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Abstract

Estimation of population parameters has been an area of interest to many
statisticians. Auxiliary variable that is highly correlated with the response
variable can be used to improve efficiency of constructed estimators. Effi-
ciency of constructed estimators is improved when more auxiliary variables
are used in the survey problems. However, asymptotic properties of con-
structed estimators are usually interfered with by non-response in the study
variable. Various corrective measures, such as imputation, partial deletion,
resampling, weight adjustment and sub-sampling, have been suggested in
literature to take care of the non-response. In this study, we have adopted
the sub-sampling approach to construct a ratio estimator for finite popula-
tion total in stratified random sampling under non-response. This has been
done under both univariate and multivariate ratio estimations. In univari-
ate case, we have considered separate and combined ratio estimations and
regression forms of the constructed estimator. From the Percent Relative Ef-
ficiency (PRE) computations, we have observed that stratification improves
performance of the constructed estimator by 10.26% compared to simple
random sampling without replacement. Also, the sub-sampling method
adopted improved efficiency of the constructed estimator by 0.44% when
partial deletion is used. From multivariate unbiased ratio estimation, a two
dimensional auxiliary random vector was constructed and it was observed
that performance of the constructed multivariate ratio estimators depends on
the choice of multivariate weights. This study has shown how an unbiased
ratio estimator for finite population total is constructed in stratified random
sampling. The study has also shown how the problem of non-response in
sample surveys can be corrected using sub-sampling method.
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Terminologies and Definitions

Auxiliary Variable: It is the additional information available on every pop-
ulation unit apart from the information (variable) of interest. Auxiliary in-
formation is not only used to improve sampling plan, but also to enhance
estimation of the variables of interest.

Non-Response: In surveys, non-response occurs when there is a failure to
make observation on or obtain data for some population units.

Non-Response Bias: Is a bias that occurs in surveys when observations
cannot be made on some population units due to some factors that make
them differ significantly from units whose observations can be made.

Optimality Condition: An estimator θ̂∗ is said to satisfy optimality condi-
tions in estimating an unknown population parameter θ (say), if it is a best
linear unbiased estimator (BLUE) among a class of unbiased estimators θ̂
of θ.

Population: Set of individuals, items or objects that share or have at least
one observable characteristics in common that can be studied.

Population Periodicity: It is the frequency of any observed pattern in the
population especially after identifying and ordering population units. The
pattern can be based on some auxiliary variable(s) or attribute possessed by
population units.

Proportional Allocation: Is allocation of sample sizes in a stratified pop-
ulation such that in each stratum, the sampling fraction n/N remains con-
stant.

Response Variable: It is the variable under study or the variable of interest
in surveys.

Statistical Sample: Is a representative portion or subset of a population
and is used for statistical analysis.
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Unit: The element of analysis.
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Acronyms

COD: Coefficient of determination

GDP: Gross Domestic Product

MVUE: Minimum variance unbiased estimator

PRE: Percent relative efficiency

SRSWR: Simple random sampling with replacement

SRSWOR: Simple random sampling without replacement
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1. INTRODUCTION

1.1 Introduction

This chapter presents background of the study, statement of the problem
and specific objectives of the study. The chapter also discussed significance
of the study and main assumptions in the study.

1.2 Background of the Study

Sampling involves selection of a representative subset of individuals or units
from a population. A statistical sample is therefore a data set collected from
a population using some defined procedure. Elements of a statistical sample
are referred to as sample units or sample points or generally, observations.
Sample observations are used to estimate and make inferences about the
population characteristics. Sampling is, therefore, the process of choosing
sample units from a population (Murthy, 1967). Some advantages of survey
samples over complete enumeration include reduced cost and time of con-
ducting a survey and improved accuracy among others (Dorofeev & Grant,
2006).

Even though sample surveys, under certain conditions, can be preferred to
complete enumeration, its effectiveness, however, depends on how sample
units are selected, how observation of sampled units is made and how in-
ferences about population parameters is made using sample observations.
In particular, the questions have been on how observations should be made,
the number of observations to be used, how to analyze the obtained data and
how to interpret and make inferences using values from the analysis (Singh
& Mangat, 1996). Solutions to these inquiries have led to coming up with
different techniques and methods in survey sampling. Sample survey the-
ory is, therefore, concerned with development of sampling procedures that
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yield a sample which best represents the entire population (Sampath, 2001).

Sampling strategies can be developed using three main approaches; model-
based, model-assisted and design-based approaches (Pfefferman & Rao,
2009). Model based methods, in estimation of population parameters, as-
sume that there is an underlying probability model that generate survey
units. However, if the assumed model is incorrect, estimators of population
parameters will certainly be incorrect. In model-assisted estimation, non-
sampled units are assumed to be unknown and therefore, the known sam-
pled units of the population are used to estimate the unknown non-sampled
units. This can be done using a suitable model or by a non-parametric ap-
proach. Use of regression models is an example of model-assisted estima-
tion of population parameters. Design-based estimations, on the other hand,
involve use of a probability mechanism to select a sample. This estimation
procedure assumes a known sampling design and that the sample is large.

A sample can be selected using either subjective (non-probability) methods
or probability sampling methods (Dorofeev & Grant, 2006). In subjective
method, specific population units that bear specific traits, according to the
researcher, are sampled. Examples of subjective sampling include conve-
nience or accidental sampling, quota sampling and snow ball sampling. In
convenience or accidental sampling, sample units are selected as they be-
come available to the researcher. For instance, asking questions to radio
listeners is a case of accidental or convenience sampling. In quota sam-
pling, selection of sample units is done to fit some pre-identified quotas
such as religion, academic levels or socio-economic class among others.
For snowball sampling, referral networks is used since the researcher does
not know specific population units possessing the characteristic under study.

Probability sampling methods involve selection procedures where each pop-
ulation unit has some assigned probability of inclusion in the sample. These
sampling methods include simple random sampling (SRS), stratified ran-
dom sampling, cluster sampling, systematic sampling and double and mul-
tistage sampling techniques. For SRS, all population units have equal and
independent chance of being selected and included in the sample. In sys-
tematic sampling, some pre-designed intrinsic order is used to select sample
units. In this case, all population units are identified and ordered either al-
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phabetically or numerically and from among the first kth units, a unit is
selected at random. Suppose the uth is selected, then the units included in
the sample are u, u + k, u + 2k, ..., u + (n − 1)k, that is every kth after the
first selected unit and any other selected unit. This constant u is called ran-
dom start and n is the required sample size. Stratified random sampling, on
the other hand, involves sub-dividing heterogeneous population into finite
sub-populations known as strata such that there is a low intra-stratum vari-
ations but a high inter-stratum variations. A simple random sample is then
obtained from each stratum and its observations are then used in estimation.

For cluster sampling, population units present themselves in finite groups
of elements known as clusters such that instead of selecting individual pop-
ulation elements, the clusters are randomly selected. In a case where only
a part of elements in a cluster are used in estimation, the resulting design is
double-stage sampling method. Repeated sub-cluster units’ selection, while
narrowing the number of sampled units, results to multi-stage cluster sam-
pling.

Each of these probability sampling methods have individual strengths and
weaknesses. However, irrespective of the sampling method adopted in a
research work, development of efficient estimators with minimum error is
still a problem in sample surveys (Oyoo, Manene, Ouma & Muhua, 2019).
To this end, studies focusing on error minimization while maximizing ef-
ficiency of constructed estimators have been conducted by different re-
searchers. As a solution to this problem, several studies have applauded the
use of population characteristic that is closely related to the study variable
to improve efficiency of constructed estimators. Such population character-
istic is called auxiliary characteristic. Use of auxiliary variable or attribute
has led to evolution of ratio estimation in sample surveys. In ratio estima-
tion, therefore, for any sampled unit, an observation can simultaneously be
made for both the study variable (or attribute) and auxiliary variable (or at-
tribute).

Ratio estimation improves efficiency of estimators of population parame-
ters compared to simple mean per unit estimators (Cochran, 1977). The use
of auxiliary variable to improve efficiency of estimators date back to mid
1600s when John Graunt estimated the total population size of England us-
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ing some records of registered births in the preceding year (Pearson, 1897).
By 1770s, the use of auxiliary variable in estimation became widespread in
France. In 1802, Laplace successfully estimated the population of France in
a population census using ratio estimation method. Karl Pearson, however,
warned in 1897 that ratio estimator should be used with caution since their
estimates are prone to bias (Pearson, 1897).

