 5.3: 

 
KdO =

1
y − 1

(GÄ
dQ − Gd)(GÄ

OQ − GO)
_

Qj5

 
5.3 

                  

Where, KdO is the covariance of gene b and gene ≠, y is the number of samples(tissues),	GÄ
dQ is 

the expression level of gene b in sample U, GÄ
OQ is the expression level of gene ≠ in sample U,	Gd 

is the mean of expression levels of gene b  and GO is the mean of expression levels of gene ≠   

d) Form a covariance matrix K using the computed covariances and transform it into a 

diagonal matrix as depicted in Equation 5.4: 

 
K =

K55 K57 K5_
⋮ ⋮ ⋮

K_5 K_7 K__

	→
‡5 0 0
⋮ ⋱ ⋮
0 0 ‡_

 

 

5.4 

The diagonal elements of the transformed matrix are the eigenvalues	‡5, ‡7, … . , ‡_ which 

denotes the amount of variability captured along a particular new dimension.  

e) Calculate corresponding eigenvectors as –5, –7, … . . –_ using Equation 5.5: 

 ‡d–d = K‡d 5.5 

f) Sort the eigenvalues in descending order i.e. ‡5 ≥ ‡7 ≥ ‡7, . . ‡_X5 ≥ ‡_  

g) The eigenvectors corresponding to the b largest eigenvalues (where b < y) are the first 

b principal components 

h) Select the first b eigenvectors via the cumulative proportion of variance (eigenvalues). 

The proportion of variance (PPV) for each principal component is determined as 

follows: 

 
ôôÀ =

‡Q
‡Q_

Qj5
×100% 

5.6 
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i) Form the principal component matrix ô, a matrix consisting of selected b eigenvectors 

that correspond to the largest b eigenvalues. Where the b eigenvectors are derived from 

eigenvalues that meet the criterion in Equation 5.7; 

 ˜]
n
]¯˘

˜]È
]¯˘

×100%	 ≥ 95% 5.7 

j) Compute dimensionally reduced microarray gene expression data GÄ
ÅQNå~≤ using 

Equation 5.8; 

 GÄ
ÅQNå~≤ = 	GÄ×ô 5.8 

Hence, the analysis reduces the highly dimensioned original microarray datasets to ô for each 

sample, which are the inputs for the multi-class support vector machine (MCSVM). 

To be able to measure the generalization error for each considered model, per-fold PCA was 

adopted. This is achieved by first conducting a separate PCA on each calibration set and then 

applying this transformation on the validation set. This same transformation is achieved by first 

subtracting the means of the calibration set from the validation set and then projecting these, 

data onto the principal components of the training set achieved this. The underlying assumption 

is that the testing and training set should be derived from the same distribution, which justifies 

this process. 

5.2.3 Multi-class support vector machine (MCSVM) 

The MCSVM classifier is based on Vapnik Chervonenkis (VC) dimension of the statistical 

learning theory and the structural risk minimization [208], [212], [213], [217], [241]. 

The main objective of MCSVM is to map the preprocessed, on-linear inseparable microarray 

gene expression data into a linear highly dimensioned manifold θ by the use of a transformation  

∅: R˛ → θ, then obtaining the optimal hyper-plane Ψ:	ψ x = (ω.ϕ x + b) by solving the 

following optimization convex problem(the soft margin problem) [23]: 

 

 
min ω, ξ =

1
2
ω 7 + β ξ&

'

&j5
 

5.9 

Subject to y& ω.ϕ x + b ≥ 1 − ξ& for all 1 ≤ i ≤ n 

Where ω is a coefficient vector of the hyper-plane in the manifold (feature space), b is the 

threshold value of the hyper-plane,	ξ& is a slack factor introduced for classification errors and β 

is a penalty factor for errors. 
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The parameter β controls the penalty of misclassification and its value is normally determined 

via cross-validation. Larger values of β normally leads to a small margin which minimizes 

classification errors while smaller values of β may produce a wider margin resulting to many 

misclassifications. 

The feature space θ is highly dimensioned, so its direct computation can lead to “dimension 

disaster”. However, since ω = δ&'
&j5 y&∅(x&), then all the operations of the support vector 

machine (MCSVM) in the feature space θ are only dot products. And since kernel functions 

i.eG x&, x&) = ∅ x& . ∅(x&)),   are efficient at handling dot products, they were introduced into 

the SVM. This implies there is no need to know how to map the microarray gene expression 

data from its original space to the feature space θ. Thus, selection of a kernel and its coefficients 

are vital in the computational efficiency and accuracy of an MCSVM classifier model [233]–

[237]. 

The common kernel functions that are utilized as continuous predictors include [1, 5, 22]: 

1) Linear Kernel:	 

 G x&, x&) = x&. x&) 5.10 

                                                                

2) Polynomial Kernel: 

 G x&, x&) = (η ∗ x&. x&) + δ)+ 5.11 

 

Where	η > 0,	δ ∈ R and d ∈ Zá 

3) Gaussian kernel:	 

 G x&, x&) = exp	(
x& − x&) 7

2σ7 ) 
5.12 

Where σ > 0  

These MCSVM kernel functions can be broadly categorized as follows: local kernel functions 

and global kernel functions. Samples far apart have a great impact on the global kernel values 

while samples close to each other greatly influence the local kernel values. The linear and 

polynomial kernels are good examples of global kernels while the Gaussian radial basis function 

and the Gaussian are local kernels [233], [235]–[237], [242]. 

Relatively speaking, the linear kernel function has a better extraction of global features from 

samples, the polynomial kernel has good generalization ability and the gaussian kernel (the most 
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widely used kernel) has a good learning ability among all the single kernel functions. Thus, it is 

evident that utilizing a single kernel function based MCSVM classifier in a given application 

such as gene expression data may neither attain good learning ability, proper global feature 

extraction ability and a better generalization capability. In trying to overcome this hiccup, two 

or more kernel functions can be combined [233]–[237]. 

5.2.4 Linear-Gaussian-Polynomial MCSVM (LGP- MCSVM) 

In trying to build a kernel model that has a better global feature extraction capability, good 

learning and prediction abilities, the work presented in this chapter combines the merits of two 

global kernels (Linear and Polynomial) and one local kernel (Gaussian). This chapter therefore 

proposes a novel kernel “Linear-Gaussian -Polynomial (LGP)” kernel, which is formulated as 

follows: 

 
G./0 x&, x&) = β5. x&. x&) + β7. exp −βH.

η× x&. x&) + δ +

2×σ7 	 
5.13 

Where β5 + β7 + βH = 1, β ∈ R and δ, d > 0 

In this chapter we utilize different values of β to mix the three standard kernels (different regions 

of the input space). In this case β is a vector i.e. β = [β5, β7, βH]. Through this approach, the 

relative contribution of each kernel to the hybrid kernel i.e. G1234 x&, x&)  can be easily varied 

over the input space. 

The LGP kernel function takes better global feature extraction ability from the linear kernel, 

good prediction ability from the polynomial kernel and better learning ability from the gaussian 

kernel. The Mercer’s theorem provides the necessary and sufficient qualifiers of a valid kernel 

function. It states that a kernel function is a permissible kernel if the corresponding kernel matrix 

is symmetric and positive semi-definite (PSD) [212], [243]. 

A kernel matrix can be validated that it is PSD by determining its spectrum of eigenvalues. It is 

important to note that a symmetric is positive definite if and only if all its eigenvalues are non-

negative. Considering this, for the proposed kernel to be permissible, it must satisfy the Mercer’s 

theorem. This validity can be proved by using the Taylor expansion for exponential function of 

Equation 5.13: 

 
																																G./0 x&, x&) = β5. x&. x&) + β7 − βQH.

η× x&. x&) + δ +.&

2×σ7&	. U!

6

Qjì

 
5.14 
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										G./0 x&, x&) = β5 x&. x&) + β7 −1 +

−βQH
2×σ7&	U! η x&. x&) + δ +.&

6

Qj5

 
5.15 

   

 
																													G./0 x&, x&) = β5 x&. x&) − β7 + β7

−βQH
2×σ7&	U! η x&. x&) + δ +.&

6

Qj5

 

 

5.16 

 
G./0 x&, x&) = β5 x&. x&) − β7 + β7

−βQH
2×σ7&	U! .

6

Qj5

7ŒPñ´(Q) 
5.17 

 
																											G./0 x&, x&) = β57zQ;~=9 − β7 + β7

−βQH
2×σ7&	U! .

6

Qj5

7ŒPñ´(Q) 
   5.18 

 

 

 

 
G./0 x&, x&) = β57zQ;~=9 − β7 + β7

−eQ×βQH
U! .

6

Qj5

7ŒPñ´(Q) 
5.19 

Where 7ŒPñ´(Q) = η x&. x&) + δ + and 7zQ;~=9 = x&. x&)  and eQ = 5
7∗8s9 

From Equation 5.19, it is evident that G./0 x&, x&)  is a mixed kernel comprising of a weighted 

linear kernel, a constant β7 and a weighted summation of polynomial kernels. Using 

propositions 20,21and 22 of theorem 2.20 and propositions 23 and 24 of corollary 2.21 [243], 

Mercer’s conditions are proved to be true for the proposed kernel and hence it is a valid kernel. 

Theorem 2.20. Functions of Mercer’s kernels K1 and K2 are also Mercer’s kernels. 

 

 G x&, x&) = K1 x&, x&) + K2 x&, x&)  5.20 

 

 G x&, x&) = c.K1 x&, x&) ,	 vt1	!||	c ∈ Rá 5.21 

 

 G x&, x&) = K1 x&, x&) + w	, vt1	!||	c ∈ Rá	 

        

5.22 

 

Corollary 2.21. Functions of a Mercer kernel K1 are also Mercer’s kernels. 



113	
	

 

 G x&, x&) = (K1 x&, x&) + c)≤ ,	vt1	!||	c ∈ Rá	!3É  d ∈ N      5.23 

 G x&, x&) = exp
=5 l],l])

>s  ,	, vt1	!||	â ∈ Rá     5.25 

 

Since the proposed hybrid LGP kernel combines three valid Mercer’s kernels i.e. linear, 

gaussian and polynomial kernels, it is also a valid Mercer’s kernel that can be used for training 

and classification of the multi-class support vector machine (MCSVM). 

By using the proposed LGP-MCSVM, the non-linear transformation of the microarray gene 

sample points to the corresponding kernel matrix so as to obtain the classification results during 

the training phase of the MCSVM classifier. 

5.2.5 Particle swarm optimization (PSO) 

Currently, there is no widely accepted method for optimizing these parameters. The “Grid-

Search (GS)” with exponentially growing sequences of combination {C,	η} for the commonly 

utilized Gaussian kernel is often applied in microarray analysis [208], [224]. Though easy to 

implement, it has a low computing efficiency. In addition, optimal result of the GS can only be 

generated from the pre-set grid-combinations while unknown possible optimal parameters 

cannot be explored and discovered. 

In this chapter, particle swarm optimization (PSO) optimization technique is adopted to 

optimally search for the best parameter combinations for the considered models [224], [238]. 

The PSO technique is derived from the migration patterns of birds during foraging, which has a 

faster convergence, efficient parallel computing and a strong universality that is able to 

efficiently avoid local optimum [60]. In addition, the iteration velocity for its particles is largely 

influenced by the sum of current velocity; previous particle value, the current global optimal 

value and random interferences, which greatly helps, avoid the local optimal and improves the 

search coverage and effectiveness. In order to effectively evaluate the performance of the 

considered models, different values were considered for all kernel parameters within the ranges 

presented in Table 5.1. 

Table 5.2 presents the initial PSO parameters of each considered algorithm. In this paper, as a 

rule of thumb with heuristic optimization algorithms, the swarm size for each model was set to 
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10×ò!1U!@|<	:UÚ< [244].More information on the PSO algorithm is presented in [60], [224], 

[225], [238], [244]–[248]. 

 

Table 5.1: Parameters and their respective ranges 

Parameter Range 

β = [β5, β7, βH] 0 < β5, β7, βH<1 and 	β5+β7+βH=1 

|t47C −5 ≤ |t47C ≤ 15 

δ 0 ≤ δ ≤ 5 

d 2 ≤ d ≤ 5 

|t47e, |t47η -15≤ |t47e, |t47η ≤ 3 

 

Table 5.2: Initial PSO parameters setting 

Parameter Range 

Maximum number of iterations 50 

Inertial weight,u 1 

Number of particles/Swarm size 1) PSO+L-MCSVM=10 

2) PSO+G-MCSVM=20 

3) PSO+P -MCSVM=40 

4) PSO+LGP-MCSVM=80 

Cognition learning factor, w5 2.0 

Social learning factor, w7 2.0 

 

β5, β7	and	βH  are scalers that indicating the relative contribution of the linear, gaussian and 

polynomial kernels to the proposed kernel. C is the penalize parameter that controls the trade-

off between achieving a lower error on the traning data subset and minimizing the norm of 

weights. δ  and  η  are the polynomial kernel constants while d is the power of the polynomial 

kernel. D determines the degree one wants to map the data. e  is the inverse of standard deviation 

of the radial basis kernel i.e e = 5
7∗8s  which is utilized as a similarity measure between two 

points.  For more information on setting of PSO paramters refer to detailed account given for 

Table 3.2. 
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5.2.6 PCA-PSO-LGP-MCSVM model 

The main process of the proposed algorithm is outlined as follows: 

1) Transforming the cancer microarray data into the right format for the SVM package. 

2) Loading a cancer microarray dataset. 

3) Randomly dividing the loaded microarray data into two sets: training set and testing set. 

4) Initialize the PSO parameters like the population size, the maximum number of 

iterations, and the considered multi-class SVM parameters. 

5) Adopt PSO to search for the optimal solution of particles in the global space by using 5-

fold cross-validation that incorporates per fold PCA feature extraction. This process is 

presented below. 

6) To achieve 5-fold cross-validation incorporating PCA, the following steps were 

followed: 

i) For j=1 to 5 repeat steps (ii) to (vi) 

ii) Carry out PCA on data present in the remaining 4 folds to generate a loadings 

matrix.  

iii) Transform this data (data in the remaining 4 folds i.e. calibration set) into a set 

of principal components (PC) scores using the first ô components (that account 

for at least 95% cumulative variance) of the loadings matrix generated in step 

(ii). 

iv) Build a considered SVM classification model using a set of parameter values 

using the generated PC scores data in step (iii). 

v) Transform the held-out test fold data (i.e. data in fold j) into a set of principal 

component (PC) scores using the ô components loadings matrix retained in step 

(iii). 

vi) Compute the classification accuracy of the built SVM classification model in 

step (iv) using the transformed test fold j data in step (v). 

vii) For the considered parameters set, store their optimal parameter values set (i.e. a 

set of parameters that yields the highest classification accuracy). 

7) Report optimal parameters for the considered model. 
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8) Carry out PCA on the whole training set data (i.e. the training set obtained in step 3) to 

generate a loading matrix. 

9) Transform this whole training set data into a set of PC scores using the first ô 

components (that account for at least 95% cumulative variance).  

10) Build an optimal model for the considered SVM classification model using the optimal 

parameter values set obtained in step vii) using the generated PC scores data in step 9. 

11) Transform the whole testing set data (i.e. the testing set obtained in step 3) into a set of 

principal components (PC) scores using the ô   components loadings matrix retained in 

step 9. 

12) Compute the classification accuracy of the built optimal SVM classification model in 

step 8 using the transformed whole testing set data in step 9 

13) Report this test classification accuracy. 

 

The schematic diagram in Figure 5.1 shows the process of the PSO-PCA-LGP-MCSVM 

algorithm. 
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Figure 5.1: Scheme of the proposed PSO-PCA-LGP-MCSVM algorithm 



118	
	

It is important to mention that the analysis process is conducted using the LIBSVM framework 

in MATLAB [249]–[252] on Intel(R)Core (TM) i3-3240M CPU@ 3.4GHz with 12GB of RAM 

machine. 

5.3 Performance evaluation 

5.3.1 Microarray Datasets  

To assess the performance of the proposed PSO-PCA-LGP-SVM algorithm, several 

experiments were conducted on four publicly available datasets. Summary of all the datasets 

utilized in this research can be found in Table 5.3 and following is a brief description of each 

dataset. 

Colon dataset [214]: contains gene expression levels obtained from DNA based microarrays. 

It has 62 samples; 20 normal and 40 cancerous tissue samples, each described by 2000 features. 

Leukemia (AMLALL) dataset [57]: contains gene expression levels from 72 leukemia 

patients; 47 with Acute Lymphoblastic Leukemia (ALL) and 25 with Acute Myeloid Leukemia 

(AML). Each patient data is described by expression levels of 7129 probes obtained from 6817 

human genes. 

Stjude Leukemia dataset [213]: This data was obtained from St. Jude children’s research 

hospital. It is divided into 6 diagnostic groups: BCR-ABL(9 patients), E2A-PBX1(18 patients), 

Hyper- diploid>50 (42 patients), Mixed Lineage Leukemia(MLL)(14 patients), T-cell Acute 

Lymphoblastic Leukemia(T-ALL)(28 patients) and TEL-Leukemia(TEL-AML1)(52 patients) 

and other 52 patients that could not fit into any of the outlined diagnostic groups. This dataset 

contains 12558 genes. 

Lung Cancer dataset [219]: Contains 3312 gene data obtained from 17 people with normal 

lungs and  186 lung cancer patients that is classified into 5 classes: Adenocarcinomas (139 

patients), Squamous Cell Lung Carcinomas( 21 patients), Pulmonary Carcinoids(20 patients), 

Small Cell Lung Carcinomas (6 patients) and Normal Lung (17 people). 

 

Table 5.3: The cancer microarray datasets utilized in this chapter

Category Dataset Sample Size Number of genes Number of classes 

Two-Class AMLALL 72 7129 2 

 COLON 62 2000 2 

Multi-Class STJUDE 215 12558 7 
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 LUNG 203 3312 5 
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Due to the small number of instances in the considered datasets, all the datasets were initially 

split into two disjoint sets: the training set and the test set. Utilizing 5-fold cross-validation, the 

training set was randomly divided further into 5 subsets (approximately) equal in size. Each 

time 4 subsets were selected as the calibration set and the remaining subset was used as the 

validation set. This process was repeated 5 times. Finally, the average of classification accuracy 

on the validation set was used as one of the evaluation metrics. It is important to point out that 

by using 5-fold cross-validation to dynamically divide the microarray training samples, the 

considered models turn out to be more stable and objective. 

The percentage proportion for the calibration, validation and test sets for all the considered 

microarray datasets are presented in Table 5.4.  

Table 5.4: Percentage proportion for calibration, validation and test sets 

Dataset % Proportion for 

Calibration set 

% Proportion for 

Validation set 

%Proportion for 

Test set 

AMLALL 61.1 15.3 23.6 

COLON 58.1 14.5 27.4 

STJUDE 57.7 14.4 27.9 

LUNG 57.1 14.3 28.6 

5.3.2 Performance measures for imbalanced microarray datasets 

When the samples in a dataset are unevenly distributed among the classes (for instance in the 

case of microarray datasets), the task of classification in imbalanced domains must be defined. 

The majority class(es), as a result influences the data mining algorithms skewing their 

performances towards it [221]. Most algorithms simply compute the accuracy on the basis of 

the percentage of correct samples.  

However, in the case of microarrays, these results are highly deceiving since the minority classes 

hold minimal effects on the overall classification accuracy. Thus, a consideration of a complete 

confusion matrix (Table 5.5) must be made to obtain the classification of both positive and 

negative classes independently [221].  

	  



121	
	

Table 5.5: Confusion matrix for a two-class problem 

 Positive prediction Negative prediction 

Positive class True positive (TP) False negative (FN) 

Negative class False positive (FP) True negative (TN) 

 

The description in Table 5.5 gives four baseline statistical components, where TP and FN denote 

the number of positive samples, which are accurately and falsely predicted, respectively, and 

TN and FP depict the number of negative samples that are predicted accurately and wrongly, 

respectively. 

Two most frequently used metrics for class imbalance problem, namely F-measure and G-mean, 

can be regarded as functions of these four statistical components and are calculated as follows: 

 F−measure =
2 ∗ S<w!|| ∗ ô1<wU:Ut3
(S<w!|| + 1<wU:Ut3)

 
5.25 

   

 G−mean = (ÖôS×ÖJS) 5.26 

   

Where Precision, Recall, TPR and TNR are further defined as follows: 

 Precision =
Öô

(Öô + Zô)
 

5.27 

  

 Recall	(TPR) = Öô
(Öô + ZJ)

 
5.28 

 

 TNR =
ÖJ

(ÖJ + Zô)
 

5.29 

The overall classification accuracy Acc can be calculated using equation 5.30. 

 Acc = Öô + ÖJ
(Öô + ÖJ + Zô + ZJ)

 
5.30 

However, all these evaluation metrics are appropriate for estimating binary-class imbalance 

tasks. To extend them for multi-class, the following transformations should be considered [38]. 

G−mean computes the geometric mean of all the classes’ accuracies and is defined by 

Equation 5.31. 
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G−mean	 = ( awwQ

G

Qj5

)5 G  
5.31 

Where awwQ denotes the accuracy of the U\c class.	F−measure can be transformed as F− Score 

and is computed using equation 5.32. 

 F− Score	 = F−measureQG
Qj5

K
 

5.32 

Where F−measureQ is calculated further using the equation 5.33. 

 F−measureQ 		=
2×PrecisionQ×RecallQ
PrecisionQ + RecallQ

 
5.33 

Acc can be transformed as depicted by equation 5.34. 

 
aww		 = (AccQ×PQ)

G

Qj5

 
5.34 

 

Where PQ is the percentage of samples in the U\c class. To impartially and comprehensively 

assess the classification performance of the proposed model in comparison with PSO-PCA-L-

MCSVM, PSO-PCA-G-MCSVM and PSO-PCA-P-MCSVM models that utilize the standard 

linear, gaussian and polynomial kernels respectively, the three extended measures namely F−
Score,	G−mean and aww	which are described in 5.32, 5.31 and 5.34 respectively. 

5.4 Results and Discussions 

The experimental results for the 4 classification models on the 4 microarray datasets are reported 

in Tables 5.6, 5.7 and 5.8, where the best result in each dataset is highlighted in bold and the 

worst is italicized. 

From Tables 5.6 -5.8 the following observations can be made: 

i) Lung and STJUDE datasets are slightly sensitive to the class imbalance while Colon and 

AMLALL are not, as shown by the difference between Accuracy and G-mean values. 

An accuracy slightly lower than the G-mean values imply that the MCSVM is affected 

by the imbalanced class distribution. This is largely attributed by a large number of True 

negatives (TNs) recorded achieved by all the models when analyzing both the Lung and 

STJUDE datasets. 

ii) The hybrid kernel boosted the classification performance of the multi-class on three 

datasets i.e. Colon, Lung and STJUDE. These promotions are better portrayed by the F-
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Score and G-Mean metrics, which are used to evaluate a balance level of classification 

results. However, a tie is reported for the AMLALL dataset. This implies that though 

the complementary characteristics of the three standard kernels i.e. linear, Gaussian and 

polynomial in the proposed hybrid linear-gaussian-polynomial (LGP) kernel may 

improve the multi-class support vector machine classifier’s classification ability on most 

microarray datasets, datasets a single suitable kernel is sufficient. 

iii) Of all the considered models, the PSO-PCA-P-MCSVM reported the least performance 

in all the considered metrics for all the four datasets. However, it is important to note 

that a promising kernel can be obtained if we embed into the exponential kernel. 

