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ABSTRACT 

The human gut microbiome has emerged as an important factor in many traits, 

including those associated with human health. Change in diversity and community 

composition of the gut microbiome is linked continuously to various health 

implications; recently, we are witnessing the rise of a variety of complex diseases 

related to dramatic changes in daily environments that are maybe related to 

mismatches between human and microbial evolution as population transit from rural 

to urban areas. 

The human gut microbiome composition in industrialized populations is hypothesized 

to be different from those living in traditional lifestyles. To test this, I studied the 

Turkana community with an aim of finding out the gut microbiome variations of the 

traditional and urban group, and the various phenotypic factors that influence the 

changes. The Turkana gave me an opportunity to understand this, in that it is a unique 

Nilotic group in Kenya whose population has a common ancestry, but different levels 

of modernization. Some individuals live a traditional pastoralist lifestyle, while others 

are sedentary within the Turkana region or urban centers. The transitions from a 

pastoralist diet centered on meat, blood and milk to an urban diet rich in 

carbohydrates and fats can give a better understanding of the rising epidemic of 

chronic metabolic-related diseases around the world.  

I characterized fecal microbiota of 133 individuals from the Turkana community, 90 - 

traditional and 43 – urban by paired-end v4 region of 16s rRNA region in the Illumina 

MiSeq platform. With this data, I asked two main questions: 1) How does the 

community composition and diversity of the Turkana microbiome compare between 

traditional and urban groups? 2) How are changes in the microbiome associated with 

phenotypic variations and the environment?  

Community structure comparison of the traditional and urban population using 

UniFrac and Bray Curtis distances showed in the composition of gut microbiome 

between the two groups. Bacteroidetes, Firmicutes, and Proteobacteria were more 

abundant in the two populations; the Bacteroidetes were dominant in the urban 

population while the Firmicutes and Spirochetes dominated the traditional 

community. For alpha diversity, the traditional and urban people had a different 



 
xiii 

microbial richness and Fisher diversity, but no observed differences with the Shannon 

and Simpson diversity measures. The ANCOVA correlation results showed that BMI, 

Age, blood pressure, and residence time in current location correlate microbial 

richness and Fisher diversity, but Cholesterol and HDL do not. But none of the 

phenotypes associated with Inverse Simpson, Shannon, and Simpson, could have 

resulted from not having the sample size necessary to perform the comparisons.  

In conclusion, the rural to urban areas transition has an impact on the gut microbiome 

both within and between the populations. I observed a gradual reduction in the 

microbial diversity in the Turkana population who‟ve moved to urban areas. These, 

coupled with the loss of beneficial microbiome as has been observed in populations 

that transited to urban areas several years ago, indicate a possible increased risk to 

metabolic diseases.  Therefore, Future studies should perform a complete sampling of 

both groups; and determine the metabolic profiles of every sample in order to provide 

a better understanding of the microbial community structure of the Turkana 

population. 
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CHAPTER ONE:  INTRODUCTION 

1.1 Background  

The human microbiota describes a community of microorganisms comprised of 

bacteria, archaea, fungi, viruses and protists coinhabiting the host‟s body 

surfaces(Nibali & Henderson, 2016). The collection of the microbiota and their 

genes are termed as the human microbiome(Al Khodor et al., 2017). The gut 

microbiome of humans has beneficial role to the host in digestion, training the host 

immunity, protection against the colonization of pathogens, and lastly the regulation 

of the central nervous system (Gorvitovskaia et al., 2016; Tyakht et al., 2013).  The 

microbial cells colonizing a healthy human body, inclusive of mucosal and skin 

environments, are equally abundant to our somatic cells(Gilbert et al., 2018). The 

composition of the microbiome is influenced by lifestyle, environment, genetics, 

antimicrobials treatment, mode of new born delivery, diet, and other 

factors(Lundgren et al., 2018; Oduaran et al., 2020). Though, the contribution of 

factors associated with rural to urban migration, such as diet, climate, host genetics, 

hygiene practices, medication and phenotypic traits is not apparent (Morton et al., 

2015) 

Transplantation of the microbiome can transfer beneficial phenotypes to the recipient 

from the donor such as nutritional status(Foo et al., 2017; Kachrimanidou & 

Tsintarakis, 2020). Indicating that altered microbiome can cause or be a result of 

changed physiological states (Clemente et al., 2015). Changes in human microbiome 

composition and structure of a given site termed as dysbiosis (Pessemier et al., 2021; 

Vangay et al., 2018a), might provide an understanding of why some individuals are 

more likely to be predisposed to some infections or a severe form of an 

illness(Carding et al., 2015). Variations in the microbiome are progressively linked 

to several non-communicable diseases development, and this includes; obesity, 
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diabetes, cardiovascular diseases, cancer, inflammatory bowel disease, asthma, and 

kidney disease (Al Khodor et al., 2017). 

The host genetics and the gut microbiome can both impact metabolic phenotypes. 

The gut microbial communities of humans has been associated with metabolic 

disease(Carding et al., 2015), while dissimilarities in host genetics could also 

underlie susceptibility to metabolic disorders(Brüssow, 2020). Despite these shared 

effects, the relationship between diversity of gut microbiome and host genetic 

variation is largely unknown(Lamichhane et al., 2018; Scepanovic et al., 2019). A 

new-born comes into contact with the microbial communities of the uterus and the 

mother‟s birth canal during delivery, and subsequently with atmospheric microbial 

communities at birth(Deo & Deshmukh, 2019a). The gut microbiota is acquired 

environmentally from the time of birth. It may play a role as an environmental factor 

associating with the genetics of a host to shape phenotypes, and also a genetically 

determined attribute that is determined by and interacts with its host (Goodrich et al., 

2014; Xia & Sun, 2017). Since the microbiome can be manipulated for therapeutic 

applications (Foo et al., 2017), it is composed of an appealing target for 

manipulation. Once the relations of host genetics and the gut microbiome are clearly 

understood, its manipulation could be optimized for a particular genome to minimize 

disease risk (Goodrich et al., 2014). 

In this study, we will focus on the Turkana community, an eastern Nilotic group that 

practices nomadic pastoralism for subsistence. In their traditional settings, the 

Turkana community depend on almost entirely on their livestock for food (Barkey et 

al., 2016). Though the pastoralists occasionally trade with agriculturalists to obtain 

grains. Majority of the agriculturalists population were once pastoralists, until during 

the severe droughts of the 1960s and 1970s combined with livestock raiding, that 

forced them to settle and become farmers (Corbett et al., 2003). The recent 

development of roads, with the introduction of county governments and the 

discovery of oil, has further facilitated the transition of the Turkana to urban 

areas(Johannes et al., 2015). However, gut microbiome composition in urban 
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inhabitants is different from those practicing traditional lifestyles. Moreover, it hasn‟t 

been easy to disconnect human genetic, phenotypic expressions, geographic aspects 

contributions from lifestyle. Whether transitions from traditional lifestyle that is 

characteristic of humanity history influence the human gut microbiome, and to what 

extent remains unclear (Jha et al., 2018). 

The Turkana community offers us an opportunity to understand the gut microbiome 

transition over a single generation of a population with similar ancestral descent. 

This study aims to analyse the gut microbiome variations across various lifestyles of 

the Turkana people, and to understand the relationship of various environmental and 

phenotypic traits with the microbiome. To do so, I collected stool samples, 

phenotypic data, and extensive interview information. I then extracted 

Deoxyribonucleic acid (DNA) that I later sequenced to obtain microbiome data. 

These involved the Turkana inhabiting their historical range (n=90) and second-

generation immigrants of the same ancestry that now reside in major cities (n=43). I 

used the data obtained to characterize the microbial community composition of the 

two populations. These allowed my investigation on how the gut microbiome 

changes in response to transitions from rural to urban environments. I further 

analysed the data to give an understanding of the association between the gut 

microbiome, genetic variations, phenotypic traits, and the environment of the 

Turkana population. Then I will also determine unique genes in the gut microbiome 

of the Turkana community. 

1.2 Research questions 

What differences exist in the microbiome composition of rural and urban Turkana 

communities?  How are they associated with genetic traits, phenotypic variations, 

and the environment? 

What unique microbial communities exist across the Turkana community, and how 

significant are they? 
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1.3 Research Objectives 

1.3.1 General Objective 

To evaluate the gut microbiome variation of the traditional and urban Turkana people 

and the various factors that influence the changes. 

1.3.2 Specific Objectives 

i. To determine the diversity and community composition of the microbiome 

within and between traditional and urban populations of the Turkana. 

ii. Evaluate the influence of various phenotypic factors on the gut microbiome 

of both populations. 

1.4 Null Hypothesis 

There are no variations in gut microbiome composition of the traditional and urban 

Turkana people. 

1.5 Problem statement and Justification 

1.5.1 Problem statement 

Changes in gut microbiome are known to cause undesirable health implications. 

Recently we are witnessing the rise of a variety of complex diseases related to 

dramatic changes in daily environments as people transit from rural to urban 

environments. These transitions cause populations to experience a radically different 

set of conditions, including exposure to new diets and pathogens that plays a role in 

altering the gut microbiome. Transitions in the human microbial communities are 

increasingly associated to the development of some non-communicable diseases, 

including inflammatory bowel disease, diabetes, obesity, cardiovascular diseases, 

cancer, and asthma and kidney disease. 
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1.5.2 Justification 

The Turkana have a common origin and ancestry, yet there are very different levels 

of modernization across the populations. Whereby some live a traditional pastoralist 

lifestyle, while others are sedentary within the Turkana region or urban centers. 

These allow us to understand gut microbiome transitions within a population of 

common genetic background. 

The transition from a pastoralist diet centered on meat, blood, and milk to an urban 

diet rich in carbohydrates and fats should be particularly insightful in our quest to 

understand the rising epidemic of chronic metabolic-related diseases around the 

world. 
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CHAPTER TWO:  LITERATURE REVIEW 

2.1 The Human microbiome 

The human microbiota describes a mixed community of microorganisms 

coinhabiting the human body surfaces(Kachrimanidou & Tsintarakis, 2020). A 

collection of the microbiota and their genes are known as the microbiome (Al 

Khodor et al., 2017; Matsuki & Tanaka, 2014; Ursell et al., 2012; Wang et al., 2017). 

The microbial cells colonizing the human body, inclusive of mucosal and skin 

environments, are as abundant as our somatic cells(Gilbert et al., 2018; Sender et al., 

2016). 

The human microbial communities' development follows trajectories that are site-

specific to everybody site(Henry et al., 2019; Knights et al., 2017; Olivares et al., 

2018). The skin microbiota of healthy adults are primarily dependent on the skin site 

physiology, with bacterial taxa relative abundance changes that are associated with 

dry, sebaceous, and moist environments. Lipophilic Propionibacterium species 

dominate sebaceous sites(Grice & Segre, 2011; Oh et al., 2012; Rosenthal et al., 

2011). Whereas in damp areas, like the feet and bends of the elbows are 

preferentially dominated by microorganisms that thrive in wet or humid 

environments, such as Corynebacterium and Staphylococcus species(Byrd et al., 

2018; Costello et al., 2009). However, in longitudinal sampling, the skin microbiome 

is relatively stable over a study period of 2 years despite changes in the 

environment(Oh et al., 2016; Sharma et al., 2019). Based on single nucleotide and 

strain level analyses, the stability is on strain maintenance over time instead of 

reacquiring common species in the environment(Byrd et al., 2018). 

2.2 Human Gut, Oral, and Skin microbiota  

The gut microbiota is the largest and most diverse microbiome in the human body, 

comprising of all microorganisms colonizing the gastrointestinal tract. It is capable 

of modulating multiple neural, immune and endocrine pathways of the host thus 
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influencing essential functions of the human body including energy metabolism, 

digestion and inflammation. Two of the twenty-nine known bacterial phyla are 

dominant in the gut of healthy humans: Bacteroidetes (mainly Gram-negative 

bacteria) and Firmicutes (majorly Gram-Positive clostridia) whereas Actinobacteria, 

Proteobacteria, Verrucomicrobia and Fusobacteria phyla are found less frequently. 

The oral microbiota is the second largest in diversity and composition after the gut 

with over 700 bacteria species(Dewhirst et al., 2010; Kilian et al., 2016). This is due 

to the various niches in the mouth, leading to a rich habitat with microbes colonizing 

the teeth, cheeks, tongue, tonsils, gingival sulcus, soft palate, and hard palate(Deo & 

Deshmukh, 2019a; Gao et al., 2018). The oral cavity and nasopharyngeal regions 

provide ideal conditions for microorganisms growth; the average normal temperature 

of 37
0
C, salivary pH of 6.5-7, saliva also keeps microorganisms hydrated in addition 

to being a medium for transportation(Deo & Deshmukh, 2019a). Microorganisms 

colonization of the mouth begins from first feeding after birth onwards, commencing 

the resident oral microbiome acquisition process(Deo & Deshmukh, 2019b; Mason 

et al., 2018; Sampaio-Maia & Monteiro-Silva, 2014). 

