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ABSTRACT 
 

Animal trypanosomiasis (Nagana), a protozoan disease, is the source of huge productivity 

losses to small scale farmers in sub-Saharan Africa. Nagana affects wild animals, sheep, goats, 

camels and cattle reducing their productivity or causing death in severe cases. Several 

interventions for the disease have been developed and applied including vector control using 

insecticides and the use of trypanocides. However, these control measures have been 

ineffective with the trypanosomes developing resistance to the existing trypanocides. 

Ineffective interventions to Nagana necessitate the need to advance a better disease control 

strategy. The use of the trypanotolerance trait that is expressed by some West African cattle 

breeds is promising because infected cattle don’t develop the severe form of the disease that 

reduces productivity. Trypanotolerance trait can be introduced to cattle breeds that show no 

tolerance through breeding. This study sought to understand trypanotolerance trait by 

identifying the key genes involved in the trypanotolerance trait. The sample size used was 

n=1199 cattle from 44 cattle breeds which were organized into 4 case-control groups of 

African indigenous and hybrid cattle. A GWAS was performed on each of the four groups to 

identify the significant SNPs after quality control. A total of 36 genes were found to contain 

the significant SNPs in all the case-control groups. All cases groups (Sheko, N’Dama, Boran 

and N’DamaXBoran) were compared to the same set of controls, n=993 cattle. This control 

group consisted of 3 cattle breeds from Africa (n=108), 31 cattle breeds from Europe (n=693), 

2 cattle breeds from South America (n=27), 2 cattle breeds from Asia (n=49), 1 cattle breed 

from North America (n=105) and 1 cattle breed from Australia (n=11). Separate comparison  

of the case groups to the same control set highlighted 6, 4, 9 and 17 genes in the Sheko, 

N’Dama, Boran and N’DamaXBoran comparisons respectively. The roles of some of these 

genes in several pathways have also been individually described in previous studies. This 

study suggests that the key genes responsible for the trypanotolerance trait are SUSD1, DPF3, 

COL19A1 and SLC19A3 among others that are found in the N’Dama and Sheko cattle breeds 

that are mainly involved in the molecular mechanism that may lead to reduced parasitemia. 
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Chapter 1 
 

1.0 INTRODUCTION 
1.1 Background 

Trypanosoma congolense, the most prevalent and widespread pathogenic  trypanosome 

species, infects cattle (Bos taurus/ Bos indicus) in most of sub-Saharan Africa resulting in life- 

threatening Animal African Trypanosomiasis (AAT) (Muhanguzi et al., 2017). Trypanosomes 

are transmitted by tsetse flies, and are injected into the cattle as metacyclic forms, which 

transform to the bloodstream forms found in circulation (Peacock et al., 2012). Nagana causes 

serious productivity losses amounting to approximately US$ 900 million per year within sub- 

Saharan economies (Mamoudou et al., 2016). 

Indigenous cattle breeds like Baoule and N’Dama (Bos taurus) have been shown to be tolerant 

to the trypanosome infection (Noyes et al., 2011). Baoule breed in West Africa which are 

found in the trypanosomiasis-endemic southern part of Burkina Faso, have evolved tolerance 

to trypanosome infections (Albert et al., 2019). Pure-bred Zebu (Bos indicus) cattle are 

susceptible to trypanosomiasis but they are preferred by the farmers due to their large body 

sizes and more meat or milk production. Farmers often cross-bred Zebu and Baoule resulting 

in offsprings with improved trypanotolerance and size (Hanotte, 2002). The ancestry of the 

Zebu cattle breed is prominent in the large-sized admixed cattle. However, Zebu genome 

sections that may be associated with trypanotolerance can be expected to have higher extents 

of Baoule ancestry (Oleksyk et al., 2010). 

Chromosome 22 (between 51.20 - 51.40Mb) has been suggested in previous studies to have 

genes that are involved in trypanotolerance (O’Gorman et al., 2009). The N’Dama that are 

trypanotolerant show a distinct and rapid transcriptional response to trypanosome infection  

and hence the genes involved in such immune responses can be upregulated or downregulated. 

Genetic variations in TICAM1 and ARHGAP15 genes are thought to confer structural and 

functional changes in the proteins they encode, and they have been associated with the 

trypanotolerance trait mechanism (Noyes et al., 2011). 

1.2 Research question 
Is there an association between mutations in the cattle genomes and trypanotolerance trait? 

 
1.3 Objectives 
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1.3.1  General objective 
To investigate the genetic variations associated with trypanotolerance trait in cattle. 

 
1.4 Specific objectives 

I. To identify genetic variants associated with trypanotolerance in Bos taurus, Bos 

indicus and hybrids. 

II. To identify the genes and gene functions that may be disrupted or enhanced by 

variations. 

1.5 Null hypotheses 
There are no genetic variants associated with the trypanotolerance trait in cattle. 

 
1.6 Justification 

Both the indigenous and exotic cattle breeds produce meat, milk and manure at different 

efficiencies but the indigenous cattle breeds are often used for draft purposes in sub-Saharan 

Africa. Indicine cattle breeds are susceptible to trypanosomiasis, tick and other vector borne 

diseases but the trypanotolerant breeds can withstand these diseases benefiting from the trait 

(Noyes et al., 2011). It is, therefore, important to harness these trait and use it to control 

trypanosomiasis because trypanosomes have developed resistance to the available drugs 

leaving farmers with almost no options in the fight against the disease (Solomon & Workineh, 

2018). 

It is important to elucidate and measure the genetic variability between the trypanotolerant and 

susceptible cattle breeds for purposes of artificial selection in cattle. This analysis will enable 

the improvement of cattle productivity especially in sub-Saharan Africa, where 

trypanosomiasis has resulted in huge economic losses. AAT challenge is worse because of the 

absence of a vaccine and drug resistance that has resulted in poor cattle productivity. AAT can 

also be managed through improved cattle breeding for the introgression of trypanotolerance 

trait, which is associated with tolerance to other common diseases like tick borne diseases and 

helminthiasis. 
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Chapter 2 
 

2.0 LITERATURE REVIEW 
2.1 The cause of African animal trypanosomiasis 

Trypanosoma congolense, T. brucei spp and T. vivax cause AAT affecting cattle mostly in 

sub-Saharan Africa (Berthier et al., 2015; von Wissmann et al., 2011). AAT  also affects  

goats, sheep, pigs, dogs, camels, horses, buffaloes and antelopes and is caused by T. evansi  

and T. equiperdum (Ahmed et al., 2018; D. P. Duarte et al., 2018; Suganuma et al., 2016). 

These trypanosomes can also cause disease in mice models (Ghaffar et al., 2016; Ndungu et 

al., 2019). Trypanosome species are evolutionarily related, and phylogenetically have similar 

structural and functional proteins associated to their lifecycle (Carnes et al., 2015; Hamilton et 

al., 2009; Rodrigues et al., 2008). 

2.2 Geographical distribution of animal trypanosome species 
The tsetse fly is the primary vector of trypanosome parasite associated with regular AAT 

transmission mostly found in sub-Saharan Africa (Auty et al., 2015). Trypanosoma  

congolense is found in east, west, central and south African equatorial forests and savanna 

grasslands infecting cattle and small ruminants (Cecchi et al., 2008; Mekata et al., 2008; Simo 

et al., 2012). T. vivax are common in the eastern and western parts of Africa where tsetse flies 

are the exclusive vectors. In South America, biting flies mediate mechanical transfer of animal 

trypanosomiasis ( Osório et al., 2008; T. W. Jones & Dávila, 2001). T. evansi is often found in 

camels of north Africa, the Middle East, south America and Asia and can cause infections in 

buffaloes and cattle (Dávila & Silva, 2006; Desquesnes et al., 2013; Reid, 2002). Poor 

sensitivity of diagnostic techniques makes it challenging to determine the distribution of each 

trypanosome       species (Ngaira et al., 2005; Njiru et al., 2010; Zablotskii et al., 2003). Figure 

2.1 illustrates worldwide spread of the three most common animal trypanosomes. 
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Figure 2.1: The global distribution of common livestock trypanosomes T. congolense, T. 
vivax and T. b. evansi 

(Adapted from Auty et al., 2015; Giordani et al., 2016). 

2.3 The lifecycle of Trypanosomes 
The main cause of AAT is T. congolense, a unicellular protozoan parasite whose 

developmental process is divided into two stages: mammalian and vector stages (Awuoche et 

al., 2018; Tihon et al., 2017). The mammalian stage is characterized by the stumpy forms 

which circulate in blood, lymphatic fluid and spinal fluid and proliferate by binary fission 

(Silvester et al., 2018). In the vector stage the parasite undergoes morphological changes in  

the tsetse fly digestive system. The ingested stumpy forms turn to midgut procyclic 

trypomastigotes that proliferate and move to the mouth part as epimastigotes. The cycle takes 

approximately 3 weeks eventually forming metacyclics that can infect animals, as summarized 

in figure 2.2 (Coustou et al., 2010; O’Gorman et al., 2009; Rotureau & Van Den Abbeele, 

2013). 
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Figure 2.2: Trypanosome developmental stages in the mammalian host and the insect 
vector (Adapted from Peacock et al., 2012). 

