

GENETIC FLUX IN A GLOBAL COLLECTION OF INVASIVE STREPTOCOCCUS

PNEUMONIAE GENOMES

TERESA MWIKALI MUTUA

I56/88033/2016

Project thesis presented to the University of Nairobi, Center for Biotechnology and Bioinformatics for the award of Master of Science in Bioinformatics

JUNE 2021

DECLARATION

This project is my own work and has not been submitted elsewhere for degree.

TERESA MWIKALI MUTUA

STUDENT REG NO:

I56/88033/2016

STUDENT SIGNATURE:

Teresa

20th June 2021

DATE:

This project has been submitted with my authorization as the University supervisor:

Dr. BENARD W. KULOHOMA

Center for Biotechnology and Bioinformatics (CEBIB), University of Nairobi.

Benard Kybohoua.

SUPERVISOR SIGNATURE:

28th June 2021

DATE:

DEDICATION

I dedicate my work to my son Sebastian for being a great inspiration throughout my project work. He gave me a reason to work extra hard to create, a path which he can emulate. I am happy that one day he will understand that it is the will and effort to make a step that gives the energy to break a glass ceiling. I also dedicate this work to my hubby Mr. Chrispine Oguku for his support and understanding throughout the study process.

I dedicate this work and give special thanks to my parents, the Late Sebastian Mutua and Mrs. Georgina Mutua. My father believed in me and always encouraged me to pursue my dreams and interests. My greatest joy is to make him proud as the angels guard him. My mother set a path for me to follow, through her dedication to her own work and her strength encouraged me every day of my study.

ACKNOWLEDGEMENT

I thank God for the granting me this opportunity to pursue my dreams and His abundant grace and blessings. I thank my family for their support. My gratitude goes to the entire CEBIB fraternity for the support and guidance during my study period. A special gratitude to my supervisor Dr. Benard W. Kulohoma for his mentoring, guidance and assistance during my project work. I thank Mr. Kelvin Muteru for his advice and assistance during my study. I thank my fellow students for their advice and assistance.

TABLE OF CONTENTS

DECLARATIONii
DEDICATION iii
ACKNOWLEDGEMENTiv
TABLE OF CONTENTS
LIST OF TABLESix
LIST OF FIGURESx
LIST OF APPENDICES
LIST OF ABBREVIATIONSxii
ABSTRACT xiii
CHAPTER 11
INTRODUCTION1
1.1 Pneumococcal infections1
1.2 Bacteriology of <i>Streptococcus pneumoniae</i> 4
1.2.1 Classification of the pneumococcus4
1.2.2 Invasive pneumococcal diseases diagnosis4
1.3 Epidemiology of the invasive pneumococcal diseases4
1.3.1 Geographic distribution of the invasive pneumococcal diseases4
1.3.2 The pneumococcal disease burden5
1.4 Aim and Objectives
1.4.1 Aim

1.4.2 Hypothesis	6
1.4.3 Objectives	6
1.5 Justification	7
CHAPTER 2	8
LITERATURE REVIEW	8
2.1 Epidemiology of the pneumococcal diseases	8
2.2 Pathogenicity of the pneumococcus	10
2.3 The pneumococcal disease management	13
2.3.1 The use of antibiotics against <i>Streptococcus pnuemoniae</i>	13
2.3.2 Vaccines used against Streptococcus pneumoniae	15
2.4 Pneumococcal virulence factors and vaccine candidates	
2.5 Pneumococcal genomics and reverse vaccinology	19
2.6 Protein antigens with promising medical intervention ability	20
2.6.1 ABC transporters	20
2.6.2 Autolysin	21
2.6.3 Bacteriocin	21
2.6.4 CAAX protease	22
2.6.5 Transcriptional regulator	23
2.6.6 Competence stimulating peptide	23
2.6.7 Regulatory proteins	25
2.6.8 Response regulator	25

	2.6.9 Foldase protein PrsA precursor	26
	2.6.10 Heat shock protein	26
	2.6.11 Histidine kinase	26
	2.6.12 NADH oxidase	27
	2.6.13 Enolase	28
	2.6.14 Sialidase A	29
	2.6.15 Pneumolysin	29
	2.6.16 Serine protease	30
	2.6.17 Pyruvate oxidase	30
	2.6.18 Sortase	31
	2.6.19 Serine/ Threonine kinase protein	31
	2.6.20 Iron-compound ABC transporter	32
	2.6.21 Peptide pheromone	32
	2.6.22 Pneumococcal histidine triad (D and E)	33
	2.6.23 Pneumococcal surface protein A	33
CH	IAPTER 3	35
MA	ATERIALS AND METHODS	35
3	3.1 Data retrieval and preprocessing	35
3	3.2 Data analysis	38
	3.2.1 Annotation using a reference genome	40
	3.2.2 Gain Loss Mapping Engine (GLOOME) analysis	43

3.3 Visualization of the GLOOME results	44
CHAPTER 4	45
RESULTS	45
4.1 Gene gain and loss events along Streptococcus pneumoniae genomes	45
4.2 Probability of Streptococcus pneumoniae gene gain and loss	46
4.2.1 Streptococcus pneumoniae virulence factors	48
4.2.2 Comparison of genetic flux within data subsets	50
CHAPTER 5	54
DISCUSSION	54
CHAPTER 6	56
CONCLUSION AND RECOMMENDATIONS	56
REFERENCES	57
APPENDICES	74
Appendix 1: Prioritized antigens during Streptococcus pneumoniae research	74
Appendix 2: Scripts used	78
Appendix 3: Gain Loss Mapping Engine (GLOOME)	
Appendix 4: Meningitis strains metadata	
Appendix 5: Bacteremia strains metadata	
Appendix 6: Meningitis ortholog files part	133
Appendix 7: Bacteremia ortholog files part	139

LIST OF TABLES

Table 1: Occurrence of pneumococcal diseases from 1995 to 2015 as reported by
the Center for Disease Control and Prevention2
Table 2: Molecular mechanisms responsible for most observed cases of pneumococcal
antibiotic resistance14
Table 3: Pneumococcal vaccine approval dates, serotypes, and general effect on
pneumococcal disease16
Table 4: PPSV23 and PCV13 vaccination recommendations for children and adults
aged between 5 to 64 years of age with medical conditions17
Table 5: PCV13 vaccination catch-up dose recommendations for healthy children
under 5 years of age
Table 6: OrthoMCL clusters demonstration and their respective genes
Table 7: OrthoMCL clusters and the respective binary representation of absence
or presence of genes41
Table 8: Transposed data with orthoMCL clusters and binary form of gene presence
or absence42
Table 9: Average probability of gene gain or loss events per site in unique and
shared genes in bacteremia and meningitis strains477
Table 10: Average probability of gene gain or loss events per site in 62 strains sets of meningitis
and bacteremia genomes

LIST OF FIGURES

Figure 1: Worldwide distribution of children < 5 years old pneumococcal deaths
per 100,000 children population9
Figure 2: Streptococcus pneumoniae colonization10
Figure 3: The pneumococcus transmission from nasopharynx through blood to
brain, by crossing the blood brain barrier (BBB)12
Figure 4: Competence stimulating peptide (CSP)24
Figure 5: National Center for Biotechnology Information (NCBI) assembly
database page
Figure 6: Gene ID, product names and their respective protein sequences
Figure 7: All vs All BLAST
Figure 8: Binary FASTA arrangement demonstration43
Figure 9: Colour-coded gene gain demonstration data produced from GLOOME.
Figure 10: Colour-coded gene loss demonstration data produced from GLOOME46
Figure 11: Important virrulence factors and their probability of gene gain or loss
in the meningitis and bacteremia subsets49
Figure 12: Cumulative expected number of events per site
Figure 13: Expected value of genetic flux events box plot

LIST OF APPENDICES

Appendix 1: Prioritized antigens during <i>Streptococcus pneumoniae</i> research	.76
Appendix 2: Scripts used	.80
Appendix 3: Gain Loss Mapping Engine (GLOOME)	90
Appendix 4: Meningitis strains metadata	97
Appendix 5: Bacteremia strains metadata	105
Appendix 6: Meningitis ortholog files part	135
Appendix 7: Bacteremia ortholog files part	141

LIST OF ABBREVIATIONS

CSF:	Cerebrospinal Fluid	
NCBI:	National Centre for Biotechnology Information	
MCL Algorithm:	Markov Cluster Algorithm	
CEBIB:	Centre for Biotechnology and Bioinformatics	
IPD:	Invasive Pneumococcal Disease (s)	
PCV7:	7-valent pneumococcal conjugate vaccine	
PCV13:	13-valent pneumococcal conjugate vaccine	
PPSV23:	23-valent pneumococcal polysaccharide vaccine	
HIV:	Human Immunodeficiency Virus	
CDC:	Centre for Disease Control and Prevention	
AT:	Anti-Toxins	
EMBL:	European Molecular Biotechnology Laboratory	
BLAST:	Basic Local Alignment Search Tool	
WGS:	Whole Genome Shotgun	
GLOOME:	Gain Loss Mapping Engine	
BMX:	Bacterial Makeup eXplorer	
FDA:	Food and Drug Administration	
PCR:	Polymerase Chain Reaction	
Ply:	Pneumolysin	
AIDS:	Acquired Immunodeficiency Syndrome	
CSP:	Competence Stimulating Peptide	
HSP:	Heat Shock Protein	

ABSTRACT

Streptococcus pneumoniae, also known as the pneumococcus, is a major cause of lifethreatening bloodstream infections, and may cross the blood-brain barrier and cause meningitis. Invasive pneumococcal disease (IPD) affects all age groups, but the populations highest at risk of infection are children, the elderly, and individuals with compromised immunity. Despite the implementation of childhood immunization programs and effective antimicrobial agents, child mortality from pneumococcal meningitis still imposes a huge disease burden, even in developed countries. This study aimed to understand the differences in patterns of Streptococcus pneumoniae genome evolution through gene loss and gain events, and their effect on the propensity to cause meningitis compared to bacteremia. Streptococcus pneumoniae isolate genomes of strains retrieved from human cerebrospinal fluid (CSF) were compared to those retrieved from human peripheral blood. The two datasets were first each analyzed separately, followed by comparisons across the two subsets. Briefly, the sequences in each data subset were first broadly compared using an All vs All BLAST comparison. The BLAST results were then more accurately clustered into orthologous groups using a hidden Markov chain model algorithm called OrthoMCL. The resultant orthologous map generated was then annotated and processed using Bacterial Makeup eXplorer (BMX) to generate annotated phyletic patterns highlighting gene presence and absence. The phyletic patterns were further analyzed using the Gene Loss Mapping Engine (GLOOME) to determine the probability of genes acquisition or loss along the length of each genome in the dataset under study. The results were then analyzed to make inference of the general direction of evolution, which is gene gain or loss events, which are associated with propensity to cause meningitis or not; when comparing the meningitis and bacteremia associated data subsets. Among the known virulence proteins, putative bacteriocin transporter C39 protease domain BlpA2 and pneumococcal histidine triad protein D (bvh-11-2) showed more gene loss events in the

meningitis set. The immunity protein PncB, pncF, immunity protein PncK and bacteriocin BlpO displayed more gene loss events in the bacteremia set. More gene loss events were observed in both bacteremia and meningitis sets for putative immunity protein PncM and putative membrane protein BlpL. Also, more gene gain in both sets was observed for putative uncharacterized protein PncC. There was more gene gain in bacteremia set for cell surface choline binding protein PcpA. The overall findings suggests that meningitis genomes were more conserved compared to those generated from bacteremia isolates. They highlight mechanisms that determine differences in invasive ability during infection since gene loss and acquisition primarily contribute to how bacteria genetically adapt to novel environments and diverge to form separate, evolutionarily distinct species and strains. Genetic flux can radically and rapidly increase fitness or alter some aspects of lifestyle, such as multidrug nonsusceptibility.

CHAPTER 1

INTRODUCTION

1.1 Pneumococcal infections

Pneumococcal invasive disease (IPD) results from *Streptococcus pneumoniae* invasion of a host normally sterile sites, which include lungs, blood, heart, inner ear, and brain (Li et al., 2019). The population most at risk of the IPD are the children under the age of 5 years, the elderly and immunocompromised individuals (Brooks & Mias, 2018). The immunity of children is not well developed, exposing them to the risk of getting infected. Young children also have a high frequency of pneumococcal colonization due to their nature of interaction at various enclosed institutions like schools and children daycare, hence they are considered as the most likely vectors for pneumococcal strains horizontal dissemination in the community (Xu, Almudervar, Casey, & Pichichero, 2013). Immunity of the elderly (>65 years) is waning over time, hence predisposing them to the infection (Berical et al., 2016). Immunocompromised individuals include people living with HIV/AIDS, functional or anatomical asplenia, genetic immune deficiencies and people with cancer among other chronic conditions. In the year 2015 the global prevalence and case fatality rate for IPD was 36.4/100,000 and 0.68/100,000 in children under 5 years, and 107.5/100000 and 19.89 in adults aged 50 years and above, respectively (Brooks & Mias, 2018) (Table 1).

Table 1: Occurrence of pneumococcal diseases from 1997 to 2015 as reported by the

Center for Disease Control and Prevention. This table shows the morbidity and mortality rates from pneumococcal diseases among different age cohorts. Table reproduced from (Brooks & Mias, 2018).

Year	1997		2007		2012		2014		2015	
Age	Case	Death	Case	Death	Case	Death	Case	Death	Case	Death
	rate	rate	rate	rate	rate	rate	rate	rate	rate	rate
<1	142.9	4.02	40.51	0.9	15.7	0.24	15.9	0.48	18.4	0.24
1	178.7	0.9	32.39	0.23	13.6	0.24	10.3	0	12.9	0.24
2-4	31	0.15	13.03	0.08	5.9	0	6.3	0.08	5.1	0.16
5-17	4.8	0.14	2.19	0.14	1.9	0.14	1.4	0.05	1.3	0
18-347	9.3	0.52	4.19	0.22	2.8	0.1	2.7	0.18	2.5	0.08
35-49	18.9	1.65	11.89	0.98	7.5	0.6	6.6	0.7	6.7	0.5
50-64	23.5	2.72	20.59	2.33	15.9	1.53	15.1	1.64	15	1.53
65-74	61.7	11.02	39.26	6.37	29.6	4.24	19.1	2.41	18.2	2.3
75-84							28.2	3.46	29	4.5
≥85							42.6	8.01	45.3	11.56

Invasive pneumococcal diseases can be prevented through hygiene, healthy diet and vaccination against the pneumococcus. Hygiene involves regular hand washing, body

cleanliness, and proper food and drinks handling as defined by the Food and Drug Administration (FDA) (The FDA Food Safety Modernization Act, 2011). Healthy diet is achieved through proper preparation and storage of food to ensure maximum preservation of the nutrients and prevention of food contaminants to help in boosting immunity (Magni et al., 2017). Antibiotics can be used to prevent pneumococcal infections through reduction of bacterial load by inhibiting growth of, or killing the bacteria (Bistrović et al., 2018). Penicillin was initially the preferred antibiotic against Streptococcus pneumoniae, discovered by Alexander Fleming in 1928, and paving way for development of other antibiotics (Berical et al., 2016). Pneumococci develop resistance to antibiotics with continued use and transmit the resistant genes with their progeny, creating a need for the development of novel antibiotics (van der Poll & Opal, 2009). Vaccination can also be used for prevention of pneumococcal diseases. There is a regimen for pneumococcal vaccines given to all children under 5 years incorporated in childhood immunization schedules. The seven-valent pneumococcal conjugate vaccine (PCV7) is among the vaccines developed and approved for children in the year 2000, with a marked improvement to disease depletion, showing 64% decrease in < 2 years old children and 54% decrease in > 65 years old adults by 2005 (Berical et al., 2016). The thirteen-valent pneumococcal conjugate vaccine (PCV13) was also approved in the year 2010 for use in children as young as 6 weeks. The continued vaccine evolution and development, led to an increase in occurrence of IPD by nonvaccine serotypes, which prompted for more readjustments and specifications in the childhood administration strategies of the vaccines (Gerdes, 2013; Plumptre et al., 2013).

1.2 Bacteriology of Streptococcus pneumoniae

1.2.1 Classification of the pneumococcus

Streptococcus pneumoniae is a gram-positive, facultative anaerobic bacteria and it's common for its highly invasiveness nature (Tomos, n.d.). This bacterium is an alpha-hemolytic (α -hemolytic) pathogen when under aerobic conditions and beta-hemolytic (β -hemolytic) when under anaerobic conditions (Hajaj et al., 2012).

1.2.2 Invasive pneumococcal diseases diagnosis

In addition to clinical signs and symptoms, a Gram-positive stain and laboratory culture of a sample collected from the either peripheral blood, CSF, nasopharynx or middle ear is used to diagnose invasive pneumococcal diseases. Polymerase chain reaction (PCR) is among the most significant rapid methods to perform a molecular-based detection and differentiation of *Streptococcus pneumoniae*. However, PCR may be susceptible to contamination and inhibitors, which could lead to misdiagnosis (Yamamoto, 2002).

1.3 Epidemiology of the invasive pneumococcal diseases

1.3.1 Geographic distribution of the invasive pneumococcal diseases

IPD cover a wide geographical region affecting both developed and developing countries with Africa having the highest incidences (O'Brien et al., 2009). The incidence of IPD in Asia and Latin America is reported to be higher compared to North America and Europe. Children are the main carriers of *Streptococcus pneumonia* bacteria, especially in developing countries and among some indigenous societies of the developed countries (World Health Organization, 2019). The incidence of IPD and age distribution of cases among children may vary in different countries depending on the socio-economic status. More specifically, the incidence of

meningitis correlate with child mortality rate and varies geographically (O'Brien et al., 2009). Geographical region is among the factors associated with the prevalence of the known > 90 *Streptococcus pneumonia* serotypes, with less serotypes being associated with IPD morbidity over time, due to effective vaccines intervention (van der Poll & Opal, 2009; World Health Organization, 2019).

1.3.2 The pneumococcal disease burden

Globally, the prevalence of pneumococcal diseases is approximately 14 million cases annually (Benard Kulohoma, 2012; O'Brien et al., 2009) and approximately 300, 000 deaths each year in 0-59 months old children(Wahl et al., 2018). Despite the development of better interventions, that includes antibiotics and vaccines to prevent and manage IPD, there is still continuous need for novel IPD mitigating strategies. This is because of the antibiotic efficacy being challenged by increased antibiotics resistance (Brooks & Mias, 2018), and the bacteria are also able to escape the vaccine (Brueggemann et al., 2013).

1.4 Aim and Objectives

1.4.1 Aim

This study aimed to highlight differences in patterns of *Streptococcus pneumoniae* genome evolution associated with gene loss and gene gain that leads to the propensity to cause meningitis compared to bacteremia.

1.4.2 Hypothesis

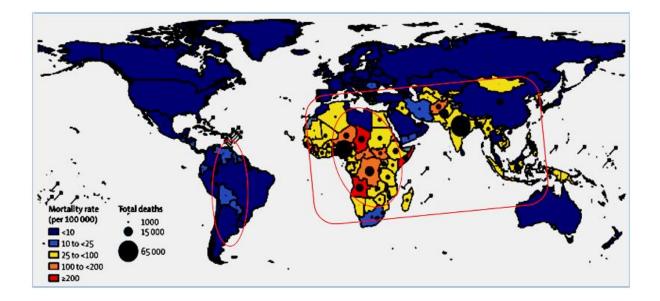
Pneumococci with a propensity to cause meningitis display a different pattern of genetic flux compared to those that cause bacteremia.

1.4.3 Objectives

- 1. To establish the cumulative number of gene gain and loss events along the genomes of pneumococci associated with bacteremia compared to those associated with meningitis
- To establish the probability of gene gain and loss for all genes, core genes and accessory genes in the genomes of pneumococci associated with bacteremia compared to those associated with meningitis

1.5 Justification

Streptococcus pneumoniae are commensal bacteria found on human nasopharynx of healthy individuals (Benard Kulohoma, 2012). However, this bacteria can invade the host's normally sterile compartments (blood, middle ear, lungs and CSF) and lead to invasive pneumococcal diseases that comprise; bacteremia, pneumonia, otitis media and meningitis (Feldman & Anderson, 2014; Ogunniyi et al., 2012; Orihuela et al., 2004). Streptococcus pneumoniae display resistance to multiple antibiotics due its rapid genetic mutation hence prompting continuous research (Marks et al., 2012). Pneumococcal multidrug resistance threatens to reverse gains made in disease management and continuous analyses are required to understand mechanisms involved in development multiple lineages capable of circumventing current interventions (Pan et al., 2018). Although evolutionary biology and the population genetics of the pneumococcus is well understood, it remains unclear how some pneumococci are able to breach the blood-brain-barrier and cause meningitis, while others are not. Meningitis, a severe form of IPD, is associated with high mortality and permanent neurological impairment (Meichanetzidis et al., 2018). There is limited knowledge on the genetics of Streptococcus pneumoniae associated with the propensity to cause meningitis (Li et al., 2019). This study improves knowledge on Streptococcus pneumoniae genetic makeup as well as gene gain and gene loss events in bacteremia and meningitis causing strains, and their ability to facilitate breaching the blood-brain barrier. This study characterizes the gene gain and gene loss in a global collection of invasive Streptococcus pneumoniae isolate genomes. The findings highlight different patterns associated with mechanisms that determine differences in invasiveness during infection since gene loss and acquisition primarily contribute to how bacteria genetically adapt to novel environments and diverge to form separate, evolutionarily distinct species and strains.

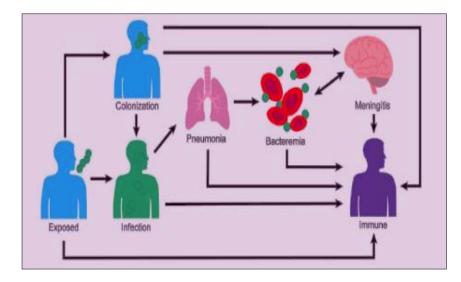

CHAPTER 2

LITERATURE REVIEW

2.1 Epidemiology of the pneumococcal diseases

Streptococcus pneumoniae causes diseases globally mostly affecting children and elderly; with an estimate of almost a million deaths in children of <5 years in 2013 (Feldman & Anderson, 2016). In children, *Streptococcus pneumoniae* asymptomatically colonizes the upper respiratory system preceding the IPD (Adegbola et al., 2014). The presence of the bacteria in nasopharynx without causing any symptoms is called carriage, and it is high in children compared to adults (Berical et al., 2016). The case of morbidity and mortality is even more amongst immunocompromised children, for instance, children with HIV/AIDS have 40-fold increase of the risk of the infections compared to children without HIV/AIDS (Kulohoma et al., 2017).

There is a significant improvement in the reduction of the number of deaths with time, although drug resistance and poor host immunity pose a new challenge (Kim et al., 2016). Worldwide immunization programs have been implemented to prevent deaths in children under 5 years (Cecchini et al., 2018). However, these vaccination programs have led to selection of strains with serotypes absent in vaccines (Berical et al., 2016; Masomian et al., 2020).


Figure 1: Worldwide distribution of children < 5 years old pneumococcal deaths per 100,000 children population. This figure shows the global prevalence of child mortality, among HIV negative young children as a result of invasive pneumococcal diseases in the year 2015. There is a disproportionate disease burden in Africa, Asia, and the Middle East. Reproduced from (Wahl et al., 2018).

The morbidity and mortality due to drug resistance results from bacterial genetic transformation and recombination (Henriques-Normark & Tuomanen, 2013) . There is a marked increase in β -lactam resistance, a result of susceptibility tests conducted in different laboratories (Cecchini et al., 2018). This continued antibiotics non-susceptibility and vaccine escape in the recent pneumococcal eradication measures, has led to research for other IPD management strategies. For example, the utilization of pneumococcal toxin-antitoxin (TA) genes as drug development candidates (Chan & Espinosa, 2016). Similar to bacteriocins, TA systems consist of closely related genes, which convert a toxin to an antitoxin, to give stability to bacteria by making them immune to the toxin. Bacteriocins on the other hand, are encoded

on plasmids and include a bacteriocin gene and an immunity gene, which convert the toxin to a non-toxin (Bayramoglu et al., 2017; Pei & Grishin, 2001).

2.2 Pathogenicity of the pneumococcus

Streptococcus pneumoniae is a commensal colonizing the respiratory mucosa and the colonization is enabled by an extracellular pneumococcal capsule, acting as a protective layer to the bacteria (Shenoy & Orihuela, 2016). The polysaccharide capsule found over the outer surface of *Streptococcus pneumoniae* is very heterogeneous with nearly a hundred different capsular serotypes identified (Tennant et al., 2016). As the most relevant virulence factor of pneumococci, the polysaccharide capsule protects it from phagocytosis (Bogaert et al., 2004). The bacteria are transmitted into the host system through contact with an exposed surface or through coinfection, for example with Influenza virus, which compromises the host immune system (Mücke et al., 2020).



Figure 2: *Streptococcus pneumoniae* colonization and infection routes. The common pathways to IPD in the human body after exposure.

10

Non-invasive bacteria colonize the nasopharynx and the lower respiratory system after exposure to the bacteria. Bacteria invade the host system infecting the blood, ears, sinuses, joints and peritoneum. Further, the bacteria cross the blood-brain-barrier causing meningitis. Individuals with strong immunity can easily resist the infection. Reproduced from (Zivich et al., 2018).