Table 5.6: Accuracy of all considered models on the four microarray datasets, where 
bold represents the best result and the italics denotes the worst in each column 
respectively 

Models Colon  Lung AMLALL STJUDE 

PSO+L-MCSVM 0.7647 0.9596 0.9412 0.9422 

PSO+P -MCSVM 0.8235 0.9592 0.8235 0.9395 

PSO+G-MCSVM 0.8235 0.9608 0.9412 0.9572 

PSO+LGP-MCSVM 

(New) 

0.8824 0.9729 0.9412 0.9603 

 

Table 5.7: F-Score of all considered models on the four microarray datasets, where bold 
represents the best result and the italics denotes the worst in each column respectively 

Models Colon Lung AMLALL STJUDE 

PSO+L-MCSVM 0.7572 0.9246 0.9328 0.7870 

PSO+P -MCSVM 0.8211 0.7524 0.7733 0.6831 

PSO+G-MCSVM 0.8211 0.9306 0.9377 0.8477 

PSO+LGP-MCSVM 

(New) 

0.8712 0.9586 0.9377 0.8989 
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Table 5.8: G-mean of all considered models on the four microarray datasets, where bold 
represents the best result and the italics denotes the worst in each column respectively 

Models Colon  Lung AMLALL STJUDE 

PSO+L-MCSVM 0.7676 0.9791 0.9412 0.9557 

PSO+P -MCSVM 0.8235 0.7524 0.8235 0.9512 

PSO+G-MCSVM 0.8235 0.9792 0.9412 0.9661 

PSO+LGP-MCSVM 

(New) 

0.8824 0.9861 0.9412 0.9709 

 

In summary, compared with single-kernel-based models (i.e. PSO-PCA-L-MCSVM, PSO-

PCA-G-MCSVM and PSO-PCA-P-MCSVM), the proposed PSO-PCA-LGP-MCSVM model 

that is based on a hybrid linear-gaussian-polynomial (LGP) kernel with a better global feature 

extraction ability, good prediction ability and better learning ability, has an attractive 

classification ability in cancer diagnosis using both imbalanced dual and multiclass microarray 

datasets. Moreover, due to excellent global searching ability of the particle swarm optimization, 

it can effectively optimize the hybrid kernel based MCSVM   when solving a wider range of 

classification problems. 

5.5 Chapter Conclusion 

Techniques to choose or construct suitable kernel functions, and optimally tune its parameters 

for MCSVM has received a considerable and critical attention in imbalanced microarray-based 

cancer diagnosis. A novel classification model, PSO-PCA-LGP-MCSVM, that is based on 

MCSVM with a hybrid kernel i.e. linear-gaussian-polynomial (LGP), is proposed in this 

chapter. The LGP kernel combines the advantages of three standard kernels i.e. linear, gaussian 

and polynomial kernels in a novel manner where the linear kernel is linearly combined with a 

polynomial kernel that is embedded into a gaussian kernel. Using PSO to optimally tune the 

LGP kernel based MCSVM resulted into better generalization, learning and predicting ability 

as evidenced by the promising results in terms three extended measures F-Score, G-mean and 

Accuracy irrespective of imbalanced binary or multi-class microarray datasets. The performance 

of the proposed model was compared with those of 3 models i.e. PSO-PCA-L-MCSVM, PSO-

PCA-G-MCSVM and PSO-PCA-P-MCSVM that are based on single linear, gaussian and 

polynomial kernels respectively and the experimental results show that the proposed algorithm 
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is superior to the three single-kernel based models. This reflects the good practical value of the 

proposed model in the field of microarray based cancer diagnosis, which can also be extended 

to more applications of medical diagnostic classification to explore its potential. 
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CHAPTER SIX: CONCLUSION AND RECOMMENDATIONS 

6.1 General Conclusions 

  To date, optimal gene selection and accurate classification of a given patient sample are the 

most sought topics in a DNA microarray based cancer disease diagnosis.This is because an 

effective gene selection phase derives a reduced informative gene subset from the gene-rich 

DNA microarray datasets which subsequently minimizes noise, computational overheads as 

well as model overfitting. On the other hand, an improved learning and classification stage 

builds an effective classifier that achieves a reliable and accurate classification of a DNA patient 

sample. 

Optimal gene selection requires a stable, diverse and robust gene selector. This can only be 

achieved by a wrapper that maturely converges during the search process and thus ensuring an 

exhaustive search of the whole population of DNA microarray genes. On the other hand, mature 

convergence demands striking of a proper and optimal balance between exploitation and 

exploration in the design of a metaheuristic. Exploitation and exploration are two antagonistic 

principles which pose a big challenge in striking a proper balance between them in the design 

of a metaheuristic. A reason why majority of the existing wrappers have proved inadequate in 

solving the feature selection problem in DNA microarray based cancer disease diagnosis. 

Designing an efficient gene selector without enhancing both the learning and classification 

phase will still render the DNA microarray based cancer classification pipeline 

incomplete.Though currently the SVM is a promising classifier in DNA microarray data 

classification, its performance largely depends on the kernel adopted for this classifier as well 

as tuning of the kernel parameters. The linear, polynomial and Gaussian kernels are the three 

standard kernels commonly adopted a large number of researchers for this classifier. The linear 

kernel function has a better extraction of global features from samples, the polynomial kernel 

has good generalization ability and the gaussian kernel (the most widely used kernel) has a good 

learning ability among all the single kernel functions. Thus, it is evident that utilizing a single 

kernel function based MCSVM classifier in a given application such as gene expression data 

may neither attain good learning ability, proper global feature extraction ability and a better 

generalization capability.To date, this has necessitated a combinination of two or more of these 

standard kernel functions. 
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This research has successfully tackled the aforementioned challenges by development of the 

following techniques: 

i) To select a subset of informative genes from the highly dimensional DNA microarray 

chips, a novel excited binary grey wolf optimization (EBGWO) based wrapper utilizing 

the K-NN classifier is presented in Chapter 3. To overcome the local minima trapping 

of the existing BGWO that normally results into semi-optimal solutions, in the proposed 

EBGWO, a new position-updating criterion is formulated. The new position updating 

criterion utilizes the fitness values of vectors G5
→, G7

→and GH
→  to determine the new 

candidate individuals. These vectors are derived from the union of scalars G5, G7 and GH  

respectively of the existing BGWO. Moreover, to make full use of and strike a better 

balance between exploration and exploitation, which is also a challenge in the BGWO, 

a novel nonlinear control strategy is formulated. This non-linear strategy innovatively 

decreases parameter !→ via the concept of the complete current response of a direct 

current (DC) excited resistor-capacitor (RC) circuit. One induction algorithm i.e. the K-

Nearest Neighbor (K-NN) is utilized in the proposed wrapper approach to evaluate the 

classification performance of subset of genes selected by the EBGWO, using 5-fold 

cross-validation technique. 

 

The performance of EBGWO as a gene selector is evaluated on 7 standard DNA 

microarray chips derived from Irvine (UCI) repository namely Brain Tumour1 (5920 

genes), Brain Tumour2 (30367 genes), Central Nervous System Cancer (7129 genes), 

Diffuse Large B-Cell Lymphoma (DLBL) (5469 genes), Leukemia (7129 genes), Colon 

Cancer (2000 genes) and Lung Cancer(12600). The EBGWO achieved the most compact 

informative gene subsets along with the highest classification accuracies as follows: 

Brain Tumour1 (501 genes, 92%), Brain Tumour2 (1151 genes, 88%), Central Nervous 

System Cancer (710 genes, 83%), DLBL (426 genes, 100%), Leukemia (649 genes, 

90%), Colon Cancer (143 genes, 92%) and Lung Cancer(1005 genes, 98%). Binary Grey 

Wolf Optimization 2 (BGWO2), the second best state-of-the-art published algorithm, 

attained the following: Brain Tumour1 (1343 genes, 89%), Brain Tumour2 (3083 genes, 

85%), Central Nervous System Cancer (2175 genes, 78%), DLBL (1408 genes, 98%), 

Leukemia (1805 genes, 87%), Colon Cancer (455 genes, 90%) and Lung Cancer(2413 
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genes, 97%).On average, the proposed EBGWO algorithm attained a reduced 

informative gene subset with 655 genes along with a classification accuracy of 92%. On 

the other hand, on average the BGWO2 (second best algorithm) attained a reduced 

informative gene subset with 1812 genes along with a classification accuracy of 89%. 

Thus in comparison with BGWO2 (the current best gene selector that is based on 

the GWO algorithm), on average the proposed EBGWO algorithm reduced the 

number of selected genes from 1812 to 655 (i.e. a further reduction by 1157 genes) 

while improving the classification accuracy from 89% to 92% (i.e. an improvement 

by 3%). 

 

ii) Though the proposed EBGWO wrapper has proved attractive in selecting informative 

genes from the highly dimensioned DNA microarray datasets due to its enhanced 

stability and diversity capabilities, it does not strike an optimal balance between 

exploitation and exploration during the search process. This is because exploitation and 

exploration are two contradicting principles, which must be balanced efficiently in order 

to achieve an improved performance of a metaheuristic. Moreover, attaining an optimal 

balance between these antagonist principles is difficult with a single metaheurist. In 

tying to attain the required optimal balance between exploitation and exploration, 

another innovative excited-ACS-IDGWO complementary hybrid model comprising of 

two improved wrappers i.e. adaptive cuckoo search algorithm (ACS) and intensification 

dedicated grey wolf optimizer (IDGWO) (a variant of the EBGWO wrapper presented 

in Chapter 3) and using the SVM classifier is presented in Chapter 4. The proposed 

model innovatively adopts the concept of the complete voltage and current responses of 

a direct current (DC) excited resistor-capacitor (RC) circuit to nonlinearly control 

parameter !→ of IDGWO and the step size of ACS. To handle the higher diversity of the 

search space during the early stages, both the ACS and IDGWO are jointly involved in 

the local exploitation. Conversely, to promote mature convergence during later stages of 

the search space, the role of ACS is shifted to global exploration while the IDGWO is 

left carrying out local exploitation. The performance of the proposed model is compared 

with those of four state-of-art wrappers. The proposed technique emerged to be superior 

in attaining a good learning from a few samples and optimally deriving a reduced feature 

subset from the information-rich datasets. The superiority of the proposed E-ACS-
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IDGWO is further proved via a number of statistical approaches like ranking techniques 

and statistical analysis. 

 

The performance of EACSIDGWO as a gene selector is evaluated on six standard DNA 

microarray chips derived from Irvine (UCI) repository namely Ovarian Cancer (4000 

genes), Central Nervous System Cancer (7129 genes), Colon Cancer (2000 genes), 

Breast Cancer Wisconsin (prognosis) (33 genes), Breast Cancer Wisconsin (diagnostic) 

(30 genes) and SPECTF Heart Cancer (44 genes). The EACSIDGWO achieved the most 

compact informative gene subsets along with the highest classification accuracies as 

follows: Ovarian Cancer (274 genes, 100%), Central Nervous System Cancer (1208 

genes, 72%), Colon Cancer (538 genes, 91%), Breast Cancer Wisconsin (prognosis) (5 

genes, 87%), Breast Cancer Wisconsin (diagnostic) (3 genes, 98%) and SPECTF Heart 

Cancer (4 genes, 88%). Extended Binary Cuckoo Search (EBCS), the second best state-

of-the-art published algorithm, attained the following: Ovarian Cancer (1811 genes, 

99%), Central Nervous System Cancer (3446 genes, 67%), Colon Cancer (988 genes, 

89%), Breast Cancer Wisconsin (prognosis) (6 genes, 86%), Breast Cancer Wisconsin 

(diagnostic) (3 genes, 97%) and SPECTF Heart Cancer (6 genes, 86%). On average, the 

proposed EACSIDGWO algorithm attained a reduced informative gene subset with 339 

genes along with a classification accuracy of 89%. On the other hand, on average the 

EBCS (second best algorithm) attained a reduced informative gene subset with 1043 

genes along with a classification accuracy of 87% Thus in comparison with EBCS (the 

current best improved version of the Binary Cuckoo Search algorithm), on average 

the proposed EBGWO algorithm reduced the number of selected genes from 1043 

to 339 (i.e. a further reduction by 704 genes) while improving the classification 

accuracy from 87% to 89% (i.e. an improvement by 2%). 

 

iii)  From the results presented in (ii) above, the proposed hybrid EACSIDGWO algorithm 

achieved an optimal balance between exploitation and exploration during the search thus 

overcoming EBGWO’s shortcoming. However, this wrapper adopted the SVM classifier 

(a commonly utilized classifier in DNA microarray based cancer classification) whose 

performance is largely dependent on the kernel adopted for it as well as tuning of the 

kernel parameters. Moreover, utilizing a single kernel function based MCSVM classifier 
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in a given application such as gene expression data does not attain both a good learning 

ability, proper global feature extraction ability and a better generalization capability. 

Thus, to enhance both the learning and classification ability of the SVM classifier a 

particle swarm optimized hybrid kernel-based multi-class support vector machine i.e. 

PSO-PCA-LPG-MCSVM is presented in Chapter 5. In this model, particle swarm 

optimization (PSO) algorithm, principal component algorithm (a gene extractor) and 

multiclass support vector machine (MCSVM) that is based on a hybrid kernel i.e. linear-

gaussian-polynomial (LGP) are combined. The major contribution of this work is the 

novel hybrid kernel i.e. LGP that combines the advantages of three standard kernels 

(linear, Gaussian and polynomial) in a novel manner; where the linear kernel is linearly 

combined with a Gaussian kernel that is embedding a polynomial kernel. Further, the 

validity of the proposed kernel is proved. The effectiveness of the proposed model is 

revealed by carrying out a number of experiments and obtained results compared with 

those of three single kernel-based models i.e. PSO-PCA-L-MCSVM, PSO-PCA-G-

MCSVM and PSO-PCA-P-MCSVM that utilize the standard alone linear, polynomial 

and Gaussian kernels respectively. Two dual and two multiclass imbalanced DNA 

microarray datasets that are publicly available were utilized. The obtained experimental 

results in terms of three extended evaluation  metrics i.e. G-mean, F-score and accuracy 

reveal  how superior the proposed model is in terms of global feature extraction, learning 

and prediction , compared to the other standalone kernel-based models. 

To reveal the superior global gene extraction, prediction and learning ability of this model 

against three single kernel-based models: PSO-PCA-L-MCSVM (using a single Linear 

kernel), PSO-G-MCSVM (using a single Gaussian kernel) and PSO-P-MCSVM (using a 

single Polynomial kernel), four datasets: Colon cancer (2000 genes), Acute Lymphoblastic 

Leukemia-Acute myeloid Leukemia (ALL-AML) (7129 genes), St. Jude Leukemia dataset 

(12558 genes) and Lung cancer(3312 genes) were used. Adopting three extended evaluation 

metrics (G-mean, Accuracy (Acc) and F-score) the proposed model achieved the following: 

Colon Cancer (G-mean: 0.88, Acc: 0.88, F-score: 0.87), ALL-AML (G-mean: 0.94, Acc: 

0.94, F-score: 0.94), Lung Cancer (G-mean: 0.99, Acc: 0.97, F-score: 0.96) and St. Jude 

Leukemia dataset (G-mean: 0.97, Acc: 0.96, F-score: 0.90). The PSO-G-MCSVM, the 

second best published model, attained the following: Colon Cancer (G-mean: 0.82, Acc: 
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0.82, F-score: 0.82), ALL-AML (G-mean: 0.94, Acc: 0.94, F-score: 0.94), Lung Cancer (G-

mean: 0.98, Acc: 0.96, F-score: 0.93) and St. Jude Leukemia dataset (G-mean: 0.97, Acc: 

0.95, F-score: 0.85). On average, the proposed PSO-PCA-LPG-MCSVM algorithm attained 

the following for the four datasets: G-mean: 0.95, Acc: 0.94 and F-score: 0.92. On the other 

hand, on average the PSO-G-MCSVM (second best published model) attained the following 

for the four datasets: G-mean: 0.93, Acc: 0.92 and F-score: 0.89. Thus in comparison with 

PSO-G-MCSVM (the second best published model), on average the proposed PSO-

PCA-LPG-MCSVM model improved both the G-mean and Acc by 0.02 (2%) and F-

score by 0.03 (3%).
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6.2 Key Findings 

Table 6.1: Summary of research findings 

TECHNIQUE SALIENT FEATURES ISSUES ADDRESSED WEAKNESSES 
EBGWO • Wrapper based approach for gene selection. 

• Adopts a new position-updating criterion  that 
utilizes fitness values of vectors !", !$ and !% to 
determine new search agents. This criterion 
maintains and strengthens the social hierarchy of 
the pack. 

• A novel nonlinear control strategy inspired by the 
complete current response of DC excited RC-
circuit is developed to make full use of and balance 
exploration and exploitation of the existing 
BGWO. 

• Because this novel control strategy allocates a 
large number of generations to diversification in 
comparison to intensification, the convergence 
speed of the EBGWO algorithm is heightened 
while reducing the local optimal trapping effects. 

• To enhance diversity and improve the quality of 
the reported solutions a weighting scheme utilizing 
the fitness values of the three leaders of the pack 
(alpha(α), beta(β) and delta(δ)), that of the 
currently considered wolf and that worst wolf is 
adopted. 

• Achieved a more compact set of informative genes 
along with highest classification accuracy in 
comparison with all the other considered wrappers 

• A challenge of highly 
dimensional DNA 
microarray datasets 

• Need for better 
classification accuracies  
using a small subset of 
informative genes 

• Need of robust and stable 
soft computing techniques 
for selection of 
informative genes and 
cancer disease 
classification. 

• Though, better, stable 
and reliable results were 
attained, the great search 
complexity due to the 
large number of genes 
within the DNA 
microarray datasets 
increased the 
computation time. 

• Doesn’t attain optimal 
balance between 
exploitation and 
exploration during the 
search process. 
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E-ACS-
IDGWO 

• Hybrid (Ensemble) wrapper based approached for 
gene selection 

• The EACSIDGWO algorithm hybridizes IDGWO 
(a variant of the EBGWO) and another new 
improved cuckoo search algorithm i.e. ACS. 

• The step size of ACS is innovatively made 
adaptive via the concept of complete voltage 
response of the direct current (DC) excited 
resistor-capacitor (RC) circuit 

• To handle the higher diversity of the search space 
during early stages, both ACS and IDGWO jointly 
carry out local exploitation. 

• To enhance mature convergence during later 
stages of the proposed algorithm, the role of ACS 
is switched to global exploration while the 
IDGWO is still left carrying out local exploitation 

• Good learning ability from using a few samples 

• The large and complex 
search space of the highly 
dimensional DNA 
microarray datasets. 

• Combined joint and 
standalone gene selection 
approach to derive a 
subset of informative 
genes related to a specific 
cancer disease. 

• Optimal balance between 
exploitation and 
exploration of soft 
computing techniques for 
gene selection 

• Based on supervised 
machine learning 
approach, which 
requires all the DNA 
microarray datasets to be 
labelled.However, 
availability of large 
microarray sample sizes 
is still a challenge. 
 

PSO-PCA-
LPG-MCSVM 

• Hybrid(Ensemble) technique for DNA microarray 
data analysis 

• Utilizes a novel hybrid linear-gaussian-polynomial 
(LGP) kernel-based multiclass support vector 
machine that enhances the performance of 
classification stage (last stage of the DNA 
microarray data analysis) 

• The hybrid LGP kernel innovatively combines the 
advantages of three standard kernels (linear, 
gaussian and polynomial); where the linear kernel 
is linearly combined with a gaussian kernel 
embedding the polynomial kernel. 

• Class Imbalance problem 
in DNA microarray data 

• Kernel selection for the 
multi-class support vector 
machine. 

• Reduction of the 
computation complexity 
of DNA microarray data 
using PCA ( feature 
extractor) 

• High cost of 
classification in terms of 
computation time due to 
the large number of 
genes within the DNA 
microarray datasets. 
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• A proof to ensure that the proposed kernel 
conforms to the features of a valid kernel is carried 
out. 

• To tackle the class imbalance problem in 
microarray data analysis, three extended 
evaluation metrics i.e. G-mean, Accuracy and F-
score are utilized. 

• Better generalization, learning and prediction 
ability  achieved by the system 

 

 



	

6.3 Recommendations Further Work 

This research focused on the development of fast, stable and reliable diagnostic techniques for DNA 
microarray gene expression data for cancer disease diagnosis and classification. 

The proposed techniques can be utilized in other microarray based clinical research areas such as 
toxicological studies, drug response analysis and patient’s survival. 

Moreover, the results obtained can be further analyzed to determine the biological relevance so that this 
information can aid biologists in providing accurate and timely interpretations of attained outcome. 

In this research work, all the formulated models only adopted supervised machine learning methods for 
cancer disease diagnosis and classification, which require all the tissue samples to be labeled. However, 
there exists a number of DNA microarray datasets with unlabeled data. Thus, it will be important for 
semi-supervised learning techniques to be considered as well. 

For the proposed EBGWO and E-ACS-IDGWO techniques, the sigmoid transfer function was used to 
convert the continuous solutions of the search agents to binary for feature selection. To further improve 
the performance of these approaches, it could be important to investigate on the fully-binary versions of 
these techniques. 

Finally, optimized versions of the proposed algorithms can be adapted in collecting, analyzing cancerG 
data using mobile devices with limited computing resources. 
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Abstract. Finding an optimal set of discriminative features is still a crucial but challenging task in 

biomedical science. The complexity of the task is intensified when any of the two scenarios arise: a 

highly dimensioned dataset; a small sample-sized dataset. The first scenario poses a big challenge to 

existing machine learning approaches since the search space for identifying the most relevant feature 

subset is so diverse to be explored quickly while utilizing minimal computational resources. On the other 

hand, the second aspect pose a challenge of too few samples to learn from. Though many hybrid 

metaheuristic approaches (i.e. combining multiple search algorithms) have been proposed in the literature 

to address these challenges with very attractive performance compared to their counterpart standard 

standalone metaheuristics, more superior hybrid approaches can be achieved if the individual 

metaheuristics within the proposed hybrid algorithms are improved prior to the hybridization. Motivated 

by this, we propose a new hybrid Excited (E)-Adaptive Cuckoo Search (ACS)-Intensification Dedicated 

Grey Wolf Optimizer (IDGWO) i.e. EACSIDGWO. EACSIDGWO is an algorithm where the step size 

of ACS and the non-linear control strategy of parameter ! of the IDGWO are innovatively made adaptive 

via the concept of the complete voltage and current responses of a direct current (DC) excited resistor-

capacitor (RC) circuit. Since the population has a higher diversity at early stages of the proposed 

EACSIDGWO algorithm, both the ACS and IDGWO are jointly involved in local exploitation. On the 

other hand, to enhance mature convergence at latter stages of the proposed algorithm, the role of ACS is 

switched to global exploration while the IDGWO is still left conducting the local exploitation. To prove 

that the proposed algorithm is superior in providing a good learning from fewer instances and an optimal 

feature selection from information-rich biomedical data, all these while maintaining a high classification 

accuracy of the data, the EACSIDGWO is employed to solve the feature selection problem. The 
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EACSIDGWO as a feature selector is tested on six standard biomedical datasets from the university of 

California at Irvine (UCI) repository. The experimental results are compared with the state-of-the-art 

feature selection techniques, including binary anti-colony optimization (BACO), binary genetic 

algorithm (BGA), binary particle swarm optimization (BPSO) and extended binary cuckoo search 

algorithm (EBCSA).These results reveal that the EACSIDGWO has comprehensive superiority in 

tackling the feature selection problem, which proves the capability of the proposed algorithm in solving 

real-world complex problems. Furthermore, the superiority of the proposed algorithm is proved via 

various numerical techniques like ranking methods and statistical analysis. 
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Introduction 

Currently, there is a growing research interest in 

developing and deploying population-based 

metaheuristics to tackle combinatorial optimization 

challenges. This is because they are simple, flexible 

with an inexpensive computational cost and are 

gradient-free [1]. 