Gut microbiome longitudinal studies show that adult microbiome is fairly stable and 

distinct to every person(Derrien et al., 2019; Lozupone et al., 2012; Martinson et al., 

2019). In comparison to the extreme variability that takes place during the first three 

years of life(Caporaso et al., 2011). 
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The microbiome being a living ecosystem, it does undergo fluctuations in each of its 

constituents in survival and growth rate(Gilbert et al., 2018; Prakash et al., 2020). 

For example, vigorous cleaning can, for a limited period, change the skin microbial 

community(Bouslimani et al., 2019; Longo & Zamudio, 2017; Yu et al., 2018). 

However, the original structure of the microbiota will re-emerge after the restoration 

of the original conditions. This is similar to the effects of diet changes to the gut 

microbiome(Clemente et al., 2012; Gagliardi et al., 2018; Hannigan et al., 2015; 

Milani et al., 2017). However, the most noticeable characteristic of the interaction 

between the human body and microbes is their inextricable link with each other(Inda 

et al., 2019). Thus they influence metabolism, immunity, resistance to pathogens at 

all ages, development, and other aspects of human health(Belkaid & Hand, 2014; 

Dominguez-Bello et al., 2019; Gill et al., 2006; Lazar et al., 2018; Ley et al., 2006; 

Wang et al., 2017; Zhang et al., 2019).  

Humans have been subjected to a great diversity of environments since about 12,000 

years ago in the Neolithic revolution(Henke et al., 2007). Thus the modes of 

subsistence known today are a result of various human populations trying to 

 

Figure 1: Shows the uniqueness of an individual‟s microbiome. The different colors in 

the pie chart represent different kinds of bacteria(Gilbert et al., 2018) 
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diversify their dietary regimes(Morton et al., 2015). These significant cultural 

transitions have generated metabolic constraints in addition to novel pathogens as a 

result of the increasing population density and the proximity of livestock(Gordo, 

2019; Jha et al., 2018). Such environmental and cultural differences amid 

populations have lead to physiological adaptations that can be detected in 

individuals' genome(Morton et al., 2015), which have also influenced the community 

dynamics of an individual's gut microbial ecosystem(Gordo, 2019).  

The gut microbiome of humans is a highly diverse ecosystem with extreme inter-

individual diversity (Huttenhower et al., 2012; Lloyd-Price et al., 2017; Mosca et al., 

2016; Thursby & Juge, 2017). Following the second wave of data by the National 

Institutes of Health Human Microbiome Project, comprising of 1,631 new 

metagenomes in 265 individuals within multiple time points. That targeted various 

body sites. The study applied updated assembly and profiling methods to provide one 

of the broadest characterizations in baseline microbiome and functional diversity of 

the human microbial communities. The identification of strains revealed subspecies 

clades that are body part specific. Besides, it quantified species with 

underrepresented phylogenetic diversity in isolated genomes. Not only are the 

microbial communities different across different body sites, but also functionally 

distinct. Lastly, temporal microbiome analysis decomposed microbiome variation 

into stable, moderately variable, and rapidly variable subsets. These together, 

increase complexity in the human microbiome. Nonetheless, gaps still exist in the 

understanding of the processes that shape the gut microbiota throughout evolutionary 

timescales and also the consequence to human adaptation(Amato et al., 2019; Gordo, 

2019; Henry et al., 2019; Quercia et al., 2014; Scanlan, 2019). The diversity and 

composition of gut microbial communities are attributed to various extrinsic and 

intrinsic factors that include host genes, environmental exposures (including diet and 

medication), gene expression patterns, and lifestyle factors(Cuesta-Zuluaga et al., 

2019; Hasan & Yang, 2019; Leeming et al., 2019; Wen & Duffy, 2017; Zhu et al., 

2020). Though the relative influence of factors associated with rural to urban 

migration, such as host genetics, diet, climate, medication, hygiene practices, and 
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phenotypic traits, is not clear(Morton et al., 2015). Factors that influence the 

microbiome composition must be well understood, in order to manipulate the 

microbiome for therapeutic, preventative, or for understanding a particular medical 

condition(Gilbert et al., 2018; Sarin et al., 2019).  

2.3 Factors associated with gut microbiome 

2.3.1 Host genetics and gut microbiome 

The human microbiome composition is unique in every individual, and the 

differences are pronounced than the usual biochemical differences that come up 

within an individual over time(Lax et al., 2014). The genetics of the host and gut 

microbiome has been shown to influence metabolic phenotypes(Goodrich et al., 

2014). Further, the microbial structure and composition of the identical and 

nonidentical twins in the same study, showed that the genetic effects of the host are 

variable, and certain taxa such as Christensenella are highly heritable(Goodrich et 

al., 2014).  

Understanding how environmental factors and host genetics interact in shaping the 

gut microbiota composition is still a challenge(Org et al., 2015; Ussar et al., 2016).  

Others have said that the environment is more important than the genetics of the 

host(Phillips, 2009; Wen & Duffy, 2017). In a study examining microbiome data and 

genotype from 1,046 healthy participants, with a few distinct ancestral origins 

sharing a fairly common environment.  Revealed that genetic ancestry does not have 

a significant association with the gut microbiome. Moreover, the genetics of the host 

plays a minimal role in microbiome composition determination(Rothschild et al., 

2018). In contrast, the study demonstrated significant similarities of microbiome 

compositions in individuals who are genetically unrelated but sharing a household. 

More than 20% of microbiome variation between individuals is as a result of 

association with factors linked to anthropometric measurements, drugs, and 

diet(Rothschild et al., 2018). These results are in agreement with a primate 

microbiome study of 14 baboon populations across native hybrid zones. Which 
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demonstrated that the baboon‟s environment best-explained gut microbiota. More so, 

the exchangeable sodium and soil's geologic history, but little evidence in host 

genetic effects as a significant predictor of the baboon's gut microbiota(Grieneisen et 

al., 2019).  

This knowledge is paramount in designing strategies aiming to modify the 

composition of gut microbial communities to improve health outcomes(Kemis et al., 

2019). However, whether the genetic variation of the host plays a role in shaping the 

gut microbiome and also interacts with it to influence the host phenotype is 

unclear(Wang et al., 2018).  

2.3.2 Effects of Diet on human microbiome 

The effects of diet on the microbiome are extensively studied (Conlon & Bird, 2015; 

Rajoka et al., 2017). Diet modulation offers an ideal chance for psychologically and 

culturally tolerable low-risk intervention to alter the microbiome (Chey & Menees, 

2018; Singh et al., 2017). Current evidence suggests huge effects of long term diet in 

the composition of the gut microbiome (David et al., 2014). However, a concise term 

change in diet can cause a resemblance in the gut microbiome of different people 

within days. This study showed that consumption of a diet composed of exclusive 

plant or animal-based products in the short term changes the microbiome structure, 

and overwhelms microbial gene expression differences between individuals. The diet 

based on animal products leads to an increase in microorganisms that are bile 

tolerant (Bacteroides, Bilophila, Alistipes) and a decrease in Firmicutes that are 

involved in the metabolism of plant polysaccharides (Eubacterium rectale, 

Ruminococcus bromii, Roseburia)(David et al., 2014). 

The gut microbiome influences the leptin concentration in humans, thus also 

influencing appetite (Cani & Knauf, 2016; Rajala et al., 2014; van de Wouw et al., 

2017). Interestingly, the effects of similar dietary ingredients on the measurements of 

blood glucose level can be variable in different people, a microbiome mediated effect 

(Zeevi et al., 2015). Whether the gut microbiome can influence dietary preferences is 
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still an open question, which probably can provide positive feedback when such diet 

changes make alterations to the microbiome (Gilbert et al., 2018). 

2.3.3 Lifestyle as a factor in human microbiome 

Lifestyle is known to posses a significant influence on the diversity and composition 

of the microbiome(Rodríguez et al., 2015; Wen & Duffy, 2017). Cohabitation with a 

spouse or pets such as dogs also correlates with the microbiome 

composition(Finnicum et al., 2019; Song et al., 2013). The ownership of a pet, 

exposure to livestock are linked with a decreased risk of asthma(Kemis et al., 2019; 

Stein et al., 2016). 

Several lifestyle traits relate to the microbiota composition. Lack of exercise and 

smoking have a significant effect on the large bowel, and this potentially extends to 

the microbial community(Biedermann et al., 2013; Li et al., 2020). Smoking has a 

significant influence on the composition of the microbiota, leading to an increase in 

Bacteroides-Prevotella in healthy people and those with Crohn's disease(Conlon & 

Bird, 2015). Exercise influence the microbiome structure through a reduction in 

inflammation; this produces a subtle alteration in the composition of community 

microbiota that correlates with cytokine profile changes(Cook et al., 2016; Kemis et 

al., 2019). Stress has been shown to cause an increase in intestinal permeability, and 

this correlates with alteration in Actinobacteria and Bacteroidetes with a similar 

change in inflammatory markers and metabolite concentrations(Karl et al., 2017). 

Sleep loss and sleep deprivation correlate with changes in the gut microbiome. These 

lead to an elevated abundance of Erysipelotrichacea and Coriobacteriaceae and an 

increased ratio of Firmicutes to Bacteroidetes(Benedict et al., 2016).   

Travel and occupation expose an individual to different places of residence and 

environments, thus influencing the microbiome(Leung & Lee, 2016). Circadian 

disorganization that occurs because of shift work, travel, or other reasons affect gut 

health and causes an alteration in the gut microbial populations(Voigt et al., 2014). 
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The state of personal hygiene and sanitary conditions can also facilitate the spread of 

infectious agents(Conlon & Bird, 2015). 

2.4 Role of the microbiome in human health 

An alteration in the gut microbiome could lead to or result from altered physiological 

states(Clemente et al., 2015). The alteration in the microbiome composition and 

structure of a particular site termed as dysbiosis (Vangay et al., 2018b), might 

provide an understanding of why some people are more likely to be predisposed to 

certain illnesses or a more severe form of illness(Carding et al., 2015).  

The gut microbial community impact diverse physiological processes that range from 

obesity, adiposity, energy metabolism, glucose homeostasis, blood pressure control, 

clotting risks, or even behaviour(Dominguez-Bello et al., 2019). In each of these 

cases, mechanistic ties exist between gut microbes, host receptors, metabolites they 

generate, and phenotypic responses(Dominguez-Bello et al., 2019). Transplantation 

of the fecal microbiota can transfer phenotypes such as nutritional status from donor 

to recipient(Foo et al., 2017), this treatment is effective in individuals having 

dysbiotic microbiome with recurrent Clostridium difficile overgrowth (Jin Song et 

al., 2019).   

A distal gut microbiota study comparing obese vs. lean mice and human subjects, 

demonstrated that obesity is associated with relative abundance changes of two 

bacterial divisions that are also most dominant, the Firmicutes and the 

Bacteroidetes(Tseng & Wu, 2019; Turnbaugh et al., 2006). Results from this study 

showed that the microbiome that is associated with obesity has a higher capacity of 

energy harvesting from the diet(Davis, 2016). Besides, the trait is also transmissible; 

germ-free mice colonization with a microbiota that is obese resulted in a notably 

increase in gross body fat in comparison to lean microbiota colonization(Turnbaugh 

et al., 2006).  Which raises the possibility that gut microbiota manipulation could 

prevent obesity or facilitate weight loss in humans.(Davis, 2016; Tseng & Wu, 2019) 
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Studies have also shown that antibiotics cause relatively large effects on all 

microbiome in comparison to the other factors(Modi et al., 2014; Zarrinpar et al., 

2018). Antibiotics are currently not only considered useful, but also as potentially 

harmful agents. Since their abuse appears to be significant in the pathogenesis of 

several disorders (metabolic disorders or Clostridium difficile infection) associated 

with microbial community impairment(Ianiro et al., 2016). The adult gut microbiome 

appears to be non-resilient to repeated administration of antibiotics; this may be 

attributed to metabolic states, different growth phases, or the network in the context 

of the microorganism's existence(Langdon et al., 2016; Lozupone et al., 2012; Singh 

et al., 2017). Increasing evidence suggests that antibiotics taken in the early life of an 

individual have an extreme impact on the microbiota that can lead to later 

development of asthma, inflammatory bowel disease, obesity, and other 

disorders(Ianiro et al., 2016; Lange et al., 2016). 