Pneumococci produce harmful antigens, which facilitate its pathogenesis (Brooks & Mias, 2018). These antigens include: autolysin and pneumolysin (Ply) among others (Popowicz et al., 2017). Pneumolysin is not associated with colonization of the pneumococcus. Autolysin activates the release of pneumolysin while the pneumolysin leads to cell lysis of the host cells as well as induction of complement pathway activation (Popowicz et al., 2017). In the bloodstream, the bacteria are confronted by the host complement system as a way of host-pathogen clearance (Andre et al., 2017). *Streptococcus pneumoniae* has preferential adherence to different sites of the brain as well as an immediate activation of the brain local immunity upon bloodstream infection. Pneumococcal pathophysiology leads to blood-brain barrier dysfunction, hence central nervous system invasion through the choroid plexus epithelium causing meningitis (Iovino et al., 2013; Prager et al., 2017).

Figure 3: The pneumococcus transmission from nasopharynx through blood to brain, by crossing the Blood Brain Barrier (BBB). This figure shows the process of the *Streptococcus pneumoniae* colonizing the human respiratory system and invading the human blood and finally crossing the blood-brain-barrier into the cerebrospinal fluid. Reproduced from (Iovino et al., 2016)

2.3 The pneumococcal disease management

2.3.1 The use of antibiotics against Streptococcus pneumoniae

IPD has successfully been managed using antibiotics (El Khoury et al., 2017), although rapid development of antibiotic resistance is challenging disease management (Zivich et al., 2018). There is also the occurrence of multidrug resistance where strains of *Streptococcus pneumoniae* are resistant to two or more antimicrobials (Pan et al., 2018).

In 1917, acquired resistance to optochin was first reported in humans, and 22 years later, cases of human pneumococcal meningitis showed development of treatment acquired resistance to sulfonamides (Kim et al., 2016). In 1967, there was marked resistance to penicillin reported from clinical pneumococci isolates (Muley et al., 2016), and this, together with trimethoprim-sulfamethoxazole and erythromycin resistant pneumococci, spread fast worldwide in 1970s and 1980s (Muley et al., 2016). There was also reported cases of chloramphenicol and tetracycline resistance (Raddaoui et al., 2015). There was relatively lower resistance to fluoroquinolones compare to the other antibiotics (Kim et al., 2016). Multidrug resistant strains were documented in the 21st century among isolates of specific serotypes (Cornick et al., 2014; Ip et al., 2001; Kim et al., 2016). The genetic mutations enabling for drug resistance are shown in Table 2.

Table 2: Molecular mechanisms responsible for most observed cases of pneumococcal antibiotic resistance. Antibiotics used over time to manage pneumococcal diseases and the respective mutations leading to their resistance. Table reproduced from (Kim et al., 2016)

Antibiotic	Mechanism (s)
β -lactams (penicillin and cephalosporins)	Mutations in penicillin-binding (transpeptidase) domains of <i>pbp</i> genes (primarily <i>pbp2x</i> , <i>pbp2b</i> ,
	and <i>pbp1a</i>); mutations in aminoacyl-tRNA ligase
	gene (<i>murM</i>); mutations in other genes, including <i>pdgA</i> , <i>ciaH-ciaR</i> , and <i>stkP</i>
Macrolides	<i>Erm (</i> 235 rRNA methyltransferases) <i>(ermB</i> and rarely <i>ermTR), mef</i> -mediated efflux [<i>mef (</i> A) or
	<i>mef</i> \in , mutations in 23SrRNA genes or L4 or L22
	ribosomal protein genes (<i>rplD</i> and <i>rplV</i> , respectively)
Fluoroquinolones	Mutations in DNA gyrase (primarily <i>gyrA</i>) and/or topoisomerase IV genes (primarily <i>parC</i>), pmrA-
	mediated efflux
Tetracycline	Ribosomal protection proteins, primarily Tet (M) and rarelyTet (O)
Rifampin	Mutations in <i>rpoB</i> encoding the β-subunit of RNA polymerase

Antibiotic	Mechanism (s)
Chloramphenicol	Inactivation of chloramphenicol by <i>cat</i> -encoded
	chloramphenicol acetyltransferase
Trimethoprim-sulfamethoxazole	Mutations in the dihydrofolate reductase gene
	(folA) and dihydropterolate synthetase gene
	(folP)
Ketolides	Mutations in 23S rRNA or L4 or L22 ribosomal
	protein genes (<i>rplD</i> and <i>rplV</i>), <i>ermB</i> with deletion
	or mutation in leader sequence
Oxazolidinones	Mutations in 23S rRNA genes, deletions in L4
	ribosomal protein gene <i>rplD</i>

2.3.2 Vaccines used against Streptococcus pneumoniae

A vaccine is a biological concoction containing live or dead microorganism, an agent of a microbe, or an extract of the microbe, aimed at boosting immunity to a specific infection, by stimulating the immune system to identify the agent as alien, destroy and remember it in case of recurrence (Burton, 2017). This acts as a preventive measure of reducing disease occurrence and severity (Alderson, 2016).

Currently, the US Food and Drug Administration (FDA) approved pneumococcal vaccines include PCV13 and 23-valent pneumococcal polysaccharide vaccine (PPSV23) although PCV7 and PCV10 are in use in other countries. The PPSV23 is recommended after conjugated vaccines immunization series for at-risk children, to provide protection against the

pneumococcal capsular serotypes causing disease (Zivich et al., 2018). The PCV is recommended to healthy children under the age of 2 years.

Table 3: Pneumococcal vaccine approval dates, serotypes, and general effect onpneumococcal disease. The symbols * and † indicate serotypes found uniquely in the PPSV23and PCV13 vaccines respectively. Reproduced from (Daniels et al., 2016).

Vaccine	FDA	Serotypes Contained in Vaccine* [†]	Pneumococcal Disease Effect
	Approval		from Vaccine Serotypes
PPSV23	June 1983	1, 2*, 3, 4, 5, 6B, 7F, 8*, 9N*, 9V, 10A*,	Reduced invasive
		12F*, 14, 15*, 17F*, 18C, 19A, 19F, 20*,	diseases
		22F*, 23F, and 33F*	• No effect on carriage
PCV7	February	4, 6B, 9V, 14, 18C, 19F, and 23F	• Reduced invasive
	2000		diseases
			Reduced carriage
			• Protective herd effective
			• Increase in 19A
			infections
PCV13	February	1, 3, 4, 5, 6A [†] , 6B, 7F, 9V, 14, 18C, 19A,	• Reduced invasive
	2010	and 23F	diseases
			Reduced carriage
			• Increase in 35B
			infections

Table 4: PPSV23 and PCV13 vaccination recommendations for children and adults agedbetween 5 to 64 years of age with medical conditions. CSF, cerebrospinal fluid; HIV, humanimmunodeficiency virus; PPSV23, 23-valent pneumococcal polysaccharide vaccine; PCV13,13-valent pneumococcal conjugate vaccine. Reproduced from (Daniels et al., 2016).

Condition	Number of Doses	
	PPSV23	PCV13
Chronic heart disease, chronic lung disease, diabetes	1	0
mellitus		
Sickle cell disease, functional or anatomical asplenia	2	1 administered before 23-
		valent
CSF leakage, cochlear implant, congenital	1	1 administered before 23-
immunodeficiency, HIV infection, chronic renal failure,	valent	
cancer, transplant recipient		

Table 5: PCV13 vaccination catch-up dose recommendations for healthy children under

5 years of age. PCV7, 7-valent pneumococcal conjugate vaccine; PCV13, 13-valent pneumococcal conjugate vaccine. *Minimum interval between doses depends on age at which the first dose was administered (CDC, 2019; World Health Organization, 2019).

Previous PCV7 Dose	Age	Number of Doses to Complete Primary	Booster
	(months)	Series	Dose
None	<6	3	Yes
None	7-11	2	Yes
None	12-23	2	No
-	24-59	-	Yes
1 or 2	7-11	1	Yes
None or 1 given <12 months	12-23	2	No
1 given >12 months	12-23	1	No
2-3 doses given <12 months	12-23	1	No

2.4 Pneumococcal virulence factors and vaccine candidates

The pneumococcal virulence factors include pneumolysin, autolysin, neuraminidases, enolase, pneumococcal surface proteins A and C, choline-binding proteins, hyaluronate lyase, pneumococcal adhesion and virulence A, the metal-ion-binding proteins PsaA, PiaA and PiuA,

the capsule and the cellwall (Brooks & Mias, 2018; Feldman & Anderson, 2016; M. J. Jedrzejas, 2003; Mitchell & Mitchell, 2010). Each of these factors have specific roles during colonization and infection(Bryant et al., 2016; Kadioglu et al., 2008). There is a different distribution of invasive *Streptococcus pneumoniae* genotypes in every region globally hence different genotypes of the pneumococcal conjugate vaccines are introduced in each region independently after a thorough understanding of the existing genetic structure and the trend of prevalence of the genotypes (Brueggemann et al., 2013). There are several protein antigens, including pneumococcal surface protein A, choline-binding protein A and pneumolysin, which can cause an immune response for protection, hence qualify as vaccine candidates (Abry et al., 2015; Cecchini et al., 2018). The ideal vaccine candidates should be capable of eliciting a T-cell dependent immune response; and should be conserved throughout all genotypes to ensure broad coverage in the population (Abry et al., 2015).

2.5 Pneumococcal genomics and reverse vaccinology

The genetic composition of bacteria varies according to the lifestyle they are adapted to, based on the niche they colonize. The pneumococcus is able to colonize a variety of host ecological environments, and this is displayed by its ability to colonize the nasopharynx as a commensal and to invade different-normally sterile sites, for example the middle-ear, blood, lungs and CSF, causing invasive disease (Obolski et al., 2019; Orihuela et al., 2004).

The genome of *Streptococcus pneumoniae* rapidly evolves to adapt to the host environments within a single infection, referred as selective adaptation (Nelson et al., 2007). *Streptococcus pneumoniae* mutations occur generally leading to different genetic structures, which dictate the course of infection of each specific strain, hence different strains invade different host body compartments (Brooks & Mias, 2018).

Streptococcus pneumoniae rapidly evolve multidrug resistance and have virulence antigens that can be transferred among strains through horizontal gene transfer (Andam & Hanage, 2015a). For example, bacteriocin encoded plasmids are horizontally transferred through physical contact using some mobile genetic material (Andam & Hanage, 2015b). The frequent horizontal transfer of genes leading to high resistance of antibiotics, makes it difficult to generate vaccines and drugs unless these interventions target virulence factors present across all genotypes (Henriques-Normark & Normark, 2014). Genomic information allows vaccine development without using the pathogen but rather an *in silico* approaches (Burton, 2017). This process eases the procedure of vaccine candidate selection and design (Delany et al., 2013).

2.6 Protein antigens with promising medical intervention ability

Bacteriocins proteins have posed a challenge to drug development, due to their pathogenicity potential and ability to enable persistent pathogen survival (Koedel et al., 2002). These bacteria produced proteinaceous toxins survive by killing their co-existent strains as well as their closely related peptides and use their DNA to strengthen their adaptability, hence prolonging pathogen survival (Weiser et al., 2018).

2.6.1 ABC transporters

ABC transporters are a class of trans-membrane exporters and importers of various substrates, consisting of four proteins, two ATPases (ATP-binding proteins) and two permeases (membrane-spanning proteins). Bacterial pathogen virulence is a consequence of the ABC transporters influence to cellular processes which among them is antimicrobial resistance

(Basavanna et al., 2009). Some *Streptococcus pneumoniae* ABC transporters are relevant considering they could cause impact on the pathogenesis of pneumococcal infections, given that they aid in nutrition, growth and virulence of the bacteria (Basavanna et al., 2009). ABC transporters substrate-binding proteins are attached to the outer surface of the pneumococcal membrane, hence are exposed potential vaccine target (Garmory & Titball, 2004).

2.6.2 Autolysin

The autolysins (ALs) responsible for pneumococcal virulence include LytA, LytB and LytC. The major pneumococcal autolysin is an enzyme encoded by the *lytA* gene involved in cell-wall destruction. This enzyme has a transposable arrangement with a C choline binding terminal domain and N terminal N-acetylmuramoyl L-ala- nine amidase domain (Mellroth et al., 2012; Whatmore et al., 1999) The pathogenesis of autolysin can cause virulence directly or indirectly. Directly by damaging the cell-wall and releasing its products, which can be highly inflammatory, promoting pathogenesis (Berry et al., 1989). Indirectly by obtruding cell lysis and the successive release of virulence factors like the pneumolysin, which is transported in an inactive form from the cell (Mark J Jedrzejas, 2001). The activity of LytA partly contribute to the resistance of some antibiotics like penicillin and vancomycin (Mellroth et al., 2012). Both LytA and LytC are involved in the release of the cell wall degradation products and pneumolysin among other cytoplasmic components (Herta et al., 2018; Martner et al., 2008).

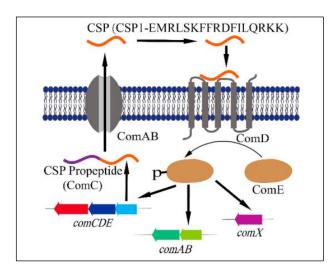
2.6.3 Bacteriocin

Bacteriocins are lantibiotics, heat-stable peptides or heat-labile proteins (Gram-positive bacteria bacteriocin groups) produced by one bacteria strain and acts against the closely related strains, mostly found in gram-positive bacteria. The lantibiotics group contain bacteriocins,

that are modified after translation. The heat-stable peptides group contain small unmodified bacteriocins (Kadioglu et al., 2008). The third group of proteins produced by the Gram positive bacteria is the heat-labile proteins, which are composed of large bacteriocins (Giersing et al., 2016). The *Streptococcus pneumoniae* bacteriocins producing genes are induced by the competence stimulating peptide (CSP) and regulated by the *comDE* genetic locus (Iannelli et al., 2005).

Bacteriocins can be beneficial during colonization of *Streptococcus pneumoniae* by inhibiting the colonization of other competing and closely related bacteria to the same environment. Due to this ability, bacteriocin could be among the contributing factors of *Streptococcus pneumoniae* pathogenesis. Several genomes of the pneumococcus have been availed making it easy to analyze the genetic functions and regulation of the bacteriocins producing genes. Different bacteriocin clusters produce different amounts of toxins hence more analysis of the different strains producing bacteriocins is needed to better understand the pathogenicity of these proteins (Lux et al., 2007). The advantages of bacteriocin production to the pneumococcus is not only for bactericidal purposes but also for introduction of genetic material to the host environment hence promoting horizontal gene transfer. This enables recombination events enhancing the pathogenicity of the bacteria (Steinmoen et al., 2003).

2.6.4 CAAX protease


CAAX protease is an enzyme that is used for protein prenylation in the cell to enhance cell membrane attachment. The CAAX prenyl protease belong to a family of putative intramembrane metalloproteases, together with their homologous prokaryotic bacteriocinprocessing enzymes (Pei & Grishin, 2001). In *Streptococcus pneumoniae*, CAAX proteases are involved in bacteriocin processing (Lux et al., 2007). The activation and processing of bacteriocins and immunity proteins is also implicated by CAAX protease homologs, the *pncP and pncO* encoding proteins (Pei & Grishin, 2001).

2.6.5 Transcriptional regulator

Transcription regulation is the ability to control gene transcription, which is the conversion of DNA to RNA, hence regulating gene expression. The orchestration of gene expression is achieved through the multiplication or depletion of the production of various gene products. Transcription factors are proteins that contain DNA-binding domain (DBD), produced from transcription factor genes to perform the function of orchestrating specific gene activities (Brivanlou & Darnell, 2002). There are various transcriptional regulators identified necessary for *Streptococcus pneumoniae* virulence. There are some putative transcriptional regulators that aid in the survival of the bacteria in different host environments by regulating tissue specific virulence factors (Hava et al., 2003). The site of transcription initiation is the potential site of transcriptional regulator activity, where DNA promoter elements bind RNA polymerase and other proteins to activate transcription. Transcriptional regulators also regulate their own transcription (Hava et al., 2003).

2.6.6 Competence stimulating peptide

The competence of a bacteria is dependent on its ability to take up DNA from its neighboring environment. Competence stimulating peptide (CSP) is a heptadecapeptide molecule used for signaling and is produced and increased as the quorum sensing bacterial cells density increase, hence it is required for *Streptococcus pneumoniae* competency (Steinmoen et al., 2003). CSP is produced by propeptide, ComC (Competence stimulating peptide C), where ComC is the precursor form of the CSP and it is encoded by ComC gene, after which the mature CSP is transported by the ABC transporter (ComAB) to the outside of the cell (Y. Yang & Tal-Gan, 2019). Once the mature CSP attains its threshold, it binds and activates a membrane-localized histidine kinase receptor, ComD. In response, through phosphorylation, ComD activates its response regulator, ComE, which activates transcription of different genes by binding to their promoter regions. These genes include ComX, which encipher a sigma factor that leads to initiation of competence, and Com A B and Com C D E lead to the control of pneumococcal quorum sensing components hence integration of gene expression (Y. Yang & Tal-Gan, 2019). ComA is the membrane-associated peptide permease and ComE is the cognate transcriptional regulator (Merrifield et al., 2016).

Figure 4: Competence stimulating peptide (CSP).

ComC produces CSP which is then transported to the outside of the cell by comAB. Mature CSP activates comD which then activates comE leading to transcription of comX, comAB and comCDE (Y. Yang & Tal-Gan, 2019).

2.6.7 Regulatory proteins

Regulatory proteins are enciphered by a capsular polysaccharide (CPS) gene cluster during the synthesis of the capsule, which is a major *Streptococcus pneumoniae* virulence factor. The biogenesis of the CPS relies on capsular regulatory proteins, CpsB, CpsC and CpsD. CpsB is the major regulatory protein since it's needed to dephosphorylate CpsD. In case where there is absence of CpsB, there occurs a rapid accumulation of phosphorylated CpsD which lead to marked decrease in the production of CPS. During drug development targeting the bacteria, CpsB is a relevant drug target due to its role in the biogenesis of CPS.

Regulatory proteins are the major proteins that are highly associated with *Streptococcus pneumoniae*, which enable adaption and resistance of the bacteria (Mücke et al., 2020). These systems are responsible for the transport of sugars and amino acids, and enable pneumococci to better adapt to their environment. The major function of this regulatory proteins is to detect a better environment that can support pneumococci (Gómez-mejia et al., 2018). Thus, understanding regulatory frameworks will help identify the major characteristics of antibiotics that will help in killing the bacteria during drug development.

2.6.8 Response regulator

In *Streptococcus pneumoniae*, different response regulators (RRs) have different roles in various strains. The cytosolic DNA-binding RR, which functions as a transcriptional regulator, together with histidine kinase, make the two-component signal transduction system that is vital in the survival of *Streptococcus pneumoniae* through the regulation of different cellular processes (Hendriksen et al., 2007). An autophosphorylating histidine kinase transfers the phosphor group to the response regulator, which leads to a change in the response regulator protein hence the initiation of the regulatory function (Hendriksen et al., 2007).

2.6.9 Foldase protein PrsA precursor

Foldases are a type of molecular chaperones that aid in correct, non-covalent, ATP-dependent folding of proteins during peptide structure formation (Mücke et al., 2020). This lead to proper activity of secreted proteins required in bacterial replication in host cells and spread to adjacent cells (Cahoon & Freitag, 2015).

2.6.10 Heat shock protein

Antibiotic resistance and tolerance are the global leaders in the increasing cases of antibioticresistance bacteria. Despite that many genes have been discovered to cause drug resistance and tolerance; heat shock protein has also contributed significantly to the low penicillin susceptibility (Hien et al., 2011). Heat shock protein contributes to this activity by modulating the cell wall and biosynthetic enzymes in the body. More notably, the action of heat shock protein enhances the activity of the bacteria in the body as it highly contributes to a higher level of resistance and severity of streptococcus pneumonia. A significant number of stresses more especially from antibiotics and DNA damage mainly causes the induction of heat shock protein. Pneumococcal heat shock proteins may be exposed to different level of fates as a result of the levels of stresses from the antibiotics (Hien et al., 2011).

2.6.11 Histidine kinase

Based on their domain organization, histidine kinases are divided into two groups, where in one, the N-terminal transmembrane region represents the sensor domain and the C-terminal transmitter domain contains the conserved histidine residue (Iannelli et al., 2005).

Competence transfer of genes across *S. pneumoniae* genome in the presence of CSPs involves the transmembrane histidine kinase comD, which activates the response regulator come (Iannelli et al., 2005). CSP binds onto the transmembrane histidine kinase comD receptor, which prompts autophosphorylation. The process therefore transfers the phosphoryl group into the response regulator comE. ComE, a DNA-binding protein is a part of the com CDE operon. The comE regulator protein interacts with components in a location near to that of the promoter of the com CDE operon, and therefore regulates its expression. Com CDE operon is involved in the transfer and transformation of genes across the *S. pneumoniae* genome.

The ComD receptor possess similar organizational structure to that of histidine kinases with the N-terminal representing the sensor domain. ComD receptor is responsible for the specificity of the competence phenotype in *S. pneumoniae* (Iannelli et al., 2005). The introduction of synthetic CSP1 and CSP2 to induce competence revealed a pattern of specificity that led to the conclusion that the histidine kinase comD receptor is responsible for specificity of the competence pherotype of *S. pneumoniae* (Iannelli et al., 2005). The histidine kinase comD receptor characteristics and functionality could be used to control the specificity of competence transfer of genes across *Streptococci* by abrogating the activation of the comE regulator (G. Yang et al., 2015). This technique that prevents transformation of genes in the genome could therefore be used in the formulation of pneumococcal vaccines for the prevention of pneumococcal disease (Zhu & Lau, 2011a).

2.6.12 NADH oxidase

Streptococcus pneumoniae attacks and resides in tissues with reduced oxygen levels and in some cases in areas with complete absence of oxygen. To survive in the respiratory organs, the pathogen adapts in ways similar to other anaerobic pathogens, by possessing enzymes that

catalyze the oxidation of O2. NADH oxidase is an enzyme purified as a soluble flavoprotein, that detoxifies *S. pneumoniae* environment by catalyzing the reduction of molecular oxygen into water (Auzat et al., 1999). The presence of NADH oxidase in *S. pneumoniae* is essential for the regulation of competence for genetic exchange through metabolisms. The presence of NADH oxidase allows *S. pneumoniae* to re-oxidize part of the glycolytic NADH oxidase with oxygen rather than with pyruvate. This further improves the effectiveness of glucose catabolism. The ability of the enzyme to catalyze its own NADH gives it a metabolic advantage. This process utilizes oxygen as a substrate. Therefore, NADH oxidase enzyme senses the presence of oxygen and transduces the signal into metabolic changes that alter the physiology of the bacteria (Yu et al., 2001).

NADH oxidase in *S. pneumoniae* functions as an adhesin, aiding the adhesion process of the bacteria to the targeted mammalian cells (Muchnik et al., 2013). The bacteria encapsulate during adhesion to the targeted cells. Recombinant NOX (rNOX) interferes with the encapsulating bacteria and prevents its attack on the target cells. Concentrating the target cells with rNOX is a likely possibility of preventing the adhesion of the bacteria to A549 cells. This could also be achieved by neutralizing NOX enzyme residing in the cell-walls with an anti-rNOX anti-serum. Using this knowledge, scientists could derive vaccines and medicine that reduce the habitation of the *S. pneumoniae* in respiratory organs.

2.6.13 Enolase

The enolase surface protein is classified among the anchorless proteins of *S. pneumoniae*. The protein has also been identified as a plasminogen-binding protein, sufficiently enabling pneumococcal colonization of the mucosal cells (Bergmann et al., 2001; Kolberg et al., 2006). Plasminogen binding degrades the extracellular matrix proteins and further enables the

migration of bacteria across the human extracellular matrix. This protein gains the advantage of withstanding the counter activity of polyclonal rabbit anti-enolase antibodies. The procedure revealed that a low amount enolase on the surface of vitro-grown pneumococci.

Under scientific experiment, a low amount of surface-exposed protein of enolase on vitrogrown pneumococci suggested that enolase could not be efficient enough for the development of vaccines against *S. pneumoniae*. However, the process of pneumococcal colonization being multifactorial, might affect the behaviour of enolase proteins as well as other proteins (Kolberg et al., 2006). The small amount existing on the vitro-grown pneumococci is enough to generate pneumococcal pathogens since the protein's efficiency of plasminogen binding is very high (Kolberg et al., 2006).

2.6.14 Sialidase A

Sialidases are one of the virulence factors that enable faster growth. Sialidase is divided into three major types; NanA, NanB and NanC. Pneumococcal sialidases play a major role in colonization by bacteria especially in crossing the blood-brain-barrier to infect the meninges (Xu et al., 2011). Sialidase A has played an essential role in the determination of the best drugs that can be used to eradicate the colonization action of the bacteria by inhibiting the removal of sialic acid (Xiao et al., 2019).