2.4 Clinical presentation of animal African trypanosomiasis in cattle 
An infection is established when a trypanosome carrying tsetse fly feeds on animal blood 

injecting metacyclic trypomastigotes into the skin, which then enter into circulation to other 

body tissues (Bargul et al., 2016; Cayla et al., 2019). Successful establishment of an infection 

in an animal host depends on the host’s immunity, virulence of the parasite and the dose of 

infection (Geiger et al., 2016; Matthews et al., 2015; Onyilagha & Uzonna, 2019). The disease 

manifests as an acute form that progresses rapidly, or chronic form that persists for long 

periods. Acute animal trypanosomiasis is characterized by fever, edema, adenitis, dermatitis, 

anemia, reproductive abnormalities and nervous disorders (Stijlemans et al., 2018; Suh et al., 

2017). Chronic form of the disease has the following symptoms: swollen lymph nodes, 

spleenomegally, serous atrophy of fat, anemia and increased mortality especially of poor 

nutrition cases (Dávila & Silva, 2006). Animal trypanosomiasis is diagnosed by the 

microscopic observation of the parasite in blood, lymphatic fluid, milk, cerebral spinal fluid 

and biopsy specimen  (Büscher  et al., 2019; Pascucci  et al., 2013; Suganuma  et al.,     2016). 
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Serological tests in combination with polymerase chain reaction (PCR) are applied to increase 

diagnostic specificity and sensitivity (Desquesnes et al., 2001; Ezeani et al., 2008; Njiru et al., 

2005). 

2.5 Cattle breeds and trypanotolerance 
Domesticated cattle descended from wild aurochs and are divided into two species: 

 
i. The Bos indicus whose most noticeable phenotypic characteristic is the presence of a 

hump at its withers and floppy ears instead of upright ones, 

ii. and the Bos taurus that are humpless (Ababa, 2000; McTavish et al., 2013). 
 

The taurine cattle, for example Nelore and Angus, are mostly found in temperate regions such 

as Europe while the indicine cattle, for example the Zebu and Boran, are mostly found in 

tropical regions such as Africa (Porto-Neto et al., 2013). Several cattle breeds are tolerant to 

trypanosomiasis, most of which are taurines found in West Africa, and they include: N’Dama, 

Sheko, Baoule, Orma Boran and Nuba (Mwai et al., 2015). 

2.5.1 African indigenous cattle breeds 
2.5.1.1 N’Dama cattle breed 

The N’Dama cattle of West Africa are also called N’Dama petite in Senegal, Boyenca in 

Guinea-Bissau and Mandingo in Liberia. N’Dama are found in the following countries; Sierra 

Leone, Mali, Senegal, Nigeria, Ivory coast, Liberia, the Gambia and Guinea-Bissau (Mwai et 

al., 2015). These cattle are generally small in size with the mature bulls weighing 320 to 360 

Kg and the mature cows 250 to 330 Kg (Ganyo et al., 2018). They have lyre-shaped horns, 

they have a fawn colour that may range from sand to black with occasional spots and they are 

kept for draft purposes, milk and meat (van der Waaij et al., 2003). 

These cattle breeds are tolerant to trypanosomiasis endemic to tsetse fly infested regions of 

sub Saharan Africa. They are also tolerant to tick borne diseases and ticks, helminthiasis such 

as infections caused by Haemonchus contortus also referred to as stomach worms and bovine 

streptothricosis (Kim et al., 2017; Mattioli et al., 2000). N’Dama cattle’s ability to be tolerant 

to parasitic diseases makes them suitable candidates for use in breed improvement 

programmes (Bosso et al., 2007). For example, N’Dama X Boran crossbreeding for increased 

meat productivity and improved resistance to trypanosomiasis (Orenge et al., 2012). These 

hybrid cattle have been found to express intermediate tolerance to trypanosomiasis and they 
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would benefit from the use of biomarkers for trypanotolerance in determining the level of 

expression of the trypanotolerance trait (Orenge et al., 2012). 

2.5.1.2 Boran cattle breed 
The Kenyan Boran cattle are mostly found in Eastern Africa in Ethiopia and Kenya and are 

part of the Zebu cattle. Kenyan Boran are generally large in size with mature males weighing 

550 – 850 Kg and the females weigh 400 – 550 Kg, they mostly have a white coat that is 

sometimes spotted but they can also have red or brown coats. Kenyan Boran are kept mostly 

for meat, draft usage and are susceptible to trypanosomiasis (Rege et al., 2001; Rewe et al., 

2008; Rewe et al., 2006). The Kenyan Boran, that is, is an improved cattle breed from the 

Somali Boran, Borana and the Orma Boran in terms of its beef productivity in a harsh 

environmental condition (Maichomo et al., 2005). 

2.5.2 Exotic cattle breeds in Africa 
2.5.2.1 Charolais beef cattle 

Charolais is a taurine breed that is characterized by mature cows ~900 kg and bulls ~1,100 kg 

with a white colored body and pink nose. Charolais originated from France in the Charolais 

area and they are found in South African countries including Namibia (Capitan et al., 2009; 

Mokolobate et al., 2019). Charolais have been crossbred with indigenous cattle breeds to 

improve beef production and adaptability to the harsh tropical conditions in Africa (Wilson, 

2018). 

2.5.2.2 Fresian dairy cattle 
Fresian are also referred to as Holstein and originated from Netherlands, Germany, Denmark 

and Austria. Fresian are usually black and white or red and white in color with a mature cow 

typically weighing 680 – 770 kg. Fresian produce 25 – 65 litres of milk per day and they are 

susceptible to most parasitic diseases in sub-Saharan Africa (Alqaisi et al., 2019; Coffey et al., 

2016; Lembeye et al., 2016). 
 

2.6 Control of trypanosomiasis 
2.6.1 Control of the vector: use of insecticides 

Vector control using insecticides has been achieved through the use of aerial spraying of 

deltamethrin (Kgori et al., 2006), mobile baits and stationary baits (Muhanguzi et al., 2015). 

Insecticides such as pyrethroids can be applied on cattle in regions that have tsetse flies 

feeding exclusively on cattle. In areas where tsetse flies feed on wild animals that are 
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trypanosome reservoirs, it is advisable not to apply insecticides on cattle because of possible 

re-infections (Hargrove et al., 2000, 2012). Cattle treated with insecticides have been used to 

eliminate tsetse fly populations and thus contributing to the reduction of the trypanosomiasis 

incidence (Baylis & Stevenson, 1998). 

2.6.2 Control of the parasites: use of chemotherapy 
The most commonly used drug compounds for the control of AAT are isometamidium  

chloride commonly referred to as trypamidium and diminazene aceturate commonly referred  

to as berenil because of their low levels of side effects (Meyer et al., 2016; Giordani et al., 

2016). There is, however, an emerging trend of parasites developing resistance to the available 

chemotherapeutic agents thus reducing the efficacy of the drugs against the pathogens 

(Chitanga et al., 2011; Holt et al., 2016; Mungube et al., 2012). Some of the pathogens have 

been shown to express multiple drug resistance making disease management challenging 

(Mungube et al., 2012; Wangwe et al., 2019). 

Other chemotherapeutic agents that have been used in the control of AAT include; homidium 

salts (bromide/chloride) that is used in cattle, goats and sheep (Wainwright, 2010), and 

quinapyramine sulphate administered in treating T. b. evansi in horses and camels 

(Ranjithkumar et al., 2014). Suramin sodium, the oldest trypanocide, is still being used to treat 

Nagana in Brazil (Faccio et al., 2013) and melarsomine dihydrochloride is used to treat T. b. 

evansi infections in cattle, camels, goats and horses (Desquesnes et al., 2011; Gutierrez et al., 

2008; Tamarit et al., 2010). Resistance to the trypanocides by the trypanosomes has, however, 

been reported in East and West Africa (Dagnachew et al., 2015; Moti et al., 2015; Mungube et 

al., 2012; Vitouley et al., 2012). Trypanosomes transport the toxic drug compounds out of  

their cellular compartments through carrier proteins forming the basis for drug resistance 

(Dagnachew et al., 2015; Munday et al., 2015). 

2.6.3 Host factors: use of trypanotolerance trait in cattle 
A number of indigenous cattle breeds in Africa have the ability to continue being productive 

after an infection with the pathogenic trypanosomes and they include the N’Dama, Baoule, 

Sheko, Namchi, Muturu and Dahomey (Achukwi et al., 1997; Giordani et al., 2016; Noyes et 

al., 2011). Trypanotolerant breeds are used for livestock production in some endemic areas of 

the sub-Saharan Africa such as the west Africa (Naessens, 2006). The use of trypanotolerance 

trait in improved cattle breeding has therefore been suggested for the control of 
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trypanosomiasis as a sustainable strategy (Hanotte, 2002). 

2.7 Trypanotolerance mechanism 
There are two mechanisms responsible for the expression of natural tolerance to AAT in  

cattle; 

i. The ability of the hemopoetic system to control the development of anemia in the 

animal 

ii. The natural ability for parasitemia control (Naessens et al., 2002). 
 

Trypanotolerance trait is thought to be a genetic trait but underlying mechanisms are not fully 

understood following studies in mice and cattle models (Abenga & Vuza, 2005). The ability of 

the cattle to manage anemia after primary trypanosomiasis infection depends on the initial 

parasitemia stage, animal’s age and its genetic make-up (Andrianarivo et al., 1996; Authié et 

al., 1993). 