Many researchers have applied these optimization 

algorithms in various research domains because of 

their ability to achieve best solutions.  

The optimization challenge grows bigger when 

tackling highly dimensioned datasets. This is 

because these datasets have a vast feature space 

with many classes. Due to the presence of 

redundant and non-informative attributes within 

these datasets, the process of effective machine 

learning greatly hindered. Thus, the construction of 

efficient classifiers with high predictive power 

largely depends on selection of informative features 

[2]. 

Feature selection (FS) is one of main steps in data 

preprocessing that aims at selecting a subset of 

attributes out of the whole dataset resulting into 

removal of noisy non-informative and redundant 

features. This in turn increases the accuracy of a 

considered classifier or clustering model [3]. 

 FS algorithms can be broadly categorized into two 

classes: filter and wrapper techniques [4-5]. Filters 

include techniques independent of classifiers and 

work directly on presented data. Moreover, these 

methods in many situations determine the 

correlations between features. On the contrary, 

wrapper approaches engage classifiers and mainly 

determine interactions between dataset features. 

From literature, wrapper approaches have proved to 

be superior compared to filters for classification 

algorithms [6-7]. 

To utilize wrapper-based techniques, three key 

factors need to be outlined; considered classifiers 

(i.e. k-nearest neighbor (KNN), support vector 

machine (SVM)), evaluation criteria for the 

identified feature subset and a search technique 

utilized in determining a subset of optimal features 

[8]. 

Many researchers have pointed out that 

determining an optimal subset of attributes is not 

only challenging but computationally expensive as 

well. Though, in the recent past metaheuristics have 

proved to be reliable and efficient tools in tackling 

many optimization tasks (e.g., engineering designs 

problems, machine learning, feature selection and 

data mining), they are not efficient in solving 

problems with high computational complexity [9 -

12]. 

In the recent past, a number of metaheuristic search 

algorithms have been utilized for FS using highly 

dimensioned datasets. Some of these metaheuristics 

are grey wolf optimization (GWO) [13-14], Genetic 

Algorithm (GA) [15], particle swarm optimization 
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(PSO) [11], anti-colony optimization (ACO) [16], 

differential evolution algorithm (DEA) [17], 

cuckoo search algorithm (CSA) [18], dragonfly 

algorithm (DA) [19]. Though, many of these 

algorithms have already made an important 

contribution in the field of feature selection, in 

many cases they offer acceptable solutions without 

a guarantee of determining optimal solutions since 

they do not explore the entire search space [11]. 

Some of the new modifications that have been 

proposed to improve the performance of these 

metaheuristics include chaotic maps [20], 

evolutionary methods [21], sine cosine algorithms 

[22], biogeography based optimization and local 

searches [23]. 

While designing or utilizing a metaheuristic, it 

should be noted that diversification (exploring the 

search space) and intensification (exploiting 

optimal solutions obtained so far) are two 

contradicting principles, that must be balanced 

efficiently in order to achieve an improved 

performance of the metaheuristic [9]. 

In this regard, one promising alternative is 

developing a memetic algorithm whereby an 

integration of (at least) two algorithms is done with 

the aim of enhancing the overall performance.  

Motivated by this, a good number of hybrid 

algorithms have proposed in the recent past to solve 

a variety of optimizations and feature selection 

problems [24]. However, to enhance diversification 

and intensification of these hybrid algorithms, 

exploration and fine-tuning within their basic 

constituent algorithms is needed prior to 

hybridization [25]. 

This emphasizes too, that there are a number of 

techniques lying within these memetic algorithms 

that are yet to be investigated. 

Foremost, the technique of combining one or more 

nature inspired algorithms (NIAs) need to be 

determined. Secondly, the criterion of determining 

how many NIAs need to be combined within the 

search space has to be accomplished. Thirdly, the 

method of determining the application area upon 

which the proposed memetic algorithm has to be 

done. Finally, the criterion of applying the memetic 

algorithm in a specific domain has to be 

accomplished [25].  

Inspired by the aforementioned, this paper  propose 

a new hybrid algorithm called Excited (E) - 

Adaptive Cuckoo Search (ACS)-Intensification 

Dedicated Grey Wolf Optimizer (IDGWO) i.e. 

EACSIDGWO algorithm to solve the feature 

selection problem in biomedical science. In the 

proposed algorithm, the concept of the complete 

voltage and current responses of a direct current 

(DC) excited resistor capacitor (RC) circuit are 

innovatively utilized to make the step size of ACS 

and the non-linear control strategy of parameter ! 

of the IDGWO adaptive. Since the population has a 

higher diversity during early stages of the proposed 
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algorithm, both the ACS and IDGWO are jointly 

utilized to attain accelerated convergence. 

However, to enhance mature convergence while 

striking an effective balance between exploitation 

and exploration in latter stages, the role of ACS is 

switched to global exploration while the IDGWO is 

still left conducting the local exploitation. 

The remainder of this paper is organized as follows: 

Sections 2 discussed the existing literature within 

the same research domain. Section 3 presents the 

background information of the CS and the GWO 

respectively where their inspirations and 

mathematical models are given emphasis. The 

continuous version of the proposed EACSIDGWO 

algorithm is presented in section 4 while the details 

of its binary version are given section 5. The 

experimental methodology considered in this paper 

is presented in section 6 while the results on feature 

selection are discussed in section 7. Finally, 

conclusions and the suggested future works are 

given in section 8. 

 

Literature Reviews 

2.1. Review of Hybridization of GWO with other 

Search Algorithms. Combining two or more 

metaheuristics to attain better solutions is currently 

a new insight in the area of optimization. In the 

literature, many researchers have utilized GWO in 

the field of hybrid metaheuristics. For instance, in 

[26] a hybrid of GWO and Artificial Bee Colony 

(ABC) is proposed to improve performance of a 

complex system. In [27], GWO is hybridized with 

Ant Lion Optimizer (ALO) for wrapper feature 

selection. Alomoush [28] proposed a hybrid of 

GWO and Harmony Search (HS). In this memetic, 

GWO updates the bandwidth and pitch adjustment 

rate in HS, which in return improves the global 

optimization abilities of the hybrid algorithm. In 

[29], Sankalap Arora combined GWO with Crow 

Search Algorithm (CSA). The performance of the 

derived memetic as a feature selector is evaluated 

using 21 datasets. The obtained results reveal that 

the combined algorithm is superior in solving 

complex optimization algorithms. In [30], a novel 

combination between GWO and PSO is utilized as 

load balancing technique in the cloud-computing 

arena. The conclusions point out that the hybrid 

algorithm improved both the convergence speed 

and the simplicity in comparison with other 

algorithms. Zhu [31], hybridized GWO with 

Differential Evolution (DE). The hybrid algorithm 

was tested on 23 different functions and a non-

deterministic polynomial hard problem. The 

obtained results indicate that this combination 

achieved superior exploration. In [32], a new 

memetic combining the exploration ability of 

Fireworks algorithm (FWA) with the exploitation 

ability of GWO is proposed. Utilizing 16 

benchmark functions with varied dimensions and 

complexities, the experimental results indicate that 
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the hybrid algorithm attained attractive global 

search abilities and convergence speeds. 

2.2. Review of Hybridization of CS with other 

Search Algorithms. Utilizing the concept of rand 

and best agents within a population, Cheng [33] 

developed an ensemble cuckoo search variant 

combining three different CS approaches that 

coexist within the entire search domain. These CS 

variants actively compete to derive superior 

generations for numerical optimization. To 

maintain population diversity, he introduced an 

external archive. The statistical results obtained 

reveal that the ensemble CS attained attractive 

converge speeds as well as robustness. In [34], 

GWO is hybridized with CS i.e. GWOCS for the 

extraction of parameters for different PV cell 

models situated in different conditions. Zhang [35] 

developed an ensemble CS algorithm that foremost 

divides a population into two smaller groups and 

then utilizes CS and differential evolution (DE) on 

the derived subgroups independently. The 

subgroups are free to share useful information by 

division. Further, the CS and DE algorithms can 

freely utilize each other’s merits to complement 

their weaknesses. This approach proved to balance 

the quality of solutions and the computation 

consumption. In [35], CS is hybridized with a 

covariance matrix adaptation evolution approach 

i.e. CMA-CS to improve the performance of CS in 

different optimization problems. 

Despite the advantages portrayed by the 

aforementioned hybrid GWO and CS 

metaheuristics for optimization and feature 

selection, superior hybrid approaches can be 

achieved if the single GWO and CS algorithms are 

improved prior to hybridization. Furthermore, the 

No-Free-Lunch (NFL) theorem has logically 

proved that there has been, is and will be no single 

metaheuristic capable of solving all optimization 

and feature selection problems [34]. While a given 

metaheuristic can, show an attractive performance 

on specific datasets, its performance might degrade 

when applied to similar or different types of 

datasets [35]. Thus, there is still a dire need to 

improve existing algorithms or develop new ones to 

solve function optimization problems as well as 

feature selection problems efficiently. 

  

Standard Cuckoo Search (CS)  

2.1. Inspiration of CS 

 The behavior of cuckoo birds. To date more than a 

thousand different species of birds are in existence 

in nature [36]. For most of these species, the female 

birds lay eggs in nests they have built themselves 

[37]. However, there exists some types of birds that 

do not build nests of their own, but instead lay their 

eggs in other different species’ nests, leaving the 

responsibility of taking care of their eggs to the host 

birds. The cuckoos are the most famous of these 

brood parasites [38]. 
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There are three types of brood parasites: intra-

specific brood parasites, cooperative breeding and 

nest take-over [39].The cuckoo strategy is full of 

amazing traits, foremost it replaces one host egg 

with its own to increase the chances of its egg being 

hatched by the host bird. Next, it tries to mimic the 

pattern and color (s) of this host eggs with the aim 

of reducing the chances of its egg being noticed and 

discarded by the host bird. It is also important to 

point out that, the timing of laying its egg is 

amazing since it cleverly selects a nest where a host 

bird has just laid eggs, implying that the cuckoo’s 

egg will hatch prior to the host eggs. The first action 

taken by the hatched cuckoo is evicting the host 

eggs that are yet to hatch out of the nest by blind 

propelling in order to increase its chances of being 

fed well by the host bird [38]. In addition, this 

young cuckoo mimics the call of host chicks thus 

enhancing more access to the food provided by the 

host bird [40]. 

However, if this host bird is able to identify the 

cuckoo’s egg, it can either discard it from the nest 

or quit this nest to build a completely new nest in a 

different location. 

Le’vy flights. From literature, many researchers 

have shown that the behavior of many flying 

animals, birds and insects can be demonstrated by a 

Le’vy flight [41, 42, 43, 44]. Le’vy flights are 

evident when some birds, insects and animals 

follow a long path with sudden turns in 

combination with random-short moves [44].These 

Le’vy flights have been successfully applied in 

optimization [42,44,45,46].A Le’vy flight is a 

random walk characterized with step-lengths whose 

distribution is according to a heavy-tailed 

probability distribution. 

 

2.2. Cuckoo search (CS) algorithm  

CS is a metaheuristic swarm-based global 

optimization based on cuckoos that was proposed 

by Yang and Deb in 2009.The CS combines the 

obligate brood parasitic nature of cuckoos with the 

le’vy flight existing in fruit flies and some birds 

[39].There are three basic idealized rules for the CS 

namely: 

i) A female cuckoo lays one egg at a time, and 

puts it in a randomly chosen nest. 

ii) The best nests with high quality eggs 

(highest fitness/solutions) will carry over to 

the next generations 

iii) The number of available host nests is kept 

fixed, and the host bird can discover the egg 

laid by the female cuckoo (alien egg) with 

a probability "# ∈ [0,1]. Depending on the 

value of	"#, the host bird can either throw 

away the alien egg or abandon the nest. An 

assumption that only a fraction of "# nests 

is replaced by new ones. 

Based on the above rules, an illustration of the CS 

is shown in Algorithm 1 
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Algorithm 1: Pseudo-code for the standard CS 

1 Begin: 

2  Initialize "# = 0.25 

3  Define objective function/ 0 , 0 =

(02, 03, … , 05), where 7 is the number of 

 dimensions 

4 Generate initial population of 8 host bird 

nests,9:(; = 1,2, … , 8) 

5 while < ≤ <>#? or any other stopping 

criteria  

6 Generate a new cuckoo (solution) randomly 

via Le’vy flight according to Equation (1) 

7 Evaluate the fitness of the new cuckoo,@: 

8 Randomly choose a nest from among the 

host nests 8	(For example A) 

9 if @: > @C then 

10     Replace nest j by the new cuckoo ; 

11 end 

12 Abandon a fraction of "# worst nests and 

generate new ones according to Equation 

(6) 

13 Keep best solutions(or those nests with 

quality solutions) 

14 Rank these solutions, then keep the current 

best 

15 end while 

16 Report the final best 

17 end 

 

2.3. Mathematical modelling of the standard CS 

 

Considering Algorithm 1, the standard CS has three 

major steps [47, 48, 49]: 

1) Exploitation (Intensification) by the use of 

Le’vy flight random walk (LFRW) 

2) Exploration(Diversification) using biased-

selective random walk(BSRW) 

3) Elitist scheme via greedy selection 

Intensification using Le’vy flight random walk 

(LFRW). In this phase, new solutions are generated 

around the current best solution, which in return 

enhances the speed of the local search. This phase 

is achieved via the LFRW that is generally 

presented in (1) where the step size is derived from 

the Le’vy distribution. 

 

 9:,DEFG2 = 9:,DEF + I ⊕ Le’vy(λ) (1) 
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Where 9:,DEF is the ;QR nest in the <S8QR generation 

and 9:,DEFG2 is a new nest generated by the Le’vy 

flight.	⊕ implies entry-wise multiplications and I 

is the step size where I > 0 and is formulated in 

(2).The formula in equation (1) ensures that a new 

solution will be close to the current best-solution. 

 

 I = IT×(9:,DEF − 9WEXQ) (2) 

 

Where 9WEXQ is the current solution and IT is a 

scaler that is set to 0.01 in the standard CSA [39, 

50].	Le’vy(λ) is a random number derived from the 

Le’vy distribution and is formulated in (3) 

 

 
Le’vy λ ~

Z×[

\
2
]

 
(3) 

Where λ is a constant whose value is 1.5 as 

suggested by Yang is in the standard CS [39]. [ and 

\ are random numbers derived from a normal 

distribution whose mean and standard deviation is 

1.	Z is a parameter computed in (4) 

 

 

Z =
⌈(1 + λ)×sin	(

b×λ
2 )

⌈(
1 + λ
2 ×λ×2

]c2
3 )

2
]

 

(4) 

 

Where ⌈ is a gamma function. The final form of 

Le’vy flight random walk (LFRW) is a combination 

of equations (1) to (4) as presented in equation (5). 

 

 
9:,DEFG2 = 9:,DEF + IT 	

Z×[

\
2
]

	(9:,DEF

− 9WEXQ) 

(5) 

 

Diversification by the use of biased-selective 

random walk (BSRW). In this phase, new solutions 

are randomly generated in locations far from the 

current best solution. An approach that ensures that 

the CSA is not trapped in the local optimum thus 

enhancing suitable diversity and exploration of the 

entire search space [49]. This phase of the CSA is 

achieved by utilizing the BSRW which is efficient 

in exploring the entire search space especially when 

it is large since the step-size in the Le’vy flight is 

much longer in the long run [47,49]. 

To find new solutions that are far from the current 

best solution, foremost, a trial solution is obtained 

by using a mutation of the current best solution and 

a differential step size from two solutions selected 

randomly. Then a new solution is derived from a 

crossover operator between the current best 

solution and the two trial solutions [49].The 

formulation of the BSRW is given in (6) [48]. 
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 9:,DEFG2

=
9:,DEF + d× 0#,C,DEF − 0W,C,DEF 	e;fℎ	"#

9:,DEF	e;fℎ	fℎS	hSi!;8;8<	"#
 

(6

) 

 

Where ! and j are two random indexes, d is a 

random number in the range [0, 1] and "# is the 

probability discovery whose best value is 0.25 [39, 

49]. 

 

Elitist scheme via greedy selection.   

After each random walk process, the cuckoo search 

algorithm utilizes the greedy strategy to select 

solutions with better fitness values that will be 

passed to the next generation. This facilitates 

maintenance of good solutions [49]. 

 

Grey Wolf Optimization (GWO) Algorithm  

GWO is recent nature-inspired metaheuristic 

algorithm that was proposed by Mirjalili et al in 

2014 [51-53].The GWO imitates both the hunting 

and leadership traits of the grey wolves. The grey 

wolves belong to the Canidae family and follow a 

social hierarchy that is very strict. In most cases, a 

pack of between 5 and 12 wolves is involved in 

hunting. To efficiently simulate the leadership 

hierarchy of the conventional GWO algorithm, four 

levels are considered: alpha (α), beta (β), delta (δ) 

and omega (ω). Alpha, which is either a male or 

female is at the topmost of the hierarchy and is 

regarded as the leader of the pack. This leader 

makes all suitable decisions for the pack which are 

not limited to discipline and order, hunting, 

sleeping location and waking-up time for the entire 

pack. Beta are known to assist the Alpha in 

decision-making and their main task is the feedback 

suggestions. Delta behave like scouts, caretakers, 

sentinels, hunters and elders. They control and 

guide the omega wolves by obeying both the beta 

and alpha wolves. The omega wolves are least in 

the hierarchy and must obey all the other wolves 

[51-53]. 

The GWO algorithm is modelled mathematically in 

four stages that are described as follows: 

3.1. Leadership hierarchy 

The mathematical model of the GWO is anchored 

on the social hierarchy of the grey wolves. The 

alpha (α) is considered the best solution in the 

population while beta (β) and delta (δ) are termed 

as the second, third best solutions respectively. 

Lastly, the omega (ω) are assumed the rest of the 

solutions in the population [51-53]. 

 

3.2. Encircling the prey 

Equation (6) and Equation (7) represent the 

mathematical model for the wolves’ encircling trait 

[51]. 
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 k = l	. 9m(f) − 9(f)  (6) 

 

 9 f + 1 = 9m f − n. k (7) 

 

Where k is the distance between the prey and a 

given wolf.		9 is the wolf’s position vector and 9m 

depicts the prey’s position vector at iteration f. n 

and l are random vectors computed as shown in 

Equation (8) and Equation (9) [51]. 

 

 n = 2!. h2 − ! (8) 

 

 l = 2. h3 (9) 

 

Where h2 and h2 are randomly generated vectors in 

the range [0, 1] and ! is a set vector that is linearly 

decreases from 2 to 0 over the iterations. 

 

3.3. Hunting the prey 

In the hunting stage, the alpha is considered the best 

applicant for the solution while its two assistants 

(beta and delta) are expected to know the possible 

location of the prey. Thus, the best three solutions 

that have been achieved until a given iteration are 

preserved and are used to compel the remaining 

wolves in the pack (i.e. omega) to update their 

positions in the search space consistent with the 

optimal location. 

The mechanism utilized in updating the wolves’ 

positions is given in Equation 10. 

 

 
9 f + 1 =

92 + 93 + 9o
3

 
(10) 

 

Where92,	93 and 9o are defined and computed 

using Equation 11, Equation 12 and Equation 13 

respectively. 

 

 92 = 9q − n2. kq (11) 

 

 93 = 9r − n3. kr (12) 

 

 9o = 9s − no. ks (13) 

 

Where9q, 9r and 9s are the three best wolves 

(solutions) in the pack at a given iteration f. n2, n3 

and no are calculated using Equation 8. While	kq, 

kr and ks are calculated using Equation (14), 

Equation (15) and Equation (16) respectively. 
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 kq = l2	. 9q − 9  (14) 

 

 kr = l3	. 9r − 9  (15) 

 

 ks = lo	. 9s − 9  (16) 

 

Where l2,	l3 and lo are calculated based on 

Equation (9).  

 

3.4. Searching and attacking the prey 

The grey wolves can only attack the prey when it 

stops moving. This is modelled mathematically 

based on vector n that is utilized in Equation (8). 

Vector n comprises of values that span within the 

range [−2!, 2!] and the value of ! is decreased 

from 2 to 0 over the course of iterations using 

Equation (17). 

 

 
! = 2 − (

2×;fSh

t!0:QEu
) 

(17) 

 

Where ;fSh is the iteration number and t!0:QEu is 

the optimal total number of iterations. 

When n < 1 the wolves are forced to attack the 

prey and when n > 1, the wolf diverges out from 

the current prey .Searching for the prey is the 

exploration phase while attacking it is the 

exploitation phase. 

 

Algorithm 2: Pseudo-code for the GWO 

1 Begin: 

2  Initialize population size	8 , parameter !, 

coefficient vectors n,	l and maximum 

number of iterations t!0:QEu  

3 Set f ≔ 0 {Counter initialization} 

4 for (; =1: ; ≤ 8) do 

     Randomly generate an initial population 

9:(f) 

5     Evaluate the fitness function of each 

agent(solution) i.e. /(9:)  

6 end for 

7 Assign the values of the 1st ,2nd and 3rd best 

solutions i.e. 9q,	9r and 9s respectively 

8 repeat 

9 for (; =1: ; ≤ 8) do 

10     Update each search agent in the 

population using Equation (10) 

11 Decrease the value of ! using Equation (17) 

12 Update the coefficients n and l as shown in 

Equation (8) and Equation (9) respectively 
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13 Evaluate the fitness function of each search 

agent (vector) /(9:) 

14 end for 

15 Update the vectors 9q,	9r and 9s 

16 Set f = f + 1{Iteration counter increasing} 

17 Until (f < t!0:QEu) {termination criteria 

satisfied} 

18 Report the best solution 9q 

 

 

Excited -Adaptive Cuckoo Search- 

Intensification dedicated Grey Wolf 

Optimization (EACSIDGWO) 

In general, effective balancing between 

diversification (global search) and intensification 

(local search) in a metaheuristic plays a beneficial 

and crucial role in achieving excellent performance 

of an algorithm [54, 55, 56]. However, it is difficult 

to achieve this balance with a single metaheuristic 

(for example either using CSA or GWO) [54, 55]. 