2.6.15 Pneumolysin

Pneumolysin (Ply) is a pore forming toxin known as a major virulent factor across all serotypes of the *S. pneumoniae*, and it facilitates crossing of the blood-brain-barrier (Hirst et al., 2004). Ply lacks the N-terminal which is a signal peptide for export hence its release is depended on autolysis of the Pneumococci which happens mostly during the stationary growth phase of the bacteria (Martner et al., 2008; Price & Camilli, 2009). Autolysins (ALs) aid in the lysis of the cell wall for the release of Ply. The major AL is the N- acetyl-muramoyl-1-alanine amidase (LytA) and the others include LytB and LytC (Martner et al., 2008). During the early stages of infection, when Ply is in low concentrations, it causes some effects on the host cell, including cell apoptosis, activation of the complementary system and modulation of a proinflammatory state to the immune system. In the late stages of infection, when Ply is in high concentrations, it causes lethal effects to host cells which include direct tissue damage (Hirst et al., 2004). Due to its effects, Ply leads to increased bacteria invasion to the brain tissue since the microglia are already actively involved in neuroinflammation as well as their main job which is protection of the central nervous system (CNS) (Hupp et al., 2019). There is already several research projects developing Ply targeting vaccination strategies and antibacterial chemotherapy (Cockeran et al., 2005). The pneumococcal toxin can also be applied in preventive strategies.

2.6.16 Serine protease

Serine protease orthologs are the major factors that contribute to virulence of the pneumococcus. The major serine protease that is involved in *Streptococcus pneumonia* virulence is the high-temperature requirement A (HtrA), which play a role in competence by helping in the survival of host environmental stress. Other serine proteases include the cell-wall associated serine protease A (PrtA) which is involved after intraperitoneal sepsis and subtilase family protein (SFP) (Stoppelaar et al., 2013).

2.6.17 Pyruvate oxidase

Pyruvate oxidase is a protein encoded by the SpxB gene and acts to decarboxylate pyruvate to form acetyl phosphate, hydrogen peroxide (H₂O₂) and carbon dioxide (CO₂) (Spellerberg et al.,

1996). Although the H_2O_2 obtained from pyruvate oxidase is harmful to *Streptococcus pneumoniae* survival when in high concentrations, it also helps the pneumococcus to compete for the host environment against other inhabitants (Bryant et al., 2016). Pneumococcal H_2O_2 is also toxic to eukaryotic host cells and during the stationary growth phase of the pneumococcus, it leads to apoptosis-like cell death (Bryant et al., 2016).

2.6.18 Sortase

Sortase A (srtA) is an enzyme found on the gram-positive bacteria cell surface, which plays a roles in the virulence of *Streptococcus pneumoniae* by anchoring specific protein to the cell wall envelop (Kumari et al., 2020; Paterson & Mitchell, 2006). The attachment of these proteins is done through the processing of sorting signals at the recognition (LPXTG) motif (Gianfaldoni et al., 2009). SrtA is also involved in the colonization and the pathogenesis of the pneumococcus through adhesion to host cells (Gianfaldoni et al., 2009).

2.6.19 Serine/ Threonine kinase protein

Serine/ Threonine kinase is a protein encoded by the StkP gene (Echenique et al., 2004), located on the pneumococcus cell membrane with an N terminal and C terminal. The N terminal kinase domain extends towards the cytoplasm, the C terminal extends towards the extracellular region with four Penicillin-binding protein and Ser/Thr protein kinase Associated (PASTA) domains, and a short transmembrane region exists between the two terminals (Pi et al., 2018). The pneumococcus StkP play an essential role in virulence among other cellular processes. It also aids in the survival of the bacteria as well as its resistance to different stress conditions (Saskova et al., 2007).

2.6.20 Iron-compound ABC transporter

Pathogenic bacteria depend on the acquisition of iron for survival. S. *pneumoniae* possess two genetic loci, pneumococcal iron uptake (piu) and pneumococcal iron acquisition (pia) that encode for homologues of ABC transporters that are necessary for iron uptake for the bacteria (Brown et al., 2002). The lipoprotein components piuA and piaA encoded by the iron ABC transporters piu and pia are required for *Streptococcus pneumoniae* virulence (Jomaa et al., 2005). The iron ABC transporters function differently with pia, the dominant one, being responsible for hydroxamate siderophores transport and piu being responsible for heme transport from hemoglobin (Cheng et al., 2013; Whalan et al., 2005). Presence of single mutations in the piu or pia loci result to the genome's reduced ability to source iron molecules from hemoglobin (Brown et al., 2002). In vitro, the effect of the double mutation is attenuation of virulence (Brown et al., 2002).

2.6.21 Peptide pheromone

Pheromones are quorum sensing compounds that regulate the competence for genetic transformation in bacteria (Manuscript, 2014; Morrison, 1996; Piccoli et al., 1996). *Streptococcus pneumonia* genome has acquired characteristics that make it antibiotic resistance, a major concern in the medical research field. The attainment of the antibiotic resistance characteristics is regulated by a peptide pheromone (BlpC), competence-stimulating peptide (CSP) (Zhu & Lau, 2011b). The peptide binds to a ComD receptor, which then initiates its cognate transcriptor factor ComE to prompt DNA uptake into the S. pneumonia genome. The receptor also controls the genome's virulence factors expressed during infection. The peptide pheromone plays an important role in protecting the pneumococci as well as in propelling the genome through adherence with epithelial cells and colonization of the pharynx (Zhu & Lau, 2011b). DNA transformation into the genome, regulated by the peptide pheromone

is necessary to gain the genome virulence and antibiotic resistance collectively obtained from other species. Competitive inhibitors of CSPs efficiently inhibits horizontal gene transfer from other species as well as attenuates virulence in the genome. The use of peptide analogues prevents the transfer of genes from other species of the genome. Gene transfer across different species of the genome enables the acquisition of antibiotic resistance characteristics (Piccoli et al., 1996; Pinchas & Lacross, 2015; Zhu & Lau, 2011b).

2.6.22 Pneumococcal histidine triad (D and E)

Pneumococcal histidine Triad protein D and E, (PhtD and PhtE) are among Pht proteins necessary for the adherence of pneumococcal strains to the pharyngeal and mucosal surface (Melin et al., 2010). PhtD is highly conserved in *Streptococcus pneumoniae* strains as well as being a virulent factor of the bacteria (Ochs et al., 2016). Both the PhtD and PhtE have been considered over time as vaccine candidates since they produce a protective immunity against sepsis, although PhtE is less effective (Plumptre et al., 2013).

The proteins also promote the colonization of the pharynx region by the pneumococcal strains. The conserved surface proteins are associated with the following functions; defending epithelial cells against complement deposition, consuming zinc ions as well as helping in the adherence of pneumococcal bacteria to epithelial cells in the nasopharynx (Ogunniyi et al., n.d.). The protein PhtE among other polyhistidine proteins produce immunogenic impact when delivered in vaccine formulations by reducing the adhesion of bacteria to the epithelial cells (Ogunniyi et al., n.d.).

2.6.23 Pneumococcal surface protein A

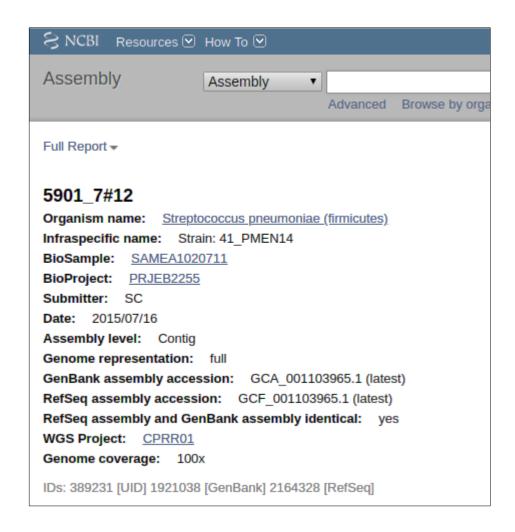
Pneumococcal surface protein A (PspA) is a protein found on the surface of the pneumococcus cell wall and acts as virulence factor for the bacteria (Hollingshead et al., 2006; Leonor et al.,

33

2003; Tu et al., 1999). PspA has three subsets, family 1, family 2, and family 3 according to the DNA and protein sequence variability. Each family subset has one or more clades with each clade representing a PspA antigen (Baril et al., 2006). PspA attaches itself to phosphorylcholine residues on the host cell wall as the N-terminus is exposed to the surface of the bacteria (Pujanauski et al., 2020). Lack of PspA in the pneumococci reduced the bacteria's virulence, since the bacteria became more susceptible to deactivation by complement component C3 deposition (Tu et al., 1999).

Recombination events in pneumococcal strains enable them to escape the host immune response by swapping antigens that elicit an immune response, with those that do not. These properties also enable the acquisition of drug resistance and survival in different environments of the host body compartments. There is still limited understanding on the genetic differences between meningitis and bacteremia associated strains. This study examined the difference in genetic patterns of gene acquisition and loss that contribute to the propensity to cause meningitis compared to bacteremia.

CHAPTER 3


MATERIALS AND METHODS

3.1 Data retrieval and preprocessing

The data was obtained from the National Center for Biotechnology Information (NCBI) GenBank database (https://www.ncbi.nlm.nih.gov/) for each strain and cleaned. All missing variables were identified and marked with "N/A". The records contained the metadata for 209 strains of *Streptococcus pneumoniae* among which 147 strains were from human blood and 62 strains were from human cerebrospinal fluid. The data retrieved intentionally included data from all available geographical locations which gave a global overview of the study. The metadata included assembly number, whole genome shotgun (WGS) sequencing accession number, biosample number, stain taxonomy number and serotype.

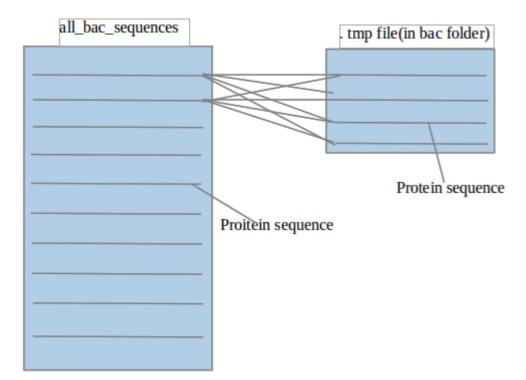
The specification of geographical location allowed the inclusion of a global set of pneumococci, since different countries and continents have differing prevalence in serotypes and sequence types associated with invasive pneumococcal disease.

GenBank files were retrieved from the NCBI site in the GenBank file format (.gbff). The GenBank files contained the whole genome sequence for each strain. The strain taxonomy number was included in the metadata. The first step of pneumococcal genome data retrieval used the strain taxonomy number to search from all datasets, then narrowed the search down to assembly database which gave a full assembly report. The full assembly report included the GenBank assembly accession number, which was recorded alongside the strain taxonomy number to link the GenBank files data with their respective strains metadata. The full assembly report also included the WGS project link which led to the nucleotide database, with the whole genome shotgun sequencing project of the strain. The record of the whole sequencing project had a WGS sequencing link that led to the GenBank file download link which had the complete genome sequence with a '.gbff.gz' extension. All the files were downloaded for all strains with a complete genome.

Figure 5: National Center for Biotechnology Information (NCBI) assembly database **page.** The assembly page contains a biosample link, the latest GenBank assembly accession number and the WGS project link. Through the biosample link, the extra metadata about the strain can be accessed, including sample collection date, geographical location, host age and host disease.

gene	5809658308
gene	/locus tag="BKN21 00990"
CDS	5809658308
	/locus_tag="BKN21_00990"
	/inference="EXISTENCE: similar to AA
	sequence:RefSeq:WP_001864170.1"
	/note="Derived by automated computational analysis using
	gene prediction method: Protein Homology."
	/codon_start=1
	/transl_table=11
	/product="hypothetical protein"
	/protein_id="ONG52912.1"
	/translation="MSFYGLFYNGIAITPNTYLSAWFVNFIAALPLNFLIVEPIARFI
	LSSFQKPFTGEEVEDFQDDDEIPTII"
gene	5839159194
gene	/locus_tag="BKN21_00995"
CDS	5839159194
	/locus_tag="BKN21_00995"
	/inference="EXISTENCE: similar to AA
	sequence:RefSeq:WP_000731914.1"
	/note="Derived by automated computational analysis using
	gene prediction method: Protein Homology."
	/codon start=1
	/transl table=11
	/product="peptidylprolyl isomerase"
	/protein_id="ONG52913.1"
	/translation="MKKLATLLLLSTVALAGCSSVQRSLRGDDYVDSSLAAEESSKVA
	AQSAKELNDALTNENANFPQLSKEVAEDEAEVILHTSQGDIRIKLFPKLAPLAVENFL
	THAKEGYYNGITFHRVIDGFMVQTGDPKGDGTGGQSIWHDKDKTKDKGTGFKNEITPY
	LYNIRGALAMANTGQPNTNGSQFFINQNSTDTSSKLPTSKYPQKIIEAYKEGGNPSLD
	GKHPVFGQVIDGMDVVDKIAKAEKDEKDKPTTAITIDSIEVVKDYDFKS"
L	

Figure 6: Gene ID, product names and their respective protein sequences. These detailed


datasets contain information of each strain of the Streptococcus pneumoniae.

The GenBank files were separated into two subsets: meningitis-associated strain files and bacteremia-associated strain files placed in different folders for easier computing. These data subsets were used for comparisons between human cerebrospinal fluid isolates and human blood isolates to determine the specific genetic features in each set.

3.2 Data analysis

A customized Perl script (Appendix 2) was first used to covert GenBank file format files to European Molecular Biology Laboratory (EMBL) file format and another script (Appendix 2) were used to covert EMBL files to FASTA file format. The files were concatenated prior to performing an all-vs-all BLAST.

An All-versus-All BLAST, is a BLAST sequence search where each sequence was compared to all other sequences in the data sub-set as illustrated in Figure 7.

Figure 7: All vs All BLAST. Each bacteremia file contained several protein sequences which were concatenated to create a list of all bacteremia sequences. Each sequence in the list was compared with all the sequences in each bacteremia file to form an All-vs-All BLAST database.

All-vs-All BLAST database was generated which was run in OrthoMCL with default settings to generate an initial orthologous map. The BLAST results were further analyzed using OrthoMCL using default settings (BLASTP E-value cut-off 1e-5 and inflation index 2.5) to assign sequences into clusters based on homology (orthologs and paralogs) (Li, Stoeckert, & Roos, 2003). The OrthoMCL results were converted to comma-separated values (CSV) format, displaying clearly the genes and their clusters. An example is shown in Table 6. The OrthoMCl files for meningitis and bacteremia can be found in Appendices 6 and 7 respectively.

Table 6: OrthoMCL clusters demonstration and their respective genes.

In each cluster, different genes have same taxa hence more gene and fewer taxa. Each raw represent a list of genes from different genomes in one cluster.

OrthoMCL	No. of Genes	No. of Taxa	Gene ID	Gene ID (Genome)	Gene ID (Genome)
Cluster			(Genome)		
Cluster0	187 genes	62 taxa	gene1 (genome1)	gene8 (genome1)	gene15 (genome2)
Cluster1	181 genes	62 taxa	gene2 (genome4)	gene9 (genome3)	gene16 (genome1)
Cluster2	136 genes	61 taxa	gene3 (genome2)	gene10 (genome4)	gene17 (genome2)
Cluster3	130 genes	54 taxa	gene4 (genome5)	gene11 (genome4)	gene18 (genome3)
Cluster4	130 genes	49 taxa	gene5 (genome3)	gene12 (genome5)	gene19 (genome3)
Cluster5	124 genes	62 taxa	gene6 (genome5)	gene13 (genome2)	gene20 (genome4)
Cluster6	124 genes	62 taxa	gene7 (genome4)	gene14 (genome1)	gene21 (genome5)

The Streptococcus pneumoniae ATCC 700669 genome was used as reference for annotation.

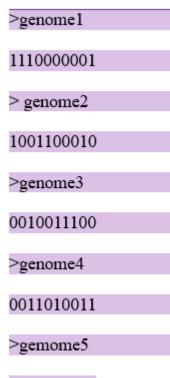
3.2.1 Annotation using a reference genome

An annotation list was first generated from the *Streptococcus pneumoniae* ATCC 700669 complete genome, for each gene. Annotations were then transferred to the ortholog clusters from the *Streptococcus pneumoniae* ATCC 700669 genome.

The annotated datasets were further processed using BMX to organize them into files with phyletic patters 1's and 0's representing presence and absence of genes respectively Table 7 (Kulohoma, 2015). The analysis with BMX first allowed the definition of the core genes, which consists of genes shared by both the meningitis and bacteremia set (n=1937 genes); and a set of genes that were unique to either the meningitis (n=351 genes), and bacteremia (n=620 genes) data subsets. This enabled the identification of orthologs and paralogs and helped to distinguish the core and accessory genomes.

Table 7: OrthoMCL clusters and the respective binary representation of absence or presence of genes. It represents presence of genes in different strains genomes' and 0s represent absence of genes in different strains genomes.

Cluster	Genome1	Genome2	Genome3	Genome4	Genome5
0	1	1	0	0	0
0	1	0	0	0	0
1	1	0	1	1	0
2	0	1	0	1	0
2	0	1	0	0	0
3	0	0	1	1	1
4	0	0	1	0	1
4	0	0	1	0	0
5	0	1	0	1	1
6	1	0	0	1	1


These datasets were transposed (Table 8) and then converted into FASTA format phyletic pattern files (Figure 8), which is the input format for GLOOME analysis.

A cluster may have two sets of values in cases where the BMX program distinguishes orthologs from paralogs, hence if they are present, the cluster line is repeated.

Table 8: Transposed data with orthoMCL clusters and binary form of gene presence or absence. 1t represents presence of genes in different strains genomes' and 0s represent absence of genes in different strains genomes.

Cluster	0	0	1	2	2	3	4	4	5	6
Genome1	1	1	1	0	0	0	0	0	0	1
Genome2	1	0	0	1	1	0	0	0	1	0
Genome3	0	0	1	0	0	1	1	1	0	0
Genome4	0	0	1	1	0	1	0	0	1	1
Genome5	0	0	0	0	0	1	1	0	1	1

The data was reorganized into binary FASTA files as shown in Figure 8 below:

0000011011

Figure 8: Binary FASTA arrangement demonstration. The 1s represent gene presence and 0s represent gene absence. Genome 1 to genome 5 represent all the genomes that were studied.

3.2.2 Gain Loss Mapping Engine (GLOOME) analysis

In every genome, from the first position to the last, aligns data showing the genes present as 1's, and genes absent as 0's. This gives us a matrix of absence and presence of genes across the entire genome of every single strain studied. The probability of gain and loss is required to determine the genetic flux, from all the strains. Genetic flux explains the probability of gaining or losing a gene along the genome, and provides an indication of the adaptability to survive in each niche, either blood or CSF. GLOOME produces results in the form of an easy to visualize matrix, with probabilities showing whether there is likely to be gene gain or loss at a particular locus (Benard & Kulohoma, 2012). The statistical representation of the GLOOME data showed the probability of gain and loss adjoining the position along the genomes for both the meningitis data set and the bacteremia data set.

Each of the meningitis and bacteremia data sets produced from GLOOME were annotated to produce comma separated version files containing cluster number, Annotation (gene ID), product (Gene name), position, expectation of gain, expectation of loss, gain and loss. During annotation, the shared meningitis and bacteremia file was split into two files, one as the shared meningitis data file and the second as the shared bacteremia data file, for easier and independent analysis. The cumulative expectation of gain and loss events was computed to aid in construction of visualization graphs.

3.3 Visualization of the GLOOME results

Huge chunks of data can be troublesome when interpreting, hence a summary of the data should be made, to make it more understandable. The results obtained in this study are no exception, a reason for summarization and image representation as a way of making the results easier for understanding. Images make the entire information, however large, to be viewed in one glance and as well easily understood. To make more sense of the results obtained in this study, the data was represented in line graphs and box plots.

CHAPTER 4

RESULTS

4.1 Gene gain and loss events along Streptococcus pneumoniae genomes

Gene gain and loss events were quantified with color codes as shown in Figure 9 and Figure 10 below.

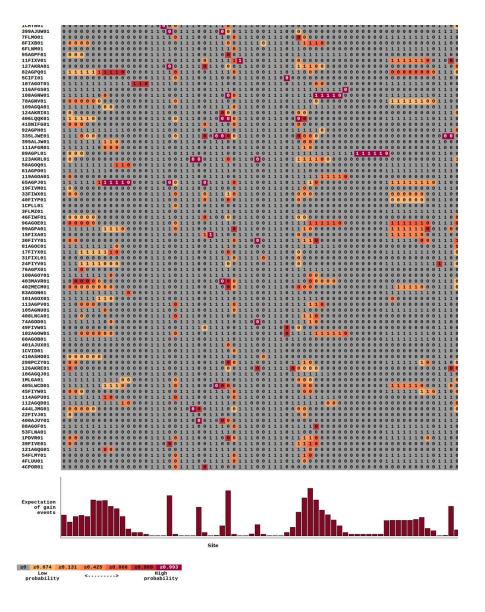
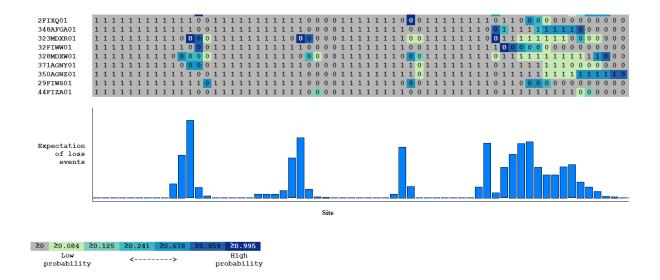



Figure 9: Color-coded gene gain demonstration data produced from GLOOME. The first column shows all the genomes, displayed using the file names in which each strain was

contained. The columns on the color-coded binary matrix displays the position along each genome and the rows represent the genes gain or loss on each genome for all the clusters. The expectation of gene gain events was shown on different loci, coded from a dark red color to show high probability and yellow color to show low probability. The grey color showed 0 (zero) probability of gene gain.

Figure 10: Color-coded gene loss demonstration data produced from GLOOME. The gene loss events were coded from high probability with dark blue color to low probability with green color. The grey color showed 0 (zero) probability of gene loss.

4.2 Probability of Streptococcus pneumoniae gene gain and loss

Bacteremia and meningitis strain genomes were analyzed separately, to identify differences in the pattern of gene gain and loss. These differences highlight mechanisms that allow certain strains to invade the CSF (Benard Kulohoma, 2012). The GLOOME output was the probability of gene gain and loss for each locus represented in the phyletic map. The average of the expectations of gain or loss for each of the loci was established to determine the average probability of either gene gain or loss per site (Table 9). These average values helped to determine the magnitude of gene gain or loss across the entire genome for the strains in the subset under consideration. Comparisons of the average expectation of gene gain and loss per site enabled the evaluation of the direction of evolution for the dataset under consideration. It was observed that there were more gene loss than gene gains events, with the exception of the unique set of accessory genes in the bacteremia sub-set.

Table 9: Average expectation of gene gain or loss events per site in unique and shared genes in bacteremia and meningitis strains. Gene gain and loss data was extracted from the expectation of gain and loss events data, by converting all values below 0.95 to 0s and above 0.95 to 1s.

	Average expectation of	Average expectation of	Gene gain over Gene loss
	Gene Gain per site	Gene Loss per site	
Unique	3.9761123077	4.0265632051	0.9874704817
Meningitis			
Unique	3.4637956157	2.5514061667	1.3576025883
Bacteremia			
Shared	2.4366164663	2.9449318159	0.8273931686
Meningitis			
Shared	3.0187111763	3.3940442662	0.8894142031
Bacteremia			

Confounding in the bacteremia set was reduced by matching its size to that of the meningitis set. Two subsets (n=62 genomes) of randomly selected genome strains were analyzed and compared to the meningitis set. (Table 10). In general, the results were consistent with those from the previous analysis. Gene loss events were greater than gene gain events in the meningitis subset, the opposite was true for the bacteremia subset.

Table 10: Average expectation of gene gain or loss events per site in 62 strains sets of meningitis and bacteremia genomes. The first meningitis and bacteremia rows represent the originally analyzed shared meningitis and shared bacteremia data. The second meningitis data was analyzed together with the randomly selected two bacteremia sets.

	Average expectation of Gene	Average expectation of Gene
	Gain per site	Loss per site
1 Meningitis	2.44	2.94
1 Bacteremia	3.02	3.39
2 Meningitis	2.40	2.78
2Bacteremia II	1.57	1.43

4.2.1 Streptococcus pneumoniae virulence factors

The Figure 11 below highlights some of the important virulent factors and their expectations of gene gain or loss in the meningitis and bacteremia subsets. This provides a good indication

on whether they should be prioritized for incorporation into vaccines and as potential antibiotic target sites.

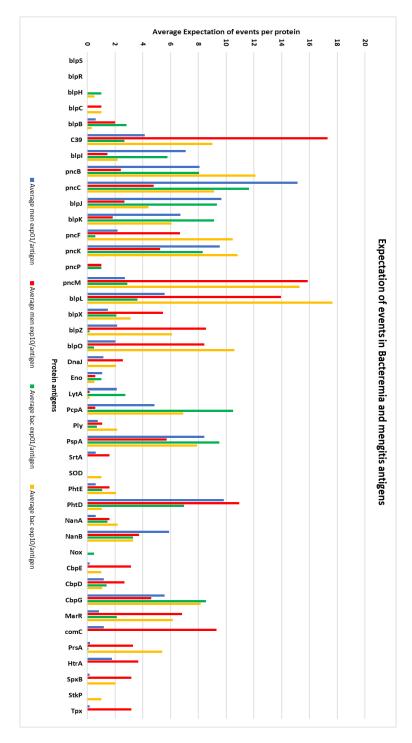


Figure 11: Important virulence factors and their expectations of gene gain or loss in the meningitis and bacteremia subsets. The 'exp01 Men' and 'exp10 Men' indicates the

expectation of gain and expectation of loss in meningitis dataset respectively. Same applies to the 'exp01 Bac' and 'exp10 Bac' in bacteremia.