 

2.5 Gut microbiome variation across the transition from subsistence to urban 

lifestyles 

In studies comparing communities from unindustrialized rural areas; in Africa, Asia, 

western industrialized societies from North America, and Europe have disclosed 

specific gut microbiome adaptations to the respective lifestyles(Afolayan et al., 2019; 

Morton et al., 2015). These adaptations are inclusive of higher biodiversity and 

enrichment of Actinobacteria, Bacteroidetes in rural areas communities. On the other 

hand, western populations have an overall reduction in stability and microbial 

diversity(Mcdonald et al., 2018; Schnorr et al., 2014). A gut microbiome study of the 

Hadza community, whose lifestyle represents over 90% of the evolutionary history 

of humans(Rampelli et al., 2015). Found out that gut microbial communities of the 

Hadza have adapted to broad-spectrum metabolism of carbohydrates that reflect the 

complex polysaccharides of their diet(Rampelli et al., 2015). The enrichment in 

Treponema, Prevotella, peculiar Clostridiales taxa arrangement and unclassified 
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Bacteroidetes, might facilitate the ability of the Hadza to digest as well as extract 

valuable nutrition of fibrous plant foods(Schnorr et al., 2014). The Hadza 

microbiome is equipped for the biosynthesis of aromatic and the degradation of 

branched-chain amino acids. However, with limited exposure to antibiotics, the 

resistome functionality of the Hadza demonstrated the existence of antibiotic 

resistance genes. Which indicates the universal presence of resistances derived from 

the environment(Rampelli et al., 2015). In a study comparing the Hadza hunter-

gatherer, an Italian, and African agricultural society subjects investigating gut 

microbiota variation, metabolite production and phylogenetic diversity. The study 

demonstrated higher levels of biodiversity and microbial richness than the Italian 

urban subjects. And that, further comparisons to two rural African farming groups 

showed more features that are unique to Hadza and also associated to foraging 

lifestyle. These were inclusive of the absence of Bifidobacterium, and microbial 

composition differences between the two genders reflect division of labour on the 

basis of sex(Schnorr et al., 2014). 

Unindustrialized societies in rural areas are the primary targets. In understanding the 

interactions of humans and their gut microbiome. Because these populations have 

less reliance on sterile cleaners and antibiotics, they consume a lot of unrefined 

foods(Schnorr et al., 2014). A study that was examining lifeways and gut 

microbiome relationship through functional potential and taxonomic characterization 

of faecal microbial communities, from urban-industrialized US community and 

traditional agriculturalist and hunter-gatherer communities in Peru. The study 

showed metabolic and taxonomic differences between traditional and urban 

lifestyles. Additionally, the hunter-gatherers formed a clear-cut sub-group amid 

traditional peoples. In agreement with observations from previous studies, the study 

found out that Treponema is typical of traditional gut microbiota. Moreover, 

functional potential characterization and genome reconstruction discovered this 

Treponema to be of non-pathogenic clades. They are diverse with similarity to 

Treponema succinifaciens, known to metabolize carbohydrates in swine. Treponema 

is present in the gut of all traditional populations and non-human primates studied to 
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date. Thus they are symbionts non-existent in industrialized urban 

communities(Obregon-Tito et al., 2015). 

A study of the Yanomami mountain people microbiome and resistome, who have 

retained their lifestyle as a seminomadic hunter-gatherer in the Amazon forest, with 

no contact to a modern lifestyle(Clemente et al., 2015). Yanomami microbiome has 

the highest bacterial diversity and genetic functions in comparison with what has 

ever been reported in human groups. However, their microbiome carries genes with 

functional antibiotic resistance, despite living in isolation from time past. These 

results demonstrated that human microbial community diversities are significantly 

affected by westernization. The functional antibiotic resistance genes are a 

characteristic of the microbiome regardless of commercial antibiotics 

exposure(Clemente et al., 2015). 

Despite the recent focus on rural societies, a gap remains in our understanding of the 

microbiome host relationship among nomadic pastoralists inhabiting extreme 

conditions. The Turkana community, having retained their traditional lifestyle, 

provide us an opportunity to understand how ecological pressures can shape the 

human gut microbiome. 

The traditional Turkana population are known to be healthier but that changes as 

they move to urban areas. Understanding the gut microbiome of this population 

could play a role in the search for microbiome-based therapy, in addition to 

understanding the role of the microbiome in the health of an individual. This study 

will also add to the microbiome research findings that have been conducted in 

Africa. Africa is currently considered as an understudied continent in microbiome 

research. 
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2.6 Methods in microbiome studies 

2.6.1 Alpha Diversity 

Alpha diversity measures give a summary of the structure of ecological communities 

for evenness (abundance distribution of the groups) and richness (measures the 

number of taxonomic groups)(Willis, 2019).  Because any changes to a community 

influence the community's alpha diversity, comparing and summarizing community 

structures using alpha diversity measures is a ubiquitous approach of community 

surveys analysis. In microbial ecology, alpha diversity analysis of sequencing data is 

the most common primary approach to compute differences between environments 

meaningfully. 

Rarefaction adjusts for the library size differences across samples to facilitate alpha 

diversity comparisons(Brewer & Williamson, 1994). Rarefaction method entails 

selecting a designated number of samples that is less than or equal to the number of 

samples contained by the smallest sample, then discarding reads randomly in the 

larger samples till the remaining number of samples equals to the set 

threshold(Hurlbert, 1971). Therefore with these equal size subsamples, diversity 

measures can be computed that can give a fair distinction of ecosystems unrestrained 

by sample size differences(McMurdie & Holmes, 2014; Weiss et al., 2017). 

2.6.1.1 Diversity Indices 

Diversity index normally refers to the mathematical measure of the species diversity 

in a microbial community. The indices provide additional information on the 

microbial community composition than only species richness (number of species 

present in a microbial community). Diversity indices also take into account different 

species' relative abundance. They play an important role in providing rarity and 

commonness information of species present in a community. The ability to determine 

diversity is a useful tool in understanding community structure(Jost, 2006). 
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Shannon and Simpson diversity methods are the most common indices in 

characterizing the diversity of species in a community. These methods account for 

both the evenness and richness of the present species, but the Simpson index offers 

more weight to evenness. Additionally, units are not similar across the various 

measures. The observed species gives a count, Shannon diversity measure has a 

logarithmic value while Simpson measure is an addition of the squared 

proportions.(Jost, 2006) These weighting and unit differences offer an explanation 

for the observed differences in results by each of the measure(Wagner et al., 2018). 

2.6.2 Beta diversity 

The diversity in association with an individual sample is the local or alpha 

component. The diversity for sample collections is called regional, or gamma 

component, while the relationship between the two components is beta diversity. 

Beta diversity is computed for every pair of samples and is a representation of either 

a distance or similarity between two samples(Tuomisto & Ruokolainen, 2006; 

Wagner et al., 2018). 

2.6.2.1 Bray Curtis 

Bray Curtis dissimilarity is a statistic that quantifies the species differences in 

populations between two distinct sites. It is normally a number in the range of 0 - 1. 

If 0, the two sites share all the species. If 1, they share none of the species. For easy 

interpretation, it is frequently multiplied by 100 and expressed as a percentage. In 

computing the Bray Curtis dissimilarity distances between two sites, the assumption 

is that both sites are similar in volume(Michie, 1982; Ricotta & Podani, 2017). 

2.6.2.2 UniFrac distance measures 

UniFrac is a β-diversity method to computes dissimilarities between microbial 

communities based on phylogenetic information(C. Lozupone & Knight, 2005). 

UniFrac determines the phylogenetic distances linking taxa sets in a tree of 
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phylogeny, the method coupled with multivariate standard statistical techniques 

including principal coordinates analysis (PCoA) can help determine whether 

microbial communities are significantly different(Lozupone et al., 2011). It compares 

several communities at the same time using ordination and clustering techniques, in 

addition to the relative contribution of various factors, such as geography and 

chemistry, to the similarities existing between samples(C. Lozupone & Knight, 

2005). In 2007 a proportional weighting was added to the original UniFrac, and the 

two are weighted UniFrac and unweighted UniFrac(Lozupone et al., 2007).  

Weighted UniFrac distance measure uses the abundance information of species. It 

weighs the branch length with differences in abundance, and unweighted UniFrac 

distance measure puts into consideration only species absence and presence 

information and counts the branch length fraction unique to either of the 

communities. 

Although both unweighted and weighted UniFrac methods have been used widely in 

measuring phylogenetic distances, their limitations as well have been noticed. The 

weighted and unweighted UniFrac measures assign too much weight to most 

abundant lineages (weighted) or rare lineages (unweighted). Hence, their power of 

detecting changes in abundance within lineages that are moderately abundant is 

limited. The generalized UniFrac distance is on the basis variance adjusted weighted 

UniFrac extending the unweighted and weighted UniFrac(Chang et al., 2011). 

Hence, generalized UniFrac distance measure through incorporating multivariate 

analysis of variance with permutation (PERMANOVA) is potent in detecting such 

changes, in addition to retaining almost all its power for the detection of highly and 

rarely abundant lineages, and it also possesses an overall better power in comparison 

to the joint usage of weighted/ unweighted UniFrac distance measure(Xia & Sun, 

2017) 
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2.7 Study Areas and Population 

The Turkana people are an eastern Nilotic group inhabiting the northwest region of 

Kenya in Turkana County that covers an estimated area of approximately 77,000km. 

Turkana County is one of the aridest ecosystems in East Africa; it experiences high 

temperatures year-round, with an average daytime high of 36
0
C and daily averages 

of 30.5
0
C. Turkana County generally is hot and dry most of the year, with a rainfall 

average of approximately 220mm per year. The rainfall distribution and patterns are 

unreliable and erratic with both time and space. Although the annual precipitation is 

meager, the events normally occur with high intensities in the short duration that lead 

to flash floods(Galvin et al., 2001). These conditions make subsistence in this region 

to be difficult to this poorly studied nomadic pastoralist population in addition to 

shaping 

Subsistence in the Turkana region is difficult. The Turkana people are pastoral 

nomads and represent the second largest pastoral community in Kenya after the 

Maasai. Their diet is unusual protein-rich, with 62% derived from milk or milk 

products, and ~70-80% of the diet is from animal products. Daily protein intake 

exceeds the FAO/WHO requirements by >300%. However, the total caloric intake is 

limited, with dietary estimates of 1,300-1,600 kcal/day for adults(Kaye-Zwiebel & 

King, 2014; Popkin et al., 2019). The Turkana are thus lean and have limited energy 

reserves, yet they undertake the difficult task of collecting water daily. The process 

involves walking several miles to wells dug in dry riverbeds, and hauling water up 

from the bottom of a well, which can exceed 30 feet in dry seasons. Water must then 

be carried home and shared among family and livestock. As a result, the Turkana 

drink relatively little daily, while tolerating extreme heat and exerting considerable 

energy, they do so despite limited caloric reserves and a protein-rich diet, which 

takes considerably more energy to digest than carbohydrates or fats (Popkin et al., 

2019). This extreme lifestyle has likely selected for a unique microbiome adaptation 

that we aim to uncover.  
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2.7.1 Lifestyle gradient in the Turkana community 

The Turkana are majorly subsistence level nomadic pastoralists. They are transiting 

to a sedentary lifestyle, in their traditional lifestyle, the Turkana pastoralists herd 

goats, camels, cattle, and sheep(Galvin, 1992). However, many get forced to settle 

since they have lost their livestock to raiding, drought, poor management, and bad 

luck(Barkey et al., 2016). In their traditional settings, the Turkana relies almost 

entirely on their livestock for food, which is equivalent to 70-80% of their diet 

coming from some animal products; milk, meat, and blood. Though the pastoralists 

sometimes trade with agriculturalists to obtain grains. Many of the agriculturalists 

are Turkana, who were once themselves pastoralists, until during the severe droughts 

of the 1960s and 1970s combined with livestock raiding that forced them to settle 

and become farmers(Corbett et al., 2003). Farming has good potential in Turkana in 

areas where farmers have access to water from rivers, underground water, and 

impounded runoffs. Drought-tolerant crops like green grams and sorghum, as well as 

Aloe Vera and mangoes, are the crops mostly farmed. However, the choice of crops 

is dependent on water requirements and soil type. 

 Coupled with drought effects, from independence, a majority of African nations 

emphasized a nation-state inclusive of Kenya. Which lead to a highly centralizing 

effect negatively impacting efficiency in service delivery of local governance and 

public services, and Turkana county was one of the most affected areas in the 

nation(Hope, 2014). As the nation of Kenya embraced devolved government and 

introduced counties to attempt an improvement; in service delivery of local 

governance, public services, as well as increasing the administrative capacity and 

public sector productivity in a cost-efficient manner(Hope, 2014). Thus leading to 

improved infrastructure, an expansion of small scale markets into northwest Kenya, 

and the recent discovery of oil has facilitated the transition of the Turkana from their 

traditional to urban life. The urban population harvest and sell sand or make and sell 

woven baskets or charcoal or keep animals in fixed locations in various markets for 

trade instead of subsistence level nomadism. Additionally, some individuals have 
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completely left their homelands and are now inhabiting highly urbanized parts of the 

rift valley and central Kenya(Lea et al., 2019). Studies have shown that the gut 

microbiome composition in urban populations is not similar to those living 

traditional lifestyles. Although few studies have focused on pastoralist communities, 

it is difficult to separate human genetic, geographic factors, and phenotypic 

expressions contributions from lifestyle. Whether transitions from traditional 

lifestyle that is characteristic of humanity's past influence the gut microbiota and to 

what extent remains unclear(Jha et al., 2018). 

