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Abstract 

In western Kenya, soil nutrient depletion is one of the main problems that has 

led to declining crop yield. Agricultural intensification through the judicious 

application of fertilizers has been considered amongst mitigation options for 

these smallholder farming systems with an average land size of less than 3.0 ha. 

The blanket fertilizer recommendations used in this region, have led to poor 

response to the fertilizer applied and low nutrient use efficiency. These 

recommendations do not take into account the spatial variability occurring at the 

local level across the smallholder landscape. Furthermore, the methods used to 

diagnose soil nutrient constraints are inefficient, because they do not take into 

account the spatial extent to which the nutrient deficiencies occur. Digital Soil 

Mapping (DSM) technique and the Population-Based Farm Survey (PBFS) 

approach are promising strategies that can help address this problem though they 

have not been fully exploited for smallholder farming systems.  

 

The main objective of this study was to develop and test nutrient management 

strategies that could be used to improve fertilizer recommendation using the 

DSM technique and the PBFS approach. The approach was tested to provide 

site-specific nutrient diagnostics and provide management recommendations in 

heterogeneous smallholder farming systems. First, evaluation of Fertilizer 

Response (FR) – a response ratio, and Agronomic Nutrient Use Efficiency (N-

AE) was conducted using fertilizer trial data. Meta-analysis technique was 

employed to identify key factors that influence FR and N-AE in smallholder 

farming systems. The results indicated soil, climate, and management factors 

could explain only small amounts (< 30 %) of variation in FR and N-AE. Soil 

pH, phosphorus (P), texture, and rainfall had significant (P <0.001), but low 

levels of power in explaining variation in FR and N-AE. This implied that 

strategies for refining the blanket fertilizer recommendations should include 

soil-based information, but soil testing needs to be accompanied by nutrient 

response trials. Secondly, the utility of using the DSM technique was explored, 

to determine the optimum scale of using digital soil maps, relevant to nutrient 

management for maize farming systems. A farm survey was conducted and data 

on soil properties; soil pH, Soil Organic Carbon (SOC), Total Nitrogen (TN), 
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Potassium (K), Phosphorus (P), Cation Exchange Capacity (CEC), Calcium 

(Ca), and Magnesium (Mg), Grain Yield (GY) and Plant Biovolume (BV) were 

collected. Data on the soil properties and crop responses (GY and BV) were 

analyzed using Step-wise Multiple Linear Regression (SMLR) analysis and 

geostatistical techniques. The results showed high variability in GY, with 32 % 

of the observed variation being accounted for by the underlying soil properties. 

SOC was identified as the key driver of crop response to fertilizer application in 

the study area. Moderate spatial dependencies for SOC with an effective 

distance of 523 m were observed. The lower nugget value (0.0542) was 

indicative of short-distance spatial variability in soil properties. A threshold 

scale of 250 m was proposed, below which, local growing conditions within the 

study area were captured, implying that a soil nutrients map with a resolution < 

250 m would capture the local variability. Lastly, a sampling approach on a 

population-based survey of smallholder maize fields was tested to diagnose soil 

nutrient constraints rather than the conventional agronomic trials. Soil test 

values were established using Cate-Nelson Analysis (1978) for NPK, which 

were used to define cases on nutrient constraints. In these study, three aspects 

are considered; evaluation of FR and N-AE to guide nutrient management 

strategies, the use of DSM techniques to provide fertilizer recommendations at 

a refined spatial scale, and  utility of PBFS for diagnosis of nutrient limitations 

in smallholder farming systems. The main finding of the study includes: (i) FR 

and N-AE were highly variable in smallholder maize fields of western Kenya, 

(ii) SOC was the key soil factor that captured local spatial variability on farms. 

Thus, 250 m was the optimum soil sampling distance for nutrient management 

based on the spatial range of SOC. This study demonstrated that soil nutrient 

maps are useful tools, which can be implemented in strategies aimed at a refined 

fertilizer recommendation across SSA. The utility of DSM and the new PBFS 

approach has the potential for providing site-specific diagnostics to guide 

nutrient management decisions. Successfully developing such an integrated 

soil-based diagnostic system is warranted, and the wider application will be 

instrumental for refining fertilizer recommendation across maize smallholder 

agroecosystem systems. 
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Chapter One 

Introduction 
1.1 Background information 

Smallholder farming systems play a pivotal role in crop production and are envisaged 

as the main actors in achieving food security and improving rural livelihoods 

(Tscharntke et al., 2012). For this reason, several initiatives, which include the Abuja 

Conference (2006), African Green Revolution Alliance (2007), Global Food Security 

(2013), and Global Soil Security (2015), have sought to address the multifaceted 

problems facing these systems (Okoth et al., 2011; McBratney et al., 2014; Minasny et 

al., 2017). In western Kenya, soil nutrient depletion is one of the main problems that 

has led to declining crop yields (Waswa et al., 2013). Judicious nutrient management 

through the application of fertilizers is a strategy that could lead to increased production 

and productivity (Morris et al., 2007; Bationo et al., 2012). However, the production of 

adequate food for the ever-growing population in smallholder farming systems remains 

a major challenge (Drechsel et al., 2001; UN, 2013), especially for staple cereal crops 

like maize.  

 

Maize accounts for 30 to 50% of low-income household expenditures in sub-Sahara 

Africa (SSA), and nutrient depletion has exacerbated low productivity (Cairns et al., 

2013). Blanket fertilizer recommendations have led to poor response to fertilizer 

application and low nutrient use efficiency, which occur when applied fertilizer does 

not meet the maize nutrient requirements (Kihara et al., 2016; Vanlauwe et al., 2017). 

Blanket recommendations are general nutrient management guidelines, where a single 

fertilizer rate is applied uniformly across a broad geographic location regardless of the 

crop types. These recommendations do not take into account spatial variability 

occurring at the farm level. Understanding the magnitude and patterns of spatial 

variability in soil properties at this level is instrumental for  fertilizer management, 

which leads to increased nutrient use efficiency (Bhatti et al., 1998; Miller et al., 2015). 

The spatial information may be useful for providing guidelines to refine fertilizer 

recommendations in smallholder farming systems. However, the refinement of fertilizer 

recommendations is hampered by the lack of detailed soil data (Sanchez et al., 2009). 

Additionally, it is not clear, at what spatial resolution should the soil nutrient maps be 
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provided, for them to be used effectively as decision support tools. In Kenya, the 

available soil maps are spatially coarse (1:250,000), and new more detailed soil surveys 

are rare. 

  

The lack of rigorous methods for collecting spatial information on soil health at the farm 

level impedes the transfer of site-specific information needed by smallholder farmers 

for targeted nutrient management decisions (Shepherd & Walsh, 2007; Shepherd et al., 

2015). Conventional methods for nutrient diagnostics, do not take into account the 

spatial extent to which nutrient deficiencies occur (Huising et al., 2011; Kihara et al., 

2016). Furthermore, there is a general lack of crop response data to calibrate soil 

information to soil test values for nutrient diagnosis in SSA (Vanlauwe et al., 2017). 

Limited studies have been conducted to address these knowledge gaps, especially for 

smallholder farming systems in SSA. A need, therefore, arises, for developing novel 

methods that can be used for the diagnosis of soil nutrient constraints and mapping the 

spatial extent.  

  

There is potential for a novel nutrient diagnostic approach, the population-based farm 

surveys (PBFS), which is anchored on the principles of Land Health Surveillance (LHS) 

(Vågen et al., 2012; Beedy et al., 2015; Shepherd et al., 2015). Population-Based 

Survey surveillance has become popular in monitoring disease patterns (epidemiology) 

within human populations and designing targeted curative medical interventions 

(Lipscombe et al., 2018; Frederiksen et al., 2019). The PBFS approach uses a 

combination of tools such as rigorous ground sampling schemes, proximal techniques 

of infrared spectroscopy for rapid soil and plant testing, and statistical models, which 

provide population-based estimates from hierarchical data (Vågen et al., 2012; 

Shepherd et al., 2015).  The PBFS approach can work in tandem with DSM, and provide 

an important synergy as a nutrient management tool. The DSM technique and PBFS 

approach have the potential of obtaining insight into the nutrient constraints, and 

studying patterns of spatial variation of soil properties at the farm level (Snoeck et al., 

2010; Hengl et al., 2017). However, these tools have never been fully exploited for 

nutrient management in smallholder farming systems. 

  

This study used the surveillance approach by surveying geographical variability in crop 

nutrition status and used the data to provide guidelines in deciding on nutrient 
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management strategies to fit local fertility needs in western Kenya. The main objective 

of the study was to develop an integrated approach to assess nutrient constraints and 

provide guidelines for fertilizer recommendations for maize smallholder farming 

landscapes in western Kenya.  

 

1.2 Problem Statement  

The reduction in the average farm size dictates that most of the crop production to feed 

the increasing population would be achieved through intensification rather than 

expansion of farming land (Pradhan et al., 2015; Wortmann et al., 2017). Adequate and 

efficient use of fertilizer is, therefore, one of the main ingredients, since farmers apply 

small quantities (< 50 kg ha
-1

) of fertilizer (Duflo et al., 2008). There is a lack of 

evidence-based strategies, that would improve farmers' decisions concerning the proper 

application of nutrients to soils for optimal maize yields and sustainable utilization of 

scarce land resources.  

 

Smallholder farmers face problems when deciding which type and rate of fertilizer to 

apply to their crops, given the local conditions and little available resources at the farm 

level. Typically, the farmers rely on their own experience from previous years, their 

expert knowledge, and blanket fertilizer recommendations that are spatially coarse (e.g. 

agro-ecological based) that result in poor fertilizer use efficiency (FURP, 1994; Mairura 

et al., 2007; Bekunda et al., 2010). The smallholder farmers do not allocate the scarce 

fertilizer resources efficiently, which often encourage unneeded nutrient applications 

and, in some cases, fail to include the limiting nutrients (Vanlauwe & Giller, 2006; 

Namonje-Kapembwa et al., 2015). The lack of laboratory infrastructure and the high 

cost of soil analysis, limit the correct diagnosis of limiting soil nutrient deficiencies 

(Shepherd & Walsh, 2007; Vanlauwe et al., 2017). Accurate diagnosis of the soil 

constraints can mitigate the challenges and improve the efficiency of the small amounts 

of fertilizer applied (Okalebo et al., 2006; Muhati et al., 2011). This study sought to 

develop a spatially-explicit approach for the diagnosis of soil nutrient constraints in 

smallholder farming systems.  

 

The efficiency of blanket recommendation is often complicated by high soil spatial 

variability within smallholder landscapes (Jayne et al., 2008; Ngome et al., 2013). 
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Knowledge of the spatial patterns of smallholder farming landscapes may play a pivotal 

role in improving a farmer’s decisions. These landscapes display tremendous spatial 

variability where soil properties vary markedly from field to field, farm to farm, and 

within the landscape level (Okeyo et al., 2009; Tesfahunegn et al., 2011; Tittonell et 

al., 2015). The problem of variability can be addressed through targeted soil nutrient 

management strategies tailored to specific areas within the landscape where there is a 

kind of homogeneity. There is, however, a general lack of systematic studies identifying 

the key factors that influence FR and N-AE across smallholder farming systems to 

inform strategies for fertilizer recommendations.  

 

1.3 Justification of the study 

The global food demand is projected to increase by 60% in 2050 and is mainly attributed 

to the increase in the human population, which is estimated to be 9.5 billion by 2050. 

Improving soil nutrient status for food and income is a challenge to smallholder farmers, 

regardless of their landholdings and location. Several factors contribute to the decrease 

in crop productivity and include; lack of non-farm income sources, soil fertility 

depletion, and low levels of fertilizer use. Other challenges faced by farmers include 

diagnosis of soil nutrient constraint include; the high cost of chemical soil analysis, the 

coarse resolution of the available soil maps, and poor laboratory infrastructure across 

smallholder landscapes. Developing nutrient strategies for addressing challenges of soil 

nutrient depletion is necessary if the crop production increase is to be realised. 

 

Current decisions on nutrient management for the smallholder farms in western Kenya 

are based on blanket fertilizer recommendations. The problem with these 

recommendations is that, farmers do not change or apply variable amounts of fertilizer, 

depending on their individual needs or what is really limiting on their farms. The high 

spatial variation, which characterizes the smallholder farms causes poor fertilizer 

response and low nutrient use efficiencies.  There is a great need for incorporating 

information spatial variability in nutrient management decisions. This study sought to 

test and develop novel approaches, which may be required for decision support tools 

and could be included in strategies aimed at refining fertilizer recommendations. 

Additionally, scientific knowledge should form the basis for making informed 

management decisions. New techniques of DSM combined with PBFS could be 

incorporated and used in filtering spatial information for making informed nutrient 
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management decisions for smallholder farms. Fine-scale soil properties mapping is not 

only needed for soil survey, but also for the management of soil nutrients. Adoption of 

DSM technique combined with proximal sensing techniques could help identify key 

soil and plant constraints in SSA in a cost-effective way and scale-up soil fertility 

replenishment programs. This study sought to test the utility of the DSM technique and 

PBFS approach for the diagnosis and management of soil constraints in smallholder 

farming systems of western Kenya. 

 

1.4 Objectives 

The main objective of this study was to develop an integrated approach to assess 

nutrient constraints and provide guidelines for refining fertilizer recommendations for 

smallholder farming landscapes in western Kenya.  

 

1.4.1 Specific objectives 

1.4.1.1. To determine variability in fertilizer response and nutrient use efficiency 

in smallholder landscapes in Western Kenya. 

1.4.1.2. To determine the optimum sampling distance for developing digital 

nutrient maps for the provision of fertilizer recommendations. 

1.4.1.3. To test the applicability of a population-based survey for diagnosis of 

yield-limiting soil nutrients in smallholder landscapes in Western Kenya, 

1.4.1.4. To identify useful covariate data that can be utilized for a population-

based survey in combination with DSM techniques for nutrient 

management in smallholder landscapes. 
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Literature review 
2.1 Smallholder farming systems 

The smallholder farming systems are subsistence in nature with dominantly rain-fed 

crops and low fertilizer inputs (Waithaka et al., 2007). The farm size is often less than 

three hectares and the mixed crop-livestock system includes maize (Zea mays L.) as the 

dominant staple crop, usually intercropped with common bean (Phaseolus vulgaris L.) 

and cattle (Bos taurus) and goats (Capra aegagrus hircus) for livestock (Diwani et al., 

2013). Approximately, 40-80% of the farming systems are mixed farming and are 

efficient for the production of maize, milk and meat (Herrero et al., 2010). The 

smallholders are supported by government agricultural extension services to manage 

both their crops and livestock. The farming system is a kind of synergy as crops are 

used to provide feed for livestock, while animals produce manure to replenish soil 

nutrients to the farm (Giller et al., 2006). Several studies have reported average maize 

yield levels, under current local conditions, and using conventional farming practices 

that range  from 400 to 3000 kg ha
-1

 for a long rain season (Vanlauwe et al., 2014; 

Kihara et al., 2016).  

 

Removal of crop residue from the smallholder farms has been the main cause of nutrient 

mining, leading to soil fertility degradation in these smallholder farming systems 

(Smaling et al., 1993; Tully et al., 2015). High poverty levels, shortened fallow periods 

and low fertilizer inputs have exacerbated the decline in soil nutrients for these 

smallholder landscapes (Bekunda et al., 2010; Bationo et al., 2012; Namonje-

Kapembwa et al., 2015). 

 

2.2 Soil fertility degradation in sub-Sahara Africa 

Soil fertility degradation is a phenomenon characterized by the loss of productive 

capacity of land due to the decline in soil nutrient supply to crops (Stockdale et al., 

2013). In SSA, the decline in soil fertility continues to be a major concern to scientists 

and policymakers, due to its direct implication on food security and rural development 

(Bekunda et al., 2010). Previous studies have reported an annual nutrient mining of 30 

kg ha
-1

 per year of N, P, K in 85% of farmlands during the 2002 – 2004 cropping seasons 
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(Bationo et al., 2003). Of this amount, 40 % of the farms had nutrient mining rates 

exceeding 60 kg ha
-1

 of N, P, K per year and were characterized as a severe rate (Bationo 

et al., 2003). 

 

In Kenya, the potential threat of soil fertility degradation to food security is well 

documented (Stoorvogel et al., 1993; Tully et al., 2015). For example, a study by Tully 

et al. (2015) indicates a decline in maize yield from 5.1 Mg ha
-1

 to 3.2 Mg ha
-1

 and N 

deficiency was the main cause. According to the study by Tully et al. (2015), the mean 

N balance was -88 kg N ha
-1 

in 2012 and -112 kg N ha
-1

 for 2013 N in the smallholder 

farms.  Phosphorus, K, Sulphur (S) and other micro-nutrients also limit crop production 

in Western Kenya (Kihara et al., 2016, 2017). Studies have shown unless concrete steps 

are taken, to curb the devastating consequences of soil fertility degradation in SSA, 

attaining food security in the near future will remain a myth (Vanlauwe & Giller, 2006).  

 

2.3 Evolution of fertilizer recommendations in sub-Sahara Africa 

Strategies of replenishing soil nutrients in SSA have evolved over long periods of time 

(Mafongoya et al., 2006; Okalebo et al., 2006). In the past decades, shift cultivation and 

fallowing were the traditional methods used of maintaining soil fertility and 

replenishing nutrients (Kumwenda et al., 1996; Mafongoya et al., 2006; Okalebo et al., 

2004). However, the rapid increase in the population of SSA, projected to 1.2 billion by 

2050 (UNPD, 2009; Ray et al., 2013) has led to more demands for food and settlement 

on large areas of agricultural land, as the practise of shift cultivation has become a non-

viable nutrient replenishment strategy (Kumwenda et al., 1996). This has led to 

agricultural intensification, which involve fertilizer use to replenish soil nutrients 

(Bekunda et al., 2010; Cassman, 1999; Fischer et al., 2001),  and gave rise to the 

development of fertilizer recommendation rates.  

 

Earlier strategies of agricultural intensification in the 1980s led to the development of 

countrywide blanket recommendations and later followed by agro-ecologically based 

recommendations in the 1990s (FURP, 1994, 1987). The blanket recommendation was 

based on practical considerations for extension officers to communicate uniform 

messages rather than based on site-specific needs or the socio-economic circumstances 

of the poorly resourced smallholder farmers (Barreto & Bell, 1994; Kamanga et al., 
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2014; Schnier et al., 1996). The effectiveness of this blanket recommendation was low 

because the soil variability was ignored  and therefore the recommendations were  

incompatible with smallholders’ resources and needs (Smaling et al., 1992; Schnier et 

al., 1996). The agro-ecologically based recommendations were aimed at improving the 

blanket recommendations for the whole country and were developed principally using 

70 multi-locational fertilizer trial data collected nationwide, but delineated across agro-

ecological zones (Smaling & Van De Weg, 1990; Smaling et al., 1992; FURP, 1994).  

 

The spatially explicit agro-ecologically based recommendation was therefore based on 

a decision tree considerate of the driving objectives for (i) production for home 

consumption (FURP, 1994) and (ii) production for the market (FURP, 1994; Schnier et 

al., 1996). But still, these recommendations were spatially coarse and often resulted in 

a mismatch between nutrient application and actual requirements, translating into sub-

optimal crop response, low fertilizer use efficiency hence leading to low crop yields 

(Vanlauwe & Giller, 2006). The main reason being, variability occurring in soil over 

short distances across the smallholder farming systems (Tittonell et al., 2007a, 2013). 

The short distance variability led to proposals for site-specific recommendations by 

several workers (Moyer et al., 2012; Snoeck et al., 2010; Webb et al., 2011). 

Furthermore, some smallholder farmers were unable to afford fertilizers and instead 

applied animal manures (Zingore et al., 2007). Most studies propose a judicious mix of 

both organic and inorganic fertilizer within the framework of Integrated Soil Fertility 

Management (ISFM), thus balancing the chemical, physical and biological properties 

of the soil to improve the nutrients in the crop production environment (Vanlauwe et 

al., 2010). 

 

The Diagnosis and Recommendations Integrated System (DRIS) is a method used for 

interpreting plant tissue analyses so as to rank the importance of the various nutrients 

limiting optimal plant yields and to estimate the degree to which each of the limiting 

nutrients are deficient (Walworth & Sumner, 1987; Ramakrishna et al., 2009). This 

information, in turn indicates remedial steps that can be taken to enhance the growth of 

the sampled or subsequent crops. The system has been used successfully to diagnose 

nutritional problems in many crops (Walworth & Sumner, 1987; Angeles et al., 1990; 
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Bailey et al., 1997; Ramakrishna et al., 2009).  Nziguheba et al. (2009)  successfully 

applied the DRIS norms to diagnose limiting nutrients using fertilizer trials.  

               

2.4 Spatial variability in smallholder farming systems.  

Spatial variability occurs when measurements of a soil property, at different spatial 

locations exhibit values that differ across the locations. The spatial variability of soil 

properties can broadly be classified as; inherent and dynamic. The inherent soil spatial 

variability is due to natural soil-forming processes and its distribution is influenced by 

the soil-forming factors such as climate, vegetation, time, the geology of parent 

materials and topography (Persson et al., 2005; Seibert et al., 2007; Tesfahunegn et al., 

2011). Dynamic soil spatial variation, on the other hand, occurs as a result of 

management practices carried out across the smallholder farming systems (Zingore et 

al., 2007). Management choices affect the amount of soil organic matter, soil structure, 

soil depth, water and nutrient holding capacity, among others (Zingore et al., 2007). 

Soils, however, respond differently to management practices depending on their 

inherent properties.  

 

Spatial variability of soil properties poses a great challenge to nutrient management 

strategies (Mzuku et al., 2005). Previous studies have shown the effect of variability of 

soil properties on crop performance could be detrimental, especially when the fields are 

patchy (Haileslassie et al., 2005; Kravchenko et al., 2006; Chikuvire et al., 2007; 

Diarisso et al., 2015). Formulation of fertilizer recommendations for managing soils 

with highly variable properties, based on a few selected experimental sites, may thus 

lead to erroneous outcomes (Cassman, 1999; Tittonell & Giller, 2013). Alternative 

approaches, such as precision agriculture, which can adapt nutrient management 

practices to the location-specific fertility status have proved to be effective (Cassman, 

1999; Tilman et al., 2002). 

 

Different studies have indicated that soil spatial variability is dependent on  scale 

(Cambardella et al., 1994; Tesfahunegn et al., 2011). At the landscape scale, variation 

in soils can occur due to their relative positions within the landscape, as influenced by 

parent material and climatic factors. At the farm level, soil variability is due to the 

effects of management activities (Tittonell et al., 2013; Vanlauwe et al., 2007). 
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Attempts by smallholder farmers to address the adverse effects of spatial variation and 

the negative impact of soil nutrient depletion has led to soil fertility gradients across 

and within farms. The fertility gradients are attributed to the redistribution of organic 

matter across the smallholder farms within the landscapes (Rufino et al., 2007; Tittonell 

et al., 2013). Maiti et al. (2006) claimed that the significant difference of spatial 

variation (in terms of soils, climate and management) makes it impossible to extrapolate 

the results of fertilizer recommendations from few sites across farming systems. 

 

2.5 Digital soil mapping for soil nutrient management in smallholder landscapes 

Digital Soil Mapping (DSM) is the computer-assisted production of soil property maps 

or the creation of a geographically referenced soil database generated using field and 

laboratory observation methods coupled with environmental data through quantitative 

relationships (Lagacherie & Mcbratney, 2007). Digital soil mapping and the science of 

geostatistics has been developed for widespread practical application in mapping the 

variability of soil chemical and physical properties (Mora-Vallejo et al., 2008; Sanchez 

et al., 2009; Snoeck et al., 2010).The DSM technique opens new opportunities to 

describe the spatial variation in soil conditions (McBratney et al., 2003; Stoorvogel, 

2014). Recent examples of DSM include the 100m resolution digital soil map of 

Machakos and Makueni district in Kenya (Mora-Vallejo et al., 2008) and also the new 

global initiatives at a 30 arc sec resolution (Arrouays et al., 2014; Stoorvogel, 2014). 

These maps can be used to provide information on the spatial variation of soil properties 

at a finer resolution (Hengl et al., 2015). However, the mapping units delineated on 

these maps are essentially taxonomic and bear only limited direct relationship to soil 

fertility needs. By themselves, the digital soil maps have only minor utility for 

improving fertilizer recommendations to meet local conditions of smallholder farms.  

 

The application of DSM in nutrient management requires geo-referenced point 

observations, which can provide additional information on soil fertility parameters. Soil 

and plant testing provide opportunities for geo-referenced data which can be used in 

ground-sampling schemes in combination with infrared spectroscopy (Shepherd et al., 

2015). Ground-sampling schemes can be used to assess spatial variation at the farm 

level and if successful, DSM could predict soil nutrient conditions for smallholder farms 

and as a result replace conventional soil testing after the initial farm survey. Where 
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relevant soil maps are unavailable, fertilizer recommendations can only consider the 

local conditions through the soil and/or plant testing.  

2.6 Population-Based Survey Surveillance Approach 

Principles of land health surveillance are used to develop this PBFS approach and 

would, therefore, help in providing guidelines to improve fertilizer recommendations 

(Shepherd et al., 2015). The objective of the surveillance is to make inferences on the 

sample to the population (Waters & Doyle, 2003). The population, in this case, maybe 

maize plots of equal sizes (measurements) within the smallholder farms, in which 

different soil and plant measurements are made to provide data at different scales 

(hierarchical data).  

 

The applicability of soil testing for fertilizer use recommendation decision support 

systems is curtailed by high costs of conventional wet-analysis and lack of crop 

response data for calibrating soil tests to fertilizer use recommendation (Valkama et al., 

2009; Muyayabantu et al., 2012). Lack of crop response data is attributed to the high 

cost of agronomic trials, which have to be conducted several times in space and time to 

establish reliable fertilizer use management recommendations. Under such situations, 

the population-based survey approach of small-scale farms has potential as an 

alternative method (Beedy et al., 2015; Shepherd et al., 2015). In this approach, surveys 

are conducted on small-scale farms for soil nutrient conditions and maize crop 

productivity to establish relationships.  These relationships between soil test values and 

maize productivity are used to characterize and understand the variation among small-

scale farms(Vågen et al., 2012; Wang et al., 2019). Diagnosis of soil nutrient constraints 

is made using reference values established from the relationships(Vågen et al., 2012; 

Shepherd et al., 2015). As a result, the variations across the small-scale farms and soil 

diagnostics are used as a basis for decision support for fertilizer use recommendations 

management.  

 

The population-based survey approach becomes feasible due to the development of 

low-cost analytical techniques of Infrared Spectroscopy (IRS), a useful tool for high-

density soil sampling. The ability to rapidly and non-destructively characterize soils 

using IRS permits high-density sampling and acquisition of information on nutrient 

status and variation within a target population ( e.g. farms) (Stenberg et al., 2010). IRS 
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could also be used as an integrative measure of soil quality and employed as a screening 

tool of soil condition; hence its application to soil variability assessment and monitoring 

at a broad scale is a promising approach (Shepherd and Walsh, 2007). At the same time, 

the DSM technique is applied to map and predict soil nutrients based on point-

observations from the population- surveys of small-scale farms across the landscape. 