As noted by Swain (2014), Neyman used an auxiliary variable for stratifi-
cation of a finite population. Later, Cochran (1940) used auxiliary infor-
mation in estimation procedure and proposed ratio method of estimation to
provide more efficient estimator of the population mean or total compared
to the simple mean per unit estimator under the condition that the auxiliary
variable has a strong correlation with the study variable. Auxiliary vari-
able(s), therefore, play important role of reducing mean standard error of
the estimates. Based on this observed role of auxiliary information, many
authors have suggested estimators of population parameters using auxiliary
variable(s). For instance, Kushwaha and Singh (1989) suggested a class of
almost unbiased ratio and product type estimators for estimating the popu-
lation mean using jack-knife technique initiated by Quenouille (1956). Af-
terward Banarasi et al. (1993) and Singh and Singh (1998) proposed the
estimators of population mean using auxiliary information in systematic
sampling.

Performance of any constructed estimator is significantly being influenced
by whether there is non-response or not. Non-response results to missing
value for a particular sampled unit and consequently, it distorts properties
of estimators of finite population parameters. Various methods that can
be used to address the problem of non-response in surveys include impu-
tation, partial deletion, resampling, weight adjustment and sub-sampling
among others (Daroga and Chaudhary, 2002). This study focuses on sub-
sampling method suggested by Hansen and Hurwitz (1946). This method
involves obtaining a random sample from a finite population and parti-
tioning the sample into responding and non-responding groups. From the
non-responding group, a sub-sample is made and an assumption that there
will be total response in this sub-sample. This method improves efficiency
of constructed estimators compared to other methods of addressing non-
response.
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1.3 Statement of Problem

Estimation of finite population parameters in sample surveys has been an
area of concern in the recent past. Estimation of vectors of finite population
parameters in small area estimation with or without auxiliary information
has been considered by several authors when there is no measurement error.
In a case where there are few observations on the response variable, sam-
ple survey estimators of finite population parameters will have large stan-
dard error. Based on this limitation, it is necessary to use information from
similar neighboring or related variables for improved estimation. One way
through which information from related variables can be utilized is through
ratio estimation.

Using auxiliary variable, various ratio-type estimators have been constructed.
Most of these estimators have, however, been constructed using the usual
(biased) ratio. Despite this progress, non-response still remains to be a
challenge in survey sampling. Non-respondents tend to have different atti-
tudes towards survey questions, a situation that leads to non-response bias,
which, consequently, influences inferences made about population param-
eters. This study is, therefore, motivated by this effect of non-response in
survey sampling and has consequently considered constructing a ratio esti-
mator for finite population total under non-response.

Apart from the problem of non-response, asymptotic properties of con-
structed estimators are affected by the type of sampling technique involved
in a survey. Sampling technique adopted in a survey is dictated by the na-
ture of survey population. Homogeneity of population units is one aspect
of survey population that usually dictates sampling technique to be adopted
while selecting sample units. Homogeneity of population units is not al-
ways guaranteed in surveys. Heterogeneity in a study population leads to
construction of estimators with high standard errors. Use of stratified ran-
dom sampling technique has, thus, been motivated by the fact that use of
other sampling techniques in heterogeneous population yields estimators
with high standard errors. That is, stratification enables construction of esti-
mators with high precision. For this reason, this study involves construction
of a ratio estimator for finite population total in stratified random sampling
under non-response. Ratio estimation assumes a perfect linear relationship
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between the response variable and auxiliary variable(s), which is not always
the case. For this reason, this study considers regression form of the con-
structed ratio estimator to address non-perfect relationship.

Nature of constructed ratio estimators also depends on the dimensionality
of study variables, especially when more than one auxiliary variable is in-
volved. In cases where simultaneous observations and analysis of more than
one study variables is made, the data set changes from uni-dimensional to
multi-dimensional. This study considers multivariate estimation since in
survey sampling, the response variable can be a function of more than one
auxiliary variable, leading to complex data sets. In this study, therefore, we
construct an unbiased ratio estimator for finite population total in stratified
random sampling under non-response. We further consider the multivariate
and regression forms of the constructed estimator.

1.4 Objectives of the Study

General Objective
To construct an unbiased ratio estimator for finite population total in strati-
fied random sampling under non-response.

Specific Objectives

1. To construct an unbiased ratio estimator in stratified random sampling
under non-response

2. To derive the regression form of the constructed unbiased ratio esti-
mator

3. To derive the multivariate form of the constructed unbiased ratio esti-
mator

4. To use simulated data to compare performance of the constructed un-
biased ratio estimators
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1.5 Significance of the Study

This study is significant in both scientific and societal development. In
scientific development, the study is key in literature development since it
has explained how an unbiased ratio estimator for finite population total in
stratified random sampling is constructed under non-response. The study
has also shown that sub-sampling method suggested by Hansen and Hur-
witz (1946) to correct non-response produces efficient estimators compared
to partial deletion, which is the commonly used corrective method. The
study has also shown how the ratio estimator can be constructed when the
response variable is a linear function of more than one auxiliary variable.
The study has also confirmed a known knowledge that efficiency of ratio
estimators is improved if the correlation between the response variable and
auxiliary variable(s) is close to unity. Moreover, this study has demon-
strated how to improve precision of ratio estimators for population parame-
ters under non-response by stratifying the study population.

In societal development, surveys involving estimation of population totals
or averages of various population characteristics is common in real life.
However, such surveys are often accompanied by incomplete data, high de-
faulting rates or low response rates, which affects accuracy of observations
made and bias estimates constructed. By having accurate information about
a population and making correct inferences, appropriate measures are put in
place to address a given problem within the survey population in question.
This is only possible if a suitable mathematical model or estimator that is
not only unbiased and efficient but also addresses the problem non-response
is used in surveys.

1.6 Areas of Application

This study can effectively be used in socio-economic surveys where the
focus is household ratios such as per household ratio of expenditure on
various items, per capita income or expenditure or ratios of unemployed
individuals. Similar application can also be done on epidemiological and
demographic studies. By estimating population sizes of a country relative
to its GDP, procedures discussed in this research work can help the govern-
ment of Kenya in ensuring equitable distribution of available resources in
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the entire country.

Similarly, in industrial surveys, this study can provide vital insights in stud-
ies involving input-output ratios. In agricultural sector, estimation and fore-
casting of agricultural produce is an area where this research work can ex-
tensively be applied. For banking and insurance sectors, estimation and
forecasting of uptake of a given policy or service based on ratios of some
characteristics of targeted consumers can easily be done by considering
findings in this study. Other areas where findings of this study can effec-
tively be applied include, among others, estimation of inflow and outflow
of tourists in the tourism sector and estimation of hotel occupancy levels
at various times of the year in the hotel industry. By correct adoption of
the findings of this study in the above-stated sectors, this research work be-
comes integral in helping the government of Kenya to attain its vision 2030.

Also, this study has greatly improved the literature work on ratio estima-
tion. By considering separate and combined ratio estimation methods under
incomplete data, this study has significantly contributed to unbiased ratio
estimation in stratified random sampling. Moreover, significant inputs in
literature development have also been seen in the construction of multivari-
ate and regression forms of the unbiased ratio estimator. The improvement
is due to the fact that the constructed unbiased ratio-type estimators perform
better than estimators in literature.

1.7 Assumptions in the Study

In this study, we have made the following assumptions:

i) That the population size is large and correspondingly, a large sample
size is randomly obtained

ii) That there is a strong correlation between the study variable and aux-
iliary variable

iii) That the auxiliary variable is independent of non-response
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2. LITERATURE REVIEW

2.1 Introduction

This chapter reviews literature on the use of ratio estimation technique in
stratified random sampling method and the concept of non-response in sam-
ple surveys.

2.2 Ratio Estimation Method

Statistical estimations aim at obtaining estimators for population parameters
with high precision. This can be done by properly using any available aux-
iliary information through ratio method of estimation. In ratio estimation,
some known information about the auxiliary variable is used to improve
efficiency of constructed ratio-type estimators. To do this, ratio estimation
entails adjusting the sample estimate of the study variable using the ratio
of population mean (or total) of the auxiliary variable and the correspond-
ing sample mean per unit estimate. For simplicity, Y and X shall be used
to denote the response variable and auxiliary variable respectively. Ratio
estimation is based on the assumption of existence of a linear relationship
between X and Y (Murthy, 1967; Cochran, 1977; Daroga & Chaudhary,
2002). Utilization of auxiliary variable has led to construction of three main
estimators, which are the traditional (usual) ratio estimator, product estima-
tor and regression estimator. In this study, the focus is on the usual ratio
estimator and regression estimator.