The Turkana community provides several unique situations in understanding gut 

microbiome transition. They have a common origin and ancestry, with different 

levels of modernization across the population, this gradient provides us the 

opportunity to understand the effects of lifestyle changes to the microbiome of a 

population within a common genetic background. Secondly, the demographic history 

of the Turkana appears to include a recent bottleneck, leading to a relatively 

homogeneous genetic background among the Turkana, which makes the study of 

their microbiome even more appealing. Thirdly the Turkana have subsisted in a very 

harsh environment with extreme water scarcity and constant high temperatures for 

many years. Gut microbiome study will thus allow us to uncover signatures of 

selection. Thus understanding the uniqueness of their microbiome, which have 

evolved to confer a survival advantage in the harsh environment. The transition from 

a pastoralist diet centered on meat, blood and milk to a diet rich in carbohydrates and 

fats as is common in urban settings, is particularly insightful in our desire to 

understand the relationship of the microbiome with the rising epidemic of chronic 

metabolism-related diseases around the world and the development of fecal 

microbiota transfer therapy 
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CHAPTER THREE: MATERIALS AND METHODS 

3.1 Study area, participating individuals and sample collection 

 

I collected a total of 165 fecal samples from healthy individuals of the Turkana tribe 

with informed consent. One group came from the Northwestern part of the Turkana 

region (n=106), where most of the Turkana have maintained a traditional lifestyle. 

Another group came from the city of Lodwar and Nanyuki (n=59). Participants were 

men and women aged above 18 years. I collected the samples over a period of three 

months, from December 2018, then February and March 2019. I refrigerated the 

samples in cool boxes and took them to Turkana Basin Institute (TBI) and air lifted 

 

Figure 2: A map of Kenya, showing sampling locations in Turkana County and 

Laikipia indicated by a star 



 
24 

them to Mpala research centre; at Mpala I stored the samples at -20
0
C until DNA 

extraction. 

I conducted in-depth interviews with each participant. This included requests for 

information such as: self-reported ancestry, age, and place of birth, occupation, 

summary medical history, diet, education, and number of children. I also collected 

basic anthropometric data that included; height, weight, waist circumference, 

skinfolds, and blood pressure. I used this data to prepare the metadata for the analysis 

section. 

3.2 Fecal DNA extraction, Library preparations and 16S rRNA gene sequencing  

I extracted total DNA from the 165 samples using the Quick-DNA
TM

 Fecal/Soil 

Microbe Microprep kit according to the manufacturer‟s protocol (Jha et al., 2018). I 

suspended pea size faeces in 750μl of lysis buffer, placed in a bashing bead lysis 

tube. I stored the extracted DNA at -20
0
C until sequencing. I shipped the extracted 

DNA to Princeton University on dry ice and stored it at -20
0
C until when I 

sequenced. 

I did Qubit quantification to quantify the DNA in each sample. I repeated the process 

two times to be sure of the figures I was getting, I repeated three times for the 

samples that had a quantity of greater than 80ng/μl and those with a quantity less 

than 1 ng/μl. I quantified samples with a quantity of less than 1ng/μl without 

dilution, and those with a quantity greater than 80ng/μl I further diluted to 1/100 then 

quantified 

I amplified the V4 region of the 16s rRNA of the normalized DNA in triplicates 

using the primers 515F/806R, targeting bacteria Achaea, following Earth 

Microbiome project modification (Caporaso et al., 2012). I prepared the master mix 

by adding 5 μl 2x buffer, 0.4 μl 515F forward primer (10μM), 0.4 μl 806R reverse 

primer (10μM) and 3.2 μl of PCR grade water.  
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I indexed the amplified DNA fragments. I prepared the master mix for indexing by 5 

μl 2x buffer, 1 μl i5 (5μM by plate), 2 μl PCR grade water and 1 μl i7 (5 μM by 

individual sample), then I added 8 μl of the master mix and 1 μl of i7 to 1 μl of PCR 

amplicon. I then PCR amplified the products under cycling conditions 95
0
C for 3 

minutes, then 95
0
C 30 seconds, 55

0
C-30seconds, 68

0
C 30s, 68

0
C - 5 minutes I 

repeated 25 times then held at 12
0
C for ∞. I ran a gel to confirm the success of the 

step. 

After indexing, the samples, I cleaned them by Ampure XP beads. First, I let the 

beads stand for 30 minutes after taking them out of the 4
0
C storage, then I created a 

pool from every indexed plate of the 6 plates, with each pool having 1.1 μl of every 

PCR index, that gave me a total of 7 pools in addition to 1 pool of unindexed plate 

with 96 μl volume. I added 1x beads to every pool and mixed thoroughly, and then I 

incubated at room temperature for 10 minutes. I placed the solution in a magnet for 5 

minutes; I took off the supernatant and washed with 80% ethanol for 30 s and then 

air-dried for 5 minutes.  I took off the magnet, and resuspended the product in 96 μl 

PCR grade water and incubated for another 5 minutes. I put the magnet back until it 

was clear after 5 minutes, then I took off the supernatant. I eluted the product in 25μl 

PCR grade water, the beads resuspended off the magnet for 5 minutes, then I put 

back the magnet, and kept the supernatant. I qubit quantified the cleaned libraries in 

1:10 dilutions. Then I did further quality check by tape station. I paired-end 

sequenced the cleaned libraries using Illumina MiSeq at the Princeton University 

Genomics Core. 

3.3 Bioinformatics analysis of 16s rRNA and statistical methods 

I analyzed the paired-end reads using the QIIME2 version; 2019.7 pipeline, as 

described previously by (Bolyen et al., 2019). I followed the following criteria in 

filtering the sequences; I first demultiplexed the sequences and in this step I used the 

metadata file; to obtain high quality sequences, I trimmed read length not shorter 

than 50 base pairs (bp) and not longer than 250bp, I then denoised the reads using the 
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denoising package DADA2 an implement of q2-dada2 plugin(Callahan et al., 2016). 

I trimmed samples with less than 20000 reads, and I retained only OTUs with more 

than ten occurrences. I filtered negative controls and rep - seqs for the phylogenetic 

tree, and I was left with a total of 133 samples n=90 for the traditional population 

and n=43 samples for the urban population for further analysis. I did subsequent 

statistical analysis to determine alpha, beta diversity and alpha diversity correlation 

with the various phenotypes using R-studio version 1.2.5001 and several other 

packages but majorly phyloseq(McMurdie & Holmes, 2013).  

3.4 Ethical Approval.  

Maseno University Ethical Review Committee approval number: 

MSU/DRPI/MUERC/00519/18, Princeton University Institutional Review board 

approval number 10237 (IRB # 10237) and NACOSTI/P/18/46195/24671 for 

evolutionary and functional genomics of the Turkana: signatures of past selection 

and responses to modern urbanization. 
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CHAPTER FOUR: RESULTS 

4.1 Lifestyle aspects of the Turkana community 

To explore the lifestyle of the Turkana community, we collected biomarker data. We 

conducted an extensive interview of the sampled Turkana population. From this data, 

we tried to determine how the two populations relate to one another phenotypically. 
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The results showed that only one individual had a BMI above 25 for the traditional 

community. However, the urban population had several individuals that had a BMI 

value above 30. However, the BMI differences between the traditional and urban 

populations were not significant (Figure 3A, t-test, p=0.0641). The mean BMI value 

for the urban population was 21.01 and 19.49 for the traditional community. 

    

 

Figure 3: Box plot visualization of the phenotypic differences between the traditional and urban 

population from top left in clockwise direction a) BMI, b) systolic blood pressure, c) diastolic 

blood pressure, d) cholesterol, e) high-density lipoprotein and g) length of time residing in the 

current location. Every dot represents an individual in the population, the star represent those with 

significant differences, and not all individuals were sampled for all measures 
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We also checked the blood pressure variation differences between the two 

populations for both diastolic and systolic blood pressure. There was a more 

considerable variation in the blood pressure of the traditional population as compared 

to the urban population. Systolic blood pressure was not significantly different 

between urban and traditional communities (Figure 3C, t-test, p=0.4958). The 

diastolic blood pressure also didn't show a significant difference between the urban 

and traditional population (Figure 3D, t-test, p=0.8243) 

The cholesterol of the traditional population is distributed more evenly as compared 

to that of the urban population. The cholesterol differences between the traditional 

and urban people were not significant (Figure 3F, t-test, p=0.307). However, only 

36.09% of participants from both urban and traditional populations were sampled for 

cholesterol. On the other hand, the high-density lipoprotein (HDL) distribution in the 

two communities was different, with the traditional society having a higher HDL in 

comparison to the urban population (Figure 3G, t-test, p=0.0094). The HDL results 

represent 36.84% of the participants from both the traditional and urban populations. 

The length of time residing in the current location in years is significantly different 

between the traditional and urban communities (Figure 3H, t-test, p = < 0.0001) with 

a mean value of 32.43 years for the traditional population and 19.65 years for the 

urban population. These show that the Turkana population started transiting to urban 

areas recently. 

 

 

 

 



 
30 

4.2 Sample sequencing depth distribution 

In this study, rarefaction leveled off at a sequencing depth of 6000, suggesting we 

fully sampled the microbial community. 

 

 

Figure 4: Alpha rarefaction curve showing the observed taxonomic units (OTUs) 

against sample sequencing depth for every individual in the population 
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In this study, we sampled deeply and merged the data from the three plates. The 

average read count of all the samples was 36,961.37 counts, the highest read count 

was 67,715, and the minimum was 19,785 counts. The total reads for all the samples 

were 4,915,862 reads, 1250 absolute sequence variants (ASVs) were present across 

15 phyla. 

 

 

 

Figure 5: Histogram showing the read counts distribution of samples sequenced for the 

microbiome. The results represent merged data of each sample for the triplicate plates. 
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4.3 The relative abundance of the Turkana microbiome 

Several phyla were present in the data of the urban population that included; 

Actinobacteria, Firmicutes, Spirochaetes, Bacteroidetes, Lentisphaerae, 

Cyanobacteria, Euryarchaeota, Proteobacteria, Fusobacteria, Elusimicrobia, and 

Tenericutes that were equally present in the traditional population, with the addition 

of Verrucomicrobia with differences in the abundances between the two groups. 

The most prevalent phyla in the communities were Bacteroidetes, with a more 

pronounced abundance in the urban population; the Firmicutes that were more 

abundant in the rural population followed this. The Spirochaetes and 

Verrucomicrobia were also more abundant in the rural community. There was an 

equal abundance of cyanobacteria between the communities. 

 

Figure 6: Relative abundance of the traditional and urban population at the phyla level, the 

different colors indicates the different phyla present. 
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We also performed a t-test to check whether differences between the most abundant 

phyla were significant. The urban group had significantly more Bacteroidetes than 

the traditional group (Figure 6, t-test, p = < 0.0001). Bacteroidetes in the urban group 

is made up of 38 individuals representing 88.37% of the participants, while only 64 

individuals in the traditional group representing 71.11% of the participants.  

There was no significant difference between Firmicutes in the traditional and urban 

populations (Figure 6, t-test, p=0.4046). However, there was a considerable 

difference for Firmicutes, between the urban and traditional communities. When 

checking the number of individuals between the two populations that had the 

presence of Firmicutes, 75 individuals that represent 82.42 % of the sampled 

individuals in the traditional community had Firmicutes. And in the urban 

population, only 22 individuals that represent 50 % of the urban population 

participants had the presence of Firmicutes as described in figure 6 below. 

 

 

 

Figure 7: Relative abundance of Firmicutes across individuals from (A) traditional and (B) 

urban groups. Firmicutes were in 82.42% of the traditional population, but only 50% of the 

urban population.  
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The relative abundance of the urban population seemed uniform regardless of the 

gender of the individual. However, the rural community showed a difference in 

microbiome abundance between the males and the females. The Firmicutes were 

more abundant in males than in females; the Proteobacteria were more abundant in 

females than in males. Then the Spirochaetes were more abundant in females than 

males; nevertheless, the Spirochaetes were only present in the rural population. The 

Verrucomicrobia were also present only in the traditional community. 

Additionally, the traditional population microbial communities showed a variation of 

Spirochaetes, Proteobacteria, Firmicutes, Cyanobacteria, Bacteroidetes, and 

Actinobacteria between males and females. 