For instance, CSA is efficient at exploring the 

promising area of the whole search space 

(diversification) but ineffective at fine-tuning the 

end of the search space 

(exploitation/intensification) [57, 58]. On the other 

hand, GWO is good at intensification (exploitation) 

but inefficient at diversification (exploration) [33, 

59]. 

For this reason, in trying to enhance mature 

convergence while ensuring the required effective 

balance between diversification and intensification 

is met, a hybrid algorithm called Excited- Adaptive 

Cuckoo Search-Intensification Dedicated Grey 

Wolf Optimization (EACSIDGWO) utilizing the 

strengths of each algorithm (i.e. CSA’s 

diversification and GWO’s intensification abilities) 

is proposed in this paper. Moreover, the 

adaptability of the proposed EACSIDGWO is 

guided innovatively by the complete voltage and 

current responses of a dc excited RC circuit (whose 

analysis results in first order differential equations) 

that find continual applications in electronics, 

communications and control systems [60]. 

 

4.1. Adaptive cuckoo search (ACS) 

 

4.1.1. Adaptive step size via the complete voltage 

response of the dc excited RC circuit 

 

From the details of the standard CS algorithm 

presented in section 2, it is evident that the 

algorithm lacks a criterion to control its step size 

through the iteration process. Control of the step 

size is key in guiding the CS algorithm to reach 

either its global maxima or minima [49, 61]. 

Inspired by the complete voltage response of a 

direct current (dc) excited RC circuit which 
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increases with time, a novel mechanism to control 

the step size is proposed. Contrary to prior research 

[49, 61] where the step size decays with 

generations, in this research the step size grows 

with generations with the aim of strengthening the 

diversification (exploration) ability of the CS, 

which is a component of the proposed 

EACSIDGWO algorithm. 

The solution to first order differential equation of 

the direct current excited RC circuit motivated the 

formulation of a new variant of ACS in this paper.  

 

The complete voltage response of the RC circuit to 

a sudden application of a dc voltage source, with 

the assumption that the capacitor is initially not 

charged is given in equation 18. 

 

 
x f =

0, f < 0

yX 1 − S
cQ

z ,							f > 0
	 

(18) 

 

Where { = | ∗ l is the time constant, which 

expresses the rapidity with which this the voltage 

x f  rises to the value of yX which is a constant dc 

voltage source. | and l are the equivalent 

resistance and capacitance in the circuit. 

Considering the situation when f > 0, equation 

(18) can be rewritten as presented in equation (19) 

 

 

 x f = yX 1 − (S
cQ)z  

 

(19) 

 
x f = yX(1 − (

1

SQ
)z) 

 

(20) 

As f → ∞, the component 2
EÄ
→ 0 forcing x f →

∞ → yX. We adopt this concept i.e. the exponential 

growth of x f  to control the step size of the cuckoo 

search algorithm by introducing the proposed 

equation (21). 

 

 

 dfSÅDEFG2 = dfSÅÇ#?×(1 − (
<S8Ç#? − <S8

<S8Ç#?
)z) 

 

(21) 

Where <S8the current generation (iteration) is, 

dfSÅÇ#? is the upper bound of the step size dfSÅ 

and <S8Ç#? is the maximum number of generations 

(iterations). 
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To ensure that the  dfSÅDEFG2 is proportional to the 

fitness of a given individual nest within the search 

space in the current generation, the non-linear 

modulation index { is formulated in equation 22. 

 

 

{:	,DEF =

IFEXQÉDEF + βFEXQÉDEF + δFEXQÉDEF
3 − iFEXQÉDEF

IFEXQÉDEF + βFEXQÉDEF + δFEXQÉDEF
3 − worstFEXQÉDEF

 

 

(22) 

Where {:	,DEF is the the non-linear modulation index 

for ;QR nest in generation <S8, IFEXQÉDEFis the 

fitness value of the alpha(I) nest (overall best nest) 

in generation <S8,	βFEXQÉDEF is the fitness value of 

the beta (β) nest (2nd best nest) in generation <S8, 

δFEXQÉDEF is the fitness value of the delta (δ) nest 

(3rd best nest) in generation <S8, iFEXQÉDEF is the 

fitness value of the ;QR nest in generation <S8  and 

worstFEXQÉDEF is the fitness value of the worst nest 

among the remaining omega(ä) nests (i.e. nests 

whose fitness values do not feature among the top 

three fitness values). 

 

Thus, equation (21) is further modified as equation 

(23). 

 

 dfSÅ:	,DEFG2 = dfSÅÇ#?×(1 − (
<S8Ç#? − <S8

<S8Ç#?
)zã	,åçé) 

 

(23) 

Where dfSÅ:	,DEFG2 is the step size for the for ;QR 

nest in generation		<S8 + 1.   

From equation (23), the step size dfSÅ:	,DEFG2 is 

non-linearly increasing from relatively small values 

to values close to  dfSÅÇ#? . The reason for 

proposing a non-linearly increasing strategy are as 

follows. Foremost, at the early stages of the 

proposed EACSIDGWO algorithm, whereby ACS 

is a component, the population has a higher 

diversity. A higher diversity imply a stronger 

ability to explore the global space. Our aim at this 
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point is to accelerate convergence. Therefore, the 

value of the step size dfSÅ:	,DEFG2  is set to a smaller 

value.  

It is important to point out that the anticipated 

accelerated convergence is a joint effort attained by 

foremost setting the dfSÅ:	,DEFG2 of the ACS to a 

small value at early stages, and utilizing the 

IDGWO (whose details are presented in section 

4.2) whose core task is exploitation.  

 

On the other hand, since the proposed 

EACSIDGWO algorithm is a hybrid algorithm 

where the ACS cooperatively works with the 

IDGWO,   all the nests will be attracted to the global 

optima i.e. the alpha (I)	nest at the later stage. This 

will compel them to converge prematurely without 

being given enough room to explore the search 

space. Such a situation will lead the nests away 

from a local optimum, and encourage 

diversification. For this reason, the value of the step 

size dfSÅ:	,DEFG2 is set to a larger value i.e. dfSÅÇ#?. 

In this paper the dfSÅÇ#? is set to 1. 

In other words, our main reason for proposing a 

non-linearly increasing step size dfSÅ:	,DEFG2 is that 

its small values at the initial stages of the proposed 

EACSIDGWO algorithm facilitates “local 

exploitation” while its larger values in the later 

stages will facilitate “global exploration”. 

 

The ACS can then be modeled as presented in 

equation 24. 

 

 9:,DEFG2 = 9:,DEF + h!878×	dfSÅ:,DEFG2 (24) 

 

Equation (24) is a formulation of the new search 

space for the ACS from the current solution. 

 

Moreover, if this step size is considered 

proportional to the global best solution, then 

equation (24) can be formulated as given in 

equation (25). 

 

 9:,DEFG2 = 9:,DEF + h!878×	dfSÅ:,DEFG2*(9:,DEF − 9DWEXQ,DEF) (25) 
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 Where 9DWEXQ,DEF is the global best solution among 

all 9: for ; = 1,2, … , 8 at generation <S8 ,and 8 is 

the number of host bird nests. 

Thus, from equations (21) – (25) it is evident that 

the diversification ability of the ACS is heightened 

as the number of generations (<S8) approach the 

maximum number of generations (<S8Ç#?). This 

because the value of the step size rapidly increases 

towards the set maximum value of step (dfSÅÇ#?). 

 

4.2. Intensification dedicated grey wolf optimizer 

(IDGWO) 

 

4.2.1. Nonlinearly controlling parameter ! via the 

complete current response of the dc excited RC 

circuit  

It is evident from sub-section 3.4 that parameter  ! 

plays a critical role in balancing the diversification 

(exploration) and the intensification (exploitation) 

of a search agent. 

A large value of control parameter ! facilitates 

diversification while a smaller value of this 

parameter facilitates intensification. Thus, a 

suitable selection of the control parameter !  can 

enhance a good balance between global 

diversification (exploration) and local 

intensification (exploitation). 

In the original GWO (described in section 3), the 

value of ! linearly decreases from 2 to 0.( refer to 

Equation 17). However, the search process of the 

GWO algorithm is both non-linear and 

complicated, which cannot be truly reflected by the 

linear control strategy of ! presented in equation 

17. 

In addition, Mittal [62] proposed that an attractive 

performance can be attained if parameter ! is non-

linearly decreased rather than decreased linearly. 

Inspired by the complete current response of a 

direct current (dc) excited RC circuit which 

increases with time, a novel nonlinear adjustment 

mechanism of control parameter !  is formulated in 

this paper. 

The complete current response of the RC circuit to 

a sudden application of a dc voltage source, with 

the assumption that the capacitor is initially not 

charged is given in equation 26. 

 

 
; f =

yX
|
((
1

SQ
)z) 

 

(26) 

As f → ∞, the component 2

EÄ
→ 0 forcing ; f →

∞ → 0. We adopt this concept i.e. the exponential 

decay of ; f  to formulate a novel improved 

strategy i.e. equation 27 to generate the values for 

control parameter	!. 
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 		!:,DEF=!è×(
DEFêëícDEF

DEFêëí
)zã,åçé (27) 

 

Where <S8 is the current generation (iteration),  !è 

is the initial higher value of parameter	! and 

<S8Ç#? is the maximum number of generations 

(iterations).	{:,DEF is the non-linear modulation 

index described earlier by  equation 22. 

 

Consequently, vector n is computed as given in 

equation 28. 

 

 		n=2!:,DEF. h2 − !:,DEF (28) 

 

Equation 27 is a non-linear decreasing control 

parameter for 		!:,DEF whose initial upper limit is 

equal to the value !è while its final lower limit is 

zero. 

 From the original literature of GWO, the value 

n < 1 compels the grey wolves to move towards 

the prey (exploitation) while n > 1 compels them 

to move away from the prey in search of a fitter 

prey (exploration).Thus, setting !è to 1 will always 

force the wolves to move to the prey which will 

enable us dedicate modified GWO algorithm, a 

component of proposed EACSIDGWO, for 

intensification. 

 

4.2.2. Enhanced mature convergence via a fitness 

value based position-updating criterion 

 

Both diversification and intensification are crucial 

for population-based optimization algorithms [62]. 

However, from the detailed account of the 

conventional GWO ( refer to section 3), it is evident 

that all the other wolves are attracted towards the 

three leaders I, β and δ , a scenario that will force 

the algorithm to converge prematurely without 

attaining sufficient diversification of the search 

space. In other words, the conventional GWO is 

prone to pre-mature convergence. 

 In reference to the position-updated criterion of 

GWO described by equation 10, a new candidate 

individual is obtained by moving the old individual 

towards the best leader (	I	eìî/), the second best 

leader (	β	eìî/) and the third best leader (	δ	eìî/). 

This approach will force all the other grey wolves 

to crowd a in a reduced section of the search space 

that might be different from the optimal region, and 

without giving them a leeway to escape from such 

a region. In an effort to overcome this major 

drawback, in this paper a scheme that promotes 

mature converge is devised. 
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Instead of averaging values of vectors	92, 93 and 

9o (a form of recombining them) as a mechanism 

of updating the wolves’ positions (refer to equation 

10), in this paper we make full use of information 

of their fitness values as a criteria of arriving at new 

positions for the wolves. 

  

Foremost the search agents of the populations  92, 

93 and 9o  are computed as given in equations 29-

31. 

 

 92(;, A) = 9q(A) − n2. kq 

 

(29) 

 

 93(;, A) = 9r(A) − n3. kr (30) 

 

 

 9o(;, A) = 9s(A) − no. ks 

 

(31) 

Where ; = 1,2, … , 8 and A = 1,2, … , 7. 8 is the 

population size while 7 is the dimension of the 

search space. 

 

Next, the fitness value for each search agent  in each 

of the derived populations i.e.  92,	93 and 9o is 

evaluated. Further a new population with the fittest 

values is derived from these three populations i.e. 

92,	93 and 9o. 

 

Equations 32-33 represents the process undertaken 

to derive this new population.  

 

 
[@;f>#?, ï87S0] = max	( 9C/:,DEF

o

Cô2

) 
(32) 

 
9:,DEFG2 = 9C	ã,åçé

o

Cô2 öF5E?

 
(33) 
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Where 9C	ã,åçé is vector A computed using search 

agent ; during iteration	<S8, 9C/:,DEF is the fitness 

value of vector  9C	ã,åçé.   

 

4.3. Proposed EACSIDGWO (Continuous version) 

We cooperatively combined the proposed adaptive 

cuckoo search (ACS) and the intensification-

dedicated grey wolf optimization (IDGWO), and 

developed the EACSIDGWO. In the 

EACSIDGWO algorithm, the ACS is actively 

involved in intensification (exploitation) during the 

early stage when the population has higher diversity 

and diversification at later stages. On the other 

hand, the IDGWO is only actively involved in 

intensification in all the stages of the proposed 

algorithm. By doing so, an effective balance 

between diversification and intensification is 

achieved. In addition, mature convergence is 

enhanced which in the end leads to high quality 

solutions. 

 

Proposed EACSIDGWO (Binary version)  

Selection of features is binary by nature [63]. 

Therefore, the proposed EACSIDGWO algorithm 

cannot be utilized in selection of features without 

further modifications. 

In the proposed EACSIDGWO algorithm, the new 

positions of the search agents will have continuous 

solutions, which must be converted into 

corresponding binary values. 

In this paper, this conversion is achieved by 

foremost applying squashing of the continuous 

solutions in each dimension using a sigmoid (S-

shaped) transfer function [63].This will compel the 

search agents to move into a binary search space as 

depicted by equation 35. 

 

 
õ =

1

1 +	Sc2T(ú
ù
ã,åçécT.û)

 

 

(34) 

 

Where 95:,DEF is a continuous-valued position of 

the ;QR search agent in the 7QR dimension during 

generation <S8. 

 

The output õ  of the sigmoid transfer function is still 

a continuous value and thus it has to be the 

threshold to reach the binary-value one. Normally, 

the sigmoid function maps smoothly the infinite 

input to a finite output [63].To arrive at the binary 

solution when a sigmoid function is used, the 

commonly stochastic threshold is applied as 

presented in equation 35. 
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ü5:,DEF =

0			;/	h!87 < 	õ
1			;/	h!87 ≥ 	õ

 

 

(35) 

 
°:,DEF = ü5:,DEF

F

:ô2

 

 

(36) 

Where ü5:,DEF is the binary updated position at 

generation <S8 in the 7QR dimension and h!87 is a 

random number drawn from a uniform distribution 

∈ [0,1]. °:,DEF is the equivalent binary vector of the 

;QR search agent at generation <S8. 

 

Using this approach, the original solutions remain 

in the continuous domain of the proposed 

EACSIDGWO algorithm and can be converted to 

binary when need arises. 

 

The pseudocode of the binary version of the 

proposed EACSIDGWO algorithm is presented in 

Algorithm 3. 

 

Algorithm 1: Pseudo-code for the 

EACSIDGWO ( Binary Version) 

Input: labelled biomedical dataset D, MaxIter, 

ACS and IDGWO parameters value, number of 

host bird nests (8), number of dimensions 

(features) 7, Lower bound (¢W) and Upper bound 

(£W)  

Output: Best Fitness , Best Search Agent 

1 for each nest i (i =1, 2...n) do 

2   for each dimension j(j=1,2,…,d) do 

3    9C:,T=random number drawn from 

[¢W, £W] 

4   end 

5 Convert continuous values of 9:,T to binary 

using Eq. 35, 36 and 37 

6 Train a classifier to evaluate the accuracy 

of the equivalent binary vector of  9:,T and 

store the value in 9/:,T 

7 end 

8 [~, Index]=Sort (	9/	T, ′7Sd•S87′) 

9 IFEXQÉT=	9/	T(ï87S0(1)) 

10 βFEXQÉT=	9/	T(ï87S0(2)) 

11 δFEXQÉT=	9/	T(ï87S0(3)) 

12 worstFEXQÉT=	9/	T(ï87S0(8)) 

13 IFEXQT=	9	T(ï87S0(1)) 

14 βFEXQT=	9	T(ï87S0(2)) 

15 δFEXQT=	9	T(ï87S0(3)) 

16 While (<S8 ≤ t!0ïfSh) 
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17     for each nest i (i =1, 2...n) do 

18       Calculate {:	,DEF and dfSÅ:	,DEFG2 using 

      Eq. 22 and 23 respectively 

19      Generate a new cuckoo nest 9:,DEFG2  

     using Eq. 25 

20 Convert continuous values of 9:,DEFG2 to 

binary using Eq. 35, 36 and 37 

21 Train a classifier to evaluate the accuracy 

of the equivalent binary vector of  9:,DEFG2 

and store the value in 9/:,DEFG2 

22 if( 9/:,DEFG2 > 	9/:,T) then 

23 				9/:,T= 9/:,DEFG2 

24 			9:,T=9:,DEFG2 

25 end 

26   end 

27 Repeat step 8 to 15 

28 for each nest i (i =1, 2...n) do 

29 Calculate {:	,DEF and !:	,DEF using  Eq. 22 

and 27 respectively 

30   for each dimension j(j=1,2,…,d) do 

31 Calculate coefficients n and l as shown in 

Equation (28) and Equation (9) respectively 

32 Compute vectors92ã,åçé(A),	93ã,åçé(A) and 

	9oã,åçé(A) using Equations 29, 30 and 31 

respectively. 

33 end 

34 Convert continuous values of 

92ã,åçé, 93ã,åçé	and	9oã,åçé to binary using 

Eq. 35, 36 and 37 

35 Consecutively, train a classifier to evaluate 

the accuracies of the equivalent binary 

vectors of 92ã,åçé, 93ã,åçé	and	9oã,åçé and 

store the value in 

92/:,DEF, 93/:,DEF	!87	9o/:,DEF 

respectively. 

36 Determine 9:,DEFG2 using equations 32 and 

33 respectively 

37 end 

38 Repeat step 8 to 15 

39 Abandon a fraction of "# worst nests and 

generate new ones according to Equation 

(6) 

40 Keep best solutions(or those nests with 

quality solutions) 

41 Repeat step 8 to 15 

 end 

42 Best Search Agent=IFEXQT 
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43 Best Fitness=IFEXQÉT 

  

Experimental methodology 

In this section, detailed accounts of the biomedical 

datasets, evaluation metrics, proposed fitness 

function and the parameter setting for the 

considered metaheuristic algorithms are outlined. 

 

6.1. Considered Biomedical Datasets 

To validate the performance of the considered 

metaheuristic algorithms, six benchmark 

biomedical datasets extracted from the UCI Irvine 

Machine [64] were utilized. Each dataset has two 

classes and the performance of each of these 

algorithms is evaluated based on its ability to 

classify these classes correctly. Details of these 

datasets are given in Table 1. 

 

Table 1: Considered Biomedical Datasets 

Dataset Number of Features Number of Cases 

Breast Cancer Wisconsin (Prognosis) 33 198 

Breast Cancer Wisconsin (Diagnostic) 30 569 

SPECTF Heart 44 267 

Ovarian Cancer 4000 216 

CNS 7129 60 

Colon 2000 62 

 

 

6.2. Evaluation Metrics 

For the considered feature selection problem, the 

following evaluation metrics were utilized to 

compare the performance of each considered 

feature selection technique. 

Average Accuracy (Avg_Acc )- It is one of the 

commonly used classification metric that represents 

the number of correctly classified instances by 

using a particular feature set. The mathematical 

formulation of this metric is given in Equation 37. 
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(34) 

Where ® is the number of times (runs) a given 

metaheuristic algorithm is run, © represents the 

number folds utilized and n••C is the accuracy 

reported during fold A. n••C is defined in Equation 

35. 

 

 
n••C =

¨"C + ¨®C
¨"C + ¨®C + @"C + @®C

 

 

(35) 

Where TP and FN denote the number of positive 

samples in fold A , that are accurately and falsely 

predicted, respectively, and TN and FP represent 

the number of negative samples in the same fold 

that are predicted accurately and wrongly, 

respectively [65]. 

 

 

Average Feature Length (Avg_NFeat)-This metric 

characterizes the average length of selected features 

to the total number of features in the dataset. 

Equation 36 gives its mathematical formulation. 
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1

®
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™

:ô2

 

 

(36) 

Where õSî_@S!f: is the number of selected features 

in the testing dataset during run ;. 

 

Minimum Accuracy (Min_Acc) - Is the least value 

of accuracy reported during N runs. Equation 37 

depicts its formulation. 

 

 
t;8_n•• = min	( nx<_•hìddn••C

™

Cô2

) 

 

(37) 

Where nx<_•hìddn••: is given by Equation 38 

 

 
nx<_•hìddn••: =

1

©
n••C

´

Cô2

 

 

(38) 

Maximum Accuracy (Max_Acc) - Is the largest 

value of accuracy reported during N runs. Its 

mathematical formulation is given by Equation 39. 

 

 
t!0_n•• = max	( nx<_•hìddn••C

™

Cô2

) 
(39) 
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Maximum Features Selected (Max_NFeat) - Is the 

largest number of selected features during N runs. 

Equation 40 gives its mathematical formulation. 

 

 
t!0_®@S!f = max	( õSî_@S!f:

™

:ô2

) 

 

(40) 

Minimum Features Selected (Min_NFeat) - Is the 

least number of selected features during N runs. 

Equation 41 gives its mathematical formulation. 

 

 
t;8_®@S!f = min	( õSî_@S!f:

™

:ô2

) 

 

(41) 

6.3. Evaluation of the classifier performance 

Since the Support Vector machine classifier has 

already made immense contributions in the field of 

microarray-based cancer classification [65], it was 

adopted in this paper to evaluate the classification 

accuracy using the selected subset of features 

returned by the various considered metaheuristic 

feature selection approaches. The Matlab fitcsvm 

function that trains and cross-validates an SVM 

model was adopted in this paper. We specified the 

kernel scale parameter to “auto” to allow the 

function select the appropriate scale factor using a 

heuristic search. 

With the SVM classifier, the data items are mapped 

points in an 8 −dimensional feature space ( i.e. 

8=number of features) and the each feature’s value 

is a value of a given coordinate. The final output of 

this classifier is an optimal hyperplane which can 

be used to classify new cases[18, 65]. 

However, the performance of the SVM classifier is 

highly dependent on the selection of its kernel 

function [18,65].A reason why  experiments were 

conducted using various kernels in this paper. 

Selecting a suitable kernel is both dataset and 

problem specific and selected experimentally [18, 

65]. Based on the conducted experiments, suitable 

kernel functions were selected for the considered 

datasets . The considered datasets and their suitable 

kernel functions are presented in Table 2. 

More information of selecting suitable SVM kernel 

functions is presented in [65]. 

 

Table 2: Selection of suitable kernel functions 

Dataset Kernel function 

Breast Cancer 

Wisconsin  (Prognosis) 

Radial Basis Function 

(RBF) 



	

184	
	

Breast Cancer 

Wisconsin 

(Diagnostic) 

Radial Basis Function 

(RBF) 

SPECTF Heart Radial Basis Function 

(RBF) 

Ovarian Cancer Linear Function 

CNS Linear Function 

Colon Linear Function 

 

6.4. Fitness function 

The main aim of a feature selection exercise is to 

discover a subset of features from the whole set of 

existing features in a given dataset such that, the 

considered optimization algorithm is able to 

achieve the highest possible accuracy using that 

subset. For instance in datasets with many features 

(attributes), the objective is to minimize the number 

of selected features while improving the 

classification accuracy of the feature selection 

approach. 