The putative bacteriocin transporter C39 protease domain BlpA2 and pneumococcal histidine triad protein D (bvh-11-2) showed more gene loss events in the meningitis set. The immunity protein PncB, pncF, immunity protein PncK and bacteriocin BlpO displayed more gene loss events in the bacteremia set. More gene loss events were observed in both bacteremia and meningitis sets for putative immunity protein PncM and putative membrane protein BlpL. Also, more gene gain in both sets was observed for putative uncharacterized protein PncC. There was more gene gain in bacteremia set for cell surface choline binding protein PcpA.

4.2.2 Comparison of genetic flux within data subsets

There was a total of 62 strains associated with meningitis that were analyzed. Unique meningitis associated genes were 351, while the shared meningitis associated genes were 1937. The total meningitis genes were 2288. The set was analyzed twice through GLOOME, giving the expectation of gain and expectation of loss of gene in every position along the genome. The total cumulative expectation of gene gain was 7702.14465, total cumulative expectation of gene loss was 9308.92947, average expectation of gene gain was 2.44, and average expectation of gene loss was 2.94 with a ratio of 0.83 for shared meningitis strains. The total cumulative expectation of gene gain was 310.13676, total cumulative expectation of gene loss was 4.03 with a ratio of 0.99 for unique meningitis strains.

This information highlights that there are more gene loss compared to gene gain events as shown in Figure 12.

A total of 147 strains associated with the propensity to cause bacteremia were analyzed. Unique bacteremia associated genes were 620, while the shared bacteremia associated genes were 1937. The total bacteremia genes were 2557. Despite that the cumulative data of the unique bacteremia sets show otherwise, the overall gene loss is high with low probability of gene gain. The unique bacteremia set has more gene gain and low gene loss probability. The total cumulative expectation of gene gain was 748.179853, total cumulative expectation of gene loss was 551.103732, average expectation of gene gain was 3.46, and average expectation of gene loss was 2.55 with a ratio of 1.36 for unique meningitis strains.

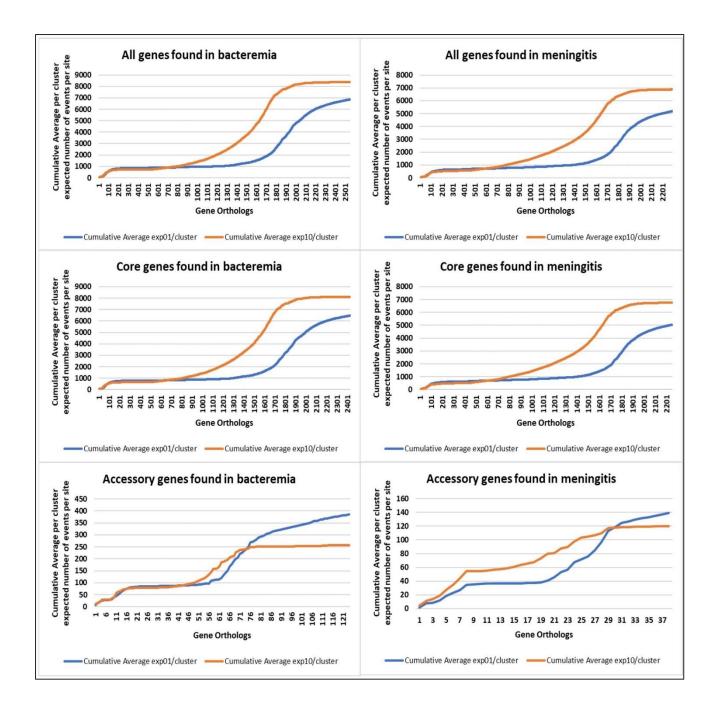


Figure 12: Cumulative expected number of events per site.

Generally, there was more gene loss compared to gene gain events. However, in bacteremia dataset, the accessory genes had more gene gain compared to gene loss events.

Apart from genes uniquely identified in the meningitis set, there was a significant different in genetic flux (Figure 13).

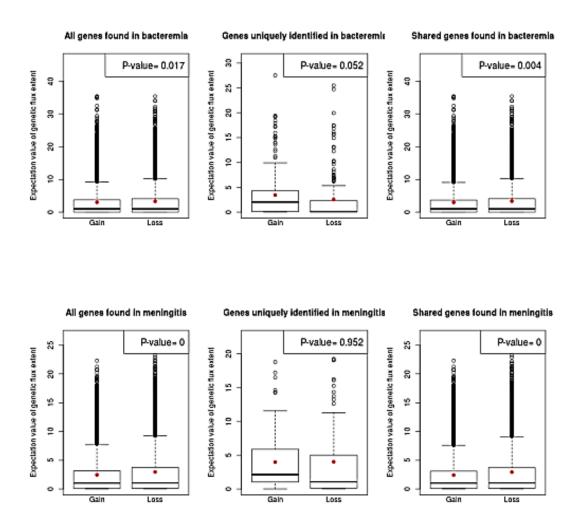


Figure 13: Expected value of genetic flux events box plot.

The p-value, which tests for null hypothesis value, uses a standard cut-off of 5% (α =0.05) below which the null hypothesis is rejected and vice versa (Chavalarias et al., 2016).

There was genetic flux among both of the strain sets showing evidence of genetic influence to their invasiveness to different body compartments. It shows that all of these genomes have certain genes, which should be conserved for the ability to infect the brain, and chance for the invasion might lower if a strain loses the conserved genes. Perhaps the ability to be able to invade the CSF in the meningitis subset is because they have a more conserved set of genes, compared to bacteremia dataset (Benard & Kulohoma, 2012).

CHAPTER 5

DISCUSSION

Genetic flux is the probability to gain or lose genes throughout the phylogenetic evolution (Benard Kulohoma, 2012). It explains the process of obtaining new genetic components which among them can include the propensity to cause, or not to cause meningitis. Over the period of development of a strain, there occurs events which lead to access of new genes, through modification of the old genes or acquisition from the neighboring environment. This process changes the genetic makeup of the strain as well as its traits, expressed by the new genes. During carriage the genetic composition of an organism is altered through recombination events, which determines the niche of adaptation. For the pneumococcus to cross the bloodbrain-barrier and cause meningitis, it has to possess certain genes that lack in strains that remain in the blood causing bacteremia. The understanding of the overall direction of pathogen evolution paves way for specific gene target in designing diagnostics, vaccines and drugs.

To determine the probability of gene gain and gene loss, a GLOOME analysis was done. The GLOOME results gave a clear visual representation of the level of gene gain and gene loss probability with a bar graph at the bottom of both meningitis and bacteremia data sets showing the expectation of gain or loss along the genomes. This implies that the probability of gene gain and loss varied at different points along the genomes. The cumulative expectation of gain and loss events was computed to quantify the genetic change over the phylogenetic evolution period. Generally, there was more gene loss events as compared to gene gain events. However, in the bacteremia sub-set, the accessory genes displayed more gene gain events than the gene loss events. This suggests that over time *Streptococcus pneumoniae* strains gain or lose genetic material to adapt to new environments or to develop resistance against drugs. This implies that perhaps the strains that were able to cause meningitis had a different genetic makeup from

those that caused bacteremia. It also suggests that to cross the blood-brain-barrier, the strains needed specific traits from the respective genes.

The phyletic pattern of some of the challenging *Streptococcus pneumoniae* virulent factors was analyzed to show the specific proteins and their gene gain and loss events. The transport accessory protein showed more gene loss in both meningitis and bacteremia sets while the competence stimulating peptide showed more gene loss in the meningitis sub-set only. Also, the pneumococcal surface protein A displayed more gene gain in both meningitis and bacteremia sets. This implies that these specific proteins could be relevant during the development of diagnostics, drugs and vaccines against the *Streptococcus pneumoniae* bacteria.

During evolution, different strains of the same species loss and gain genes, leading to conservation or loss of traits from the parent genome, as well as acquisition of new traits. When genes are preserved from the parent genome, they are referred as core genes and they are shared by all the strains that has a common decent. The genes which are obtained from recombination over the evolutionary period tend to be unique to certain strains, and are called the accessory genes. In this study, the probability of gene gain and gene loss was established for all genes, core genes and accessory genes of each meningitis and bacteremia sets. It was observed that meningitis causing strains were more conserved compared to the bacteremia causing strains. This implies that the meningitis causing strains were enabled to cross the blood-brain-barrier to infect the brain by their genetic structure. It hence validates the argument that the genetic flux pattern of the *Streptococcus pneumonia* strains that had the propensity to cause meningitis is different from those that cause bacteremia.

CHAPTER 6

CONCLUSION AND RECOMMENDATIONS

This study suggests that accessory genes are essential for invasion of different body compartments. The probability of gene loss in all genes and core genes in both meningitis and bacteremia sets is more compared to gene gain. However, in the accessory genes for both meningitis and bacteremia there is more gene gain with more genetic flux in the bacteremia set. The observation from this study confirms that genetic flux affects the propensity to cause meningitis as compared to the propensity to cause bacteremia. This study highlights some of the known virulent factors affected by genetic flux. Future studies should evaluate the benefit of combining antigens associated with specific disease outcomes to improve diagnosis, increase coverage of vaccines and provide specific antibiotic targets.

REFERENCES

- Abry, M. F., Kimenyi, K. M., Osowo, F. O., Odhiambo, W. O., Sewe, S. O., & Kulohoma, B.
 W. (2015). Genetic diversity of the Pneumococcal CbpA: Implications for nextgeneration vaccine development. *Human Vaccines and Immunotherapeutics*. https://doi.org/10.1080/21645515.2015.1021521
- Adegbola, R. A., DeAntonio, R., Hill, P. C., Roca, A., Usuf, E., Hoet, B., & Greenwood, B.
 M. (2014). Carriage of Streptococcus pneumoniae and other respiratory bacterial pathogens in low and lower-middle income countries: A systematic review and meta-analysis. *PLoS ONE*, *9*(8). https://doi.org/10.1371/journal.pone.0103293
- Alderson, M. R. (2016). Status of research and development of pediatric vaccines for Streptococcus pneumoniae. *Vaccine*, 34(26), 2959–2961. https://doi.org/10.1016/j.vaccine.2016.03.107
- Andam, C. P., & Hanage, W. P. (2015a). Mechanisms of genome evolution of Streptococcus. *Infection, Genetics and Evolution*, 33, 334–342. https://doi.org/10.1016/j.meegid.2014.11.007
- Andam, C. P., & Hanage, W. P. (2015b). Mechanisms of genome evolution of Streptococcus. *Infection, Genetics and Evolution*, 33, 334–342. https://doi.org/10.1016/j.meegid.2014.11.007
- Andre, G. O., Converso, T. R., Politano, W. R., Ferraz, L. F. C., Ribeiro, M. L., Leite, L. C.
 C., & Darrieux, M. (2017). Role of Streptococcus Pneumoniae proteins in evasion of complement-mediated immunity. *Frontiers in Microbiology*, 8(FEB), 1–20.
 https://doi.org/10.3389/fmicb.2017.00224
- Auzat, I., Chapuy-regaud, S., Santos, D. Dos, Ogunniyi, A. D., Thomas, I. Le, Garel, J., James, C., Trombe, M., & Yvette, G. (1999). *The NADH oxidase of Streptococcus pneumoniae : its involvement in competence and virulence. 34*, 1018–1028.

- Baril, L., Dietemann, J., & Béniguel, L. (2006). Pneumococcal surface protein A (PspA) is effective at eliciting T cell- mediated responses during invasive pneumococcal disease in adults. 277–286. https://doi.org/10.1111/j.1365-2249.2006.03148.x
- Basavanna, S., Khandavilli, S., Yuste, J., Cohen, J. M., Hosie, A. H. F., Webb, A. J., Thomas, G. H., & Brown, J. S. (2009). Screening of Streptococcus pneumoniae ABC Transporter Mutants Demonstrates that LivJHMGF, a Branched-Chain Amino Acid ABC Transporter , Is Necessary for Disease Pathogenesis □. 77(8), 3412–3423.
 https://doi.org/10.1128/IAI.01543-08
- Bayramoglu, B., Toubiana, D., Vliet, S. Van, Inglis, R. F., & Shnerb, N. (2017). Bet-hedging in bacteriocin producing Escherichia coli populations : the single cell perspective. *Nature Publishing Group, January*, 1–10. https://doi.org/10.1038/srep42068
- Benard, W., & Kulohoma, B. (2012). *Genetic antigen diversity and gene flux among meningitic and bacteraemia-associated pneumococci from Malawi.*
- Bergmann, S., Rohde, M., Gursharan, S., & Hammerschmidt, S. (2001). a -Enolase of Streptococcus pneumoniae is a plasmin (ogen) -binding protein displayed on the bacterial cell surface. 40.
- Berical, A. C., Harris, D., Dela Cruz, C. S., & Possick, J. D. (2016). Pneumococcal vaccination strategies: An update and perspective. *Annals of the American Thoracic Society*, 13(6), 933–944. https://doi.org/10.1513/AnnalsATS.201511-778FR
- Berry, A. M., Lock, R. A., Hansman, D., & Paton, J. C. (1989). *Contribution of Autolysin to Virulence of Streptococcus pneumoniae*. 57(8), 2324–2330.
- Bistrović, A., Krstulović, L., Stolić, I., Drenjančević, D., Talapko, J., Taylor, M. C., Kelly, J. M., Bajić, M., & Raić-Malić, S. (2018). Synthesis, anti-bacterial and anti-protozoal activities of amidinobenzimidazole derivatives and their interactions with DNA and RNA. *Journal of Enzyme Inhibition and Medicinal Chemistry*, 33(1), 1323–1334.

https://doi.org/10.1080/14756366.2018.1484733

- Bogaert, D., De Groot, R., & Hermans, P. W. M. (2004). Streptococcus pneumoniae colonisation: The key to pneumococcal disease. In *Lancet Infectious Diseases* (Vol. 4, Issue 3, pp. 144–154). https://doi.org/10.1016/S1473-3099(04)00938-7
- Brivanlou, A. H., & Darnell, J. E. (2002). Transcription: Signal transduction and the control of gene expression. *Science*, 295(5556), 813–818. https://doi.org/10.1126/science.1066355
- Brooks, L. R. K., & Mias, G. I. (2018). Streptococcus pneumoniae's virulence and host immunity: Aging, diagnostics, and prevention. In *Frontiers in Immunology*. https://doi.org/10.3389/fimmu.2018.01366
- Brown, J. S., Gilliland, S. M., Ruiz-albert, J., & Holden, D. W. (2002). Characterization of Pit, a Streptococcus pneumoniae Iron Uptake ABC Transporter. 70(8), 4389–4398. https://doi.org/10.1128/IAI.70.8.4389
- Brueggemann, A. B., Muroki, B. M., Kulohoma, B. W., Karani, A., Wanjiru, E., Morpeth, S., Kamau, T., Sharif, S., & Scott, J. A. G. (2013). Population genetic structure of Streptococcus pneumoniae in Kilifi, Kenya, prior to the introduction of pneumococcal conjugate vaccine. *PLoS ONE*. https://doi.org/10.1371/journal.pone.0081539
- Bryant, J. C., Dabbs, R. C., Oswalt, K. L., Brown, L. R., Rosch, J. W., Seo, K. S., Donaldson, J. R., McDaniel, L. S., & Thornton, J. A. (2016). Pyruvate oxidase of Streptococcus pneumoniae contributes to pneumolysin release. *BMC Microbiology*, *16*(1), 1–12. https://doi.org/10.1186/s12866-016-0881-6
- Burton, D. R. (2017). What are the most powerful immunogen design vaccine strategies?:
 Reverse vaccinology 2.0 shows great promise. *Cold Spring Harbor Perspectives in Biology*, 9(11). https://doi.org/10.1101/cshperspect.a030262

Cahoon, L. A., & Freitag, N. E. (2015). Identification of conserved and species-specific

functions of the Listeria monocytogenes PrsA2 secretion chaperone. *Infection and Immunity*, 83(10), 4028–4041. https://doi.org/10.1128/IAI.00504-15

- CDC. (2019). Catch-Up Guidance for Healthy 1 Children 4 Months through 4 Years of Age Pneumococcal Conjugate Vaccine: PCV. February, 1–3. www.cdc.gov/vaccines/schedules/downloads/child/0-18yrs-child-combinedschedule.pdf.
- Cecchini, P., Goldblatt, D., Brown, J. S., Whiting, G., McIlgorm, A., Lam, O., Entwisle, C., Ercoli, G., Ramos-Sevillano, E., Chan, W.-Y., Wheeler, J. X., Bailey, C., & Green, N. (2018). A novel, multiple-antigen pneumococcal vaccine protects against lethal Streptococcus pneumoniae challenge . *Infection and Immunity, December*. https://doi.org/10.1128/iai.00846-18
- Chan, W. T., & Espinosa, M. (2016). The Streptococcus pneumoniae pezAT Toxin–Antitoxin System Reduces β-Lactam Resistance and Genetic Competence. *Frontiers in Microbiology*, 7(August), 1322. https://doi.org/10.3389/fmicb.2016.01322
- Chavalarias, D., Wallach, J. D., Ho, A., Li, T., & Ioannidis, J. P. A. (2016). *Evolution of Reporting*. 94305(11), 1141–1148. https://doi.org/10.1001/jama.2016.1952
- Cheng, W., Li, Q., Jiang, Y., Zhou, C., & Chen, Y. (2013). Structures of Streptococcus pneumoniae PiaA and Its Complex with Ferrichrome Reveal Insights into the Substrate Binding and Release of High Affinity Iron Transporters. 8(8). https://doi.org/10.1371/journal.pone.0071451
- Cockeran, R., Anderson, R., & Feldman, C. (2005). *Pneumolysin as a vaccine and drug target in the prevention and treatment of invasive pneumococcal disease. June 2014.*
- Cornick, J. E., Harris, S. R., Parry, C. M., Moore, M. J., Jassi, C., Kamng'ona, A., Kulohoma,B., Heyderman, R. S., Bentley, S. D., & Everett, D. B. (2014). Genomic identification ofa novel co-trimoxazole resistance genotype and its prevalence amongst Streptococcus

pneumoniae in Malawi. *Journal of Antimicrobial Chemotherapy*. https://doi.org/10.1093/jac/dkt384

- Daniels, C. C., Rogers, P. D., & Shelton, C. M. (2016). A review of pneumococcal vaccines:
 Current polysaccharide vaccine recommendations and future protein antigens. *Journal of Pediatric Pharmacology and Therapeutics*, *21*(1), 27–35. https://doi.org/10.5863/1551-6776-21.1.27
- Delany, I., Rappuoli, R., & Seib, K. L. (2013). Vaccines, reverse vaccinology, and bacterial pathogenesis. *Cold Spring Harbor Perspectives in Medicine*, 3(5). https://doi.org/10.1101/cshperspect.a012476
- Echenique, J., Kadioglu, A., Romao, S., & Andrew, P. W. (2004). Protein Serine / Threonine Kinase StkP Positively Controls Virulence and Competence in Streptococcus pneumoniae. 72(4), 2434–2437. https://doi.org/10.1128/IAI.72.4.2434
- El Khoury, J. Y., Boucher, N., Bergeron, M. G., Leprohon, P., & Ouellette, M. (2017).
 Penicillin induces alterations in glutamine metabolism in Streptococcus pneumoniae.
 Scientific Reports, 7(1), 1–15. https://doi.org/10.1038/s41598-017-15035-y
- Feldman, C., & Anderson, R. (2014). Recent advances in our understanding of Streptococcus pneumoniae infection. *F1000Prime Reports*, 6(September). https://doi.org/10.12703/P6-82
- Feldman, C., & Anderson, R. (2016). Epidemiology, virulence factors and management of the pneumococcus. *F1000Research*, 5(0), 2320. https://doi.org/10.12688/f1000research.9283.1
- Garmory, H. S., & Titball, R. W. (2004). MINIREVIEW ATP-Binding Cassette Transporters Are Targets for the Development of Antibacterial Vaccines and Therapies. 72(12), 6757– 6763. https://doi.org/10.1128/IAI.72.12.6757

Gerdes, K. (2013). Prokaryotic toxin-antitoxins. Prokaryotic Toxin-Antitoxins, 9783642332,

1-365. https://doi.org/10.1007/978-3-642-33253-1

- Gianfaldoni, C., Maccari, S., Pancotto, L., Rossi, G., Hilleringmann, M., Pansegrau, W.,
 Sinisi, A., Moschioni, M., Masignani, V., Rappuoli, R., Giudice, G. Del, & Ruggiero, P.
 (2009). Sortase A Confers Protection against Streptococcus pneumoniae in Mice □.
 77(7), 2957–2961. https://doi.org/10.1128/IAI.01516-08
- Giersing, B. K., Modjarrad, K., Kaslow, D. C., Moorthy, V. S., Bavdekar, A., Cichutek, K., Cravioto, A., Fritzell, B., Graham, B. S., Karron, R., Lanata, C. F., Powell, M., Shao, Y., & Smith, P. (2016). Report from the World Health Organization's Product Development for Vaccines Advisory Committee (PDVAC) meeting, Geneva, 7-9th Sep 2015. *Vaccine*, *34*(26), 2865–2869. https://doi.org/10.1016/j.vaccine.2016.02.078
- Gómez-mejia, A., Gámez, G., & Hammerschmidt, S. (2018). International Journal of Medical Microbiology Streptococcus pneumoniae two-component regulatory systems : The interplay of the pneumococcus with its environment. *International Journal of Medical Microbiology*, 308(6), 722–737. https://doi.org/10.1016/j.ijmm.2017.11.012
- Hajaj, B., Yesilkaya, H., Benisty, R., David, M., Andrew, P. W., & Porat, N. (2012). Thiol peroxidase is an important component of streptococcus pneumoniae in oxygenated environments. *Infection and Immunity*, 80(12), 4333–4343.
 https://doi.org/10.1128/IAI.00126-12
- Hava, D. L., Hemsley, C. J., & Camilli, A. (2003). Transcriptional regulation in the Streptococcus pneumoniae rlrA pathogenicity islet by RlrA. *Journal of Bacteriology*, *185*(2), 413–421. https://doi.org/10.1128/JB.185.2.413-421.2003
- Hendriksen, W. T., Silva, N., Bootsma, H. J., Blue, C. E., Paterson, G. K., Kerr, A. R., De Jong, A., Kuipers, O. P., Hermans, P. W. M., & Mitchell, T. J. (2007). Regulation of gene expression in Streptococcus pneumoniae by response regulator 09 is strain dependent. *Journal of Bacteriology*, 189(4), 1382–1389. https://doi.org/10.1128/JB.01144-06

- Henriques-Normark, B., & Normark, S. (2014). Bacterial vaccines and antibiotic resistance. Upsala Journal of Medical Sciences, 119(2), 205–208. https://doi.org/10.3109/03009734.2014.903324
- Henriques-Normark, B., & Tuomanen, E. I. (2013). The pneumococcus: Epidemiology, microbiology, and pathogenesis. *Cold Spring Harbor Perspectives in Medicine*, 3(7), 1– 15. https://doi.org/10.1101/cshperspect.a010215
- Herta, T., Bhattacharyya, A., Bollensdorf, C., Kabus, C., García, P., Suttorp, N., Hippenstiel,
 S., & Zahlten, J. (2018). *DNA-release by Streptococcus pneumoniae autolysin LytA induced Krueppel-like factor 4 expression in macrophages. March*, 1–14. https://doi.org/10.1038/s41598-018-24152-1
- Hien, T. D.-, Young, H.-, & Hye, E.-. (2011). Heat- Shock Protein ClpL / HSP100 Increases Penicillin Tolerance in Streptococcus pneumoniae. 72, 126–128.
- Hirst, R. A., Kadioglu, A., Callaghan, C. O., & Andrew, P. W. (2004). The role of pneumolysin in pneumococcal pneumonia and meningitis. https://doi.org/10.1111/j.1365-2249.2004.02611.x
- Hollingshead, S. K., Baril, L., Ferro, S., King, J., Coan, P., Briles, D. E., Epi, P., Group, S., & Baril, L. (2006). *Pneumococcal surface protein A (PspA) family distribution among clinical isolates from adults over 50 years of age collected in seven countries Printed in Great Britain*. 215–221. https://doi.org/10.1099/jmm.0.46268-0
- Hupp, S., Grandgirard, D., Mitchell, T. J., Leib, S. L., Hathaway, L. J., & Iliev, A. I. (2019). Pneumolysin and the bacterial capsule of Streptococcus pneumoniae cooperatively inhibit taxis and motility of microglia. 7, 1–14.
- Iannelli, F., Oggioni, M. R., & Pozzi, G. (2005). Sensor domain of histidine kinase ComD confers competence pherotype specificity in Streptoccoccus pneumoniae. 252, 321–326. https://doi.org/10.1016/j.femsle.2005.09.008

Iovino, F., Orihuela, C. J., Moorlag, H. E., Molema, G., & Bijlsma, J. J. E. (2013).
Interactions between Blood-Borne Streptococcus pneumoniae and the Blood-Brain
Barrier Preceding Meningitis. *PLoS ONE*, 8(7).
https://doi.org/10.1371/journal.pone.0068408