 

 

Figure 8: Relative abundance differences between male and female gut microbiota in 

traditional and urban populations. The Top chart, A represents a variation within the 

traditional community, and the bottom chat, B represents the variation within the urban 

population. 
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4.3.1 Relative abundance at the family level 

The relative abundance bar plot (Figure 9) showed differences between the urban and 

traditional populations. The most abundant family in the two groups was the family 

Prevotellaceae, other families that were available include, Bacteroidaceae, 

Porphyromonadaceae and [Paraprevotellaceae] (that is a recommended annotation) 

with three other unknown groups. 

 

Figure 9: The Microbiome relative abundance at the family level of the traditional and urban 

Turkana population. 
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The urban group had significantly more Prevotellaceae than the traditional group 

(Figure 10A, t-test, p=0.0216), further visualizing the data using a boxplot (Figure 

10B) also demonstrated the observed distribution differences in the individuals of the 

two populations. Another group that we visualized was the family Spirochaetaceae. 

The traditional community had significantly more Spirochaetaceae than the urban 

group (Figure 9, t-test, p=0.0412). A boxplot distribution visualization of the 

Spirochaetaceae (Figure 11) showed the same difference, and only three individuals 

in the urban group had the family. 

    

Figure 10: A: First figure shows relative abundance of the Bacteroidetes at the 

family level for the urban and traditional population. B: Boxplot of Prevotellaceae 

family variation between the traditional and urban populations; each point 

represents an individual. 
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Figure 11: The Spirochaetaceae family variation between the traditional and urban 

populations; each point represents an individual. 
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4.4 Gut microbiome variation across the Turkana population 

Community structure comparison in the two study populations using Bray Curtis and 

UniFrac distances showed a variation in gut microbiome composition between the 

populations. UniFrac is a method that computes microbial communities' differences 

by incorporating phylogenetic information. UniFrac measures phylogenetic distances 

between taxa sets in a tree of phylogeny as a fraction of branch length of a tree 

leading to descendants from one environment or the other(C. Lozupone & Knight, 

2005). The method revealed a difference between urban and traditional populations 

using clustering and ordination techniques. The results were similar to the bray 

Curtis dissimilarity test that also demonstrated a difference in diversity between the 

urban and traditional populations of the Turkana community. Unlike UniFrac, Bray 

Curtis quantifies the differences using sequence abundance(Goodrich, Di Rienzi, et 

al., 2014). We tested the significance of the differences using Permanova, Adonis 

 

Figure 12: Beta diversity between the traditional and urban populations. A: Bray curtis diversity 

differences between the traditional and urban populations, each blue dot represent an individual 

in the urban community and a red dot an individual in the traditional community, B; UniFrac 

diversity between the urban and traditional populations, each blue dot represent an individual in 

the urban population and a red dot represents an individual in the traditional population 
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test with 999 permutations that confirmed that the differences between the two 

populations were significant. 

Table 1: Adonis test for Bray Curtis distance, showing the significance of the 

differences between the traditional and urban populations. 

 Df Sums Of Sqs Mean Sqs F. Model R2 Pr (>F) 

Class 1 1.897 1.89651 5.862 0.04347 0.001*** 

Residuals 129 41.735 0.32353  0.95653  

Total 130 43.632   1.00000  

Signif 

Codes 

0 „***‟ 0.001 „**‟ 0.01„*‟ 0.05 „.‟ 0.1 „ ‟ 1 

 

Table 2: Bray Curtis betadisper homogeneity test among the urban and traditional 

group 

 Df Sum sq. Mean sq. F N. Perm Pr (>F) 

Groups 1 0.08458 0.084582 15.536 999 0.001*** 

Residuals 129 0.70230 0.005444    

Signif. Codes 0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „‟ 1 

The beta dispersion results for Bray Curtis distance were significant, showing that 

there is a significantly unequal variance between the traditional and urban groups, 

stating that the two populations have the same dispersions. The results make us 

confident that the traditional and urban communities have differences in-group 

dispersions. 
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Table 3: Adonis test for UniFrac distances, showing the significance of the 

differences between the traditional and urban populations. 

 Df SumsOfSqs MeanSqs F.Model R2 Pr (>F) 

Class 1 1.596 1.5963 6.6266 0.04886 0.001*** 

Residuals 129 31.076 0.2409  0.95114  

Total 130 32.672   1.00000  

Signif. Codes 0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „‟ 1 

 

Table 4: UniFrac betadisper test for the traditional and urban groups 

 Df Sum Sq Mean Sq F N. Perm Pr (>F) 

Groups 1 0.08458 0.084582 15.536 999 0.001*** 

Residuals 129 0.70230 0.005444    

The beta dispersion results for UniFrac distances were significant, showing a 

significantly unequal variance between the traditional and urban Turkana groups. 

4.5 Gut bacterial diversity (alpha) across the Turkana population 

Alpha diversity measures were employed to determine the ecological community 

structure about its richness (the number of available taxonomic groups), evenness 

(abundance distribution of the groups), or both(Willis, 2019). 

Inverse Simpson, Fisher, Shannon, and Simpson's measures were also applied to 

determine richness and evenness within every group. Richness measures helped us to 

characterize communities by the number of species that were available in the group. 

While Species diversity or evenness helped us determine how equally abundant the 

species were within an individual population in every group.  
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The number of species in every group (alpha diversity) was measured using Inverse 

Simpson, Fisher, Shannon, and Simpson measures. The general trend was that the 

samples in the traditional population are distributed more evenly in comparison to 

the urban population. We also measured richness in different ways, and the general 

trend was more richness in the traditional community than the urban population. A 

T-test for the differences reflected the same results, whereby the traditional group 

had a more significantly richness than the urban group (Figure 13A, t-test, 

p=0.0015). 

We also measured the significance of the diversity differences between the two 

groups using the different measures of diversity. The results for diversity 

Figure 13: The alpha diversity of the Turkana population microbiome, the first 

figure shows richness, then evenness by Inverse Simpson, Fisher, Shannon, and 

Simpson measures respectively. Each point represents an individual in the urban 

and traditional group and the black star indicate measures that had significant p 

value. 
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measurement using the Fisher measure showed that the microbial community 

distribution in the traditional population was more even than the urban population 

(Figure 13C, t-test, p=0.0011). 

The evenness results by Inverse Simpson, Shannon, and Simpson showed that the 

traditional community is highly diverse compared to the urban population. However, 

the differences between the traditional and urban populations were not significant for 

Inverse Simpson (Figure 13B, t-test, p=0.7862), Shannon (Figure 13D, t-test, 

p=0.3183) and Simpson measure (Figure 13E, t-test, p=0.9599). 
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4.6 Alpha Diversity Correlation with Phenotypes 

We also checked the correlation between phenotypes and the various diversity 

measures to find out the differences between the traditional and urban populations. 

4.6.1 Alpha diversity Correlation with BMI 

The ANCOVA correlation results between alpha diversity and BMI showed that 

mean microbial richness (Supp. Table 6, F = 4.873, p = 0.0291) and Fisher diversity 

(Supp. Table 6, F = 4.886, p = 0.0289) are in correlation with BMI. There was no 

correlation between Inverse Simpson, Shannon, and Simpson's measures with BMI. 

The urban and traditional population had different Richness (Supp. Table 6, F = 

 

Figure 14: The correlation between microbial diversity with BMI. The green line 

represents the correlation between BMI and average diversity measures in the 

urban population. The red line represents BMI and diversity measure correlation 

in the traditional group. The red and green points represent the participants in the 

study. The black star shows correlations with significant p values. 
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5.538, p = 0.0202) and Fisher (Supp. Table 6, F = 5.668, p = 0.0188) diversity values 

but similar for Inverse Simpson, Shannon and Simpson diversity measures. No 

interaction existed between BMI and the two populations for all alpha diversity 

measures. 

4.6.2 Alpha diversity in correlation with age  

The ANCOVA alpha diversity correlation with age indicated that there is no 

correlation between alpha diversity and age. The urban and traditional population 

had different Richness (Supp. Table 7, F = 7.345, p = 0.0077) and Fisher (Supp. 

Table 7, F = 7.384, p = 0.0075) values but similar values for Inverse Simpson, 

 

Figure 15: The correlation between microbial diversity with age in years. The 

green line represents; the relationship between age in years and mean alpha 

diversity measure in the traditional population, and the red line represents age and 

average alpha diversity measure correlation in the urban population. The red and 

green dots represent the participants in the study. The black star shows 

correlations with significant p values. 



 
45 

Simpson and Shannon. No interaction exists between age and the two population 

groups for all the diversity measures. 

4.6.3 Alpha diversity in correlation with cholesterol 

The ANCOVA alpha diversity correlation with cholesterol showed that cholesterol 

does not correlate with alpha diversity measures. Additionally, no interaction existed 

between cholesterol and the two population groups. However, the results represent 

48 participants sampled for cholesterol out of the total 133. 

 

 

 

Figure 16: The correlation between microbial diversity with cholesterol. The 

green line represents the correlation between cholesterol and average diversity 

measure in the urban population, and the red line represents cholesterol and 

average diversity measure correlation in the traditional community. The red and 

green dots represent the participants in the study. 
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4.6.4 Alpha diversity in correlation with HDL 

The ANCOVA alpha diversity correlation with HDL showed that HDL does not 

correlate with alpha diversity measures. Additionally, no interaction existed between 

HDL and the two population groups. The results represent 49 individuals sampled 

for HDL out of the total 133 in the study. 

 

 

Figure 2: The correlation between microbial diversity with high-density 

lipoprotein. The green line represents HDL and average diversity measure 

correlation in the urban population, and the red line represents HDL and average 

diversity measure correlation in the traditional society. The red and green dots 

represent the participants in the study.  
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4.6.5 Alpha diversity in correlation with diastolic blood pressure 

The ANCOVA correlation results between alpha diversity and diastolic blood 

pressure showed that diastolic blood pressure does not correlate with alpha diversity. 

No interaction existed between diastolic blood pressure and the two populations for 

all alpha diversity measures. 

 

 

Figure 18: Mean microbial diversity correlation with diastolic blood pressure. The 

green line represents the correlation between diastolic blood pressure and alpha 

diversity measures in the urban population. The red line represents diastolic blood 

pressure correlation with mean alpha diversity measure in the urban population. 

The red and green dots represent the participants in the study, and the black star 

shows correlations with significant p values. 
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4.6.6 Alpha diversity in correlation with systolic blood pressure 

The ANCOVA correlation results between alpha diversity and systolic blood 

pressure showed that systolic blood pressure does not correlate with alpha diversity. 

However, no interaction existed between systolic blood pressure and the two 

populations for all alpha diversity measures. 

 

 

 

Figure 19: Mean microbial diversity correlation with systolic blood pressure. The 

green line represents the correlation between systolic blood pressure and alpha 

diversity in the urban population, and the red line represents systolic blood 

pressure correlation with mean alpha diversity in the traditional community. The 

red and green dots represent the participants in the study, and the black star shows 

correlations with significant p values. 
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4.6.7 Alpha diversity in correlation with length of time residing in the current 

location 

The ANCOVA alpha diversity correlation with length of time residing in the current 

location showed that alpha diversity measures did not correlate with the period an 

individual has stayed in the current location. No interaction existed between the time 

of residing in the current location with the two population groups. 

 

Figure 20: The correlation between microbial diversity with the length of time 

residing in the current location. The red line represents the correlation between 

period living in current location with average diversity in the traditional 

population, and the green line represents the length of time residing in the current 

site with mean diversity correlation in the urban population. The red and green 

dots represent the participants in the study, and the black star shows correlations 

with significant p values. 
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4.7 Summary of the ANCOVA Correlation between alpha diversity with 

phenotypes  

Table 5: Summary of the ANCOVA test of the correlation between alpha diversity 

and various phenotypes: ✓shows significant correlation and x shows that the 

association is not significant (details for the correlation between phenotype and alpha 

diversity are in the supplementary section) 

 Richness Inverse Simpson Fisher Shannon Simpson 

BMI ✓ x ✓ x x 

Age x x x x x 

Cholesterol x x x x x 

HDL x x x x x 

Diastolic bp x x x x x 

Systolic bp x x x x x 

Time in Cur.loc. x x x x x 
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CHAPTER FIVE: DISCUSSION 

The results demonstrated a distinction in the various lifestyle aspects of the urban 

and traditional Turkana population (Figure 3). In the traditional population, similar to 

other subsistence-level populations, only one individual had a BMI above 25, and 

none met obesity criteria (BMI>30)(Grundy et al., 2005). However, the urban 

population had several individuals with an obese BMI. The differences were 

however insignificant for BMI (p=0.064), body fat percentage (p = 0.08521), 

Cholesterol (p = 0.4958) and blood pressure diastolic (p = 0.8243). Significant 

differences were observed in blood pressure systolic (P = 0.0495), average waist 

circumference (p = 0.0004), HDL (p= 0.0004) and the number of years an individual 

has resided in current location in years (p = < 0.0001).  The two populations in the 

past shared similar lifestyles and diet until recently when they started moving to 

urban areas. Even though previously the population shared the same geographical 

environment, currently, their diet and lifestyles are different. The results from the 

microbiome analysis we obtained indicate that gut microbial communities reflect the 

lifestyles and diet of the population. These show that the human gut microbiome can 

vary within a few years of departure from nomadic pastoralism. 