These advances in the aforementioned techniques have not yet been tested and deployed 

into operational decision support for fertilizer use management recommendations in 

Kenya. 
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Chapter Three 

Fertilizer response and agronomic nitrogen use efficiency in Africa 
smallholder farming systems1  
 

Abstract 

Improving fertilizer recommendations for farmers is essential to increase food security 

in smallholder landscapes. Currently, blanket recommendations are provided across 

agro-ecological zones, although Fertilizer Response (FR) and Nutrient Use Efficiency 

(N-AE) by maize crops are spatially variable. The objective of this study was to identify 

factors that could help to refine fertilizer recommendation by analysing the variability 

in FR and N-AE. Secondary data on on-farm fertilizer studies across Sub-Sahara Africa 

(SSA) yielded 71 publications. These studies were separated for Kenya and the rest of 

SSA. FR was expressed as a ratio between fertilized and control maize yield. The 

variability in FR was studied using a meta-analysis whereas key factors that influence 

FR and N-AE were studied with linear regression models. On average, the FR was 2 

units higher, compared to the control, but it varied considerably from 1 to 28.5 9 (ratio). 

In the rest of SSA, 18% of the plots were non-responsive with an FR < 1.  N-AE ranged 

from -27 kg dry weight per kg N to 165 kg dry weight kg per N. The main factors 

affecting N-AE for Kenya were P, silt content, soil pH, and rainfall, whereas only soil 

pH and texture were important for the rest of SSA. This study, however, indicates that 

available data on soil, climate and management factors could explain only a small part 

(< 30%) of the variation in FR and N-AE. Soil pH, P, silt content, and rainfall had 

significant (p < 0.01) but low levels of power in explaining variation in FR and N-AE. 

The findings indicate that strategies to refine fertilizer recommendation should include 

information on soil types and soil properties. 

 
3.1 Introduction 

The increasing food demand for the growing population in SSA, which is projected at 

1.2 billion by 2050, require agricultural intensification with efficient fertilizer use. The 

current fertilizer recommendations in SSA are often only specified to the level of a 

region, for instance, an agro-ecological zone (AEZ) or administrative district (e.g., 

 
1 This chapter is based on a published article in Nutrient Cycling and Agroecosystem Journal Vol. 113 (1): 
pages 1-19. https://doi.org/10.1007/s10705-018-9958-y 
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Mowo and Mlingano 1993; FURP 1994; Schnier et al. 1996; GoM-MoALD 1994). The 

fertilizer recommendations for these larger regions are commonly referred to as blanket 

fertilizer recommendations. However, environmental and management factors vary at 

short distances in the smallholder landscapes of SSA (Vanlauwe et al. 2011; Zingore et 

al. 2007; Tittonell et al. 2008). As a result, the blanket fertilizer recommendations are 

often considered to be of limited relevance to farmers (Tittonell et al., 2013). 

 

The blanket fertilizer recommendations can only be refined if the factors that influence 

the variation in FR are known. This is becoming increasingly urgent since an increasing 

number of farmers report decreasing FR for staple food such as maize. Giller et al. 

(2006) introduced the concept of non-responsive soils i.e., soils on which crops do not 

respond to mineral fertilizer application. However, the causes behind non-responsive 

soils are not clearly understood. With a better understanding of factors that affect the 

variability in response to fertilizers, fertilizer recommendations can be improved. There 

is, however, lack of studies that systematically identify key factors that affect the 

fertilizer response across smallholder farming systems of SSA. A meta-analysis study 

pointed to the importance of secondary and micronutrient deficiencies in SSA in low 

fertilizer responses (Kihara et al., 2017). Multiple studies have shown that the FR varies 

across smallholder landscapes due to environmental (soil-related and climatic) and 

management factors. Zingore et al. (2007) demonstrated that the low level of soil 

organic carbon in the maize fields of Zimbabwe led to a poor fertilizer response. Sileshi 

et al. (2008) attributed a high variability in rainfall amounts to low FR. Vanlauwe et al. 

(2016) observed that the poor fertilizer response in maize is a result of unbalanced soil 

fertilization. However, it remains unclear which are the key factors of variability in FR. 

 

Fertilizer recommendations, both type and amount, can be evaluated using indicators 

such as FR and N-AE. The FR is defined as the incremental crop yield due to 

fertilization, independent of the quantity or the type of fertilizers applied. The FR is 

calculated as the ratio of fertilized crop yield and unfertilized crop yield of a control 

plot. The FR is a useful concept for identifying, for example, “non-responsive soils ”, 

i.e. smallholder farmers’ fields where no increase in crop yield is observed after 

sufficient amounts of fertilizers have been applied  (Tittonell et al. 2007; Zingore et al. 

2007; Njoroge et al. 2017). The FR can also be used to evaluate the overall effect of 

fertilizer use across farms in a region. The agronomic nutrient use efficiency is a 
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measure of the crop yield increase for a given amount of nutrient added (Dobermann et 

al., 2002) and can be used to evaluate the efficiency of a specific nutrient applied. For 

example, the agronomic nitrogen use efficiency (N-AE) is defined as the incremental 

crop yield per applied nitrogen – measured in kg dry weight (dw) per kg N.  

 

Soil property maps of relevant variables to fertilizer management are becoming 

available (Hengl et al. 2015, 2017). These maps may help to give a better insight into 

the spatial variability of nutrient concentrations (Antwi et al., 2016). However, these 

maps are generally at coarse spatial resolution and are only suitable for guiding 

recommendations at the regional scale but not at the farm level. Even though high 

throughput and cost-effective methods for soil analysis are also available (Shepherd & 

Walsh, 2007; Shepherd, 2010), most smallholder farmers do not have access to soil 

analysis services at the plot level. Knowledge of key factors that influence FR and N-

AE is therefore critical for strategies aimed at improving nutrient management. 

 

This study aimed in identifying key factors that influence FR and N-AE for refining 

fertilizer recommendations for smallholder farmers. The specific objectives of this 

study were to: (i) quantify the variation in FR and N-AE, and (ii) identify key 

environmental and management factors that influence variability in FR and N-AE. A 

meta-analysis approach was employed  (Hedges et al., 1999; Borenstein et al., 2009) to 

analyse FR, and regression analysis to understand the driving factors for FR and N-AE. 

 

3.2. Material and Methods   

3.2.1 Data collection  
Secondary data was collected on agronomic studies conducted between 1980 to 2018. 

These studies were searched on the internet using Google Scholar, Mendeley, and Web 

of Science databases. Criteria used for obtaining a set of comparable studies for the 

analysis were: (i) maize cultivated as a monoculture, (ii) the experiment conducted on 

a smallholder farm in SSA, and (iii) fertilizer treatments randomly allocated to the plots. 

The selected treatments included only inorganic N or combinations with inorganic P 

and or K fertilizer applications. Treatments in which additional organic fertilizers were 

applied were excluded.  A systematic process for the selection of suitable fertilizer 

studies is presented in a flowchart (Figure 3.1).  
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3.3 Data extraction and treatment 

Data on fertilizer treatments, crop yields, soils, climatic (agro-ecological zones) and 

management factors were extracted from the selected publications. A database was 

established with each record representing a treatment plot (Tables 3.1, 3.2 & 3.3).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1 Meta-analysis flow chart for selection of studies and database development, n represents the  

total number of observations. Control was considered as plots where no fertilizer (organic or 
inorganic) had been applied.  
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Table 3.1: Crop yield and soil properties, altitude and climatic factors used in the analysis of the on-farm fertilizer experiments (n = number of  
observations, for the rest of SSA and Kenya) the numbers in   are the number of observations that data imputation was performed for the  
soil properties. 
Variables Description Units n 

   Kenya SSA 

Yield (crop response)  

Control Mean maize yield for control plot kg ha-1 202 256 

Treatment Mean maize yield for fertilized plot kg ha-1 202 256 

Environmental factors (continuous)  

Soil properties analysed  
prior to fertilizer trial 

Soil pH, - 194 (4) 230 (28) 

Total carbon (SOC)♣ g kg-1 192(5) 181 (38) 

Total nitrogen (TN) ♣ g kg-1, 155 216 

P-Olsen (P) ♣ mg kg-1, 105 (19) 122(22) 

P-Bray 2 mg kg-1, 135 173 

Exchangeable K (K) ♣ cmol kg-1 104(34) 102(48) 

Exch. Ca cmol kg-1 78(37) 71(93) 

Exch. Mg cmol kg-1 67 198 

Clay % 109(36) 152(77) 

Sand % 86(38) 143(89) 

Silt % 96(41) 161(67) 

Rainfall average per growing season mm 198 220 

Altitude Height above sea level m 186 85 

  

Key: n=number of observations; N = Nitrogen, P = Phosphorus and K= Potassium, ♣ indicates variables that were imputed and the figures in brackets are the 
number of observations that data imputation was performed for soil properties
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Table 3.2: Categorical environmental factors used in the analysis of the on-farm fertilizer experiments for Kenya and the rest of SSA and Kenya.  

Variables Description Units n 
   Kenya SSA 

Soil properties and agro-climatic factors (categorical)  
Soil orders                                            
(World Resource Base 
Reference Soil Groups) 

Cambisols 
 

22 - 
Nitisols 68 - 
Vertisols 6 - 
Ferralsols 81 24 
Luvisols 4 - 
Lixisols 41  
Arcrisols 37 22 
Alfisols 12 4 
Phaeozems - 8 
Alisols 8 - 

Soil textural classes                     
(USDA) 

Clay 28 14 
Clay loam 21 - 
Loamy sand 2 8 
Sand -  64 
Sandy clay 4 6 
Sandy clay loam 6 10 
Sandy loamy 31 55 

Agro-ecological zone 
for Africa (based on Dudal, 
1980) and Kenya (based on 
Jätzold and Kutsch, 1982) 

Sub-humid (SSA)  18 - 
Humid (SSA) 6 - 
Lowlands - 4 
Lower midlands - 6 
Upper midlands - 38 
Lower highlands (sub-humid) - 6 
Lower highlands humid - 6 
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Table 3.3: Management factors used in the analysis of the on-farm fertilizer experiments for Kenya and the rest of SSA.  
Variables Description  n 

                     Units Kenya SSA 

Management factors (continuous) 

Fertilization rate Amount of N applied kg N ha-1       254 251 

  

Management factors (categorical)  

Nutrient applied                             N only        149       235 

NPK        49        14 

Manager Farmer         159       234 

Researcher          81         63 

Key: 
n=number of observations, N = Nitrogen, kg N ha-1 = kilogram N per hectare 
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Typically, experiments included various fertilizer treatments and or multiple seasons 

and sites. The data contained multiple fertilizer treatments from different experiments. 

Formally, these observations cannot be considered independent. However, López-

López et al. (2014) showed that multiple entries from a single experiment are valid and 

can help to increase the precision of the analysis when using literature data. Controls 

were considered as treatments with no application of fertilizers either organic or 

inorganic. The data variables were harmonized by (i) converting the reported soil 

measurement units that were reported different for a given soil, into similar units,  (ii) 

reconverting major soil types classified differently to into the common World Resource 

Base Reference Soil Groups (IUSS Working Group WRB, 2014), and (iii) converting 

measured P-Olsen to P-Bray, because this variable were never measured in the same 

experiment and to convert to similar metrics. Therefore,  published conversion factors 

were used to estimate P-Olsen from P-Bray 1: P-Olsen = 0.44 P-Bray 1 (Kleinman et 

al., 2001) and from P-Bray 2 to P - Olsen = 0.79 P-Bray 2  (Wuenscher et al., 2015).  

 

The database still included many missing values because soil descriptions and analytical 

procedures differed. A flowchart deducing the different steps of estimating the missing 

data is presented in Figure 3.2. To handle the rest of the missing data on soil properties, 

the following approaches were used: 

i) A pairwise correlation analysis was conducted to establish the correlation among 

paired soil properties. Paired soil properties with a Pearson correlation coefficient 

(r) > 0.8 were selected. From this pair, the property with the highest number of 

missing values was dropped. Prior to dropping the property out, a linear equation 

was established and used to estimate the missing value of the retained property (with 

fewer missing values). But, still there were missing soil test values. Thus, where the 

pair-wise could fill the missing, the next approach was employed.  
ii) Predictive Mean Matching (PMM) approach  was used to impute the remaining missing 

soil data using the “mice” R-package (Van Buuren & Groothuis-Oudshoorn, 2011). The 

PMM approach is based on regression analysis and estimates missing values by means of 

the nearest neighbour (Di Zio & Guarnera, 2009; Vink et al., 2014). This approach was 

used so that the originality of the soil data and the underlying distribution are maintained 

(Little & Rubin, 2002; Vink et al., 2014). Remaining missing values (18%) for soil pH, 

total C, Exch. K, silt and clay were estimated using the PMM approach.  
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Figure 3.2: Flowchart showing the different steps to estimate the missing values for some of  
the soil properties in the database. The r is the Pearson correlation coefficient obtained  
from the correlation analysis. Soil property that was highly correlated (r > 0.8), the  
property with the highest number of missing values were removed from the analysis
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Lastly, to calculate sampling variance for meta-analysis, the standard deviation (sd) was 

included in the database. For studies, where only the standard errors or coefficient of variation 

were reported, they were used to estimate the sd. In studies where no measures of variance 

were presented, a value of 1.5 times of the mean of all reported sd was assigned (Ishak et al. 

2008; Ros et al. 2011). 

 

3.4 Statistical analysis  

A meta-analysis was conducted to: (i) quantify heterogeneity across fertilizer studies 

and, (ii) to evaluate causes of variation in FR and effect size across categorical variables. 

The effect size (response ratio i.e. FR) estimator was used to quantify the magnitude of 

the effect of fertilizer application on yield (Hedges et al., 1999) and was considered a 

proxy index of soil responsiveness. Agronomic nitrogen use efficiency was taken to 

represent nutrient use efficiencies across the fertilizer studies. Regression analysis was 

done to discern the continuous independent variables that explain variability in FR and 

N-AE.  

 
3.4.1 Fertilizer Response of Maize  
Fertilizer response was taken as the ratio of the mean maize yield of the fertilized plot 

(!̅! in kg ha-1) and the mean maize yield of the control plot (!̅" in kg ha-1) (Hedges et 

al. 1999; Ros et al. 2011) and was computed as a natural log (ln) to normalize the data 

distribution (Johnson & Curtis, 2001). A normalized FR is required to develop random 

effect meta-regression models. The ln FR was computed as in Equation 3.1. 

#$ FR = ln *#̅!#̅"+……………………………………… 3.1 

 

Soils with FR > 1 were categorized as responsive. Within the non-responsive soils (FR 

≤ 1) the poor and fertile soils (less responsive) were distinguished, based on the maize 

yields in the control plots, and as described by Vanlauwe et al. (2014). The fertile soils 

category were soils where no significant (p  < 0.005) increase in maize yield was 

realized after N fertilization or a combination of N with inorganic P or K addition, 

(Vanlauwe et al., 2014), but would still have high maize yields ( > 1,125 kg ha-1 for 

smallholder farm in SSA) as displayed in the control plots. A FR ≤ 1 meant that 

fertilization had no effect or negatively affected yield.  
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The sampling variance of the fertilizer response (FRv) was used to compute the 

Heterogeneity (QT) between fertilizer studies and evaluate factors affecting FR. FRv 

was calculated as equation 3.2. 

 

#$	FR% = * ('(!)#*!(#̅!)#
+ ('(")#

*"(#̅")#
+………………………... Equation 3.2 

where n is the sample size/number of replicates, sdt is the standard deviation for the 

yields within the treatment and sdc is the standard deviation for the yields within the 

control. 

 

3.4.2 Agronomic Nitrogen Use Efficiency of maize 
The agronomic nitrogen use efficiency was computed following Vanlauwe et al. (2011) 

as in equation 3.3.  

N − AE = *#̅!+#̅",- +……………………Equation 3.3 

where FN	(kg	N	ha+.) is the amount of applied fertilizer N. The unit for N-AE is kg 

dry weight kg-1 N. The average N-AE was computed across the different groups of 

categorical factors (Table 3.1, 3.2, 3.3). The derived N-AE is not an effect size as 

defined in the meta-analysis. Therefore, sampling variance, as a requirement for 

computing an effect size was not computed for N-AE. Instead, N-AE statistical analysis 

involved conducting regression analysis.   

 

3.4.3 Meta-analysis of fertilizer response for maize crop  
A meta-analysis approach was used to evaluate FR following Hedges et al. (1999) and 

Luo et al. (2006). FR was used to evaluate soil responsiveness to N fertilization, or 

combinations with inorganic P and or K additions. To establish the different categories 

of soil responsiveness, the relationship between FR and maize yield of control plots was 

evaluated. The dataset was split into three categories of soil responsiveness to fertilizer 

application, similar to Njoroge et al. (2017). To further evaluate these categories, their 

corresponding soil properties were analysed.  

 

To examine the heterogeneity (QT) of FR in fertilizer studies across Kenya and SSA, a 

random-effect (RE) meta-regression model was developed (Viechtbauer, 2010). The 
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RE model was fitted using the Restricted Maximum Likelihood method (Brown & 

Kempton, 1994). A test of QT was used to assess how comparable the studies were and 

to test the significance of QT of the FR (Hedges & Olkin, 1985). Significant QT of the 

FR indicates that the variation cannot only be attributed to the sampling error and other 

explanatory factors are playing a role as well (Huedo-Medina et al., 2006). The latter 

situation would provide an option to identify explanatory factors of QT across fertilizer 

studies.  

 

The potential effect of publication bias in the meta-analysis was tested using a 

regression test for the overall dataset (71 studies) (Viechtbauer 2010). The test is a 

quantitative representation of the importance of publication bias in the meta-analysis 

(Thornton & Lee, 2000). The publication bias was also evaluated through a “funnel” 

plot. The distribution of ln FR in the “funnel” plot was analysed, to check if indeed 

publication bias was likely to influence the meta-analysis results (Viechtbauer 2010). 

The trim and fill method were used to estimate the number of additional observations 

necessary to change the results of the analysis from significant to non-significant (Duval 

& Tweedie 2000; Viechtbauer, 2010).  

 

To examine the influence of soil, climatic and management factors on FR, an analysis 

of the categorical variables was conducted, as a further step in meta-analysis (Table 3.1, 

3.2, 3.3). The categorical variables included; soil types, soil textural classes, agro-

ecological zones, type of management (farmer or researcher managed), range of N 

application rates and nutrient types (N, P and K). To compare the effect of fertilization 

across the groups, the weighted means (#$	FR/) of FR and their corresponding 95% 

confidence intervals (CIs) were computed for each group, following Luo et al. (2006): 

#$	FR/ = 8∑ 1*	,3	/$%
$&'
∑ /(
$&' $

9……………………………………. Equation 3.4 

where ‘i’ is an observation, wi is the weight of i, defined by the reciprocal of the ln FRv 

(wi =1/#$	FR4), and m is the number of observations within a group of that categorical 

variable. The effect of fertilization for each group was considered significantly different 

from 1 if the CI did not overlap the line of no effect (ln FR = 0, p ≤  0.05), and different 

from one another if their 95% CIs were non-overlapping (Hedges et al., 1999). A back-

transformed #$	FR/ was reported in text and figures. The “metafor” R-package was 
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used to conduct the meta-analysis (similar to Barto & Rillig (2010) and back 

transformed values (FR) were reported in the figures. 

 

3.4.4 Regression analyses – influence of climatic and management factors on FR 
and N-AE  
To further study how soil properties, management and climatic factors (the continuous 

factors) affect FR and N-AE, General Linear Regression (GLR) models were 

developed. In this analyses ln FR or N-AE was the dependent variable and independent 

variables were: N application rate (only for ln FR), total C, soil pH, P-Olsen, 

exchangeable K, clay, silt and rainfall. Variables were standardized by dividing each 

observation with the standard deviation of the variable, so that each factor had equal 

representation in the GLM. The relationship between dependent (ln FR or N-AE) and 

independent variables was assessed based on the level of significance (p ≤ 0.05) and 

coefficient of determination (adjusted R2). 

 

Further evaluation of the GLMs were conducted by computing the variable importance 

projections (VIP) scores from each GLM (ln FR or N-AE), which primarily indicate the 

relative measure of the importance of each predictors in the model (Kuhn, 2008). These 

scores were considered robust, because they took into account the orthogonal variation 

between independent factors (Chong & Jun, 2005; Farrés et al., 2015) and high variation 

in ln FR or N-AE. The VIP scores were used to discern the key factors, which also 

explain the underlying variation in FR or N-AE (Kuhn, 2008; Mehmood et al., 2012; 

Farrés et al., 2015). The scores were computed independently for each other (predictors) 

using the t-statistic (Kuhn, 2008). A criterion of VIP scores >1 was adopted for 

identifying the key factors, so that those with scores >1 were taken as the key ones 

(Chong & Jun, 2005). The “pls” R-package was used for regression analysis (Mevik & 

Wehrens, 2007). The “caret” R-package was used to compute VIP scores (Kuhn et al., 

2014).   

 

3.5 Results 
3.5.1 Fertilizer response for maize crop 

The median FR was 1.8 for Kenya and 1.7 for the rest of SSA (excluding Kenya), which 

indicate maize yield almost doubled with N fertilization. There was a significant non-
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linear, negative relationship between FR and the maize yields of control plots (Figure 

3.3 a, b) with R2 value of 0.47 for Kenya (p = 0.003) and 0.49 for SSA (p = 0.002). 

There was no obvious relationship between FR and N application rate (Figure 3.3 c, d) 

although the maximum attainable FR in Kenya tended to decrease with N application 

rate (Figure 3.3 d). 

 

Responsive soils (FR >1) were common across sampled plots; 86% Kenya and 89% for 

SSA. The maize yields in control plots of these non-responsive soils varied from 100 to 

7000 kg ha-1. Of these soils, 72% were considered fertile non-responsive soils (control 

plots with maize yields >1125 kg ha-1). At this point, the quadratic curve started to level, 

which was an indication of no significant effect (p < 0.001) of fertilization, and most 

observation (>20 %) were close to or below the line of no effect to fertilization (FR = 

1, Figure 3.3). The mean FR was 2.2 for the responsive soils, 0.68 for poor, non-

responsive and 0.89 for fertile, non-responsive soils in SSA including Kenya. The 

number of non-responsive soils for Kenya (51 plots) was too small for further analyses, 

  

Figure 3.3: Fertilizer response (FR) as a function of maize yield in the unfertilized control plots  
(a, b) and or N application rate (c, d) for sub-Saharan Africa (a, c) and Kenya (b, d). The 
dashed line is the line of no response to the fertilizer (FR=1). The solid lines describe 
non-linear relationships function as: FR = 32244 (Control Yield) -0.7 (p = 0.003; 
R2=0.47) for Kenya and FR =83(Control Yield)-0.5 (p=0.002; R2=0.49) for Sub-Saharan 
Africa.  

 

 

 

                                                   

b) 

d) 
c) 

a) 
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so the data of the non-responsive plots was pooled together for Kenya and the rest of 

SSA before being subjected for further analysis.  
 

Soil characteristics varied within the three soil responsive categories (Figure 3.4). For 

example, average total C ranged from 2 - 27 g kg-1 for poor, non-responsive soils and 

from 1 – 56 g kg-1 for fertile, non-responsive soils. The average total C content for 

responsive plots was 63% higher than that of poor, non-responsive plots. The mean 

concentration of P-Olsen for the poor, non-responsive plots was higher (11 mg kg-1) 

than that of responsive soils (6 mg kg-1) and fertile, non-responsive plots (4 mg kg-1). 

Soil C and exchangeable K seemed to be the main separators between poor, non-

responsive soils and the other two categories (Figure 3. 4 c, f). The mean N application 

rates were on average 22% lower for poor, non-responsive plots compared to the 

responsive soils. 

 

 

                   

Figure 3.3:  Means and standard errors of maize yields in control plots, soil  
variables and rainfall for poor, non-responsive soils responsive soils and 
fertile, non-responsive soils. 
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3.5.2. Heterogeneity in fertilizer studies and test of publication bias 
Random effect (RE) meta-regression model results indicate significant variation in FR 

among the observations of the fertilizer studies for Kenya (QT = 15435, degree of 

freedom = 198, p < 0.001) and for SSA (QT = 1645, degrees of freedom = 245, p < 

0.001). This implies independent variables explained a significant part of this variation 

other than the sampling error alone for all studies included in meta-analysis. Thus, the 

evaluation of factors that attribute to the variability in FR was necessary. 

 

The regression test results (z value = 0.75, p = 0.39) suggests absence of publication 

bias across the 71 selected fertilizer studies. Although the distribution of ln FR 

observations (Figure 3.5) in the “funnel” plot was not symmetrical because of more 

relatively high values for ln FR, only 84 observation was missing and did not have any 

effect on the overall results of a meta-analysis. Additional observations would, 

however, have resulted in a more symmetrical “funnel” plot 

Figure 3.4: Funnel plot showing the distribution of the natural log fertilizer response (ln FR) in the  
funnel plot adjusted with the heterogeneity of the random effect model. The black vertical line 
is the regression line, which divides the funnel into equal portions to illustrate the asymmetry.  
Black dots are individual ln FR observations (n = 457); the grey area illustrates area outside the 
“funnel”. 

 

3.5.3. Variability in fertilizer response  

Weighted mean of FR across categorical variables was used to assess variability 

between their sub-groups using CIs (Figure 3.6 & 3.7). The meta-analysis showed that 

the CIs around the FR of all soil orders except Cambisols (Kenya) and Areonsols (rest 
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of SSA) overlapped with the line of no response. The FR was significantly (p < 0.001) 

higher than 1 for these two soil orders, which implied positive crop response to fertilizer 

application compared to other soils (Figure. 3.6 a).  

 

Combined application of N, P and K led to a doubling of the mean FR (p < 0.0001) both 

SSA and Kenya (Figure 3.6 b) compared to application of N alone. For plots with N 

alone, the FR did not differ significantly from 1. Again, the variation in FR was large, 

indicating variability across the plots.  For Kenya, sandy soils in general tended to show 

a higher FR than non-sandy soils (Figure. 3.6 c). This trend was, however, not 

confirmed for the rest of SSA. There, sandy loam soils were the only class of soils with 

a FR significantly higher than 1. For clay soils, the FR did not differ significantly (p < 

0.001) from 1. 

 

The FR was similar between the farmer and researcher-managed plots (Figure 3.7 d). 

The mean FR in SSA farmer-managed plots was significantly higher (p < 0.001) than 

1.  The response to fertilization did not vary significantly among agro-ecological zones 

(Figure 3.6 c). In Kenya, the FR was highest in the lower humid zone (4.8) and > 1 also 

in the upper midlands and lowlands. There was no significant response (p > 0.01) to N 

fertilization in the lower midlands and lower highlands. For the rest of SSA, the mean 

FR for the sub-humid zone was 2.9. The FRw for sub-humid zone was significantly (p 

< 0.001) higher than 1. 