- Iovino, F., Seinen, J., Henriques-Normark, B., & van Dijl, J. M. (2016). How Does Streptococcus pneumoniae Invade the Brain? *Trends in Microbiology*, 24(4), 307–315. https://doi.org/10.1016/j.tim.2015.12.012
- Ip, M., Lyon, D. J., Yung, R. W. H., Chan, C., & Cheng, A. F. B. (2001). Macrolide resistance in Streptococcus pneumoniae in Hong Kong. *Antimicrobial Agents and Chemotherapy*, 45(5), 1578–1580. https://doi.org/10.1128/AAC.45.5.1578-1580.2001
- Jedrzejas, M. J. (2003). Pneumococcal Virulence Factors: Structure and Function. Microbiology and Molecular Biology Reviews, 65(2), 187–207. https://doi.org/10.1128/mmbr.65.2.187-207.2001
- Jedrzejas, Mark J. (2001). Pneumococcal Virulence Factors : Structure and Function. 65(2), 187–207. https://doi.org/10.1128/MMBR.65.2.187
- Jomaa, M., Yuste, J., Paton, J. C., Jones, C., Dougan, G., & Brown, J. S. (2005). Antibodies to the Iron Uptake ABC Transporter Lipoproteins PiaA and PiuA Promote Opsonophagocytosis of Streptococcus pneumoniae. 73(10), 6852–6859. https://doi.org/10.1128/IAI.73.10.6852
- Kadioglu, A., Weiser, J. N., Paton, J. C., & Andrew, P. W. (2008). The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease. In *Nature Reviews Microbiology*. https://doi.org/10.1038/nrmicro1871
- Kim, L., McGee, L., Tomczyk, S., & Beall, B. (2016). Biological and epidemiological features of antibiotic-resistant Streptococcus pneumoniae in pre- and post-conjugate vaccine eras: A United States perspective. In *Clinical Microbiology Reviews*.

https://doi.org/10.1128/CMR.00058-15

- Koedel, U., Scheld, W. M., & Pfister, H. W. (2002). Pathogenesis and pathophysiology of pneumococcal meningitis. In *Lancet Infectious Diseases*. https://doi.org/10.1016/S1473-3099(02)00450-4
- Kolberg, J., Aase, A., Bergmann, S., Herstad, T. K., Rødal, G., Frank, R., Rohde, M., & Hammerschmidt, S. (2006). *Streptococcus pneumoniae enolase is important for plasminogen binding despite low abundance of enolase protein on the bacterial cell surface Streptococcus pneumoniae enolase is important for plasminogen binding despite low abundance of enolase protein on the bacterial cell surface Streptococcus pneumoniae enolase is important for plasminogen binding despite low abundance of enolase protein on the bacterial cell surface Streptococcus pneumoniae enolase is important for plasminogen binding despite low abundance of enolase protein on the bacterial cell low abundance of enolase protein on . June.* https://doi.org/10.1099/mic.0.28747-0
- Kulohoma, B. W. (2015). BMX: A tool for computing bacterial phyletic composition from orthologous maps. *BMC Research Notes*. https://doi.org/10.1186/s13104-015-1017-z
- Kulohoma, B. W., Marriage, F., Vasieva, O., Mankhambo, L., Nguyen, K., Molyneux, M. E., Molyneux, E. M., Day, P. J. R., & Carrol, E. D. (2017). Peripheral blood RNA gene expression in children with pneumococcal meningitis: a prospective case–control study. *BMJ Paediatrics Open*. https://doi.org/10.1136/bmjpo-2017-000092
- Kumari, P., Nath, Y., Murty, U. S., Bonaventura, G. Di, & Chifiriuc, M. C. (2020). Sortase A Mediated Bioconjugation of Common Epitopes Decreases Biofilm Formation in Staphylococcus aureus. 11(July), 1–8. https://doi.org/10.3389/fmicb.2020.01702
- Leonor, M., Oliveira, S., Monedero, V., Miyaji, E. N., Leite, L. C. C., Lee, P., & Pe, G.
 (2003). Expression of Streptococcus pneumoniae antigens, PsaA (pneumococcal surface antigen A) and PspA (pneumococcal surface protein A) by Lactobacillus casei.
 227, 25–31. https://doi.org/10.1016/S0378-1097(03)00645-1
- Li, Y., Metcalf, B. J., Chochua, S., Li, Z., Walker, H., Tran, T., Hawkins, P. A., Gierke, R.,Pilishvili, T., McGee, L., & Beall, B. W. (2019). Genome-wide association analyses ofinvasive pneumococcal isolates identify a missense bacterial mutation associated with

meningitis. *Nature Communications*, 10(1), 178. https://doi.org/10.1038/s41467-018-07997-y

- Lux, T., Nuhn, M., Hakenbeck, R., & Reichmann, P. (2007). Diversity of Bacteriocins and Activity Spectrum in Streptococcus pneumoniae □. 189(21), 7741–7751. https://doi.org/10.1128/JB.00474-07
- Magni, P., Bier, D. M., Pecorelli, S., Agostoni, C., Astrup, A., Brighenti, F., Cook, R., Folco,
 E., Fontana, L., Gibson, R. A., Guerra, R., Guyatt, G. H., Ioannidis, J. P. A., Jackson, A.
 S., Klurfeld, D. M., Makrides, M., Mathioudakis, B., Monaco, A., Patel, C. J., ...
 Peracino, A. (2017). Perspective: Improving nutritional guidelines for sustainable health
 policies: Current status and perspectives. *Advances in Nutrition*, 8(4), 532–545.
 https://doi.org/10.3945/an.116.014738
- Manuscript, A. (2014). *NIH Public Access*. *38*(3), 473–492. https://doi.org/10.1111/1574-6976.12046.Peptide
- Marks, L. R., Reddinger, R. M., & Hakansson, A. P. (2012). High levels of genetic recombination during nasopharyngeal carriage and biofilm formation in Streptococcus pneumoniae. *MBio*, 3(5), 1–13. https://doi.org/10.1128/mBio.00200-12
- Martner, A., Dahlgren, C., Paton, J. C., & Wold, A. E. (2008). Pneumolysin Released during Streptococcus pneumoniae Autolysis Is a Potent Activator of Intracellular Oxygen Radical Production in Neutrophils

 . 76(9), 4079–4087.
 https://doi.org/10.1128/IAI.01747-07
- Masomian, M., Ahmad, Z., & Gew, L. T. (2020). Development of Next Generation Streptococcus pneumoniae Vaccines Conferring Broad Protection. 1–23.
- Meichanetzidis, K., Turner, C. J., Farjami, A., Papić, Z., & Pachos, J. K. (2018). Free-fermion descriptions of parafermion chains and string-net models. *Physical Review B*, 97(12), 417–425. https://doi.org/10.1103/PhysRevB.97.125104

- Melin, M., Paolo, E. Di, Tikkanen, L., Jarva, H., Neyt, C., Ka, H., Meri, S., Poolman, J., & Va, M. (2010). *Interaction of Pneumococcal Histidine Triad Proteins with Human Complement* □. 78(5), 2089–2098. https://doi.org/10.1128/IAI.00811-09
- Mellroth, P., Daniels, R., Eberhardt, A., Rönnlund, D., Blom, H., Widengren, J., Normark, S., & Henriques-normark, B. (2012). LytA, Major Autolysin of Streptococcus pneumoniae, Requires Access to Nascent Peptidoglycan *

 287(14), 11018–11029.
 https://doi.org/10.1074/jbc.M111.318584
- Merrifield, M., Hotez, P. J., Beaumier, C. M., Gillespie, P., Strych, U., Hayward, T., &
 Bottazzi, M. E. (2016). Advancing a vaccine to prevent human schistosomiasis. *Vaccine*, 34(26), 2988–2991. https://doi.org/10.1016/j.vaccine.2016.03.079
- Mitchell, A. M., & Mitchell, T. J. (2010). Streptococcus pneumoniae: Virulence factors and variation. In *Clinical Microbiology and Infection*. https://doi.org/10.1111/j.1469-0691.2010.03183.x
- Morrison, D. A. (1996). Regulation of competence for genetic transformation in Streptococcus pneumoniae by an auto-induced peptide pheromone and a two-component regulatory system. 21, 853–862.
- Muchnik, L., Adawi, A., Ohayon, A., Dotan, S., Malka, I., Azriel, S., Shagan, M., Portnoi,
 M., Kafka, D., Nahmani, H., Porgador, A., Gershoni, J. M., Morrison, D. A., Mitchell,
 A., Tal, M., Ellis, R., Dagan, R., & Nebenzahl, Y. M. (2013). *NADH Oxidase Functions as an Adhesin in Streptococcus pneumoniae and Elicits a Protective Immune Response in Mice.* 8(4). https://doi.org/10.1371/journal.pone.0061128
- Mücke, P. A., Maaß, S., Kohler, T. P., Hammerschmidt, S., & Becher, D. (2020). Proteomic adaptation of streptococcus pneumoniae to the human antimicrobial peptide LL-37. *Microorganisms*, 8(3). https://doi.org/10.3390/microorganisms8030413

Muley, V., Ghadage, D., Yadav, G., & Bhore, A. (2016). Study of invasive pneumococcal

infection in adults with reference to penicillin resistance. *Journal of Laboratory Physicians*, 9(1), 31. https://doi.org/10.4103/0974-2727.187918

- Nelson, A. L., Roche, A. M., Gould, J. M., Chim, K., Ratner, A. J., Weiser, J. N., Al, N. E. T., & Mmun, I. N. I. (2007). Capsule Enhances Pneumococcal Colonization by Limiting. *Infection and Immunity*, 75(1), 83–90. https://doi.org/10.1128/IAI.01475-06
- O'Brien, K. L., Wolfson, L. J., Watt, J. P., Henkle, E., Deloria-Knoll, M., McCall, N., Lee, E., Mulholland, K., Levine, O. S., & Cherian, T. (2009). Burden of disease caused by Streptococcus pneumoniae in children younger than 5 years: global estimates. *The Lancet*, 374(9693), 893–902. https://doi.org/10.1016/S0140-6736(09)61204-6
- Obolski, U., Gori, A., Lourenço, J., Thompson, C., Thompson, R., French, N., Heyderman, R.
 S., & Gupta, S. (2019). Identifying genes associated with invasive disease in S.
 pneumoniae by applying a machine learning approach to whole genome sequence typing data. *Scientific Reports*, 9(1), 4049. https://doi.org/10.1038/s41598-019-40346-7
- Ochs, M. M., Williams, K., Sheung, A., Lheritier, P., Visan, L., Rouleau, N., Proust, E., de Montfort, A., Tang, M., Mari, K., Hopfer, R., Gallichan, S., & Brookes, R. H. (2016). A bivalent pneumococcal histidine triad protein D-choline-binding protein A vaccine elicits functional antibodies that passively protect mice from Streptococcus pneumoniae challenge. *Human Vaccines and Immunotherapeutics*, *12*(11), 2946–2952. https://doi.org/10.1080/21645515.2016.1202389
- Ogunniyi, A. D., Grabowicz, M., Mahdi, L. K., Cook, J., Gordon, D. L., Sadlon, T. A., & Paton, J. C. (n.d.). *Pneumococcal histidine triad proteins are regulated by the Zn 2* □ *dependent repressor AdcR and inhibit complement deposition through the recruitment of complement factor H*. 1–8. https://doi.org/10.1096/fj.08-119537
- Ogunniyi, A. D., Mahdi, L. K., Trappetti, C., Verhoeven, N., Mermans, D., Van der Hoek, M. B., Plumptre, C. D., & Paton, J. C. (2012). Identification of Genes That Contribute to

the Pathogenesis of Invasive Pneumococcal Disease by In Vivo Transcriptomic Analysis . *Infection and Immunity*, *80*(9), 3268–3278. https://doi.org/10.1128/iai.00295-12

- Orihuela, C. J., Radin, J. N., Sublett, J. E., Gao, G., Kaushal, D., & Tuomanen, E. I. (2004).
 Microarray analysis of pneumococcal gene expression during invasive disease. *Infection and Immunity*, 72(10), 5582–5596. https://doi.org/10.1128/IAI.72.10.5582-5596.2004
- Pan, F., Zhang, H., Dong, X., Ye, W., He, P., Zhang, S., Zhu, J. X., & Zhong, N. (2018).
 Comparative genomic analysis of multidrug-resistant Streptococcus pneumoniae isolates. *Infection and Drug Resistance*, *11*, 659–670.
 https://doi.org/10.2147/IDR.S147858
- Paterson, G. K., & Mitchell, T. J. (2006). The role of Streptococcus pneumoniae sortase A in colonisation and pathogenesis. 8, 145–153. https://doi.org/10.1016/j.micinf.2005.06.009
- Pei, J., & Grishin, N. V. (2001). Type II CAAX prenyl endopeptidases belong to a novel superfamily of putative membrane-bound metalloproteases. *Trends in Biochemical Sciences*, 26(5), 275–277. https://doi.org/10.1016/s0968-0004(01)01813-8
- Pi, E., Cian, M. B., Olivero, N. B., & Perez, D. R. (2018). Crosstalk between the serine / threonine kinase StkP and the response regulator ComE controls the stress response and intracellular survival of Streptococcus pneumoniae.
- Piccoli, L., Microbiologia, S., & Chirurgiche, S. (1996). Competence for Genetic Transformation in Encapsulated Strains of Streptococcus pneumoniae : Two Allelic Variants of the Peptide Pheromone. 178(20), 6087–6090.
- Pinchas, M. D., & Lacross, N. C. (2015). An Electrostatic Interaction between BlpC and BlpH Dictates Pheromone Specificity in the Control of Bacteriocin Production and Immunity in Streptococcus pneumoniae. 197(7), 1236–1248. https://doi.org/10.1128/JB.02432-14

- Plumptre, C. D., Ogunniyi, A. D., & Paton, J. C. (2013). Vaccination against Streptococcus pneumoniae using truncated derivatives of polyhistidine triad protein D. *PLoS ONE*, 8(10). https://doi.org/10.1371/journal.pone.0078916
- Popowicz, N. D., Lansley, S. M., Cheah, H. M., Kay, I. D., Carson, C. F., Waterer, G. W., Paton, J. C., Brown, J. S., & Lee, Y. C. G. (2017). Human pleural fluid is a potent growth medium for Streptococcus pneumoniae. *PLoS ONE*, *12*(11), 1–14. https://doi.org/10.1371/journal.pone.0188833
- Prager, O., Friedman, A., & Nebenzahl, Y. M. (2017). Role of neural barriers in the pathogenesis and outcome of Streptococcus pneumoniae meningitis (Review). In *Experimental and Therapeutic Medicine*. https://doi.org/10.3892/etm.2017.4082
- Price, K. E., & Camilli, A. (2009). Pneumolysin Localizes to the Cell Wall of Streptococcus pneumoniae □. 191(7), 2163–2168. https://doi.org/10.1128/JB.01489-08
- Pujanauski, L., Colino, J., Flora, M., Torres, R. M., Tuomanen, E., & Snapper, C. M. (2020). Pneumococcal Surface Protein A Plays a Major Role in Streptococcus pneumoniae – Induced Immunosuppression. https://doi.org/10.4049/jimmunol.1502709
- Raddaoui, A., Simoes, A. S., Baaboura, R., Felix, S., Achour, W., Othman, T. Ben, Bejaoui,
 M., Sa-Leao, R., & Hassen, A. Ben. (2015). Serotype distribution, antibiotic resistance
 and clonality of streptococcus pneumoniae isolated from immunocompromised patients
 in Tunisia. *PLoS ONE*, *10*(10), 1–10. https://doi.org/10.1371/journal.pone.0140390
- Saskova, L., Nova, L., Basler, M., & Branny, P. (2007). Eukaryotic-Type Serine / Threonine Protein Kinase StkP Is a Global Regulator of Gene Expression in Streptococcus pneumoniae
 7. 189(11), 4168–4179. https://doi.org/10.1128/JB.01616-06
- Shenoy, A. T., & Orihuela, C. J. (2016). Anatomical site-specific contributions of pneumococcal virulence determinants. *Pneumonia*, 8(1), 7. https://doi.org/10.1186/s41479-016-0007-9

- Spellerberg, B., Cundell, D. R., Sandros, J., Pearce, B. J., Ida, I., & Masure, H. R. (1996). *Pyruvate oxidase , as a determinant of virulence in Streptococcus pneumoniae. 19*, 803–813.
- Steinmoen, H., Teigen, A., & Ha, L. S. (2003). Competence-Induced Cells of Streptococcus pneumoniae Lyse Competence-Deficient Cells of the Same Strain during Cocultivation. 185(24), 7176–7183. https://doi.org/10.1128/JB.185.24.7176
- Stoppelaar, S. F. De, Bootsma, H. J., Zomer, A., Roelofs, J. J. T. H., Hermans, P. W. M., Veer,
 C. Van, & Poll, T. Van Der. (2013). *Streptococcus pneumoniae Serine Protease HtrA*, *but Not SFP or PrtA*, *Is a Major Virulence Factor in Pneumonia*. 8(11).
 https://doi.org/10.1371/journal.pone.0080062
- Tennant, S. M., MacLennan, C. A., Simon, R., Martin, L. B., & Khan, M. I. (2016).
 Nontyphoidal salmonella disease: Current status of vaccine research and development.
 Vaccine, 34(26), 2907–2910. https://doi.org/10.1016/j.vaccine.2016.03.072

The FDA Food Safety Modernization Act. (2011).

- Tomos, I. (n.d.). Prevention of Invasive Pneumococcal Disease (IPD).
- Tu, A. T., Fulgham, R. L., Crory, M. A. M. C., Briles, D. E., & Szalai, A. J. (1999). Pneumococcal Surface Protein A Inhibits Complement Activation by Streptococcus pneumoniae. 67(9), 4720–4724.
- van der Poll, T., & Opal, S. M. (2009a). Pathogenesis, treatment, and prevention of pneumococcal pneumonia. *The Lancet*, 374(9700), 1543–1556. https://doi.org/10.1016/S0140-6736(09)61114-4
- van der Poll, T., & Opal, S. M. (2009b). Pathogenesis, treatment, and prevention of pneumococcal pneumonia. *Lancet (London, England)*, 374(9700), 1543–1556. https://doi.org/10.1016/S0140-6736(09)61114-4

Wahl, B., O'Brien, K. L., Greenbaum, A., Majumder, A., Liu, L., Chu, Y., Lukšić, I., Nair, H.,

McAllister, D. A., Campbell, H., Rudan, I., Black, R., & Knoll, M. D. (2018). Burden of Streptococcus pneumoniae and Haemophilus influenzae type b disease in children in the era of conjugate vaccines: global, regional, and national estimates for 2000–15. *The Lancet Global Health*, *6*(7), e744–e757. https://doi.org/10.1016/S2214-109X(18)30247-X

- Weiser, J. N., Ferreira, D. M., & Paton, J. C. (2018). Streptococcus pneumoniae: transmission, colonization and invasion. In *Nature reviews. Microbiology* (Vol. 16, Issue
 6). https://doi.org/10.1038/s41579-018-0001-8
- Whalan, R. H., Funnell, S. G. P., Bowler, L. D., Hudson, M. J., Robinson, A., & Dowson, C.
 G. (2005). *PiuA and PiaA*, iron uptake lipoproteins of Streptococcus pneumoniae, elicit serotype independent antibody responses following human pneumococcal septicaemia.
 43, 73–80. https://doi.org/10.1016/j.femsim.2004.07.010
- Whatmore, A. M., Barcus, V. A., & Dowson, C. G. (1999). *Genetic Diversity of the Streptococcal Competence (com) Gene Locus. 181*(10), 3144–3154.
- World Health Organization. (2019). Pneumococcal conjugate vaccines in infants and children under 5 years of age: WHO position paper – February 2019. Weekly Epidemiological Record, 94(8), 85–104.

http://www.who.int/immu-%0Ahttps://www.who.int/immunization/policy/position_pape rs/who pp pcv 2019 summary.pdf?ua=1

- Xiao, K., Wang, X., & Yu, H. (2019). Comparative studies of catalytic pathways for Streptococcus pneumoniae sialidases NanA, NanB and NanC. December 2018, 1–13. https://doi.org/10.1038/s41598-018-38131-z
- Xu, G., Kiefel, M. J., Wilson, J. C., Andrew, P. W., Oggioni, M. R., & Taylor, G. L. (2011). *Three Streptococcus pneumoniae Sialidases : Three Different Products*. 1718–1721.

Yamamoto, Y. (2002). PCR in diagnosis of infection: Detection of bacteria in cerebrospinal

fluids. *Clinical and Diagnostic Laboratory Immunology*, *9*(3), 508–514. https://doi.org/10.1128/CDLI.9.3.508-514.2002

Yang, G., Sau, C., Lai, W., Cichon, J., & Li, W. (2015). 蚊子网状进化HHS Public Access. 344(6188), 1173–1178. https://doi.org/10.1126/science.1249098.Sleep

Yang, Y., & Tal-Gan, Y. (2019). Exploring the competence stimulating peptide (CSP) N-terminal requirements for effective ComD receptor activation in group1 Streptococcus pneumoniae. *Bioorganic Chemistry*, *89*(March), 102987. https://doi.org/10.1016/j.bioorg.2019.102987

- Yu, J., Bryant, A. P., Marra, A., Lonetto, M. A., Ingraham, K. A., Chalker, A. F., Holmes, D.
 J., Holden, D., Rosenberg, M., & Mcdevitt, D. (2001). *Characterization of the Streptococcus pneumoniae NADH oxidase that is required for infection*. 431–438.
- Zhu, L., & Lau, G. W. (2011a). Inhibition of competence development, horizontal gene transfer and virulence in streptococcus pneumoniae by a modified competence stimulating peptide. *PLoS Pathogens*, 7(9). https://doi.org/10.1371/journal.ppat.1002241
- Zhu, L., & Lau, G. W. (2011b). Inhibition of Competence Development, Horizontal Gene Transfer and Virulence in Streptococcus pneumoniae by a Modified Competence Stimulating Peptide. 7(9). https://doi.org/10.1371/journal.ppat.1002241
- Zivich, P. N., Grabenstein, J. D., Becker-Dreps, S. I., & Weber, D. J. (2018). Streptococcus pneumoniae outbreaks and implications for transmission and control: a systematic review. *Pneumonia*, 10(1). https://doi.org/10.1186/s41479-018-0055-4

APPENDICES

Appendix 1: Prioritized antigens during *Streptococcus pneumoniae* research

Gene	Synonym	Putative Function
spiR1	blpS	Regulatory protein
spiR2	blpR	Response regulator
spiH	blpH	Histidine kinase
spiP	blpC	Peptide pheromone
spiD	blpB	Transport accessory protein
spiA	blpA	ABC transporter, ATPase
spiB	blpA	ABC transporter, transmembrane domain
spiC	blpA	ABC transporter, C39 protease domain
pncA	blpI	Bacteriocin
pncB	NA	Immunity protein
pncC	NA	Hypothetical protein
pncD	blpJ	Bacteriocin
pncE	blpU/thmA	Bacteriocin
pncE2	blpK	Bacteriocin
pncF	SP0534	Hypothetical protein
pncG	SP0535	Immunity protein
pncH	blpL	Hypothetical protein
pncI	blpM	Bacteriocin
pncJ	blpN	Bacteriocin
pncK	NA	Immunity protein
pncL	SP0542	Hypothetical protein

pncM	NA	Immunity protein
pncN	blpX	Immunity protein
pncO	blpY	CAAX protease
pncP	SP0547	CAAX protease
pncQ	blpZ	Immunity protein
pncR		Bacteriocin
pncS		Hypothetical protein
pncT		Bacteriocin
pncU		Bacteriocin
pncV	blpO	Bacteriocin
pncW	spr0470	Hypothetical protein, fusion
Blp		bacteriocin-like peptide
BlpC		Peptide pheromone
PspC	CbpA/spsA	Surface Protein C, Choline-binding protein A
CbpD		Choline-binding protein D
CbpG		
		Putative serine protease, Choline-binding protein G
СbpН		Putative serine protease, Choline-binding protein G Choline-binding protein H
CbpH CbpI		
-		Choline-binding protein H
CbpI		Choline-binding protein H Choline-binding protein I
CbpI comA		Choline-binding protein H Choline-binding protein I membrane-associated peptide permease
CbpI comA comC		Choline-binding protein H Choline-binding protein I membrane-associated peptide permease Competence stimulating peptide (CSP)
CbpI comA comC comD		Choline-binding protein H Choline-binding protein I membrane-associated peptide permease Competence stimulating peptide (CSP) membrane-localized histidine kinase receptor
CbpI comA comC comD comE	hsp40	Choline-binding protein H Choline-binding protein I membrane-associated peptide permease Competence stimulating peptide (CSP) membrane-localized histidine kinase receptor cognate transcriptional regulator

Hyl	Hyaluronate lyase				
LytA	Autolysin (N-Acetyl-Muramoyl-L-Alanine Amidase)				
LytB	Peptidoglycan hydrolase, Endo-β-N-Acetylglucosamidase				
LytC	Peptidoglycan hydrolase, Lysozyme (1,4-β-N-				
Acetylmuramidase)					
BgaA	surface-associated	exoglycosidase,f	3-galactosidase		
HtrA	heat shock-induced	l serine protease			
igal	immunoglobulin A	1 protease precu	irsor		
Nox	NADH oxidase				
NanA	Sialidase A				
NanB	Neuraminidase B				
NanC	Neuraminidase C				
PcpA	Choline-Binding P	rotein A			
PcsB	putative murein hy	drolase, protein r	required for cell s	eparation B	
CbpE	choline-binding pro	otein			
RrgA	Pilus-1 Tip Protein	(Adhesin)			
RrgB	Pilus-1 Backbone I	Protein			
RrgC	Pilus-1 Anchore Pr	otein			
PAVA	Adherence and Vir	ulence protein A			
PhtA	Pneumococcal Hist	tidine Triad A			
PhtB	Pneumococcal Hist	tidine Triad B			
PhtD	Pneumococcal Hist	tidine Triad D			
PhtE	Pneumococcal Hist	tidine Triad E			
PiaA	Iron-Compound Al	BC Transporter			
PiuA	Iron-Compound Al	BC Transporter			

РррА	Pneumococcal Protective Protein A, Non-Heme Iron-Containing
	Ferritine
Ply	Pneumolysin
PotD	Polyamine transport protein D
PpmA	Foldase Protein PrsA, Proteinase Maturation A
PsaA	Pneumococcal Surface Adhehesin A
PspA	Pneumococcal Surface protein A
SpxB	Pyruvate oxidase
SOD	Superoxide dismutase
SP0189	Hypothetical protein
SP0376	DNA-binding response regulator
mntE	manganese efflux pump
SP1633	Response regulator
SP1651	Thiol peroxidase
StkP	Serine/Threonine Protein Kinase
SrtA	Sortase enzyme A
SrtH	Sortase enzyme H
Usp45	PcsB, Secreted 45-KDa Protein

Appendix 2: Scripts used

To convert genbank file format files to embl file format

• This can be done one by one as follows:

perl perlfile1.pl <NAME of GENOME file eg sequence.gb> <the output.name for the results eg sequence.embl>

• or All 209 genomes as follows:

for f in *.gbff *.gb ; do perl perlfile1.pl \$f \${f%}.embl ; done

Genbank to EMBL (perlfile1.pl)

#!/usr/local/bin/perl -w

use strict;

use Bio::SeqIO;

if (@ARGV != 2) { die "USAGE: gb2embl.pl <genbank file> <output embl file> \n"; }

```
my $seqio = Bio::SeqIO->new ('-format' => 'genbank', '-file' => "$ARGV[0]");
```

```
my $seqout = new Bio::SeqIO ('-format' => 'embl', '-file' => ">$ARGV[1]");
```

```
while ( my $seq = $seqio->next_seq) {
```

```
$seqout->write_seq ($seq)
```

}

To retrieve multi FASTA files from each of the embl files generated.