A cysteine protease, known as Congopain, expressed by T. congolense initiates a stronger 

antibody response where immunoglobulin G (IgG) is expressed during primary infection 

(Authié et al., 1993). IgM is also expressed during a trypanosomiasis infection and these 

antibodies against trypanosome antigens are produced by activated lymphocytes (Authié et al., 

1993; Authiée et al., 1993). If the trypanotolerant animal is to manage the parasitemia that is 

established then the severity of the anemia that develops is reduced by extension (Agur & 

Mehr, 1997; Andrianarivo et al., 1996). Blood cells that contribute to the management of 

anemia and parasitemia in trypanotolerant cattle include erythrocytes, monocytes, 

macrophages and antibody producing lymphocytes whose development can be affected by 

their interaction with the infecting parasite (Akinbamijo et al., 1998; Authié et al., 1993). Two 

genes have been found to contain SNPs that have been associated with the trypanotolerance 
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trait mechanism: TICAM1 and ARHGAP15 have non synonymous mutations that may be 

playing a critical role in the expression of this trait in the trypanotolerant cattle breeds of West 

Africa (Noyes et al., 2011). 

2.8 Genome wide association studies 
GWAS identifies inherited genetic variants that are associated with a particular trait or risk of 

a disease. The whole genome is analyzed for genetic polymorphisms such as single nucleotide 

polymorphisms (SNPs) that occur at greater frequency in cases (individuals with the disease or 

trait being assessed) than in controls (individuals without the disease or trait) (Beck et al., 

2019; Genetic Investigation of ANthropometric Traits (GIANT) Consortium et al., 2015; 

Visscher et al., 2017). GWAS has been applied in cattle research to study beef quality and 

yield, milk yield and fertility (Zhou et al., 2019; Jiang et al., 2019). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



11  

Chapter 3 
 

3.0 MATERIALS AND METHODS 
3.1 Description of data 

A sample size of n=1199 cattle from 44 breeds were obtained from a 1494 cattle sample. A 

study that investigated the ancestry of 58 cattle breeds n = 1494 from multiple independent 

domestication events was used and the datasets were derived from published research 

(McTavish et al., 2013). Data preprocessing was done where two cattle breeds were excluded 

because they had a lot of missingness, three were also excluded because they were hybrids of 

unknown continental origin whereas nine had less than 55k SNPs as summarized in Figures 

3.1 and 3.2 and Appendix table 1. All the case groups: Sheko (n=20), N’Dama (n=59), Boran 

(n=44) and N’Dama X Boran (n=83) were each compared to the control group (n=993) 

comprising Tuli (n=16), Dexter (n=11), South Devon (n=10), Red Poll (n=11), Senepol 

(n=80), Jersey (n=17), Belgian Blue (n=11), White Park (n=10), Ankole-Watusi (n=12), 

Scottish Highland(n=15), Red Angus (n=22), Devon (n=10), Sussex (n=11), Guernsey 

(n=17),Galloway (n=11), Maine Anjou (n=11), Belted Galloway (n=11) , Gelbvieh (n=15), 

Tarentaise (n=12), Corriente (n=12), Marchigiana (n=13), Salers (n=12), Simental (n=162), 

Romosinuano (n=15), Romagnola (n=36), Welsh Black (n=9), Kerry (n=10), Gir (n=32), 

Brown swiss (n=17), Pinzgauer (n=12), English longhorn (n=10), Sahiwal (n=17), Chianina 

(n=14), Norwegian Red (n=28), Shorthorn (n=105), Brahman (n=105), Piedmontese (n=36), 

Montbeliard (n=12), Blonde d'Aquitaine (n=12) and Murray Gray (n=11) while avoiding 

confounding. A summary of the samples used in the study is shown on Figures 3.1 and 3.2. 

Being a susceptible breed, the Boran cattle was used as a case because it is exposed to the 

tryapanosomiasis challenge in the sub Saharan region and therefore it may be trying to adapt 

itself to be able to withstand the disease by expressing mutations that are yet to confer 

tolerance on the breed. 
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Figure 3.3: The global distribution of taurine and indicine cattle breeds used as cases and 
controls in the study. 

 
 

Figure 3.4: The number of samples of the African breeds.The N’Dama and Sheko are 
trypanotolerant, Boran is susceptible to trypanosomiasis and the N’Dama X Boran is a 
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hybrid with intermediate tolerance. 

3.2 Performing genome wide association studies 
The dataset was divided into cases and controls, four cattle breeds (Boran, N’Dama, Sheko  

and N’Dama X Boran) were each used as cases and the remaining 40 cattle breeds were used 

as controls to avoid confounding. The case-controls were used to perform genome wide 

association analysis on Plink (Purcell et al., 2007) and the data was visualized on quantile- 

quantile (Q-Q) plots and manhattan plots using their respective functions in the qqman  

package (Turner D. S. 2018) in R version 3.5.3 after performing quality control (RStudio 

Team 2016). 

The statistical basis of GWAS involves a single SNP scan or multiple marker analysis where 

genotype or allele frequency is compared between cases and controls (Balding 2006; 

McCarthy et al., 2008). Additive gene models are applied mostly in the single SNP scan 

where adding minor allele copies increases disease or phenotype risk proportionately (Zeng 

et al., 2015). Gene models are affected by genetic dominance that makes it ineffective in 

association analysis (Sabourin et al., 2015). Multiple marker analysis uses least absolute 

shrinkage and selection operator (Lasso) estimation to determine the association between 

the genotype and phenotype (Rakitsch et al., 2012). Multiple testing is used to correct errors 

that might arise during association analysis in Plink when using linkage disequilibrium 

pruning and a common p-value threshold (Sobota et al., 2015). 

3.3 Quality control 
SNPs were filtered based on the following inclusion threshold parameters: missingness per 

individual (mind), minor allele frequency (maf), missingness per genotype (geno) and Hardy 

Weinberg equilibrium (hwe) based on Plink version 1.90. The SNPs that passed the filters 

were used to generate the qq and Manhattan plots. 

Table 3.1: The inclusion threshold parameters used to filter SNPs in Plink before GWAS 
analysis. 

 
Case-group Mind Maf Geno Hwe 
N’Dama 0.001 0.25 0.001 1e-20 
Sheko 0.01 0.25 0.001 1e-70 
Boran 0.001 0.25 0.001 1e-50 
N’DamaXBoran 0.001 0.25 0.001 1e-50 
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3.4 Overlapping SNPs 
SNPs found in more than one case-control group and below a p-value threshold of 5e-08 were 

identified (Nazarian et al., 2019). The genes in which these SNPs are found and those flanking 

them were also identified in all the case control groups (Table 4.1- 4.4). 
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Chapter 4 
 

4.0 RESULTS 
4.1 Sheko significant SNPs 

In the Sheko case-control group, a total of 10 SNPs were detected to be below the significance 

threshold with three peaks on chromosomes 2, 8 and 22, as shown in figure 3. The SNPs on 

chromosome 2 are on GALNT13 (base pair position: 42173258; p=3.23e-33) and SLC19A3 

(base pair position: 115826791; p=5.32e-09) genes. The SNP on chromosome 16 is between 

RAB7B-LOC515828 (base pair position: 3762358; p=1.054e-12) and NVL (base pair  

position: 27466587 and p=2.084e-24) genes. Chromosome 19 SNP was on RBFOX3 (base  

pair position: 53332410; p=8.829e-10) gene. Other significant SNPs associated with the 

trypanotolerance trait were identified on chromosomes 4, 6, 9, 10, 11, 12 and 13 as 

summarized on Table 4.1. 
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Table 4.2: List of significant SNPs for the Sheko case-control group 

The table shows the chromosome, position in bp (base pairs), gene and the function of the genes and lists the significant SNPs, the 

genes in which they are found or those flanking them and the function of the genes. 
 

Sheko vs controls 
Ch 
r 

Pos P-values Gene Definition Function 

 
2 

 
42173258 

 
3.23e-33 

 
GALNT13 

Acetylgalactosaminyltransferas 

e 13 (GalNAc-T13) 

Catalyzes   the   initial   reaction   in  O-linked 

oligosaccharide biosynthesis 

 
2 

11582679 

1 
 
5.32e-09 

 
SLC19A3 

Solute carrier family 19 

member 3 
 
Thiamine transporter 

3 4522681 4.44e-09 PBX1- 
LOC107132013 

  

3 79223535 2.1e-53 PDE4B Phosphodiesterase 4B Purine, Terpenoids and Polyketides Lipid 
Metabolism, Glycan Biosynthesis. 

4 87004472 1.116e- 
15 

CADPS2 Calcium Dependent Secretion 
Activator 2 

Calcium binding proteins that regulate the 
exocytosis of synaptic and dense-core vesicles 
in neurons and neuroendocrine cells 

4 98706215 3.286e- 
08 

AGBL3 ATP/GTP binding protein-like 3 Catalyzes the deglutamylation of 
polyglutamate side chains generated by post- 
translational polyglutamylation in proteins 
such as tubulins. 