 

The FR had wide CI range (0.8 to 1.5) across the N application rates <30 kg N ha-1 for 

Kenya (Figure 3.7 b). The average FR for 30-60 kg N ha-1 application ranges was 1.61 

and was not significantly (p > 0.01) different from 1. For SSA, FR was not significantly 

(p < 0.001)   different from 1 for N application rates range of 30-60 kg N ha-1 since the 

CI overlapped with the line of no effect. 
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Figure 3.5: Means of the fertilizer response (FR) across (a) World reference soil groups, (b) soil textural classes and (c) agro-ecological zones. The  
dashed line is the line of no response to the fertilizer (FR=1). Error bars represent confidence intervals; numbers in brackets represent the number of 
observations per category.
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Figure 3.6: Means of the fertilizer response (FR) across categorical variables, (a) nutrient types, (b) range of nitrogen application rates and (c) type of  
management of the fertilizer experiments. The dashed line is the line of no response to the fertilizer (FR=1). Error bars represent confidence intervals; 
numbers in brackets represent the number of observations
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3.5.4 Agronomic Nitrogen Use Efficiency  
The average N-AE was 42 kg dw kg-1 N for Kenya and 18 kg dw kg-1 N for the rest of 

SSA. The N-AE varied from -27 to 165 kg dw kg-1 N across all observations (Figure 

3.8 a, b). There were no significant (p > 0.01) relations between maize yield of the 

control plot (Figure 3.8 a, b) or N application rate (Figure 3.8 c, d) and N-AE, though 

the maximum attainable N-AE seemed to decline with increasing maize yields in the 

control plots and N application rates. Mean N-AE varied across the soil, climate and 

management factors (Table 3.4). 

 

3.5.5 Key factors affecting Fertilizer response and Agronomic Nitrogen Use 
Efficiency  

The regression (GLM) with the eight continuous predictors explained 31% of the 

variation in FR for Kenya and 9% for SSA (Table 3.5, 3.6). Fertilizer response 

decreased significantly (p < 0.0001) with increasing P-Olsen in Kenya, but not in the 

rest of SSA (see Appendix 2). Here, soil pH and average rainfall during a growing 

season were the significant predictors (p > 0.001) of variation in FR. They correlated 

positively with FR. Low values for soil pH and rainfall of a growing season displayed 

decreased FR (<1). Fertilizer response increased marginally significantly with soil total 

C in Kenya (p = 0.10), but not in the rest of SSA.

             
Figure 3.7 : Agronomic nitrogen use efficiency (N-AE) as a function of maize yield of  

the control plots (a, b) or   nitrogen application rate (c, d) across  
fertilizer studies for sub-Saharan Africa (a, c) and Kenya (b, d) 

d) 

b) 

c) 

a) 
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Table 3.4 : Agronomic nitrogen use efficiency statistics for categorical variables of soil  
and climatic factors 

Key: - = missing statistic of the group; n=number of observations; SE = standard error 

 

When tested whether addition of maize yields of control plots as predictor could 

improve the predictive ability of the model, the adjusted R2 value increased from 31% 

to 59% for Kenya and 9% to 57% for SSA. In that case, P-Olsen no longer explained 

any variation in FR for Kenya, and for SSA rainfall dropped out of the model. The FR 

decreased with increasing maize yield in the control plots (Fig. 3.3). 

  Kenya  Sub-Saharan Africa 
Factor Level Mean SE n  Mean SE n 

Environmental 
Soil order Acrisols 17.3 4.9 22  20.0 2.5 37 

Alfisols 87.4 19.2 4  23.5 1.6 12 
Alisols 12.3 4.8 8  - - - 
Andosols 22.8 1.6 6  28.9 10.7 8 
Arenosols - - -   15.3 2.2 3 
Cambisols 71.8 10.2 22     
Ferralsols 42.0 8.0 24  16.7 2.1 81 
Lixisols - - -   22.5 5.4 41 
Luvisols 10.5 3.0 4  - - - 
Nitisols 51.2 5.2 68  - - - 
Phaeozems 65.8 4.8 8  - - - 
Vertisols 22.1 4.6 6   - -   - 

Soil textural 
classes 

Clay 26.7 6.1 28  19.5   14 
Clay loam 33.7 2.0 21     
Loamy sand 20.8 - 2  22.5 4.7 8 
Sandy - - -   10.8 0.7 64 
Sandy clay 20.4 2.2 4  3.5 9.6 6 
Sandy clay loam 54.6 21.6 6  17.2 5.9 10 
Sandy loam 49.8 7.0 31  16.8 3.1 55 

Agro-ecological 
zone 

Lower highlands 1 22.8 1.6 6  - - - 
Lower highlands 2  75.8 9.6 6  - - - 
Lower midlands 28.3 7.7 4  - - - 
Lowlands 20.4 3.5 4  - - - 
Upper midland 94.3 15.1 8     
Humid - - -   21.8 2.7 6 
Sub-humid - - -   26.7 1.9 18 

 
Management 

Manager Farmer 44.6 3.2 159  18.3 1.4 234 
Researcher 32.9 4.7 81  22.4 1.6 63 

Nutrient type N, P, K 80.0 5.7 49  23.3  14 
N 30.4 2.5 149  18.1 1.4 235 
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Seven continuous predictors were used to develop the regression model for N-AE. The 

best model explained 29% of variability in N-AE for Kenya and 1.3% for SSA (Table 

3). Similar to FR, rainfall and total C positively influenced variability in N-AE and P-

Olsen did so negatively in Kenya; for SSA variation in N-AE silt was the best predictor 

Table 3.5: Regression model estimates of soil and climatic factors on fertilizer response and  
agronomic nitrogen use efficiency.   

 

Fertilizer response 

R2 
Adjusted  

Predictor Estimate 
Standard 

error 
p value Significant Level 

R2 

Kenya (n=202) 

0.29 0.26 Intercept 0.483 1.275 0.204 d 

  
Soil pH 0.166 2.679 0.008 b 

 
ln-Total C -0.024 -3.353 0.001 a 

  
ln-P-Olsen -0.020 -3.041 0.003 a 

  
ln-N rates -0.002 -1.535 0.126 

 

  
ln-Exch K 0.060 6.103 0.001 a 

  
Clay 0.001 0.425 0.671 

 

  
ln-Silt -0.007 -2.444 0.015 d 

    ln-Rainfall -0.0008 -0.771 0.004 d 

Sub-Saharan Africa (n=255) 

0.13 0.092 Intercept -0.221 -0.734 0.464 
 

  
Soil pH 0.154 2.714 0.007 b 

 
ln-Total C -0.006 -1.649 0.101 

 

  
ln-P-Olsen 0.021 3.049 0.003 c 

  
ln-N rates 0.002 2.043 0.042 c 

  
ln-Exch K -0.022 -2.002 0.047 c 

  
Clay -0.002 -0.591 0.555 

 

  
ln-Silt 0.003 1.185 0.237 

 
    ln-Rainfall -0.0001 -1.439 0.102 b 

Key: Significant codes: a = 0.001, b = 0.01, c = 0.05, d = 0.1, ln = natural log 
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Table 3.6 Regression model estimates of soil and climatic factors on fertilizer response and  
agronomic nitrogen use efficiency 

Agronomic Nitrogen Use Efficiency 

R2 
Adjusted  

Predictor Estimate 
Standard 

error 
p value Significant Level 

R2 
       
0.32 0.29 Intercept 52.652 22.943 0.023 d 

  
Soil pH 7.019 3.780 0.065 d 

  
ln-Total C -1.154 0.442 0.010 c 

  
ln-P-Olsen -1.098 0.404 0.007 b 

  
ln-Exch.K 3.429 0.589 0.001 b 

  
Clay -0.408 0.169 0.017 c 

  
ln-Silt -0.634 0.185 0.001 a 

    ln-Rainfall -0.010 0.006 0.106 
 

Sub-Saharan Africa (n=255) 

  
Intercept 11.183 11.791 0.344 

 
0.035 0.003 Soil pH 1.697 2.283 0.458 

 

  
ln-Total C 0.056 0.138 0.687 

 

  
ln-P-Olsen 0.544 0.273 0.048 c 

  
ln-Exch.K -0.829 0.431 0.056 d 

  
Clay -0.013 0.113 0.912 

 

  
ln-Silt -0.077 0.097 0.431 

 
    ln-Rainfall -0.001 0.004 0.781 

 
Key: Significant codes: a = 0.001, b = 0.01, c = 0.05, d = 0.1, ln = natural log  

 

Key factors explaining variation in FR using VIP scores were identified for Kenya and the rest 

of SSA with VIP scores > 1 (Figure 3.9).  Exchangeable K, soil pH and rainfall (Figure 3.9 a, 

b) were the key factors for both Kenya and the rest of SSA. In addition, P-Olsen, total C and 

silt were relevant in Kenya, and N application rate in SSA. Clay was the least important factor 

for both Kenya and SSA. Results from the GLM indicate rainfall, as the significant (p < 0.001) 

factor influencing FR in Kenya and SSA. P-Olsen, total C and silt were additional key factors 

for Kenya while soil pH and exchangeable K the key ones for SSA. Nitrogen application rates 

was not significant (p < 0.01) but were important based on the VIP score that was 1.18 for SSA 

(Figure 3.9).  For N-AE, results of relative importance of key explanatory factors based on VIP 

indicate P-Olsen, clay, silt, soil pH, and rainfall as key determinates for Kenya (Figure 3.9 c
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Figure 3.8: Relative importance of continuous management, soil and climate factors based on the variable importance projection (VIP) values  
computed from the general regression model explaining variation for in the fertilizer response (FR) (a, b) and agronomic nitrogen use 
efficiency (c, d). For sub-Sahara Africa and Kenya. The dotted line represents the threshold value for the VIP value (VIP=1) below which 
variables were considered not to be important predictors. 

                

a) b) 

d) c) 
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3.6 Discussion 
3.6.1 Factors affecting variability of FR and N-AE  
The results indicate that both FR and N-AE vary largely within Kenya, which justifies 

the need for refining fertilizer recommendations to a higher spatial resolution. The FR 

varied roughly from 1 – 28.8 and the N-AE from 0 – 160 kg dw kg-1 N. Fertilization, 

on average, nearly doubled the maize yield in both Kenya and the rest of SSA. The 

average response was statistically significant (p < 0.001) only when N was applied in 

combination with P and/or K (Figure 3.3 b). The average N-AE was 18 kg dw kg-1 N 

for SSA was similar to that of Vanlauwe et al. (2011) who reported 19 kg dw kg-1 N for 

farmer-managed experiments. The average N-AE for Kenya (42 kg dw N kg-1) was 

substantially higher but not uncommon for East Africa due to high variability across 

smallholder farms (Vanlauwe et al., 2011).  

 

Reoccurring variables significantly (p < 0.001) explaining variation in both FR and N-

AE in Kenya and SSA are total C, pH, P-Olsen, rainfall and silt (Figure 3.7, 3.6, 3.10 

and Table 3.4). Soils with a lower pH < 5.2, rainfall < 1200 mm and silt < 10% tended 

to have lower FRs and N-AEs. In line with earlier studies (Kihara et al., 2016),  pH and 

FR and N-AE were positively related. This is probably because most soils in the study 

had a soil pH below the optimum of 5.5 - 6.5. At soil pH < 5.5, N mineralization rates 

decrease and P increasingly binds to the soil’s solid phase. Dominant factors that 

explained variability in FR (based on the variable importance projection (VIP) score) 

varied to some extent between Kenya and SSA, which could be related to differences 

in agro-ecological zones, reference soil groups and soil textural classes between these 

two regions (Figure 3.5, 3.6).  The results between factors that were significant from 

regression analysis and computed VIP scores also varied to some extent (Table 3.6, 3.7, 

Figure 3.9). For example, for Kenya, soil pH and exchangeable K were not significant 

(p > 0.001) based on the coefficient from the regression model (Table 3.6, 3.7), but were 

important based on computed VIP scores (> 1, Figure 3.9). The variation of factors can 

also be attributed to the difference in the statistical computation for regression analysis 

and calculation of VIP scores. Grömping (2009) explained such computation 

differences, which is caused by the non-unique decomposition of model sum of squares 

in the regression model, due to correlated predictors. However, the study used 

uncorrelated variables to develop the regression models, which is contrary to this 

observation. Unexpectedly, higher FR values (for N) were found in soils with higher P-
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Olsen concentrations (>11 mg kg-1), but below the critical level of 15 mg kg-1. This may 

be attributed to the fact that in part of the entries, N fertilization was combined with P 

(and K) fertilization, and FR was >1 particularly in those cases (Figure 3.7 b). 

 

The biophysical and management parameters available in the dataset for this study, 

appeared to be difficult to capture the relevant amount of variation in FR (Table 3.1). 

Nevertheless, the meta-analysis of factors affecting FR provided few points of departure 

for spatial refinement of fertilizer recommendations. The wide CIs for soil orders and 

texture were all overlapping each other, although some orders and textural classes with 

FRs significantly > 1 (p < 0.001) were identified (the more fertile Cambisols and 

Arenosols for Kenya and SSA, respectively, and sandy (clay) loam soils consistently 

for Kenya and SSA). The regression analyses showed that the set of continuous 

environmental characteristics used, explained a very limited proportion of the variation 

in FR and N-AE (Table 3.6, 3.7). The continuous variables (Table 3.6) explained only 

31% of the total variation in FR in Kenya and as little as 9% in SSA. For the N-AE the 

respective percentages of explained variation were even lower.  

 

Units aggregating several factors determining FR or N-AE would intuitively be most 

suitable to refine fertilizer recommendations for spatially relevant units. The spatial 

mapping unit AEZ potentially captures a combination of factors such as the length of 

the growing season, climate, landform and soils, all related to land use. As such, it 

aggregates some of the other individual variables tested and is currently used to refine 

fertilizer recommendations. However, the average FR in the AEZ distinguished for the 

rest of SSA did not differ significantly (Figure. 3.6 c), although the FR was significantly 

>1 (p < 0.001) in three of the seven zones of Kenya. This renders AEZs an unsuitable 

unit for refining recommendations based on these results. Extending them with soil 

information (pH, P-Olsen, texture, order) could be a promising strategy. 

 

The maize yield in the non-fertilized control seemed to be the best predictor for the FR 

(p = 0.0001) (Figure 3.3 a, b). This variable can, similar to AEZ, can be regarded an 

integral proxy for environment (soil fertility, climate, weather), genetic (maize variety) 

and management factors (planting density, control of pests, weeds, diseases). Both for 

Kenya and for SSA, the adjusted r2 increased substantially when these yields were 

added to the set of independent variables (from 31% to 59% for Kenya and from 9% to 
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57% for SSA). The FR was higher when the yield in the control plots was lower (Figure 

3.3 a, b). However, this statistical relationship is probably a result of autocorrelation 

because the maize yield in the non-fertilized control (xc) is in the denominator of FR 

(Equation 3.1). This suggestion of autocorrelation is supported by the absence of any 

relationship between control yields and N-AE (Equation 3.2, Figure 3.8 a, b). 

 

3.6.2 Soil responsiveness to fertilizer application  

The FR when considered as an index, can provide useful tool for diagnosing soil 

responsive to fertilizer application. Over 85% of the sites were responsive to 

fertilization for both SSA and Kenya. Farms that were responsive were 86 % for Kenya 

and 14% were non-responsive. To prevent complete failure of fertilizers, prior 

identification of non-responsive soils is of utmost importance. Non-responsiveness of 

poor soils is often related to low soil organic matter content (Tittonell & Giller, 2013), 

causing soil physical constraints (low water-holding capacity), low micronutrient 

availability (Kihara et al., 2017) as well as low microbial activity leading to increased 

soil disease risk (Lal, 2016). The results confirm that although the variation was high, 

the average C content of poor, non-responsive soils (11 g kg-1) was significantly lower 

(p = 0.031) than in responsive, (18 g kg-1) and fertile non-responsive soils (19 g kg-1; 

Figure 3.4 c). The soil responsiveness categories were clearly distinguished by total C 

and exchangeable K (Figure 3.4 c, f). Thus, total C and exchangeable K could act as 

useful indicators for discerning the different categories of soil responsiveness to N 

fertilization, which may be useful for nutrient management. The high variation indicates 

that non-responsiveness is a complex feature that is not easily operationalized using 

easily available environmental data. This is probably the reason that soil total C is not 

a powerful predictor of the FR (Table 3.6).  

3.6.3 Challenges for meta-analysis in agronomic studies 
This study adhered to standards recommended for meta-analysis in agronomy studies 

(Philibert et al., 2012), by developing a criterion for data inclusion and establishment 

of a database (Figure 3.2). However, exclusion of publications (only 71 studies out of 

the total of 503 found were acceptable) is a clear indication of the challenges for 

merging and comparing data from past literature for meta-analysis, which may be 

attributed to differences in reporting across fertilizer studies. For example, all studies 

reported on fertilizer treatments, which allowed us to quantify the FR and N-AE. 
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Studies that did not report control treatments (5%) where no fertilization was done) 

were omitted from during inclusion, while developing the databases. For example, there 

was variation on the different set of soil properties used in characterizing each study 

area. As a result, missing soil properties (18 %) were imputed, since different analytical 

methods were used for soil characterization.  

 
3.7 Conclusions 

The basic premise of this study was to identify key factors that can be used to refine 

fertilizer recommendation across smallholder farms of SSA. The findings indicate that 

available data layers can explain only very small amounts (< 30 %) of variation in FR 

and N-AE and there is need for more systematic studies at high spatial resolution to 

identify yield-limiting factors. The data indicated that soil pH, P-Olsen, silt content and 

rainfall had significant but low levels of power in explaining variation in FR and N-AE. 

This finding implies that strategies for refining the current blanket fertilizer 

recommendation should include information on soil type, soil properties (texture, P-

Olsen and total Carbon). Such information can be derived through soil testing, which 

should be accompanied by nutrient response trials and preferably plant nutrient testing 

to diagnose limiting factors. Due to the limitation of the dataset, this study did not 

comprehensively unravel the biophysical and managements factors that lead to soil non-

responsiveness across smallholder farms. The complexity of soil responsiveness to 

fertilizer application requires further studies to fully understand other factors that led to 

non-responsive soils, besides total C, soil pH, exchangeable K and P-Olsen as indicated 

in this study. There is therefore a need of promoting standards of reporting the findings 

in agronomy, specifically in fertilizer-related studies for future meta-analytical 

inferences. There is need for developing standard to provide enough information for 

agronomic studies. For example, there should be a minimum list (set) of soil properties 

that should be included in future studies, and clear description of any other factors 

observed within the site under investigation. This may allow combination as well as 

comparability of datasets across agronomic studies. Supply of information describing 

the availed data (metadata) should be a requirement for all agronomic studies. However, 

developing guidelines, calls for detailed investigation that could avail a standard 

protocol of presenting additional information for agronomic studies similar to those 

developed for biochar and metabolic studies (Fiehn et al., 2007; Jeffery et al., 2011). 
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Chapter Four 
Analysis of spatial variation to guide the development of fertilizer use 
recommendations for smallholder farms in western Kenya2 
 
Abstract 
Refining fertilizer recommendations using digital property maps has been considered 

among options for increasing maize production for heterogeneous smallholder farms. 

However, it is not clear the suitable spatial scale, which is pivotal for strategies utilized 

in developing soil nutrient maps. The objective of this study is to determine a spatial 

scale, that captures and reflects local growing condition on smallholder farms. A farm 

survey was conducted within a 100 km2 sampling block to collect data on the spatial 

variation in unfertilized maize bio-volume and grain yield in relation to soil organic 

carbon, total nitrogen, calcium (Ca), magnesium (Mg), potassium (K) and phosphorus 

(P). Key soil factors associated with crop performance were identified using Step-wise 

Multivariate Linear Regression (SMLR) modelling. Variation of key factors and crop 

performance indicators (CPIs) were described by soil types, sampling units, and 

administrative units through an analysis of variance. In this region, soil properties 

displayed high variability as exhibited by coefficient of variation of 60% for Ca and 89% 

for K. This result also showed high variability in grain yield, with 31% of the variation 

(cumulative) being accounted for by underlying soil properties. Soil Organic Carbon 

(SOC) was identified as key factor associated with variation in CPIs. SOC displayed 

moderate spatial dependency (65%) with a range of 523 m. This study provided insights 

of the association between key soil factors with CPIs that was utilized, to provide a 

framework for determining optimum sampling distance, appropriate scale for developing 

digital soil maps (< 250 m). Strategies aimed at refining fertilizer use recommendation 

can therefore be recommended to use this scale as a guideline. 

 

4.1. Introduction 
Agricultural production in sub-Saharan Africa (SSA) can be characterized by 

smallholder farming and low productivity. The latter is caused by low inherent soil 

fertility (Bekunda et al., 2010), soil nutrient depletion (Stoorvogel et al., 1993), limited 

 
This chapter is based on a published article in the Geoderma Regional Journal, Volume 22, 
https://doi.org/10.1016/j.geodrs.2020.e00300. 
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nutrient inputs (Ade Freeman & Omiti, 2003), and poor germplasm (Vanlauwe et al., 

2011). Fertilizers are required to replenish soil nutrient stocks and provide nutrients to 

the crop to increase productivity. Smallholder farmers face the basic question of what 

type and how much fertilizer to apply given the local conditions on their farms and 

available resources. Farmers rely mostly on their own experience from previous years 

and fertilizer use recommendations provided by government agricultural extension 

institutions. Typically, the recommendations are spatially coarse and developed on the 

basis of soil surveys and agronomic experiments. The recommendations are valid for the 

area or a spatial unit, for which the experiment is considered representative, which could 

be an administrative unit such as country or an agro-ecological zone (AEZ) (Smaling et 

al., 1992). This so-called ‘blanket’ fertilizer use recommendations are a single fertilizer 

use recommendation for a given area, and do not represent the variation in conditions 

within that area (Bationo et al., 2012).  

 

Currently, several countries use blanket fertilizer use recommendations to guide 

decisions on nutrient management (Rurinda et al., 2020). In the past, many studies have 

focused on refining or improving fertilizer recommendations, with the aim of attaining 

higher crop yields ( Benson, 1999; Mowo & Mlingano, 1993). In the 1980s, countries 

such as Kenya provided blanket fertilizer use recommendations for the entire country to 

guide decisions by smallholder farmers on their fertilizer management options (AIC, 

1981; FURP, 1994). Later, in the 1990s, fertilizer use recommendations were refined on 

the basis of agro-ecological zones in an attempt to deal with within-country variation 

through the Fertilizer Use Recommendation Project (FURP) in Kenya (Smaling et al., 

1992; FURP, 1994). Agro-ecological zones were defined based on climate, soil and 

topography (Geurts & Van den Berg, 1998). However, the variability in growing 

conditions within AEZs can limit the use of fertilizer use recommendations developed at 

the AEZ-level (Giller et al., 2006). For example, Diarisso et al. (2015) reviewed soil 

spatial heterogeneity in smallholder landscapes and soil responsiveness to interventions 

and concluded that a form of precision agriculture is required that recognizes fine scale 

spatial heterogeneity. 

 

Many recent studies focus on improving fertilizer management and include the use of 

decision support tools such as the Quantitative Evaluation of Fertility in Tropical Soils 

(QUEFTS) model (Janssen et al., 1990),  the derived Nutrient Expert (Pampolino et al., 
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2012; Sattari et al., 2014), and crop growth simulation models like APSIM (Kisaka et 

al., 2016). These tools have to be re-calibrated for every region of interest (Pampolino et 

al., 2012; Xu et al., 2013). The parameters in the QUEFTS model never consider local 

spatial variability which occurs on smallholder farms. Furthermore, Molefe et al. (2012) 

observed that such decision support tools fail to capture complexity within smallholder 

farms. Matthews et al. (2002) reported that poor data quality and the lack, therefore limit 

the application of such nutrient management tools in smallholder farms.  

 

A further refinement of fertilizer recommendations is hampered by the lack of detailed 

soil data (Sanchez et al., 2009). New, more detailed studies on soil surveys are rare, 

particularly in SSA. The available national soil survey maps are spatially course 

(1:250,000), and are produced using different methods, resulting to varying levels of 

accuracy (regional or national)  and data incompleteness (Arnhold et al., 2015; Baruck 

et al., 2016). Two new developments in collection of soil data may create new options to 

refine fertilizer recommendations even further: i) Digital soil mapping (McBratney et al., 

2003) which has evolved into an operational tool that can provide detailed insight in soil 

variability in an efficient way. Examples include the 100 m resolution digital soil map of 

Machakos and Makueni districts in Kenya (Mora-Vallejo et al., 2008) and also various 

continental to global initiatives (Arrouays et al., 2014; Stoorvogel et al., 2017; Hengl et 

al., 2017). ii.) Fertilizer recommendations for a farm can be based on soil test values for 

that particular farm. Where traditional soil analysis is often too expensive and, therefore, 

out of reach for smallholder farmers, new proximal sensing techniques like infrared 

spectroscopy (Shepherd and Walsh, 2007) can be used to provide soil analysis at a low 

cost. 

 

A better understanding of soil spatial variability may provide guidelines to improve 

decisions for refining fertilizer use recommendations to optimize crop productivity. 

Those guidelines should include the scale fertilizer use recommendations needed to be 

developed. Previous research conducted mainly focused on soil nutrient depletion 

(Lijzenga, 1998), within farm variability (Tittonell et al., 2005, 2007a, 2008b, 2013) and, 

spatial and temporal variability in maize response (Njoroge et al., 2017). In western 

Kenya, blanket fertilizer recommendations are still the norm. 
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This study aimed at developing an approach for assessing the optimal level of scale, that reflect 

the variability in local growing conditions in smallholder farms. The objectives of this study were 

to: (i.) describe the spatial variability of soil properties and crop performance, (ii.) identify the 

key soil factors of crop performance, and (iii.) identify a scale in which soil spatial variability 

can be sufficiently described. The hypothesis that the scale of variability of key soil drivers 

corresponds to that of fertilizer response across smallholder farming landscapes was tested. 

Smallholder farming systems in western Kenya region was the case study.  

4.2 Materials and methods 
4.2.1. Site description  

The study area is a heterogeneous smallholder landscape in western Kenya (0°26′ - 0°18′ northern 

latitude; 33°58′ - 34°33′ eastern longitude) delimited by the administrative boundaries of Siaya 

and Kakamega counties (Figure 4.1). The area is characterized by sub-humid conditions and 

classified as the Lower Midland (LM1) (Jaetzold and Kutsch, 2006). FURP provided a blanket 

fertilizer recommendation for the LM1 AEZ of 60 kg N ha-1 and 30 kg P ha-1 for monocrop maize 

(FURP, 1994). The FURP experiment site is located 2 km away outside the current study area 

but within the LM1 AEZ (Figure 4.1 a).  

 

The smallholder landscape is characterized by a distinct bimodal rainfall pattern and a mean 

annual temperature of 20°C. Long rains (March–June) have a mean precipitation of 1350 mm 

whereas short rains (September-December) have a mean precipitation of 850 mm (Jaetzold and 

Kutsch, 2006). The mean potential evapotranspiration (ETo) is estimated at 1287 mm per maize 

growing (four months) season (Ademba et al., 2015). The altitudes vary in the gently undulating 

landscape (slopes < 3 %) between 1400 and 1500 m above sea level. The main soil types (WRB, 

2014) are presented in Figure 4.1 (b) and include Ferralsols (well drained, moderately to very 

deep, clay soils), Cambisols (well drained, moderately deep, loamy clay soils) on the hills, and 

Gleysol (poorly drained, shallow, sandy loam soils) in the plains (Waswa et al., 2013; Waveren, 

1995). Most soils in these areas are considered moderately P fixing (Nziguheba, 2007). The 

fertility of the soils is limiting in N, P and K (Lijzenga, 1998).  