The usual ratio estimator has been shown to produce biased results irre-
spective of the nature of the linear relationship between X and Y (Cochran,
1977; Kadilar & Cingi, 2004; Singh & Smarandache, 2013). Despite this
weakness, ratio estimator is, however, preferred to mean per unit estimator
since it has a small variance compared to the counterpart (Cochran, 1977;
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Daroga & Chaudhary, 2002). The issue of sample size notwithstanding, the
main problem of ratio estimation has been how to reduce bias of a ratio
estimator while upholding its good property of small variance. No conclu-
sive method has been agreed upon on how to eliminate the bias or when to
consider the bias negligible. Consequently, only bias approximations and
limits for the bias at different orders have been suggested in literature (Za-
man & Yilmaz, 2017). This problem has called for investigating ways of
reducing bias of a ratio estimator and thus, constructing an unbiased ratio
estimator. This can be done by either using the common sampling schemes
or by modifying the common sampling schemes so that the usual (biased)
ratio estimator becomes unbiased.

To maintain the property of minimum variance while estimating bias of ra-
tio estimator, Cochran (1977) examined the conditions under which a ratio
estimator is MVUE. For the first condition, he investigated the nature of the
regression line of Y on X and he observed that if the line is straight and
passes through the origin such that variance of Y is proportional to X about
this line, then the ratio estimator becomes almost unbiased. Also, using
Gauss-Markov Theorem, Cochran (1977) observed that for large sample,
the distribution of the usual ratio estimator tends to normal distribution and
that since bias of ratio estimator is of order 1/n, then under these conditions,
the ratio estimator becomes unbiased.

In the second condition, Cochran (1977) examined the coefficient of vari-
ation between X and Y and observed that for a large sample and if the
correlation coefficient between X and Y is larger than half coefficient of
variation of X divided by coefficient of variation of Y , variance of the ratio
estimator becomes smaller than that of the unbiased mean per unit estima-
tor.

Since the discovery of traditional ratio estimator, studies have been con-
ducted with each suggesting how to best eliminate bias of the estimator. For
instance, Koop (1951) used binomial series expansion of ratio estimator us-
ing various sample sizes in an effort to reduce bias of the ratio estimator to
a desirable degree. Quennouille (1956), on the other hand, considered tn,
which is a function of sample observations, as a ratio estimator for an un-
known population parameter. Using different sets of sample values through
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repeated sampling using SRSWR and assuming that the estimator is con-
sistent, Quennouille (1956) used Taylor series expansion and observed that
the estimator becomes unbiased to order 1/n2.

While extending the work of Quennouille (1956), Durbin (1959) examined
whether existence of linear relationship between X and Y has an effect on
variance of the ratio estimator, which was confirmed to be true. By assum-
ing that X has a gamma distribution, Durbin (1959) observed that existence
of a linear relationship between X and Y significantly reduces MSE of the
ratio estimator. However, as observed by Cochran (1977), Quennouille-
based ratio estimators are more appropriate in large samples, which is not
always the case. Other studies that have also suggested solutions to the
problem of bias of ratio estimator during the early stages of ratio estimation
included, among others, Hartley and Ross (1954), Jones (1956), Mickey
(1958), Murthey and Nanjama (1960), Williams (1961) and Beale (1962).

Apart from these early work on ratio estimation that still did not fully elim-
inate bias of ratio estimator, Hartley and Ross (1954) were the first authors
to consider common sampling techniques to construct unbiased ratio esti-
mators. In their approach, Hartley and Ross (1954) evaluated bias of the
ratio estimator and connected it to covariance of Y/X and X. Using this
approach, an unbiased ratio estimator was constructed and its large sample
variance was obtained. This unbiased ratio estimator was later studied by
Goodman and Hartley (1958) for a sample of any size. Robson (1957) ap-
plied multivariate polykays on Hartley and Ross (1954) unbiased estimator
to obtain exact variance of the estimator. Multivariate polykays, also known
as multivariate generalized k-statistics and minimum variance unbiased es-
timators of joint cumulant products. Such estimators are often expressed in
terms of power sum symmetric polynomial in the random vector of a sam-
ple Robson (1957). Some other studies that have considered common sam-
pling schemes while constructing unbiased ratio estimators include Mickey
(1958) and Williams (1961).

Using the second approach of modifying the sampling scheme, Lahiri (1951)
showed that if sampling is done using probability proportional to sum of
observations of auxiliary variable, the ratio estimator becomes unbiased.
Lahiri (1951) further outlined the sampling procedure that yields this result.
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The procedure outlined by Lahiri (1951) was initially studied and adopted
by Nanjama, Murthey and Sethi (1960), Midzuno (1962) and Raj (1965).

Use of auxiliary information in survey sampling is not only limited to one
auxiliary variable, but also more than one auxiliary variable. Several stud-
ies have considered more than one auxiliary variables or attributes in their
estimation procedures. Some of these studies include Kadilar and Koyuncu
(2009), Rao (2015), Kadilar and Cingi (2004), Kiregyera (1980) and Kire-
gyera (1984). With the use of more than one auxiliary variables, ratio esti-
mation procedures have been classified into either univariate or multivariate.
In univariate ratio estimation, the response variable is considered as a linear
function of a one-component auxiliary random vector (Olkin, 1958). These
mentioned studies that have considered more than one auxiliary variable
were univariate in nature. In multivariate case, the auxiliary information
is a p-dimensional random vector such that we have X1, X2, ..., Xp. In this
case, the parameter to be estimated is assumed to be a function of these p
auxiliary variables (Olkin, 1958).

Use of multi-auxiliary variables to construct a multivariate ratio estimator
for population parameters date back to 1958 when Olkin (1958) suggested a
multivariate ratio estimator for population total under simple random sam-
pling scheme. Since then, improvements on Olkin’s estimator have been
done to reduce it’s bias and MSE. Also, other sampling schemes have been
considered. John (1969), for instance, suggested an alternative multivariate
ratio estimator for population mean using an arbitrary design. John (1969)
compared variance and computational procedures of his estimator to that of
Olkin (1958) and observed that, upto a first order approximation, variances
of the two estimators are the same. However, in terms of computational
procedures, John (1969) noted that his estimator is easier to compute and
use,

While extending the work of Olkin (1958), Ngesa et al. (2012) considered
a stratified random sampling scheme with varying weights in each stratum
and defined a multivariate ratio estimator for finite population total using
two auxiliary variables. Using a simulated data, Ngesa et al. (2012) ob-
served that the proposed estimator had a smaller bias compared to Olkin’s
(1958).
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Instead of using the usual arithmetic mean, Malik and Singh (2012), on
the other hand, used harmonic and geometric means in stratified random
sampling with k strata to construct some improved multivariate ratio-type
estimators. Using a real data, Malik and Singh (2012) observed that though
the improved estimators had the same MSE’s and harmonic mean as that
of Olkin’s (1958), the estimators were, however, less biased. Despite this
improvement in the properties of multivariate ratio-type estimators, these
improved estimators were constructed under the assumption of a positive
correlation between the auxiliary characters and the study variable.

Kumar and Chhaparwal (2016) used a linear combination of two auxiliary
variables to construct a generalized multivariate ratio and regression type
estimator for population mean. Motivated by the multivariate chain ratio-
type estimator expressed by Lu (2013), Kumar and Chhaparwal (2016) pro-
posed an improved class of multivariate ratio-type estimator. Using empir-
ical data, the constructed general class of multivariate ratio-type estimators
performed better than previous multivariate estimators.

Singh et al. (2016) extended the work of Malik and Singh (2012) by con-
sidering known population proportion of two auxiliary attributes. Singh et
al. (2016) made a similar observation that while the MSEs of Olkin (1958)
estimator and estimators based on harmonic and geometric means are the
same, the multivariate ratio-type estimator based on harmonic mean had the
least bias.

These studies on multivariate ratio-type estimation of population mean and
total suffer a common weakness that the constructed estimators are not only
biased, but also fail to address the problem of non-response. Therefore,
there is need to construct an unbiased multivariate ratio-type estimator and
under non-response.

Apart from bias elimination, several studies have also suggested ways of
minimizing sampling errors. For instance, Deming (1944) and Mahalanobis
(1944) studied various types of errors and how to minimize them in sample
surveys. From separate works, mathematical models for describing such
errors were obtained and how the models could be used to minimize errors
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were suggested. Studies that initially focused on identifying and describ-
ing sampling errors included, among others, Sukhatme and Seth (1952) and
Hansen et al. (1953). Hartley and Ross (1954) not only studied sources of
survey errors, but also proposed ratio estimation as a method of minimiz-
ing the errors. Other studies that have adopted ratio estimation methods to
improve efficiency of constructed estimators include, among others, Okafor
and Lee (2000), Singh and Kumar (2008), Shabbir and Gupta (2010), Shab-
bir and Saghir (2012), Singh and Sisodia (2014), Lone and Tailor (2015)
and Zaman and Yilmaz (2017).