• To run the analysis for 1 file after the other:

perl perlfile2.pl <EMBL file name eg using the result from the example above sequence.embl >

• To run the analysis for all genomes in one as follows:

for f in *.embl ; do perl perlfile2.pl \$f ; done

EMBL to multi FASTA (perlfile2.pl)

#!/usr/local/bin/perl -w

use strict;

use Bio::SeqIO;

use Getopt::Std;

use File::Basename;

use Data::Dumper;

#Author: np1@sanger.ac.uk

sub usage {

die <<EOF;

Usage:

\$0: [-p <pvalue cutoff>] [-i <percentage ID cutoff>] [-m <mcl inflation>] [-s produce sybil format output] <embl files>

```
Defaults: -p 1e-5
-i off
-m 1.5
-s off
```

EOF

}

my %options;

getopts ('si:p:m:o:', \%options);

my \$pvalue = "";

my \$id = "";

my \$inflation = "";

#store defaults for output

my \$p = 0;

my \$i = 0;

my \$m = 1.5;

my \$sybil = 0;

my \$mcl;

```
my $pid;
```

```
my %count_by_organism;
if (defined $options {p}){
  $pvalue = "--pv_cutoff=$options {p}";
  $p = $options {p};
}
if (defined $options {i}){
  $id = "--pi_cutoff=$options {i}";
  $i = $options {i};
}
if (defined $options {m}){
  $inflation = "--inflation=$options {m}";
  $m = $options {m};
}
```

```
defined $options{o} and $mcl = $options{o};
```

exists \$options{s} and \$sybil = 1;

unless (scalar (@ARGV) > 1){

warn "Need two or more files for comparison";

usage;

}

foreach (@ARGV){

```
unless (-e $_) {
```

warn "You must specify the embl file locations: \$_ does not exist\n"; usage;

}

}

my @tmp_files;

my %products;

print STDERR "Producing protein files...\n";

#write files to protein fasta

```
foreach my $file (@ARGV){
```

open (FASTATMP, ">\$file.tmp") or die "Could not write to \$file.tmp: \$!";

push (@tmp_files, "\$file.tmp");

my \$stream = Bio::SeqIO -> new (-file => \$file, -format => 'embl');

while (my \$seq = \$stream->next_seq ()){

#include psudo genes but add pseudo to name
foreach my \$feature (\$seq-> get_SeqFeatures ()){

```
#print STDERR $feature->location->to_FTstring . "\n";
                      if ( $feature -> primary_tag () eq 'CDS'){
                             my $id;
                             if ($feature ->has_tag ('systematic_id')){
                               ($id) = $feature -> get tag values ('systematic id');
                              }
                             elsif ($feature ->has tag ('temporary systematic id')){
                                                                              get_tag_values
                               ($id)
                                                     $feature
                                                                    ->
                                            =
('temporary systematic id');
                              }
                              elsif ($feature ->has tag ('locus tag')){
                               ($id) = $feature -> get tag values ('locus tag');
                              }
                             else {
                               warn"Couldn't find an id for the CDS\n";
                               next;
                              }
```

```
if ($feature ->has_tag ('pseudo')){
```

```
$id = 'pseudo'. $id;
}
```

```
if (length ($feature-> spliced_seq -> translate -> seq) > 10){
    if ($feature -> has_tag ('product')){
        my @products = $feature->get_tag_values ('product');
        my $products = join (',', @products);
        $products {$id} = $products;
    }
}
```

my \$seq = \$feature -> spliced_seq -> translate -> seq;

seq = s/*//g;

print FASTATMP ">\$id\n\$seq\n";

\$count_by_organism{\$file}++;

```
}
```

else {

print STDERR "Excluding \$id.... too short\n";

}

} }

close FASTATMP;

}

To join the bac and men files separately.

Making a folder with only bac *.tmp files and men *.tmp files.

Creating a joined file in respective folders, eg

cat *.tmp > 1.all_bac_sequences

cat *.tmp > 2.all_men_sequences

BLAST

- 1. Installing blast
- 2. Runing blast as follows:

bash run_blastp.sh

Run_blastp.sh

#!/bin/env bash

#SBATCH -p batch

#SBATCH -J map.step.1

#SBATCH -n 4

module load blast/2.7.1+

makeblastdb -in 1.all_bac_sequences -input_type fasta -dbtype prot
makeblastdb -in 2.all_men_sequences -input_type fasta -dbtype prot
for f in 1.all_bac_sequences 2.all_men_sequences ; do blastp -query \$f -db \$f -outfmt 6 evalue 1e-10 -num_threads 4 > \${f%}_blastp_result.txt ; done

Make all.gg_file for all the *.tmp files and then merge them

This is a file with just the fasta header line minus the '>' symbol.

The command for each file is

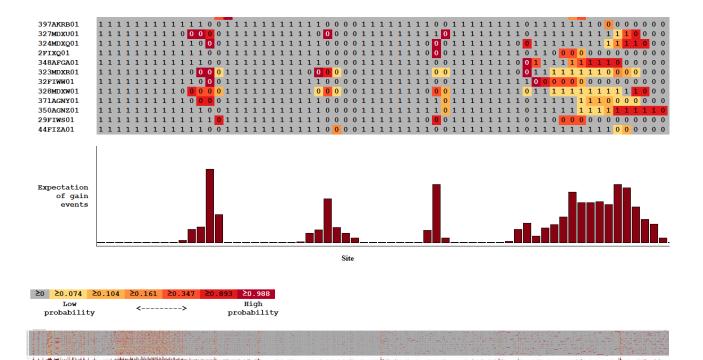
cat <file name> | grep '>' | sed 's/>//g' > <output file name>

Annotation

Annotate.sh file

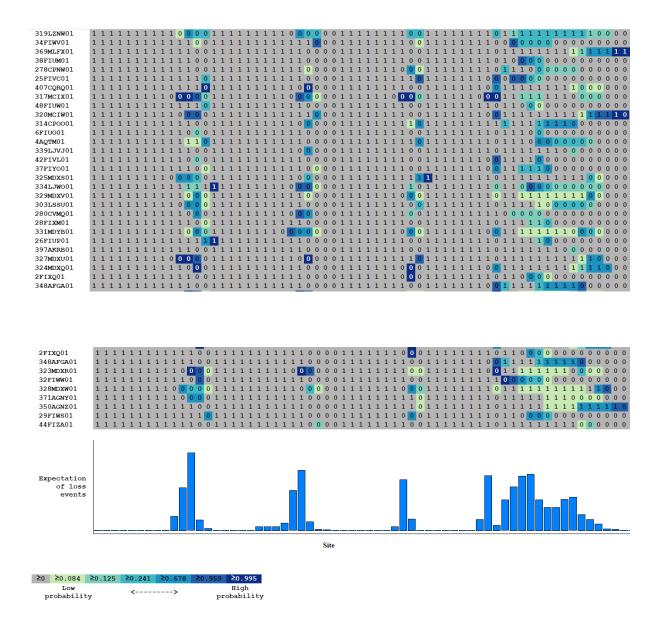
cat _bac_tigr4_AE005672.embl | grep -1 "/locus_tag=" | grep -v "gene" | grep -v "CDS" | grep -v "\-\-" | grep -v "\/transl" | grep -v "tRNA" | grep -v "rRNA" | grep -v "ncRNA" | grep -v

"tmRNA" | uniq | sed 's/FT $\forall //g'$ | tr '\n' ' | sed 's/note=//g' > 1.bac_tigr4_AE005672.embl.annotations.txt


cat _men_331.MDYB01.1.embl | grep 'locus_tag\//product=' | uniq | sed 's/FT \/product\=//g' | tr '\n' ' ' > 1.men_331.MDYB01.1.embl.annotations.txt

cat _men_327.MDXU01.1.embl | grep 'locus_tag\//product=' | uniq | sed 's/FT \/product\=//g' | tr '\n' ' ' > 1.men_327.MDXU01.1.embl.annotations.txt

Meningitis gain and loss


338LJVN01 10FIUI01 3AQT001 279LQCG01 337LJVT01 433FCRD01 21FIYL01 283CPQN01 7FIVV01 283CPQN01 7FIVV01 281CVMS01 36FIUE01 281CVMS01 36FIUE01 368MLFY01 333ACGB01 9FIXT01 330MDYA01 13FIWR01 282CPRR01 336LJWD01 347AFCD01 319LZNW01 369MIFX01	1 1
34FIWV01	
369MLFX01 38FIUM01	1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1
278CPNW01	
25FIVC01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
407CQRQ01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
317MCIX01 48FIUW01	1 1 1 1 1 1 1 1 1 0 <mark>0 0 0 0</mark> 1 1 1 1 1 1 1 1 1 0 <mark>0 0 0</mark> 0 0 1 1 1 1 1 1 0 <mark>0 0</mark> 0 1 1 1 1 1 1 1 0 <mark>0 0 1 1 1 1 1 1 1 1 </mark>
320MCIW01	
314CP0001	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6FIU001	$1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$
4AQTM01 339LJVJ01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
42FIVL01	
37FIY001	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
325MDXS01	1 1 1 1 1 1 1 1 0 0 0 0 0 <u>1</u> 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1
334LJW001	
329MDXV01 303LSSU01	1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1
280CVMQ01	
28FIXM01	1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1
331MDYB01	1 1 1 1 1 1 1 1 1 1 0 <mark>0 0 1</mark> 1 1 1 1 1 1 0 <mark>0 0 0</mark> 0 0 0 1 1 1 1 1 1 0 <mark>0</mark> 0 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
26FIUP01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
397AKRB01 327MDXU01	1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1
324MDXQ01	1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1
2FIXQ01	1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1
348AFGA01	
323MDXR01 32FIWW01	1 1 1 1 1 1 1 1 1 1 0 <mark>0 0 0 1 1 1 1 1 1</mark>
328MDXW01	
371AGNY01	1 1 1 1 1 1 1 1 1 1 0 <mark>0 0</mark> 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1

88

Phyletic pattern color-coded by loss probability

338LJVN01	1 1 1 1 1 1 1 1 1 1 1 0 <mark>0</mark> 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
10FIUI01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3AQTO01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1
279LQQG01	1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1
321LWGT01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
337LJVT01	1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1
433FCRD01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
21FIYL01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
283CPQN01	1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1
7FIVV01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
23FIVR01	1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1
36FIUE01	1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
281CVMS01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
326MDXT01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1
12FIWM01	1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1
47FIYG01	1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
368MLFY01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
299NIFF01	1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1
333AGQB01	1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1
9FIXT01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
330MDYA01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
13FIWR01	1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 0
282CPRR01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
336LJWD01	1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1
2AQTP01	1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1
347AFGD01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
319LZNW01	1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
34FIWV01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
369MLFX01	1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1

Bacteremia gain and loss

Phyletic pattern color-coded by gain probability

	<u>I mytette pattern color coucu by gum probubility</u> .
91AG0001	1110000000000111101110011100111001110
87AFGT01	11111111000000111101110011100111001110000
27FIXF01	
80AGOR01	11110 00000000001110011100111001110011
8FLUF01	000000000000000111101110011110111011100000000000111111110111001100111111011100110011000000001111111101110111011101110111011101110111011001100000000000000000000
66AFGB01	$111111111\frac{1110}{11100}00111001110011110011100$
63AGPM01	11111111111000001110011100110001000111001110010000
120AGOG01	1110000000000111001110011110111001110
52FLNE01	000000000000011100111001110011101111100000000000011111111111111111111
41FIWP01	1 <mark>1110</mark> 0000000011111 <mark>1</mark> 10 <mark>001000111101110</mark>
43FIYC01	0000000000000000110 0 0111001100011100000000
404LWKY01	
75AGPY01	
4FIV001	$1 \underbrace{0} \underbrace{0} \underbrace{0} \underbrace{0} \underbrace{0} \underbrace{0} \underbrace{0} \underbrace{0}$
57AG0101	
9FLNH01	0000000000000011110111001111011100100000
1AQTN01	0 <mark>000000000000011100</mark> 11111 <mark>1</mark> 10 <mark>0</mark> 01110 <u>01</u> 11 <u>00</u> 00000000000000000000000
3CPPN01	0 <mark>00000000000001111011100110001111<mark>11</mark>10<mark>00</mark>00000000</mark>
316LIAD01	$111\frac{111110}{000000111001110011110}$
16FIVS01	00000000000001110011100111001100000000000000000000
56LRSN01	$1 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $
398AJUZ01	00000000000011100111001110001100000000000000000000
416LKAA01	
414CHY001	
315LJKX01	
73AGPZ01	
14FIWA01	0000000000001111011100111000011100111
51FLUG01	0000000000000111001110011100111000000000000001111111111011001100111111101100110011001100110011111111111111111111
51FLUG01	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
415CIEY01	
2CPTK01	
68AGPC01	
115AGPT01	
59AGOP01	
5FIVX01	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 1 1 0
2CGAN01	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 <mark>0</mark> 0 1 1 1 0 <mark>0</mark> 1 1 1 1 0 1 1 1 1 0 0 1 1 1 0 0 0 0 0
94AGPG01	1 1 <u>1 1 1 0</u> 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0
98AGPB01	1 0 <mark>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 0 1 1 1 1 0</mark>
86AGOJ01	1 1 1 1 1 0 <mark>0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 1 1 0 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0</mark>
84AGPP01	1 1 1 1 1 0 <mark>0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1 1 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1</mark>
49FLSW01	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1FIXK01	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 1 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0
93AGOM01	1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1 0 1 1 1 0 0 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
64AGQK01	1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 0 0 0 1 1 1 0 0 1 1 0 0 0 1 1 1 0 1 1 1 1 0
2LSLM01	1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 0 0 1 1 1 1 0 1 1 1 0 0 1 1 0 0 1 1 1 0 1 1 1 1 1 1 0
85AGOL01	1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1 0 1 1 1 0 0 1 1 1 0 1 1 0
20FIYE01	
2CHJK01	
103AGQE01	1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 0
72AFAX01	1 1 1 1 1 1 1 1 <mark>1 0</mark> 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 0 1 1 1 0 0 1 1 1 0
62AGPN01	1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1 0 1 1 1 1 0 1 1 1 0 0 1 0
117AGPS01	1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0
71AGQ101	1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 <mark>0</mark> 1 1 1 0 0 1 1 1 0 0 1 1 0 0 0 1 1 1 0 1 1 1 1 0
97AGPE01	1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 0 0 1 1 1 1 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0
47FLMI01	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
35FIYK01	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0
409ASHN01	1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0
5FLML01	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
110AGOK01	1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1 0 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0
90AGPK01	
JUNGERUI	
90AGPK01	1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 0 0 1 1 1 1 0 1 1 1 0 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0
50FLNB01	
70AGOU01	1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 0 0 1 1 1 1 0 1 1 1 0 0 1 1 1 0
18FIVT01	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1 <mark>1</mark> 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
125AKRH01	
77AGPW01	1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 0 1 1 1 0
69AGOZ01	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0
67AGPD01	1 1 1 1 1 1 1 1 1 1 <mark>1 0</mark> 0 0 0 0 0 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 0 1 1 1 0
417PCZX01	
104AGOV01	
118AGPR01	1 1 1 1 1 1 1 1 1 1 1 <mark>1 1 1 1 1 1 1 0</mark> 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 0
3FIWK01	$1 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ $
1CHYN01	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0
399AJUW01	
7FLM001	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
8FIXB01	
6FLNM01	
95AGPF01	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0
11FIXV01	
127AKRA01	
82AGPQ01	1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0
5CIFI01	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 <mark>0</mark> 1 1 1 0 0 1 1 0 0 0 1 1 1 0 0 1 1 0 0 0 1 0
107AGOT01	
116AFGS01	1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1 0 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
108AGNW01	
78AGNV01	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0
109AGQA01	
124AKRI01	
406LQQK01	
418NIFG01	
92AGPH01	1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 1 0
92AGPH01 335LJWE01	1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 1 1 1 0 1 1 1 0 0 1 1 1 1 0

335LJWE01 395ALJW01 111AFCR01 89AGPL01 123AKRL01 50AGOQ01 61AGP001 119AG0A01 65AGPJ01 139FUW01 33FUW201 40FIYF01 95AGC001 99AGPA01 15FIXA01 30FIYY01 81AGCC01 17FIYX01 31FIXL01 24FIYY01 76AGPX01 100AGGY01 403MAVR01 403MAVR01 403MAVR01 101AGC001 103AGCN01 101AGC001 105AGNU01 408LNCA01	1 1 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0
4081NCA01 74AGOD01 49FTVW01 102AGOW01 60AGOB01 401AJUX01 1CVID01 410ASH001 298PCZY01 126ARRE01 106AGQJ01 114AGPU01 112AGQD01 444IJMG01 42FFVY01 112AGQD01 88AGOF01 53FLNA01 1PDVR01 39FTVE01 121AGG01 54FLMY01 4CPOR01	1 1 0
Expectation of gain events	

≥0	≥0.074	≥0.131	≥0.425	≥0.868	≥0.969	≥0.993
р	Low robabili	ty	<	>	pr	High obability

Activate Windows Go to Settings to activate Windows.

Phyletic 1	pattern co	<u>lor-coded b</u>	ov le	oss pr	obability

	Phyletic pattern color-coded by loss probability
91AG0001	
87AFGT01	1111111111100000111101110011100111001
27FIXF01	1 <mark>1110</mark> 00000000000110 <mark>0</mark> 011100110 0 011100110 <mark>0</mark> 10000000000000000000000000
80AGOR01	11110 <mark>0</mark> 0000000011100111001111011110111
8FLUF01	0000000000000001110011100111001110000000000000011111110111001100110111011001100110011001100000000000000000000
66AFGB01	
63AGPM01 120AGOG01	1111111111100000011100111001100110011100111001110000
52FLNE01	
41FIWP01	111100000000001111111000100000011110111010
43FIYC01	000000000000000000000000000000000000000
404LWKY01	
75AGPY01	1111111111 <mark>10</mark> 000011100111001111011100111010 <mark>000</mark> 00000000
4FIV001	1000000000000001110011100111001110011
57AG0101	1111110 <mark>0</mark> 000000011110 <mark>0</mark> 1110011110 <mark>0</mark> 111001110100000000
9FLNH01	$0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$
1AQTN01 3CPPN01	000000000000000111001111111000111001110000
316LIAD01	
16FIVS01	000000000000000000000000000000000000000
56LRSN01	$1 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $
398AJUZ01	0000000000000000111001110011100111000000
4161KAA01	1 <mark>111110</mark> 000000001110011100111100111001
414CHY001	000000000000111001111011110111101111001110000
315LJKX01	0000000000001110011100111001110011100000
315LJKX01	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0
73AGPZ01	
14FIWA01	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 0 0 1 0 0 0 0 1 1 1 0 0 1 1 1 0
51FLUG01	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
415CIEY01	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 1 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0
2CPTK01	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 <mark>0</mark> 1 1 1 1 <mark>0</mark> 1 0 <mark>0</mark> 0 0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0
68AGPC01	1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
115AGPT01 59AGOP01	1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0
59AG0P01 5FIVX01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 1 0
2CGAN01	
94AGPG01	1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
98AGPB01	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
86AGOJ01	1 1 1 1 1 0 <mark>0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0</mark>
84AGPP01	1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1 <u>1 0 1 1 1 0 0 1 1 1 1</u>
49FLSW01	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1 0
1FIXK01 93AGOM01	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
64AGQK01	
2LSLM01	
85AGOL01	1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1 0 1 1 1 0 0 1 1 1 0 0 1 1 0
20FIYE01	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 1 0
2CHJK01	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1 0
103AGQE01	1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 1 1 1 0
72AFAX01	$1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$
62AGPN01 117AGPS01	1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 1 1 1 0 0 1 1 1 0
71AGQ101	
97AGPE01	1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 0 0 1 1 1 1 0 1 1 1 0 0 1 1 1 0 0 1 1 0
97AGPE01	1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
47FLMI01	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
35FIYK01	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1 0
409ASHN01 5FLML01	1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1 0 1 1 1 0 0 1 1 1 0
110AGOK01	
90AGPK01	
50FLNB01	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
70AGOU01	1 1 1 1 1 1 <mark>1 1 1 0</mark> 0 0 0 0 0 0 1 1 1 1 0 1 1 1 0 0 1 1 1 1 <mark>0</mark> 1 1 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0
18FIVT01	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0
125AKRH01	1 <mark>0</mark> 0 0 <u>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 </u>
77AGPW01	1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0
69AGOZ01 67AGPD01	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 0 0 1 1 1 1 1 1 1 0
417PCZX01	1 1 1 1 1 1 1 1 1 <mark>1 0</mark> 0 0 0 0 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1
104AGOV01	
118AGPR01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3FIWK01	1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1 0 1 1 1 1 0 1
1CHYN01	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0
399AJUW01	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 0 1 0 0 0 0 1 1 1 0 0 1 1 1 0
7FLM001	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8FIXB01 6FLNM01	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
95AGPF01	
11FIXV01	
127AKRA01	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 1 1 1 0
82AGPQ01	1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1
5CIFI01	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
107AGOT01	

107AGOTO1 116AFCS01 108AGNW01 78AGNV01 109AGQA01 124AKR101 406LQQK01 418NIFC01 92AGPH01 335LJWE01 335LJWE01 111AFGR01 89AGPL01 123AKR101 58AGOQ01 61AGP001 139FLW01 109FLW01 109FLW01 33FLWX01 40FIYP01 109FLC01 35FLX01 30FLY01 81AGOC01 81AGOC01	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1	0 0 0 0	0 0	$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $		0 0 1 0 0 1		1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 0	0 1 0 1	1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0 0 0 0			$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 1 . 1 . 0 . 1 . 0 . 1 . 0 . 1 . 0 . 1 . 0 . 0 . 1 . 0	1 1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0	1 1 1 1 0 0 1 1 0 0	1 0 <t< th=""><th>0 0 0 0</th><th>0 0 0 0</th><th>0 0 0 0</th><th>0 0 0 0</th><th>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</th><th>0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <th>0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1</th><th>0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1</th><th>1 1 1 1 1 1 </th><th>D) L D) D) D) D) D) D) D) D) D) D)</th></th></t<>	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <th>0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1</th> <th>0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1</th> <th>1 1 1 1 1 1 </th> <th>D) L D) D) D) D) D) D) D) D) D) D)</th>	0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1	0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1	1 1 1 1 1 1	D) L D) D) D) D) D) D) D) D) D) D)
81AGOC01 17FIYX01 31FTXL01 24FIYV01 76AGPX01 403MAVR01 403MAVR01 403MAVR01 83AGON01 101AGOX01 101AGOX01 103AGPV01 105AGNU01 408LNCA01 408LNCA01 409ENCA01 400LX01 400AGOR01 401AJJX01 102AGOW01 60AGOR01 401AJJX01 102AGCW01 102AGCW01 105AGQJ01 114AGPU01 112AGQD01 444LJMG01	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0) 1 :) 1 :) 1 :) 1 :) 1 :) 1 :) 1 :) 1 :) 1 :) 1 :) 1 :) 1 :) 1 :) 1 :) 1 :) 1 :) 1 :) 1 :) 1 :) 1 :) 1 :) 1 :) 1 :) 1 :) 1 :) 1 :) 1 :) 1 :) 1 :) 1 :) 1 :) 1 :) 1 :) 1 :) 1 :) 1 :		0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1		1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 1 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\$	0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 </th <th>1 1 1 1 1 1 1 1 1 1 1 1 1 1</th> <th>$\begin{array}{c} 1 & 1 \\ 1 & 1 \\$</th> <th>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</th> <th>0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1</th> <th>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <t< th=""><th>0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1</th><th>0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th></th><th></th><th></th><th></th><th>0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0</th><th>1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th>1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0</th><th>1 2 0 0 0 0 0 0 1 2 0 0 1 2 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th>1 1 1 2 0 0 1 1 1 2 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</th><th>1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th></t<></th>	1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <t< th=""><th>0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1</th><th>0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th></th><th></th><th></th><th></th><th>0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0</th><th>1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th>1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0</th><th>1 2 0 0 0 0 0 0 1 2 0 0 1 2 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th>1 1 1 2 0 0 1 1 1 2 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</th><th>1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th></t<>	0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1	0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0	1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0	1 2 0 0 0 0 0 0 1 2 0 0 1 2 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 2 0 0 1 1 1 2 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
22FIVJ01 400AJUX01 88AGOF01 53FLNA01 1PDVR01 39FIVE01 121AggG01 54FLMY01 4FLUU01 4CPOR01	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0	0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	1 1 (1 1 (1 1 (1 1 1 (1 1 (1 1 (1 1 (1 1 (1 0 1 0 0 1 0 0 1 1 0 1 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1		0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 0	0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	0 0 1 1 1 1 1 0 1 0 1 1 1 1 1 1	0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1	0 (1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2) 0 L 1) 0 L 1 L 1 L 0 L 0 L 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0) 0) 0) 0) 0) 0) 0) 0) 0) 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0	0 (0 0 (0 0 (0 0 (0 0 (0 0 (0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 1	0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1	0 (1 2 1 2 1 2 0 (0 (1 2 1 2	0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1	0 1 1 0 0 1 1
Expectation of loss events	20.131	≥0.322	≥0.0≤	320	≥0.96		≥0.99 High	95	[,	Si	ite																					_ .