5 25379378 8.316e- 
37 

LOC789659- 
GLYCAM1 

  

5 42953144 1.225e- 
19 

PTPRB Protein Tyrosine Phosphatase 
Receptor Type B 

PTPs are known to be signaling molecules 
that regulate a variety of cellular processes 
including cell growth, differentiation, mitotic 
cycle, and oncogenic transformation 

5 50918096 3.783e- 
09 

PPM1H Protein Phosphatase, 
Mg2+/Mn2+ Dependent 1H 

It is involved in phosphoprotein phosphatase 
activity 



17  

 
6 24398925 5.316e- 

09 
LOC104972699   

6 74169745 5.316e- 
09 

LOC112447016 
- 
LOC100141023 

  

7 10871012 
6 

4.053e- 
17 

LOC112447632 
-MAN2A1 

  

8 17755514 4.17e-09 LOC785941- 
LOC112447965 

  

8 42607942 2.056e- 
37 

LOC112447799   

8 96108670 4.058e- 
08 

LOC112447914 
-LOC783574 

  

9 19798784 3.631e- 
14 

TTK-BCKDHB   

10 43229292 7.914e- 
31 

ATP5S ATP synthase Mitochondrial ATP synthase catalyzes ATP 
synthesis, utilizing an electrochemical 
gradient of protons across the inner membrane 
during oxidative phosphorylation 

10 62628026 1.834e- 
10 

LOC101902090 
-SEMA6D 

  

11 31105767 1.291e- 
12 

LHCGR-FSHR   

11 84239108 3.043e- 
13 

LOC782101- 
LOC100297236 

  

11 91328544 5.744e- 
19 

SOX11- 
LOC784 

  

12 40456779 4.286e- 
10 

PCDH9 Protocadherin 9 Mediates cell adhesion in neural tissues in the 
presence of calcium 

13 12496509 1.154e- 
11 

ECHDC3 Enoyl-CoA Hydratase Domain 
Containing 3 

It is involved in Fatty Acid Biosynthesis 

13 62991477 3.13e-08 CBFA2T2 CBFA2/RUNX1 Partner 
Transcriptional Co-Repressor 2 

Repressor protein involved in transcription 
regulation. 
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14 81943854 2.22e-10 SNTB1 Syntrophin Beta 1 Involved in the nNOS Signaling pathway in 

Skeletal Muscle and Muscular Dystrophies 
and Dystrophin-Glycoprotein Complex. 

15 33508261 3.045e- 
11 

JHY Junctional Cadherin Complex 
Regulator 

Required for the normal development of cilia 
in brain ependymal cells lining the ventricular 
surfaces. 

16 3762358 1.054e- 
12 

RAB7B- 
LOC515828 

  

16 27466587 2.084e- 
24 

NVL Nuclear VCP Like Catalyzes the release of specific assembly 
factors, such as WDR74, from pre-60S 
ribosomal particles through the ATPase 
activity. 

16 58324427 2.267e- 
17 

ASTN1 Astrotactin 1 Neuronal adhesion molecule that is required 
for normal migration of young post mitotic 
neuroblasts along glial fibers, especially in the 
cerebellum. 

16 58757128 1.654e- 
12 

BRINP2- 
TRNAG-CCC 

  

17 2175083 1.303e- 
09 

NPY2R- 
LOC112442109 

  

17 73021526 5.313e- 
37 

CCDC188- 
LOC112441986 

  

18 62017556 2.685e- 
29 

SSC5D Scavenger Receptor Cysteine 
Rich Family Member with 5 
Domains 

Developmental protein and receptor involved 
in innate immunity. 

19 41204591 8.314e- 
12 

LOC100294937 
-KRTAP3-1 

  

19 53332410 8.829e- 
10 

RBFOX3 RNA-binding FOX protein It is involved in the regulation of alternative 
splicing of pre-mRNA 

20 29610780 4.489e- 
22 

HCN1-MRPS30   

22 388140 3.729e- 
14 

DBNL Drebrin Like Plays a role in the reorganization of the actin 
cytoskeleton, formation of cell projections, 
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     such as neurites, in neuron morphogenesis and 

synapse formation via its interaction with 
WASL and COBL. 

22 20613110 3.631e- LOC100138752   
  14 - 
   LOC112443533 
28 20821114 5.299e- LOC781358-   

  21 LOC785503 
29 24046829 4.688e- NELL1 Neural EGFL Like 1 May be involved in cell growth regulation and 

  08   differentiation. 



 

4.2 N’Dama significant SNPs 
In the N’Dama case-control group GWAS, a total of 16 SNPs were detected to be below the 

significance threshold with two peaks on chromosome 7, 8, 22 and 25 as shown in Figure 4. 

On chromosome 7 they are between LOC112447397-LOC112447627 (base pair position: 

36220342; p=5. 147e-13), LOC112447561 and RPS23 (base pair position: 82051714; 

p=1.541e-51) and LOC107132661 and LOC112447562 (base pair position: 86005958; 

p=1.361e-28. On chromosome 8 the SNP is on SUSD1 gene (base pair position: 101498454; 

p=2.733e-30. On chromosome 22 it is between LOC100138752 and LOC112443533 gene 

(base pair position: 20613110; p=3.672e-30). On chromosome 25 the SNP is on 

LOC112444322 gene (base pair position: 3202550; p=1.661e-28). Other significant genes are 

on chromosome 3, 11 and 13 summarized on Table 4.2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

20 
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Table 4.3: List of significant SNPs for the N’Dama case-control group. 

The table shows the chromosome, position in bp (base pairs), gene and the function of the genes and lists the significant SNPs, the 

genes in which they are found or those flanking them and the function of the genes. 
 

N’Dama vs controls 
Ch 
r 

Pos P-value Gene Definition Function 

3 119334975 4.318e-08 LOC615000- 
LOC530175 

  

7 36220342 5.147e-13 LOC112447397- 
LOC112447627 

  

7 82051714 1.541e-51 LOC112447561- 
RPS23 

  

7 86005958 1.361e-28 LOC107132661- 
LOC112447562 

  

8 101498454 2.733e-30 SUSD1 Sushi Domain 
Containing 1 

May be involved in calcium ion binding. 

9 9160630 2.733e-12 COL19A1 Collagen 
Type XIX 
Alpha 1 

Developmental protein that is involved in Cell adhesion, 
Differentiation and Myogenesis 

10 84150081 2.91e-23 DPF3 Double PHD 
Fingers 3 

Activator, Chromatin regulator and Repressor that is involved 
in transcription regulation. 

11 84239108 7.393e-17 LOC782101- 
LOC100297236 

  

12 49916383 7.274e-10 LOC112449131   

13 30634339 1.178e-10 MINDY3-PTER   

13 52889781 5.519e-13 LOC100848770- 
STK35 

  

22 20613110 3.672e-30 LOC100138752-   
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   LOC112443533   
25 3202550 1.661e-28 LOC112444322   



 

4.3 Boran significant SNPs 
In the boran case-control group GWAS, a total of 15 SNPs were detected to be below the 

significance threshold with three peaks on chromosomes 14 and 16. On chromosome 14 it was 

on PAG1 gene (base pair position: 44218065; p=1.062e-08). On chromosome 16 it was on 

NVL gene (base pair position: 27466587; p=7.207e-34). Other significant SNPs are on 

chromosome 4, 19and 24 as shown on Table 4.3. 
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Table 4.4: List of significant SNPs for the Boran case-control group. 

The table shows the chromosome, position in bp (base pairs), gene and the function of the genes and lists the significant SNPs, the 

genes in which they are found or those flanking them and the function of the genes. 
 

Boran vs controls 
Ch 
r 

Pos P-value Gene Definition Function 

4 21700353 3.394e- 
10 

LOC112446324 
- 
LOC112446494 

  

8 10149845 
4 

1.318e- 
17 

SUSD1 Sushi Domain 
Containing 1 

May be involved in calcium ion binding. 

13 30634339 1.147e- 
25 

MINDY3-PTER   

14 44218065 1.062e- 
08 

PAG1 Phosphoprotein 
Associated With 
Glycosphingolipid 

It is involved in the regulation of T cell activation. 

16 27466587 7.207e- 
34 

NVL Nuclear VCP Like Catalyzes the release of specific assembly factors, such as 
WDR74, from pre-60S ribosomal particles through the 
ATPase activity. 

19 46655940 4.135e- 
11 

LOC112442751 
- 
LOC107131395 

  

24 53328928 1.164e- 
64 

DCC-MBD2   

27 1919781 5.386e- 
14 

MYOM2- 
CSMD1 
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4.4 N’Dama X Boran significant SNPs 
In the N’Dama X Boran case-control group, a total of 47 SNPs were detected to be below the 

significance threshold with peaks on chromosomes 8, 9 and 11. On chromosome 8 the SNPs 

was on SUSD1 gene (base pair position: 101498454; p=8.734e-25), chromosome 9 it was 

between DSE and TRNAC-GCA (base pair position: 34362359; p= 3.65e-31) and on 

chromosome 11 between LOC782101 and LOC100297236 genes (base pair position: 

84239108; p=2.852e-24). Other significant SNPs are on chromosomes 1, 3, 4,, 6, 10, 12, 13, 

16, 17, 19, 21 and 27 as shown on Table 4.4. 
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Table 4.5: List of significant SNPs for the N’Dama X Boran case-control group. 

The table shows the chromosome, position in bp (base pairs), gene and the function of the genes and lists the significant SNPs, the 

genes in which they are found or those flanking them and the function of the genes. 
 

N’DamaXBoran vs controls 
Ch 
r 

Pos p-value Gene Definition Function 

1 56421072 3.101e- 
09 

LOC104970843   

3 67058218 2.386e- 
14 

ZZZ3 Zinc Finger ZZ- 
Type Containing 3 

Involved in DNA binding and transcription regulation. 

4 36172960 3.101e- 
09 

SEMA3A Semaphorin 3A It functions as a chemorepulsive agent, inhibiting axonal 
outgrowth, or as a chemoattractive agent, stimulating the 
growth of apical dendrites. 