While looking at some particular cases, Rao (1991) evaluated and improved
the precision of the Hartley-Ross (1954) unbiased ratio estimator and found
that the proposed estimator is consistent and efficient relative to previous
estimators such as those developed by Neyman (1934) and Cochran (1940).
Hedayat and Sinha (1991) presented a convenient sampling strategy based
on utilization of auxiliary information. Sarndal et al (1992) investigated the
effect of the strength of correlation between Y and X in ratio estimation.
The study revealed that precision of ratio estimation is improved when the
linear regression of Y on X passes through the origin. Substantial surveys
have been done on the use of auxiliary information to improve performance
of estimators, including Upadhyaya and Singh (1999), Singh and Tailor
(2003), Kadilar and Cingi (2006), Khoshnevisan et al. (2007) and Singh and
Kumar (2011). Bahl and Tuteja (1991) also suggested an exponential form
of the ratio estimator. Most of these previous studies on ratio estimation
methods have, however, assumed homogeneous populations. Focus has not
been on heterogeneous populations and this calls for the construction of
ratio estimators under stratified sampling technique.
Stratified random sampling scheme is a two-step procedure. In the first step,
a population consisting N units is divided into non-overlapping k homoge-
neous sub-populations each consisting ofNc units (c = 1, 2, ...k). These sub-
populations are known as strata, while the population characteristic used in
stratifying this heterogeneous population is called (stratifying factor). The
second step involves obtaining a simple random sample without replace-
ment from each stratum. Stratified random sampling has been preferred
to simple random sampling since it yields estimates with high precision
than in simple random sampling (Murthy, 1967; Cochran, 1977; Daroga &
Chaudhary, 2002; Sampath & Ammani, 2010; Chaudhary & Kumar, 2015).
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This advantage is due to the fact that stratification reduces heterogeneity in
a population resulting to minimum within-stratum variations.

Despite this advantage of stratified random sampling, its high efficiency re-
quires proper choice of stratum sample sizes. Proportional allocation and
optimum allocation are two ways of sample size allocation that have exten-
sively been discussed in literature (Cochran, 1977; Daroga & Chaudhary,
2002; Sampath & Ammani, 2010; Chaudhary & Kumar, 2015). In pro-
portional allocation, sampling is done such that the sampling fraction nc/Nc
(for c = 1, 2, ..., k) remains constant for all the strata. In optimum allocation,
a stratum sample size nc is chosen to minimize variance of an estimator for
a fixed sample size or for a fixed sampling cost. Having obtained a suitable
sample size, the overall finite population total is then estimated by obtaining
the sum of all stratum population total estimates.

Ratio estimations under stratified random sampling scheme has resulted to
the concepts of separate and combined ratio estimators for population total
(Cochran, 1977; Daroga & Chaudhary, 2002). In separate ratio estima-
tion method, individual ratio estimates of population total in each stratum
is computed and cumulative totals of these stratum totals is then obtained.
In combined ratio estimation method, the simple random sample estimates
of Y and X using the stratum sample data is first obtained and the mean
estimates are then used to obtain a combined ration estimator for finite pop-
ulation total. In separate ratio estimation, the assumption is that there is
variation in the stratum ratio estimates, while combined ratio estimation as-
sumes that there is no significant variation in the stratum ratios.

Previous studies on combined ratio estimation have been done using two
approaches. In the first approach, different ratio-type estimators have been
combined to obtain a 'combined'ratio estimator, while the other approach
has involved using a single combined ratio estimate for all the strata to ob-
tain the overall estimator of a parameter in question (Shabbir & Saghir,
2012; Chaudhary & Kumar, 2015). Based on this distinction, former ap-
proach is not restricted to stratified random sampling scheme while the lat-
ter approach only applies in stratified random sampling.

In the recent past, much attention has been on the first approach where
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ratio-type estimators have been coined by combining and improving ex-
isting ratio-type estimators. For instance, Singh and Vishwakarma (2005)
used the usual combined ratio estimator of population mean suggested by
Hansen, Hurwitz & Gurney, 1946) and the combined product estimator of
population mean to construct a combined ratio-cum-product estimator of
population mean. Also, from the usual combined ratio estimator, Diana
(1993) constructed a general family of combined ratio estimators. Kayuncu
and Kadilar (2010) extended the work of Diana (1993) by suggesting an
improved family of combined ratio estimators of population mean.

Bahl and Tuteja (1991), on the other hand, used the usual exponential ratio
estimator of population mean to construct an exponential ratio-type estima-
tor, which was further studied and an exponential product-type estimator
suggested. Singh et al. (2008) later considered the two estimators by Bahl
and Tuteja (1991) and combined them to form a combined ratio-type es-
timator for population mean. Other studies that have been constructed by
combining various exponential ratio estimator include Srivastava (1967),
Kadilar and Cingi (2005), Kumar, Chaudhary and Kadilar (2009), Sharma
et al. (2013)and Singh and Sharma (2014) among others.

Now, using the second definition of a combined ratio estimator, Wu (1985)
considered variance estimations of the usual combined ratio estimator and
the combined regression estimator and suggested a class of estimators of
variance of the combined ratio estimator of population mean. In addition
to Wu’s study (1985), Saxena, Nigam and Shukla (1995) focused on esti-
mating variance of the combined ratio estimator for population mean using
balanced half samples. Though Saxena et al. (1995) studied properties of
the suggested variance estimator, the study did not, however, suggest an un-
biased combined ratio estimator.

In stratified random sampling, it is assumed that the knowledge of both
strata sizes and possibility of drawing a sample from each stratum is avail-
able. However, this is not always the case since certain stratifying factors
remain unknown until when sample units are selected. In such cases, a sim-
ple random sample is selected and then the sampled units are classified and
treated as the usual stratified samples. This technique is referred to as post
stratification (Cochran, 1977).
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Other studies on the use of auxiliary variable include Housila, Singh and
Kim (2010), who considered a case of two auxiliary variables in a two
phase sampling procedure and observed that their proposed estimator was
more efficient than the previously suggested estimators. Chaudhary, Malik,
Singh and Singh (2013) used auxiliary information under non-response to
construct a general family of estimators for estimating population mean in
systematic sampling. Using mathematical problems in literature, Chaud-
hary et al. (2013) proposed estimator in the study had a better precision
than previous estimators.

Surbramani and Kumarapandiyan (2013), in contrast, studied ratio estima-
tion by considering a case when median of the auxiliary variable is known.
In this study, it was found that the proposed estimator performed better than
the previous ratio-type estimators. Sharma and Singh (2014) used two aux-
iliary variables under second order approximation to improve previous ratio
estimators in simple random sampling without replacement.

Use of auxiliary information in surveys has also led to construction of re-
gression estimators. Regression estimation is suitable in cases where the
regression line of Y on X does not pass through the origin (Cochran, 1977).
The main problem in regression estimation is therefore how to obtain opti-
mal value(s) of regression coefficient such that regression estimator is not
only unbiased, but also has a uniform minimum variance. In this method,
values of the regression coefficients can be pre-assigned or optimal esti-
mates can be obtained from sample data. In the latter case, the optimal
value of the coefficient is computed from the covariance of X and Y di-
vided by variance of X, an expression obtained using ordinary least square
method.

Some studies that have considered regression estimation method include
Montanari (1998), who studied properties of the generalized regression es-
timator of population mean. Montanari (1968) considered a multivariate re-
gression estimator of population mean using q−dimensional auxiliary vari-
able vector X, having xi = (x1i, x2i, ..., xqi) as the i − th population unit
for i = 1, 2, ..., N . In the suggested regression estimator, Montanari (1998)
applied both Horvitz-Thompson estimation method and Yates-Grundy for-
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mula to estimate variance of the regression coefficient vector using two ap-
proaches. In the first method, Montanari (1998) used both model-assisted
approach and a linear regression super-population model and observed that
the estimator has a minimum variance among a class of asymptotically
design-based regression estimators.

In another approach, Montanari (1998) assumed that there is no linear com-
bination of the entries X̂ with a zero sampling variance (that is, V ar(X̂)

is non-singular) and obtained a minimum variance vector estimator com-
pared to previous regression estimators. Montanari (1998), however, rec-
ommended that there is need for further studies to analyze the stability of
this optimal estimator.

Hamad, Haider and Hanif (2013) developed a regression ratio-type estima-
tor with two auxiliary variable x and z for a two-phase sampling scheme
and compared it with regression estimators by Robson (1957), Sukhatme
(1962), Raj (1965), Mohanty (1967), Srivastava (1971), Mukerjee (1987)
and Sammiuddin and Hanif (2007) and observed that the suggested estima-
tor performs better than these previous estimators.