Appendix 4: Meningitis strains metadata

Assembly	WGS	BioSample	Taxonomy (strain)	Serotyp
	Sequencing			e
	Accession			
	number			
GCA_000211875.	AFGA00000000	SAMN0079275	Streptococcus	6B
2		9	pneumoniae	
			GA17545	
GCA_000211915.	AFGD00000000	SAMN0079277	Streptococcus	23F
2		8	pneumoniae	
			GA41301	
GCA_000232025.	AGNY0000000	SAMN0079279	Streptococcus	19A
2	0	2	pneumoniae	
			GA44288	
GCA_000232045.	AGNZ0000000	SAMN0076266	Streptococcus	19F
2		0	pneumoniae	
			GA47281	
GCA_000233125.	AGQB0000000	SAMN0079269	Streptococcus	15B
2		7	pneumoniae	
			Netherlands15B-37	
GCA_000334655.	AKRB00000000	SAMN0229952	Streptococcus	N/A
1		4	pneumoniae	
			PNI0006	

AQTM0000000	SAMN0247083	Streptococcus	23F
0	4	pneumoniae 357	
AQTO00000000	SAMN0247083	Streptococcus	6
	5	pneumoniae 801	
AQTP00000000	SAMN0247084	Streptococcus	6
	5	pneumoniae 845	
CPNW0000000	SAMEA102085	Streptococcus	6B
0	5	pneumoniae strain	
		SN34677	
CPOO00000000	SAMEA102083	Streptococcus	6B
	0	pneumoniae strain	
		SPN4876	
CPQN00000000	SAMEA102003	Streptococcus	6A
	7	pneumoniae strain	
		1014-00	
CVMS0000000		Streptococcus	19F
	SAMEA102018	pneumoniae strain	
	7	SN27474	
FCRD00000000		Streptococcus	N/A
	SAMEA223905	pneumoniae strain	
	7	2842STDY5644437	
CPRR00000000	SAMEA102071	Streptococcus	19F
	1	pneumoniae strain	
		41_PMEN14	
	0 AQTOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO	0 4 AQTO0000000 SAMN0247083 5 SAMN0247084 AQTP00000000 SAMN0247084 0 SAMN0247084 5 SAMN0247084 6 SAMN0247084 6 SAMN0247084 7 SAMEA102085 6 SAMEA102083 7 SAMEA102018 7 SAMEA102018 <tr< td=""><td>04permanantAQTO000000SAMN0247080SreptococcusAQTP0000000SAMN0247080Sreptococcus5permanantSreptococcusCPNW000000SAMEA10208Sreptococcus0SameantSreptococcus0SameantSreptococcus0SameantSreptococcus0SameantSreptococcus0SameantSreptococcus0SameantSreptococcus0Sameant<td< td=""></td<></td></tr<>	04permanantAQTO000000SAMN0247080SreptococcusAQTP0000000SAMN0247080Sreptococcus5permanantSreptococcusCPNW000000SAMEA10208Sreptococcus0SameantSreptococcus0SameantSreptococcus0SameantSreptococcus0SameantSreptococcus0SameantSreptococcus0SameantSreptococcus0Sameant <td< td=""></td<>

GCF_001167925.	CQRQ00000000	SAMEA970215	Streptococcus		3
1			pneumoniae	strain	
			BHN647		
GCF_001329135.	CVMQ0000000	SAMEA102020	Streptococcus		6B
1	0	5	pneumoniae	strain	
			SPN3402		
	FIUO00000000		Streptococcus		1
GCF_900055915.		SAMEA867917	pneumoniae	strain	
1			C13215X		
GCF_900048875.	FIUP00000000	SAMEA867918	Streptococcus		1
1			pneumoniae	strain	
			C13181X		
	FIUE00000000		Streptococcus		1
GCF_900063685.		SAMEA867948	pneumoniae	strain	
1			C11020		
GCF_900050465.	FIUI00000000		Streptococcus		1
1		SAMEA867944	pneumoniae	strain	
			C14249		
GCF_900050485.	FIUM00000000	SAMEA867765	Streptococcus		1
1			pneumoniae	strain	
			C14099X		
GCF_900049715.	FIVR00000000	SAMEA867837	Streptococcus		10B
1			pneumoniae	strain	
			B16827		

	FIVV00000000		Streptococcus		12B
GCF_900053255.		SAMEA867793	pneumoniae	strain	
1			B16221X		
	FIVC00000000	SAMEA867911	Streptococcus		1
GCF_900052565.			pneumoniae	strain	
1			B14935		
GCF_900061925.	FIVL00000000		Streptococcus		1
1		SAMEA867923	pneumoniae	strain	
			C16000X		
	FIUW00000000		Streptococcus		1
GCF_900056895.		SAMEA867834	pneumoniae	strain	
1			B17333		
	FIWM00000000	SAMEA867795	Streptococcus		12F
GCF_900053845.			pneumoniae	strain	
1			B17731X		
GCF_900052595.	FIWW00000000	SAMEA867909	Streptococcus		23F
1			pneumoniae	strain	
			B15188		
	FIWR00000000	SAMEA867908	Streptococcus		12B
GCF_900054615.			pneumoniae	strain	
1			B15249		
	FIWS00000000		Streptococcus		15C
GCF_900063735.		SAMEA867852	pneumoniae	strain	
1			B10622		

GCF_900049205.	FIWV00000000	SAMEA867836	Streptococcus		13
1			pneumoniae	strain	
			B16392		
GCF_900055935.	FIYO00000000	SAMEA867841	Streptococcus		06C
1			pneumoniae	strain	
			B15901		
	FIYL00000000	SAMEA867906	Streptococcus		06A
GCF_900054635.			pneumoniae	strain	
1			C14215		
GCF_900049735.	FIXM00000000		Streptococcus		25F/A
1		SAMEA867763	pneumoniae	strain	
			C14376X		
	FIXQ00000000		Streptococcus		35B
GCF_900052025.		SAMEA867913	pneumoniae	strain	
1			B14721		
GCF_900051625.	FIXT00000000	SAMEA867766	Streptococcus		4
1			pneumoniae	strain	
			C14560X		
GCF_900054625.	FIYG00000000	SAMEA867916	Streptococcus		5
1			pneumoniae	strain	
			C15085X		
GCF_001581695.	LJWO00000000	SAMN0396464	Streptococcus		N/A
1		9	pneumoniae	strain	
			NTPn 44		

	FIZA00000000		Streptococcus		09A
GCF_900052045.		SAMEA867854	pneumoniae	strain	
1			B10027		
GCF_001581145.	LJVJ00000000	SAMN0396461	Streptococcus		N/A
1		9	pneumoniae	strain	
			NTPn 1		
GCF_001581215.	LJVN00000000	SAMN0396462	Streptococcus		N/A
1		1	pneumoniae	strain	
			NTPn 3		
	LJVT00000000	SAMN0396462	Streptococcus		N/A
GCF_001581295.		7	pneumoniae	strain	
1			NTPn 12		
GCF_001581535.	LJWD00000000	SAMN0396463	Streptococcus		N/A
1		8	pneumoniae	strain	
			NTPn 30		
GCF_001637405.	LQQG00000000		Streptococcus		6B
1		SAMN0438765	pneumoniae	strain	
		3	CCUG 1350		
	MCIX00000000	SAMN0433732	Streptococcus		12F
GCF_001715895.		7	pneumoniae	strain	
1			29170-12F		
GCF_001578475.	LSSU00000000	SAMN0449689	Streptococcus		19A
1		5	pneumoniae	strain	
			MTY3270234	OSN8	
			14		

GCF_001697005.	LWGT00000000	SAMN0433732	Streptococcus		N/A
1		2	pneumoniae	strain	
			22522		
GCF_001735995.	LZNW0000000	SAMN0433732	Streptococcus		6A
1	0	6	pneumoniae	strain	
			29170-6A		
	MCIW00000000		Streptococcus		N/A
GCF_001715865.		SAMN0433732	pneumoniae	strain	
1		3	22421		
	MDXV0000000	SAMN0433730	Streptococcus		14
GCF_001719775.	0	8	pneumoniae	strain	
1			12985-14		
GCF_001719975.	MDXU0000000	SAMN0433731	Streptococcus		9V
1	0	0	pneumoniae	strain	
			16599-9V		
GCF_001719815.	MDXT0000000	SAMN0433731	Streptococcus		15A
1	0	1	pneumoniae	strain	
			16599-15A		
	MDXQ0000000		Streptococcus		3
GCF_001719885.	0	SAMN0433731	pneumoniae	strain	
1		3	18839-3		
GCF_001719755.	MDXR0000000		Streptococcus		N/A
1	0	SAMN0433731	pneumoniae	strain	
		4	18856		

GCF_001719945.	MDXS0000000	SAMN0433731	Streptococcus		19A
1	0	2	pneumoniae	strain	
			18839-19A		
GCF_001982685.	MLFX00000000	SAMN0591286	Streptococcus		18C
1		6	pneumoniae	strain	
			CCUG 35561		
GCF_001982715.	MLFY00000000	SAMN0591297	Streptococcus		14
1		8	pneumoniae	strain	
			CCUG 32672		
	NIFF00000000	SAMN0719100	Streptococcus		N/A
GCF_002224185.		7	pneumoniae	strain	
1			TVM3		
	MDXW0000000		Streptococcus		6A
GCF_001719805.	0	SAMN0433730	pneumoniae	strain	
1		9	12985-6A		
GCF_001719895.	MDYA0000000	SAMN0433730	Streptococcus		N/A
1	0	1	pneumoniae	strain	
			7204		
GCF_001719965.	MDYB0000000	SAMN0433730	Streptococcus		N/A
1	0	0	pneumoniae	strain	
			7200		

Appendix 5: Bacteremia strains metadata

Assembly	WGS	BioSampl	Taxonomy	Sero	Collec	Host	Geographi
	(Sequenci	e	(strain)	type	tion	diseas	cal location
	ng				date	e	
	Accession						
	Number)						
GCA_0002	AFGB000	SAMN00	Streptococ	09V	3-Jan-	Pneu	USA:
11895.2	00000	792760	cus		01	monia	Georgia
			pneumonia				
			е				
			GA17570				
GCA_0001	AFAX000	SAMN00	Streptococ	19F	5-Feb-	Bacter	USA:
94885.2	00000	792717	cus		95	emia	Georgia
			pneumonia				
			е				
			GA04375				
GCA_0002	AFGR000	SAMN00	Streptococ	1	16-	Pneu	USA:
12515.2	00000	792680	cus		Aug-	monia	Georgia
			pneumonia		06		
			е				
			GA47901				
GCA_0002	AFGS000	SAMN00	Streptococ	19A	18-	Bacter	USA:
12535.2	00000	792663	cus		Mar-	emia	Georgia
			pneumonia		06		

			е				
			GA47368				
GCA_0002	AFGT000	SAMN00	Streptococ	33F	23-	Menin	USA:
12555.2	00000	792779	cus		Feb-	gitis	Georgia
			pneumonia		04		
			е				
			GA41317				
GCA_0002	AGNU00	SAMN00	Streptococ	19F	19-	N/A	USA:
31945.2	000000	792729	cus		Jan-99		Georgia
			pneumonia				
			<i>e</i> GA11184				
GCA_0002	AGNV00	SAMN00	Streptococ	19A	5-	Pneu	USA:
31965.2	000000	792669	cus		Mar-	monia	Georgia
			pneumonia		06		
			е				
			GA47502				
GCA_0002	AGNW00	SAMN00	Streptococ	19A	2005	N/A	USA:
31985.2	000000	792710	cus				Maryland
			pneumonia				
			e 4027-06				
GCA_0002	AGOA00	SAMN00	Streptococ	06C	26-	Bacter	USA:
32065.2	000000	792657	cus		Dec-	emia	Georgia
			pneumonia		05		
			е				
			GA47033				

GCA_0002	AGOB00	SAMN00	Streptococ	19A	11-	Pneu	USA:
32085.2	000000	792788	cus		May-	monia	Georgia
			pneumonia		05		
			е				
			GA43265				
GCA_0002	AGOC00	SAMN00	Streptococ	19A	26-	Pneu	USA:
32105.2	000000	792795	cus		Apr-	monia	Georgia
			pneumonia		05		
			е				
			GA44452				
GCA_0002	AGOD00	SAMN00	Streptococ	19F	7-	Pneu	USA:
32125.2	000000	792682	cus		Nov-	monia	Georgia
			pneumonia		06		
			е				
			GA49138				
GCA_0002	AGOE00	SAMN00	Streptococ	06B	26-	Bacter	USA:
32145.2	000000	792750	cus		Jun-	emia	Georgia
			pneumonia		01		
			е				
			GA16531				
GCA_0002	AGOF000	SAMN00	Streptococ	19A	2005	N/A	USA:
32165.2	00000	792776	cus				Connecticut
			pneumonia				
			e 6901-05				

GCA_0002	AGOG00	SAMN00	Streptococ	19A	2005	N/A	USA:
32185.2	000000	792656	cus				Maryland
			pneumonia				
			e 7286-06				
GCA_0002	AGOI000	SAMN00	Streptococ	19A	9-	Bacter	USA:
32225.2	00000	792796	cus		May-	emia	Georgia
			pneumonia		05		Ũ
			e				
			GA44500				
	4 0 1000			10.4	25	D	LICA
GCA_0002	AGOJ000	SAMN00	Streptococ	19A	25-	Pneu	USA:
32245.2	00000	792780	cus		Mar-	monia	Georgia
			pneumonia		04		
			е				
			GA41410				
GCA_0002	AGOK00	SAMN00	Streptococ	19A	21-	Pneu	USA:
32265.2	000000	792684	cus		Dec-	monia	Georgia
			pneumonia		06		
			е				
			GA49447				
GCA_0002	AGOL00	SAMN00	Streptococ	06B	30-	Pneu	USA:
			_	000			
32285.2	000000	792782	cus		Apr-	monia	Georgia
			pneumonia		04		
			е				
			GA41538				

GCA_0002	AGOM00	SAMN00	Streptococ	19A	2005	N/A	USA: New
32305.2	000000	792754	cus				York
			pneumonia				
			e 5787-06				
GCA_0002	AGOO00	SAMN00	Streptococ	19A	29-	Bacter	USA:
32345.2	000000	792764	cus		Dec-	emia	Georgia
			pneumonia		01		
			е				
			GA18523				
GCA_0002	AGOP000	SAMN00	Streptococ	19A	9-Feb-	Bacter	USA:
32365.2	00000	792791	cus		05	emia	Georgia
			pneumonia				
			е				
			GA44194				
GCA_0002	AGOQ00	SAMN00	Streptococ	23F	2-Apr-	Pneu	USA:
32385.2	000000	792793	cus		05	monia	Georgia
			pneumonia				
			е				
			GA44378				
GCA_0002	AGON00	SAMN00	Streptococ	19A	2005	N/A	USA:
32325.2	000000	792787	cus				Minnesota
			pneumonia				
			e 6963-05				

GCA_0002	AGOR00	SAMN00	Streptococ	19A	19-	Pneu	USA:
32405.2	000000	792797	cus		May-	monia	Georgia
			pneumonia		05		
			<i>e</i> GA44511				
GCA_0002	AGOT00	SAMN00	Streptococ	4	22-	Pneu	USA:
32445.2	000000	792725	cus		Feb-	monia	Georgia
			pneumonia		98		
			е				
			GA07643				
GCA_0002	AGOX00	SAMN00	Streptococ	14	26-	N/A	USA:
32525.2	000000	792736	cus		Feb-		Georgia
			pneumonia		99		6
			e		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
			GA13338				
				0.07			
GCA_0002	AGOU00	SAMN00	Streptococ	06B	7-	Pneu	USA:
32465.2	000000	792730	cus		Mar-	monia	Georgia
			pneumonia		99		
			<i>e</i> GA11304				
GCA_0002	AGOV00	SAMN00	Streptococ	19A	18-	Pneu	USA:
32485.2	000000	792731	cus		May-	monia	Georgia
			pneumonia		99		
			<i>e</i> GA11426				
GCA_0002	AGOW00	SAMN00	Streptococ	19F	23-	Bacter	USA:
32505.2	000000	792733	cus		Dec-	emia	Georgia
					99		

			pneumonia				
			e GA11663				
GCA_0002	AGOY00	SAMN00	Streptococ	19F	31-	Pneu	USA:
32545.2	000000	792738	cus		Mar-	monia	Georgia
			pneumonia		99		
			е				
			GA13455				
GCA_0002	AGOZ00	SAMN00	Streptococ	14	10-	Septic	USA:
32565.2	000000	792739	cus		Apr-	arthrit	Georgia
			pneumonia		99	is,	
			е			Septic	
			GA13494			knee	
GCA_0002	AGPA000	SAMN00	Streptococ	18C	15-	Bacter	USA:
32585.2	00000	792741	cus		May-	emia	Georgia
			pneumonia		99		
			е				
			GA13637				
GCA_0002	AGPB000	SAMN00	Streptococ	33F	15-	Bacter	USA:
32605.2	00000	792744	cus		Aug-	emia	Georgia
			pneumonia		99		
			е				
			GA13856				
GCA_0002	AGPC000	SAMN00	Streptococ	19F	7-Apr-	Bacter	USA:
32625.2	00000	792747	cus		00	emia	Georgia
			pneumonia				

			е				
			GA14798				
GCA_0002	AGPD000	SAMN00	Streptococ	19F	3-	Pneu	USA:
32645.2	00000	792748	cus	171	Nov-	monia	
52045.2	00000	/92/40				moma	Georgia
			pneumonia		00		
			е				
			GA16121				
GCA_0002	AGPE000	SAMN00	Streptococ	06B	16-	Bacter	USA:
32665.2	00000	792749	cus		Jan-01	emia	Georgia
			pneumonia				
			e				
			GA16242				
GCA_0002	AGPF000	SAMN00	Streptococ	19F	15-	Pneu	USA:
32685.2	00000	792751	cus		Feb-	monia	Georgia
			pneumonia		02		C
			-		02		
			e				
			GA16833				
GCA_0002	AGPG000	SAMN00	Streptococ	23F	14-	Pneu	USA:
32705.2	00000	792752	cus		Sep-	monia	Georgia
			pneumonia		00		
			е				
			GA17227				
GCA_0002	AGPH000	SAMN00	Streptococ	6A	20-	N/A	USA:
32725.2	00000	792755	cus		Oct-		Georgia
			pneumonia		00		

			е				
			GA17328				
GCA_0002	AGPJ000	SAMN00	Streptococ	06A	10-	Bacter	USA:
32765.2	00000	792762	cus		Apr-	emia	Georgia
			pneumonia		01		
			е				
			GA17971				
GCA_0002	AGPK000	SAMN00	Streptococ	06A	9-	Pneu	USA:
32785.2	00000	792766	cus		Aug-	monia	Georgia
			pneumonia		02		
			е				
			GA19077				
GCA_0002	AGPL000	SAMN00	Streptococ	19F	22-	Cellul	USA:
32805.2	00000	792768	cus		May-	itis	Georgia
			pneumonia		03		
			е				
			GA19451				
GCA_0002	AGPM00	SAMN00	Streptococ	19A	8-Feb-	Pneu	USA:
32825.2	000000	792777	cus		04	monia	Georgia
			pneumonia				
			е				
			GA41277				
GCA_0002	AGPN000	SAMN00	Streptococ	06A	2-Apr-	Pneu	USA:
32845.2	00000	792781	cus		04	monia	Georgia
			pneumonia				

			е				
			GA41437				
GCA_0002	AGPO000	SAMN00	Streptococ	19A	12-	Pneu	USA:
32865.2	00000	792783	cus		May-	monia	Georgia
			pneumonia		04		
			е				
			GA41565				
GCA_0002	AGPP000	SAMN00	Streptococ	14	19-	Pneu	USA:
32885.2	00000	792784	cus		Jul-04	monia	Georgia
			pneumonia				
			е				
			GA41688				
GCA_0002	AGPQ000	SAMN00	Streptococ	19A	20-	Pneu	USA:
32905.2	00000	792789	cus		Sep-	monia	Georgia
			pneumonia		05		
			е				
			GA43380				
GCA_0002	AGPR000	SAMN00	Streptococ	07F	24-	Pneu	USA:
32925.2	00000	792661	cus		Feb-	monia	Georgia
			pneumonia		06		
			e				
			GA47283				
GCA_0002	AGPS000	SAMN00	Streptococ	19A	16-	Septic	USA:
32945.2	00000	792662	cus		Mar-	shock,	Georgia
			pneumonia		06		

			е			Pneu	
			GA47360			monia	
GCA_0002	AGPT000	SAMN00	Streptococ	19F	16-	Pneu	USA:
32965.2	00000	792664	cus		Mar-	monia	Georgia
			pneumonia		06		
			е				
			GA47373				
GCA_0002	AGPU000	SAMN00	Streptococ	19A	21-	Septic	USA:
32985.2	00000	792665	cus		Mar-	shock,	Georgia
			pneumonia		06	Pneu	
			е			monia	
			GA47388				
GCA_0002	AGPV000	SAMN00	Streptococ	07F	4-Apr-	Pneu	USA:
33005.2	00000	792666	cus		06	monia	Georgia
			pneumonia				
			е				
			GA47439				
GCA_0002	AGPW00	SAMN00	Streptococ	19A	8-Jun-	Pneu	USA:
33025.2	000000	792674	cus		06	monia	Georgia
			pneumonia				
			е				
			GA47688				
GCA_0002	AGPX000	SAMN00	Streptococ	19A	6-Jul-	Pneu	USA:
33045.2	00000	792677	cus		06	monia	Georgia
			pneumonia				

			е				
			GA47778				
GCA_0002	AGPY000	SAMN00	Streptococ	19F	11-	Pneu	USA:
33065.2	00000	792681	cus		Sep-	monia	Georgia
			pneumonia		06		
			е				
			GA47976				
GCA_0002	AGPZ000	SAMN00	Streptococ	06C	11-	Bacter	USA:
33085.2	00000	792686	cus		Aug-	emia	Georgia
			pneumonia		07		
			е				
			GA52306				
GCA_0002	AGQA00	SAMN00	Streptococ	19A	17-	Pneu	USA:
33105.2	000000	792690	cus		Aug-	monia	Georgia
			pneumonia		08		
			е				
			GA54644				
GCA_0002	AGQD00	SAMN00	Streptococ	19A	24-	Pneu	USA:
33165.2	000000	792675	cus		Jun-	monia	Georgia
			pneumonia		06		
			е				
			GA47751				
GCA_0002	AGQE00	SAMN00	Streptococ	19A	2005	N/A	USA:
33185.2	000000	792732	cus				Maryland

			pneumonia				
			e 5185-06				
GCA_0002	AGQG00	SAMN00	Streptococ	19F	1999	Bacter	USA:
33225.2	000000	792655	cus			emia	Tennessee
			pneumonia				
			e 3063-00				
GCA_0002	AGQI000	SAMN00	Streptococ	3	4-Jun-	Bacter	USA:
33265.2	00000	792724	cus		97	emia	Georgia
			pneumonia				
			е				
			GA07228				
GCA_0002	AGQJ000	SAMN00	Streptococ	09V	22-	Bacter	USA:
33285.2	00000	792727	cus		Dec-	emia	Georgia
			pneumonia		97		
			е				
			GA08780				
GCA_0002	AGQK00	SAMN00	Streptococ	3	12-	Pneu	USA:
33305.2	000000	792769	cus		Jan-04	monia	Georgia
			pneumonia				
			е				
			GA19690				
GCA_0003	AJUW00	SAMN02	Streptococ	N/A	N/A	N/A	N/A
55985.1	000000	436862	cus				
			pneumonia				
			e PNI0197				