The variation in the gut microbiome of the Turkana population coincides with the 

general patterns observed in a majority of studies comparing the gut microbial 

communities of industrialized and traditional populations (Clemente et al., 2015; 

Conteville et al., 2019; Fragiadakis et al., 2019; Gomez et al., 2016; Gupta et al.,' 

2017; Hansen et al., 2019; Jandhyala et al., 2015; Martínez et al., 2015; Moeller et 

al., 2014; Obregon-Tito et al., 2015; Oduaran et al., 2020; Schnorr et al., 2014; 

Sonnenburg & Sonnenburg, 2019; Yatsunenko et al., 2012).  These studies have 

revealed that gut microbial composition varies between these populations; higher 

alpha diversity in traditional populations, and the variations can be attributed to diet. 

In this study, the Bacteroidetes and Firmicutes were more abundant in the two 

populations. Other studies have shown the Bacteroidetes, Firmicutes, Proteobacteria, 

and Actinobacteria(Jandhyala et al., 2015) to be the most dominant phyla 
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representing 90% of the gut microbial communities. Fusobacteria, Verrucomicrobia, 

and Cyanobacteria combine in low numbers for the rest of the remaining bacteria 

(Arumugam et al., 2013).  

The Bacteroidetes were the most abundant phyla in both the urban and traditional 

populations, with pronounced abundance in the urban population (Figure 6, p = < 

0.0001) in comparison to the traditional. Additionally, Prevotellaceae, a member of 

the Bacteroidetes phylum, was the most highly enriched family in both the traditional 

and urban populations (p = 0.0216). The Prevotellaceae family has also been 

reported in other African populations, including the Hadza hunter and gatherers, 

Prevotella genera are also associated with a vegetarian diet in populations that are 

industrialized(David et al., 2014). The taxa Bacteroides and Blautia that are highly 

associated with diets rich in animal protein were also present in the Turkana 

population, and animal protein is a major dietary component of the Turkana 

population.  

There was a pronounced abundance of Proteobacteria in this study, similar to 

previous studies done in African populations. Individuals with a high abundance of 

Proteobacteria were associated with infection by the gastrointestinal parasite 

Entamoeba in the hunters and gatherers of the central African rainforest(Morton et 

al., 2015). Enterobacteriaceae family also tends to increase in number during 

dysbiosis, as was observed in a study that was suggesting that a dysbiotic expansion 

of Proteobacteria is a potential microbial signature for the diagnosis of epithelial 

dysfunction. Anaerobsis, antibiotic treatment, and intestinal inflammation increase 

the oxygenation of the epithelial lining in the colon, creating a more aerobic 

environment. Promoting the proliferation of the facultative anaerobes (Proteobacteria 

members) over the obligate(Litvak et al., 2017). 

The Spirochaetaceae family was more abundant in the traditional population in 

comparison to the urban population (Figure 9, t-test, p = 0.04122). The same results 

have been reported previously from the gut microbial communities of non-human 
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primates and human populations in Africa whose lifestyles are non urban. These 

studies reported the presence of Spirochaetes in high abundance in populations with 

lifestyles that are non urban. These include the traditional communities in Burkina 

Faso(Hansen et al., 2019), the Hadza hunter and gatherers, and other populations 

with traditional lifestyle. However, the family is almost undetected in industrialized 

populations(Smits et al., 2017; Yatsunenko et al., 2012). Additionally, the Matses 

hunter-gatherer from Peruvian Amazon and the Tunapuco, a traditional community 

of agriculturalists from Andean highlands, show similar results(Obregon-Tito et al., 

2015). The results are in agreement with what we observed in the Turkana 

population from rural areas. The Spirochaetes may represent a part of the ancestry of 

human gut microbiome symbionts that was lost as populations started adopting 

industrial agriculture, or other lifestyle changes as individuals transition to urban and 

western-like lifestyles(Gomez et al., 2016; Obregon-Tito et al., 2015; Schnorr et al., 

2014). Treponema, an important genus in Spirochaetes, is implicated in diverse 

functions, but may include the metabolism of carbohydrates(Afolayan et al., 2019). 

The traditional Turkana population is enriched with the Spirochaetes that has genera 

associated with the metabolism of uncultivated plant products. This enrichment can 

be as a result of individuals in the Turkana population practicing farming, as well as 

the habit of feeding on wild plants and fruits, common with pastoralists in Turkana. 

The relative abundance of the microbiome of males and females of the traditional 

group had slight differences; however, for the urban population, the relative 

abundance was uniform for both males and females. The abundance differences may 

result from gender differences in activities within the traditional Turkana 

community. The females are involved in every activity at home; they travel long 

distances to fetch water, milk cows, cook meals, and even construct their homestead. 

Conversely, men's activities involve feeding animals, whereby they can travel for 

three days before returning. In this period, they feed on blood and milk, or they can 

spend long periods fasting, in addition to raiding neighbouring communities and 

playing games. Thus the diet, level of activities and the environments of the males 

and female of the traditional Turkana community could be periodically different, that 
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may explain the gender differences in the relative abundance of the traditional 

population microbiome. 

5.1 Alpha diversity 

Despite the observed differences in the composition of the gut microbiome, only the 

Fisher (p = 0.00214), and Richness (p = 0.00214), diversity metric showed 

significant differences in alpha diversity. No significant differences in the gut 

microbial alpha diversity measured by Simpson (p = 0.8287), Inverse Simpson (p = 

0.8287), and Shannon (p = 0.2834) existed across the Turkana populations. Previous 

studies comparing populations living in similar geographical areas with different 

subsistence strategies showed similar results; urban Nigerians and Bassa 

farmers(Ayeni et al., 2018), Tunapuco farmers, and Matses hunter-

gatherers(Obregon-Tito et al., 2015), as well as Bantu farmers and BaAka hunter and 

gatherers(Gomez et al., 2016). These populations and other traditional communities 

like Hadza(Schnorr et al., 2014), had a higher richness and diversity in comparison 

with urban populations. The higher microbial richness in traditional Turkana 

population could be facilitated with the frequent use of antibiotics in the urban 

population unlike in the traditional community. The traditional community uses a 

wide variety of natural remedies for treatment and in some cases an individual will 

be cut to shed blood, believing it removes sicknesses. Such practices could facilitate 

a higher richness that was observed in this study. However, no diversity differences 

were observed with Shannon and Simpson measures. These could be due to the 

limitation in the sample size that didn‟t allow us to perform the necessary 

comparisons.  

5.1.1 Cardio metabolic risk factors contribution to alpha diversity  

The slope for the mean alpha diversity and BMI (Figure 14), age (Figure 15), 

cholesterol (Figure 16), HDL (Figure 17), diastolic blood pressure (Figure 18) and 

systolic blood pressure (Figure 19) for the two study populations had a lot of overlap 

for Simpson, Inverse Simpson, and Shannon. The ANCOVA values for the slope of 
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the regression lines were also insignificant, indicating that the slopes may not be 

different. However, Richness and Fisher's diversity was different, and the ANCOVA 

values for the slope of the regression lines were significant. 

The Turkana population with an underweight BMI had a higher alpha diversity, and 

the diversity decreased with an increase in BMI. The results are similar to a gut 

microbiome pilot study of 170 female individuals in Bushbuckridge and Soweto 

representing a rural, and urban South African cohort, the mean alpha diversity of the 

Bushbuckridge and Soweto were also not significant(Oduaran et al., 2020). 

However, a large Chinese cohort that aimed to find the differences in the microbiome 

as a function of BMI found out that underweight individuals had a significantly high 

gut microbial diversity compared to the normal, overweight, or obese(Gao et al., 

2018). Moreover, other comparison studies of Non-Hispanic whites and blacks 

showed that black obese individuals still have a higher mean alpha diversity(Peters et 

al., 2018; Stanislawski et al., 2019). The high alpha diversity in this study was 

mostly from the traditional group, whose daily routines involve a lot of activities. 

The activities range from walking long distances in search of pasture or water, 

irregular feeding patterns of a wide variety of meals, and less number of meals in 

comparison to the urban group.  

This study showed a gradual decrease in the Turkana community average alpha 

diversity with an increase in the level of cholesterol, HDL, diastolic blood pressure, 

age, and a lot of overlap in the length of time residing in current location and systolic 

blood pressure with alpha diversity change. Previous studies have shown 

significantly lower gut microbial alpha diversity with an increase in cardio metabolic 

risk factors. However, the associations were mostly dependent on the type of cardio 

metabolic risk factor and geographical locations; for example, a higher blood 

pressure association among Ghanaians and South Africans(Fei et al., 2019; Le 

Chatelier et al., 2013; Turnbaugh et al., 2009). In this study Age, cholesterol, HDL, 

systolic and diastolic blood pressure did not correlate with alpha diversity. These 

may have resulted from not having the sample size necessary to perform the 
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comparisons. However, age, diastolic and systolic blood pressure had different 

values for the two populations. The differences may give an understanding of the 

current increase in metabolic diseases within the urban Turkana community in 

comparison to the traditional population that remains to be healthier. 
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CHAPTER SIX: CONCLUSION AND RECOMMENDATIONS  

In conclusion, this project is one of the first microbiome work conducted among the 

Turkana population in Kenya, aiming to find out the effects of transiting from a 

nomadic pastoralist lifestyle to urban areas on the gut microbiome.  

To achieve the objectives, I explored the microbiome changes as the traditional 

population transit from their traditional lifestyle to urban lifestyle in urban areas. The 

results showed that these transitions have an impact on both the alpha and beta 

microbial diversity. I observed a gradual reduction in the microbial alpha diversity in 

the Turkana population who've moved to urban areas. In evaluating the various 

phenotypic factors that affect the microbial alpha diversity, the Turkana population 

with an underweight BMI had a higher alpha diversity, and the diversity decreased 

with an increase in BMI. The study also showed a gradual decrease in the Turkana 

community average alpha diversity with an increase in the level of cholesterol, HDL, 

diastolic blood pressure, age, and a lot of overlap in the length of time residing in 

current location and systolic blood pressure with alpha diversity change. 

These, coupled with the loss of beneficial microbiome as has been observed in urban 

populations, may indicate a possible increased risk to metabolic diseases. Moreover, 

the microbiome composition of the traditional population, represent a unique 

microbial community that is also present in traditional populations. These microbial 

communities could be helpful in the understanding of human health relationships and 

even in the development of microbiome-based therapies. Additionally, the observed 

differences helped to reject the null hypothesis by indicating an existence of 

differences in gut microbiome composition of the traditional and Urban Turkana 

people.  
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Recommendations  

 A complete sampling in the future for both urban and traditional settings can 

provide a better understanding of the microbial community structure of the 

Turkana population, and this can extend to other comparative communities 

within Kenya.  

 Determine the metabolic profiles of every sample in order to better 

understand the correlations with alpha diversity. 
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APPENDIX 

1.1 Supplementary Material 

1.2 Alpha Diversity Correlation with Phenotypes 

1.2.1 Alpha diversity ANCOVA with BMI 

Table 6: Alpha diversity Richness, Inverse Simpson, Fisher, Shannon and Simpson 

in correlation with BMI 

Richness correlation with BMI 

 Df Sum sq. Mean Sq F value Pr (>F) 

BMI 1 6382 6382 4.873 0.0291* 

Class  1 7252 7252 5.538 0.0202* 

BMI: class 1 1371 1371 1.047 0.3083 

Residuals 124 162383 1310   

Signif.  