 

Farming systems are subsistent with dominantly rain-fed crops and low fertilizer inputs. The 

mixed crop-livestock system includes maize (Zea mays L.) as the dominant staple crop, usually 

intercropped with common bean (Phaseolus vulgaris L.) (Diwani et al., 2013). Using local maize 

varieties, the average yield levels achieved with the current local conditions using conventional 

farming practices range from 400 to 2000 kg ha-1 (Kwabiah et al., 2003; Vanlauwe et al., 2014) 

for both short and long rainy seasons. Other crops cultivated include bananas (Musa paradisiaca 

L.), sweet potatoes (Ipomoea batata L.) and groundnuts (Arachis hypogaea L). The smallholder 

farmers are supported by county governmental agricultural extension services                                  
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Figure 4.1: (a) Map showing the administrative divisional boundaries of the study area in western Kenya. The blue dots indicate the location of the  
sampling points and the site of the agronomic trial used to develop fertilizer recommendation for LM1. (b), a map displays different the different 
soil types for the study area and, (c) The left panel display a map of the agro-ecological zone and the 100 km2 block with the 6.25 km2 tiles, which 
fell within one agro-ecological zone - LM1. The top most panel displays location of study site within Kenya. 

         

Administrative boundaries Major soil types Agroecological zonesa) b) c) 
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4.2.2. Overview of sequence of steps for determining a relevant scale  
The five consecutive steps include; (i.) a farm survey, (ii.) determine variability in soil 

properties and crop performance indicators (CPIs), (iii.) relate soil properties to CPIs and 

identify main soil drivers of variation of CPIs, (iv.) characterize the scale of spatial 

variability of key soil drivers in order to describe a relevant scale of variability in inherent 

soil fertility, and (v.) validate if there is any correspondence in the scale of variability of 

key soil drivers with the scale of variability in fertilizer response.  The steps are presented 

in the next sections. 

 
4.2.3 Farm survey  
A farm survey was carried out within the Land Degradation Sampling Framework 

(LDSF) (Vågen et al., 2010). The LDSF is a stratified hierarchical sampling design that 

captures variability at different scale levels: block, tiles, sub-tiles, fields and plots across 

a given landscape (Figure 4.2). A 100 km2 block, which typifies a smallholder landscape, 

was first allocated within the study area. The block was sub-divided into 16 tiles and each 

tile further sub-divided into 10 sub-tiles. A total of 8 tiles and 32 sub-tiles (four from 

each tile) were randomly selected, within which three sites (maize fields), were randomly 

generated for sampling during the short and long rains maize cropping seasons.  

 

Different maize fields were drawn for each of the two seasons. Unfertilized, well-

managed (e.g., free of weeds, pests, not affected by drought and diseases), the mono-crop 

maize fields were selected for sampling that had a maize crop at the ear-leaf growth stage 

(silking stage i.e., 70 - 75 days after plant emergence) at the time of sampling. The ear-

leaf growth stage is considered optimum for diagnosis of nutrient constraints in maize 

(Römheld, 2011). Per sub-tile, two different locations were selected for sampling in every 

two of the consecutive seasons, and a maize field according to the above criteria was 

searched. A third point was selected for cases where no appropriate maize field was found 

near two selected points. If the two selected points met the criteria, the third point was 

not sampled. During this farm survey, only unfertilized maize field were sampled where 

the yield reflects the inherent soil fertility. This ensured there was minimum variation 

introduced due to differences in fertilizer application across maize fields.  

 

During sampling, GPS was used for navigation across the smallholder, and maize fields 

were identified and selected for measurements. In the selected fields, a Y frame layout 
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was placed to locate four plots measuring 2.5 m2 (Figure 4.2 d). The central plot was 

located first, by measuring 20 m from the main boundary, towards the centre of the maize 

field. The main boundary was defined as the boundary located from the direction of 

smallholder farmers’ homestead, towards the maize field. Subsequently, three plots were 

located 12.2 m from the central plot and distributed uniformly around it. During the first 

visit, the exact coordinates, soils were sampled and plant density (count number of maize 

plants), and plant bio-volume (biomass) as a proxy of plant biomass were determined 

(Plate 4.1, 4.2). In a second visit, just before harvest by the farmer the Grain Yield (GY) 

was measured. The biomass was estimated using the basal diameter (BD), and height (H) 

of all the maize plant following Chomba et al., (2013): 

		"#(%&!) = )(%&) × +"#(%&)( ,
(
- …………………Equation 4.1 

where BV is the Biovolume, BD is the basal diameter and H is the height. The BD was 

measured in duplicate, 2 cm above the soil surface for all maize plants in the plot (Plate 

4.3). Plant biomass was used to test whether it could be an indicator of crop performance 

rather than GY. Maize grain yield (14% moisture content) was measured from dry maize 

that was hand-harvested and the kernels removed and weighed (kg) between 50-60 days 

after the silking stage. Yield and biomass, were the used as proxies of crop response, 

which reflect variability in the inherent soil fertility across the maize fields. In the rest of 

this Chapter 4, the term CPIs is used to refer to both GY or maize biomass and the term 

biomass and biovolume are used interchangeably, but have the same meaning. 

 

To characterize soil properties, composite soil samples were taken per plot. Using a 

transect in a zig zag pattern, six topsoil (0-20 cm) samples were taken with an Edelman 

soil auger (600 cm3) within the 2.5 m2 plots to have a representative composite soil 

sample (Plate 4.4).  Sub samples from the composite soil samples, obtained using coning 

and quartering, were analysed at Crop Nutrition Laboratory Services and World 

Agroforestry Centre laboratories.  

 

 

The samples were air-dried, thoroughly mixed and ground to pass a 2 mm sieve prior to 

the analysis. Soil pH was measured with a pH meter with a 1:2.5 soil/water suspension 

(Okalebo et al., 2002). Soil Organic Carbon (SOC) and total N were analysed by dry 

combustion using a C/N analyser (Wright and Bailey, 2001), with an acidification pre-
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treatment to remove carbonates for SOC detemination. Extractable Ca, Mg, K, Na, and 

P were determined using the Mehlich-3 extract (Mehlich, 1984) and an inductive coupled 

plasma optical emission spectrometer (Sikora et al., 2005). 
 

 
 

Figure 4.2: Schematic illustration of sampling strategy used for this study. (a) Block measuring  
100km2 with eight randomly selected tiles. (b) Tile measuring 6.25 km2 with four 
randomly selected sub-tiles (c) Sub-tile measuring 0.25 km2 with randomly selected 
maize fields, 2 for sampling and an alternate point. (d) Plots (A, B, C and D) within the 
maize field. 
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Plate 4.1: Global Positioning System (GPS)  

device was used to navigate and identify 
maize field being across the smallholder 
landscapes in western Kenya 

 
Plate 4.2: Measurement of the height of a maize plant,  

was taken on the maize field for calculation of 
bio volume  

 

 
Plate 4.3: Veiner calliper was used to make  

measurement of the diameter of maize plant 
taken on the smallholder farm for calculation of 
plant biovolume 

 

Plate 4.4: Soil auger used to extract samples from  
the 2.5 m2 plots for characterize soil 
properties for the farm survey. 
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4.2.4 Variability in soil properties and crop performance  
To assess the variability in soil properties and CPIs, descriptive statistics; means, 

median, coefficient of variation (CV), minimum and maximum were used. Density plots 

were used to check whether soil properties and CPIs followed a near normal distribution 

as a requirement for the subsequent steps of multivariate statistical analysis of soil 

properties and CPIs. Variables with a skewed distribution were log-transformed to 

achieve the near normality. Relationships among soil properties, and between soil 

properties, and CPIs were evaluated using a pair-wise correlation analysis to derive the 

Pearson correlation coefficients (r). Challenges with multi-collinearity can occur when 

highly correlated variables are included in a regression model (Wold et al., 1984), 

Therefore, variables highly correlated to another variable (r > 0.80) were identified prior 

to further statistical processing (ter Braak & de Jong, 1998).   

 
4.2.5 Key soil drivers of crop performance indicators 
Key soil properties that can be attributed to the variation in CPIs were identified by 

Stepwise Multivariate Linear Regression (SMLR) modelling (Geladi et al., 1999). The 

regression method was used to analyse the linear relationship between single dependent 

variables (CPIs) with the independent variables (soil properties) based on Equation 4.2.  

. = / + ∑ 2)	 ×	3) ± 	5+
),-             …………………………………….4.2 

where “y” is the CPIs, “xi” are the soil properties, “n” is the number of soil properties, 

“a” is the intercept, “bi” are the regression coefficients and “ε” is the standard error of 

the estimate. The SMLR analysis was used because of; (i.) the few numbers of 

independent variables included in the analysis, (pH, SOC, TN, P, K, Ca, Mg, Na) and, 

(ii.) to avoid the problem of overfitting by adding or deleting variable in SMLR analysis 

(Guan et al., 2013). The data was evaluated for outliers which were expunged from the 

analysis to minimize the problem of overfitting in the regression models.  

 

The relative importance of the predictors in the regression model were calculated and 

used to discern the key soil factors. The significance probability (p < 0.001) and 

coefficient of determination (r2) were used as basis of evaluation. The r2 refer to the 

conventional coefficient of determination - the proportion of variance explained by soil 

factors. A bootstrap re-sampling strategy was used to assess the strength of evidence, 

that indeed the identified soil predictors were truly independent and reproducible. 

Hence, the mean confidence intervals for each soil predictors were estimated using 1000 
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iterations. The relative importance of the predictors was calculated using the “relaimpo” 

R package (Grömping, 2006). 

 

To further discern which soil properties were key, the soil predictors were gradually 

eliminated using a stepwise criterion, a backward elimination and forward selection, to 

build the best regression equations describing CPIs as a function of the soil properties. 

The predictors with the lowest contribution (p > 0.005) to the regression model were 

eliminated and then tested until the remaining ones had a significant contribution. The 

key predictors of CPIs were then identified in the final regression equation. The 

Akaike’s Information Criteria (AIC) value was computed and used it to evaluate 

whether the identified soil predictors were similar to those obtained using the 

aforementioned relative importance (r2) statistic. The magnitude of AIC values formed 

the basis for interpretation, where the regression model with the lowest AIC was 

considered as the best, while the soil predictors with the highest AIC value were taken 

to be the key soil property. The regression modelling was done using the “lme4” R- 

package (Bates et al., 2015). 

 
4.2.6. Scale of variability 
Discrete map units like AEZ, soil map units, and administrative boundaries form a 

logical basis for the development of blanket fertilizer recommendations (Smaling and 

Van De Weg, 1990). The study area fell within a single AEZ. However, different soil 

map units and administrative units were identified. These units are only useful for the 

refinement of the fertilizer use recommendations if they describe the variation in the 

key soil properties that describe the CPIs. Soil types are expected to describe the 

variation in soil properties, and could form a logical basis for fertilizer 

recommendations. Administrative units are instrumental to agricultural extension 

officers for logistical purposes of disseminating fertilizer recommendation. However, 

the administrative units may include considerable variation in soil properties, making 

them less useful for fertilizer recommendations. The hierarchy of scales across the 

LDSF sampling framework (Figure 4.2) was considered since nutrient variability occurs 

at different scale levels across smallholder landscape (Tittonell et al., 2013; Zhu et al., 

2017).  
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ANOVA mixed-effect linear models were conducted to analyse the variation across the 

soil map units, administrative units, and the different scales of the LDSF sampling 

frame using the identified key soil predictors and CPIs as dependant variables. The 

“nlme” R-package was used to conduct the unbalanced ANOVA, where the plots (2.5 

m2) were fitted as random effects (Pinheiro et al., 2019). The administrative units, soil 

types, tiles, sub-tiles and fields were considered as the fixed effects and provided a 

measure of explained variability (EV) by each of the mapping units. One mapping unit 

was modelled at a time with the response variable being the identified key soil 

properties or the CPIs. 

 

To evaluate the proportion of EV between the mapping units, two pseudo R2 summary 

statistics for mixed-effects models were estimated as described by Nakagawa & 

Schielzeth, (2013). These were “marginal” (6&( ), which considers the variance of the 

fixed effects, and “conditional” (6%)(  that takes the variance of both the fixed and 

random effects into account (Nakagawa et al., 2017). These statistics were computed 

following Equations 4.3 and 4.4, respectively.  

									6&( = ./0!
./0!1./0"1./0#

  ...….……………………………….…….4.3 

 

									6%( =
./0!1./0"

./0!1./0"1./0#
      …  …………...……………………………4.4 

where 7/82 is the variance of the fixed effects, 7/80  is the variance of the random effect 

and 7/83 is the variance of the model residuals. High values of R2 indicates the mapping 

units such as soil types/maize fields may be appropriate for a blanket fertilizer 

recommendation. 

 

Often discrete mapping units do not properly describe the relevant variability, 

specifically the relevant variation, for example, where the administrative boundaries are 

used. An alternative approach to describe the spatial variation in the key soil properties 

was to carry out a geostatistical analysis to determine the spatial dependency of the key 

soil properties and CPIs. Semi-variograms for key soil drivers and CPIs were derived 

following Kerry et al. (2010) using the “gstat” R-package (Pebesma, 2004). The range 

was interpreted as the basis to define the relevant scale of variability following Kerry 
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& Oliver (2004). The interpretations depend on the strength of spatial dependencies that 

was determined by the nugget/sill ratio following Cambardella et al. (1994) with ratios 

< 0.25 depict strong, 0.25 – 0.75 moderate and > 0.75 weak spatial dependencies. Weak 

spatial dependence implied that there were considerable short distance variation and no 

logical patterns (Costa et al., 2015).  

4.2.7 Validation  

In steps 1- 4 (section 4.2.3 – 4.2.6) a farm survey methodology was developed and used 

to analyse the spatial variability in soils and crop performance. However, to properly 

derive fertilizer use recommendations, it is necessary to look at fertilizer response. 

However, under normal conditions, it would be very resource intensive to carry out a 

large number of fertilizer response trials. Therefore, the hypothesized notion that the 

scale of variability of key soil drivers of CPIs corresponds to the scale of variability in 

fertilizer response across smallholder farms was tested. In the study area a large number 

of fertilized maize trials were carried out by the African Soil Information Service 

(http://afsis-dt.ciat.cgiar.org; last accessed on 18th April 2019) and the International 

Institute of Plant Nutrition (IPNI) (Huising et al., 2011; Zingore et al., 2014). This 

allowed testing of the above hypothesis. Data of fertilized maize trials were obtained in 

the short and long rainy season of 2010 and 2013. These trials consisted of N, P and K 

fertilizer treatments. Maize yield of the fertilized and control plots was used to calculate 

the Fertilizer Response (FR), computed as a response ratio following Hedges et al. 

(1999) based on equation 4.5.  

9: FR 	= 9: +4$	4%,…………………………… 4.5 

where yc is yield from the control plot and yt is the yield from the treatment plots all 

reported in Mg ha-1. The FR was transformed into the lnFR to achieve normality. 

Geographical coordinates, corresponding to each fertilized plot were used to determine 

the spatial dependency of ln FR as described in section 4.2.6. The spatial dependency 

in FR is compared to the spatial dependency in soil properties and CPI’s.  

 

4.3 Results  

4.3.1 Farm survey 
A total of 64 maize fields typifying smallholder farms were sampled within 32 sub-tiles 

that were randomly distributed within 8 tiles across the 100km2 block. An average of 7 

maize fields within each tile was sampled. Out of 256 plots sampled, 203 had complete 
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observations on soil properties, GY and biomass. Yield was not observed in 20% of the 

fields as farmers harvested the field prior to the planned date. Seven observations were 

identified as outliers, as this would influence the overall results. The total number of 

maize plants at silking stage per plot ranged from 7 to 25. At harvest, a 10% reduction 

in total number of maize plants was observed for all fields sampled during biomass 

estimates. 

 

4.3.2 Variability in soil properties and crop performance indicators 
Table 4.1 presents the mean, median, maximum and minimum values for soil properties 

and CPIs. Soil properties in the topsoil indicate considerable variation in soil fertility. 

SOC concentrations ranged from 0.56 to 5.23%. The highest values of SOC were found 

in fields that had recently been converted to maize cultivation and those that displayed 

intensive soil management (14% of the observations). Low SOC values were observed 

in maize fields that were intensively cultivated. Soil pH varied from slight acidity (4.8) 

to near neutrality (7.4) and within the optimum range for maize growth. Mehlich-3 

extractable P was below the critical concentration of 15 mg kg-1 in 55% of the sampled 

plots. Grain yield ranged widely from 0.8 to 11.8 Mg ha-1. 

 

Coefficients of variation indicated different degree of variation within soil properties 

and CPIs (Table 4.1). Mehlich-3 extractable P and K were highly variable with CVs of 

74 and 89% respectively. SOC and total N were moderately variable with CVs of 32 

and 26%, respectively. Yield and biomass exhibited a moderate variation as indicated 

by their CVs of 57 and 43%, respectively. Coefficient of variation was used to assess 

variability since it allowed comparison among variables with different units of 

measurement; soil properties and CPIs. However, the CV statistics could not allow the 

explicitly evaluation of spatial variation in soil properties (Haileslassie et al., 2005). 

 

Density plots for Mehlich-3 extractable P, K, Ca, Mg and Na displayed a negatively 

skewed distribution, indicating presence of low values in the dataset, which signifies 

low nutrient levels in the study area. Soil pH, total N, GY and biomass displayed a near 

normal distribution.  
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Table 4.1: Soil properties and crop performance on 203 unfertilized maize plots across a smallholder landscape in Western Kenya. 

Soil property Mean Coefficient of 

Variation (%) 

Minimum Median Maximum 

Soil pH (water) 5.70 8.84 4.78 5.61 7.36 

SOC (%) 1.57 31.61 0.56 1.55 5.23 

Total N (%) 0.15 26.21 0.06 0.14 0.32 

Mehlich-3 P (mg kg-1) 22.97 74.55 3.65 17.60 89.90 

Ca (cmol kg-1) 5.80 59.91 0.88 5.00 24.45 

Mg (cmol kg-1) 1.99 52.10 0.29 1.76 6.61 

K (cmol kg-1) 0.42 89.29 0.08 0.31 2.74 

Bas (cmol kg-1) 8.39 54.91 1.42 7.48 31.92 

Na (cmol kg-1) 0.18 62.01 0.01 0.16 0.77 

Crop Performance Indicators (CPIs) Mean Coefficient of 

Variation (%) 

Minimum Median Maximum 

Grain yield (Mg ha-1) 3.62 56.83 0.08 163.60 11.28 

Maize Biomass (cm3) 170.40 43.02 31.00 3.20 392.90 

      

Key : n= number of observations, pH =soil pH, total C= total carbon, total N= total nitrogen, Mehlich-3 P= phosphorus, Ex.K= Exchangeable bases, Ex.Ca= 
Exchangeable calcium, Ex.Mg= Exchangeable magnesium, Ex.Bas= Exchangeable bases, Ex.Na= Exchangeable sodium, ESR= Exchangeable sodium ratio, 
ESP= Exchangeable sodium percentage, Ca.Mg=Calcium magnesium ratio, Biomass = Maize biomass and Yield= Maize grain yield. Symbols in brackets are 
the units.  
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Significant correlations between soil properties and CPIs was evident, as shown by r2 

values (Table 4.2). lnSOC was positively correlated with yield (r2 = 0.55, p < 0.001) 

and biomass (r=0.88, p < 0.0001). Relationship between lnP and yield (r2 = -0.01, p = 

0.02), lnNa and yield (r2 = -0.01, p = 0.101) were weak and insignificant, and there was 

no relation between lnP and biomass.  

 

Results of pairwise correlation also revealed high correlation among soil properties (r2 

> 0.8). lnSOC and total N were highly correlated (r2 = 0.95, p < 0.001), and so were 

lnCa and lnMg (r2 = 0.89, p < 0.001). One of the highly correlated soil properties was 

expunged, before the next step of regression analysis. For example, total N and lnMg 

were removed, because they were highly correlated with lnSOC and lnCa, respectively. 

Correlation coefficients between Soil pH, lnSOC, lnP, lnCa, lnK and lnNa were 

relatively low and they were therefore all considered in identifying the key soil factors 

which influence underlying variation in CPIs for the study area. 
 
Table 4.2: Pearson pair-wise correlation coefficients between soil properties, maize  

plant biomass and grain yield from maize fields across the smallholder landscape 
 

 

 

 

 

 
 
 
 
 

 

     Key: Significant codes: **** = 0.001, ***= 0.01, **= 0.05, * = 0.1, ln = natural 
log 

 
4.3.3 Key soil drivers of crop performance 
Regression results indicate soil predictors explained 32 and 79% of the variability in 

maize yield and biovolume, respectively (Table 4.3). SOC was the main factor that 

significantly (p < 0.001) contributed to the variability in CPIs. The explained variance 

by the soil predictors indicate that each individual soil property played a role in 

Soil Property  

Grain yield 
(GY) 
 

 
 
Maize biomass (BV)  

Soil pH 0.08**  0.16** 
Total N 0.53***  0.87*** 
lnSOC 0.55***  0.89*** 
lnP 0.01  0.02 
lnCa 0.32*  0.51** 
lnMg 0.33  0.55 
lnK 0.19  0.25 
lnNa 0.001  0.08 
lnBas 0.33**  0.53*** 
Maize biomass 0.55***  1 
Grain Yield 1   
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influencing the underlying variation. But the contribution of pH, Total N, lnP, InCa, 

lnMg, InK and InNa was not statistically significant. The problem of multicollinearity 

could have had an influence on the performance of the model, since lnSOC and total N, 

as well as lnMg and lnCa were highly correlated, previously mentioned in Table 4.2. 

To test the aforementioned influence, total N and lnMg were removed from the model. 

This reduced the explained variance to 31 and 78% for yield and biovolume, 

respectively, and the intercept become significant, meaning the model accuracy was not 

affected. Hence, the result indicates no influence of multicollinearity when all eight soil 

properties were included in the regression models. Multicollinearity creates high 

coefficient estimators that inflates variances and may lead to selecting the wrong soil 

predictors (Kroll & Song, 2013).  The problem is magnified when the samples size is 

small contrary to this study, which had 196 observations (Kroll & Song, 2013). Thus, 

the multiple linear regression models predicted variability of CPIs fairly well as shown 

by the explained variance for the study area.  

 

The relative importance results for the eight predictors of yield and biomass are shown 

Figure 4.3. The predictor with highest r2 was lnSOC with values of 41% for yield and 

43% for maize biomass.  SOC was identified as the key factor that influence variation 

in CPIs for the study area. The lowest observed r2 values were 0.12 (pH) for yield and 

0.12 (lnNa) for maize biomass. The negative influence of soil and high sodicity 

observed by other workers explain why pH and sodium were the least important soil 

predictors (Mbakaya et al., 2008).  Contrary to obtained soil pH and sodium content 

that were within the optimum ranges (Table 4.1).  

 

To test the robustness on the predictions obtained from the regression analysis, 

bootstrapping stimulations, using the pratt and last method were employed (Grömping, 

2006). In the pratt method, the VIPs scores are calculated using weighting of sums of 

squares of the predictors, while last methods the coefficient of determination is used. 

The bootstrap results confirmed SOC as key factor (Figure 4.4.). Thus, the regression 

models represent part of variation in CPIs as explained by the soil properties, and was 

useful for differentiating the contribution of each soil factor. SMLR modelling as a 

strategy was used to reduce the number of soil predictors, that would be considered for 
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evaluation of spatial structure. This also simplifies the proposed approach for determine 

a local scale of variability on smallholder landscapes for maize fields.  

Table 4.3: Two regression models showing the explained variance r2 values and the  
coefficient of determination of the maize yield and maize biovolume for the study 
area 

 
Crop 

performance 

indicator 

Variable Coefficient 

estimate 

Standard 

error 

t-value p-value   

Yield Intercept 2.429 3.763 0.646 0.5194   

 
pH -0.288 0.396 -0.727 0.4681 

 

 
lnSOC 3.824 1.367 2.798 0.0057 ** 

 
Total TN -0.688 1.615 -0.426 0.6704 

 

 
lnP -0.319 0.257 -1.244 0.2150 

 

 
lnExK 0.272 0.264 1.031 0.3036 

 

 
lnExCa 0.586 0.525 1.116 0.2657 

 

 
lnExMg -0.545 0.541 -1.008 0.3149 

 
  lnExNa -0.216 0.159 -1.354 0.1773   

  r2 value 0.324         

  Adjusted r2 value  0.295         

Biovolume Intercept 76.671 69.785 1.0990 0.273   

 
pH 8.641 7.741 1.1160 0.266 

 

 
lnSOC 211.355 25.229 8.3780 0.001 *** 

 
Total N 12.672 29.282 0.4330 0.666 

 

 
lnP -6.593 5.002 -1.3180 0.189 

 

 
lnExK 0.684 4.966 0.1380 0.891 

 

 
lnExCa -1.174 10.022 -0.1170 0.907 

 

 
lnExMg -8.432 10.043 -0.8400 0.402 

 
  lnExNa -5.602 3.107 -1.8030 0.073 . 

  r2 value 0.789         

  Adjusted r2 value  0.781         

Key: level of significance *** = 0.001, ** = 0.01, *= 0.05 and . =0.1 pH = soil pH, N = 

Nitrogen, lnP = Natural log, P = phosphorus, ExK = Potassium, ExCa = Natural log of Calcium, 
ExMg = Magnesium and ExNa = Sodium   

 

.
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Figure 4.3: The relative importance (percentages) of the contribution of the eight soil predictors to the explained variance for (a) maize yield and (b)  
plant biomass from regression analysis across the study area. pH = soil pH, lnSOC = Natural log of SOC, soil pH, TN = Nitrogen, lnP = Natural 
log of phosphorus, InK = Natural log of potassium, InCa = Natural log of Calcium, lnMg Natural log of magnesium and InNa = Natural log of 
sodium 
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Figure 4.4: Bootstrap results of the confidence interval mean to test the strength relative importance selection, for identifying key soil properties that  
influence variation and crop performance indicators from the regression analysis. 1000 iteration were used in the stimulation with different 
methods as described by  Grömping, (2006). pH = soil pH, lnSOC = Natural log of SOC, soil pH, TN = Nitrogen, lnP = Natural log of 
phosphorus, InK = Natural log of potassium, InCa = Natural log of Calcium, lnMg Natural log of magnesium and InNa = Natural log of sodium
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To further discern which of these soil properties are key soil factors, AIC values were 

evaluated from the stepwise regression models (Figure. 4.5). The best regression model 

included lnSOC and InNa as the main soil predictors for CPIs. InSOC was the only 

significant (p < 0.0001) predictor in the models with the highest AIC value of 257 for 

yield and 2113 for biovolume.  Even though InNa was included in this regression 

equation, its contribution was not significant (p = 0.7635) and the AIC values as a 

predictor for CPIs were the lowest, 187 and 1739, for yield and biomass, respectively.  

Thus, the results confirmed that indeed SOC was key soil factors that influence variation 

in crop performance of the study area 

 

Figure 4.5: Graph with the ranking of the soil predictor based on the magnitude of the  
Akaike Information Criteria (AIC) values for the best regression model from the 
step-wise multivariate analysis. These values were used to identity the key soil 
driver that explain variability in maize grain yield or plant biomass. Key: pH = soil 
pH, lnSOC = Natural log of SOC, soil pH, TN = Nitrogen, lnP = Natural log of 
phosphorus, InK = Natural log of potassium, InCa = Natural log of Calcium, lnMg 
Natural log of magnesium and InNa = Natural log of sodium 

 
4.3.4 Spatial variability of key soil drivers and crop performance indicators 

The ANOVA models showed that the soil types and administrative boundaries describe 

less than 10% of the variation in the SOC (Figure 4.6). The mixed-effect models result 

indicated low marginal R2 (Figure 4.6. a c) but high conditional R2 (Figure 4.6 b d). This 
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meant that the fixed effects (administrative boundaries, soil types, LDSF scales (tile, 

sub-tile and field)) explain low variability (< 5 %) in SOC. Most of the spatial variability 

in lnSOC was attributed to differences in fields, and between sampling the plots, 

indicated by high marginal R2 values (Figure 4.6 a c). This implied that most of the local 

variability was capture at field level (within variation), which make them good basis for 

the development of a fertilizer use recommendation.   