4 76430565 1.099e- 
08 

ADCY1- 
LOC112446405 

  

6 11636081 
8 

3.101e- 
09 

ZFYVE28 Zinc Finger FYVE- 
Type Containing 28 

Negative regulator of epidermal growth factor receptor 
(EGFR) signaling. Acts by promoting EGFR degradation 
in endosomes when not monoubiquitinated. 

7 19019059 3.101e- 
09 

PTPRS Protein Tyrosine 
Phosphatase 
Receptor Type S 

Heparin-binding, Hydrolase, Protein phosphatase, 
Receptor that is also important in cell adhesion. 

8 10149845 
4 

8.734e- 
25 

SUSD1 Sushi Domain 
Containing 1 

May be involved in calcium ion binding. 

9 34362359 3.65e-31 DSE – TRNAC- 
GCA 

  

10 33472063 7.613e- 
09 

LOC104973118 
-TMCO5A 

  

10 62628026 2.01e-31 LOC101902090 
-SEMA6D 
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11 84239108 2.852e- 

24 
LOC782101- 
LOC100297236 

  

13 12496509 7.613e- 
09 

ECHDC3 Enoyl-CoA 
Hydratase Domain 
Containing 3 

It is involved in Fatty Acid Biosynthesis 

13 38402690 3.101e- 
09 

KAT14-ZNF   

16 73955905 3.101e- 
09 

LOC104974530 
- 
LOC112441794 

  

17 19592737 3.101e- 
09 

SLC7A11- 
LOC112442101 

  

19 46655940 1.276e- 
59 

LOC112442751 
- 
LOC107131395 

  

21 8820700 3.101e- 
09 

LOC112443229 
-LOC782362 

  

21 29088181 3.101e- 
09 

PCSK6 Proprotein 
Convertase 
Subtilisin/Kexin 
Type 6 

Implicated in the ontogenesis of bodily asymmetries by 
regulating the nodal cascade and it is also relevant for 
structural asymmetries in the human brain. 

21 31068965 3.101e- 
09 

CHRNB4- 
UBE2Q2 

  

27 1919781 2.663e- 
08 

MYOM2- 
CSMD1 
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Figure 4.5: Sheko cases vs controls 

(a) Manhattan plot with autosomal chromosomes 1-29 on the x axis and –log10p-value on the y axis. The horizontal dotted line is the 
significance threshold of p-value 5e-8 with the significant SNPs below it shown in red. (b) Q-Q plot with the expected –log 10p-value 
on the x axis and the observed –log10p-value on the y axis, x=y is the grey diagonal line and the red curve are dots representing SNP 
p-value. 
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Figure 4.6: Ndama cases vs controls. 

(a) Manhattan plot with autosomal chromosomes 1-29 on the x axis and –log10p-value on the y axis. The horizontal dotted line is the 
significance threshold of p-value 5e-8 with the significant SNPs below it shown in red. (b) Q-Q plot with the expected –log 10p-value 
on the x axis and the observed –log10p-value on the y axis, x=y is the grey diagonal line and the red curve are dots representing SNP 
p-value. 
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Figure 4.7: Boran cases vs controls. 

(a) Manhattan plot with autosomal chromosomes 1-29 on the x axis and –log10p-value on the y axis. The horizontal dotted line is the 
significance threshold of p-value 5e-8 with the significant SNPs below it shown in red. (b) Q-Q plot with the expected –log 10p-value 
on the x axis and the observed –log10p-value on the y axis, x=y line is the grey diagonal line and the red curve are dots representing 
SNP p-value. 
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Figure 4.8: NdamaXboran cases vs controls 

(a) Manhattan plot with autosomal chromosomes 1-29 on the x axis and –log10p-value on the y axis. The horizontal dotted line is the 
significance threshold of p-value 5e-8 with the significant SNPs below it shown in red. (b) Q-Q plot with the expected –log 10p-value 
on the x axis and the observed –log10p-value on the y axis, x=y is the grey diagonal line and the red curve are dots representing SNP 
p-value. 
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Chapter 5 
 
5.0 DISCUSSION 

5.1 Genes identified in trypanotolerant cattle breeds 
The significant SNPs identified from GWAS analysis were used to determine the genes that 

might be important in trypanotolerance trait expression for three cattle groups in the study; the 

trypanotolerant (Sheko and N’Dama), susceptible (Boran) and the hybrid (N’Dama X Boran). 

The functions and the potential role of these key genes in the trypanotolerance trait are described. 

In the Sheko case-control group, see Table 4.1 and Figure 4.1, acetylgalactosaminyl transferase 

13 (GALNT13) gene encodes a protein enzyme that is involved in the o-glycosylation process 

that affects inflammation, cell migration and proliferation (Gill et al., 2013; Hennet et al., 1995). 

This post translational modification process entails the attachment of a sugar molecule to the 

oxygen atom of serine (Ser) or threonine (Thr) residues in a synthesised protein and in 

eukaryotes, it occurs in the endoplasmic reticulum, Golgi apparatus and occasionally in the 

cytoplasm (Steen et al., 1998). O-glycans are involved in the movement of immune cells 

(Hounsell et al., 1996). Glycosaminoglycans (GAGs) are formed when long chains of repeating 

sugar units are linked to a protein by another one or more sugar side chains creating 

proteoglycans such as heparan sulphate and keratan sulphate (Pomin & Mulloy, 2018; Spiro, 

2002). The synthesised O- linked oligosaccharide is a mucin type O- glycan that is important in 

the synthesis of keratosulfate (KS) found in cornea, brain, epithelial, neural and skeletal tissues 

with several molecular functions that include cell motility, adherence and communication 

(Funderburgh, 2002; Leiphrakpam et al., 2019; Weyers et al., 2013). Lumican is a proteoglycan 

that contains many KS chains associating with the cluster of differentiation 14 (CD14) that 

triggers toll-like receptor 4 (TLR4) to enable pathogen endocytosis (Caterson & Melrose, 2018; 

Funderburgh, 2000, 2002; Shao et al., 2013). KS chains constitute other proteoglycans, that 

mostly play structural roles, namely: thyroglobulin, transferrin, mammallin, SV2 (synaptic 

vescicle 2), fibromodulin, osteoglycin/mimecan, osteoadherin and keratocan (S. Chen & Birk, 

2013; Sommarin et al., 1998). Lumican is involved in the clearing of trypanosome parasites from 

the cattle’s blood by phagocytosis in macrophages and monocytes, therefore, causing a reduction 

in the observed parasitaemia (Wu et al., 2007). 
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Solute carrier family 19 member 3 (SLC19A3) gene encodes a thiamine transporter 1 or 2 

(THTR1/2) protein on the small intestinal epithelial cell membrane that moves vitamin B1 

(Thiamine) obtained from the diet from the intestinal lumen into epithelia (Jungtrakoon et al., 

2019; Vernau et al., 2013). Thiamine is a cofactor of oxoglutarate dehydrogenase and pyruvate 

dehydrogenase that are essential enzymes in the tricarboxylic acid cycle for the generation of 

adenosine triphosphate (Frank et al., 2007). Apart from its metabolic functions, thiamine plays 

other roles such as the activation of immune system, tissue maintenance processes, cell signaling, 

and dynamics of the cell membrane and neuron communication (Hosomi & Kunisawa, 2017; 

Manzetti et al., 2014). Vitamin B1 helps mount an immune response that curbs the viability of 

mycobacterium tuberculosis, a bacterial pathogen, in macrophages and neutrophils during 

endocytosis and this might also be the case with the infecting trypanosomes in cattle (de Andrade 

et al., 2014; Weiss & Schaible, 2015). Thiamine has an effect on inflammation in the brain, 

immunoglobulin expression and immune cells activity (Ottinger et al., 2012; Zimitat & Nixon, 

2001). In tissue maintenance, thiamine is involved in cerebral metabolism and its deficiency in 

humans is associated with various disease conditions such as cardiomyopathy and beriberi 

(Thornalley, 2005). Vitamin B1 has cytotoxic effect on the trypanosome cells causing death and 

subsequently reducing parasitemia in trypanotolerant Sheko (Bâ, 2008). 

Phosphodiesterase 4B protein is encoded by PDE4B gene and it is essential for mucin up 

regulation through an ERK dependent fashion by affecting the cAMP pathway and it has been 

clinically associated with schizophrenia which is a disorder of the nervous system (Gurney,  

2019; McGirr et al., 2016). This protein has been shown to stimulate natural immunity that is 

important during infections like those of the trypanosome protozoan parasites (Komatsu et al., 

2013; Koo et al., 2011; Reyes-Irisarri et al., 2007). This protein plays its role by modulating the 

functions of immune cells like the T helper cells that are important in mounting an immune 

response during infections (Blackman et al., 2011; Jin & Conti, 2002). Apart from playing a role 

on natural immunity, this gene also helps in maintaining the integrity of epithelial cell walls 

found on blood vessels and this may help reduce the spread of trypanosomes to other parts of the 

body (Blackman et al., 2011). 
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CADPS2 is a Calcium Dependent Secretion Activator 2 gene that encodes a protein that is 

involved in the development of the cerebellar where it is a regulator of neurotrophin release and  

it has been associated with autism (Carter, 2019; Sadakata et al., 2007) This gene plays an 

important role during synaptic transmission on the neurons and mutations that are found in it 

contribute to an increase in susceptibility to autism (Matsuzaki et al., 2012). This gene has been 

shown to play a role in the immune system during an infection in the host eukaryotic organism 

(Chen & Birk, 2013; Shoja-Taheri et al., 2019; Wang et al., 2014). This gene affect the 

development of immune cells via the cytoskeleton pathway and this affects the immune 

responses during infections by viruses, protozoa and other pathogens (Chen & Birk, 2013). 