In classifications tasks, there exists higher chances 

that two feature subsets containing different 

number of features will have the same accuracy 

[18].However, if a subset with a large number of 

features is discovered earlier by a given 

optimization algorithm, it is likely that the one with 

least features will be ignored[18]. 

In trying to overcome this challenge, a fitness 

function proposed in [18] to evaluate the 

classification performance of optimization 

algorithms for feature selection tasks is adopted. 

This fitness function is given in Equation 42. 

 

 
@;f = I ∗

|

®
− ≠ ∗ nx<_•hìddn••: 

 

(42) 

Where ®  represents the total number of features 

within a given dataset, |  represents the number of 

selected features during run ; and nx<_•hìddn••: 

is the average crossvalidation accuracy reported 

during run ;	(refer to Equation 38). ≠ and I are two 

weights corresponding to the significance of the 

classification quality and the subset length 

respectively. In this paper, ≠ is set to 0.8 and I =

0.2  as adopted from [18]. 

It is important to point out that both terms are 

normalized by dividing by their largest possible 

values i.e. the number of selected features |  is 

divided by the total number of features ® , and 

average accuracy nx<_•hìddn••: is divided by the 

value 1. 

 

6.5. Parameter setting for the considered feature 

selection techniques 
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The performance of the proposed EACSIDGWO 

algorithm was compared to those of Extended 

Binary Cuckoo Search (EBCS), Binary Anti-

Colony Optimization (BACO), Binary Genetic 

Algorithm (BGA) and Binary Particle Swarm 

Optimization (BPSO) that were reported earlier in 

[18]. 

 

Table 3 indicates the selected parameter values for 

both the proposed BEACSIDGWO algorithm and 

each of other algorithms as reported in [18]. 

 

Table 3: Selection of parameter values for the 

considered approaches 

Algorithm Parameter values 

EACSIDGWO dfSÅÇ#? = 1,	!è = 1, 

"#=0.25 

EBCS ®>ÆQ = 10,Ø = 1, I = 1, 

"#=0.4 

BACO Γ:F:Q:#± = 0.1, I = 1, Å = 0.1 

BGA tu = 0.1, lu = 0.1 

BPSO l2 = 1, l3 = 2, 

ä:F:Q:#± = 0.9, 

ä≥#u¥cÉèu = 0.9 

 

To be consistent with the setup proposed in [18], 

the population size for the proposed EACSIDGWO 

was set to 30. Then the algorithm was run 10 times 

to perform the feature selection task for each 

considered dataset. In addition, each run terminated 

when 10000 fitness function evaluations was 

attained. This approach, allowed the proposed 

algorithm to utilize the fitness function at an equal 

number of times. 

In this paper, all the experiments were conducted 

using Matlab 2017 running on Windows 10 

operating system on a HP desktop with Intel(R) 

Core (TM) i7-3770CPU @ 3.4GHZ with 12.0GB 

of RAM. 

 

7. Results and Discussion 

To examine the diversification and intensification 

of the proposed EACSIDGWOA, detailed 

comparative study is presented in this section. 

The efficiency and the optimization performance of 

the proposed algorithm has been verified by 

comparing and analyzing its results with those of 

four other state-of-the-art optimization algorithms. 

The experimental classification results have been 

probed through statistical tests, comparative 

analysis and ranking methods. 

Tables 4-9 provides the performance of all the 

considered optimizations approaches for feature 

selection using the datasets described in subsection 
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6.1. It is important to point out that the best result 

achieved in each column for all the considered 

biomedical datasets is highlighted in bold while the 

worst is italicized. 

To prove that the proposed EACSIDGWO is 

superior over the other four-optimization 

algorithms, Wilcoxon rank-sum test i.e. a non-

parametric statistical test is also performed. The 

statistical results for the Å, ℎ and µ values obtained 

from the pairwise comparisons of the four groups 

are tabulated in Table 10. Tables 11-12 present a 

comparison of the overall ranking of the results 

obtained by the considered algorithms. 

 

7.1 Discussion 

7.1.1 Investigation of the obtained classification 

results. From Tables 4-9, the following 

observations can be made. 

(i) The proposed EACSIDGWO algorithm 

outperformed all the other considered 

algorithms in terms of classification 

accuracy for all the utilized datasets. It 

recorded the highest classification 

accuracy on the three highly 

dimensioned datasets (i.e. Ovarian, 

CNS and Colon) as well as the 

remaining three small sample sized 

datasets. This promising performance is 

largely attributed to the cooperative 

exploitation conducted by ACS and 

IDGWO components of the proposed 

algorithm during the early generations, 

as well as the single-handedly 

exploitation and exploration by 

IDGWO and ACS respectively at later 

generations. 

(ii) For four datasets i.e. Ovarian, Heart, 

CNS and Colon, the proposed algorithm 

attained a value for 	

nx<_n•• that is larger than the value for 

t!0_n•• attained by the EBCS. EBCS 

is a variant of Cuckoo Search, which is 

a component of the proposed 

EACSIDGWO algorithm. This superior 

performance proves the competency of 

the proposed approach to efficiently 

determine the optima within the search 

space. 

(iii) With regard to the average feature 

length ( nx<_®@S!f	), the proposed B-

EACSIDGWO algorithm demonstrated 

a superior performance by selecting the 

least number of features compared to 

the other algorithms. According to the 

results reported in Tables 4-9, the 

proposed algorithm performed better on 

all the considered datasets.  

(iv) In comparison with the original number 

of features in the considered datasets, 
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there is a notable reduction in the 

number selected features by the 

proposed approach. For instance, the 

actual number of features in ovarian 

cancer, CNS and Colon cancer datasets 

is 4000, 7129 and 2000 respectively, 

whereas the number of selected features 

by the proposed EACSIDGWO is 

274.8, 1208.1 and 538.5 respectively. 

This clearly indicates the proposed 

algorithm is able to reduce the number 

of features as well as locate the most 

significant optimal feature subsets. The 

strength of the proposed EACSIDGWO 

lies in its well-formulated algorithm 

(refer to section 5) that enhances both its 

diversification and intensification 

capabilities which enables it to 

eliminate redundant (non-informative) 

attributes and then actively search 

within the high-performance regions of 

the feature space. 

 

Table 4: Experimental results for the ovarian cancer dataset

Algorithm Accuracy Number Of Features 

t!0_n•• t;8_n•• nx<_n•• t!0_®@S!f t;8_®@S!f nx<_®@S!f 

EACSIDGWO 1.000 1.000 

 

1.000 

 

292 

 

264 274.8 

 

EBCS 0.991 0.991 0.991 1855 1747 1811.6 

BACO 0.991 0.986 0.990 1971 1912 1945.7 

BGA 0.991 0.991 0.991 1830 1755 1887.3 

BPSO 0.991 0.986 0.990 1913 1777 1857 

Values in bold represent the best result and values in italic denote the worst in each column, respectively. 

 

Table 5: Experimental results for the breast cancer Wisconsin (Diagnostic) dataset

Algorithm Accuracy Number Of Features 
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t!0_n•• t;8_n•• nx<_n•• t!0_®@S!f t;8_®@S!f nx<_®@S!f 

EACSIDGWO 0.977 0.974 0.975 3 3 3 

EBCS 0.981 0.974 0.973 4 3 3.1 

BACO 0.972 0.960 0.969 8 6 7 

BGA 0.975 0.965 0.972 6 3 3.6 

BPSO 0.981 0.963 0.974 8 3 5.4 

Values in bold represent the best result and values in italic denote the worst in each column, respectively. 

 

Table 6: Experimental results for the breast cancer Wisconsin (Prognosis) dataset

Algorithm Accuracy Number Of Features 

t!0_n•• t;8_n•• nx<_n•• t!0_®@S!f t;8_®@S!f nx<_®@S!f 

EACSIDGWO 0.879 0.864 0.873 7 3 5.6 

EBCS 0.874 0.828 0.856 8 4 6.2 

BACO 0.818 0.768 0.794 12 5 8.4 

BGA 0.874 0.793 0.843 10 4 6.5 

BPSO 0.848 0.798 0.821 11 4 8.3 

Values in bold represent the best result and values in italic denote the worst in each column, respectively. 

 

Table 7: Experimental results for the SPECTF Heart dataset

Algorithm Accuracy Number Of Features 

t!0_n•• t;8_n•• nx<_n•• t!0_®@S!f t;8_®@S!f nx<_®@S!f 

EACSIDGWO 0.884 0.861 0.875 6 3 4.5 
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EBCS 0.873 0.846 0.861 8 5 6.2 

BACO 0.846 0.813 0.831 15 10 12.1 

BGA 0.884 0.846 0.866 11 4 8.4 

BPSO 0.865 0.846 0.854 15 9 10.9 

Values in bold represent the best result and values in italic denote the worst in each column, respectively. 

 

Table 8: Experimental results for the CNS dataset 

Algorithm Accuracy Number Of Features 

t!0_n•• t;8_n•• nx<_n•• t!0_®@S!f t;8_®@S!f nx<_®@S!f 

EACSIDGWO 0.767 0.700 0.718 1623 807 1208.1 

EBCS 0.667 0.667 0.667 3490 3391 3446.7 

BACO 0.667 0.650 0.660 3589 3432 3522.9 

BGA 0.683 0.667 0.668 3566 3438 3489.7 

BPSO 0.667 0.667 0.667 3547 3359 3474.3 

Values in bold represent the best result and values in italic denote the worst in each column, respectively. 

 

Table 9: Experimental results for the colon dataset 

Algorithm Accuracy Number Of Features 

t!0_n•• t;8_n•• nx<_n•• t!0_®@S!f t;8_®@S!f nx<_®@S!f 

EACSIDGWO 0.919 0.887 0.905 637 397 538.5 

EBCS 0.903 0.871 0.887 1016 961 988.7 

BACO 0.903 0.871 0.881 1002 932 976 
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BGA 0.887 0.871 0.882 1003 944 962.8 

BPSO 0.887 0.855 0.879 1003 933 971.2 

Values in bold represent the best result and values in italic denote the worst in each column, respectively. 

 

 

7.1.2 Statistical analysis. The superiority of the 

proposed EACSIDGWO algorithm has been 

verified via Wilcoxon rank-sum test i.e. a non-

parametric test with a significance level of 5%. The 

results obtained for the pairwise comparison of the 

four groups are presented in Table 10. Observations 

from Table 10 reveal the statistical significance of 

the obtained experimental results for all the 

considered datasets. This clearly indicates that the 

proposed approach has an attractive performance in 

relation to the other four approaches. Thus, the 

overall statistical results by our algorithm are 

highly significant from the results of the four 

algorithms for all the considered datasets. 

7.1.3 Ranking methods. Tables 11-12 outline 

detailed ranking of all the considered algorithms 

with their respective comparative analysis. The 

ranking is based on maximum accuracy (	

t!0_n••), minimum accuracy (	

t;8_n••), average accuracy (	

nx<_n••), maximum number of selected features 

(t!0_®@S!f), minimum number of selected 

features (t;8_®@S!f) and average number of 

selected features (	

nx<_®@S!f). From the ranking, it is evident that 

that the proposed EACSIDGWO algorithm 

obtained the best values in all these measures for all 

the datasets. Considering the final ranks, the 

proposed algorithm attained an attractive 

performance whose overall rank value is 37.This 

clearly reveals the superiority of EACSIDGWO 

algorithm in relation to the four state-of-the-art 

algorithms. 

 

 

 

Table 10: Using Wilcoxon’s rank sum test at Å = 0.05 to compare EACSIDGWO with other algorithms 

Dataset Wilcoxon’s rank 

sum test 

EBCS Vs 

EACSIDGWO 

BACO Vs 

EACSIDGWO 

BGA Vs 

EACSIDGWO 

BPSO Vs 

EACSIDGWO 

Ovarian Cancer p value 0.000181651 0.000181651 0.000182672 0.000181651 
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h value 1.000000000 1.000000000 1.000000000 1.000000000 

z value 3.743255786 3.743255786 3.741848283 3.743255786 

Breast Cancer 

Wisconsin 

(Diagnostic) 

p value 0.022591996 0.000146767 0.017044126 0.000582314 

h value 1.000000000 1.000000000 1.000000000 1.000000000 

z value 2.28026466 3.796476695 2.38575448 3.439721266 

Breast Cancer 

Wisconsin 

(Prognosis) 

p value 0.000730466 0.0001707 0.00073729 0.000174624 

h value 1.000000000 1.0000000 1.00000000 1.000000000 

z value 3.377881495 3.758843896 3.375323463 3.753152986 

SPECTF Heart p value 0.000321376 0.000176611 0.000176611 0.000177611 

h value 1.000000000 1.000000000 1.000000000 1.000000000 

z value 3.597430949 3.750317207 3.750317207 3.748901726 

CNS p value 0.000182672 0.000182672 0.000182672 0.000182672 

h value 1.000000000 1.000000000 1.000000000 1.000000000 

z value 3.741848283 3.741848283 3.741848283 3.741848283 

COLON p value 0.000182672 0.000182672 0.000182672 0.000181651 

h value 1.000000000 1.000000000 1.000000000 1.000000000 

z value 3.741848283 3.741848283 3.741848283 3.743255786 

 

 

Table 11: Overall ranking of considered algorithms 

Algorithm Measures Datasets 

Ovaria

n 

Cancer 

Breast 

Cancer 

Wisconsin 

(Diagnosti

c) 

Breast 

Cancer 

Wisconsin 

(Prognosis

) 

SPECTF 

Heart 

CN

S 

Colon Sum 

of 

ranks 

Overall 

rank 

Total 

sum 

Final 

ranks 
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EACSIDGW

O 

t!0_n•• 1 2 1 1 1 1 7 1 37 1 

t;8_n•• 1 1 1 1 1 1 6 1 

nx<_n•• 1 1 1 1 1 1 6 1 

t!0_®@S!f 1 1 1 1 1 1 6 1 

t;8_®@S!f 1 1 1 1 1 1 6 1 

nx<_®@S!f 1 1 1 1 1 1 6 1 

EBCS t!0_n•• 2 1 2 3 3 2 13 2 84 2 

t;8_n•• 2 1 2 2 2 2 11 2 

nx<_n•• 2 2 2 3 3 2 14 2 

t!0_®@S!f 3 2 2 2 2 4 15 2 

t;8_®@S!f 2 1 2 3 3 5 16 2 

nx<_®@S!f 2 2 2 2 2 5 15 2 

BACO t!0_n•• 2 4 4 4 2 2 18 4 138 5 

t;8_n•• 3 4 5 3 3 2 20 4 

nx<_n•• 3 5 5 5 4 4 26 5 

t!0_®@S!f 5 4 5 4 5 2 25 5 

t;8_®@S!f 5 2 3 5 3 2 20 3 

nx<_®@S!f 5 5 5 5 5 4 29 5 

 

 

Table 12: Overall ranking of considered algorithms  

Algorithm Measures Datasets 

Ovarian 

Cancer 

Breast 

Cancer 

Wisconsin 

(Diagnostic) 

Breast 

Cancer 

Wisconsin 

(Prognosis) 

SPECTF 

Heart 

CNS Colon Sum 

of 

ranks 

Overall 

rank 

Total 

sum 

Final 

ranks 
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BGA t!0_n•• 2 3 2 1 2 3 13 2 95 3 

t;8_n•• 2 2 5 2 2 2 15 3 

nx<_n•• 2 4 3 2 2 3 16 3 

t!0_®@S!f 2 3 3 3 4 3 18 3 

t;8_®@S!f 3 1 2 2 4 4 16 2 

nx<_®@S!f 3 3 3 3 3 2 17 3 

BPSO t!0_n•• 2 1 3 3 3 3 15 3 110 4 

t;8_n•• 3 3 2 2 2 3 15 3 

nx<_n•• 3 2 4 4 3 5 21 4 

t!0_®@S!f 4 4 4 4 3 3 22 4 

t;8_®@S!f 4 1 2 4 2 3 16 2 

nx<_®@S!f 3 4 4 4 3 3 21 4 

 

 

 

8. Conclusion 

This paper proposed a new hybrid Excited (E) - 

Adaptive Cuckoo Search (ACS)-Intensification 

Dedicated Grey Wolf Optimizer (IDGWO) i.e. 

EACSIDGWO algorithm to solve the feature 

selection problem in biomedical science. In the 

proposed algorithm, the the concept of the complete 

voltage and current responses of a direct current 

(DC) excited resistor capacitor (RC) circuit are 

innovatively utilized to make the step size of ACS 

and the non-linear control strategy of parameter ! 

of the IDGWO adaptive. Since the population has a 

higher diversity during early stages of the proposed 

algorithm, both the ACS and IDGWO are jointly 

utilized to attain accelerated convergence. 

However, to enhance mature convergence while 

striking an effective balance between exploitation 

and exploration in latter stages, the role of ACS is 

switched to global exploration while the IDGWO is 

still left conducting the local exploitation. In order 

to test the efficiency of the proposed EACSIDGWO 

as a feature selector, six standard biomedical 

datasets from the University of California at Irvine 
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(UCI) repository were utilized. The experimental 

results obtained prove that the proposed algorithm 

is superior to the state-of-the-art feature selection 

techniques i.e. BACO, BGA, BPSO and EBCSA in 

attaining a good learning from fewer instances, and 

optimal feature selection from information-rich 

biomedical data, all these while maintaining a high 

classification accuracy of the utilized data. In 

future, utilizing this hybrid algorithm as a filter-

feature selection approach seeking to evaluate the 

generality of the selected features will be a valuable 

contribution. 

 

. 
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Abstract. Determining an optimal decision model is an important but difficult combinatorial task in 

imbalanced microarray-based cancer classification. Though the multi-class support vector machine 

(MCSVM) has already made an important contribution in this field, its performance solely depends on 

three aspects; the penalty factor C, the type of kernel and its parameters. To improve the performance 

of this classifier in microarray- based cancer analysis, this paper proposes PSO-PCA-LGP-MCSVM 

model that is based on particle swarm optimization (PSO), principal component analysis (PCA) and 

multi-class support vector machine (MCSVM). The MCSVM is based on a hybrid kernel i.e. linear-

gaussian-polynomial (LGP) that  combines the advantages of three standard kernels (linear,  gaussian 

and polynomial) in a novel manner; where the linear kernel is linearly combined with the gaussian kernel 

embedding the polynomial kernel. Further, this paper proves and makes sure that the LGP kernel 

confirms the features of a valid kernel. In order to reveal the effectiveness of our model,  several 

experiments were conducted and the obtained results compared between our model and other three 

single kernel-based models, namely, PSO-PCA-L-MCSVM (utilizing a linear kernel), PSO-PCA-G-

MCSVM (utilizing a gaussian kernel) and PSO-PCA-P-MCSVM (utilizing a polynomial kernel). In 

comparison, two dual and two multi-class imbalanced standard microarray datasets were used. 

Experimental results in terms of three extended assessment metrics (F-Score, G-mean and Accuracy) 
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reveal the superior global feature extraction, prediction and learning abilities of this model against three 

single kernel-based models. 
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Introduction 

Cancer is a disorder caused by excessive and 

uncontrolled cell division in a body. A total of 9.6 

million people died of cancer in 2018[1]. As a 

matter of fact, death due to cancer can be reduced 

to nearly half if the cancer types are detected early 

and the right treatment administered in time. 

However, it is still a challenge for researchers to 

effectively diagnose cancer on the basis of 

morphological structure since different cancer 

types exhibit thin differences [2]. 

This challenge encourages application of data 

mining techniques, especially the use of gene -

expression data in determining the types of cancer 

cells. The level of gene expression can duly 

indicate the activity of a gene in a body cell based 

on the number of messenger ribonucleic acids 

(mRNAs). It is well known to contain information 

about the disease that may be in the gene sample, 

which may help experts in treating or preventing 

the disease [3]. 

Though next generation sequencing (NGS) 

especially RNA-sequencing (RNA-Seq) are slowly 

replacing microarrays when analyzing and 

identifying complex mechanism in gene expression 

e.g. in the gene-expression based cancer 

classification problem, they are relatively 

expensive compared to microarrays. Since 

microarrays have been used for a long time, there 

exists robust statistical and operational methods for 

their processing [4-13].In addition, many 

significant microarray experiments have been 

conducted and are publicly available to the research 

community [37-43]. For microarrays, there exists 

large and well-maintained repositories that have 

collected these type of data for long. While the pre-

processing and analysis steps of microarray data are 

mostly standardized, the establishment of RNA-Seq 

data analysis techniques are still ongoing in the field 

of transcriptomics. Because of these reasons, to date 

microarrays are still utilized in many gene-

expressions based cancer classification studies as 

presented in the most recent survey of hybrid 

feature selection methods in microarray gene 

expression for data for cancer classification [43]. 

 

The DNA microarray technology has the capability 

of determining the level of thousands of genes 

concurrently in a given experiment, which so far 

has facilitated the development of cancer 

classification by the use of gene expression data [4-

13]. 

Clinical decision support is the most recent 

application of DNA microarrays in the medical 

domain. This support can take the form of disease 

diagnosis or predicting clinical outcomes in 

response to a treatment. Currently, the two major 

areas in medicine that are drawing much attention 

in this regard are management of cancer and other 

contagious diseases [14]. 

With the rapid development of artificial 

intelligence (AI), machine-learning algorithms 
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such as artificial neural network (ANN), support 

vector machine (SVM), K-nearest neighbor 

(KNN) , many researchers have immensely applied 

them in the gene-expression base cancer diagnosis. 

For instance, the artificial neural networks (ANN) 

have been proposed for the microarray gene 

classification due to their superior ability to map 

input-output structured data. Khan and Meltzer 

utilized the ANN in analyzing microarray gene 

data from patients with small round blue-cell 

tumours [9]. Bevilacqua and Tommasi developed 

an accurate classifier model based on the feed-

forward ANN for estrogen receptor (ER) +/- 

metastasis recurrence of breast cancer tumours 

[20]. Chen and Cheng [19] also modeled a 

classifier for microarray gene data using ANN 

ensembles that were based on filtering of samples 

.In all these studies attractive classification 

accuracies were obtained.  

Furey proposed an SVM based on a simple kernel 

to carry out gene expression data analysis, which 

turned out to perform remarkably [21]. Vanitha 

utilized SVM alongside mutual information gained 

(MI-SVM) for feature selection [11]. In his 

research, he used various SVM models; linear 

SVM, radial basis function (RBF) SVM, Quadratic 

SVM and Polynomial SVM. He further compared 

the results obtained from the proposed scheme 

with the k-nearest neighbor (K-NN) and ANN 

classifier results. Based on the obtained result, 

utilization of the MI-SVM obtained better results 

compared to K-NN and ANN, and even in some 

datasets, 100% accuracy was achieved. 

Based on these previous researches, it is evident 

that SVM has already made an important 

contribution in the field of microarray-based 

cancer classification. However, many researchers 

have pointed out that though the SVM is a 

promising classifier in microarray-based cancer 

classification, its performance solely depends on 

three aspects; the penalty parameter C of this 

classifier, the type of kernel utilized and its 

parameters [22, 24, 30, 31, 32]. 