 

Figure 4.6: Explained variance for the fixed and mixed effects soil organic carbon  
(lnSOC) across the discrete mapping units. The units are soil types (SoilType), and 
administrative boundary (AdminBond.) and the scales of the LDSF sampling 
framework.  

 
A similar trend was observed for the CPIs (Figure 4.7). Higher conditional R2 for at 

field scale were observed across the CPIs. The high conditional R2 is attributed to the 

inclusion of variance for both the larger mapping units (fixed effects) and plots (the 

random effects).  Although the mean lnSOC, yield and biovolume were significantly (p 

< 0.01) different between the three soil types, there is considerable variation within 

these soil units.  This is confirmed by the results of the stratification following the LDSF 

framework. Here, it became apparent that the smaller mapping units (fields) were 

describing considerable variation in lnSOC, yield and biovolume compared to all the 

 



  

63 
 

other stratifications of the landscape that were applied, even despite the fact that they 

were just randomly located squared in the landscape.  

Table 4.4 shows the semi-variogram parameters for the key soil properties and CPIs. 

lnSOC and CPIs showed moderate to strong spatial dependencies. However, the semi-

variograms showed considerable short distance variability, confirming the results in the 

literature that these systems present considerable short distance variability (Okeyo et 

al., 2009). Although lnSOC showed considerable spatial dependency, the patterns were 

found to occur at relatively short distances with a range of 523 m. Despite the relations 

between the soil properties and the CPIs, the short distance spatial dependency shown 

for the soil properties (or a short range for lnSOC) is not found for the CPIs. The CPIs 

show a stronger spatial dependency and also a longer range. The results of the 

geostatistical analysis were in line with the analysis of variance. The short distance 

variability found for SOC and the CPIs indicated that the very general soil units and 

large tiles, which covered areas of > 5 km2 did not describe the local variation on 

                  

Figure 4.7: Explained variance for the fixed and mixed effects for crop  
performance indicators (CPIs), (a) grain yield and (b) biomass across the 
discrete mapping units. The units are soil types (SoilType), and administrative 
boundary (AdminBond.) and the scales of the LDSF sampling framework. 

 

a) 

b) 
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smallholder landscape. Smaller areas like the sub-tiles and the administrative units are 

roughly the size of the range of the semi-variograms and describe more variation for 

lnSOC and CPIs as shown by the analysis of variance.  

 

The results confirmed that blanket fertilizer use recommendations on the basis of the 

soil map are not likely to be efficient in contributing to increase of food production. The 

development of fertilizer use recommendations would therefore require intensive 

sampling to describe the variation in soil conditions. Following Kerry & Oliver (2004), 

the results can be re-interpreted towards optimal sampling densities. The optimum 

sampling distance should be less than half the range of a fitted semi-variogram model. 

Given the relatively short range of 523 m for lnSOC, it is necessary to sample at distances of 

less than 250 m. Although this would describe the large trends, it should be recognized the 

results would still not be very effective due to short distance variability as indicated by the 

nugget. Thus, local variability within smallholder farms may be captured at 250 m resolution. 

This leaves two options. Either the interpolation can be enhanced by suitable co-variables 

derived from e.g., detailed satellite imagery (digital elevation models) through 

regression kriging, or farmers rely on soil testing on their fields.  The two CPIs showed 

different levels of spatial variation with different spatial dependencies. High range 

values were observed for biomass (3291 m) and yield (968 m). This is not surprising 

given the relatively low correlation coefficient between with lnSOC (r = 0.56). This can 

be attributed to the roles of other factors influencing crop response in the smallholder 

farming system (Waithaka et al., 2007) 

4.3.5 Validation  
The results showed that there was considerable soil variation at local scale (< 543 m). 

The best semi-variogram model fitted for lnFR was spherical, which corresponded to 

the least root mean square error. The nugget/sill ratio suggest lnFR exhibited moderate 

of spatial dependencies across fertilized plots for the study area (Table 4.4). A high 

nugget effect (> 0.1) was observed (Table 4.5) suggesting that in fertilizer response 

there was small-scale variation cross fertilized maize plots. Moderate spatial 

dependencies (65%) implied that interpretation the range distance was necessary. The 

range of lnFR was 425 m and did not correspond to that of SOC (543 m) (Table 4.5). 

However, in practical terms the difference can be seen to insignificant (p < 0.001). 

Hence the hypothesis, that the scale of fertilizer response corresponds to the scale of 

variability of key soil properties is valid. 
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Table 4.4: Spatial dependency of key soil properties, crop performance indicators, and fertilizer response for maize fields in a smallholder western  
Kenya in terms of the semi-variogram. Strong < 25%, moderate 25 – 75 %, Weak > 75 %  

 
 

 

 

Farm survey  

 Key soil divers  

Fitted semi-variogram 
Model  Nugget (Co)  

Partial Sill 
(C1)   (Co)+(C1)  

Nugget: Sill 
(NS) ratio  Range (m)  Spatial dependency 

        

lnSOC Exponential 0.0394 0.0589 0.0983 0.60 543 Moderate 

Crop response     

Grain yield Linear 0.3094 0.0963 0.4057 0.24 3291 Strong 

Maize Biovolume Exponential 0.1078 0.1048 0.2126 0.49 968 Moderate 

        

Fertilizer trial  

Fertilizer response  Spherical  0.9026  0.9368  

 
1.8394  0.50  425  Moderate  
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4.4. Discussion 
Understanding the local spatial variability on smallholder maize fields can aid farmers 

and policy makers in making efficient nutrient management decisions. Empirical rules 

were derived, to describe local variability of key soil factors - SOC and CPIs, which 

were then used to determine a directional flow of decisions (Figure 4.8). The results 

provide evidence of existence of variability as indicated by soil properties, that 

displayed high variation, as shown by high CV values of the study area (Table 4.2). 

Anthropic influence affects spatial structure of soil properties in maize fields 

(Haileslassie et al., 2005). Variability in soil properties can be attributed to natural 

intrinsic variation, parent material (Deckers, 2002) and difference in management 

across maize fields (Zingore et al., 2007). The high variability was observed  in maize 

yield and were within ranges of maize yield reported by Kihara et al., (2016), and has 

been captured in other studies conducted in western Kenya at landscape level (Tittonell 

et al., 2013; Burke & Lobell, 2017). Studies have shown the impact of high soil 

variability on nutrient requirement for maize crop in smallholder farms of Nigeria 

(Shehu et al., 2018), that has consequently led to variable fertilizer use efficiency and 

poor fertilizer response (Tittonell et al., 2007a; Njoroge et al., 2017). Maps displaying 

spatial patterns of soil properties may capture the variability at specific locations and 

provide information for the local inherent soil variability (Antwi et al., 2016). The use 

of auxiliary information in digital soil maps would further allow integration of 

information such as rainfall data or elevation (as raster maps) in creation of digital soil 

maps and improve on the accuracy of predicting soil properties. This study provided a 

sequential framework that can aid in capturing local variation in soil properties and crop 

responses (Figure 4.8)   
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Figure 4.8: Proposed decision tree for determining which a logical way to determine options for providing fertilizer recommendation based on information  
on relevant spatial variability in crop response or key soil drivers. 
 

                    

YES

YES

Is there relevant variation (spatial) in Crop Performance Indicators(CPIs)? 

Can soil properties explain part of the variation CPIs and 
what are the key soil factors? 

Are there spatial dependencies in the key soil factors? 

What is the range of the variation? 

no

yes

Blanket fertilizer recommendation 

Determine which other factors explain
variation better 

Soil testing 

Short range variability

Long range variability

Digital  soil maps/ 
Soil  testing

Discrete mapping units 
for  developing  fertilizer
recommendation 

NO

NO

NO

YES
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The study showed robust relationships between CPIs and soil properties, which 

were evaluated further (Table 4.2). Pair-wise correlations results between soil 

properties and CPIs were statistically significant (p < 0.001) and provide evidence 

of the existence of a relation between inherent soil fertility and CPIs (Table 4.2). 

The most striking correlations were between SOC and biovolume (r = 0.88, p < 

0.0001) and between SOC and yield (r = 0.55, p < 0.001), which confirm that SOC 

is an important soil factor, and proper management of SOC would result to high 

CPIs in the region. These findings also agreed with those reported by Chomba et 

al. (2013). It is difficult to give a reason why there were good correlation between 

SOC with biovolume and not yield (Table 4.2). However, can be attributed to fact 

that since measurement were taken when the maize crops were at optimum growth 

stage. A similar correlation between SOC and maize yield (r = 0.59, p < 0.001) was 

observed in other studies conducted in Uganda on Ferrosols (Musinguzi et al., 

2016). Correlations between soil properties and CPIs, agree with those reported by 

(Mtangadura et al., 2017) who found positive relations between maize yield and Ca 

in Zimbabwe.  

 

SMLR revealed SOC as key factors associated with the variation of CPIs for the 

study area (Table 4.3, Figure 4.5, 4.6). This could be explained by the fact that SOC 

has a dominant influence on N supply, nutrient retention and sulphur supply, soil 

structure and soil responsiveness to fertilizer application (Lal, 2016; Six et al., 

2002; Zingore et al., 2007). These results were consistent with other studies that 

reported SOC as key soil factor that influence maize yield as well as fertilizer 

response (Musinguzi et al., 2016). The SMLR statistical methodology implemented 

in analysing soil data had wider applicability and could be applied to other similar 

sites and crops. However, 32% of the explained by the regression model for GY 

implied that other climatic (e.g., rainfall) and management (e.g., tillage) factors, not 

included in this analysis may influence crop performance (Tittonell et al., 2008; 

Waithaka et al., 2007), but would require a larger sample size to increase confidence 

level of the results (Maas & Hox, 2005). In this case the complex of the regression 

model would increase and the additional factors may not necessary explain more of 

the variation in CPIs than the eight predictors including SOC (Wheeler et al., 2012). 
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Thirdly, an evaluation of the spatial structure variation of key soil factors and CPIs 

was done using ANOVA. Results of the model results displayed significant (p < 

0.001) variation between administration boundaries, tile, and sub-tiles. Low 

explained for lnSOC suggests that not much variation (< 25%) was captured by the 

large discrete mapping units, i.e., administration boundaries, tile and sub-tiles, for 

this region (Figure 4.5). Broad discrete mapping unit such as administrative 

boundaries are likely to be inappropriate for delineating fertilizer recommendations, 

as indicated by the fixed -effects, and marginal R2 values (Figure 4.5 b, 4.6 b, d). 

The explained variance was considerable (> 25%) for the small spatial units (e.g., 

field). This was also evident based on the high conditional R2 values (> 50 %), 

which accounted for both the random (plots) and fixed effect (fields, soil types and 

administrative units). High explained variance for maize fields implied that 

fertilizer recommendations should be provided at field level for the study area. This 

may require each smallholder farmer to conduct soil testing of their fields.  

 

Variation of key soil factors was described by very small spatial units and confirmed 

by low nugget values (0.0039) obtained from the semi-variogram models for 

lnSOC, indicating short distance variability (Table 4.5). This further confirmed that 

fertilizer use recommendations will need to rely on digital soil maps and/or local 

sampling at optimum sampling distance. Short distance variability has been 

reported by Diarisso et al. (2015) in the small villages of west Africa. However, 

short distance variability may limit application of digital soil mapping with coarse 

resolutions (Keskin & Grunwald, 2018). For such a scenario, soil testing would be 

an alternative. However, researchers have argued that, the use of soil testing could 

be more effective, when it is combined with plant tissue analysis (Webb et al., 2011) 

or when cheaper and rapid soil characterisation methods such as infrared 

spectroscopy (IR) are employed, especially as IR predicts SOC satisfactorily 

(Shepherd et al., 2015).   

 

Accurate evaluation of local spatial variability relies on the scale of measurement 

or measurement unit. Small plots (2.5 m2, Figure 4.2) were used to capture spatial 
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variation on the maize fields since small measurement units lead to spatial variance 

close to the true value, while large units may introduce biases (Western & Blöschl, 

1999). Therefore, it is important to consider the measurement unit, which captures 

the local spatial variability, since the measurement unit influence spatial variability.  

This approach demonstrates local spatial variability can be captured for the 

heterogenous smallholder landscape. However, it important to use smaller sampling 

units as they would increase the precision of estimating variance and the overall 

spatial variability. 

 

Optimization of a relevant scale has been a major bottleneck for nutrient 

management in smallholder farms (Vasu et al., 2017). The spatial structure of SOC 

with a strong relation with the CPIs and moderate dependencies was a proper basis. 

Moderate spatial dependencies (60%) for SOC have previously been reported 

elsewhere in western Kenya (Okeyo et al., 2009). Occurrence of moderated spatial 

dependencies could be explained by influence of extrinsic management factors such 

as ploughing and other local management practices that weaken spatial 

dependencies after long history of cultivation (Mzuku et al., 2005).  For this study 

area, 250 m was proposed as the optimum resolution for digital soil maps, given the 

effective range of 543 m for SOC. This distance can serve as threshold scale below 

which maps would capture the local growing conditions of the study area. Other 

studies have proposed a similar distance of 323 m for rain-fed conditions (Vasu et 

al., 2017). The reliability of these digital nutrient maps would also depend on the 

sampling protocol and accuracy of the semi-variogram model (Liu et al., 2014). 

However, at 250 m sampling distance may have impact on the cost of soil analysis. 

 

Finally, the hypothesis that the spatial range of SOC was similar to that of fertilizer 

response was tested. The mean range of SOC (523 m) and FR (423 m) were 

statistically insignificantly (p > 0.001), therefore the hypothesis was accepted 

(Table 4.4).  Even though the ranges were not exact in their magnitude. The minor 

discrepancies in terms of lack of exact correspondence of range between SOC and 

fertilizer response for trial data can be attributed the difference in sampling density 
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between the two approaches. The sampling density for farm survey across the 

landscape was higher at 2.3 samples per 100 km2 compared to that of fertilizer trials 

at 0.42 samples per 100 km2. Many studies reported that high density sampling is 

required for better results where soil pattern is complex due to the topography (Cobo 

et al., 2010; Tesfahunegn et al., 2011). Difference in factors such as weather 

patterns and germplasm can also explain the discrepancy, since data collection was 

conducted in the same study area, but during different seasons and, sampled 

different maize varieties among farms. 

4.5 Conclusions 

This study demonstrates an approach for establishing a relevant scale for making 

fertilizer recommendations that captures spatial variation of soil properties and CPIs 

based on local conditions. The following is a summary of the conclusions: 

(i) SOC was the key soil factors that determined variability in unfertilized maize 

grain yield and plant biovolume of this region.  

(ii) Discrete mapping units based on soil classification, administrative boundaries, 

or agro-ecological zones may not be suitable for delineating fertilizer 

recommendations for smallholder farms in the study area. 

(iii)  Only SOC show moderate spatial dependencies and was used for interpretation 

of a suitable scale that could provide the relevant spatial detail of maps for 

nutrient management for this study area. 

(iv) Based on the spatial correlation distance of SOC, which displayed an effective 

range of 523 m, a resolution/distance of 250 m is proposed as the threshold scale 

for developing digital nutrient maps or optimum sampling distance for soil 

testing (Kerry & Oliver, 2004).  

(v) This finding provide approximation of scale as a basis for guiding fertilizer 

recommendations for maps and future efforts should be directed at improving 

its accuracy of this rough estimate for smallholder farmer to use for crop 

prdoction. 
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Chapter Five 

Spatially explicit approach for diagnosis of yield-limiting nutrients in 
smallholder agroecosystem in western Kenya3 

 

Abstract 

Adept use of fertilizers is critical if sustainable development goal of zero hunger and 

agroecosystem resilience are to be achieved for African smallholder agroecosystems. 

These heterogenous systems are characterized by poor soil health attributed mainly 

to soil nutrient depletion. However, conventional methods do not take into account 

spatial patterns across geographies within landscapes, which poses great challenges 

for targeted interventions of nutrient management. This study aimed to develop a soil 

test value using a population-based farm survey method for diagnosing soil nutrient 

deficiencies. The approach embraces the principles of land health surveillance of 

problem definition and rigorous sampling scheme. A farm survey was conducted on 

64 maize fields, to collect data on soil and plant tissue nutrient concentration and 

grain yield for maize crop. Correlation analysis was used to establish soil test values, 

by evaluating relations between grain yield and the tissue nutrient concentrations. 

Diagnosis Recommendation Integrated System (DRIS) indices for nitrogen, 

phosphorus and potassium (NPK) were used to rank and map prevalence of nutrient 

limitations. Weak but significant correlation existed between plant tissue nutrient 

concentration and grain yield with r of 0.089, 0.033 and 0.001 for N, P, K, 

respectively. Soil test cut-off values were 0.01 g kg-1, 12 mg kg-1, 4.5 cmolc kg-1 for 

N, P, K, respectively. Nitrogen and K were the most limiting nutrients for maize 

production in 67% of target population. The study demonstrated that, population-

based farm survey of crop fields can be a useful tool in nutrient diagnosis and setting 

priorities for site-specific fertilizer recommendations. Therefore, larger scale 

application of the approach is warranted. 

 

 
3 This chapter is based on an article accepted for publication in the PLOS One Journal. 
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5.1 Introduction 

Smallholder agroecosystems supports livelihoods of 1.2 billion people and are the 

backbone of the rural economy (FAO 2015; Goswami et al., 2017). The 

agroecosystems play a significant role in food production, poverty alleviation and 

mitigation against hunger for rural populations (Samberg et al., 2016). The 

smallholder systems are characterized by soil fertility degradation (Bekunda et al., 

2010) and poor quality germplasm (Vanlauwe et al., 2010), which constraint crop 

production (Ngome et al., 2013; Tittonell & Giller, 2013). Poor soil health, 

associated with nutrient limitation is pivotal, and a major consequences of low 

agricultural productivity (Lehmann & Kleber, 2015; Shepherd et al., 2015). Soil 

health is the capacity of soil to respond to agricultural intervention, so that it 

continues to support both the agricultural production and provision of other 

ecosystem services (Kibblewhite et al., 2008; Vågen et al., 2012). To mitigate the 

scourge of poor soil health, accurate and repeatable methods for determining nutrient 

deficiencies are a prerequisite, in order to reduce risks of fertilizer investments 

(Jordan-Meille et al., 2012; Shepherd et al., 2015).  

 

It is now more apparent to policy makers and soil scientists that conventional 

methods used in nutrient diagnostic, may not be efficient, due to occurrence of soil 

heterogeneity. Several studies provide evidence of high soil heterogeneity within 

smallholder agroecosystem, which is among cardinal causes of low nutrient use 

efficiencies (Diarisso et al., 2016; Tittonell et al., 2013, 2007; Zingore et al., 2008). 

However, few studies propose ways of dealing with soil heterogeneity, in relation to 

site-specific nutrient diagnostics, to inform decisions on fertilizer requirements 

(Tittonell et al., 2015). Conventional approaches lack rigours framework, which can 

help farmers make evidence-based decisions on nutrient management (Vågen et al., 

2012; Shepherd et al., 2015). These diagnostics approaches can generally be 

summarized as follows. 

 

First is visual symptoms observation (histology) which entails inspection of 

deficiency symptoms of nutrient that are most limiting to crop growth (Foster, 2001; 

Bekunda et al., 2010). The deficiency of individual nutrient produce characteristic 
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effects on various organs of plants (Römheld, 2011), such as stunted growth and 

yellow greenish colour on leaves is normally associated with N limitation (Maynard, 

1979). Ability to recognise these particular effects forms basis of histology, which is 

readily applied by smallholder farmers (Mairura et al., 2007; Römheld, 2011). 

Farmers also use indigenous knowledge such as soil colour and presence of a 

particular weed within their farm to diagnose a limiting nutrient (Payton et al., 2003; 

Mairura et al., 2007). However, the symptoms observed, which can be attributed to 

nutrient limitations, could also be misinterpreted with other plant stress such as pest 

and diseases). This requires histology to be complemented with other methods such 

as soil testing, to ascertain actual cause of the observed symptom.    

 

Secondly is the nutrient omission trials, where a single/few trials are established in a 

specified geographical location, to evaluate crop responses to fertilizer applications 

(Huising et al., 2011; Zingore et al., 2014; Kihara et al., 2015). The diagnostic results 

obtained are limited to that specific locality, and when extrapolated to other regions, 

it may lead to incorrect diagnostic conclusions (Brouwer et al., 1993; Sileshi et al., 

2008). The assumption that few trials would represent soil heterogeneity, at regional 

or landscape level is rarely realistic. This limits the applicability of the omission 

trials, to accurately diagnose spatial pattern of limiting nutrients at regional level, 

within agroecosystem (Tittonell et al., 2013; Diarisso et al., 2016).  

 

Lastly is the soil testing which may provide information on the limiting nutrients. 

Often, low soil test values signify a positive crop response to fertilizer application 

(Van Biljon et al., 2008; Petersen et al., 2012). Soil test value need to be calibrated 

to crop response before they can be interpreted accurately (Havlin & Jacobsen, 

1994), but lack of crop response data to calibrate soil tests is also major setback in 

many developing countries (Shepherd & Walsh, 2007; Webb et al., 2011). Soil 

testing must be in tandem with plant tissue testing, which is a powerful tool for 

diagnosing micronutrient deficiencies that may prevent responses to macronutrients 

(Roth et al., 1989; Njoroge et al., 2018). High costs of wet chemical analysis, curtails 

the applicability of soil testing for large area assessments of limiting nutrients 

(Bekunda et al., 2010; Shepherd and Walsh, 2002).  
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Given the limitations of the conventional methods, alternative approaches for 

nutrient diagnosis for smallholder agroecosystems are necessary for the 

rationalization of fertilizer investments decisions. Population-Based Farm Survey 

(PBFS) for evaluation of disease prevalence has become popular in epidemiology, 

because it is a rapid and reliable way to assess a patient’s health condition within a 

given population (Frederiksen et al., 2019; Lipscombe et al., 2018). This approach 

is particularly useful when monitoring disease patterns within human populations 

and designing targeted curative medical interventions (Kuper et al., 2019; Rivera-

Andrade et al., 2019). There is potential for developing a nutrient diagnostic 

approach, a PBFS, which can be anchored on the principles of Land Health 

Surveillance (LHS) that are borrowed from PBS (Shepherd et al., 2015).  The LHS 

deploys a rigorous ground sampling scheme and uses proximal techniques such as 

infrared spectroscopy for rapid nutrient diagnosis (Shepherd et al., 2015). 

Information on soil and plant nutrient relationships is collected, and statistical models 

employed to provide population-based estimates of means, DRIS indices and 

confidence intervals on nutrient limitations (Shepherd et al., 2015; Vågen et al., 

2012). The developed DRIS indices can be used to diagnose and rank limiting 

nutrients (Nziguheba et al., 2009). This can be done in tandem with digital property 

mapping for evaluation of spatial patterns and prevalence of limiting nutrients. 

Consequently, spatial variability patterns of nutritional constraints are identified at 

landscape scale to guide nutrient management decisions within smallholder 

agroecosystems. The proposed approach, has never been tested in nutrient 

management for smallholder agroecosystems, more so in Kenya. Globally, NPK are 

considered as the major nutrients limiting plant growth (Ågren et al., 2012; Bekunda 

et al., 2010). A hypothesis that the spatial pattern occurrence of N, P, K nutrient 

limitation is random within smallholder agroecosystems was tested. Previous studies 

conducted in western Kenya, have characterized the region with poor soil health 

(Bationo et al., 2012; Bekunda et al., 2010; Okalebo et al., 2006). 

 

The study aimed at developing and testing the PBFS approach for nutrient diagnosis 

in the smallholder agroecosystems of western Kenya. The specific objective was to 
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develop local soil test values for N, P, K, based on population distribution of 

smallholder maize fields. The region was deemed as a suitable testing site, because 

it is typified with heterogenous parcels of smallholder maize fields. The study 

evaluated NPK nutrients limitations using farm surveys data, and mapped their 

spatial distribution.  

 

5.2. Material and methods 

5.2.1 Study area 

The study area encompassed the administrative sub-counties of Boro, Butere, Yala, 

Khwisero and Ugunja and has been described in section 4.2.1 (Figure 4.1).  

5.2.2 Overview of the Population-Based Farm Survey approach 

Population-Based Farm Survey (PBFS) approach involves conducting a survey on 

a number of maize fields. The term “population-based” is used to signify a 

population of smallholder maize field, within a smallholder agroecosystem. A target 

population was defined as a representative sample population, drawn from a 

population of maize fields, with defined characteristics to be being evaluated. The 

target population formed basis for making inferences about nutrient diagnostic for 

the whole population. The sequence of steps employed in the population-based farm 

approach are summarized in Figure 5.1, which provide guidelines for nutrient 

diagnostics, ranking and mapping.  

                   

Figure 5.1: Sequence of step used for establishing a population-based farm  
survey approach for nutrient diagnostic.  
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5.2.3 Farm survey  

Farm survey was conducted within a hierarchical sampling scheme, using Land 

Degradation Sampling Framework (LDSF) (Vågen et al., 2010) similar to that in 

section 4.2.3. Purposive sampling strategy was also included, where a field 

considered to be either poor or good in terms of management, and fell within the 

proximity of a selected coordinate, were sampled (Plate 5.1). This ensured the target 

population was sufficiently characterized. Good fields belonged to resource 

endowed farmers, while poor fields were associated with those with resources 

(Zingore et al., 2007).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Plate 5.1 a) Poorly managed maize field, and b) good managed maize field (photo  
courtesy of Stephen Ichami during field measurement on 18th April 2018.  

 

a) 

b) 



  

78 
 

Soil sampling was achieved as described in section 4.2.2. In addition, plant 

sampling was done by extracting three maize ear leaves, for nutrient analysis at 

silking stage (60 to 75 days after emergence). Only three maize plants were 

randomly selected. The assumption was that at silking stage, maize tissue (ear leaf) 

would have the optimum concentration of nutrients (NPK). Maize biovolume and 

grain yield were measured, and represented crop responses of the study area. Maize 

biovolume (BV) was estimated as described in section 4.2.2. 
 

Soil and plant samples were analysed at Crop Nutrition Laboratory Services and 

World Agroforestry Centre laboratories in Nairobi, for N, P, K as describe earlier 

in section 4.2.3. Preliminary preparation of soil samples involved air-drying and 

grounding, to pass through a 2 mm sieve to minimize variation due to moisture. 

Maize leaf samples were dried at 60° C, prior to grounding (< 1 mm). Conventional 

wet-chemical methods were used to obtain reference data with 25% of the collected 

sample, and used to develop calibration models for prediction of N, P, K using 

Infrared IR. In section 4.2.3, a description of the methods used for soil 

characterization is given.  