Most previous studies on regression estimation have considered estimation
of finite population mean using complete data under SRSWOR. Though the
problem of non-response has been of little focus in the recent past, Verma,
Singh and Singh (2013) have, however, suggested a general class of regres-
sion estimator under non-response in the response variable using systematic
sampling scheme. Using Hansen and Hurwitz (1946) approach to take care
of the non-response, Verma et al. (2013) observed that the percent relative
efficiency of their estimator decreases with increase in the response rate.

Olayiwola, Popoola and Bisira (2016) modified the usual regression estima-
tor to include more than one auxiliary variables and suggested an estimator
for double sampling in stratified random sampling. Olayiwola et al. (2013)
observed that even though their estimator had high bias since it overesti-
mates finite population mean, the estimator, however, had a less variance
compared to existing estimators. Other studies that have regression estima-
tion include Mukerjee, Rao and Vijayan (1987), Sahoo, Sahoo and Mohanty
(1993) and Hanif, Shahbaz and Ahmad (2010) among others.
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Despite these comprehensive studies on ratio estimation, focus on construc-
tion of unbiased ratio estimators is, however, still wanting. Also, there is
need to explore how the constructed unbiased-type estimators can be used
in cases of more than one auxiliary variable using either univariate or mul-
tivariate estimation procedures. Moreover, there is need to construct an
unbiased ratio estimator of population mean or total and use it in regression
estimation. For each of these loopholes, both separate and combined ratio
estimations should be explored. Nevertheless, these gaps are filled in this
study.

2.3 Non-Response in Sample Surveys

In sample surveys, non-response occurs when there is a failure to measure or
to make observation on some units in the selected sample resulting to miss-
ing value(s) for that sample unit (Cochran, 1977; Daroga and Chaudhary,
2002; Ouma et al., 2010; Oyoo and Ouma, 2014). Usually, non-respondents
have systematically different perception towards a survey than the respond-
ing lot. This scenario results to non-response bias. Response rates are thus
used to measure the likelihood of non-response bias. Non-response can ei-
ther be item-wise or unit-wise. In item non-response, a respondent refuses
to answer one or more survey questions, while in unit non-response, a sam-
pled respondent completely refuses to respond.

Item non-response could be due to sensitivity of survey question(a), acci-
dental skip of question(s), failing to record response by the researcher and
loss of data during data processing. Unit non-response could be due to fail-
ure or inability to locate a sampled unit, complete refusal to participate,
loss of data and inability to participate, for example due to language bar-
rier. Non-response can also be classified as ignorable and non-ignorable
non-response. In ignorable non-response, if the cause of non-response is
known, then adjusting the sampling strategy is used to take care of non-
response bias. For non-ignorable non-response, even if the cause is known,
adjusting the sampling strategy cannot eliminate non-response bias.

In sample surveys, non-response should not be overlooked since it reduces
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representativeness of a sample, which further influences inferences made
about a population from which the sample is obtained (Daroga and Chaud-
hary, 2002). As explained by Cochran (1977), non-response divides a study
population into two 'strata', where the first 'stratum'represents population
units for which observations would be made if the units are sampled, while
the other stratum consist of population units for which there will be non-
response.

To understand the effect of non-response on a sample estimate, let N1 and
N2 be the respective number of population units in the responding and non-
responding strata while n1 and n2 be the respective number of sample units
in the responding and non-responding strata. Further, let the respective pro-
portion of response and non-response groups be W1 = N1

N and W2 = N2

N

with the corresponding sample and population mean pairs for stratum 1 and
stratum 2 be y1, Y 1 and y2, Y 2. If a simple random sample is drawn from
the population and the sample mean is used to estimate population mean,
then only data for the sample obtained from stratum 1 will be used.

Addressing the problem of non-response involves determining whether the
probability of non-response depends on the observed and/or unobserved
data values. Using Y as the response variable and X as the auxiliary vari-
able, another Bernoulli variable T can be defined to have the distribution
function

Pr(T=t) =

{
1, if the sampled unit responds
0, otherwise

Now, using Y , X and T , following three cases of missingness mechanisms
can be defined:

Missing completely at random (MCAR): Here, the probability of non-response
is independent of the values of Y and X. That is, the observed values of Y
form a random sub-sample of the sample values of Y . Mathematically,
MCAR is expressed as

Pr(T = 0 | Y = y,X = x) = Pr(T = 0).

Missing at random (MAR): In this case, the missingness depends on X but
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not on Y so that MAR can be expressed as

Pr(T = 0 | Y = y,X = x) = Pr(T = 0 | X = x).

This implies that the observed values of Y form a random samples within
sub-classes of X.

Missing not at random (MNAR): Here, the probability of non-response de-
pends on both Y and X. MNAR is thus a case of non-ignorable non-
response.

Based on the effect of non-response on the asymptotic properties of con-
structed estimators, appropriate correction measures should be taken to re-
duce non-response in sample surveys. Some methods that have been sug-
gested in literature to take care of non-response survey sampling include
data imputation, resampling, partial deletion, weight adjustment and sub-
sampling.

Imputation refers to substitution of some value for missing data. Unit im-
putation involves data point substitution, whereas item imputation involves
substitution of a component of data point (Broemeling, 2009). Hot-deck
and cold-deck imputations are examples of repeated imputations (Broemel-
ing, 2009). The former involves imputing a missing value from a randomly
selected similar record, while the latter entails selecting donors from an-
other set of data. Imputation procedures assume that there are minimal
variations in observations of units from one population. This assumption
makes imputation methods unsuitable in surveys involving large samples
since homogeneity is not always automatic in large samples.

Daroga and Chaudhary (2002) defined resampling as conducting repeated
sampling and observed that resampling is a suitable method of correcting
non-response in large samples. Using empirical data, Raghunathan (2004)
and Broemeling (2009) considered this result by Daroga and Chaudhary
(2002) and observed that resampling offers more accurate method of cor-
recting missing values than imputation. Previously, Lunneborg (2000) had
only discussed bootstrapping and jackknifing as major techniques used in
resampling. Using ordered sampling procedures, Lunneborg (2000) found
that resampling has minimal bias and error variance compared to imputa-
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tion procedures.

Broemeling (2009) explained that bootstrapping involves selecting multi-
ple random samples with replacement and generating the distribution of
estimates, from the selected samples, of the parameter to be estimated. In
jackknifing, only subsets of available data are used (Raghunathan, 2004;
Broemeling 2009). While comparing bootstrapping and jackknifing, Broemel-
ing (2009) concludes that the latter is used in statistical inference for esti-
mating bias and standard error of a statistic. That is, jackknifing involves
systematic recomputation of the statistic estimate by leaving out one or
more observations at a time from the sample set.

Raghunathan (2004) observed that bootstrapping provides a powerful way
to estimate both variance and distribution of a point estimator, while jack-
knifing only provides variance of the point estimator. Thus, jackknife is a
specialized method for estimating variances, while bootstrap assesses vari-
ance of a point estimator by first estimating its whole distribution. Boot-
strapping is, nevertheless, preferred to jackknife because both variance and
distribution of estimates is obtained at once, unlike jackknife which only
yields variance of estimators. However, based on properties of the estima-
tor and computation procedures, jackknife does not involve comprehensive
computations and is easy to apply in empirical studies. Other individuals
who had also studied bootstrapping and jackknifing using simulated data
included Wu (1986) and Shao and Tu (1995).
Brick and Kalton (1996) defined partial deletion as a method of reducing
available data so that a data set has no missing values. Partial deletion
includes listwise deletion and pairwise deletion. Listwise deletion involves
omitting cases with missing data, while, in pairwise deletion, each element
in the inter-correlation matrix is estimated using all available data (Sarndal
& Lundstrom, 2005).
In weight adjustment, sampled units are classified into some groups based
on some auxiliary information. Then inside each group, each responding
sampled unit is assigned some weight which is the inverse of the response
rate of the corresponding category (Chang & Ferry, 2012). This assignment
implies that higher weights are assigned to classes with low response rates
and vice versa. Even though this method does not require filling in gaps in
the data, its use is however pegged on the assumption that the probability of
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non-response is the same for all units within a class.

Tsybakov (2009) investigated appropriateness of imputation, resampling,
partial deletion and weight adjustment in correcting missing values. Using
empirical results and ordered sampling procedures, Tsybakov (2009) ob-
served that weight adjustment and resampling offer a suitable method of
correcting non-response in sample surveys. For detailed illustration on the
use of weight adjustment technique in correcting non-response under vari-
ous sampling techniques see Chang and Ferry (2012) and Oyoo and Ouma
(2014).
Sub-sampling method involves drawing a subset of the already sampled
non-responding units. Sub-sampling is similar to multi-phase sampling
where in the first phase, primary set of targeted respondents is obtained and
in the second phase, secondary set from the primary non-responding units
is obtained. This procedure begins by determining a sample size required to
attain desired level of precision. In correcting non-response, sub-sampling
method is based on the assumption that the sub-sample in the second phase
will now have a complete data. Phase I sample units and the sub-sampled
phase II units are then used to estimate population total. This method was
suggested by Hansen and Hurwitz (1946).