Codes 

0 „***‟ 0.001 

„**‟ 

0.01 „*‟ 0.05 „.‟ 0.1 „ ‟ 1 

Inverse Simpson diversity correlation with BMI 

 Df  Sum Sq Mean Sq F value Pr (>F) 

BMI 1 4 4.48 0.025 0.875 

Class 1 12 11.79 0.066 0.798 

BMI: class 1 207 206.68 1.149 0.286 

Residuals 124 22298 179.82   

Fisher diversity correlation with BMI 

 Df Sum Sq Mean Sq F value Pr (>F) 

BMI 1 176 176.32 4.886 0.0289* 

Class 1 205 204.55 5.668 0.0188* 

BMI: class 1 43 42.90 1.189 0.2777 

Residuals 124 4475 36.09   

Signif. 0 „***‟ 0.001 0.01 „*‟ 0.05 „.‟ 0.1 „ ‟ 1 
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Codes „**‟ 

Shannon diversity correlation with BMI 

 Df Sum Sq Mean Sq F value Pr (>F) 

BMI 1 0.51 0.5111 1.098 0.297 

Class 1 0.07 0.0695 0.149 0.700 

BMI: class 1 0.09 0.0855 0.184 0.669 

Residuals 124 57.72 0.4655   

Simpson diversity correlation with BMI 

 Df Sum Sq Mean Sq F value Pr (>F) 

BMI 1 0.0005 0.0005 0.055 0.816 

Class 1 0.0072 0.0072 0.782 0.378 

BMI: class 1 0.0009 0.0009 0.099 0.753 

Residuals 124 1.1471 0.0092   

The ANCOVA results in table 6 for the correlation between mean Richness and BMI 

indicated that. Mean microbial richness and BMI are correlated (Table 6, F = 4.873, 

p = 0.0291), the traditional and urban groups have different Richness values (Table 

6, F = 5.538, p = 0.0202) the result also match the boxplot in figure 12. The results 

also showed no interaction between BMI and class (Table 6, F = 1.047, p = 0.3083), 

indicating that the correlation between urban and traditional people is the same. 

The ANCOVA correlation results between Inverse Simpson and BMI in table 6 

showed that; Inverse Simpson does not correlate with BMI (Table 6, F = 0.025, p = 

0.875). The urban and traditional group have similar Inverse Simpson diversity 

(Table 6, F = 0.066, p = 0.798) matching the boxplots results (Figure 12B, t-test, 

p=0.7862), and no interaction existed between BMI and the two population groups 

(Table 6, F = 1.149, p = 0.286).  

The ANCOVA correlation results for the Fisher diversity measure with BMI for the 

urban and traditional population showed that; Fisher diversity correlates with BMI 

(Table 6, F = 4.886, p = 0.0289). The urban and traditional population have different 
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Fisher diversity values  (Table 6, F = 5.668, p = 0.0188) similar to the boxplot results 

(Figure 13C, t-test, p=0.0011), and no interaction existed between BMI and the two 

populations (Table 6, F = 1.189, p = 0.2777). 

The ANCOVA Shannon diversity correlation with BMI results for the two 

populations showed that; Shannon diversity does not correlate with BMI (Table 6, F 

= 1.098, p = 0.297). The urban and traditional populations have similar Shannon 

diversity (Table 6, F = 0.149, p = 0.700) the results are similar to the boxplot (Figure 

12D, t-test, p=0.3183). No interactions existed between BMI and the two populations 

(Table 6, F = 0.184, p = 0.669). 

The ANCOVA correlation results between the Simpson diversity measure and BMI 

showed that; Simpson diversity does not correlate with BMI (Table 6, F = 0.055, p = 

0.816). The traditional and urban population have similar Simpson diversity (Table 

6, F = 0.782, p = 0.378). No interaction existed between BMI and the two population 

groups (Table 6, F = 0.099, p = 0.753) as neither BMI nor class influence Simpson 

diversity. 

1.2.2 Alpha diversity ANCOVA with age  

Table 7: Alpha diversity in correlation with age for the urban and traditional 

population 

Richness in correlation with age 

 Df Sum Sq Mean Sq F value Pr (>F) 

Age 1 441 441 0.329 0.5675 

Class 1 9857 9857 7.345 0.0077** 

Age: class 1 668 668 0.498 0.4818 

Residuals 124 166421 1342   

Signif. Codes 0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „ ‟ 1 

Inverse Simpson diversity measure in correlation with age  

 Df Sum Sq Mean Sq F value Pr (>) 
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Age 1 141 141.46 0.796 0.374 

Class 1 72 72.14 0.406 0.525 

Age: class 1 259 258.72 1.455 0.230 

Residuals 124 22048 177.81   

Fisher diversity measure in correlation with age 

 Df Sum Sq Mean Sq F value Pr (>F) 

Age 1 14 14.45 0.390 0.5334 

Class 1 274 273.59 7.384 0.0075** 

Age: class 1 16 16.39 0.442 0.5072 

Residuals 124 4594 37.05   

Signif. Codes 0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „ ‟1 

Shannon diversity measure in correlation with age 

 Df Sum Sq Mean Sq F value Pr (>F) 

Age  1 0.81 0.8086 1.779 0.185 

Class 1 0.60 0.5991 1.318 0.253 

Age: class 1 0.61 0.6056 1.332 0.251 

Residuals 124 56.37 0.4546   

Simpson diversity measure in correlation with age  

 Df Sum Sq Mean Sq F value Pr (>F) 

Age 1 0.0229 0.0229 2.534 0.114 

Class 1 0.0007 0.0007 0.082 0.776 

Age: class 1 0.0122 0.0122 1.351 0.247 

Residuals 124 1.1199 0.0090   

The ANCOVA tests for the regression lines of the traditional and urban populations 

were as follows. Richness measure is not correlated with age (Table 7, F = 0.329, p = 

0.5675), the urban and traditional population have different Richness values (Table 

7, F = 7.345, p = 0.0077) and no interaction existed between age and the two 

population groups (Table 7, F = 0.498, p = 0.4818). 
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The ANCOVA results for the correlation between Inverse Simpson diversity and age 

showed that; Inverse Simpson diversity doesn't correlate with age (Table 7, F = 

0.796, p = 0.374). The traditional and urban population do not have different Fisher 

diversity values (Table 7, F = 0.406, p = 0.525). No interaction existed between age 

and the two groups of the population (Table 7, F = 1.455, p = 0.230). 

The ANCOVA correlation results for Fisher and age showed that; Fisher mean 

diversity is not correlated with age (Table 7, F = 0.390, p = 0.5334), the traditional 

and urban population have different Fisher mean diversity values (Table 7, F = 

7.384, p = 0.0075) however no interaction existed between age and the two groups of 

population (Table 7, F = 0.442, p = 0.5072). 

The ANCOVA correlation results for Shannon diversity and age were; Shannon 

diversity is not correlated with age (Table 7, F = 1.779, p = 0.185), the urban and 

traditional population do not have different Shannon diversity values (Table 7, F = 

1.318, p = 0.253) and no interaction existed between age and the two population 

groups (Table 7, F = 1.332, p = 0.251). 

The Simpson diversity and age ANCOVA correlation for the regression lines 

between the two populations were as follows; Simpson diversity does not correlate 

with age (Table 7, F = 2.534, p = 0.114). The urban and traditional population do not 

have different Simpson diversity values (Table 7, F = 0.082, p = 0.776). No 

interaction existed between age and the two population groups (Table 7, F = 1.351, p 

= 0.247). 

1.2.3 Alpha diversity ANCOVA with cholesterol 

Table 8: Alpha diversity in correlation with cholesterol for the urban and traditional 

population (Note: only 48 were samples for cholesterol out of the total 133). 

Richness in correlation with cholesterol 

 Df Sum Sq Mean Sq F value Pr (>F) 

Cholesterol  1 976 975.6 0.541 0.466 
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Class 1 2740 2740.1 1.519 0.224 

Cholesterol: class 1 1719 1719.1 0.953 0.334 

Residuals 44 79387 1804.2   

Inverse Simpson diversity measure in correlation with cholesterol 

 Df Sum Sq Mean Sq F value Pr (>F) 

Cholesterol 1 380 380.2 1.384 0.246 

Class 1 62 61.6 0.224 0.638 

Cholesterol: class 1 90 89.9 0.327 0.570 

Residuals 44 12083 274.6   

Fisher in correlation with cholesterol 

 Df Sum Sq Mean Sq F value Pr (>F) 

Cholesterol 1 25.1 25.12 0.507 0.480 

Class 1 78.6 78.57 1.585 0.215 

Cholesterol: class 1 42.6 42.56 0.858 0.359 

Residuals 44 2181.4 49.58   

Shannon diversity measure in correlation with cholesterol 

 Df Sum Sq Mean Sq F value Pr (>F) 

Cholesterol 1 0.111 0.1109 0.198 0.658 

Class 1 0.008 0.0077 0.014 0.907 

Cholesterol: class 1 0.253 0.2530 0.452 0.505 

Residuals 44 24.63 0.5597   

Simpson diversity measure in correlation with cholesterol 

 Df Sum Sq Mean Sq F value Pr (>F) 

Cholesterol 1 0.009 0.009 1.074 0.306 

Class 1 0.0019 0.0019 0.227 0.636 

Cholesterol 1 0.0001 0.0001 0.009 0.923 

Residuals 44 0.3690 0.0084   
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The ANCOVA results for alpha diversity correlation with cholesterol for both the 

urban and traditional group were as follows [Richness (Table 8, F = 0.541, p = 

0.466), Inverse Simpson (Table 8, F = 1.384, p = 0.246), Fisher (Table 8, F = 0.507, 

p = 0.480), Shannon (Table 8, F = 0.198, p = 0.658) and Simpson (Table 8, F = 

1.074, p = 0.306)]. The alpha diversity of the traditional and urban population is not 

different [Richness (Table 8, F = 0.541, p = 0.466), Inverse Simpson (Table 8, F = 

0.224, p = 0.638), Fisher (Table 8, F = 1.585, p = 0.215), Shannon (Table 8, F = 

0.014, p = 0.907) and Simpson (Table 8, F = 0.227, p = 0.636)]. Finally, no 

interaction exists between cholesterol and the two population groups [Richness 

(Table 8, F = 0.541, p = 0.466), Inverse Simpson (Table 8, F = 0.327, p = 0.570), 

Fisher (Table 8, F = 0.858, p = 0.359), Shannon (Table 8, F = 0.452, p = 0.505) and 

Simpson (Table 8, F = 0.009, p = 0.923)]. 

1.2.4 Alpha diversity ANCOVA with HDL 

Table 9: Alpha diversity in correlation with high-density lipoprotein (HDL) (Note: 

not all samples were sampled for HDL so 84 observations out of 133 are missing in 

this data) 

Richness in correlation with high density lipoprotein (HDL) mg/dl 

 Df Sum Sq Mean Sq F value Pr (>F) 

HDL 1 1445 1445 0.797 0.377 

Class 1 1736 1736 0.957 0.333 

HDL: class 1 2285 2285 1.260 0.268 

Residuals 45 81628 1814   

Inverse Simpson in correlation with HDL mg/dl 

 Df  Sum Sq Mean Sq F value Pr (>F) 

HDL 1 22 22.50 0.081 0.777 

Class 1 41 41.31 0.149 0.701 

HDL: class 1 285 284.59 1.030 0.316 
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Residuals 45 12437 276.39   

Fisher diversity measure in correlation with HDL 

 Df  Sum Sq Mean Sq F value Pr (>F) 

HDL 1 41.3 41.27 0.830 0.367 

Class 1 49.6 49.57 0.997 0.323 

HDL: class 1 61.2 61.17 1.230 0.273 

Residuals 45 2237.7 49.73   

Shannon measure in correlation with HDL 

 Df Sum Sq Mean Sq F value Pr (>F) 

HDL 1 0.059 0.0594 0.106 0.746 

  Class  1 0.005 0.0047 0.008 0.928 

HDL: class 1 0.570 0.5703 1.020 0.318 

Residuals 45 25.16 0.5592   

Simpson diversity measure in correlation with HDL 

 Df Sum Sq Mean sq. F value Pr (>F) 

HDL 1 0.0106 0.0106 1.268 0.266 

Class 1 0.0008 0.0008 0.097 0.757 

HDL: class 1 0.0006 0.0006 0.068 0.796 

Residuals 45 0.3778 0.0084   

 

The ANCOVA test for the regression lines between the two groups were as follows; 

Alpha diversity is not correlated with HDL [Richness (Table 9, F = 0.797, p = 

0.377), Inverse Simpson (Table 9, F = 0.081, p = 0.777), Fisher (Table 9, F = 0.830, 

p = 0.367), Shannon (Table 9, F = 0.106, p = 0.746) and Simpson (Table 9, F = 

1.268, p = 0.266)]. The traditional and urban populations do not have different alpha 

diversity [Richness (Table 9, F = 0.957, p = 0.333), Inverse Simpson (Table 9, F = 

0.149, p = 0.701), Fisher (Table 9, F = 0.997, p = 0.323), Shannon (Table 9, F = 



 
88 

0.008, p = 0.928) and Simpson (Table 9, F = 0.097, p = 0.757)]. No interaction exists 

between HDL and the two population groups [Richness (Table 9, F = 1.260, p = 

0.268), Inverse Simpson (Table 9, F = 1.030, p = 0.316), Fisher (Table 9, F = 1.230, 

p = 0.273), Shannon (Table 9, F = 1.020, p = 0.318) and Simpson (Table 9, F = 

0.068, p = 0.796)]. 