 

All collected samples (256) were characterized for N, P, K nutrient concentrations 

using Infrared (IR) spectroscopy technique. Fourier-transform MIR spectrometer 

(FT-IR; Tensor 27, Bruker Optics, Karlsruhe, Germany) with a high throughput 

screening extension arm using a liquid Nitrogen cooled HgCdTe detector, was used 

to determine diffuse reflectance in the mid-infrared region (4000 – 600 cm-1). Prior 

to IR determination, soil samples were fine ground using a sample mill. The fine 

samples (approximately 0.05 grams) were loaded and levelled into wells in 

aluminium micro-plates (A752-96, Bruker Optics, Karlsruhe) using a micro 

spatula, in four replicates (per sample), to enable spectral measurement. An empty 

well was used for reference readings, taken before each sample reading using an 

average of 32 scans. Absorbance was recorded at a spectral resolution of 4 cm-1 

zero-filled to 2 cm-1 and single spectrum obtained for each sample. First derivative 

spectra with a smoothing gap of 3 points were used in all the spectral analysis.  
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Plant samples were analysed for total NPK tissue nutrient concentration following 

Okalebo et al. (2002). Total N was determined by sulphuric digestion followed by 

micro-Kjedhal distillation, while P was calorimetrically determined using 

vanadium molybdate after digestion with sulphuric acid (Zarcinas et al., 1987; 

Okalebo et al., 2002). Potassium determination was done using a flame emission 

spectroscopy, after digestion with sulphuric acid (Zarcinas et al., 1987). 

 

The NPK nutrient concentrations were predicted from spectral measurements for 

all soil and plant samples (Shepherd and Walsh, 2002; Sila et al., 2017). Reference 

data values were calibrated to the smoothed first derivative spectra using partial 

least square regression (PLSR), implemented in the “soil. spec” R package (Sila et 

al., 2014). The reliability and robustness of the calibration models was evaluated 

by the hold-out cross-validation procedure, using the coefficient of determination 

(r2) and the root mean square error of cross validation (RMSECV) calculated based 

on equations 5.1 and 5.2. 

                 !! = ""#
$""      ………….. …………………….  5.1 
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where SSR is the sum square of regression, and TSS is the total sum of squares, ŷcvi, 

and yi are the predicted and measured reference values respectively and Np is the 

number of samples tested.  Models with highest r2 and lowest RMSECV are 

considered to be the best and robust. 

 

The farm survey was stratified into unfertilized maize fields, to minimize variation 

due to fertilizer management, and captured historical effects of management. 64 

fields were sampled, which include a total of 258 plots that formed target population 

of the PBFS. This captured soil and maize information at different spatial scales 

(plot, field and landscape). The survey ended up with a target population database, 

containing geographical coordinates, spectral measurements on soil and maize 

nutrient concentrations, grain yield and plant biovolume. 
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Preliminary data preparation and analysis involved calculation of descriptive 

statistics for soil and maize nutrient concentrations. The mean, maximum, 

minimum, standard deviation, coefficient of variation (CV) and confidence 

intervals (CI) were computed for NPK nutrients, grain yield and plant biomass. 

Density plots, for testing normality in data distribution were developed. Skewed 

variables were normalized. The normalized data was required for correlation 

analysis and geostatistical modelling. Pearson correlation coefficient (r) formed 

basis for evaluation of the strength of this relation, with values > 0.50 considered 

as strong relations.  

 

5.2.4 Developing nutrient diagnosis criterion 

Diagnostic criterion was developed using established critical nutrient values for 

NPK maize tissue concentration (Campbell, 2000; Reuter and Robinson, 1997), 

(Table 5.1).  Normally, soil values that occur below the critical levels were 

diagnosed as deficient (Reuter & Robinson, 1997; Campbell, 2000). Values were 

used to characterize our target population as “deficient” and “sufficient” of which 

the latter would imply serious nutrient limitations. 

 

Table 5.1: Published critical nutrient concentration values for maize crop at 90%  
relative grain yield    

Nutrient Critical 
nutrient 
concentration 
(%) at 
deficiency 
level 

Critical 
nutrient 
concentration 
(%) range 
sufficiency 
level 

Source 

Nitrogen 3.00 4.00 – 6.40 Campbell 
(2000) 

Phosphorus 0.25 0.42 – 0.69 Campbell 
(2000) 

Potassium 2.00 3.50 - 5.00 Campbell 
(2000) 
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Relationships between maize tissue nutrient concentration and crop response (grain 

yield and biovolume) were evaluated following Cate and Nelson (1971) method. 

The analysis enabled the calibration of nutrient tissues concentration to maize yield, 

and determined levels where addition of nutrients was likely to increase maize 

yield. Boundary fit analysis using “drc” R package were used to fit the response 

curve, and evaluate variation with respect to established critical nutrient values for 

each nutrient. The response curves were established using corresponding median in 

every quartile, the minimum and maximum values, for the NPK nutrient 

concentration as a function of maize yield (Kihara and Njoroge 2013).  

 

To develop a soil test value (cut-off) for defining cases where of nutrient limitation, 

a frequency distribution plot (normal distribution) of “deficient” and “sufficient” 

sub-population were plotted as function of soil tests values for NPK nutrient 

concentrations. Soil cut-off value was identified based on overlaps of the normal 

distribution curves of the 2 sub-populations, at the upper and the lower 90% CI of 

“deficient” and “sufficient” sub-population, respectively.  

 

5.2.2.3 Ranking level of nutrient limitation severity 

The DRIS reference indices were used to measure the nutrient balance within a 

whole plant and ranked the order of limiting nutrients (Walworth et al., 1986; 

Walworth & Sumner, 1987; Nziguheba et al., 2009). The DRIS approach utilized 

indices and norms derived from maize tissues nutrient concentrations and 

corresponding yields representing variability encountered in maize fields. DRIS 

norms were established using the criterion of significant variance ratio between 

“deficient” and “sufficient” subpopulations (Walworth & Sumner, 1987). Means 

and variances of maize tissue nutrient concentration were calculated for two sub-

populations for each nutrient. The N/P or N/K or P/K were computed only for the 

sufficient sub-populations and then divided by the number of observations of each 

expression: Equation 5.3, 5.4 and 5.5. 

									,-!.	/-!	,01!-23,/5ℎ-75ℎ-!87 = 	-/12  ………………..…. 5.3                              
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,-!.	/-!	,01!-23,/5-197708. = 	-/32 ……………………… 5.4                                                              

,-!.	/-!	5ℎ-75ℎ-!87/5-197708. = 	 1/32        ………...………. 5.5                                                             

3c 

where NPK refers to total nitrogen, phosphorus and potassium nutrient tissue 

concentration (%), respectively, and n is the number of sufficient populations. 

 

DRIS indices are quantitative evaluations of the relative degree of imbalance among 

the nutrients under study and were as: Equation 5.6, 5.7 and 5.8 

:	;,<3= = 	 >4(-/1)54(-/3)! ?  ….…………………………….….  5.6 

@	;,<3= = 	 >4(-/1)54(1/3)! ?              ………………………….……….  5.7 

A	;,<3= = 	 >4(1/3)54(-/3)! ?               ….………………………………. 5.8 

       

where: 

/(:/@) = >-/12/6 − 1?
/777
89 																													………………………….  5.9  

when the actual value of N/P > n/p or 

 

/(:/@) = >1 − -/1
2/6?

/777
89 																													…………………………. 5.10  

when the actual value of N/P < n/p   

n/p is the mean (norm) value for N/P, and CV is coefficient of variation for high-

yielding populations. The other terms of f(N/K) and f(P/K) are derived in a similar 

way using the means, n/k for N/K and p/k for P/K, respectively in place of n/p.  

 

Interpretation of DRIS indices was based on the positive and negative values, which 

sum to zero, and the more negative the value is, the more the nutrient is limiting. 

 

5.2.5 Mapping prevalence of limiting nutrients 

Geostatistical analysis was conducted to evaluate spatial variability of DRIS indices 

across the study area. First, the semi-variogram models for DRIS indices were 

developed using the “gstat” package (Pebesma, 2004), and the model parameters: 

range, nugget and sill, were used to evaluate spatial structure of the DRIS indices. 
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Interpretation of these parameters was done following Cambardella et al. (1994), 

with values < 25% were considered as weak, 26 - 75% moderate, and > 75% as 

strong spatial structure. Low nugget: sill ratio was indicative of short distance 

variability in the DRIS indices.  

 

Secondly, the spatial pattern within the study area were analysed by developing 

maps of the DRIS indices using “ggplot2” R package (Wickham, 2009). The spatial 

pattern described levels of nutrient distribution within a geographic location, and 

were performed to identify the spatial trend of DRIS indices. This enabled 

identification of specific geographies where actual NPK nutrient limitation 

occurred.  

 

Finally, the Moran’s (I) Index was computed and used to identify spatial patterns in 

nutrient limitations based on DRIS indices, using the “gstat” package (Pebesma, 

2004).  The index depicted levels of spatial clustering, with positive values taken to 

indicate clustering of nutrient limitation, while negative values were indicated 

spatial dispersion.  

 

5.3. Results  

5.3.1. Farm survey 

Table 5.2 shows calibration models within the mid infrared (MIR) region (400 – 

4000 cm–1) for predictions of soil and plant nutrient concentration for the study area. 

Calibration models for NPK gave good fits with cross-validated r2 values of 0.94, 

0.69 and 0.74, respectively. Total maize tissue N had the lowest RMSECV of 0.08 

and r2 value of 0.84. The predictions varied across NPK nutrients for soil and plant 

tissues, as exhibited by different fit of r2 value. The results indicate prediction 

potential of nutrient concentration in soil and plant samples using MIR spectral 

signatures. The fundamental vibrations of molecules in soil and plant materials are 

normally found in MIR spectral region, where very distinct spectral signatures are 

displayed, because of strong absorption of overtones by hydroxyl ions (Brown et 

al., 2006). Hence it was possible to quantify nutrient concentrations in soil and 

maize leaves tissues (concentrations) using IR spectral measurements. 
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Table 5.1: Mid-infrared calibration model statistics that predicted soil and plant nutrient 
concentrations of the study area. 

Soil samples 

Nutrient 
concentration 

                        r2                      
RMSECV 

Total N (%) 0.94 0.09 

Extractable 

Potassium (cmol 

kg-1) 

0.74 0.44 

Extractable 

Phosphorus (mg 

kg-1) 

0.69 0.40 

Maize ear-leaf samples 

Nitrogen (%) 0.84 0.08 

Phosphorus (%) 0.84 0.16 

Potassium (%) 0.80 0.12 

Key: r2 = Coefficient of determination, RMSECV = Root Mean Square Error of Cross 
Validation 
 
Total soil N varied from 0.06% to 0.36%, while extractable P and K had a median 

of 17.2 mg kg-1 and 4.6 cmolc kg-1, respectively (Table 5.3). Low concentrations 

of nutrients characterized the soils of the study area, as exhibited by mean values 

of total soil N, extractable P and K, which were below established critical soil 

values of 0.2%, 10 mg kg-1 and 3 cmolc kg-1, respectively (Okalebo et al., 2002). 

According to these results, NPK were the principle limiting nutrients for maize 

production in the study area.  

 

The study area was characterized by low variation in maize tissue nutrient 

concentration, but high variation in soil nutrient and crop responses (Table 5.3). 

High variation occurred in extractable P with a coefficient of variation (CV) 

value of 61% compared to a corresponding value of 25 % in maize tissue (Table 

5.3). Total soil N exhibited the lowest variation (CV = 25%). Low variability for 

total P and K tissue nutrient concentration was also evident, with CV values of 

25% for both. Low variability in maize tissue nutrient concentration can be 
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attributed to homogeneity in the maize tissue samples. Grain yield and maize 

biovolume displayed high variability with CV values of 55% and 40%, 

respectively. These results provide evidence of variability in NPK nutrient 

limitations across the study area.  Site-specific diagnosis of NPK nutrients may 

therefore be pivotal for amelioration as a nutrient management strategy. The CV 

statistics indicate that farm survey captured variability in crop response and 

inherent soil fertility, and did not describe the spatial variability (Haileslassie et 

al., 2005). 

 

Density plots for soil total N, grain yield and BV displayed a near normal 

distribution. Extractable P and K were negatively skewed, indicating presence 

of low values. These variables were transformed to natural log (ln) values, in 

order to attained approximate normal distribution, as required in the subsequent 

steps of the population-based farm survey approach. 

 

5.3.2. Diagnosis of limiting nutrients   

Observed maize yield response as a function of NPK maize tissue nutrient 

concentration is shown in Figure 5.2. The general trend was an increase in maize 

tissue nutrient concentration for total N that corresponded to a 2-fold increase in 

grain yield (Figure 5.2 a, d). This implied that improved uptake of N would 

double maize yields for the study area. Total N had a significant relationship (p 

value = 0.001, r = 0.0089) with maize yield, which tended to be positive, as 

would be expected (Figure 5.2 a). Relationship between grain yield and total P 

tissue nutrient contrasts results of total N, which were poor, as exhibited by low 

r value of 0.03 (Figure 5.2 b). Similar trend was observed for total K with r value 

of 0.009. Though the r value was low (0.089) for total N, this logarithmic 

relationship was the strongest amongst all the grain yield and plant tissue 

relationships. 
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Table 5.2: Soil properties, maize ear leaf total tissue nutrient concentration and crop response variables of unfertilized maize plots across  
smallholder agroecosystem in western Kenya. 

Nutrient Observations (n) Minimum Maximum Median Mean Standard 
deviation 

Coefficient of 
variation 

Confidence 
Interval mean 
(95%) 

Soil properties         

Total nitrogen (%) 256 0.06 0.36 0.14 0.15 0.04 25% 0.00 

Extractable P (mg kg-1) 256 8.19 107.21 17.22 21.02 12.82 61% 1.58 

Extractable K (cmol kg-1) 256 0.12 6.48 4.61 4.24 1.49 35% 0.18 

Maize tissue (ear leaf 

samples) 
        

Nitrogen (%) 220 0.12 0.40 0.22 0.23 0.06 25% 0.01 

Phosphorus (%) 220 0.57 2.76 1.84 1.80 0.45 25% 0.06 

Potassium (%) 220 0.00 3.81 1.86 1.68 0.70 42% 0.11 

Crop response (based on inherent fertility)   

Grain yield (Mg ha-1) 256 0.08 11.28 3.20 3.54 1.90 54% 0.23 

Plant biomass (cm3) 256 31.00 392.91 161.00 170.38 73.33 43% 9.10 



  

87 
 

Crop response curves indicated maize yield increased with increasing tissue nutrient 

concentrations (Figure 5.2 d, e, f). Based on Cate and Nelson, (1971) recommendations, 

the crop response curve only fell in the deficiency zone (level), attributed to fact that, 

only unfertilized maize fields were sampled. However, there was a significant increase 

in maize yield beyond the established critical values. For example, 40% increase in yield 

was realised, when N tissue concentration was > 3.0 %. This result implies tissue 

nutrient assimilation by the maize crop, may lead to increased yields. Therefore, 

application N, P, K fertilizer would result into increased maize yield for the study area. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.2: Scatter plot between grain yield (Mg ha-1) and plant biovolume as function of maize ear-leaf  

tissue total nutrient concentration for; a, b) nitrogen (%), c, d) phosphorus (%), and e, f)  
potassium (%). 

Significant relationship between grain yield and maize tissue concentration for total N,P,K 

were indicative that they could be inferred, and used to measure nutrient limitations. 

Therefore, established critical nutrient value for total N formed basis for dividing target 

population into a “deficient” and “sufficient” sub-population. The ‘deficient’ sub-
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population constituted 46%, a representation of poor maize field in the study area. The two 

sub-population formed basis for establishing NPK soil cut-off values for the study area.  

 

Frequency distribution plots of transformed soil tests values for total soil N, Extractable P 

and K are presented in Figure 5.3. Back transformed soil cut-off values were 0.074% for 

total soil N, 12.5 mg kg-1 for Extractable P and 4.5 cmolc kg-1 for Extractable K. There were 

no significant differences in the magnitude between developed farm survey soil cut-off 

values, compared to published critical soil test values for total soil N (0.2%), Extractable P 

(10 mg kg-1) and Extractable K (3.0 cmolc kg-1), as reported in literature Okalebo et al., 

(2002). For total N and Extractable K, there was no clear distinction of the ‘deficient’ and 

‘sufficient’ sub-populations as would be expected (Figure 5.3 d f).  

 

Developed soil cut off values were used to determine the prevalence of soil nutrient 

limitation for the study area. Only 67% of target population characterized showed 

deficiency in total soil N, 54% in phosphorus, while 37% had potassium deficiency. These 

soil test values were below developed soil cut-off values in target population from the farm 

survey dataset. The nitrogen status of the study area was limiting in most maize fields than 

phosphorus and potassium. About 15 % of the maize fields had N levels in the range of 0.1 

- 0.25%. Therefore, it was clear that N was a major limiting soil factor for maize growth in 

most sampled fields.  
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Figure 5.3: Relationship between grain yield (Mg ha-1) as function of maize tissue total nutrient concentration for; a) nitrogen (%), b)  

phosphorus (%), and c) potassium (%) for establishing critical nutrient concentration. Maize response curves (d, e, f) for NPK  
nutrients. The dotted black line represents the critical nutrient concentration values established from literature. 
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5.3.3 Ranking limiting nutrients  
The DRIS indices varied widely, from -35.86 to 36.87 for N, and were within ranges 

of the published international norms reported by Elwali et al. (1985). While applying 

the local DRIS norms derived from population-based farm survey data, the mean DRIS 

indices were -6.3 for N, -13.5 for K and -2.1 for K (Figure 5.4). Normally, the DRIS 

indices are not affected by differences in growth stages of maize crop (Walworth et al., 

1986). Phosphorus was ranked as the most limiting nutrient, followed by N, and K in 

a descending order of limiting nutrient. The relative ranking of the limiting nutrient, 

from the most to least limiting was phosphorus > nitrogen > potassium. The results 

imply that fertilization of the maize crop in the study area may prioritize fertilization 

of phosphorus since it is the most limiting nutrient. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4: Bar graph showing the mean DRIS index for NPK maize ear leaf samples for  
the study area   
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Critical N concentration value separated the target population of 258 observations into 

‘deficient’ and ‘sufficient’, which comprised of 116 and 141 observations, respectively. 

These sub-populations formed basis for computing DRIS indices. Calculated variance 

ratio of N/P, N/K and P/K were significant (p < 0.01) similar to those reported by Elwali 

et al., (1985). The significance of variance may be considered as good evidence on the 

validity of the assumption used in separating the two sub-populations, which was set at 

critical N nutrient value of 2.9%, corresponding to grain yield of 2.4 Mg ha-1. The 

‘deficient’ population showed high values of standard deviation and coefficient of 

variation as compared to ‘sufficient’ population.  

 

5.3.4 Mapping prevalence of limiting nutrients 

Derived semi-variogram model parameters are presented in Table 5.4. The best semi-

variogram model fitted for DRIS index for N and P was exponential and spherical, 

respectively. The variograms had the least root mean square error values of 0.00023 for 

N and 0.019 for P. The nugget/sill ratio ranged from 0.23 to 0.70, an indication of strong 

to moderate spatial dependencies for DRIS indices. The nugget effect of DRIS index for 

N suggest moderate spatial dependencies across unfertilized plots. A high nugget effect 

(0.0041) was observed for DRIS Index for P suggesting small-scale variation. Low 

nugget values were signified short distance variability for DRIS indices. Moderate 

spatial dependencies occurred at an effective range of 543 m for DRIS index for N, the 

lowest compared to DRIS index for P (3291 m). The spatial dependency of the DRIS 

index was strong for N and P. The existence of strong and moderate spatial dependencies 

meant that further evaluation of spatial patterns of nutrient deficiencies using maps of 

the study area was necessary. 
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Table 5.3: Spatial dependency of DRIS indices for maize fields in a smallholder Western 
Kenya in term of the semi-variogram. Strong < 25%, moderate 25 – 75 %, Weak > 75 %  

 

 

 

 

Spatial autocorrelation analysis was performed to test the significance in the pattern of 

geographical distribution in nutrient limitation (Table 5.5). A hypothesis that the spatial 

occurrence of NPK nutrient limitation is a random, within smallholder agroecosystem was 

rejected, since Moran Index for NPK was significantly positive (p < 0.01). This meant that 

NPK nutrients display a clustering pattern, where multiple NPK deficiencies occurred in 

the same geographical location, within the study area. Occurrence of multiple nutrient 

deficiencies can be attributed to the non-responsive characteristic of soil that is common in 

western Kenya.  

Table 5.4:Moran Index for the for maize fields in a smallholder landscape in Western Kenya 

 DRIS indices 

  Nitrogen        Phosphorus  Potassium  

Moran Index 0.40 0. 23  0.42  

p value 0.0003*** 0.31.  0.01.  

level of significance *** = 0.001, ** = 0.01, *= 0.05 and . = 0.1 

Simulated maps provided a display of the spatial distributions of NPK nutrient 

limitations for the 100 km2 sampling block based on DRIS indices (Figure 5.5). There 

was a variation in nutrient limitation patterns across the study area. For example, there 

was a gradient of NPK deficiencies towards north western side of study area as indicated 

by the blue hue. Clustering of NPK nutrient limitation occurred on the south west part 

of the study area. The result meant that nutrient amelioration strategies require a holistic 

application of NPK, at varying rates for the maize crop. 

 
Semi-variogram 

model 

Nugget: Sill 

ratio 

Range 

(m) 
Spatial dependency 

DRIS Index N Exponential 0.23 543 Moderate 

DRIS Index P Gaussian(normal) 0.61 302 Strong 

DRIS Index K Linear 0.34 3291 Strong 
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Figure 5.5: Map showing the spatial patterns of DRIS indices for the study area for: a) nitrogen (%), b) phosphorus (%), and c) potassium  

(%). 
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5.4 Discussion   

This study has demonstrated development of NPK soil test values form farm survey, 

rather than using the crop response trials. The novelty of the population-based farm 

survey approach comes from the combination of technologies that generate synergy 

between them. For example, critical nutrient concentration concept established by Cate 

and Nelson (1979), DRIS index approach (Walworth et al., 1986) and geostatistical 

tools (Pebesma, 2004). The study incorporated these tools in the population-based farm 

survey approach, following the principle of land health surveillance, to estimate nutrient 

limitation at specific geographical niches (Shepherd et al., 2015).  

 

5.4.1. Farm survey 

Farm survey enabled the development of a geospatial spectral database, to map and 

diagnose N, P, K nutrient limitations for the study area. The calibration model showed 

prediction potential of MIR, which varied with the soil and maize tissue nutrient 

concentration for NPK (Table 5.2). The best prediction observed for total soil N, with 

r2 of 0.88, was similar to that reported by Mouazen et al. (2010), followed by extractable 

P with r2 = 0.74, an excellent value according to Conzen (2003). The findings were 

comparable to previous research findings from air-dried soil samples by Malley et al. 

(2004), but better compared to results reported by Janik et al. (2008) with r2 value of 

0.07 for extractable P. The coefficients of determination ranged from 0.60 to 0.90, and 

their RMSECV were satisfactory in diagnosis of nutrient deficiencies according to 

Cozzolino and Moron (2006) and Stevens et al. (2008). The results demonstrate 

potential of using MIR for assessment of nutrient deficiencies for large-scale evaluation, 

as a rapid and low-cost analytical tool, that can be embedded in the proposed approach 

(Towett et al., 2015).   

 

Crop response, soil nutrient concentration and maize tissue samples displayed high 

degree of variability as shown by the CV values for the study area (Table 5.3). The 

observed variability is attributed to difference in the inherent soil fertility, which could 

be influenced by topography (Arnhold et al., 2015), management aspects (Zingore et 

al., 2007) and soil types (Raynaud & Leadley, 2004). However, the findings conform 

to those reported by Tittonell et al. (2008) who found high variability in maize fields in 

western Kenya. Variability in crop response demonstrates the need of spatially explicit 

nutrient diagnostics, which may be implemented as the first step, towards site-specific 
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nutrient management strategy. The poor relations can be attributed to low P 

concentration in soil of the study area. These relationships are explained by a poor 

capacity of plant tissue testing to predict magnitude of yield response within and below 

the critical nutrient concentration range. 

 

5.4.2. Diagnosis of limiting nutrients   

Soil and plant relation were used to establish critical nutrient concentration and soil cut-

off values useful in defining cases where nutrients were limiting (Figure 5.3). The 

developed soil cut-off values fell within the range reported in previous studies (Adeoye 

& Agboola, 1985; Okalebo et al., 2002). Adeoye and Agboola (1985) reported values 

ranging from 10 to 16 mg kg-1 for P and 0.6 to 0.8 cmolc kg-1 for K in smallholder farms 

of Nigeria, which are comparable with finding by Okalebo et al. (2002) in western 

Kenya. Based on developed soil cut-off values, diagnosis of N, P, K limitation were 

established in 67, 54 and 37% of sampled maize fields studied, respectively and agree 

with those of Kihara et al. (2015) also in western Kenya.  

 

The frequency plot of the deficient and sufficient sub-population as function of soil test 

values displayed a near normal distribution for total soil N and extractable K (Figure 

5.3 a, c). The observed distribution can be explained by high soil heterogeneity (Ronner 

et al., 2016), soil disturbances through ploughing (Wopereis et al., 2006) and low 

concentration of phosphorus and potassium values for the study area (Webb et al., 2011; 

Ngome et al., 2013). These soil test values provided a criterion for defining cases of N, 

P, K limitations (Figure 5.3). However, soil test values present disadvantages for 

nutrient diagnostics, when used in isolation (Das et al., 2009; Valkama et al., 2011), 

hence the need of incorporating critical maize tissue nutrient concentration. The 

relationships between measured soil test values and nutrient availability was very 

tenuous (r = 0.02 for P), similar to observation made in previous studies (Roth et al., 

1989; Havlin & Jacobsen, 1994). This is attributed to the maize growth and its nutrient 

uptake rate in the field, which depend on many environmental factors such as soil 

nutrients concentration and their interactions, which varied (Table 5.3) across the maize 

field (Römheld, 2011). The growing plant integrates all these soil factors and is the best 

measure of true nutrient availability of the unfertilized maize fields (de Barros et al., 

2007). This study therefore demonstrated the use of critical nutrient concentration 
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values as a criterion of establishing sub-population, which guide in the development of 

localized soil cut off values and is the novelty of this current approach.  

 

Synergy of the current approach was first evident by evaluating nutrient concentration 

in both maize tissues and soil samples (Figure 5.3) where established critical nutrient 

concentration test values formed the basis for defining limiting nutrient. A strong 

correlation between maize tissue N concentration and grain yield were observed (Figure 

5.2 a), which could be explained by high nitrogen uptake at the silking stage as expected 

(Setiyono et al., 2010). Observations of strong and significant (p < 0.01) correlations 

between N concentration in maize leaves and grain yield are in line with those of Bak 

et al. (2015). Poor correlation between grain yield and P concentration (Figure 5.2 c) 

observed in the study could be attributed to low levels of P in the soil, below the critical 

soil nutrient concentration of 10 mg kg-1 (Okalebo et al., 2002). Poor relation between 

extractable K and grain yield could be attributed to the poor prediction of the magnitude 

of grain yield (Figure 5.2 c). The results differ with those reported by Clover et al. 

(2007) who found good relations between potassium and grain yield, but in fertilized 

maize fields. The utility of critical nutrient concentration in maize tissue provides a 

synergy, since these values were used to establish the deficient and sufficient sub-

populations, on whose basis soil test values for diagnosis of limiting nutrients were 

developed. This was important in the implementation of the farm survey approach. 