Hansen-Hurwitz sub-sampling method has been widely used in literature
while constructing various estimates of population parameters such as stud-
ies by Walsh (1970), Reddy (1973) and Srivastava (1967), Khoshnevisan et
al. (2007), who constructed a general family of estimators for estimating
population mean using known values of some population parameters, and
Chaudhary and Kumar (2015).

Under non-response, Kumar (2012) utilized known population parameters
to construct a general family of estimators of population mean. By vary-
ing the values of the constants in the estimator suggested by Kumar (2012),
various estimators have been constructed. Saghir and Shabbir (2012), for
instance, used Hansen-Hurwitz method to correct non-response while esti-
mating finite population mean in stratified random sampling using auxiliary
attribute. Similarly, Chaudhary et al. (2013) and Singh and Malik (2014)
used this subsampling method to correct missing values while estimating
finite population mean. Previously, Rao (1986) had studied the usual ratio

23



estimator for population mean under non-response using SRSWOR. Rao
(1986) also obtained the bias and a large sample approximation to the MSE
of the constructed estimator.

2.4 Summary of Study Gaps

This chapter has reviewed key areas in this study, which includes the use of
auxiliary variable in ratio estimation, stratified random sampling and non-
response. From the reviews, it can be noted that the problem of bias re-
duction and/or elimination in ratio estimation without tampering with its
good properties still exists. Various solutions to this problem have been
suggested with no conclusive agreement on how to address the problem.
There is, therefore, need to construct an improved ratio-type estimator that
perform better than previous ratio estimators. Another gap that has been
observed is the little attention being given to multivariate ratio estimation
since most of these previous studies, even those involving more than one
auxiliary variable, have adopted univariate estimation procedures. There is
also need to explore performance of the previously suggested unbiased ratio
estimators using regression estimation approach. All these should be done
while taking care of both separate and combined ratio estimations proce-
dures and considering the problem of non-response in sample surveys.
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3. METHODOLOGY

3.1 Introduction

This chapter outlines the various methods to be used in deriving various
forms of unbiased ratio estimator for finite population total in stratified ran-
dom sampling scheme under non-response. It further outlines outlines the
method to be used in construction of improved estimator.

3.2 Notation and Definition of Symbols

Consider a stratified population with N units consisting of k strata, where

the cth stratum has Nc units (for c = 1, 2, ..., k) such that
k∑
c=1

Nc = N . From

this population, we wish to select a simple random sample of size n without
replacement. Using SRSWOR, a sample consisting of nc units is selected

from the cth stratum such that
k∑
c=1

nc = n. But under non-response, each

stratum population units is divided into two disjoint groups of responding
and non-responding units. Let subscript j = 1 denote responding group and
j = 2 denote the non-responding group. Let Ycij be the ith population unit
(i = 1, 2, ..., Ncj) in group j (j = 1, 2) in stratum c (c = 1, 2, ..., k). Using
these definitions, the following notations are used:

YT =
k∑
c=1

2∑
j=1

Ncj∑
i=1

Ycij =
k∑
c=1

2∑
j=1

YTcj =
k∑
c=1

YTc: overall population total and

Ncj is the population size in cthstratum in the jth response group so that

N =
k∑
c=1

Nc =
k∑
c=1

2∑
j=1

Ncj .

Y cj = 1
Ncj

Ncj∑
i=1

Ycij: population mean for the jth subgroup in stratum c.

25



Y c = 1
Nc

2∑
j=1

NcjY cj: population mean for cth stratum.

Y = 1
N

k∑
c=1

NcY c: overall population mean.

Similar notations are used for the auxiliary variable X.

Rc = Y c
Xc

: the usual population ratio in the cth stratum .

Rcj = Y cj
Xcj

: the usual population ratio in cth stratum in the jth group.

Rcij = Ycij
Xcij

: ith observation ratio in stratum c for jth group so that

Rcj = 1
Ncj

Ncj∑
i=1

Ycij
Xcij

.

For variances, let,

S2
yc = 1

Nc−1

Nc∑
i=1

(Yci − Y c)2: cth stratum adjusted population variances for re-

sponse variable, Y .

S2
xc = 1

Nc−1

Nc∑
i=1

(Xci − Xc)
2: cth stratum adjusted population variances for

auxiliary variable, X.

Sxycj = 1
Ncj−1

Ncj∑
i=1

(Xcij −Xcj)(Ycij − Y cj): population co-variances between

X and Y in stratum c for group j.

Srxcj = 1
Ncj−1

Ncj∑
i=1

(Rcij − Rcj)(Xcij −Xcj) population co-variances between

R and X in stratum c for group j.

For stratum sample sizes, the corresponding lower cases n, nc and ncj have
the definitions as above. However for the non-responding nc2 units, a sub-
sample of mc units is used to represent the units with incomplete data. For
the totals and means, the corresponding lower cases for the sample shall
be ytcj , ytc, yt and ycj , yc, y respectively. But under non-response, let
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ytc = ytc1 + ytc2, where ytc1 = nc1yc1 and ytc2 = nc2yc2m and yc2m is the
mean obtained when mc sub-sample units are used instead of nc2 units.

For any auxiliary variable X, similar notations and definitions shall apply,
for both population characteristics and sample statistics. The corresponding

sample ratios shall be rc =
yc
xc

, rcj =
ycj
xcj

, rcij = ycij
xcij

so that rcj = 1
ncj

ncj∑
i=1

ycij
xcij

.

The corresponding sample variances and co-variances shall be expressed
using lower cases of the population variances and co-variances above.

3.3 Ratio Estimation of Population Total in Stratified Random
Sampling

The use of auxiliary variable(s) to improve efficiency of estimators for var-
ious population parameters is not a new concept in sample surveys. This
has been based on the assumption of known values of the auxiliary variable
X. Using a known population mean for X as X, the respective traditional
ratio estimator (yR), product estimator (yP ) and regression estimator (ylr)
for population mean in SRSWOR are given as

yR =
y

x
X

yP =
x

y
X

ylr = y + µ(x−X)

where µ is a constant determined such that V ar(ylr) is minimum.

From these conventional estimators, several ratio-type estimators using var-
ious sampling schemes have been suggested. In stratified random sampling,
we can either have separate or combined ratio estimators for both univariate
and multivariate ratio estimations.

In separate ratio estimation method, we first obtain the estimates population
totals in each stratum and then add these stratum totals (Cochran, 1977). In
this case, we do not make assumption that the true ratio remains constant in
all the strata. This estimation method, therefore, requires the knowledge of
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the stratum means of the auxiliary variable Xc.

By definition, the separate ratio estimator for finite population total ŶTs in
stratified random sampling having k strata is

ŶTs =

k∑
c=1

NcrcXc =

k∑
c=1

yc
xc
XTc, c = 1, 2, ..., k (3.1)

To a first order approximation, Cochran (1977) gives bias and variance of
ŶTs as

Bias(ŶTs) =

k∑
c=1

Y c

(
Nc − nc
nc

)
{C2

xc − ρcCxcCyc} (3.2)

and Var(ŶTs) is defined as

Var(ŶTs) =

k∑
c=1

Nc(Nc − nc)
nc

(
S2
yc +R2

cS
2
xc − 2RcρcSxcSyc

)
(3.3)

where Cxc is the coefficient of variation of X in stratum c and Cyc is the
coefficient of variation of Y in stratum c

If the stratification is such that there are many strata (large k) and nc is small,
then Bias(ŶTs) will be significant relative to its standard error σ(ŶTs). This
is true since in a particular stratum c, say, the relation

| Bias(YTsc) |
σ(ŶTsc)

≤ Cxc (3.4)

exists (Cochran, 1977).

In combined ratio estimation, the combined ratio is obtained using the ratio
of the population totals. using SRSWOR, suppose Ŷst and X̂st denotes the
respective population estimators for YT and XT from a stratified sample as
follows, then

Ŷst =

k∑
c=1

Ncyc and X̂st =

k∑
c=1

Ncxc
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so that the combined ratio estimate of finite population total is given by

ŶT =
Ŷst

X̂st

XT =
yst
xst

XT (3.5)

where yst = Ŷst
N , xst = X̂st

N are the respective estimates of population means
of Y and X from the stratified sample.