AGBL3 is an (ATP/GTP binding protein-like 3) Carboxypeptidase 3 gene that encodes a protein 

that is involved in the deglutamylation of proteins such as tubulins and it has been associated 

with cataracts and internal hemorrhoids alongside immune disorders (Retamozo et al., 2018). 

This gene plays an important role in the development and normal functioning of the nervous 

system where it is implicated in the development of dementia condition in some humans 

(Retamozo et al., 2018). By belonging to the class of metallocarboxypeptidases, this protein is 

important in the normal function of the immune system especially by maintaining the normal 

functioning of phagocytic cells such as macrophages (Garcia-Pardo et al., 2017; Sanglas et al., 

2009; Turner et al., 2002). AGBL3 is a metallocarboxypeptidase that plays a role at the point of 

entry of pathogens such as helminths in the host organisms. A mutation in AGBL3 may lead to 

modifications in the structure and functioning of the tubulins found in the cytoskeleton and hence 

impairs immune activity. Deglutamylation helps to reduce neurodegeneration in the nervous 

system and it is carried out by the carboxypeptidases (Burke et al., 2018; Rogowski et al., 2010). 

PTPRB is a Protein Tyrosine Phosphatase Receptor Type B gene that encodes a protein that is 

involved in the regulation of TIE2 important in the development of endothelial cells in blood 

vessels and it has been implicated in the enhancement of the development of a number of cancers 

(Hale et al., 2017; Kim et al., 2019; Soady et al., 2017; Weng et al., 2019). The TIE pathway has 

been used as a therapeutic target in the treatment of cardiovascular disorders in human beings 

(Saharinen et al., 2017). The TIE pathway interacts with the Angiopoietin 2 pathway to 

contribute towards the mounting of an effective immune response against cancer and   infections 
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in mammals (Fujimoto et al., 2020; Gál et al., 2020; Hendriks & Pulido, 2013; Ruddraraju et al., 

2020). 

PPM1H is a Protein Phosphatase, Mg2+/Mn2+ Dependent 1H gene that codes for a protein that 

has been associated with multiple endocrine neoplasia (Berndsen et al., 2019; Shreeram & 

Bulavin, 2008; Taylor & Mossman, 2015). This gene also plays a significant role in cilia 

formation, it controls Rab protein dephosphorylation and it plays a significant role in cancer 

development (J. Fu et al., 2020; H. Zhu et al., 2016). Protein dephosphorylation negatively 

regulates the Leucine-rich repeat kinase 2 (LRRK2) pathway in immune cells and this pathway is 

associated with inflammatory ailments and it may modulate inflammation during infections 

(Dzamko & Halliday, 2012; Herbst & Gutierrez, 2019). 

ATP5S also known as DMAC2L is a gene that encodes a subunit of mitochondrial ATP synthase 

subunit s that is important in the energy transduction activity of the ATP synthase complex 

(Brüggemann et al., 2017; Lee et al., 2011). ATP5S has been associated with alternative splicing 

in cells therefore it modulates the process of protein formation and it is important in the 

development of the cardiac system (Grahn et al., 2020; Monlong et al., 2014). This gene is also 

important in the regulation of the macrophage energy status that controls the levels of cholesterol 

in the body (Karunakaran et al., 2015). ATP5S is important the generation of energy in immune 

cells in the form of ATP that is a signaling molecule necessary for the inflammatory process and 

T cell immunity during infections (Bours et al., 2006). ATP promotes immune responses and it 

has been used for therapeutic purposes in various cancers (Silva-Vilches et al., 2018). 

PCDH9 is a Protocadherin 9 gene that encodes a protein that is potentially involved in the 

suppression of tumors and it is a cell migration inhibitor of some cancerous cells (Wang et al., 

2012, 2014; Xiao et al., 2018). This protein is involved in cell-cell adhesion that is calcium 

dependent and it affects immune cells contributing to the development of neurological disorders 

such Parkinson disease (Aue et al., 2018; Kedmi et al., 2011; Yu et al., 2019). PCDH9 also 

affects the miRNA biogenesis pathway that is important in the normal functioning of the immune 

system in animals by decreasing infection severity, controlling the progression of infections and 

they are it is  (Angerer et al., 2018; Boueiz et al., 2017; H. Liu et al., 2018). 
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ECHDC3 is an Enoyl-CoA Hydratase Domain Containing 3 gene encoding a protein that plays a 

role in fatty acid metabolism and it has been associated with various cardiovascular diseases, 

Alzeimer’s disease and diabetes (Duarte et al., 2016; Patel et al., 2021; Sharma et al., 2019; Yin 

et al., 2019). Sensitivity to insulin and the biosynthesis of fatty acids in immune cells is 

important during the activation of immune components by mediating inflammation and receptor 

activation during an infection in animals (Howie et al., 2018; G. Kumar et al., 2019). The 

biosynthesis of lipids is implicated in multiple cancers and it is essential in controlling the 

progression of a number of infections via the CD4+ cells (J. Fu et al., 2020). 

CBFA2T2 is also known as CBFA2/RUNX1 and it is a Partner Transcriptional Co-Repressor 2 

gene that is involved in transcription regulation blocking differentiation of hematopoietic cells 

and it promotes leukemogenesis (Chen et al., 2017; Kumar et al., 2008). Additionally, this gene 

regulates the pluripotency of stem cells (Burton & Torres-Padilla, 2016; Guastadisegni et al., 

2010; Tu et al., 2016). Hematopoiesis blocking may result in conditions such as neutropenia that 

reduces the population of immune cells that are required for fighting infections that the animal is 

exposed to which also have a negative impact on the process (Man et al., 2021; Meng et al., 

2020; Pascutti et al., 2016).This gene has also been identified as a biomarker for severe asthma  

in humans (Bigler et al., 2017). 

SNTB1 is a Syntrophin Beta 1 gene that encodes a protein that is involved in the autophagy 

process and it is implicated in myopia and deafness (Liu et al., 2021; van Duyvenvoorde et al., 

2014; Ye et al., 2019). This gene has also been associated with lung cancer in humans and 

diseases of the cardiac system (Galvan et al., 2013; Joehanes et al., 2013; Zhang et al., 2017). 

This gene plays an important role in innate immunity of animals through the macrophages that 

are essential for phagocytosis (Eslamloo et al., 2017). 

JHY is a Junctional Cadherin Complex Regulator gene that regulates the differentiation of 

ependymal cells and it is involved in ciliogenesis (Appelbe et al., 2013; Muniz-Talavera & 

Schmidt, 2017). Cadherin complexes are important in maintaining the integrity of cell-cell 

junctions that are found on endothelial cells that line the blood vessels that the trypanosomes can 

penetrate to colonize other tissues during infection (Bhat et al., 2019; Brückner & Janshoff,  

2018; Dorland & Huveneers, 2017; Van den Bossche et al., 2012). The tight junctions’  integrity 
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is altered by the onset of cancer and as a result of inflammatory responses that develop during 

infections to allow immune cells to permeate the blood vessel wall (Daulagala et al., 2019; 

Gloushankova et al., 2017; Mehta et al., 2015; Reglero-Real et al., 2016). 

NVL is a Nuclear (Valosin-containing-protein) VCP Like gene also called CDC48 that codes for 

a protein that catalyzes the release of specific assembly factors in the ribosome through the 

ATPase activity. This gene has been implicated in nervous disorders such as Schizophrenia 

(Fujiwara et al., 2011; Lingaraju et al., 2019; Sehrawat et al., 2021; M. Wang et al., 2015) . NVL 

plays a role in the immunity of cattle towards Mycobacterium bovis and it is important in 

protozoan infections as well by contributing to the inflammatory process that is initiated (Xu et 

al., 2019). Valosin-containing protein is essential for the degradation of proteins in cells apart 

from causing cell death (Jia et al., 2018; Yeo et al., 2016; Yeo & Yu, 2016; W. Zhu et al., 2018). 

ASTN1 is an astrotactin 1 gene that acts as a receptor on nerve cells regulating glial-guided 

cellular movements through interactions between astrotactin 1 and neuronal cadherin (Chang, 

2017; Horn et al., 2018; Lara et al., 2018). ASTN1 helps repair neurons and it might be 

implicated in the expression of symptoms when the nervous system is affected during a 

trypanosomiasis infection, either on the adult animal or foetus (Lionel et al., 2014; Ni et al., 

2016; Yi et al., 2016). ASTN2 controls ASTN1 expression on cell membranes (P. M. Wilson et 

al., 2010). These two proteins belong to the membrane attack complex or perforin (MACPF) 

family that are mostly involved in performing cellular lysis (Adams, 2002; Kondos et al., 2010; 

Ni et al., 2016). In humans, trypanosomes invade cerebral spinal fluid causing nervous system 

complications while in animals they also live in extravascular tissues including the brain of wild 

animals (Anderson et al., 2011; Steverding, 2008; Stijlemans et al., 2018). In cattle, ASTN1 

protein affects the activation of B cells in the immune system and consequently antibody 

production that is required in mounting an immune response against invading trypanosomes 

(Chen et al., 2020). 