 

5.4.3 Ranking limiting nutrients  

The DRIS indices showed varying values for NPK nutrient limitation in  the study, but 

were within ranges reported by Ewali et al. (1985) and Nziguheba et al. (2009) for 

maize crop (Figure 5.4). The observed DRIS index indicate K (- 2.1) as less deficient, 

compared to P (-6.3) and N (-13.5) for this diagnosis. Potassium was thus ranked as the 

least important nutrient limiting maize yields in the area and hence recommend 

application of N-based fertilizers with lower portions of P and K. This can be attributed 

to the occurrence of both responsive and non-responsive soils attributed to P fixation in 

the study area (Sanchez et al., 2003a; Ichami et al., 2018). However, the frequency 

distribution plot for extractable P performed better (Figure 5.3 d). The result affirms 

that indeed farm surveys can be an alternative option for conventional methods for 

developing critical soil test values for nutrient diagnostics. The result also suggests soil 
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cut-off values obtained from farm survey may be a representation of variability in maize 

field within agroecosystems, since the values are developed from a population of fields 

(258 plots within 64 maize fields). This also implied there is potential of capturing 

spatial variation in nutrient concentration for the study area through farm surveys.   

The finding relate well to those by Kihara et al. (2015) who found NPK limiting maize 

production in western Kenya. However there is a difference in the sampling 

methodology, where 258 plots were analysed for the farm survey in this study, 

compared to 32 plots for conventional nutrient diagnostic trials by Kihara et al.(2015). 

In both studies, similar conclusions are made, i.e., N, P, K are limiting. The farm survey 

may therefore be a better approach since it explicitly captured the within spatial 

variability in maize fields.  

 

The DRIS indices demonstrate the incorporation of plant nutrient concentration in 

nutrient diagnostics, and bring the second synergy into the population-based farm 

survey approach. The DRIS technique was found to be advantageous for the farm 

approach, because it reflected the  nutrient status of the whole maize plant (Ramakrishna 

et al., 2009). The DRIS indices can therefore be employed in identifying nutrient 

limitation and preference of mitigation criteria can be aligned to the most deficient 

nutrient (P) within in the study area.  

5.4.4 Mapping prevalence of limiting nutrients 

Diagnosis of limiting nutrients and ranking was established in the aforementioned 

sections (5.2 to 5.3). The results however do not explicitly explain, the spatial 

distribution of nutrient limitation of the study area. Thus, a geostatistical technique was 

employed to evaluate geographical distribution, which brings in the last synergy of the 

population-based farm survey approach. 

 

Semi-variogram models’ parameters provided good estimates of spatial structure of 

DRIS indices (Table 5.4). Different theoretical semi-variogram models were selected 

for the significant fit of DRIS indices for NPK (Pebesma, 2004). Exponential model 

provided the best fit to the semi-variogram of N, while Gaussian and Linear models 

were best fit for P and K. Several findings suggest that exponential model is the most 

suitable for assessing spatial variability in soil nutrients (Cobo et al., 2009, 2010; 

Snoeck et al., 2010), it explains the maximum variability in the spatial dataset 
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(Goovaerts, 2000). The DRIS indices for N displayed short distance variability as 

exhibited by the range (543 m) and low nugget values (0.00314), which implied that 

high resolution maps of DRIS indices may be appropriate for nutrient diagnostics.  Few 

studies have reported the spatial structure of DRIS indies, however similar observation 

of short distance variability for total soil N have been reported by Okeyo et al. (2009) 

in smallholder farms of western Kenya.  

 

A hypothesis that the spatial occurrence of N, P, K nutrient limitation is a random 

pattern within landscape was rejected, since the Moran Index (MI) for N, P, K were 

positive (Table 5.5). Test of significance for MI values returned by geostatistical 

analysis of N showed displayed significantly similar clustered distribution (p < 0.001, 

MI = 0.40), with low levels N observed in one location. The clustering pattern can be 

explained by differences in soil characteristic patterns, which are complex due to the 

topography of the area (Cobo et al., 2010; Tesfahunegn et al., 2011). Spatial pattern of 

P and K did not appear significantly (p < 0.001) different from a random distribution 

for this region. The result for N clustering conforms to those by Panday et al. (2018) 

who found clustering for N in smallholder farms of Nepal. Clustering may be taken as 

an indication of occurrence of N, P, K limitations in one location, which require holistic 

approach for nutrient management for different geographies niches. The analysis of the 

spatial structure of DRIS indices provided synergy through evaluation of geographical 

pattern of nutrient limitations. In this way, nutrient management strategies could be 

implemented using the spatial distribution DRIS maps as a guide for identifying 

occurrence of nutrient limitation in specific geographical niches within smallholder 

landscapes.  

 

The simulated maps depicted status of N, P, K contents in different geographical niches 

across the study site most of which displayed their deficiencies, as indicated by negative 

DRIS indices (Figure 5.5). The deficiency could be explained by different historical 

management practices (no fertilizers were applied) that have influenced inherent soil 

properties (Vanlauwe et al., 2010; Ngome et al., 2013; Wang et al., 2014). Sanchez et 

al., (2003) attributed the deficiency of P to fixation by aluminium oxides. This finding 

implied that by making reference to the DRIS indices simulated maps, NPK fertility 

status could be assessed before recommending site-specific fertilizer inputs. 
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Management strategies to enhance soil nutrients status could be implemented in the site 

using these maps as a guide (Hengl et al., 2015). Normally, low nutrient values require 

relatively higher amount of fertilizer application; therefore, these maps may lead to 

better understanding of existing nutrient limitation, allowing easier management and 

maintenance of sustainable maize productivity. This research thus sets a precedent for 

upscaling future digital property mapping of nutrient limitation in other parts of the 

country and implementation of site-specific fertilizer recommendations for smallholder 

agroecosystems. 

 

5.5 Conclusion 

The study developed a novel approach population-based farm survey for diagnosis of 

limiting nutrients for smallholder agroecosystems in western Kenya.  

(i) Soil test values for N (0.01%), P 12.2 mg kg-1 and K (4.5 cmolc kg-1) were 

developed from quantitative soil and plant relationships and then used to define 

cases of nutrient deficiencies.  

(ii) Spatial maps for nutrient limitations were developed, which identified 

occurrence of nutrient limitations in specific geographies for the study area to 

guide nutrient management for agricultural value chains.  

(iii) The N indicated clustering based the Moran Index, which show the multiple 

high N deficiency occur at several points within the study area. Simulated maps 

were utilized to show the exact location where nutrient deficiency occur. 

(iv) This study demonstrated site-specific diagnosis of nutrients, using NPK soil test 

values and DRIS indices developed from farm survey.  

(v) This information could lead to effectiveness and optimize fertilizer use 

recommendations in the region. Therefore population-based farm survey 

approach is an effective diagnostic approach for exploring the spatial variability 

of soil nutrients, and can be upscaled for future use in similar smallholder 

agroecosystems. 
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Chapter Six 

Evaluating covariate information for diagnosis of yield-limiting nutrients 
in smallholder agroecosystem in western Kenya4. 
Abstract 

There is need to improve decision making for nutrient management, in order to 

minimize risks in fertilizer investments by farmers in smallholder agroecosystems. 

Understanding the influence of biophysical and management factors on soil nutrient and 

crop responses is a critical component of managing risks for site-specific management 

decisions. This study aimed to identify key co-variate factors that can be used to 

improve accuracy of the novel population-based farm survey approach for nutrient 

diagnostics. This study investigated relationships between soil test value, nutrient 

diagnostic indices with soil fertility gradient (SFG), soil type (ST) and landscape 

positioning (LP) factors. A total of 256 plots within 64 farmers’ maize fields were 

surveyed in western Kenya using the Land Degradation Sampling Framework (LDSF). 

Data was collected on maize grain yield (GY) as a function of soil properties and plant 

nutrient content for NPK, which corresponded to the aforementioned factors. 

Diagnostic Recommendation Integrated System (DRIS) indices were calculated using 

GY and maize tissue data. This data was subjected Principal Component Analysis 

(PCA) to evaluate correlation between these factors with soil test values and DRIS 

indices. Multivariate Analysis of Variance (MANOVA) was used to identify key factors 

that influence variation in soil nutrients and crop response. SFG was a non-significant 

factor that influenced variation in crop response in the study area. PCA result indicated 

strong correlation between SFG, ST and LP with soil N and P. ST and LP significantly 

influenced (p < 0.001) soil test values, DRIS indices and GY, and explained 53% of the 

total variation for the study area. To improve on the accuracy of the population-based 

farm survey approach, stratification was recommended using ST and LP as the main 

stratum and key covariate information for this study site. The finding implied that 

implementation of the population-based farm survey approach should include important 

covariate information about the site, which may improve accuracy of site-specified 

nutrient diagnostics for heterogeneous smallholder agroecosystems.  

 
4 This chapter is based on a manuscript to be submitted to Agricultural Systems Journal 
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6.1. Introduction 

Unless the yield gaps for staple cereals are reduced, feeding the global population of 

9.5 billion people projected for 2050, will be an uphill task (Ray et al., 2013; Pradhan 

et al., 2015). The past decade has seen agricultural intensification being considered 

amongst mitigation strategies for closing yield gaps, and has resulted to 20% increase 

of crop yield for smallholder agroecosystems (Van Ittersum et al., 2013). Targeted 

agronomic intervention including judicious fertilizer application are amongst options 

for attaining higher crop yields (Andersson & Giller, 2019). Information on site-specific 

nutrient limitation is therefore crucial, and is required for these smallholder 

agroecosystems, which are highly heterogeneous in both management and biophysical 

aspects (Zingore et al., 2007b; Njoroge et al., 2017b). To fully operationalize site-

specific nutrient diagnostics, accurate spatially-explicit information is needed to guide 

nutrient management decisions.  

 

Digital Soil Mapping (DSM) combined with population-based farm survey approach, 

have the potential of providing accurate spatially-explicit information. DSM produces 

maps from point observation data using statistical modelling (Kempen et al., 2012; 

Malone et al., 2016). Often environmental covariates, defined as independent variables 

that explain variation in the dependent one, are used for statistical modelling (Hengl, 

2007; Salkind, 2010). Studies have shown the use of covariates data derived from digital 

elevation model (e.g. relief) and vegetation maps, improve accuracy and reduces 

uncertainty of predicted soil maps (Mora-Vallejo et al., 2008; Kempen et al., 2012). 

Normally, DSM follows the Scorpan approach, where these covariates are selected to 

represent soil forming factors (McBratney et al., 2006; Buol et al., 2011). DSM has also 

demonstrated potential as a nutrient management tool. For instance, Hengl et al. (2015) 

successfully developed soil nutrient maps at 250 m resolution for maize crop across 

Africa while Snoeck et al. (2010) used DSM to provide fertilizer recommendation for 

cocoa plantations in Ghana. Burke & Lobell, (2017) used high resolution satellite 

imagery to map fertilizer response in western Kenya. However, information related to 

nutrient management is never fully included as covariate, and has not been studied to a 

great extent. A study by van Apeldoorn et al. (2014) revealed difficulty of DSM in 

capturing soil fertility gradient across smallholder farms of Zimbabwe. Another study 

conducted by Samuel-Rosa et al. (2015) revealed inclusion of many covariates does not 

increase accuracy of predicted soil properties. Instead, increasing soil point 
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observations was considered the best option of improving the prediction accuracy 

(Samuel-Rosa et al., 2015). Thus, population-based farm survey approach has potential, 

and provides a rigorous ground sampling scheme, and may be plausible with regard to 

increasing field observation and has potential for capturing spatial variation within 

smallholder agroecosystems (Shepherd et al., 2015).  

 

Several factors are known to influence spatial variability of nutrients in the smallholder 

agroecosystems. Management factors such as application of manure within smallholder 

farms result to soil fertility gradients (Zingore et al., 2007b; Tittonell et al., 2013). 

Landscape position of smallholder farm and soil type are also relevant information 

related to variability and nutrient management (Gómez-Plaza et al., 2001; Costa et al., 

2015). However, heterogeneity within smallholder agroecosystems still present major 

challenges to understanding factors influencing spatial variation of nutrients. 

 

Population-based farm survey approach offers an opportunity to include covariate 

information and can improve prediction accuracy of soil properties, especially if 

combined with DSM. These two approaches, have potential of providing a suitable 

framework for spatial diagnostic of limiting nutrients. The population-based survey 

approach employs the Land Health Surveillance (LHS), whose principles are derived 

from clinical medicine and have been successfully applied in epidemiological studies 

(Boulos, 2004; Shepherd et al., 2015). In the epidemiological approach, disease test 

value is used as a criterion to establish diagnostic norms from a study population, which 

are adjusted to covariates such as sex and age, and then used to assess prevalence of 

diseases, which later help in designing appropriate targeted interventions (Krall et al., 

2014). The LHS encompass a wide array of intervention, including implementation of 

guidelines, monitoring soil health patterns and advancement of evidence-based 

management practices (Shepherd et al., 2015). Its concepts were put into operation, and 

field implementation achieved through the LDSF (Vågen et al., 2010, 2012). The LDSF 

provided a monitoring and evaluation framework for assessing processes of soil fertility 

degradation and the effectiveness of intervention measures (Vågen et al., 2012). 

However, few studies have tested the use of LHS for environmental management, 

particularly for nutrient management within smallholder agroecosystems (Shepherd et 

al., 2015). Beedy et al. (2015) identified areas with high risk of land degradation in four 
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agro-ecologies of Malawi and proposed targeted management interventions. Smith et 

al. (2008) used surveillance to monitor and manage tree health in Australian forests. 

  

Borrowing LHS principles, this study used a population distribution derived from a 

farm survey of soil and plant data to derive soil test values and develop DRIS indices. 

These variables were used to assess prevalence of yield nutrient constraints for maize 

crop, while including covariate information (factors). The objective of this study was 

therefore to identify covariates (biophysical and management factors), which could be 

used to stratify a target population of smallholder farms. It was postulated, biophysical 

and management factors, which account for the highest variability, and were highly 

correlated to DRIS indices and crop responses, would be suitable for stratification. The 

main assumption here was, by including covariate information that accounts for most 

variation in a population of smallholder maize fields, the overall accuracy of the 

approach improved. These covariates depend on available information, and were 

identified based on soil fertility gradient, soil type and landscape positioning of a maize 

fields within a smallholder agroecosystem in western Kenya. This approach mimics the 

one used to establish population cohorts in epidemiological population-based surveys 

(Krall et al., 2014). 

6.2. Material and methods 

6.2.1. Study area 

The study area, a heterogeneous smallholder landscape in western Kenya (0°26′ - 0°18′ 

northern latitude; 33°58′ - 34°33′ eastern longitude) is delimited by the administrative 

sub-counties of Boro, Butere, Yala, Khwisero and Ugunja. Ugunja and has been 

described in section 3.2.1 (Figure 4.1).  

 

6.2.2 Farm survey – Selection of sampling farms 

A farm survey was carried out within the LDSF scheme (Vågen et al., 2010). The LDSF 

is a stratified hierarchical sampling design that captures variability at different scale 

levels: block, tiles, sub-tiles and fields across a given landscape. The farm survey has 

been described in section 4.2.3.   

 

The conducted farm survey also captured the biophysical and management factors, 

which influenced soil properties, DRIS indices and crop response. Data collection 
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involved recording information on biophysical and management information on 

randomly selected and sampled maize fields. These factors, summarized in Table 6.1 

and included: SFG, ST and LP. Selection was guided by information from previous 

studies (Akponikpè et al., 2011; Ngome et al., 2013; Tittonell et al., 2013; Zingore et 

al., 2007), and  were linked to with corresponding soil test values, DRIS indices, grain 

yield and maize biomass measured at plot level. The influence of the aforementioned 

factors on soil test values, DRIS indices, GY and BV were evaluated for different 

categories across of these factors (Table 6.1).  

 

Table 6.1: Biophysical and management factors recorded during the population-based farm  
survey of maize fields in the study area. 

Factor Description based on this 
study 

Categories Author(s) 

Soil fertility 
gradient 

Variation of soil nutrients 
within smallholder farms 
with respect to management 
of soil organic matter and 
location of farmer’s 
homestead 

Outfield 
Mid-field  
In- field 

Tittonell et 
al., 2007; 
Zingore et 
al., 2007a 

Reference Soil 
Groups 

Based on distinct 
characteristics that provide 
growing benefits and 
limitations to crop yields. 

Nitisols 
Acrisols 

WRB, 2014 

Landscape 
position 

Location of the smallholder 
farm with respect to 
landscape elevation 

Foot slope 
Mid 
Ridge 
Slope 

(Arnhold et 
al., 2015) 

 

6.2.3 Soil and plant sampling 

Soil sampling was conducted once during the development stage, the maize silking 

stage, procedure in section 5.2.2.1. Collected soil and plant samples were analysed for 

N, P, K nutrient concentrations using Infrared (IR) spectroscopy technique as described 

in section 5.2.2.1. 

 

A database was used to establish DRIS diagnostic indices for N, P, K. Data on plant 

samples for N, P, K and maize yield of the target population were used to calculate the 

DRIS norms in section 5.2.2.3. The functions for N, P, K and DRIS indices were then 

determined according to the methodology of Beaufils, (1973).  
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6.2.3 Statistical analysis  

Statistical analyses were implemented using R statistical packages (R Core Team, 

2018). Descriptive statistics were computed for soil test, plant NPK nutrient 

concentration, DRIS indices, GY and BV using ‘ddplyr’ package (Wickham, 2009). 

Density plots were developed to check the normal distribution of data using ggplot2 

package (Wickham, 2009). Skewed variables were normalized, prior to further 

statistical processing. Pearson correlation coefficient (r) formed basis for evaluation of 

strength of the relationships between variables, with r > 0.50 considered as strong. 

 

Principle Component Analysis (PCA) was conducted to determine influence of 

landscape position, soil fertility gradient and soil type on soil test values, DRIS indices, 

GY and BV using FactorMineR (Lê et al., 2008). PCA was used to identify the key 

factors explaining variance in the dataset without losing important defining information. 

The PCs are optimal linear combinations of initial variables explaining the variance in 

descending order. Correlation between soil test values, DRIS indices, GV and BV were 

also established from the PCA analysis using factoextra packages (Lê et al., 2008). 

Multiple Factor Analysis (MFA) were conducted to evaluate association of categories 

of categorical factors (soil fertility gradient, soil types and landscape position) as 

function of explained variability in soil test values, DRIS indices, GY and BV (Lê et 

al., 2008).  

 

To identify covariate factors, that may be suitable for stratification of a population of 

smallholder maize fields, Multivariate Analysis of Variance (MANOVA) was 

conducted (Huberty & Olejnik, 2005). Wald-Type test statistic were used to assess the 

influence of the aforementioned categorical factors on soil test values, DRIS indices 

and crop responses, with p < 0.005 taken to be statistically significant. Prior to PCA, 

MFA and MANOVA each variable was checked to meet assumptions of normality and 

homoscedasticity. For PCA and MFA, each variable was standardized due to difference 

in the units of measurement following equation 6.1 (Hengl, 2007) and for equal 

weighting in the analysis. 

!! "!#""!#
""$%#""!#

              ……………………6.1 
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where zi is the standardized value, xi the observed value, while xmin and xmax are 

minimum and maximum values, respectively. 

6.3 Results  

6.3.1 Distribution N, P, K nutrient concentrations   

Density plots were used to evaluate the distribution N, P, K concentrations in soil and 

maize tissue samples. Soil P and K nutrient concentration displayed a skewed 

distribution (Figure 6.1 d, f). N, P, K maize tissue nutrient concentration displayed a 

near normal distribution compares to N, P, K in soil. Soil P values were skewed to the 

left indicating lower P concentration in the soil for this site. Thus, strategic P 

fertilization may mitigate its deficiency. Soil P and K were log transformed to attain 

near normal distribution, prior to PCA and MFA analysis.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Descriptive statistics for soil properties, plant samples, yield and plant biovolume, 

shown Table 6.1 displayed median values of 3.2 Mg ha-1 for GY, 0.14 g kg-1 for soil N 

and 17.22 g kg-1 for soil P. The median soil N value (0.14 g kg-1) was below 0.2 g kg-1, 

the critical level for N (Okalebo et al., 2004).  

       

Figure 6.1: Density plots showing distribution of soil and plant  
tissue NPK nutrient  
concentrations for target smallholder maize field population 

(n = 203)  
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Table 6.1: Descriptive statistics for maize yield soil test values and diagnostic recommendation integrated system (DRIS) indices for NPK nutrients for the target  
population of smallholder maize fields. 

Variable Observations (n) Minimum Maximum Median Standard 

Error 

Confidence 

Interval 

Coefficient of 

Variation 

Soil N (g/kg) 203 0.06 0.36 0.14 0.01 0.01 0.25 

Soil P (mg/kg) 203 8.19 107.20 17.22 0.80 1.58 0.61 

Soil K (cmol/kg) 203 0.12 6.48 4.61 0.09 0.18 0.35 

Maize tissue N (%) 237 1.40 4.70 2.52 0.04 0.08 0.25 

Maize tissue P (%) 237 0.12 0.49 0.22 0.01 0.01 0.27 

Maize tissue K (%) 237 0.57 2.78 1.84 0.03 0.06 0.26 

DRIS N index 219 -37.38 58.86 -31.78 1.00 1.96 _ 

DRIS P index 219 -22.93 21.74 -1.11 0.33 0.65 _ 

DRIS K index 219 -36.50 52.52 -32.78 0.96 1.90 _ 

Maize biomass (BV) (cm3) 255 31.00 392.91 160.86 4.57 9.00 0.43 

Grain yield (Mg/ha 257 0.08 11.28 3.20 0.12 0.23 0.54 

DRIS – Diagnostic Recommendation Integrated System, N = Nitrogen, P = Phosphorus, K = Potassium, - negative CV values were not report  
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Figure 6.2 present a correlation matrix of soil test values, maize tissue nutrient 

concentration and DRIS indices for N, P, K. Significant correlation between soil N and 

BV (r = 0.67, p < 0.05), plant P and soil P (r =0.52, p = 0.00035) and plant K and soil K 

(r = 0.27, p = 0.000067) were displayed for this region. DRIS N index was significant 

positive relation (p < 0.005) with BV, maize tissue N, soil K, soil P with r values of 0.59, 

0.45, 0.34 and 0.38, respectively. Similar positive trend for DRIS K index were observed 

between maize biomass (r = 0.64), soil N (r = 0.33), soil K (r =0.33) and plant N (r = 

0.29). This result support the premise that soil test values and DRIS indices were suitable 

in determining nutrient status for maize production for this region.  

Figure 6.2:Correlation matrix of soil and maize tissue NPK nutrient concentration, DRIS  
diagnostics norms, grain yield and plant biomass 
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6.3.2 Effect of soil fertility gradient, landscape position and soil type on crop 
response. 

Means and standard deviation of GY and BV across categories of soil fertility gradient, 

soil types and landscape position of smallholder maize fields in the study area are 

presented in Table 6.2. The composition of the sampled maize field, based on relative 

distance to the homestead constitute SFGs categories; 41% mid-field, 43% infields and 

the rest were out fields. The infields were located close to homesteads. Infields 

displayed significant (p = 0.00035) high GY compared to midfields (3.53 Mg ha-1) and 

outfields (3.41 Mg ha-1).  Nitisols and Acrisols were the major reference soil groups for 

the study area. Nitisols had higher GY (3.76 Mg ha-1) compared to Arcisols (3.44 Mgha-

1) and were not statistically different (p = 0.46). Foot slope, mid slope, upslope and 

ridge were taken to represent landscape position and evaluate their effect crop response. 

Maize fields located in ridges constitutes 16% of target population, with significantly 

(p < 0.001) higher mean of GY (4.83 Mg ha-1) compared to those on mid slope (3.39 

Mg ha-1). Mean GY of fields located on foot slopes (3.76 Mg ha-1) were higher 

compared to those on up slope (3.51 Mg ha-1), and were not statistically different (p = 

0.67).  
 

Table 6.2: Means and standard deviation for grain yield and plant biomass of the sampled  
population of smallholder maize fields (p < 0.05) 

 
Covariates 
(Biophysical and 
management 
factors) 

  
Categories 
  

  Grain yield Maize biomass 
n Mean Standard 

deviation 
Mean Standard 

deviation 

 
Soil fertility 
gradient  

Infield 47 4.01 1.98 197.97 69.93 
Midfield 45 3.53 1.93 168.28 66.22 
Outfield 19 2.41 1.05 107.81 55.2 

 
Reference Soil 
Groups 

Acrisols  91 3.44 1.89 159.71 72.96 
Nitisols 21 3.76 1.93 196.34 66.31 

 
Landscape position  

Foot slope 36 3.76 2.22 157.55 73.36 
Mid slope 53 3.39 2.19 153.47 79.13 
Ridge 23 4.83 1.47 215.4 56.56 
Upslope 17 3.51 1.65 171.25 62.78 
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6.3.3 Prevalence of N, P, K nutrient limitations 
Soil test values and DRIS indices were used to evaluate prevalence of N, P, K limitation 

and nutrient imbalance, respectively. Means soil test and confidence interval (CI) values 

indicated significant difference between outfield and infield for N and K (Figure 6.3 a, 

e). Conversely, there were no significant difference in soil fertility gradient categories 

for soil P, although outfield displayed high variability as shown by wide range of CI 

values (Figure 6.3 d, c, d). Infields displayed high soil N and K test values compared to 

outfields (Figure 6.3 a, e), which is in agreement to finding reported by Tittonell et al. 

(2013), who observed decreasing soil P concentration with increasing distance from 

homestead. Outfields recorded the lowest soil test N.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Low soil test values indicated N,P, K nutrient limitations in study area (Römheld, 2011). 

In the target population of maize fields, prevalence of N nutrient limitations was observed 

in 45% of infields, 67% of midfield and 74% of outfield, based on critical soil value of 

 

Figure 6.3: Means for grain yield and DRIS indices for NPK across  
categories of soil fertility gradient of the target population. The error 
bars represent the confidence interval at 0.05 significant level.  

 

 

a) b) 

d) c) 

e) f) 
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0.2 g kg-1. While phosphorus had 35% of infields, 54% of midfield and 58% of outfield 

diagnosed as P deficient, based on critical P value of 15 mg kg-1.  

 

Figure 6.4 presents mean plots for soil test values for N, P, K between Nitisols and 

Acrisols. Significant difference in mean soil P and K (p = 0.00002) were evident in the 

region. Similar trends were observed for DRIS indices for P and K (Figure 6.4 d, f).  High 

variation was observed in both P concentration in soil and maize tissue, as displayed by 

the 95% confidence intervals.  In this region, 75% of target population farms were 

diagnosed as N deficient on Arcisols, while Nitisol had 46% and 34% with P and K 

limitations, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4: Means for soil test value on the left panel, and DRIS  
indices on the right panel for NPK across categories of soil types 
of the study area. The error bars represent the confidence interval 
at 0.05 significant level. 
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Four categories of landscape position of maize field indicated no significant differences 

across soil test values (Figure 6.5 a, c, e). High soil N and P values were observed for 

maize fields located on foot slope and ridges. The higher soil N and K values on the 

foot slopes can be explained by the possibility low leaching in the smallholder 

landscape (Waswa et al., 2013). Contrary to higher slopes, where soil materials from 

farms located on mid slope and up slope are transported downwards, leading to 

accumulation of nutrients (Waswa et al., 2013). Prevalence of N limitations was found 

in 64% of target population of maize fields located in upslope, and 35% of fields on 

ridges of the study site.  