Bias of ŶT to a first order approximation is given by

Bias(ŶT ) = YT

k∑
c=1

n2
c

N2
c

(Nc − nc)
ncNc

(
S2
xc

X
2
− ρc

Sxc

X

Syc

Y

)
(3.6)

which simplifies to

Bias(ŶT ) = NR

[
k∑
c=1

n2
c

N2
c

(Nc − nc)
ncNc

Sxc

(
Sxc

X
− ρc

Syc

Y

)]
( Cochran, 1977)

and V ar(ŶT ) is given by

V ar(ŶT ) =

k∑
c=1

N2
c (Nc − nc)
ncNc

(
S2
yc +R2S2

xc − 2RρcSxcSyc
)

(3.7)

(see Cochran, 1977)
Non-response in sample surveys occurs when there is a failure to measure
or to make observation on some units in the selected sample and it divides
study population into two disjoint 'strata'with the respective population and
sample sizes N1, N2 and n1, n2. Using SRSWOR, Hansen and Hurwitz
(1946) suggested that from the n2 non-respondents, a sub-sample of size
m = n2

h , h ≥ 1 is drawn and it is assumed that the sub-sample has a complete
data so that the sample mean pair for the auxiliary variable and the study
variable can be denoted as (x2m, y2m). Using a single variable, Hansen and
Hurwitz (1946) suggested an estimator for Y as

Ŷ HH = w1y1 + w2y2m (3.8)

Where w1 = n1

n , w2 = n2

n and n1 + n2 = n
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The estimator given in (3.8) is unbiased for y = w1y1 + w2y2, which is
further unbiased for

y∗ =
1

n

n∑
i=1

yi (3.9)

Hansen and Hurwitz (1946) further expressed variance of Ŷ HH as

V (Ŷ HH) =
N − n
nN

S2 +W2
h− 1

n
S2

2 (3.10)

where S2 = 1
N−1

N∑
i=1

(
yi − Y

)2, S2
2 = 1

N2−1

N2∑
i=1

(
yi − Y 2

)2, W2 = N2

N and

h = n2

m .

By defining s2
1 = 1

n1−1

n1∑
i=1

(yi − y1)2 and s2
2m = 1

m−1

m∑
i=1

(yi − y2m)2 as the

respective variances of the n1 responding units and them sub-sampled units,
Hansen and Hurwitz (1946) expressed the unbiased estimator of Ŷ HH as

v(Ŷ HH) =
N − n
nN

[(n1 − 1)s2
1 + (n2 − h)s2

2m

n− 1
+

n1(y1 − Ŷ HH)2

n2(y2m − Ŷ HH)2

]
+
w2(N − 1)(h− 1)s2

2m

N(n− 1)

Since Ŷ HH is unbiased for Y , then based on the Hansen-Hurwitz Method,
the unbiased estimator for the finite population total is

Ŷ HH = N(w1y1 + w2y2m) (3.11)

3.4 Regression Estimation

The regression estimator for population mean in SRSWOR is given by

ylr = y + µ(x−X) (3.12)

where µ is a constant and is determined such that V (ylr) is minimum (Cochran,
1977).
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From equation (3.12), it can be shown that

V (ylr) = V (y) + µ2V (x) + 2µCov(x, y) (3.13)

so that using ordinary least square method, the estimator for µ is obtained
as

µ̂ = −Cov(x, y)

V (x)
= −

Sxy
S2
x

(3.14)

To estimate population total in SRSWOR, we multiply ylr by N and its
variance by N2.

3.5 Multivariate Unbiased Ratio Estimation

A multivariate ratio estimator is constructed using a study variable Y and a
p-dimensional auxiliary variable X such that X = (X1i, X2i, . . . , Xpi)

′ where
X 6= 0.

In this case, let the subscript l, (l = 1, 2, . . . , p) denote the component of the
random auxiliary vector X so that rl = y

xl
becomes an unbiased estimator

for Rl = Y
Xl
, l = 1, 2, . . . , p.

Under SRSWOR, Olkin (1956) proposed a general multivariate form of the
ratio estimator as

ŶMR = W1
y

x1
X1 +W2

y

x2
X2 + · · ·+Wp

y

xp
Xp (3.15)

where Wl’s (for l = 1, 2, ..., p) are the weights that maximize the precision

of ŶMR subject to the linear condition that
p∑
l=1

Wl = 1

Now, equation (3.15) can also be expressed as

ŶMR = W1r1X1 +W2r2X2 + · · ·+WprpXp =

p∑
l=1

WlrlXl =

p∑
l=1

WlŶl (3.16)

where Ŷl is the lth component population total ratio estimate based on the
lth auxiliary variable component.
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Clearly, from equations (3.15) and (3.16), the multivariate estimator sug-
gested by Olkin (1956) is biased since it is based on a biased ratio estimator.

In stratified random sampling, Ngesa et al. (2012) defined a multivariate
ratio estimator for finite population total as

ŶMRE =

k∑
c=1

ŶMRc (3.17)

such that for the cth stratum, we have

ŶMRc = Wc1ŶRc1 +Wc2ŶRc2 + · · ·+WcpŶRcp (3.18)

3.6 Weaknesses of Reviewed Estimators

Ratio estimators are known to perform better than estimators constructed
under SRSWOR, especially when the regression line of Y on X passes
through the origin. This property is further enhanced when stratified ran-
dom sampling technique is used. However, ratio-type estimators constructed
using the usual ratio often suffer a major weakness of biasness, a gap which
this study addresses by constructing an unbiased ratio estimator for finite
population total. Apart from construction of unbiased ratio estimator, ratio
estimators constructed in this study differ greatly from the usual ratio esti-
mator since the problem of non-response is addressed. In cases where the
regression line of Y on X does not pass through the origin, ratio estimators
constructed in this study are not only unbiased and address the problem of
non-response, but also consider cases of lack of perfect linear relationship
between X and Y .

Though the usual regression estimator is unbiased and is more efficient than
the mean per unit estimator, it does not however give a solution to the prob-
lem of non-response, which is a gap addressed in this study. Even though
Olkin (1956) and Ngesa et al. (2012) succeeded in constructing estima-
tors when the auxiliary variable presents itself as a p-dimensional random
vector, their estimators are still biased and do not address the problem of
no-response. The ratio estimators in this study , therefore, deviates from
the usual ratio estimators in literature by addressing the problems of bias,
non-response and when Y is not perfectly correlated with X.
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3.7 Construction of Improved Estimator

We have seen that the usual ratio estimator is biased in estimating finite
population total. Also, under non-response, using the Hansen-Hurwitz sub-
sampling method does not produce an unbiased ratio estimator in stratified
random sampling. Our task is therefore to construct an unbiased ratio esti-
mator for finite population total in stratified random sampling and use the
Hansen-Hurwitz sub-sampling method to take care of the non-response. To
eliminate the bias in the traditional ratio estimator, a mean ratio estimator

r1 =
1

n

n∑
i=1

yi
xi

=
1

n

n∑
i=1

ri

is considered and connect it to its bias by examining the population covari-
ance of y

x and x, where

Cov
(
y

x
, x
)

= E
(
y

x
.x
)
− E

(
y

x

)
E (x) .

Hartley and Ross (1954) considered this approach and obtained bias of r1

as
Bias(r1) = − 1

X
Cov(

y

x
, x).

Now, using the expressions for r1 and Bias(r1), Hartley and Ross (1954)
obtained an unbiased ratio estimator as

ru = r1 +
n(N − 1)

(n− 1)NX
(y − r1x) (3.19)

with a corresponding variance for large samples given as

S2
ru =

1

n

(
V (y) +R2V (x)− 2RC(x, y)

)
(3.20)

where V (y) and V (x) are respective population variances of Y and X while
C(x, y) is the population covariance of Y and X.

Now, from equation (3.19), the unbiased ratio estimator for population total
in SRSWOR can be expressed as

ŶT = r1XT +
n(N − 1)

(n− 1)
(y − r1x) . (3.21)
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In this study, therefore, we shall construct an unbiased ratio estimator for
finite population total by considering, in each stratum, the unbiased ratio
form given in equation (3.19) and adopt the sub-sampling procedure sug-
gested by Hansen and Hurwitz (1946). We shall repeat this procedure for
all the strata by taking into consideration both separate and combined ratio
estimation methods. The unbiased estimators obtained from this procedure
shall be used to construct regression and multivariate unbiased ratio estima-
tors.

3.8 Simulation Study

We use R to generate hypothetical data for simulation study. We consider
a hypothetical population of 300 units. To obtain the stratum sizes, we ran-
domly generate three values from uniform distribution such that the sum is
300. For one-auxiliary random data set, we generate normally distributed
random vectors for the auxiliary variable X and for the response variable Y
and fit a linear model of Y on X in each stratum using the linear regression
model in R.

We use Krejcie-Morgan-Sample-Size-Table to get overall sample size as
170 and allocate the stratum sample sizes using proportional allocation
technique. We assume a non-response rate of 20% in each stratum and par-
tition the stratum population units accordingly.