1.2.5 Alpha diversity ANCOVA with diastolic blood pressure 

Table 10: Alpha diversity correlation with average waist circumference in both the 

urban and traditional groups 

Richness in correlation with diastolic blood pressure 

 Df Sum Sq Mean Sq F value Pr (>F) 

Diastolic bp 1 754 754 0.569 0.4522 

Class 1 7809 7809 5.894 0.0167* 

Diastolic: class 1 425 425 0.321 0.5722 

Residuals 118 156341 1325   

Signif. Codes 0 „***‟ 0.001„**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „ ‟ 1 

Inverse Simpson diversity in correlation with diastolic blood pressure 

 Df Sum Sq Mean Sq F value Pr (>) 

Diastolic bp 1 90 90.0 0.699 0.4047 

Class 1 11 10.8 0.084 0.7727 

Diastolic: class 1 423 422.9 3.287 0.0724 

Residuals 118 15180 128.6   

Fisher diversity in correlation with diastolic blood pressure 

 Df Sum Sq Mean Sq F value Pr (>F) 

Diastolic bp 1 23 23.22 0.638 0.426 

Class 1 222 221.65 6.092 0.015* 

Diastolic: class 1 13 13.12 0.361 0.549 

Residuals 118 4293 36.39   

Signif. Codes 0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „‟ 1 
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Shannon diversity in correlation with diastolic blood pressure 

Diastolic bp 1 0.00 0.0017 0.004 0.952 

Class 1 0.03 0.0308 0.067 0.797 

Diastolic: class 1 0.23 0.2329 0.504 0.479 

Residuals 118 54.52 0.4620   

Simpson Diversity in correlation with diastolic blood pressure 

 Df Sum Sq Mean Sq F value Pr (>F) 

Diastolic bp  1 0.0014 0.0014 0.145 0.704 

Class 1 0.0093 0.0093 0.987 0.322 

Diastolic: class 1 0.0075 0.0075 0.796 0.374 

Residuals  118 1.1080 0.0094   

The ANCOVA tests for the regression lines of the traditional and urban populations 

were as follows. Richness measure is not correlated with diastolic blood pressure 

(Table 10, F = 0.569, p = 0.4522), the urban and traditional population have different 

Richness values (Table 10, F = 5.894, p = 0.0167) and no interaction existed between 

diastolic blood pressure and the two population groups (Table 10, F = 0.321, p = 

0.572). 

The ANCOVA results for the correlation between Inverse Simpson diversity and 

diastolic blood pressure showed that; Inverse Simpson diversity does not correlate 

with diastolic blood pressure (Table 10, F = 0.699, p = 0.4047). The traditional and 

urban population do not have different Inverse Simpson diversity values (Table 10, F 

= 0.084, p = 0.7727). No interaction existed between diastolic blood pressure and the 

two-class of population (Table 10, F = 3.287, p = 0.0724). 

The ANCOVA correlation results for Fisher and diastolic blood pressure showed 

that; Fisher diversity does not correlate with diastolic blood pressure (Table 10, F = 

0.638, p = 0.426). The traditional and urban population have different Fisher mean 

diversity values (Table 10, F = 6.092, p = 0.015) however no interaction existed 
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between diastolic blood pressure and the two-class of population (Table 10, F = 

0.361, p = 0.549). 

The ANCOVA correlation results for Shannon diversity and diastolic blood pressure 

were; Shannon diversity does not correlate with diastolic blood pressure (Table 10, F 

= 0.004, p = 0.952). The urban and traditional population do not have different 

Shannon diversity values (Table 10, F = 0.067, p = 0.797). No interaction existed 

between diastolic blood pressure and the two population groups (Table 10, F = 0.504, 

p = 0.479). 

The Simpson diversity and diastolic blood pressure ANCOVA correlation for the 

regression lines between the two populations were as follows; Simpson diversity 

does not correlate with diastolic blood pressure (Table 10, F = 0.145, p = 0.704). The 

urban and traditional population do not have different Simpson diversity values 

(Table 10, F = 0.987, p = 0.322). No interaction existed between diastolic blood 

pressure and the two population groups (Table 10, F = 0.796, p = 0.374). 

1.2.6 Alpha diversity ANCOVA with systolic blood pressure 

Table 11: Alpha diversity correlation systolic blood pressure in both the urban and 

traditional groups 

Richness in correlation with systolic blood pressure 

 Df Sum Sq Mean Sq F value Pr (>F) 

Systolic bp 1 26 26 0.019 0.8911 

Class 1 9962 9962 7.326 0.0078** 

Systolic: class 1 34 34 0.025 0.8755 

Residuals 123 167259 1360   

Signif. Codes 0 „***‟ 0.001„**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „ ‟ 1 

Inverse Simpson diversity in correlation with systolic blood pressure 

 Df Sum Sq Mean Sq F value Pr (>) 

Systolic bp 1 79 78.79 0.458 0.500 
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Class 1 2 1.58 0.009 0.924 

Systolic: class 1 7 7.45 0.043 0.836 

Residuals 123 21151 171.96   

Fisher diversity in correlation with systolic blood pressure 

 Df Sum Sq Mean Sq F value Pr (>F) 

Systolic bp 1 1 1.49 0.040 0.8423 

Class 1 280 279.72 7.456 0.0073** 

Systolic: class 1 0 0.50 0.013 0.9084 

Residuals 123 4615 37.52   

Signif. Codes 0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „‟ 1 

Shannon diversity in correlation with systolic blood pressure 

Systolic bp 1 0.09 0.0926 0.199 0.656 

Class 1 0.14 0.1408 0.303 0.583 

Systolic: class 1 0.08 0.0789 0.170 0.681 

Residuals 123 57.26 0.4655   

Simpson Diversity in correlation with systolic blood pressure 

 Df Sum Sq Mean Sq F value Pr (>F) 

Systolic bp  1 0.0105 0.0105 1.139 0.288 

Class 1 0.0061 0.0061 0.665 0.416 

Systolic: class 1 0.001 0.001 0.108 0.743 

Residuals  123 1.1309 0.0092   

The ANCOVA results for alpha diversity correlation with systolic blood pressure for 

both the urban and traditional group were as follows; no correlation existed between 

alpha diversity and systolic blood pressure [Richness (Table 11, F = 0.019, p = 

0.8911), Inverse Simpson (Table 11, F = 0.458, p = 0.500), Fisher (Table 11, F = 

0.040, p = 0.8423), Shannon (Table 11, F = 0.199, p = 0.656) and Simpson (Table 

11, F = 1.139, p = 0.288)]. The alpha diversity of the traditional and urban 

population is not different, except for Richness and Fisher diversity [Richness (Table 

11, F = 7.326, p = 0.0078), Inverse Simpson (Table 11, F = 0.009, p = 0.924), Fisher 
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(Table 11, F = 7.456, p = 0.0073), Shannon (Table 11, F = 0.303, p = 0.583) and 

Simpson (Table 11, F = 0.665, p = 0.416)]. Finally, no interaction exists between 

systolic blood pressure and the two population groups [Richness (Table 11, F = 

0.025, p = 0.8755), Inverse Simpson (Table 11, F = 0.043, p = 0.836), Fisher (Table 

11, F = 0.013, p = 0.9084), Shannon (Table 11, F = 0.170, p = 0.681) and Simpson 

(Table 11, F = 0.108, p = 0.743)]. 

1.2.7 Alpha diversity ANCOVA with length of time residing in current location 

Table 12: Alpha diversity in correlation with length of time residing in current 

location for the traditional and urban group 

Richness in correlation with length of time residing in current location in years 

 Df Sum Sq Mean Sq F value Pr (>) 

Time in current loc. 1 3633 108.35 2.929 0.1024 

Class 1 7098 196.18 5.303 0.0231 * 

Time in cur loc.: class 1 284 7.26 0.196 0.6461 

Residuals 124 166372 36.99   

Signif. Codes 0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „ ‟ 1 

Inverse Simpson measure in correlation with length of time residing in the 

current location in years 

 Df Sum Sq Mean Sq F value Pr (>F) 

Time in current loc. 1 70 69.76 0.387 0.535 

Class 1 54 53.82 0.298 0.586 

Time in cur loc.: class 1 29 29.31 0.163 0.688 

Residuals 124 22368 180.39   

Fisher diversity measure with the length of time residing in the current location 

in years 

 Df Sum Sq Mean Sq F value Pr (>F) 

Time in current loc. 1 108 108.35 2.929 0.0895 

Class 1 196 196.18 5.303 0.0230* 
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Time in cur loc.: class 1 7 7.26 0.196 0.6586 

Residuals 124 4587 36.99   

Signif. Codes 0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „ ‟ 1 

Shannon diversity correlation with length of time residing in the current 

location in years 

 Df Sum Sq Mean Sq F value Pr (>F) 

Time in current loc. 1 0.21 0.2079 0.446 0.505 

Class 1 0.38 0.3831 0.822 0.366 

Time in cur loc.: class 1 0.01 0.0061 0.013 0.909 

Residuals 124 57.79 0.4661   

Simpson diversity correlation with length of time residing in the current 

location in years 

 Df Sum Sq Mean Sq F value Pr (>F) 

Time in current loc. 1 0.0182 0.0182 1.989 0.161 

Class 1 0.001 0.001 0.109 0.742 

Time in cur loc.: class 1 0.0038 0.0038 0.420 0.518 

Residuals  124 1.1328 0.0091   

The ANCOVA tests for the regression lines of the traditional and urban populations 

were as follows. Richness measure is not correlated with length of time residing in 

current location (Table 12, F = 2.929, p = 0.1024), the urban and traditional 

population have different Richness values (Table 12, F = 5.303, p = 0.0231) and no 

interaction existed between length of time residing in current location and the two 

population groups (Table 12, F = 0.196, p = 0.6461). 

The ANCOVA results for the correlation between Inverse Simpson diversity and 

length of time residing in current location showed that; Inverse Simpson diversity 

does not correlate with the length of time residing in current location (Table 12, F = 

0.387, p = 0.535). The traditional and urban population do not have different Inverse 

Simpson diversity values (Table 12, F = 0.298, p = 0.586). No interaction existed 
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between the length of time residing in the current location and the two classes of 

population (Table 12, F = 0.163, p = 0.68). 

The ANCOVA correlation results for Fisher and length of time residing in current 

location showed that; Fisher diversity does not correlate with the length of time 

residing in current location (Table 12, F = 2.929, p = 0.0895). The traditional and 

urban population have different Fisher mean diversity values (Table 12, F = 5.303, p 

= 0.0230) however no interaction existed between the length of time residing in 

current location and the two-class of population (Table 12, F = 0.196, p = 0.6586).  

The ANCOVA correlation results for Shannon diversity and diastolic blood pressure 

were; Shannon diversity is not correlated with diastolic blood pressure (Table 12, F = 

0.446, p = 0.505), the urban and traditional population do not have different Shannon 

diversity values (Table 12, F = 0.822, p = 0.366) and no interaction existed between 

length of time residing in current location and the two population groups (Table 12, 

F = 0.013, p = 0.909). 

The Simpson diversity and length of time residing in current location ANCOVA 

correlation for the regression lines between the two populations were as follows; 

Simpson diversity does not correlate with the length of time residing in current 

location (Table 12, F = 1.989, p = 0.161). The urban and traditional population do 

not have different Simpson diversity values (Table 12, F = 0.109, p = 0.742). No 

interaction existed between the length of time residing in the current location and the 

two population groups (Table 12, F = 0.420, p = 0.518). 

1.3 Project’s consent form and datasheet 

Link: https://drive.google.com/file/d/17HjTbWDhG8rQ7Rk_x9XP-

8vKFd8Bp7A8/view?usp=sharing  

https://drive.google.com/file/d/17HjTbWDhG8rQ7Rk_x9XP-8vKFd8Bp7A8/view?usp=sharing
https://drive.google.com/file/d/17HjTbWDhG8rQ7Rk_x9XP-8vKFd8Bp7A8/view?usp=sharing
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1.4 Metadata file 

Link:https://drive.google.com/file/d/0B0N47HvqhSaabW9BcWJZQzdFQ0pZLVpD

UTRvVGY1XzY5MlJj/view?usp=sharing&resourcekey=0-AIVy7LEBa2emjf-

d5wipvQ  

https://drive.google.com/file/d/0B0N47HvqhSaabW9BcWJZQzdFQ0pZLVpDUTRvVGY1XzY5MlJj/view?usp=sharing&resourcekey=0-AIVy7LEBa2emjf-d5wipvQ
https://drive.google.com/file/d/0B0N47HvqhSaabW9BcWJZQzdFQ0pZLVpDUTRvVGY1XzY5MlJj/view?usp=sharing&resourcekey=0-AIVy7LEBa2emjf-d5wipvQ
https://drive.google.com/file/d/0B0N47HvqhSaabW9BcWJZQzdFQ0pZLVpDUTRvVGY1XzY5MlJj/view?usp=sharing&resourcekey=0-AIVy7LEBa2emjf-d5wipvQ