 

 Maize fields located in up slope fields recorded lowest N index value (-28.2), while 

ridges recorded DRIS N mean of -5.3 an indication of N nutrient imbalance (Nziguheba 

et al., 2009; Vanlauwe et al., 2014). The DRIS P Index was significantly higher for 

fields on mid slopes relative to those located on foot slopes and ridges (Figure 6.5 b, d, 

f). The DRIS N indices were within ranges reported by Nziguheba et al. (2009) in 

western Kenya.   

 

Evaluation of means of soil test values and DRIS indices across categories of SFGs, ST 

and LPs the target population of smallholder maize farms, provided evidence of 

variation within the study area (Figure 6.3. 6.4 and 6.5). This variability indicated the 

importance of adjusting these values, based on covariates such as soil fertility gradient, 

soil types and landscape positioning of farms. Reliance on one traditionally established 

critical soil test values, for a wider region without taking into account the variation, can 

lead to inaccurate diagnosis of limiting nutrients (Olfs et al., 2005).  
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Figure 6.5: Means for grain yield and DRIS indices for NPK across categories of topographical position of the location of smallholder maize field  
target population. The error bars represent the confidence interval at 0.05 significant level. 
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6.3.4 Key covariate information - biophysical &management factors 
Five principal components (PCs) explained 92% of total variability in soil test 

values, DRIS indices, GY and BV (Table 6.3). The first component (PC1) 

explained 33% of total variation, while only 20% was accounted for with the 

second PC2 (Figure 6.6). PC1 had the highest eigen value (2.64) and was the 

most important explanatory factor for this study area. PC1 and PC2 sufficiently 

accounted for 53% of total variation in soil test values, DRIS indices and crop 

response, which indicated high communality (de Winter & Dodou, 2016). 

Importance of communality between these variables suggested the practical 

significance in capturing spatial variability of nutrients for the study area. 

Table 6.3: Eigen values and explain variance by five principal components 
from PCA  

of soil test values, DRIS indices, grain yield and plant biomass. PC = 
principal component.   

 

Major contributors to variation on PC1 were soil N, BV and GY with strong (p < 

0.005) negative correlation, and r values of -0.88, -0.77 and -0.75, respectively 

(Figure 6.6). High factor loading of soil N, GY and BV on PC1 meant they 

accounted for 33% of total explained variation by PC1. Soil N was highly 

correlated with GY and BV, an indication that variability in soil N affected GY 

and BV. DRIS P index had the least contribution, and poorly correlated with PC1 

(r = - 0.00008). High loadings were observed on PC2 with soil P and plant N 

identified as its main contributors to total explained variance of 20%. Previous 

studies have shown nitrogen is a major contributor on PC1 (Muhati et al., 2011; 

Mavunganidze et al., 2016; Junqueira et al., 2016). The PCA findings 

demonstrated importance of utility soil test values and DRIS indices captured, 

variability in crop responses (GY and BV), since 53% was explained. Thus, a 

soil-based fertilizer recommendation tool, that would include DRIS indices as 

Principal  

component 

Eigen values Explained variance (%) 

PC1 2.64 33.03 

PC2 1.67 20.86 

PC3 1.35 16.92 

PC4 0.91 11.43 

PC5 0.82 10.23 
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indicator of nutrient imbalances may be appropriate for nutrient management 

strategies for this smallholder agroecosystem (Olfs et al., 2005). 

 

Figure 6.6: Characterization of soil test values, DRIS indices, maize yield and  
plant biomass through principal components analysis showing observed 
variance by principal component 1 and 2 projected in biplot of 203 
sampled plots. The contrib is the contribution intensity, with blue color 
representing lowest contribution and red/orange the major contributors.   

 

Figure 6.7 presents multiple factor analysis (MFA) results for categories of 

factors projected in two-dimensional space (DC1 and DC2). The results 

revealed 34% of total explained variance was influenced by soil fertility 

gradient, soil types and landscape positioning (categories of these factors). The 

DC1 accounted for 17.5 % of total explained variation and was closely related 

to outfields, infields and mid slopes (Figure 6.7 a). DC2 was closely related to 

nitisols and midfield, and it explained 16.6% of total variance.  Key categorical 

factors that contributed to the variation on both DC1 and DC2 were outfields 

nitisols and up slope (Figure 6.7 b). Acrisols and bottom slopes were the least 

contributors to DC1 and DC2.   
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Figure 6.7: Characterization of (a) categories of soil fertility gradient, soil type 
and landscape positioning factors on two dimensional components (DCs) 
for multiple factor analysis for 203 plots, b) Relative contribution of 
factors on their influence of total explained variance for DC1 and DC for 
the study area, the red dotted line is the threshold line.    

 
 

MANOVA results indicated soil fertility gradient and soil type significantly 

influenced (p < 0.005) BV, soil nitrogen and potassium (Table 6.4). Only soil 

fertility gradient significantly influenced GY (p = 0.004) contrary observations 

made by van Apeldoorn et al. (2014), who found no relationships between maize 

yields and soil fertility gradient on smallholder farms of Zimbabwe. Landscape 

positioning had a significant influence on soil nitrogen (p = 0.019). There were 

no significant interactions between soil fertility gradient, soil type and landscape 

positioning on all soil test values and DRIS indices for this region (Table 6.4). 

However, significant interactions (p < 0.005) were observed between soil type 

and landscape positioning on soil phosphorus and potassium levels. The results 

have shown a significant influence of soil fertility gradient on GY. This study 

depicted interaction between soil type and landscape position a key biophysical 

factor (p < 0.005), implying as suitable covariate information for stratification 

of the population based-farm survey. 

 

 

 

 

a) b)
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Table 6.4: F probability values (P value) of biophysical and management factors obtained from multivariate analysis of variance of soil test values, 
DRIS indices and crop response for the study area based on Wald-type test. 
 

Factor Degrees of 
freedom BV GY Soil N lnP lnK N-dris P-dris K-dris 

SFG 
2 1.345e-10 *** 0.004247 ** 2.789e-15 *** 0.921 2.450e-05 *** 0.583 0.728 0.645 

landscape 
4 0.197 0.831 0.019 * 0.059. 0.084. 0.898 0.097. 0.411 

Soil 
1 1.385e-08 *** 0.373 0.001 ** 0.271 8.449e-06 *** 0.996 0.015 * 0.287 

SFG: landscape 
6 0.229 0.701 0.197 0.489 0.900 0.665 0.449 0.362 

SFG: Soil 
2 0.515 0.071 0.575 0.417 0.426 0.266 0.212 0.641 

landscape: Soil 
4 0.672 0.762 0.237 0.005 ** 3.428e-07 *** 0.129 0.791 0.327 

SFG: landscape: Soil 
2 0.302 0.755 0.985 0.075 0.789 0.059  0.086 0.380 

Significance codes: *** = 0.001 ** = 0.01 * = 0.05. Bold numbers significant influence (p < 0.005) 
SFG = soil fertility gradient, landscape = landscape positioning, Soil = soil types, log = natural log, e = exponential
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6.4 Discussion. 

6.4.1 NPK nutrient concentration and prevalence in limitation  

The mean DRIS indices for N, P, K (-37.8, -22.91, and -36.55) were negative, implying 

an occurrence of nutrient imbalance in the study area (Table 1). Evaluation of means of 

soil test values and DRIS indices, provided evidence of prevalence in N, P, K nutrient 

imbalance.  Soil test values of 0.10 g kg-1 for N 17.29 g kg-1 for P and 4.6 cmol kg-2 for 

K, which were below the established critical indicate prevalence in nutrient limitation 

in the study area (Table 6.1, 6.2). The findings corroborate past studies which report N, 

P, K deficiency in western Kenya, that lead negative nutrient balances, reflecting crop 

nutrient mining by farmers (Smaling et al., 1993; Tully et al., 2015). Studies report N 

deficits in excess of -100 kg ha-1 yr-1 for maize systems (Montanarella et al., 2015).  In 

this region, soil fertility recommendations are provided on the basis of broad soil type 

and agroecological zones (Bekunda et al., 2010; Smaling et al., 1992). The conventional 

practice involve a single critical soil value, established from crop response trials, and is 

used to diagnose soil nutrient limitations (Olfs et al., 2005; Bekunda et al., 2010; 

Römheld, 2011). Reliance on one traditionally established critical soil test values, for a 

wider region without taking into account the variation, can lead to inaccurate diagnosis 

of limiting nutrients (Olfs et al., 2005). Farmers in this region do not apply balanced 

doses of fertilizer, which resulted to nutrient imbalance as shown with the DRIS values 

(Vanlauwe et al., 2014),  which can be rectified through balance application of NPK 

fertilizer at optimum rates (Kihara et al., 2016). The inability to produce higher maize 

yield is a critical problem that is related to nutrient deficiencies (Table 6.1). Farmer 

require information on nutrient diagnostics as well as imbalance to improve their 

decision on fertilizer investments. Thus, to mitigate the problem of N, P, K nutrient 

deficiency, planners need to consider these issues when developing an integrated 

nutrient management plan for refining blanket fertilizer recommendations for this 

region.  
 

Variation in means of GY across SFGs categories was attributed  to application of more 

manure as nutrient source to infields compared to outfield, which led to accumulation 

of soil organic matter (Vanlauwe et al., 2016). These findings corroborate those 

observed by Tittonell et al. (2013), where maize yields varied as a function of distance 
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with respect to location of homestead.  There was evidence in variation of soil test 

values across STs, SFGs and LPs (Table 6.2, Figure 6.3, 6.4, 6.5), which implied that a 

single soil test value may not be appropriate to guide decisions on nutrient management 

for the region. Therefore, it is necessary to adjusting soil test values, based on covariates 

such as SFGs, STs and LPs.  

 

6.4.2 Effect of soil type, soil fertility gradient and landscape position of crop 

response  

Soil types and landscape positioning were key factors influencing variation in soil test 

values, DRIS norms and crop responses. This is attributed to the explained variance 

(53%) from PCA, which displayed significant association of nitisol and farms located 

on up slope landscape position in the study area (Table 6.3, Figure 6.6).  

 

Nitisols and Acrisols were the major reference soil groups for the study area. Nitisols 

had higher GY (3.76 Mg ha-1) compared to Arcisols (3.44 Mgha-1) (Table 6.1), attribute 

to differences in soil characteristic between these two RSGs. Soil characteristic such as 

nutrient availability and moisture content influence maize yields in smallholder 

agroecosystems (Ngome et al., 2013; Vanlauwe et al., 2012). Acrisols (80% of 

observations) were sandy with low water holding capacity, compared to Nitisol, that are 

clayey (Brady & Weil, 2007; Elias, 2017). Hence higher mean of GY observed on 

Nitisols were attributed to the good inherent characteristics compare to those of 

Arcisols, which were shallow with potential of P fixation, due to high aluminium 

content as reported elsewhere (Sanchez et al., 2003). The observed mean grain yields 

were in the ranges reported by Ngome et al. (2013) on Nitisols and Acrisols in western 

Kenya, but below potential yield of 15 Mg ha-1 (Kihara et al., 2016).  

 

Results show importance of location of maize field relative to position on landscape on 

GY, which decreased on fields located in on upper slope position compared to those in 

lower slopes Higher yields on farms located on foot slope (37% of target population) 

can be explained by nutrient accumulation, that receive alluvial deposits from farms 

located in up slope and foot slope positions (Afyuni et al., 2010). Variation in available 

water across the landscape positions also affected maize yield (Afyuni et al., 2010). 

This can be attributed to the critical role played by landscape on soil formation (Buol et 
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al., 2011), nutrient availability and water storage, that influenced levels of GY in the 

study area (Arnhold et al., 2015). Studies have also shown soil P and K significantly 

decreased with elevation in smallholder farms of mount Elgon in western Kenya (De 

Bauw et al., 2016). The result show soil fertility gradient cause variation in soil test 

values and crop responses, which agree to early findings where soil fertility gradient 

was reported as the main factor that influence nutrient on smallholder farms (Zingore 

et al., 2007b; Diarisso et al., 2016). Contrary the findings of this study, where soil type 

and land scape position were had higher influence compared to SFGs based on factor 

loading on PCA (figure 6.7). the variation. Thus, while refining fertilizer 

recommendation for this region STs, SFGs and LPs may be considered. 

 

6.4.3 Covariate information – biophysical and management factors. 

There were no significant interactions between soil fertility gradient, soil type and 

landscape positioning on all soil test values and DRIS indices for this region (Table 

6.4). However, significant interactions (p < 0.005) were observed between soil type and 

landscape positioning on soil phosphorus and potassium levels. The results have shown 

a significant influence of soil fertility gradient on GY. This study depicted interaction 

between soil type and landscape position a key biophysical factor (p < 0.005), implying 

as suitable covariate information for stratification of the population based-farm survey. 

The finding is echoed by those reported by Hermann & Táth, (2011) in smallholder 

fields in Hungary. The significant influence of soil type and landscape positioning can 

be explained by the effect on soil nutrient levels, that vary depending on their 

minerology and soil characteristics across different types (Raynaud & Leadley, 2004; 

Shehu et al., 2018). This also explains  why the current blanket fertilizer 

recommendations take into account variation in soil types and agroecological zones 

(Mowo & Mlingano, 1993; FURP, 1994; Wopereis et al., 2006) even though they are 

spatially coarse.  

The objective of this study was to identify key factors that can be used for stratification 

of a target population in farm surveys for nutrient diagnostics. Stratification reduces 

sampling variance and improve overall accuracy of predicted nutrient values (Wheeler 

et al., 2012). Selection of sampling locations across the population distribution stratified 

along major ST, and LP, can potentially improve nutrient diagnostics of the study area 

(Sun et al., 2012). Furthermore, through DSM a separate opportunity to incorporate 
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covariate information (e.g. aspect and vegetation) exists (Odeh et al., 1994; Samuel-

Rosa et al., 2015). This can be complemented with current approach through rigorous 

sampling and field monitoring of nutrients in smallholder agroecosystems. 

Stratification run the risk of failing to capture actual spatial variation in nutrients, 

especially for smallholder agroecosystems, when used insolation, thereby decreasing 

the efficiency of sampling (Wheeler et al., 2012). This may be especially the true where 

prior observations within the area of interest are not available and relationships are not 

evaluated (Odeh et al., 1994). Therefore, combination of population-based survey and 

DSM provides appropriate synergy. The study has demonstrated the potential of 

population-based survey to provide prior observation and evaluation of soil and plant 

relationships for the study area.  

 

The utility of DSM using geostatistical techniques, may allow interpolation of spatial 

patterns of soil test values and DRIS indices (Hengl et al., 2007; Kempen et al., 2012). 

DSM provide an advantage of estimating soil test values in areas not sampled; hence it 

can be used to complement this current approach (Vašát et al., 2010; Viscarra Rossel et 

al., 2016). The parting shot here is the reinforcement of the need for accurate spatially 

explicit nutrient diagnostics in smallholder agroecosystems, which can be implemented 

in through a stratified population-based farm survey complemented with DSM across 

smallholder landscapes. The study has contributed new knowledge by providing an 

understanding of site-specific nutrient diagnostic information that is needed for targeted 

fertilizer recommendations for this region. This approach can be utilized for analysis of 

systems anywhere in the world and is necessary because findings from one scale (e.g., 

landscape and farm) can sometimes be counterintuitive when applied at a different 

scale.  

 

6.5 Conclusion  

The study has demonstrated potential of population-based farm survey approach for 

nutrient diagnostics for smallholder agroecosystems. The main conclusion are as 

follow;  

(i) The DRIS diagnostic norms are essential for evaluating the nutrient status of the 

soil and plant under smallholder farming system for the study areas.  
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(ii) These diagnostic norms varied and were influenced by soil fertility gradient, soil 

type, topographical position and slope characteristics of the study area. 

(iii) Soil types were the important factors; therefore, stratification of the population 

approach should be done using soil stratum for this study area.  

(iv) To improve on the accuracy of the population-based farm survey approach, 

incorporation of covariate information (soil type and landscape position) is 

necessary.  

(v) Inclusion of environmental covariates information improves estimation of soil 

nutrient deficiencies at smallholder landscape scales. As such, there is potential 

of using large-scale DSM approaches combine with population-based farm 

survey may improve prediction nutrient limitations in smallholder farming 

systems.  

(vi) These results show geostatistical analysis using kriging is an effective prediction 

tool for exploring the spatial variability of soil nutrients, and is recommend for 

future soil sampling campaigns for smallholder farming systems in Kenya. 

(vii) Smallholder farmers need simple empirical soil and DRIS maps that can 

used to guide them, showing regions of nutrient imbalance and N,P,K 

deficiencies. 
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Chapter Seven 
General Conclusions and Recommendations  

This thesis developed series of approaches for diagnosis and mapping soil nutrient 

deficiencies for smallholder farming landscapes, capturing the local variability on 

smallholder farms. The results presented show that; (i.) Phosphorus, silt and potassium were 

the key factors that influence variation and in fertilizer response and nutrient use efficiency 

in Chapter three, (ii.) A spatial resolution of 250 m was proposed as threshold for developing 

digital soil maps for nutrient management in smallholder landscape in Chapter four. Such 

maps captured the local spatial variability occurring at farm level. Thus, maps at this spatial 

resolution would be effective decision support tools and would be instrumental for strategies 

aimed at refining fertilizer recommendations. (iv.) A population-based farm survey approach 

was used to develop soil test values for NPK, rather than the conventional crop response 

trials.  Soil test values of 0.01 g kg-1, 12 mg kg-1, 4.5 cmolc kg-1 for NPK, respectively, were 

established and used to diagnose their limitations across the landscape in Chapter five. (iv.) 

Covariate information was analysed to identity information that could be used stratifying 

target population of maize fields in the novel approach – population-based farm survey, in 

Chapter 5. Soil types and Landscape position were the important covariate information that 

was to be incorporated the farm survey in order to improve its accuracy. These findings 

suggest a soil-based fertilizer recommendation, with potential of using farm survey data and 

digital soil mapping in strategies aimed at refining fertilizer recommendations in smallholder 

farming systems. The main finding and implication of the thesis are summarized as follows. 

7. 1 Variability in fertilizer response and nutrient use efficiency. 

Using meta-analysis approach on secondary data, this chapter three established high 

variability in fertilizer response and nutrient use efficiency for the study area. High 

variability in fertilizer response and nutrient use efficiency implied that the current blanket 

fertilizer recommendations may not be efficient. Fertilizer response was proposed as a 

proxy indicator for evaluating soil responsiveness to mineral fertilizer application. A 

criterion for identifying the occurrence of non-responsive soils for smallholder 

agroecosystem was also established.  
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The findings of chapter three have major implications for strategies of refining fertilizer 

recommendation. The main finding indicates only a small part of variation was explain by 

soil properties; phosphorus, silt and potassium. These soil factors influence fertilizer 

response and nutrient use efficiencies, and may be targeted as entry points in strategies 

aimed at refining fertilizer recommendations. Thus, the use of digital nutrient maps would 

be a good basis as a starting point for directing strategies aimed at refining fertilizer 

recommendations, for obtaining spatial explicit fertilizer recommendations. A soil-based 

fertilizer recommendation system may be appropriate for this study area. 

7.2 Analysis of scale for provision of fertilizer recommendations 

The objective of chapter four was to determine a relevant scale for provision of fertilizer 

recommendation or optimum sampling distance for developing digital nutrient maps. 

Provision of appropriate fertilizer recommendations for smallholder farmers requires that 

they are provided at a scale that is suitable, reflecting the local variability on smallholder 

farm. The main finding was the occurrence of short distance variability across smallholder 

agroecosystems of the study area. The short distance variability implies that nutrient 

diagnostics should be based on the local farm conditions. Using a farm survey approach, 

data on soil properties and crop responses, a scale of < 273 m for developing digital soil 

nutrient maps was established. The distance of 250 was considered optimum for soil testing 

for the study area.  

 

Based on the LDSF sampling strategy, this study established fertilizer recommendation 

should be provided at field scale. Hence, soil testing should be conducted on every field in 

the study area. However, conducting soil testing for every field may be very expensive due 

to the high cost in wet chemical laboratory analysis (Bekunda et al., 2010). Soil testing 

requires that the analytical methods used are efficiency and cost-effective. Infrared spectral 

methods constitute rapid diagnostic screening tools that can be used to diagnose fields with 

limiting nutrients (Shepherd and Walsh, 2007) and are relatively cheap for large scale 

assessment. The utility of infrared spectroscopy may provide adequate soil spatial 

information on nutrients and would help provide fertilizer recommendations at field scale.  
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The sequence of main steps used to establish the scale for providing fertilizer 

recommendations in the population-based farm survey approach have been outlined. This 

chapter studied the use of the farm survey data to establish a scale that can be used to 

develop digital nutrient maps.   

7.3 Population-based survey approach for diagnosis of nutrient limitations  

In Chapters five and six, a novel population-based farm survey approach was established. 

This approach may be used to guide nutrient diagnostic for targeted soil fertility 

replenishment programs at fine spatial resolution. Critical soil nutrient values for defining 

cases of constraints were developed. Digital soil mapping combined with infrared 

spectroscopy technique were used to map and characterize spatial variation of soil nutrient 

constraints across the study area. Rather than conventional agronomic trial used for nutrient 

diagnostics in smallholder agroecosystems, the developed population-based farm survey 

approach may be an alternative since it captures the spatial variation of the study area.   

 

Deficiency of NPK contents in the study area as displayed by the DRIS indices could be 

improved with the use of site-specified fertilizer to reduce the wide variation within the 

contents. However, the application of the fertilizer material should be done based on the 

nutrient contents already in the soil as depicted by the spatial distribution maps and other 

resources available to smallholder farmers of the study area.  

 

The spatial distribution maps generated through this study showed locations of low, 

moderate and high nutrient contents. It suggests that management zones could be easily 

targeted without going through any tedious and laborious means to identify areas of low or 

adequate NPK nutrient contents for decision making purposes.  The NPK nutrient 

concentrations displayed a moderate strength of spatial dependencies within each of them. 

The spatial dependencies of the nutrient contents in the study area confirmed that the 

variation in the spread of their distributions were influenced soil fertility gradient, soil type, 

topographical and slope characteristics. Determining within-field nutrient levels allows the 

variable-rate application of fertilizers. When considerable variability is present, immediate 

economic returns are possible, provided the variability is on a portion of the yield/nutrient 

curve which allows increased yield or quality if application rates are varied. 
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Biophysical and management factors such organic matter management, topography and 

slope of the study area had weak association with the distribution pattern of diagnostic 

norms (DRIS indices). Soil type was the only factor that has a significant relationship with 

of diagnostic norms and crop responses.  Thus, to improve on the accuracy of the 

population-based farm survey, stratification should be done across soil types for the study 

area, in order to reduce soil sampling variance. 

 

The present study has demonstrated the use of population-based farm survey in 

combination with spectroscopic technique and digital soil mapping as potential tools that 

for providing spatially explicit information on nutrient limitations. Combining these 

techniques provides new opportunities for characterizing variation in nutrient limitations 

across smallholder agroecosystems. Thus, enhances the potential of developing a soil-

based fertilizer use decision support for smallholder agroecosystems 

7.4 Recommendations for priorities in future research  

The broad objective of this study was to develop a diagnostic system for deploying rapid 

spectral analysis techniques of soil and plant samples within a spatial sampling framework 

to guide refining fertilizer recommendations for smallholder agroecosystems.  

 

Despite the valuable insights provided on nutrient diagnostics, there remain a number of 

unanswered questions that require further research. Further research is needed to refine the 

population-based farm survey nutrient assessment, to enhance its wider applicability. For 

instance, research could explore the possibility of estimating the actual fertilizer rates for 

each of the geographical niche within the agroecosystem. Research findings may provide 

options of nutrient management that might result in better yields than those of obtained by 

farmers in the study area. But the economic benefit, considering fertilizer investment as a 

proposed intervention, may not be beneficial to improve farmers’ livelihood if not 

significant. This is because not all yield increment is profitable, and challenges of the 

occurrence of non-responsive soils need to addressed. Therefore, there need to prioritise 

research on how smallholder farmers will economically benefit from site-specific 

recommendations. Therefore, refining fertilizer recommendations should further 
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investigate variability in their profitable that the smallholder farmer may obtain from the 

current practice, before refining fertilizer recommendations. This will be important in 

managing risks of fertilizer investments by the smallholder farmers. 
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Appendix 1: List of studies used develop the database for meta-analysis. 
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Appendix 2: Papers used in analysis, showing the country where the experiment was  
conducted and nitrogen application rates 

Reference Country N application rate 
(kg ha-1) 
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Kimani et al. (2007) Kenya 20,40, 60, 80, 100 

Kathuku et al. (2011) Kenya 20, 80 

Gitari and Friesen (2001), Smaling et al. (1992) Kenya 25, 50 

Szali (1990) Kenya 25,50, 100, 150 

Mwangi (2010) Kenya 30, 40, 50, 60 

Achieng et al (2010) Kenya 30 

Okalebo et al (2004), Onyango et al. (Unpublished) Kenya 30, 60 

Mathuva et al. (1998) Kenya 40 

Onyango et al. (2001), Shisanya et al. (2009), Obaga et al 
.(Unpublished), Mucheru (2002), Achieng et al. (2010), 
Macharia et al. (2005), Kimetu et al. (2004), Anyanzwa et 
al. (2010), Kihara et al. (2011), Githinji et al. (2011), 
Kathuku et al (2011) 

Kenya 60 

Macharia et al. (Unpublished) Kenya 60, 120 

Mureithi et al. (1994) Kenya 75, 100 

Nekesa et al. (2011) Kenya 75 

Sigunga et al. (2002), Titonell et al. (2000), Ngome et al. 
(2011) 

Kenya 100 

Ayuke et al. (2003) Kenya 120 

Achieng et al. (2010) Kenya 144 

   

Saidou (2003) Benin 60 

Nguu (1987) Cameroon 30, 60, 120 

Abunyewa et al. (2007), Adjei-Nsaih (2007) Ghana 60 

Fening et al. (2009) Ghana 90 

Sakala et al. (2004) Malawi 35, 69 

Reference Country N application rate 
(kg ha-1) 

Casky et al. (2002) Nigeria 40 
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Amusan et al. (2011) Nigeria 50, 100 

Ayoola & Adeniyan (2006), Olasantan et al. (1997) Nigeria 60 

Kang et al. (1980) Nigeria 80 

Vanlauwe et al. (2001) Nigeria 90 

Nabuhungu et al. (2007) Rwanda 50, 175 

Baijuka et al. (2006) Tanzania 50 

Usiri et al. (1991) Tanzania 60 

Jensen et al. (2003) Tanzania 140 

Fofana et al. (2004) Togo 20, 40, 50, 100 

Kaizzi et al. (2004) Uganda 40,80 

Kaizzi et al. (2012) Uganda 50, 80 

Kayuki & Wortman (2001), Esilaba et al .(2005), Uganda 80 

Jeranyama et al. (2000) Zimbabwe 60, 120 

Nezomba et al. (2010) Zimbabwe 90 

Nyamangara and Nyagumbo (2010) Zimbabwe 100 

Mtambanengwe et al. (2006), Mtambanengwe & 
Mapfumo (2006), Kurwakumire et al. (2014) 

Zimbabwe 120 
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