To improve the classification accuracy of the SVM 

classifier, some techniques have been presented to 

search for the optimal model parameters, such as 

the grid-search and the gradient descent [1]. 

Although, these approaches have proven their 

effectiveness in the corresponding experiments, in 

most cases they fall into the local optimum point 

easily and have a defect of low efficiency [1, 41]. 

Recently, some meta-heuristic techniques, such as 

particle swarm optimization (PSO), genetic 

algorithm (GA), bat algorithm (BA) and dragonfly 

algorithm (DA) have attained promising results 

when utilized in tuning SVM classifier’s 

parameters [41]. However, most of these research 

has not been applied to gene-expression based 

cancer analysis. In addition, they only focus on 

SVM with a single kernel function. Though some 

research [22] point out that combining multiple 

kernel functions can achieve better performance 
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compared to a single kernel function, little research 

has provided an in-depth formulation and analysis 

of the performance of a multi-class support vector 

machine (MCSVM) with a combined kernel 

function. Thus, there is a definite need to 

systematically study the complex optimization 

problem in the MCSVM classifier with a combined 

kernel applicable to gene-expression based cancer 

classification. 

Considering  PSO is easy to implement, has a few 

parameters to adjust, is computationally efficient 

compared to other optimization techniques [44] 

,and existence of few studies on MCSVM 

classifier with combined kernels in microarray-

based cancer classification, this paper proposes a 

novel gene-expression based cancer classification 

model i.e. PSO-PCA-LGP-MCSVM. This model 

is based on particle swarm optimization (PSO), 

principal component analysis (PCA) and multi-

class support vector machine (MCSVM) with a 

novel hybrid kernel function i.e. linear-gaussian-

polynomial (LGP) kernel 

The objective of this research is to construct a 

MCSVM classifier with three different standard 

kernel functions (linear, gaussian and polynomial). 

Use PCA to reduce the dimensional complexity of 

the considered microarray datasets and optimize 

all the parameters of this model using PSO. 

The overall structure of this paper takes the form 

of five chapters, including this introductory 

chapter. The remaining part of this paper proceeds 

as follows: A detailed presentation of the proposed 

model is presented in section 2. Section 3 deals 

with the considered cancer microarray datasets. 

Section 4 focusses on the experimental results and 

discussions. Finally, conclusions and 

recommendations are given in section 5.  

 

 

PSO-PCA-LGP-MCSVM PRINCIPLES 

2.1. Normalization 

Microarray gene expressions can differ by an order 

of magnitude. Thus, it is necessary to normalize 

these data to improve the performance of 

subsequent microarray data analysis stages like 

gene selection/ feature extraction, clustering and 

classification [1]. 

In this paper, the microarray gene expressions are 

linearly transformed from the interval 

9>:F, 9>#? → 0,1  uniformly utilizing equation  

1 [1]; 

 

 
9∂ =

9 − 9>:F
9>#? − 9>:F

 
(2) 

 

Where, 9∂ is the new normalized value of the gene 

expression level,	9 is the value of the gene 

expression level before normalization, while 9>#? 

and 9>:F respectively declare the largest and least 

values of all the data in an attribute (gene) to be 

normalized. 
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Since the min-max normalization has the 

advantage of preserving exactly all the 

relationships among the original gene data values 

and does not introduce any bias [1], it is considered 

in this paper. 

 

2.2. Principal component analysis (PCA)  

One of the major challenges encountered in 

working with DNA microarray data is their high 

dimensionality that is coupled with a relatively 

small sample size. While there is a plethora of 

crucial information that can be derived from these 

large datasets, their high dimensional nature can 

often hide the critical information. Thus, a process 

that can reduce the dimensionality complexity of 

this type of data is required. In addition, a 

dimensionality reduction step will minimize errors 

obtained in the subsequent classification stage [1, 

12, 44]. 

In this paper, principal component analysis (PCA) 

that includes the calculation of variance of 

proportion for eigenvector is used. The steps of this 

algorithm are as follows: 

k) Let 9∂(the normalized microarray gene 

expression data) be the input matrix for 

PCA. Each row vectors of  9∂ represent the 

normalized expression gene values for each 

of the genes. 

l) Compute the mean (centroid)  9 of each 

gene A using equation 2 where the sum goes 

through all t samples (tissues): 

 9 =
2

Ç
9∂:C

Ç
:ô2      (3) 

 

Where t is the number of tissues and 9∂:Cis gene 

A data. 

m) Compute the covariances (degree to which 

the genes are linearly correlated) as per 

equation 3: 

 
l´C =

1

t − 1
(9∂´: − 9´)(9

∂
C:

Ç

:ô2

− 9C) 

(4) 

                  

Where, l´C is the covariance of gene © and gene A, 

t is the number of samples(tissues),	9∂´: is the 

expression level of gene © in sample ;, 9∂C: is the 

expression level of gene A in sample ;,	9´ is the 

mean of expression levels of gene ©  and 9C is the 

mean of expression levels of gene A   

n) Form a covariance matrix l using the 

computed covariances and transform it into 

a diagonal matrix as depicted in equation 4: 

 
l =

l22 l23 l2Ç
⋮ ⋮ ⋮
lÇ2 lÇ3 lÇÇ

	

→
Z2 0 0
⋮ ⋱ ⋮
0 0 ZÇ

 

 

(5) 

The diagonal elements of the transformed matrix 

are the eigenvalues	Z2, Z3, … . , ZÇ which denotes 

the amount of variability captured along a 

particular new dimension.  
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o) Calculate corresponding eigenvectors as 

π2, π3, … . . πÇ using equation 5: 

 Z´π´ = lZ´ (6) 

                              

p) Sort the eigenvalues in descending order i.e. 

Z2 ≥ Z3 ≥ Z3, . . ZÇc2 ≥ ZÇ  

q) The eigenvectors corresponding to the © 

largest eigenvalues (where © < t) are the 

first © principal components 

r) Select the first © eigenvectors via the 

cumulative proportion of variance 

(eigenvalues). The proportion of variance 

(PPV) for each principal component is 

determined as follows: 

 ""y =
∫ã

∫ã
ê
ãªº

×100%                      (7) 

 

s) Form the principal component matrix " ,a 

matrix consisting of selected © eigenvectors 

that correspond to the largest © eigenvalues. 

Where the © eigenvectors are derived from 

eigenvalues that meet the criterion in 

equation 7; 

 ∫ã
æ
ãªº

∫ã
ê
ãªº

×100%	 ≥ 95%   (8) 

 

t) Compute dimensionally reduced 

microarray gene expression data 9∂ø:>¿E5 

using equation 8; 

 9∂ø:>¿E5 = 	9∂×"						          (9) 

 

Hence, the analysis reduces the highly 

dimensioned original microarray datasets to " for 

each sample, which are the inputs for the multi-

class support vector machine (MCSVM). 

To be able to measure the generalization error for 

each considered model, per-fold PCA was 

adopted. This is achieved by first conducting a 

separate PCA on each calibration set and then 

applying this transformation on the validation set. 

This same transformation is achieved by first 

subtracting the means of the calibration set from 

the validation set and then projecting these, data 

onto the principal components of the training set 

achieved this. The underlying assumption is that 

the testing and training set should be derived from 

the same distribution, which justifies this process.  

 

2.3. Multi-class support vector machine (MCSVM) 

The MCSVM classifier is based on Vapnik 

Chervonenkis (VC) dimension of the statistical 

learning theory and the structural risk 

minimization [1, 5, 7, 11, 23]. 

The main objective of MCSVM is to map the 

preprocessed, on-linear inseparable microarray 

gene expression data into a linear highly 

dimensioned manifold θ by the use of a 

transformation  ∅: R≈ → θ, then obtaining the 

optimal hyper-plane Ψ:	ψ x = (ω.ϕ x + b) by 

solving the following optimization convex 

problem(the soft margin problem) [23]: 
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MIN Ω, Ξ =

1

2
Ω 3 + Β Ξ—

≈

—ô2

 
(10) 

Subject to y“ ω. ϕ x + b ≥ 1 − ξ“ for all 1 ≤

i ≤ n 

Where ω is a coefficient vector of the hyper-plane 

in the manifold (feature space), b is the threshold 

value of the hyper-plane,	ξ“ is a slack factor 

introduced for classification errors and β is a 

penalty factor for errors. 

The parameter β controls the penalty of 

misclassification and its value is normally 

determined via cross-validation. Larger values of β 

normally leads to a small margin which minimizes 

classification errors while smaller values of β may 

produce a wider margin resulting to many 

misclassifications. 

The feature space θ is highly dimensioned, so its 

direct computation can lead to “dimension 

disaster”. However, since ω = δ“
‘
“ô2 y“∅(x“), 

then all the operations of the support vector 

machine (MCSVM) in the feature space θ are only 

dot products. And since kernel functions 

i.eG x“, x“÷ = ∅ x“ . ∅(x“÷),   are efficient at 

handling dot products, they were introduced into 

the SVM. This implies there is no need to know 

how to map the microarray gene expression data 

from its original space to the feature space θ. Thus, 

selection of a kernel and its coefficients are vital in 

the computational efficiency and accuracy of an 

MCSVM classifier model [22, 24, 30, 31, 32]. 

The common kernel functions that are utilized as 

continuous predictors include [1, 5, 22]: 

4) Linear Kernel:	 

 G X—, X—÷ = X—. X—÷ (11) 

                                                                

5) Polynomial Kernel: 

 G X—, X—÷ = (Η ∗ X—. X—÷ + Δ)⁄ (12) 

 

Where	η > 0,	δ ∈ R and d ∈ ZG 

 

6) Gaussian kernel:	 

 
G X—, X—÷ = EXP	(

fl‡cfl‡÷
·

3‚·
)          

(13) 

Where σ > 0  

 

These MCSVM kernel functions can be broadly 

categorized as follows: local kernel functions and 

global kernel functions. Samples far apart have a 

great impact on the global kernel values while 

samples close to each other greatly influence the 

local kernel values. The linear and polynomial 

kernels are good examples of global kernels while 

the Gaussian radial basis function and the Gaussian 

are local kernels [22, 30, 31, 32]. 

Relatively speaking, the linear kernel function has 

a better extraction of global features from samples, 

the polynomial kernel has good generalization 

ability and the gaussian kernel (the most widely 

used kernel) has a good learning ability among all 

the single kernel functions. Thus, it is evident that 

utilizing a single kernel function based MCSVM 

classifier in a given application such as gene 
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expression data may neither attain good learning 

ability, proper global feature extraction ability and 

a better generalization capability. In trying to 

overcome this hiccup, two or more kernel 

functions can be combined [22, 24, 30, 31, 32].  

 

2.4. Linear-Gaussian-Polynomial MCSVM (LGP- 

MCSVM) 

In trying to build a kernel model that has a better 

global feature extraction capability, good learning 

and prediction abilities, the work presented in this 

paper combines the merits of two global kernels 

(Linear and Polynomial) and one local kernel 

(Gaussian). This paper therefore proposes a novel 

kernel “Linear-Gaussian -Polynomial (LGP)” 

kernel, which is formulated as follows: 

 

 
G‰ÂÊ X—, X—÷ = Β2. X—. X—÷ + Β3. EXP −Βo.

Η× X—. X—÷ + Δ ⁄

2×Σ3
	 

(13) 

Where β2 + β3 + βo = 1, β ∈ R and δ, d > 0 

In this paper we utilize different values of β to mix 

the three standard kernels (different regions of the 

input space). In this case β is a vector i.e. β =

[β2, β3, βo]. Through this approach, the relative 

contribution of each kernel to the hybrid kernel i.e. 

GËÈÍÎ x“, x“÷  can be easily varied over the input 

space. 

The LGP kernel function takes better global feature 

extraction ability from the linear kernel, good 

prediction ability from the polynomial kernel and 

better learning ability from the gaussian kernel. 

The Mercer’s theorem provides the necessary and 

sufficient qualifiers of a valid kernel function. It 

states that a kernel function is a permissible kernel 

if the corresponding kernel matrix is symmetric 

and positive semi-definite (PSD) [5, 29]. 

A kernel matrix can be validated that it is PSD by 

determining its spectrum of eigenvalues. It is 

important to note that a symmetric is positive 

definite if and only if all its eigenvalues are non-

negative. Considering this, for the proposed kernel 

to be permissible, it must satisfy the Mercer’s 

theorem. This validity can be proved by using the 

Taylor expansion for exponential function of 

equation 13: 

 

 
																																G‰ÂÊ X—, X—÷ = Β2. X—. X—÷ + Β3 − Β:o.

Η× X—. X—÷ + Δ ⁄.—

2×Σ3—	. ;!

Ì

:ôT

 
(14) 
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										G‰ÂÊ X—, X—÷ = Β2 X—. X—÷ + Β3 −1 +

−Β:o
2×Σ3—	;!

Η X—. X—÷ + Δ ⁄.—

Ì

:ô2

 
(15) 

   

 
																													G‰ÂÊ X—, X—÷ = Β2 X—. X—÷ − Β3 + Β3

−Β:o
2×Σ3—	;!

Η X—. X—÷ + Δ ⁄.—

Ì

:ô2

 

 

(16) 

 
G‰ÂÊ X—, X—÷ = Β2 X—. X—÷ − Β3 + Β3

−Β:o
2×Σ3—	;!

.

Ì

:ô2

ÓÔè±¥(:) 
(17) 

 
																											G‰ÂÊ X—, X—÷ = Β2Ó:FE#u − Β3 + Β3

−Β:o
2×Σ3—	;!

.

Ì

:ô2

ÓÔè±¥(:) 
   (18) 

 

 

 

 
G‰ÂÊ X—, X—÷ = Β2Ó:FE#u − Β3 + Β3

−Ò:×Β:o
;!

.

Ì

:ô2

ÓÔè±¥(:) 
(19) 

   

 

Where ÓÔè±¥(:) = η x“. x“÷ + δ Ú and Ó:FE#u =

x“. x“÷  and Ò: = 2

3∗Û·Ù
 

From equation 19, it is evident that G‰ÂÊ x“, x“÷  is 

a mixed kernel comprising of a weighted linear 

kernel, a constant β3 and a weighted summation of 

polynomial kernels. Using propositions 20,21and 

22 of theorem 2.20 and propositions 23 and 24 of 

corollary 2.21 [29], Mercer’s conditions are 

proved to be true for the proposed kernel and hence 

it is a valid kernel. 

 

Theorem 2.20. Functions of Mercer’s kernels K1 

and K2 are also Mercer’s kernels. 

 

 G X—, X—÷ = K1 X—, X—÷ + K2 X—, X—÷          (20) 

 

 G X—, X—÷ = C. K1 X—, X—÷ ,	 

/ìh	!îî	C ∈ RG        

(21) 

 

 G X—, X—÷ = K1 X—, X—÷ + •	 

, /ìh	!îî	C ∈ RG        

(22) 

 

Corollary 2.21. Functions of a Mercer kernel K1 

are also Mercer’s kernels. 
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G X—, X—÷ = (K1 X—, X—÷ + C)5  

,	/ìh	!îî	C ∈ RG	!87  D ∈ N       

(23) 

 
G X—, X—÷ = EXP

¯2 ?ã,?ã÷

˘·
 

,	, /ìh	!îî	˙ ∈ RG     

(24) 

 

Since the proposed hybrid LGP kernel combines 

three valid Mercer’s kernels i.e. linear, gaussian 

and polynomial kernels, it also a valid Mercer’s 

kernel that can be used for training and 

classification of the multi-class support vector 

machine (MCSVM). 

By using the proposed LGP-MCSVM, the non-

linear transformation of the microarray gene 

sample points to get the corresponding kernel 

matrix so as to obtain the classification results 

during the training phase of the MCSVM 

classifier. 

 

 

 

2.5. Particle swarm optimization (PSO) 

Currently, there is no widely accepted method for 

optimizing these parameters. The “Grid-Search 

(GS)” with exponentially growing sequences of 

combination {C,	η} for the commonly utilized 

Gaussian kernel is often applied in microarray 

analysis [1, 41]. Though easy to implement, it has 

a low computing efficiency. In addition, optimal 

result of the GS can only be generated from the 

pre-set grid-combinations while unknown possible 

optimal parameters cannot be explored and 

discovered. 

In this paper, particle swarm optimization (PSO) 

optimization technique is adopted to optimally 

search for the best parameter combinations for the 

considered models [41, 44]. The PSO technique is 

derived from the migration patterns of birds during 

foraging, which has a faster convergence, efficient 

parallel computing and a strong universality that is 

able to efficiently avoid local optimum [43]. In 

addition, the iteration velocity for its particles is 

largely influenced by the sum of current velocity; 

previous particle value, the current global optimal 

value and random interferences, which greatly 

helps, avoid the local optimal and improves the 

search coverage and effectiveness. In order to 

effectively evaluate the performance of the 

considered models, different values were 

considered for all kernel parameters within the 

following ranges presented in Table 1. 

Table 2 presents the initial PSO parameters of each 

considered algorithm. In this paper, as a rule of 

thumb with heuristic optimization algorithms, the 

swarm size for each model was set to 10×

x!h;!jîS	d;µS .More information on the PSO 

algorithm is presented in [41-44]. 

 

Table1: Parameters and their respective ranges 

PARAMETER RANGE 
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Β = [Β2, Β3, Βo] 0 < Β2, Β3, Βo<1 AND 

	Β2+Β3+Βo=1 

îì<3C −5 ≤ îì<3C ≤ 15 

Δ 0 ≤ Δ ≤ 5 

D 2 ≤ D ≤ 5 

îì<3Ò, îì<3Η -15≤ îì<3Ò, îì<3Η ≤

3 

 

 

 

 

 

Table 2: Initial PSO parameters setting 

PARAMETER RANGE 

MAXIMUM NUMBER OF ITERATIONS 

 

50 

INERTIAL WEIGHT,e 1 

 

NUMBER OF PARTICLES/SWARM SIZE 5) PSO+L-MCSVM=10 

6) PSO+G-MCSVM=20 

7) PSO+P -MCSVM=40 

8) PSO+LGP-MCSVM=80 

COGNITION LEARNING FACTOR, •2 2.0 

SOCIAL LEARNING FACTOR, •3 2.0 

 

 

2.6. PCA-PSO-LGP-MCSVM model 

The main process of the proposed algorithm is 

outlined as follows: 

14) Transforming the cancer microarray data 

into the right format for the SVM package. 

15) Loading a cancer microarray dataset. 

16) Randomly dividing the loaded microarray 

data into two sets: training set and testing 

set. 

17) Initialize the PSO parameters like the 

population size, the maximum number of 

iterations, and the considered multi-class 

SVM parameters. 

18) Adopt PSO to search for the optimal 

solution of particles in the global space by 

using 5-fold cross-validation that 

incorporates per fold PCA feature 

extraction. This process is presented below. 
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19) To achieve 5-fold cross-validation 

incorporating PCA, the following steps 

were followed: 

viii) For j=1 to 5 repeat steps (ii) to (vi) 

ix) Carry out PCA on data present in the 

remaining 4 folds to generate a 

loadings matrix.  

x) Transform this data (data in the 

remaining 4 folds i.e. calibration set) 

into a set of principal components 

(PC) scores using the first " 

components (that account for at least 

95% cumulative variance) of the 

loadings matrix generated in step 

(ii). 

xi) Build a considered SVM 

classification model using a set of 

parameter values using the 

generated PC scores data in step 

(iii). 

xii) Transform the held-out test fold data 

(i.e. data in fold j) into a set of 

principal component (PC) scores 

using the "   components loadings 

matrix retained in step (iii). 

xiii) Compute the classification accuracy 

of the built SVM classification 

model in step (iv) using the 

transformed test fold j data in step 

(v). 

xiv) For the considered parameters set, 

store their optimal parameter values 

set (i.e. a set of parameters that 

yields the highest classification 

accuracy). 

20) Report optimal parameters for the 

considered model. 

21) Carry out PCA on the whole training set 

data (i.e. the training set obtained in step 3) 

to generate a loading matrix. 

22) Transform this whole training set data into 

a set of PC scores using the first " 

components (that account for at least 95% 

cumulative variance).  

23) Build an optimal model for the considered 

SVM classification model using the optimal 

parameter values set obtained in step vii) 

using the generated PC scores data in step 9. 

24) Transform the whole testing set data (i.e. the 

testing set obtained in step 3) into a set of 

principal components (PC) scores using the 

"   components loadings matrix retained in 

step 9. 

25) Compute the classification accuracy of the 

built optimal SVM classification model in 

step 8 using the transformed whole testing 

set data in step 9 

26) Report this test classification accuracy. 

The schematic diagram in Figure 1 shows the all 

process of the PSO-PCA-LGP-MCSVM 

algorithm. 
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Figure 1: Scheme of the proposed PSO-PCA-LGP-MCSVM algorithm

It is important to mention that the whole analysis 

process is conducted using the LIBSVM 

framework in MATLAB [33,34] on Intel(R)Core 

(TM) i3-3240M CPU@ 3.4GHz with 12GB of 

RAM machine. 

 

Performance evaluation 

3.1. Microarray Datasets  

To assess the performance of the proposed PSO-

PCA-LGP-SVM algorithm, several experiments 

were conducted four publicly available datasets. 

Summary of all the datasets utilized in this research 

can be found in Table 3 and following is a brief 

description of each dataset. 

Colon dataset [8]: contains gene expression levels 

obtained from DNA based microarrays. It has 62 

samples; 20 normal and 40 cancerous tissue 

samples, each described by 2000 features. 

Leukemia (AMLALL) dataset [6]: contains gene 

expression levels from 72 leukemia patients; 47 

with Acute Lymphoblastic Leukemia (ALL) and 

25 with Acute Myeloid Leukemia (AML). Each 

patient data is described by expression levels of 

7129 probes obtained from 6817 human genes. 

Stjude Leukemia dataset [7]: This data was 

obtained from St. Jude children’s research 

hospital. It is divided into 6 diagnostic groups: 

BCR-ABL(9 patients), E2A-PBX1(18 patients), 

Hyper- diploid>50 (42 patients), Mixed Lineage 

Leukemia(MLL)(14 patients), T-cell Acute 

Lymphoblastic Leukemia(T-ALL)(28 patients) 

and TEL-Leukemia(TEL-AML1)(52 patients) and 

other 52 patients that could not fit into any of the 

outlined diagnostic groups. This dataset contains 

12558 genes. 

Lung Cancer dataset [13]: Contains 3312 gene 

data obtained from 17 people with normal lungs 

and  186 lung cancer patients that is classified into 

5 classes: Adenocarcinomas (139 patients), 

Squamous Cell Lung Carcinomas( 21 patients), 

Pulmonary Carcinoids(20 patients), Small Cell 

Lung Carcinomas (6 patients) and Normal Lung 

(17 people). 

Table 3: The cancer microarray datasets utilized in this paper

Category Dataset Sample Size Number of genes Number of classes 

Two-Class AMLALL 72 7129 2 

 COLON 62 2000 2 

Multi-Class STJUDE 215 12558 7 

 LUNG 203 3312 5 
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Due to the small number of instances in the 

considered datasets, all the datasets were initially 

split into two disjoint sets: the training set and the 

test set. Utilizing 5-fold cross-validation, the 

training set was randomly divided further into 5 

subsets (approximately) equal in size. Each time 4 

subsets were selected as the calibration set and the 

remaining subset was used as the validation set. 