SSC5D is a Scavenger Receptor Cysteine Rich Family Member with 5 Domains gene that 

encodes a protein that is involved in innate immunity being found in macrophages and T- 

lymphocytes  (Bessa  Pereira  et  al.,  2016;  Gonçalves  et  al.,  2009).  This  gene  also  plays   a 
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significant role in immunity at the interface of innate and adaptive immunity (Carvalho-Santos et 

al., 2011; Lozano & Martínez-Florensa, 2017; Oliveira & Carmo, 2017). 

RBFOX3 is a Ribonucleic acid (RNA) binding Fox (forkhead box)-3 homolog 1 gene that is 

important in red blood cell formation where it modulates alternative splicing in tissues (Conboy, 

2017; Kucherenko & Shcherbata, 2018; G. H. Lee & D’Arcangelo, 2016; Lee et al., 2016; 

Pedrotti et al., 2015). RBFOX1 is also involved in immune reactions during bacterial infections 

and blood vessel growth and development (Cieply & Carstens, 2015; Gallego-Paez et al., 2017; 

Gehman et al., 2012; Nazario-Toole et al., 2018; Pistoni et al., 2013). 

DBNL is a Drebrin Like gene that encodes a protein that is involved in endocytosis in synapses 

in the nervous system and also in immunity through their action on the cytoskeleton (Herrera et 

al., 2021; Inoue et al., 2019). DBNL has been shown to play a significant role in cancer 

progression and it is key during cortical development ((Fish et al., 2016; Hakanen et al., 2019; 

Lozano & Martínez-Florensa, 2017). DBNL is involved in apoptosis and in enhancing the 

survival of cancerous cells through the immune system and this may have an impact on the 

immune cells that are required to mount a response against the invading trypanosomes  in 

infected cattle (Hakanen et al., 2019). 

NELL1 is a Neural Epidermal growth factor-like (EGFL) 1 gene that encodes a protein that is 

involved in the regulation of cell growth and differentiation of various tissues such as bones 

(Aghaloo et al., 2007; Fulterer et al., 2018; James et al., 2015; Lai et al., 2020; Li et al., 2019; J. 

Wang et al., 2017; X. Zhang et al., 2010). NELL 1 gene also important in the immune system 

where it interacts with Immuniglobulin G, contributes to the inflammatory process necessary for 

fighting infections and it is implicated in cancers (Caza et al., 2021; Franke et al., 2007; Kundu  

et al., 2018). 

These significant genes in the Sheko cattle breed are associated with the following metabolic 

pathways: 

 
 

hsa00230 Purine metabolism - Homo sapiens (human) (1) 
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https://www.genome.jp/kegg-bin/show_pathway?162097970492803/hsa00230.args 

hsa00512 Mucin type O-glycan biosynthesis - Homo sapiens (human) (1) 

https://www.genome.jp/kegg-bin/show_pathway?162097970492803/hsa00512.args 

hsa00514 Other types of O-glycan biosynthesis - Homo sapiens (human) (1) 

https://www.genome.jp/kegg-bin/show_pathway?162097970492803/hsa00514.args 

hsa03008 Ribosome biogenesis in eukaryotes - Homo sapiens (human) (1) 

https://www.genome.jp/kegg-bin/show_pathway?162097970492803/hsa03008.args 

hsa04024 cAMP signaling pathway - Homo sapiens (human) (1) 

https://www.genome.jp/kegg-bin/show_pathway?162097970492803/hsa04024.args 

hsa04520 Adherens junction - Homo sapiens (human) (1) 

https://www.genome.jp/kegg-bin/show_pathway?162097970492803/hsa04520.args 

hsa04928 Parathyroid hormone synthesis, secretion and action - Homo sapiens (human) (1) 

https://www.genome.jp/kegg-bin/show_pathway?162097970492803/hsa04928.args 

hsa04977 Vitamin digestion and absorption - Homo sapiens (human) (1) 

https://www.genome.jp/kegg-bin/show_pathway?162097970492803/hsa04977.args 

hsa05032 Morphine addiction - Homo sapiens (human) 

https://www.genome.jp/kegg-bin/show_pathway?162097970492803/hsa05032.args 
 
In the N’Dama case-control group, see Table 4.2 and Figure 4.2, SUSD1 is a Sushi Domain 

containing 1 gene that is important in the formation of adhesion and complement proteins that is 

important in the functioning of the complement system that is involved in immunity. This protein 

has been shown to play a role in the diseases of the nervous system such as amyotrophic lateral 

sclerosis and in blood such as chronic myeloid leukemia (Dervishi et al., 2018; Halbach et al., 
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2016). SUSD1 is also associated with neurocognitive disorders (Nilsson et al., 2017). The 

complement system is important in the enhancement of phagocytosis, the production of 

antibodies that are necessary in the fight against infections such as trypanosomes and it is part of 

both natural and acquired immunity (Afshar-Kharghan, 2017; Dunkelberger & Song, 2010; 

Jagatia & Tsolaki, 2021; Merle et al., 2015; Ogundele, 2001; R. Zhang et al., 2019). 

COL19A1 is also called COL9A1L or D6S228E and it is collagen type XIX alpha 1 gene that is 

involved in pericellular matrix or sphincteric smooth muscle organization, skeletal myogenesis in 

developing esophagus while also acting as a cross-bridge between fibrils and other extracellular 

matrix molecules (Calvo et al., 2020; Khaleduzzaman et al., 1997; Su et al., 2017; Sumiyoshi et 

al., 1997). COL19A1 protein is important in neuronal synaptic transmission and it also  

stimulates or inhibits immune components such as monocytes (Calvo et al., 2020; Roumazeilles 

et al., 2018; Su et al., 2010). COL19A1L is found in various tissues such as skeletal and 

epithelial tissues with anti-tumor activity through the protein kinase B route, anti-angiogenic 

characteristics and matrix metallopeptidase 14 expression (Oudart et al., 2017). COL19A1 

regulates the phagocytosis of trypanosomes in the animal’s blood or tissue important in 

trypanosome clearance and reducing parasitemia in the trypanotolerant cattle (Roumazeilles et 

al., 2018). 

DPF3 is a Double PHD Fingers 3 gene that encodes a protein that plays a significant role in the 

immune system and it has been identified as a risk factor for breast cancer (Lin et al., 2019). This 

gene also plays a role in the development of the nervous system and muscle in eukaryotic 

organisms (Lange et al., 2008). DPF3 has been found to play a role in lipid metabolism where it 

is involved in the formation of brown fat ((Shapira et al., 2017)Shapira et al., 2017). Brown fat is 

involved in the generation of energy and the process is modulated by the immune system 

especially in cases of obesity (Brestoff, 2017; Fu et al., 2021; Moon et al., 2020; van den Berg et 

al., 2017; Villarroya et al., 2018; Villarroya et al., 2019). 

These significant genes in the N’Dama cattle breed are associated with the following metabolic 

pathways: 

hsa04974 Protein digestion and absorption pathway 
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https://www.genome.jp/kegg-bin/show_pathway?162028856272613/hsa04974.args 

hsa04714 Thermogenesis pathway 

https://www.genome.jp/kegg-bin/show_pathway?162028856272613/hsa04714.args 

hsa05225 Hepatocellular carcinoma pathway 

https://www.genome.jp/kegg-bin/show_pathway?162028856272613/hsa05225.args 
 

5.2 Genetic variants identified in non trypanotolerant breed 
In the Boran case-control group, see Table 4.3 and Figure 4.3, SUSD1 is a Sushi Domain 

containing 1 gene that is important in the formation of adhesion and complement proteins that is 

important in the functioning of the complement system that is involved in immunity. This protein 

has been shown to play a role in the diseases of the nervous system such as amyotrophic lateral 

sclerosis and in blood such as chronic myeloid leukemia (Halbach et al., 2016; Ellinghaus et al., 

2020; Dervishi et al., 2018). SUSD1 is also associated with neurocognitive disorders (Nilsson et 

al., 2016). The complement system is important in the enhancement of phagocytosis, the 

production of antibodies that are necessary in the fight against infections such as trypanosomes 

and it is part of both natural and acquired immunity (Merle et al., 2015; Dunkelberger et al., 

2010; Jagatia, 2021; Afshar-Kharghan et al., 2017; Zhang et al., 2019; Ogundele, 2001). 

PAG1 is a pregnancy-associated glycoprotein 1 / pregnancy-specific protein B (PSPB)/  

Peptidase A1 domain-containing gene that is an aspartic-type endopeptidase involved in 

proteolysis and protein catabolism (digestion and absorption) (Gaudet et al., 2011; Rao et al., 

1998; Souza et al., 2015). The endopeptidase enzyme is involved in breaking down proteins into 

amino acids and dipeptides for absorption (Dallas, 2012; Kumar et al., 2019; Mamo & Assefa, 

2018). PSPB is important in pregnancy preservation and it is used in pregnancy detection in  

cattle (Giordano et al., 2012; Green et al., 2000; Huang et al., 1999; Northrop et al., 2019; 

Wallace et al., 2015). This protein might be the reason for pregnant animals expressing better 

immunity to infectious diseases than those which are not (Downs et al., 2015). 