55965.1 00000 436798 cus Image: cus pneumonia e PNI0159 Image: cus pneumonia e PNI0159 GCA_0003 AJUY000 SAMN02 Streptococ N/A N/A N/A 55945.1 00000 436799 cus pneumonia e PNI0164 Image: cus pneumonia e PNI0164 Image: cus pneumonia e PNI0164 Image: cus pneumonia e PNI0164 GCA_0003 AJUZ000 SAMN02 Streptococ N/A N/A N/A GCA_0003 AJUZ000 SAMN02 Streptococ N/A N/A N/A GCA_0003 AJUZ000 SAMN02 Streptococ N/A N/A N/A 55925.1 00000 436684 cus Image: cus pneumonia e pneumonia e pneumonia e PNI0164 Image: cus pneumonie PNI0164 Image: cus pneumonie e PNI0164	
GCA_0003 AJUY000 SAMN02 Streptococ N/A N/A N/A 55945.1 00000 436799 cus Image: Comparison of the second secon	
GCA_0003 AJUY000 SAMN02 Streptococ N/A N/A N/A 55945.1 00000 436799 cus Image: Comparison of the streptococ	
55945.1 00000 436799 cus	
pneumonia e PNI0164pneumonia e PNI0164pneumonia e PNI0164GCA_0003AJUZ000SAMN02StreptococN/AN/AN/A	
e PNI0164e PNI0164GCA_0003AJUZ000SAMN02StreptococN/AN/AN/A	
e PNI0164e PNI0164GCA_0003AJUZ000SAMN02StreptococN/AN/AN/A	
GCA_0003 AJUZ000 SAMN02 Streptococ N/A N/A N/A	
55925.1 00000 436684 <i>cus</i>	
pneumonia	
e PNI0212	
GCA_0003 AKRA00 SAMN02 Streptococ N/A N/A N/A N/A	
34635.1 000000 299523 <i>cus</i>	
pneumonia	
<i>e</i> PNI0002	
GCA_0003 AKRE000 SAMN02 Streptococ N/A N/A N/A	
34715.1 00000 299527 <i>cus</i>	
pneumonia	
e PNI0009	
GCA_0003 AKRH00 SAMN02 Streptococ N/A N/A N/A N/A	
34775.1 000000 299530 <i>cus</i>	
pneumonia	
<i>e</i> PNI0153	

GCA_0003	AKRI000	SAMN02	Streptococ	N/A	N/A	N/A	N/A
34795.1	00000	299531	cus				
			pneumonia				
			<i>e</i> PNI0199				
GCA_0003	AKRL000	SAMN02	Streptococ	N/A	N/A	N/A	N/A
34855.1	00000	299534	cus				
			pneumonia				
			<i>e</i> PNI0446				
GCA_0003	ALJW000	SAMN02	Streptococ	N/A	N/A	N/A	N/A
48705.1	00000	436861	cus	10/11	1011	1.0.1 1	
-10705.1	00000	450001					
			pneumonia				
			<i>e</i> PCS8235				
GCA_0003	AQTN00	SAMN02	Streptococ	22F/	Sep-	N/A	Russia
85795.1	000000	470853	cus	А	08		
			pneumonia				
			e 2009				
GCA_0004	ASHN000	SAMN02	Streptococ	6B	1999	N/A	Sweden:
95335.1	00000	471309	cus				Stockholm
			pneumonia				
			e BHN191				
GCA_0004	ASHO000	SAMN02	Streptococ	6B	2001	N/A	Sweden:
95395.1	00000	471308	cus				Stockholm
			pneumonia				
			<i>e</i> BHN237				

GCA_0013	CGAN00	SAMEA6	Streptococ	19F	1999	N/A	Malaysia
30795.1	000000	82579	cus				
			pneumonia				
			e strain				
			M01_9995				
GCA_0013	CHJK000	SAMEA6	Streptococ	6B	1994	N/A	Iceland:
30675.1	00000	82560	cus				Reykjavik
			pneumonia				
			e strain				
			spnIC203				
GCA_0013	CHYN00	SAMEA6	Streptococ	6B	1993	Otitis	Iceland:
30695.1	000000	82563	cus			media	Eyjafjordur
			pneumonia				
			e strain				
			spnIC192				
GCA_0013	CHYO00	SAMEA6	Streptococ	19F	2000	N/A	China:
30055.1	000000	82310	cus				Taiwan
			pneumonia				
			e strain				
			Tw01_005				
			7				
GCA_0013	CIEY000	SAMEA6	Streptococ	19F	2000	N/A	China:
30075.1	00000	82312	cus				Taiwan
			pneumonia				
			e strain				

			Tw01_005				
			9				
GCA_0013	CIFI0000	SAMEA1	Streptococ	6B	2008	Pneu	Peru: Lima
29535.1	0000	020785	_	012	2000		i ora: Emila
29333.1	0000	020783	cus			monia	
			pneumonia				
			e strain				
			LMG2290				
GCA_0011	CPLL000	SAMEA1	Streptococ	6B	2007	Pneu	Peru: Lima
50665.1	00000	020637	cus			monia	
			pneumonia				
			e strain				
			LMG2230				
GCA_0011	CPOR000	SAMEA1	Streptococ	6B	2009	Pneu	Peru: Lima
15005.1	00000	020747	cus			monia	
			pneumonia				
			e strain				
			LMG2302				
GCA_0010	CPPN000	SAMEA1	Streptococ	6B	2009	Pneu	Peru: Lima
87645.1	00000	020584	cus			monia	
			pneumonia				
			<i>e</i> strain				
			LMG2311				
GCA_0010	CPTK000	SAMEA1	Streptococ	6B	2009	Bacter	Peru: Lima
98045.1	00000	020797	cus			emia	
			pneumonia				

			e strain				
			LMG3367				
GCA_0013	CVID000	SAMEA6	Streptococ	19F	1999	N/A	Viet Nam
30935.1	00000	82608	cus				
			pneumonia				
			e strain				
			V01_9911				
			2				
GCA_9000	FIVE0000	SAMEA8	Streptococ	1	1800/	N/A	Malawi
61915.1	0000	67781	CUS		2014		
			pneumonia				
			e strain				
			A33973				
GCA_9000	FIVJ0000	SAMEA8	Streptococ	1	1800/	N/A	Malawi
50925.1	0000	67780	CUS		2014		
			pneumonia				
			e strain				
			A34030				
GCA_9000	FIVM000	SAMEA8	Streptococ	1	1800/	N/A	Malawi
63675.1	00000	67783	CUS		2014		
			pneumonia				
			e strain				
			A34045				
GCA_9000	FIVO000	SAMEA8	Streptococ	1	1800/	N/A	Malawi
51305.1	00000	67806	CUS		2014		

			pneumonia				
			e strain				
			A28816				
GCA_9000	FIVS0000	SAMEA8	Streptococ	10B	1800/	N/A	Malawi
65845.1	0000	67801	cus		2014		
			pneumonia				
			e strain				
			A29037				
GCA_9000	FIVT0000	SAMEA8	Streptococ	12B	1800/	N/A	Malawi
51605.1	0000	67798	cus		2014		
			pneumonia				
			<i>e</i> strain				
			A31131				
				100	1000/		
GCA_9000	FIVW000	SAMEA8	Streptococ	10B	1800/	N/A	Malawi
63725.1	00000	67777	CUS		2014		
			pneumonia				
			e strain				
			D31621X				
GCA_9000	FIWA000	SAMEA8	Streptococ	14	1800/	N/A	Malawi
50505.1	00000	67768	cus		2014		
			pneumonia				
			e strain				
			D25696X				
GCA_9000	FIVX000	SAMEA8	Streptococ	12B	1800/	N/A	Malawi
48885.1	00000	67802	cus		2014		

			pneumonia				
			e strain				
			A29943				
GCA_9000	FIWF000	SAMEA8	Streptococ	14	1800/	N/A	Malawi
49215.1	00000	67807	cus		2014		
			pneumonia				
			<i>e</i> strain				
			A28640				
GCA_9000	FIWK000	SAMEA8	Streptococ	18A	1800/	N/A	Malawi
52885.1	00000	67950	cus	10/1	2014	1.0.1	11111111111
52005.1	00000	07950			2014		
			pneumonia				
			e strain				
			D28531				
GCA_9000	FIWP000	SAMEA8	Streptococ	23F	1800/	N/A	Malawi
54135.1	00000	67926	cus		2014		
			pneumonia				
			e strain				
			D30625				
GCA_9000	FIXA000	SAMEA8	Streptococ	16F	1800/	N/A	Malawi
52575.1	00000	67925	cus		2014		
			pneumonia				
			e strain				
			D30716				
GCA_9000	FIXB000	SAMEA8	Streptococ	23F	1800/	N/A	Malawi
53295.1	00000	67881	cus		2014		

			pneumonia				
			e strain				
			A33308				
GCA_9000	FIWX000	SAMEA8	Streptococ	18B	1800/	N/A	Malawi
53285.1	00000	67878	cus		2014		
			pneumonia				
			<i>e</i> strain				
			D28166				
GCA_9000	FIXF0000	SAMEA8	Streptococ	23F	1800/	N/A	Malawi
52615.1	0000	67770	cus	231	2014	1.771	11111111111
52015.1	0000	0///0			2014		
			pneumonia				
			e strain				
			D26316X				
GCA_9000	FIXK000	SAMEA8	Streptococ	25F	1800/	N/A	Malawi
58795.1	00000	67762	cus		2014		
			pneumonia				
			e strain				
			D38094X				
GCA_9000	FIXL0000	SAMEA8	Streptococ	25F	1800/	N/A	Malawi
63745.1	0000	67877	cus		2014		
			pneumonia				
			e strain				
			D24847				
GCA_9000	FIXV000	SAMEA8	Streptococ	5	1800/	N/A	Malawi
51635.1	00000	67800	cus		2014		

			pneumonia				
			e strain				
			A29101				
GCA_9000	FIYE0000	SAMEA8	Streptococ	06A	1800/	N/A	Malawi
53875.1	0000	67930	cus		2014		
			pneumonia				
			e strain				
			D36051				
GCA_9000	FIYC000	SAMEA8	Streptococ	06B	1800/	N/A	Malawi
55565.1	00000	67924	cus	UUD	2014	10/21	101010.001
55505.1	00000	07924			2014		
			pneumonia				
			e strain				
			D33275				
GCA_9000	FIYK000	SAMEA8	Streptococ	6D	1800/	N/A	Malawi
57095.1	00000	67905	cus		2014		
			pneumonia				
			e strain				
			D38023				
GCA_9000	FIYP0000	SAMEA8	Streptococ	09A	1800/	N/A	Malawi
53905.1	0000	67785	cus		2014		
			pneumonia				
			e strain				
			A34562				
GCA_9000	FIYV000	SAMEA8	Streptococ	09A	1800/	N/A	Malawi
55245.1	00000	67799	cus		2014		

			pneumonia				
			e strain				
			A30277				
GCA_9000	FIYW000	SAMEA8	Streptococ	09A	1800/	N/A	Malawi
55255.1	00000	67771	cus		2014		
			pneumonia				
			e strain				
			A34292				
GCA_9000	FIYX000	SAMEA8	Streptococ	09A	1800/	N/A	Malawi
56905.1	00000	67803	cus		2014		
			pneumonia				
			e strain				
			A29167				
GCA_9000	FIYY000	SAMEA8	Streptococ	09A	1800/	N/A	Malawi
58545.1	00000	67882	cus		2014		
			pneumonia				
			e strain				
			A33813				
GCA_9000	FLMI000	SAMEA4	Streptococ	N/A	1998	N/A	Germany
88715.1	00000	020771	cus				
			pneumonia				
			<i>e</i> isolate				
			246				
GCA_9000	FLML000	SAMEA4	Streptococ	N/A	2000	N/A	Germany
88775.1	00000	021824	cus				

			pneumonia				
	1		e isolate				
	1		762				
GCA_9000	FLMO00	SAMEA4	Streptococ	N/A	2004	N/A	Germany
88805.1	000000	021842	cus				5
00005.1	000000	021042					
	l		pneumonia				
	1		<i>e</i> isolate				
	l		20253				
GCA_9000	FLMY00	SAMEA4	Streptococ	N/A	2004	N/A	Germany
89065.1	000000	022017	cus				
	1		pneumonia				
	1		e isolate				
			21295				
GCA_9000	FLMZ000	SAMEA4	Streptococ	N/A	2005	N/A	Germany
89045.1	00000	022022	cus				
	l		pneumonia				
			e isolate				
	l		23543				
GCA_9000	FLNA000	SAMEA4	Streptococ	N/A	2004	N/A	Germany
88865.1	00000	022019	cus				
			pneumonia				
			-				
	l		<i>e</i> isolate				
			21299				
GCA_9000	FLNB000	SAMEA4	Streptococ	N/A	2010	N/A	Germany
88885.1	00000	025212	cus				

			pneumonia				
			e isolate				
			46770				
GCA_9000	FLNE000	SAMEA4	Streptococ	N/A	2009	N/A	Germany
89105.1	00000	025132	cus				
			pneumonia				
			<i>e</i> isolate				
			44017				
GCA_9000	FLNH000	SAMEA4	Streptococ	N/A	2010	N/A	Germany
88935.1	00000	025166	cus				
			pneumonia				
			e isolate				
			43003				
GCA_9000	FLNM00	SAMEA4	Streptococ	N/A	2003	N/A	Germany
89485.1	000000	027047	cus				
			pneumonia				
			e isolate				
			20605				
GCA_9000	FLSW000	SAMEA4	Streptococ	N/A	2006	N/A	Germany
92055.1	00000	051576	cus				5
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			pneumonia				
			-				
			<i>e</i> isolate				
			27700				
GCA_9000	FLUF000	SAMEA4	Streptococ	N/A	2010	N/A	Germany
88995.1	00000	025213	cus				

			pneumonia				
			e isolate				
			46464				
GCA_9000	FLUG000	SAMEA4	Streptococ	N/A	2010	N/A	Germany
88975.1	00000	025169		1,011	2010	1011	Communy
88973.1	00000	023109	cus				
			pneumonia				
			<i>e</i> isolate				
			46048				
GCA_9000	FLUU000	SAMEA4	Streptococ	N/A	2001	N/A	Germany
88725.1	00000	021833	cus				
			pneumonia				
			e isolate				
			893				
GCA_0015	LIAD000	SAMN03	Streptococ	12F	2007	Menin	Canada:
84785.1	00000	946353	cus			gitis	Manitoba
			pneumonia				
			e strain				
			MT1				
GCA_0015	LJKX000	SAMN03	Streptococ	12F	2010	Menin	Canada:
85805.1	00000	946366	cus	121	2010	gitis	Manitoba
85805.1	00000	940300				gius	Wannooa
			pneumonia				
			e strain				
			MT14				
GCA_0015	LJMG000	SAMN03	Streptococ	12F	2006/	Septic	Spain:
85635.1	00000	946413	cus		2007	emia	Madrid

			pneumonia				
			e strain				
			SN2206				
GCA_0015	LJWE000	SAMN03	Streptococ	N/A	2008	Menin	South
81545.1	00000	964639	cus			gitis	Africa:
			pneumonia				Kwazulu-
			e strain				Natal
			NTPn 31				
GCA_0015	LKAA00	SAMN04	Streptococ	19A	2014	Pneu	Mexico:
60935.1	000000	101983	cus			monia	Monterrey
			pneumonia				
			e strain				
			MTY1662				
			SN214				
GCA_0020	LNCA000	SAMN04	Streptococ	N/A	22-	Bacter	Sweden:
16615.1	00000	259810	cus		Jun-	emia	Vastra
			pneumonia		12		Gotaland,
			e strain				Gothenburg
			CCUG				
			63093				
GCA_0016	LQQK00	SAMN04	Streptococ	19A	12/7/1	N/A	Sweden:
37485.1	000000	387839	cus		995		Vastra
			pneumonia				Gotaland,
			e strain				Gothenburg

			CCUG				
			35180				
GCA_0015	LRSN000	SAMN04	Streptococ	6B	6/8/20	Pneu	Israel:
45505.1	00000	440609	cus		15	monia	Afula
			pneumonia				
			e strain				
			225994				
GCA_0016	LSLM000	SAMN04	Streptococ	3	1977-	Pneu	Sweden:
78985.1	00000	481652	cus		12	monia	Vastra
			pneumonia				Gotaland,
			e strain				Gothenburg
			CCUG				
			6798				
GCA_0016	LWCD00	SAMN04	Streptococ	N/A	1978	N/A	Sweden:
39345.1	000000	623576	cus				Vastra
			pneumonia				Gotaland,
			e strain				Gothenburg
			CCUG				
			7206				
GCA_0016	LWKY00	SAMN04	Streptococ	6A	12/12/	N/A	Sweden:
42845.1	000000	859023	cus		2006		Vastra
			pneumonia				Gotaland,
			e strain				Gothenburg
			CCUG				
			63665				

GCA_0018	MAVR00	SAMN05	Streptococ	9V	8/20/1	N/A	Sweden:
56065.1	000000	366909	cus		996		Vastra
			pneumonia				Gotaland,
			e strain				Gothenburg
			CCUG				
			36618				
GCA_0018	MECM00	SAMN05	Streptococ	19F	9/18/2	N/A	Sweden:Ud
70645.1	000000	715961	cus		001		devalla
			pneumonia				
			e strain				
			CCUG				
			45673				
GCA_0019	MLGA00	SAMN05	Streptococ	7F	10/8/1	N/A	Sweden:Go
82705.1	000000	912981	cus		996		thenburg
			pneumonia				
			e strain				
			CCUG				
			36800				
GCA_0022	NIFG000	SAMN07	Streptococ	N/A	2014	Septic	India:
24195.1	00000	191006	cus			emia	Vellore
			pneumonia				
			e strain				
			B44415				
GCA_0025	PCZX000	SAMN07	Streptococ	N/A	2012	Sepsis	India:
29515.1	00000	736520	cus				Vellore

			pneumonia				
			e strain				
			CMC651				
GCA_0025	PCZY000	SAMN07	Streptococ	N/A	2012	Menin	India:
29495.1	00000	736519	cus			gitis	Vellore
			pneumonia				
			e strain				
			CMC331				
GCA_0027	PDVR000	SAMN07	Streptococ	4	2017	Bacter	Brazil: Sao
18275.1	00000	811907	cus			emia	Paulo
			pneumonia				
			e strain				
			199_17				

Appendix 6: Meningitis ortholog files part

	•		2		(-	•	10	10	10	01	22	25	26	20	20	22	24	
cl	2.	2.	3.	4.	6.	7.	9.	10	12	13	21	23	25	26	28	29	32	34	36
us	FI	А	А	Α	FI	FI	FI	.F	.F	.F	.F								
te	X	Q	Q	Q	U	V	X	IU	Ι	Ι	IY	IV	IV	IU	IX	Ι	Ι	Ι	IU
r.v	Q	Т	Т	Т	0	V	T0	10	W	W	LO	R	С	PO	Μ	W	W	W	E0
s.g	01	PO	0	M	01	01	1	1	М	R	1	01	01	1	01	S0	W	V	1
en		1	01	01					01	01						1	01	01	
0																			
m																			
e																			
0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

0	1	0	1	1	0	1	1	1	1	0	1	1	1	1	1	1	0	1	0
0	0	0	0	1	0	1	1	0	0	0	1	0	1	1	0	1	0	0	0
0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	0	1	1	0	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	0	0	0	1	0	1	1	1	1	1	1	1
1	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	1	0
1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

	-			-	-									_					
2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	0	1	1	1	1	1	1	0	1	1	1	1	1	1	1	0	1	1	0
2	0	0	1	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
3	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1
3	1	1	1	1	1	0	1	0	1	1	1	1	0	1	1	1	1	1	1
3	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0
4	1	0	1	1	1	1	1	1	1	1	1	0	0	1	1	1	0	0	1
		1	1					1									1		

4	1	0	1	1	1	1	1	1	1	1	0	0	0	1	1	1	0	0	1
4	0	0	1	1	1	1	1	1	1	0	0	0	0	1	1	0	0	0	1
4	0	0	1	0	0	1	1	1	1	0	0	0	0	1	1	0	0	0	1
4	0	0	1	0	0	0	0	1	1	0	0	0	0	1	1	0	0	0	1
4	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	1
4	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	1
4	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
5	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
5	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
5	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
5	1	1	1	0	1	0	1	0	1	1	1	1	1	1	1	1	1	1	1

5	0	0	1	0	1	0	1	0	0	0	1	0	1	0	0	0	0	0	0
6	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
6	0	0	0	1	0	1	1	0	0	0	0	0	0	0	1	1	0	1	0
6	0	0	0	1	0	1	1	0	0	0	0	0	0	0	1	1	0	1	0
6	0	0	0	1	0	1	1	0	0	0	0	0	0	0	1	1	0	1	0
6	0	0	0	1	0	1	1	0	0	0	0	0	0	0	1	1	0	1	0
6	0	0	0	1	0	1	1	0	0	0	0	0	0	0	1	1	0	1	0
6	0	0	0	1	0	1	1	0	0	0	0	0	0	0	1	1	0	1	0
6	0	0	0	1	0	1	1	0	0	0	0	0	0	0	1	1	0	1	0
6	0	0	0	0	0	1	1	0	0	0	0	0	0	0	1	1	0	1	0
6	0	0	0	0	0	1	1	0	0	0	0	0	0	0	1	0	0	1	0
6	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	1	0
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
7	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
7	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
7	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
7	0	0	0	0	0	1	0	0	0	0	0	1	1	0	1	1	0	0	0
8	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

8	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
8	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
8	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
9	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
9	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
9	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
9	1	0	0	1	0	1	0	1	0	1	1	1	0	0	0	0	1	1	1
9	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Appendix 7: Bacteremia ortholog files part

cl	1.	1.	1.	1.	1.	1.	1.	2.	2.	2.	2.	3.	3.	3.	4.	4.	4.	5.	5.
CI	1.	1.	1.	1.	1.	1.	1.	2.	2.	2.	2.	5.	5.	5.	4.	4.	4.	э.	5.
us	С	Р	Μ	Α	С	FI	С	С	С	С	L	F	FI	С	C	FI	F	F	FI
te	Н	D	L	Q	VI	X	Р	Р	Н	G	S	L	W	Р	Р	V	L	L	V
r/	Y	V	G	Т	D	K	L	Т	J	A	L	Μ	K	Р	0	0	U	Μ	X
ge	N	R	A	N	01	01	LO	K	K	Ν	Μ	ZO	01	Ν	R	01	U	LO	01
ne	01	01	01	01			1	01	01	01	01	1		01	01		01	1	
0	0	0	1	0	0	0	0	0	0	0	1	0	1	0	0	1	0	0	0
0	0	0	1	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

1	0	1	1	1	1	1	1	1	0	0	1	1	1	1	1	1	1	1	1
1	0	1	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	1	1
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	0	0	0	1	1	1	0	1	0	0	1	0	0	0	1	0	0	0	0
2	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
3	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1
3	1	0	1	0	1	1	0	0	0	1	1	1	1	0	0	0	1	1	0
3	0	0	0	0	0	0	0	0	0	1	0	1	1	0	0	0	1	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
4	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
4	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1
4	0	0	0	0	0	1	0	0	0	0	0	0	1	1	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
5	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
5	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
5	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1
5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	1	0	0	0	1	0	0	0	0	1	1	1	0	0	0	1	1	1
6	0	1	0	0	0	1	0	0	0	0	1	1	1	0	0	0	0	1	1

6	0	1	0	0	0	1	0	0	0	0	1	0	1	0	0	0	0	0	1
6	0	1	0	0	0	1	0	0	0	0	1	0	1	0	0	0	0	0	1
6	0	0	0	0	0	1	0	0	0	0	1	0	1	0	0	0	0	0	1
6	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	0	1	0	0	0	0	0	0	0	0	0	1	1	0	0	0	1	1	0
7	0	1	0	0	0	0	0	0	0	0	0	1	1	0	0	0	1	1	0
7	0	1	0	0	0	0	0	0	0	0	0	1	1	0	0	0	1	1	0
7	0	1	0	0	0	0	0	0	0	0	0	1	1	0	0	0	1	1	0
7	0	1	0	0	0	0	0	0	0	0	0	1	1	0	0	0	1	1	0
7	0	1	0	0	0	0	0	0	0	0	0	1	1	0	0	0	1	1	0
7	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	1	1	0
7	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	1	1	0
7	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
8	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

															1				
8	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1
8	0	0	1	0	0	0	0	0	1	0	0	1	0	0	0	1	1	1	0
8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
9	1	0	1	0	1	0	1	1	1	0	1	1	1	1	1	0	1	1	0
9	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	1	1	0
9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
10	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
10	1	1	0	1	1	0	0	1	0	0	1	0	1	0	1	1	0	0	0
10	0	0	0	0	0	0	0	1	0	0	1	0	0	0	1	1	0	0	0
11	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
11	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0
11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0
11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0
12	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
12	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
12	0	1	0	0	0	1	1	0	0	0	0	0	1	1	1	0	0	0	0
13	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1
13	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1
13	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0
13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
14	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0