This process was repeated 5 times. Finally, the 

average of classification accuracy on the  

 

validation set was used as one of the evaluation 

metrics. It is important to point out that by using 5-

fold cross-validation to dynamically divide the 

microarray training samples, the considered 

models turn out to be more stable and objective. 

The percentage proportion for the calibration, 

validation and test sets for all the considered 

microarray datasets are presented in table 4.  

 

 

 

 

Table 4: Percentage proportion for calibration, validation and test sets  

DATASET % PROPORTION FOR 

CALIBRATION SET  

% PROPORTION FOR 

VALIDATION SET 

%PROPORTION FOR 

TEST SET 

AMLALL 61.1 15.3 23.6 

COLON 58.1 14.5 27.4 

STJUDE 57.7 14.4 27.9 

LUNG 57.1 14.3 28.6 

 

3.2. Performance measures for imbalanced 

microarray datasets 

When the samples in a dataset are unevenly 

distributed among the classes (for instance in the 

case of microarray datasets), the task of 

classification in imbalanced domains must be 

defined. The majority class(es), as a result 

influences the data mining algorithms skewing 

their performances towards it [38]. 

Most algorithms simply compute the accuracy on  

the basis of the percentage of correctly samples.  

 

However, in the case of microarrays, these results 

are highly deceiving since the minority classes 

hold minimal effects on the overall classification 
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accuracy. Thus, a consideration of a complete 

confusion matrix (Table 5) must be made to obtain 

the classification of both positive and negative 

classes independently [38].  

 

 

 

 

Table 5: Confusion matrix for a two-class problem 

 POSITIVE PREDICTION NEGATIVE PREDICTION 

POSITIVE CLASS TRUE POSITIVE (TP) FALSE NEGATIVE (FN) 

NEGATIVE CLASS FALSE POSITIVE (FP) TRUE NEGATIVE (TN) 

 

 The description in table 5 gives four baseline 

statistical components, where TP and FN denote 

the number of positive samples, which are 

accurately and falsely predicted, respectively, and 

TN and FP depict the number of negative samples 

that are predicted accurately and wrongly, 

respectively. 

 

Two most frequently used metrics for class 

imbalance problem, namely F-measure and G-

mean, can be regarded as functions of these four 

statistical components and are calculated as 

follows: 

 F − MEASURE =
3∗¿Eˇ#±±∗ÔuEˇ:X:èF

(¿Eˇ#±±GuEˇ:X:èF)
         (25) 

   

 G − MEAN = (¨"|×¨®|)         (26) 

   

 

 

 

Where Precision, Recall, TPR and TNR are further 

defined as follows: 

 PRECISION = "Ô
("ÔG#Ô)         

(27) 

  

 RECALL	(TPR) = "Ô
("ÔG#™)         

(28) 

 

 TNR = "™
("™G#Ô)         

(29) 

The overall classification accuracy Acc can be 

calculated using equation 26. 

 

 ACC =
"ÔG"™

("ÔG"™G#ÔG#™)         
(30) 

 

However, all these evaluation metrics are 

appropriate for estimating binary-class imbalance 

tasks. To extend them for multi-class, the 

following transformations should be considered 

[38]. 

G −mean computes the geometric mean of all the 

classes’ accuracies and is defined by 
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 G − MEAN	 = ( n••:
&
:ô2 )

2 &          (31) 

 

Where n••: denotes the accuracy of the ;QR 

class.	F − measure can be transformed as F −

Score and is computed using equation 32. 

 

 
F − SCORE	 = (c)*+,-.*ã/

ãªº

&          (32) 

 

Where F − measure: is calculated further using the 

equation 33. 

 

 F − MEASURE: 		=
3×Ê.*0—,—1≈ã×.*0+‰‰ã
Ê.*0—,—1≈ãG.*0+‰‰ã

         (33) 

 

Acc can be transformed as depicted by equation 34. 

 

 n••		 = (ACC:×P:)
&
:ô2          (34) 

Where P: is the percentage of samples in the ;QR 

class. To impartially and comprehensively assess 

the classification performance of the proposed 

model in comparison with PSO-PCA-L-MCSVM, 

PSO-PCA-G-MCSVM and PSO-PCA-P-MCSVM 

models that utilize the standard linear, gaussian and 

polynomial kernels respectively, the three extended 

measures namely F − Score,	G − mean and 

n••	which are described in (32),(31) and (34) 

respectively. 

 

Results and Discussions 

The experimental results for the 4 classification 

models on the 4 microarray datasets are reported in 

Tables 6, 7 and 8, where the best result in each 

dataset is highlighted in bold and the worst is 

italicized. 

From Tables 6 to 8 the following observations can 

be made 

(i) Lung and STJUDE datasets are slightly 

sensitive to the class imbalance while 

Colon and AMLALL are not, as shown by 

the difference between Accuracy and G-

mean values. An accuracy slightly lower 

than the G-mean values imply that the 

MCSVM is affected by the imbalanced 

class distribution. This is largely attributed 

by a large number of True negatives (TNs) 

recorded achieved by all the models when 

analyzing both the Lung and STJUDE 

datasets.  

 

 

 

  

Table 6: Accuracy of all considered models on the four microarray datasets, where bold represents the best 

result and the italics denotes the worst in each column respectively 

MODELS COLON  LUNG AMLALL STJUDE 

PSO+L-MCSVM 0.7647 0.9596 0.9412 0.9422 
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PSO+P -MCSVM 0.8235 0.9592 0.8235 0.9395 

PSO+G-MCSVM 0.8235 0.9608 0.9412 0.9572 

PSO+LGP-

MCSVM 

0.8824 0.9729 0.9412 0.9603 

 

Table 7: F-Score of all considered models on the four microarray datasets, where bold represents the best 

result and the italics denotes the worst in each column respectively 

MODELS COLON  LUNG AMLALL STJUDE 

PSO+L-MCSVM 0.7572 0.9246 0.9328 0.7870 

PSO+P -MCSVM 0.8211 0.7524 0.7733 0.6831 

PSO+G-MCSVM 0.8211 0.9306 0.9377 0.8477 

PSO+LGP-

MCSVM 

0.8712 0.9586 0.9377 0.8989 

 

Table 8: G-mean of all considered models on the four microarray datasets, where bold represents the best 

result and the italics denotes the worst in each column respectively 

MODELS COLON  LUNG AMLALL STJUDE 

PSO+L-MCSVM 0.7676 0.9791 0.9412 0.9557 

PSO+P -MCSVM 0.8235 0.7524 0.8235 0.9512 

PSO+G-MCSVM 0.8235 0.9792 0.9412 0.9661 

PSO+LGP-

MCSVM 

0.8824 0.9861 0.9412 0.9709 
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(ii) The hybrid kernel boosted the classification performance of the multi-class on three 

datasets i.e. Colon, Lung and STJUDE. These promotions are better portrayed by the F-

Score and G-Mean metrics, which are used to evaluate a balance level of classification 

results. However, a tie is reported for the AMLALL dataset. This implies that though 

the complementary characteristics of the three standard kernels i.e. linear, Gaussian and 

polynomial in the proposed hybrid linear-gaussian-polynomial (LGP) kernel may 

improve the multi-class support vector machine classifier’s classification ability on 

most microarray datasets, datasets a single suitable kernel is sufficient. 

(iii) Of all the considered models, the PSO-PCA-P-MCSVM reported the least performance 

in all the considered metrics for all the four datasets. However, it is important to note 

that a promising kernel can be obtained if we embed into the exponential kernel. 

 

In summary, compared with single-kernel-based models (i.e. PSO-PCA-L-MCSVM, PSO-

PCA-G-MCSVM and PSO-PCA-P-MCSVM), the proposed PSO-PCA-LGP-MCSVM model 

that is based on a hybrid linear-gaussian-polynomial (LGP) kernel with a better global feature 

extraction ability, good prediction ability and better learning ability, has an attractive 

classification ability in cancer diagnosis using both imbalanced dual and multiclass microarray 

datasets. Moreover, due to excellent global searching ability of the particle swarm optimization, 

it can effectively optimize the hybrid kernel based MCSVM   when solving a wider range of 

classification problems. 

 

Conclusion 

Techniques to choose or construct suitable kernel functions, and optimally tune its parameters 

for MCSVM has received a considerable and critical attention in imbalanced microarray-based 

cancer diagnosis. A novel classification model, PSO-PCA-LGP-MCSVM, that is based on 

MCSVM with a hybrid kernel i.e. linear-gaussian-polynomial (LGP), is proposed in this paper. 

The LGP kernel combines the advantages of three standard kernels i.e. linear, gaussian and 

polynomial kernels in a novel manner where the linear kernel is linearly combined with a 

polynomial kernel that is embedded into a gaussian kernel. Using PSO to optimally tune the 

LGP kernel based MCSVM resulted into better generalization, learning and predicting ability 

as evidenced by the promising results in terms three extended measures F-Score, G-mean and 
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Accuracy irrespective of imbalanced binary or multi-class microarray datasets. The performance 

of the proposed model was compared with those of 3 models i.e. PSO-PCA-L-MCSVM, PSO-

PCA-G-MCSVM and PSO-PCA-P-MCSVM that are based on single linear, gaussian and 

polynomial kernels respectively and the experimental results show that the proposed model is 

superior to the three single-kernel based models. This reflects the good practical value of the 

proposed model in the field of microarray based cancer diagnosis, which can also be extended 

more applications of medical diagnostic classification to explore its potential. 
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SOURCE CODES 

%-------------------------------------------------------------------------% 
%  Binary Excited Grey Wolf Optimization (BGWO) source codes         % 
%                                                                         % 
%  Programmer: Davies Rene Segera                                                
% 
%                                                                         % 
%  E-Mail: davies.segera@uonbi.ac.ke % 
%-------------------------------------------------------------------------% 
  
function [Alpha_score,Alpha_acc,nfeat]=jBEGWO2_ver2(feat,label,N,T) 
%---Inputs----------------------------------------------------------------- 
% feat:  features 
% label: labelling 
% N:     Number of wolves 
% T:     Maximum number of iterations 
%---Outputs---------------------------------------------------------------- 
% sFeat: Selected features 
% Sf:    Selected feature index 
% Nf:    Number of selected features 
% curve: Convergence curve 
%-------------------------------------------------------------------------- 
  
% Objective function 
fun=@jFitnessFunction2;  
% Number of dimensions 
D=size(feat,2);  
% Initial Population 
X=zeros(N,D); 
fit=zeros(1,N); 
for i=1:N 
  for d=1:D 
    if rand() > 0.5 
      X(i,d)=1; 
    end 
  end 
end 
% Fitness  
for i=1:N 
%   [fit(i),acc(i)]=fun(feat,label,X(i,:));  
  [fit(i),acc(i)]=jwrapperSVM3(feat,label,X(i,:)); 
end 
% Sort fitness 
[~,idx]=sort(fit);   
% Update alpha, beta & delta wolves 
Xalpha=X(idx(1),:); 
Xbeta=X(idx(2),:); 
Xdelta=X(idx(3),:); 
Falpha=fit(idx(1)); 
Accalpha=acc(idx(1)); 
Fbeta=fit(idx(2)); 
Accbeta=acc(idx(2)); 
Fdelta=fit(idx(3)); 
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Accdelta=acc(idx(3)); 
Fworst=max(fit); 
  
a_max=2; 
  
% Pre 
curve=inf; 
t=1; 
% figure(1); 
% clf; axis([1 100 0 0.5]); 
% xlabel('Number of Iterations'); 
% ylabel('Fitness Value'); title('Convergence Curve'); grid on; 
%---Iterations start------------------------------------------------------- 
while t <= T 
  % Coefficient decreases linearly from 2 to 0 Eq(17) 
%   a=2-2*(t/T);  
  MyBase=(T-t)/T; 
  for i=1:N 
      tau=abs((fit(i)-
(1/3)*(Falpha+Fbeta+Fdelta))/((1/3)*(Falpha+Fbeta+Fdelta)-Fworst)); 
      a=a_max*(MyBase)^tau; 
    for d=1:D 
      % Parameter C Eq(16) 
      C1=2*rand(); 
      C2=2*rand(); 
      C3=2*rand(); 
      % Compute Dalpha, Dbeta & Ddelta Eq(22-24) 
      Dalpha=abs(C1*Xalpha(d)-X(i,d)); 
      Dbeta=abs(C2*Xbeta(d)-X(i,d)); 
      Ddelta=abs(C3*Xdelta(d)-X(i,d)); 
      % Parameter A Eq(15) 
      A1=2*a*rand()-a; 
      A2=2*a*rand()-a; 
      A3=2*a*rand()-a; 
      % Compute X1, X2 & X3 Eq(19-21) 
      X1(i,d)=Xalpha(d)-A1*Dalpha; 
      X2(i,d)=Xbeta(d)-A2*Dbeta;  
      X3(i,d)=Xdelta(d)-A3*Ddelta; 
%       % Update wolf Eq(18) 
%       Xn=(X1+X2+X3)/3;  
%       % Sigmoid function Eq(37) 
%       TF=1/(1+exp(-10*(Xn-0.5))); 
%       % Position update Eq(36) 
%       if TF >= rand() 
%         X(i,d)=1;  
%       else 
%         X(i,d)=0;  
%       end 
    end 
    X1B(i,:)=Vec2Bin(X1(i,:)); 
    X2B(i,:)=Vec2Bin(X2(i,:)); 
    X3B(i,:)=Vec2Bin(X3(i,:)); 
     
    if nnz(X1B(i,:))>0 
%         FX1B(i)=fun(feat,label,X1B(i,:));  
        [FX1B(i),~]=jwrapperSVM3(feat,label,X1B(i,:)); 
    else 
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        FX1B(i)=Inf; 
    end 
     
    if nnz(X2B(i,:))>0 
%         FX2B(i)=fun(feat,label,X2B(i,:));  
        [FX2B(i),~]=jwrapperSVM3(feat,label,X2B(i,:)); 
    else 
        FX2B(i)=Inf; 
    end 
     
    if nnz(X3B(i,:))>0 
%         FX3B(i)=fun(feat,label,X3B(i,:));  
        [FX3B(i),~]=jwrapperSVM3(feat,label,X3B(i,:)); 
    else 
        FX3B(i)=Inf; 
    end 
     
    FVec=[FX1B(i),FX2B(i),FX3B(i)]; 
    BMatrix=[X1B(i,:);X2B(i,:);X3B(i,:)]; 
    % Sort fitness   
    [~,idx]=sort(FVec); 
    X(i,:)=BMatrix(idx(1),:); 
     
  end 
   
   
  for i=1:N 
   if nnz(X(i,:))>0 
    % Fitness  
%     fit(i)=fun(feat,label,X(i,:));  
%     [fit(i),acc(i)]=fun(feat,label,X(i,:)); 
    [fit(i),acc(i)]=jwrapperSVM3(feat,label,X(i,:)); 
    % Update alpha, beta & delta 
    if fit(i) < Falpha 
      Falpha=fit(i); 
      Xalpha=X(i,:); 
      Accalpha=acc(i); 
    end 
    if fit(i) < Fbeta && fit(i) > Falpha 
      Fbeta=fit(i); 
      Xbeta=X(i,:); 
      Accbeta=acc(i); 
    end 
    if fit(i) < Fdelta && fit(i) > Falpha && fit(i) > Fbeta 
      Fdelta=fit(i); 
      Xdelta=X(i,:); 
      Accdelta=acc(i); 
    end 
  else  
  fit(i)=Inf;   
  end 
  end 
  Fworst=max(fit); 
   
  curve(t)=Falpha;  
  % Plot convergence curve 
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%   pause(0.000000001); hold on; 
%   CG=plot(t,Falpha,'Color','r','Marker','.'); set(CG,'MarkerSize',5); 
  t=t+1; 
end 
% Select features based on selected index  
Pos=1:D; 
Sf=Pos(Xalpha==1); 
Alpha_acc=Accalpha; 
nfeat=length(Sf); 
sFeat=feat(:,Sf); 
Alpha_score=Falpha; 
end 
  
  
  
%-------------------------------------------------------------------------% 
%  Binary Adaptive Cuckoo Search –Intensification Dedicated Grey Wolf 
Optimization (BACSIDGWO) source codes         % 
%                                                                         % 
%  Programmer: Davies Rene Segera                                                
% 
%                                                                         % 
%  E-Mail: davies.segera@uonbi.ac.ke % 
%-------------------------------------------------------------------------% 
 
function 
[Alpha_score,Alpha_acc,nfeat]=jBACSIDGWO(feat,label,n,N_IterTotal,pa) 
  
%number of variables 
nd=size(feat,2); 
% initialize alpha, beta, and delta_pos 
Alpha_nest=zeros(1,nd); 
Alpha_score=inf; %change this to -inf for maximization problems 
Alpha_acc=0; 
  
Beta_nest=zeros(1,nd); 
Beta_score=inf; %change this to -inf for maximization problems 
Beta_acc=0; 
  
Delta_nest=zeros(1,nd); 
Delta_score=inf; %change this to -inf for maximization problems 
Delta_acc=0; 
  
% nest=zeros(n,nd); 
  
% Random initial solutions 
% Lower bounds 
Lb=0*ones(1,nd);  
% Upper bounds 
Ub=1*ones(1,nd); 
  
  
% Random initial solutions 
  
nest=zeros(n,nd); 
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X1=zeros(n,nd); 
X2=zeros(n,nd); 
X3=zeros(n,nd); 
  
  
for i=1:n 
  for d=1:nd 
    if rand() > 0.5 
      nest(i,d)=1; 
    end 
  end 
end 
  
  
% Get the current best 
fitness=10^10*ones(n,1); 
accuracy=[]; 
% 
[Alpha_score,Alpha_nest,Beta_score,Beta_nest,Delta_score,Delta_nest,nest,fi
tness,accuracy]=get_best_nest(Alpha_score,Alpha_nest,Beta_score,Beta_nest,D
elta_score,Delta_nest,nest,nest,fitness,feat,label,accuracy); 
[Alpha_score,Alpha_nest,Alpha_acc,Beta_score,Beta_nest,Beta_acc,Delta_score
,Delta_nest,Delta_acc,nest,fitness,accuracy]=get_best_nest(Alpha_score,Alph
a_nest,Alpha_acc,Beta_score,Beta_nest,Beta_acc,Delta_score,Delta_nest,Delta
_acc,nest,nest,fitness,feat,label,accuracy); 
iter=0; 
  
%% Starting iterations 
 for iter=1:N_IterTotal 
      
     
[new_nest1,new_nest2,new_nest3]=GWO(fitness,nest,Alpha_nest,Beta_nest,Delta
_nest,Lb,Ub,iter,N_IterTotal); 
      
     
[Alpha_score,Alpha_nest,Alpha_acc,Beta_score,Beta_nest,Beta_acc,Delta_score
,Delta_nest,Delta_acc,nest,fitness,accuracy]=get_best_nest(Alpha_score,Alph
a_nest,Alpha_acc,Beta_score,Beta_nest,Beta_acc,Delta_score,Delta_nest,Delta
_acc,nest,new_nest1,fitness,feat,label,accuracy); 
     
[Alpha_score,Alpha_nest,Alpha_acc,Beta_score,Beta_nest,Beta_acc,Delta_score
,Delta_nest,Delta_acc,nest,fitness,accuracy]=get_best_nest(Alpha_score,Alph
a_nest,Alpha_acc,Beta_score,Beta_nest,Beta_acc,Delta_score,Delta_nest,Delta
_acc,nest,new_nest2,fitness,feat,label,accuracy); 
     
[Alpha_score,Alpha_nest,Alpha_acc,Beta_score,Beta_nest,Beta_acc,Delta_score
,Delta_nest,Delta_acc,nest,fitness,accuracy]=get_best_nest(Alpha_score,Alph
a_nest,Alpha_acc,Beta_score,Beta_nest,Beta_acc,Delta_score,Delta_nest,Delta
_acc,nest,new_nest3,fitness,feat,label,accuracy); 
      
  
     
new_nest=get_cuckoos_acs(nest,Alpha_nest,fitness,Lb,Ub,iter,N_IterTotal); 
     
[Alpha_score,Alpha_nest,Alpha_acc,Beta_score,Beta_nest,Beta_acc,Delta_score
,Delta_nest,Delta_acc,nest,fitness,accuracy]=get_best_nest(Alpha_score,Alph
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a_nest,Alpha_acc,Beta_score,Beta_nest,Beta_acc,Delta_score,Delta_nest,Delta
_acc,nest,new_nest,fitness,feat,label,accuracy); 
      
  
     new_nest=empty_nests(nest,Lb,Ub,pa); 
     
[Alpha_score,Alpha_nest,Alpha_acc,Beta_score,Beta_nest,Beta_acc,Delta_score
,Delta_nest,Delta_acc,nest,fitness,accuracy]=get_best_nest(Alpha_score,Alph
a_nest,Alpha_acc,Beta_score,Beta_nest,Beta_acc,Delta_score,Delta_nest,Delta
_acc,nest,new_nest,fitness,feat,label,accuracy); 
      
     % Select features based on selected index  
     nfeat=size(find(round(Alpha_nest)==1),2); 
      
end 
end 
 

 

%% Find the current best nest 
function 
[Alpha_score,Alpha_nest,Alpha_acc,Beta_score,Beta_nest,Beta_acc,Delta_score
,Delta_nest,Delta_acc,nest,fitness,accuracy]=get_best_nest(Alpha_score,Alph
a_nest,Alpha_acc,Beta_score,Beta_nest,Beta_acc,Delta_score,Delta_nest,Delta
_acc,nest,newnest,fitness,feat,label,accuracy) 
% Evaluating all new solutions 
for j=1:size(nest,1) 
            newnest(j,:)=Vec2Bin(newnest(j,:)); 
  
          if nnz(newnest(j,:))>0 
               
             %fnew=jFitnessFunction(feat,label,newnest(j,:)); 
%               [fnew,acc]=svm(feat,label,newnest(j,:)); 
              [fnew,acc]=jwrapperSVM3(feat,label,newnest(j,:)); 
%            [fnew,acc]=svm2(X1,Y1,round(newnest(j,:))); 
             if fnew<=fitness(j) 
                fitness(j)=fnew; 
                accuracy(j,:)=acc; 
                nest(j,:)=newnest(j,:); 
             end 
            if fitness(j) < Alpha_score 
               Alpha_score=fitness(j); 
               Alpha_nest=nest(j,:); 
               Alpha_acc=accuracy(j,:); 
            end 
           
            if fitness(j) < Beta_score && fitness(j) > Alpha_score 
               Beta_score=fitness(j); 
               Beta_nest=nest(j,:); 
               Beta_acc=accuracy(j,:); 
            end 
            if fitness(j) < Delta_score && fitness(j) > Alpha_score && 
fitness(j) > Beta_score 
               Delta_score=fitness(j); 
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               Delta_nest=nest(j,:); 
               Delta_acc=accuracy(j,:); 
           end 
               
   
          else  
           fitness(j)=Inf; 
         end 
           
  
           
           
end 
  
end 
 

 

function [fit,Acc]=jwrapperSVM3(feat,label,X) 
kfold=12; 
    Model = 
fitcsvm(feat(:,[find(X==1)]),label,'Standardize',true,'KernelFunction','rbf
','KernelScale','auto'); 
%     CVSVMModel =crossval(SVMModel,'KFold',kfold); 
     