NVL is a Nuclear (Valosin-containing-protein) VCP Like gene also called CDC48 that codes for 

a protein that catalyzes the release of specific assembly factors in the ribosome through the 
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ATPase activity. This gene has been implicated in nervous disorders such as Schizophrenia 

(Wang et al., 2015; Lingaraju et al., 2019; Fujiwara et al., 2011; Sehrawat et al., 2021). NVL 

plays a role in the immunity of cattle towards Mycobacterium bovis and it is important in 

protozoan infections as well by contributing to the inflammatory process that is initiated (Jone et 

al., 2011; Xu et al., 2019). Valosin-containing protein is essential for the degradation of proteins 

in cells apart from causing cell death (Yeo et al., 2016; Yeo, 2016 b; Jia et al., 2018; Zhu et al., 

2018). 

WDR11 is a Tryptophan- aspartic acid (WD) repeat containing 11 gene that is also referred to as 

DR11/ HH14/ SRI1/ BRWD2/ WDR15, it is involved in the hedgehog (Hh) pathway for cilia 

formation, control of Zinc finger protein (GLI3) lysis, hormonal release in the endocrine system 

and vesicle binding for the degradation of cytoplasmic materials (Humke et al., 2010; Navarro 

Negredo et al., 2018; Niewiadomski et al., 2014; Taylor & Mossman, 2015). The Hh pathway 

enhances multiplication of antibody producing cells in infection and cancer (Benson, 2004; Chan 

et al., 2006; Grund-Gröschke et al., 2019; Shen et al., 2017; Smelkinson, 2017). During viral 

infections, this protein enhances parasite multiplication whereas its role in trypanosomiasis is yet 

to be described and it’s also involved in cancer development inhibition (Kim et al., 2018;  

Stamou et al., 2015; Taylor & Mossman, 2015; Teng et al., 2015; Wei et al., 2017). 

These significant genes in the Boran cattle breed are associated with the following metabolic 

pathway: 

hsa03008 Ribosome biogenesis pathway 
 
https://www.genome.jp/kegg-bin/show_pathway?162028821787328/hsa03008.args 

 
5.3 Genes identified in hybrid cattle 

In the N’Dama X Boran case-control group, ZZZ3 is a Zinc Finger ZZ-Type Containing 3 gene 

that is involved in the regulation of transcription in the cells and it also binds to chromatin. It has 

also been shown to interact with the ADA Two A Containing (ATAC) complex (Mi et al., 2018; 

Zhang et al., 2019; Arede et al., 2020; Kobow et al., 2013). ZZZ3 also is implicated in some 

cancers and it plays a crucial role in the development of the immune system of animals (Arede et 

al., 2020; Yue et al., 2019; van der Kolk, 2019). The ATAC complex is important in the immune 
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cells that are required for mounting an immune response against the invading trypanosomes 

(Guelman et al., 2009; Lee et al., 2013). 

SEMA3A is a Semaphorin 3A gene that regulates the neuronal growth and distributed in other 

mammalian tissues (Eastwood et al., 2003; Hanchate et al., 2012; Quintremil et al., 2019; Tapia 

et al., 2008; Ufartes et al., 2018). SEMA3A protein has inflammatory activity and it blocks the 

movement of phagocytic cells and stimulate antibody producing immune cells required for 

infection and cancer control (Chapoval, 2018; Chen & Cuang, 2019; Feinstein & Ramkhelawon, 

2017; Lepelletier et al., 2006; Takamatsu et al., 2010; Takamatsu & Kumanogoh, 2012). 

SEMA3A controls infection progression by modulating interaction between the pathogens and 

immune cells (Kumanogoh, 2003; Papic et al., 2018; Sabag et al., 2014; Vadasz & Toubi, 2018). 

ZFYVE28 also referred to as LYST2/ LST2 is a Lateral signaling target protein 2 homolog gene 

that controls epidermal growth factor receptor (EGFR) pathway (Kropp et al., 2017; McFerrin & 

Atchley, 2011; Zambrano et al., 2018). This pathway is important in modulating immune activity 

by maintaining the normal role of Tregs in the pathogenesis of cancer and infectious diseases 

(Abdelhamed et al., 2016; Bauer et al., 2012; Lim et al., 2016; MacDonald & Zaiss, 2017; 

Sasada et al., 2016). This pathway interacts with others like extracellular signal regulated kinase 

(ERK) in immune cells to control the progression of contagious diseases in animals (Kedzierski 

et al., 2017). 

PTPRS also known as PTP-NU3 is a Protein tyrosine phosphatase receptor type S protein gene 

that controls interferon release which is important in viral immunity, it also activates neuronal 

outgrowth in response to heparan sulphate and it regulates the endocrine system (Bunin et al., 

2015; Hendriks & Pulido, 2013; S. Mamo et al., 2012; Senis & Barr, 2018; Stewart et al., 2013). 

PTPRS protein activates immunity by controlling crucial signaling pathways in disease 

conditions like tumors (Davis et al., 2018). It is also implicated in infectious diseases by 

controlling necrobiosis in the host cells (Curtis et al., 2019; Sclip & Südhof, 2020; Stewart et al., 

2017). 

PCSK6 is a Proprotein convertase subtilisin/kexin type 6 protein gene that affects cellular 

secretory  pathway  where it processes proteins  and  transports  peptide precursors  in  the   cells 
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ensuring the normal functioning of the female reproductive system and endocrine system 

(Mekonnen et al., 2019; Mujoomdar et al., 2011; Southey et al., 2009; Y. Wang et al., 2014). 

PCSK6 modulates necrobiosis, a pathway that is important in natural immunity of animals and it 

is sometimes affected by the infecting parasites (Cotzomi-Ortega et al., 2018; Farhan & 

Rabouille, 2011; Sharp & Estes, 2010; Sitia & Rubartelli, 2020; Stanley & Lacy, 2010). Various 

pathogens such as bacteria and viruses interact with this pathway in the host animal with an 

effect on the mounted immune activity (Belov et al., 2007; Mages et al., 2008; Nanbo, 2020). 

These significant genes in the N’Dama X Boran cattle breed are associated with the following 

metabolic pathway: 

hsa04360 The axon guidance pathway. 
 
https://www.genome.jp/kegg-bin/show_pathway?1620890323106138/hsa04360.args 



45  

 
 
 
 
 
 

Chapter 6 
 
6.0 CONCLUSION AND RECOMMENDATIONS 

6.1 Conclusion 
The genes that contain the significant SNPs enhance the immune responses for phagocytosis and 

the production of antibodies that is required for the elimination of the trypanosomes in 

trypanotolerant Sheko and N’Dama cattle to reduce parasitemia. 

In this study, we suggest that in the N’Dama cattle, the SUSD1 gene that is involved in the 

thermogenesis pathway has a mutation that enhances the inflammatory process and other 

immune responses including those that are mediated by lymphocytes that play a role in the 

development of cancer. A mutation in the DPF3 gene that is involved in the hepatocellular 

carcinoma pathway promotes the immune activity against the invading pathogens. This leads to 

the killing of the trypanosomes that are in circulation that are then degraded in cells whose 

COL19A1 gene mutation has helped enhance protein digestion and absorption pathway 

In the Boran cattle, we suggest that this breed of cattle is attempting to use the mutation in the 

NVL gene to enhance the ribosome biogenesis pathway so that it can be able to withstand the 

trypanosomiasis challenge that it is exposed to in its environment. Ribosomes are important in 

forming proteins that are involved in the immune processes during an infection and they may 

independently play a role in pathological process during trypanosome infections 

In the N’DamaXBoran cattle, the mutation in the SEMA3A and PTPRS genes are crucial in 

modulating the functioning of the axon guidance pathway during trypanosomiasis infections. 

This helps to reduce the effect of the infection on the nervous system of these hybrid cattle 

In the Sheko cattle, the ribosome biogenesis, cAMP signaling and vitamin digestion and 

absorption pathways may be playing a crucial role in the expression of the trypanotolerance trait 

although hormonal pathways and nucleic acid degradation pathways are implicated. The key 
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genes have mutated to enhance the killing of the trypanosomes and enhance their degradation in 

the host organism to help reduce parasitemia 

 
 

6.2 Recommendations 
• Expression studies should be performed to determine the role of the identified key genes 

in the trypanotolerance trait mechanism.
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APPENDICES 
 
Appendix 1: The distribution of samples according to the cattle breed and its continent of 
origin (sample size n=1199 from 44 breeds). 

 

 
Continent 

 
Breed 

Sample 

size 
Africa Sheko 20 

Tuli 16 
Senepol 80 
Ankole-Watusi 12 
N'Dama 59 
N'DamaXBoran 83 
Boran 44 

Europe Sussex 11 
Belted Galloway 11 
Marchigiana 13 
Romagnola 36 
Brown Swiss 17 
Chianina 14 
Piedmontese 36 
Dexter 11 
Jersey 17 
Scottish 

Highland 
 
15 

Guernsey 17 
Gelbvieh 15 
Salers 12 
Welsh Black 9 
Pinzgauer 12 

 Norwegian Red 28 
 Montbeliard 12 

South Devon 10 
Blonde 

d'Aquitaine 
 
12 

Belgian Blue 11 
Red Angus 22 
Galloway 11 
Tarentaise 12 
Simmental 162 
Kerry 10 
English 10 
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 Longhorn  
Shorthorn 105 
Red Poll 11 
White Park 10 
Devon 10 
Maine Anjou 11 

South America Corriente 12 
Romosinuano 15 

Asia Gir 32 
Sahiwal 17 

North America Brahman 105 
Australia Murray Gray 11 

 44 breeds N=1199 
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