    % Perform cross-validation 
    C=crossval(Model,'KFold',kfold); 
    % Accuracy for each fold 
    Afold=1*(1-kfoldLoss(C,'mode','individual')); 
    Acc=mean(Afold);  
    ErrorRate=1-Acc; 
    D=size(X,2); 
    Pos=1:D; 
    Nfalpha=length(Pos(X==1)); 
%     fit=-Acc; 
%     fit=(0.2*(Nfalpha/D))-0.8*Acc; %proposed fitness function 
    Alpha=0.9; 
    fit=(Alpha*ErrorRate)+((1-Alpha)*(Nfalpha/D)); %proposed fitness 
function 
%     fit=-Acc; 
%      fit=(0.15*(Nfalpha/D))-0.85*Acc; %proposed fitness function 
end 
 

function BinVec=Vec2Bin(Vec) 
    Cstep=1./(1+exp(-10*(Vec-0.5))); 
    Val=rand(1,size(Vec,2)); 
%     Val2=rand(1,size(Vec,2)); 
%     Val3=rand(1,size(Vec,2)); 
%     for i=1:1:size(Vec,2) 
%         Val(i)=jCrossover3(Val1(i),Val2(i),Val3(i)); 
%     end 
%     Sampled=randsample(Val,size(Vec,2)); 
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    Bstep=(Cstep>=Val); 
    BinVec=Bstep; 
end 
 

% Adaptive Cuckoo Search without levy flight 
function nest=get_cuckoos_acs(nest,best,fit,Lb,Ub,iter,max_iter) 
% Levy flights 
n=size(nest,1); 
  
% Sort fitness   
[~,idx]=sort(fit);  
FAlpha_nest=fit(idx(1)); 
FBeta_nest=fit(idx(2)); 
FDelta_nest=fit(idx(3)); 
  
worst_fit=max(fit); 
stepsize_max=1; 
MyBase=(max_iter-iter)/max_iter; 
for j=1:n 
    s=nest(j,:); 
    tau=abs((fit(j)-
(1/3)*(FAlpha_nest+FBeta_nest+FDelta_nest))/((1/3)*(FAlpha_nest+FBeta_nest+
FDelta_nest)-worst_fit)); 
     
    %     stepsize=stepsize_max*(iter/max_iter)^tau; 
%     stepsize=stepsize_max*(1-exp(-iter*6/max_iter))^tau; 
    stepsize=stepsize_max*(1-(MyBase)^tau); 
%     stepsize=stepsize_max*(1-tau*exp(-(iter/max_iter))); 
    s=s+stepsize.*randn(size(s));  
    nest(j,:)=simplebounds(s,Lb,Ub); 
end 
 
 
function 
[X1,X2,X3]=GWO(fit,nest,Alpha_nest,Beta_nest,Delta_nest,Lb,Ub,iter,max_iter
) 
  
   X1=zeros(size(nest,1),size(nest,2)); 
   X2=zeros(size(nest,1),size(nest,2)); 
   X3=zeros(size(nest,1),size(nest,2)); 
    
   % Sort fitness   
   [~,idx]=sort(fit);  
   FAlpha_nest=fit(idx(1)); 
   FBeta_nest=fit(idx(2)); 
   FDelta_nest=fit(idx(3)); 
   a_max=1; 
   worst_fit=max(fit); 
   MyBase=(max_iter-iter)/max_iter; 
   for i=1:size(nest,1) 
       tau=abs((fit(i)-
(1/3)*(FAlpha_nest+FBeta_nest+FDelta_nest))/((1/3)*(FAlpha_nest+FBeta_nest+
FDelta_nest)-worst_fit)); 
%        a=a_max*(exp(-iter*10/max_iter))^tau; 
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       a=a_max*(MyBase)^tau; 
%        a=a_max*(1-(iter/max_iter))^tau; 
%        a=(1-(1-(iter/max_iter)*exp(-(iter*tau/max_iter)))); 
       for j=1:size(nest,2)      
             % Parameter C Eq(16) 
             C1=2*rand(); 
             C2=2*rand(); 
             C3=2*rand(); 
             % Compute Dalpha, Dbeta & Ddelta Eq(22-24) 
             Dalpha=abs(C1*Alpha_nest(j)-nest(i,j)); 
             Dbeta=abs(C2*Beta_nest(j)-nest(i,j)); 
             Ddelta=abs(C3*Delta_nest(j)-nest(i,j)); 
              
             %compute a 
              
             % Parameter A Eq(15) 
             A1=2*a*rand()-a; 
             A2=2*a*rand()-a; 
             A3=2*a*rand()-a;   
             % Compute X1, X2 & X3 Eq(19-21) 
             X1(i,j)=Alpha_nest(j)-A1*Dalpha; 
             X2(i,j)=Beta_nest(j)-A2*Dbeta;  
             X3(i,j)=Delta_nest(j)-A3*Ddelta;  
%              new_nest(i,j)=(X1(i,j)+X2(i,j)+X3(i,j))/3; 
       end 
        
%        new_nest(i,:)=simplebounds( new_nest(i,:),Lb,Ub); 
       X1(i,:)=simplebounds( X1(i,:),Lb,Ub); 
       X2(i,:)=simplebounds( X2(i,:),Lb,Ub); 
       X3(i,:)=simplebounds( X3(i,:),Lb,Ub);  
  
   end 
     
    
  
end 
 

%% Replace some nests by constructing new solutions/nests 
function new_nest=empty_nests(nest,Lb,Ub,pa) 
% A fraction of worse nests are discovered with a probability pa 
n=size(nest,1); 
% Discovered or not -- a status vector 
K=rand(size(nest))>pa; 
  
% In the real world, if a cuckoo's egg is very similar to a host's eggs, 
then  
% this cuckoo's egg is less likely to be discovered, thus the fitness 
should  
% be related to the difference in solutions.  Therefore, it is a good idea  
% to do a random walk in a biased way with some random step sizes.   
%% New solution by biased/selective random walks 
stepsize=rand*(nest(randperm(n),:)-nest(randperm(n),:)); 
new_nest=nest+stepsize.*K; 
for j=1:size(new_nest,1) 



	

235	
	

    s=new_nest(j,:); 
     new_nest(j,:)=simplebounds(s,Lb,Ub); 
  
end 
end 
 

 

%-------------------------------------------------------------------------% 
%  Particle Swarm Optimization-Pricipal Component Analysis-Linear Gaussian 
Polynomial-MultiClass Support Vector Machine source codes         % 
%                                                                         % 
%  Programmer: Davies Rene Segera                                                
% 
%                                                                         % 
%  E-Mail: davies.segera@uonbi.ac.ke % 
%-------------------------------------------------------------------------% 

% READING MICROARRAY DATASET 
clear;clc;close all; 
trainData=xlsread('AMLALL_Nature_Dataset.xls','trainData'); 
trainLabels=xlsread('AMLALL_Nature_Dataset.xls','trainLabels','A:A'); 
testData=xlsread('AMLALL_Nature_Dataset.xls','testData'); 
testLabels=xlsread('AMLALL_Nature_Dataset.xls','testLabels','A:A'); 
% END 
  
nfold = 5; 
sheetname = {'CrossValidationIndices',}; 
filename = 'AMLALL_Nature_Dataset.xls';          % can be named without 
'.xls' 
[num,txt,raw] = xlsread(filename,'CrossValidationIndices'); 
if isempty(num) 
   cv = cvpartition(trainLabels, 'kfold',nfold);          %# Statistics 
toolbox 
   indices = zeros(size(trainLabels)); 
   for b=1:nfold 
       indices(cv.test(b)) = b; 
   end 
   [raw{:, :}]=deal(NaN); 
   xlswrite(filename, raw, 'CrossValidationIndices'); 
   xlswrite(filename,indices,'CrossValidationIndices'); 
else 
    indices=xlsread(filename,'CrossValidationIndices'); 
end 
  
  
  
  
%  SHUTTING DOWN OF ALL WARNINGS 
warning('off','all'); 
warning; 
% END 
Variance=0.95; 
LGPdims=0; 
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nVar=8;            % Number of Decision Variables 
VarSize=[1 nVar];   % Size of Decision Variables Matrix  
%       Cost   sigma   gamma   coef  degree  beta1   beta2   beta3 
VarMin=[2^-20  2^-20   2^-20   0     2       0.0001  0.0001  0.0001]; % 
Lower Bound of Variables 
VarMax=[2^20   2^20    2^20    5     3       1       1       1];   % Upper 
Bound of Variables 
%% PSO Parameters 
MaxIt=50;      % Maximum Number of Iterations 
nPop=80;        % Population Size (Swarm Size) 
  
% Constriction Coefficients 
phi1=2.05; 
phi2=2.05; 
phi=phi1+phi2; 
chi=2/(phi-2+sqrt(phi^2-4*phi)); 
w=chi;          % Inertia Weight 
wdamp=1;        % Inertia Weight Damping Ratio 
c1=chi*phi1;    % Personal Learning Coefficient 
c2=chi*phi2;    % Global Learning Coefficient 
  
% Velocity Limits 
VelMax=0.1*(VarMax-VarMin); 
VelMin=-VelMax; 
  
%% Initialization 
empty_particle.Position=[]; 
empty_particle.Cost=[]; 
empty_particle.Velocity=[]; 
empty_particle.Best.Position=[]; 
empty_particle.Best.Cost=[]; 
particle=repmat(empty_particle,nPop,1); 
GlobalBest.Cost=-inf; 
tic 
for i=1:nPop 
     
    % Initialize Position 
    particle(i).Position=unifrnd(VarMin,VarMax,VarSize); 
    
particle(i).Position(6:end)=particle(i).Position(6:end)/sum(particle(i).Pos
ition(6:end)); 
    particle(i).Position(4:5)=round(particle(i).Position(4:5)); 
    % Initialize Velocity 
    particle(i).Velocity=zeros(VarSize); 
    %% Conduct 5-fold cross-validation using particle(i).Position 
    cv = cvpartition(trainLabels, 'kfold',nfold);          %# Statistics 
toolbox 
    indices = zeros(size(trainLabels)); 
    for b=1:nfold 
        indices(cv.test(b)) = b; 
    end 
    for a=1:nfold 
        %SEGMENT DATA INTO FOLDS 
        %disp(['fold: ' num2str(a)]); 
        testIdx = (indices == a); 
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        trainIdx = ~testIdx; 
        %CLASSES  
        labels = unique(trainLabels(trainIdx)); 
        numLabels = numel(labels); 
        %CARRY OUT PCA 
        mn = mean(trainData(trainIdx,:)); 
        train_out = bsxfun(@minus,trainData(trainIdx,:),mn); % substract 
mean 
        test_out = bsxfun(@minus,trainData(testIdx,:),mn); 
        [coefs,scores,variances] = princomp(train_out,'econ'); % PCA 
        pervar = cumsum(variances) / sum(variances); 
        var_frac=Variance; 
        LGPdims = max(find(pervar < var_frac)); 
        train_out = train_out*coefs(:,1:LGPdims); % dims - keep this many 
dimensions 
        test_out = test_out*coefs(:,1:LGPdims); % result is in train_out 
and test_out 
        %PRE-COMPUTED LINEAR KERNEL  
        XTrainsize = size(train_out,1); 
        K_TrainLinear = train_out*train_out'; 
        Gamma_K_TrainLinear = particle(i).Position(3).*K_TrainLinear; 
        K_TrainPolynomial = Gamma_K_TrainLinear; 
        for count = 2:particle(i).Position(5) 
            K_TrainPolynomial = K_TrainPolynomial.*(particle(i).Position(4) 
+ Gamma_K_TrainLinear); 
        end 
        
K_TrainLinearRBFPolynomial=((particle(i).Position(6).*K_TrainLinear)+(parti
cle(i).Position(7).*exp(-
(particle(i).Position(8)*particle(i).Position(2)).*K_TrainPolynomial))); 
        K1_TrainLinearRBFPolynomial = [(1:XTrainsize)', 
K_TrainLinearRBFPolynomial]; 
        cmd = ['-s 0 -q -b 1 -t 4  -c ',num2str(particle(i).Position(1))]; 
        % BUILD NEW MODEL 
        model =svmtrain(trainLabels(trainIdx,:), 
K1_TrainLinearRBFPolynomial, cmd); 
        XTestsize = size(test_out,1); 
        K_TestLinear = test_out*train_out'; 
        Gamma_K_TestLinear = particle(i).Position(3).*K_TestLinear; 
        K_TestPolynomial = Gamma_K_TestLinear; 
        for count = 2:particle(i).Position(5) 
            K_TestPolynomial = K_TestPolynomial.*(particle(i).Position(4) + 
K_TestPolynomial); 
        end 
        
K_TestLinearRBFPolynomial=((particle(i).Position(6).*K_TestLinear)+(particl
e(i).Position(7).*exp(-
(particle(i).Position(8)*particle(i).Position(2)).*K_TestPolynomial))); 
        K1_TestLinearRBFPolynomial=[(1:XTestsize )', 
K_TestLinearRBFPolynomial]; 
        % EVALUATE WITH TEST DATA 
        [~, accuracy, ~] = svmpredict(trainLabels(testIdx,:), 
K1_TestLinearRBFPolynomial, model,'-b 1 -q'); 
        % Store fold accuracy 
        LinearAcc(a) = accuracy(1); 
    end 
    %Average Cross-validation accuracy 
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    AverageLinearAcc = mean(LinearAcc); 
    % Evaluation 
    particle(i).Cost=AverageLinearAcc;   
    % Update Personal Best 
    particle(i).Best.Position=particle(i).Position; 
    particle(i).Best.Cost=particle(i).Cost; 
    % Update Global Best 
    if particle(i).Best.Cost>GlobalBest.Cost 
         
        GlobalBest=particle(i).Best; 
         
    end 
         
         
         
end 
       
BestCost=zeros(MaxIt,1); 
%% PSO Main Loop 
for it=1:MaxIt 
     
    for i=1:nPop 
         
        % Update Velocity 
        particle(i).Velocity = w*particle(i).Velocity ... 
            +c1*rand(VarSize).*(particle(i).Best.Position-
particle(i).Position) ... 
            +c2*rand(VarSize).*(GlobalBest.Position-particle(i).Position); 
         
        % Apply Velocity Limits 
        particle(i).Velocity = max(particle(i).Velocity,VelMin); 
        particle(i).Velocity = min(particle(i).Velocity,VelMax); 
         
        % Update Position 
        particle(i).Position = particle(i).Position + particle(i).Velocity; 
        
particle(i).Position(6:end)=particle(i).Position(6:end)/sum(particle(i).Pos
ition(6:end)); 
        particle(i).Position(4:5)=round(particle(i).Position(4:5)); 
        % Velocity Mirror Effect 
        IsOutside=(particle(i).Position<VarMin | 
particle(i).Position>VarMax); 
        particle(i).Velocity(IsOutside)=-particle(i).Velocity(IsOutside); 
         
        % Apply Position Limits 
        particle(i).Position = max(particle(i).Position,VarMin); 
        particle(i).Position = min(particle(i).Position,VarMax); 
        
        %% Conduct 5-fold cross-validation using particle(i).Position 
        cv = cvpartition(trainLabels, 'kfold',nfold);          %# 
Statistics toolbox 
        indices = zeros(size(trainLabels)); 
        for b=1:nfold 
            indices(cv.test(b)) = b; 
        end 
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        for a=1:nfold 
            %SEGMENT DATA INTO FOLDS 
            %disp(['fold: ' num2str(a)]); 
            testIdx = (indices == a); 
            trainIdx = ~testIdx; 
            %CLASSES  
            labels = unique(trainLabels(trainIdx)); 
            numLabels = numel(labels); 
            %CARRY OUT PCA 
            mn = mean(trainData(trainIdx,:)); 
            train_out = bsxfun(@minus,trainData(trainIdx,:),mn); % 
substract mean 
            test_out = bsxfun(@minus,trainData(testIdx,:),mn); 
            [coefs,scores,variances] = princomp(train_out,'econ'); % PCA 
            pervar = cumsum(variances) / sum(variances); 
            var_frac=Variance; 
            LGPdims = max(find(pervar < var_frac)); 
            train_out = train_out*coefs(:,1:LGPdims); % dims - keep this 
many dimensions 
            test_out = test_out*coefs(:,1:LGPdims); % result is in 
train_out and test_out 
            %PRE-COMPUTED LINEAR KERNEL  
            XTrainsize = size(train_out,1); 
            K_TrainLinear = train_out*train_out'; 
            Gamma_K_TrainLinear = particle(i).Position(3).*K_TrainLinear; 
            K_TrainPolynomial = Gamma_K_TrainLinear; 
            for count = 2:particle(i).Position(5) 
                K_TrainPolynomial = 
K_TrainPolynomial.*(particle(i).Position(4) + Gamma_K_TrainLinear); 
            end 
            
K_TrainLinearRBFPolynomial=((particle(i).Position(6).*K_TrainLinear)+(parti
cle(i).Position(7).*exp(-
(particle(i).Position(8)*particle(i).Position(2)).*K_TrainPolynomial))); 
            K1_TrainLinearRBFPolynomial = [(1:XTrainsize)', 
K_TrainLinearRBFPolynomial]; 
            cmd = ['-s 0 -q -b 1 -t 4  -c 
',num2str(particle(i).Position(1))]; 
            % BUILD NEW MODEL 
            model =svmtrain(trainLabels(trainIdx,:), 
K1_TrainLinearRBFPolynomial, cmd); 
            XTestsize = size(test_out,1); 
            K_TestLinear = test_out*train_out'; 
            Gamma_K_TestLinear = particle(i).Position(3).*K_TestLinear; 
            K_TestPolynomial = Gamma_K_TestLinear; 
            for count = 2:particle(i).Position(5) 
                K_TestPolynomial = 
K_TestPolynomial.*(particle(i).Position(4) + K_TestPolynomial); 
            end 
            
K_TestLinearRBFPolynomial=((particle(i).Position(6).*K_TestLinear)+(particl
e(i).Position(7).*exp(-
(particle(i).Position(8)*particle(i).Position(2)).*K_TestPolynomial))); 
            K1_TestLinearRBFPolynomial=[(1:XTestsize )', 
K_TestLinearRBFPolynomial]; 
            % EVALUATE WITH TEST DATA 



	

240	
	

            [~, accuracy, ~] = svmpredict(trainLabels(testIdx,:), 
K1_TestLinearRBFPolynomial, model,'-b 1 -q'); 
            % Store fold accuracy 
            LinearAcc(a) = accuracy(1); 
         end 
        %Average Cross-validation accuracy 
        AverageLinearAcc = mean(LinearAcc); 
        particle(i).Cost=AverageLinearAcc; 
        % Update Personal Best 
        if particle(i).Cost>particle(i).Best.Cost 
  
                particle(i).Best.Position=particle(i).Position; 
                particle(i).Best.Cost=particle(i).Cost; 
  
                % Update Global Best 
                if particle(i).Best.Cost>GlobalBest.Cost 
  
                    GlobalBest=particle(i).Best; 
  
                end 
  
       end 
         
    end 
     
    BestCost(it)=GlobalBest.Cost; 
     
    disp(['Iteration ' num2str(it) ': Best Cost = ' 
num2str(BestCost(it))]); 
     
    w=w*wdamp; 
     
end 
BestSol = GlobalBest; 
toc 
LGP_MCSVM_TRAINING_TIME=toc; 
tic 
train_out=trainData; % save original data 
test_out=testData; 
mn = mean(train_out); 
train_out = bsxfun(@minus,train_out,mn); % substract mean 
test_out = bsxfun(@minus,test_out,mn); 
[coefs,scores,variances] = princomp(train_out,'econ'); % PCA 
pervar = cumsum(variances) / sum(variances); 
var_frac=Variance; 
LGPdims = max(find(pervar < var_frac)); 
train_out = train_out*coefs(:,1:LGPdims); % dims - keep this many 
dimensions 
test_out = test_out*coefs(:,1:LGPdims); % result is in train_out and 
test_out 
XTrainsize = size(train_out,1); 
K_TrainLinear = train_out*train_out'; 
Gamma_K_TrainLinear = BestSol.Position(3).*K_TrainLinear; 
K_TrainPolynomial = Gamma_K_TrainLinear; 
for count = 2:BestSol.Position(5) 
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    K_TrainPolynomial = K_TrainPolynomial.*(BestSol.Position(4) + 
Gamma_K_TrainLinear); 
end 
K_TrainLinearRBFPolynomial=((BestSol.Position(6).*K_TrainLinear)+(BestSol.P
osition(7).*exp(-
(BestSol.Position(8)*BestSol.Position(2)).*K_TrainPolynomial))); 
K1_TrainLinearRBFPolynomial = [(1:XTrainsize)', 
K_TrainLinearRBFPolynomial]; 
cmd = ['-s 0 -q -b 1 -t 4  -c ',num2str(BestSol.Position(1))]; 
% BUILD NEW MODEL 
model =svmtrain(trainLabels, K1_TrainLinearRBFPolynomial, cmd); 
testsetsize = size(test_out,1); 
XTestsize = size(test_out,1); 
K_TestLinear = test_out*train_out'; 
Gamma_K_TestLinear = BestSol.Position(3).*K_TestLinear; 
K_TestPolynomial = Gamma_K_TestLinear; 
for count = 2:BestSol.Position(5) 
    K_TestPolynomial = K_TestPolynomial.*(BestSol.Position(4) + 
K_TestPolynomial); 
end 
K_TestLinearRBFPolynomial=((BestSol.Position(6).*K_TestLinear)+(BestSol.Pos
ition(7).*exp(-
(BestSol.Position(8)*BestSol.Position(2)).*K_TestPolynomial))); 
K1_TestLinearRBFPolynomial=[(1:XTestsize )', K_TestLinearRBFPolynomial]; 
[LGPSVMpredict_label, LGPSVMAccuracy, prob] = svmpredict(testLabels, 
K1_TestLinearRBFPolynomial, model); 
toc 
LGP_MCSVM_TESTING_TIME=toc; 
%% CONFUSION MATRIX FOR THE LINEAR-BASED SVM 
ConfMat1 = confusionmat(testLabels,LGPSVMpredict_label); 
isLabels = unique(testLabels); 
nLabels = numel(isLabels); 
[n,p] = size(testData); 
% Convert the integer label vector to a class-identifier matrix. 
[~,grpOOF] = ismember(LGPSVMpredict_label,isLabels);  
oofLabelMat1 = zeros(nLabels,n);  
idxLinear = sub2ind([nLabels n],grpOOF,(1:n)');  
oofLabelMat1(idxLinear) = 1; % Flags the row corresponding to the class  
[~,grpY] = ismember(testLabels,isLabels);  
YMat1 = zeros(nLabels,n);  
idxLinearY = sub2ind([nLabels n],grpY,(1:n)');  
YMat1(idxLinearY) = 1;  
  
%% END 
 plotconfusion(YMat1,oofLabelMat1,'LGP Kernel-Multi-Class SVM Model'); 
 