We use random number generator to identify sample units in each response
group in all the three strata. That is, sampling is done index-wise such that
if ith index is selected then the sample element will be the ith pair (Xi, Yi).
The paired sample data frames are then exported to excel for further com-
putations.

For multi-auxiliary data simulations, we use the linear model

Yi =

p∑
l=1

βlXil + ei (3.22)

where β′js are randomly generated from a uniform distribution while Yi and
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Xil are randomly generated from normal distribution with different param-
eters.

For the regression data simulation, we use the general linear regression
model with an error term e, which follows a normal distribution. That is,
we use the model

y = ωx+ e (3.23)

where ω (constant term), x and y values are obtained in R as follows

ω = rnorm(n,mean, sd)

x = runif(n,min.,max.)

y = rnorm(n,mean, sd)× x+ rnorm(n,mean, sd)

and in each stratum, different set of values for the intercept term is used.
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4. UNBIASED RATIO ESTIMATOR

4.1 Introduction

This chapter deals with construction of unbiased separate and combined ra-
tio estimators for finite population total in stratified random sampling under
non-response. Comparison of asymptotic properties with available ratio es-
timators is also done.

4.2 Unbiased Separate Ratio-Type Estimator

Under complete data, Hartley and Ross (1954), Cochran (1977) and Daroga
and Chaudhary (2002) defined an unbiased ratio estimator for population
mean in SRSWOR as

Ŷ = rX +
n(N − 1)

N(n− 1)
(y − rx) (4.1)

where r = 1
n

n∑
i=1

yi
xi

, y = 1
n

n∑
i=1

yi and x = 1
n

n∑
i=1

xi

In this section, we extend the estimator given in equation (4.1) to capture
the case of stratification and non-response.

Under non-response, a ratio-type estimator for finite population total in
stratified random sampling is suggested as

ŶT =

k∑
c=1

2∑
j=1

[
rcjXTcj +

Ncj − 1

ncj − 1
(ytcj − rcjxtcj)

]
(4.2)

where the notations and expressions have their usual meanings. The esti-
mator given in equation (4.2) shall be denoted as ŶD.

36



Next, we show the derivation of ŶD.

For derivation of ŶD, consider a particular stratum c, say, partitioned into
two disjoint groups. The first group consisting of responding and the other
consisting of non-responding population units. By letting subscript j = 1

to denote responding group and j = 2 to denote the non-responding group
and i to denote identity of a unit such that Ycij is the ith population unit
(i = 1, 2, ...Ncj) in response group j (j = 1, 2) in stratum c (c = 1, 2, ..., k)
then for the two disjoint groups, the corresponding population totals are
YTc1 and YTc2 so that

YTcj =

Ncj∑
i=1

Ycij , for j = 1, 2

That is,

YT =

k∑
c=1

[Rc1XTc1 +Rc2XTc2] (4.3)

Under non-response, the usual ratio estimator for the finite population total
in stratum c is given by

ŶTc = rc1XTc1 + rc2XTc2

where rc1 and rc2 are as previously defined.

But, Bias(ŶTc) = E(ŶTc)− YTc,

which can be expanded as,

Bias(ŶTc) = [XTc1E(rc1)− YTc1] + [XTc2E(rc2)− YTc2].

That is, Bias(ŶTc) = Bias(ŶTc1) + Bias(ŶTc2)

But in SRSWOR, we have,

Cov(xc1, yc1) =
Nc − nc
ncNc

Sxyc1 , Cov(xc2m, yc2m) =
nc2 −mc

mcnc2
Sxyc2

and

Cov(rc1, xc1) =
Nc − nc
ncNc

Srxc1 , Cov(rc2, xc2m) =
nc2 −mc

mcnc2
Srxc2
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where, Srxcj = 1
Ncj−1

Ncj∑
i=1

(Rcij −Rcj)(Xcij −Xcj), for j = 1, 2

which can further be expanded as follows,

Srxcj =
1

Ncj − 1

[ Ncj∑
i=1

Ycij
Xcij

Xcij −NcjRcjXcj

]
=

1

Ncj − 1

[
YTcj −RcjXTcj

]

But rcj is unbiased for Rcj such that E(rcj) = Rcj so that we can express
Srxcj as

Srxcj =
1

Ncj − 1

[
YTcj −XTcjE(rcj)

]
=− 1

Ncj − 1
Bias(ŶTcj)

an indication of inverse relationship between R and X.

Therefore, we can write covariance of rc1 and xc1 as

Cov(rc1, xc1) = −Nc1 − nc1
nc1Nc1

1

Nc1 − 1
Bias(ŶTc1),

which implies that

Bias(ŶTc1) = −nc1Nc1(Nc1 − 1)

Nc1 − nc1
Cov(rc1, xc1)

or equivalently

Bias(ŶTc1) = −nc1Nc1(Nc1 − 1)

Nc1 − nc1
Nc1 − nc1
nc1Nc1

Srxc1.

which simplifies to,

Bias(ŶTc1) = −(Nc1 − 1)Srxc1 (4.4)

Therefore, the estimator of the Bias of ŶTc1 is given by

̂Bias(ŶTc1) = −(Nc1 − 1)srxc1,
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where

srxc1 =
1

nc1 − 1

nc1∑
i=1

(rci1 − rc1)(xci1 − xc1)

=
1

nc1 − 1

[ nc1∑
i=1

rci1xci1 − nc1rc1xc1
]

=
1

nc1 − 1

[ nc1∑
i=1

yci1
xci1

xci1 − nc1rc1xc1
]

=
1

nc1 − 1

[ nc1∑
i=1

yci1 − nc1rc1xc1
]

=
1

nc1 − 1
[ytc1 − rc1xtc1]

We can thus express Bias in ŶTc1 as

Bias(ŶTc1) = −(Nc1 − 1)

(nc1 − 1)

[
ytc1 − rc1xtc1

]
Now using ŶTc1 as an estimator for YTc1, we have

E[ŶTc1 − Bias(ŶTc1)] = YTc1, (4.5)

which implies that,

YTc1 = ŶTc1 +
(Nc1 − 1)

(nc1 − 1)

[
ytc1 − rc1xtc1

]
(4.6)

Using the same procedure for non-responding group, that is, for j = 2, we
have

̂Bias(ŶTc2) = −(nc2 − 1)srxc2

so that,

Bias(ŶTc2) = −(nc2 − 1)

(mc − 1)

[
ytc2 − rc2xtc2

]
Assuming proportional allocation of sample sizes in the responding groups
such that Nc1nc1

≈ Nc2
nc2 and that there is a high response rate in the second sam-

pling phase such thatmc, is so close to nc2, then Bias(ŶTc2) can be written as
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Bias(ŶTc2) = −
(
Nc2−1
nc2−1

) [
ytc2 − rc2xtc2

]
Now, using the relation given in equation (4.5),

ŶTc2 =
[
ŶTc2 +

(
Nc2 − 1

nc2 − 1

)[
ytc2 − rc2xtc2

]]
(4.7)

But ŶTcj = rcjXTcj so that using equation(4.6) and equation (4.7), the ex-
pression for ŶTc becomes

ŶTc =

2∑
j=1

[
rcjXTcj +

(Ncj − 1)

(ncj − 1)

[
ytcj − rcjxtcj

]]
.

which can be summed over all strata to obtain YT as

ŶT =

k∑
c=1

2∑
j=1

[
rcjXTcj +

Ncj − 1

ncj − 1
(ytcj − rcjxtcj)

]
= ŶD

Next, we study some asymptotic properties of ŶD. The following lemmas
are used to show that the estimator ŶD is unbiased.

Lemma 4.1: The sample ratio mean for the jth group in stratum c, rcj , is
unbiased for the population ratio mean for the jth group in stratum c, Rcj

Proof. By definition, rcj is unbiased for Rcj only if E(rcj) = Rcj .

Now, E(rcj) = E

(
1
ncj

ncj∑
i=1

Rcij

)
That is, E(rcj) = 1

ncj

ncj∑
i=1

1
Ncj

Ncj∑
i=1

Ycij
Xcij

,

which implies that,

E(rcj) = 1
ncj

ncj∑
i=1

Rcj = 1
ncj
ncjRcj = Rcj
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Hence the proof.

Similarly, to show that the sample ratio mean in stratum c, rc, is unbiased
for population ratio mean in stratum c, Rc, the following lemma is used .

Lemma 4.2: The sample ratio mean in stratum c, rc, is unbiased for the
population ratio mean in stratum c, Rc.

Proof. By definition, rc is unbiased for Rc only if E(rc) = Rc.

Now, E(rc) = E

(
1
nc

nc∑
i=1

Rci

)
That is, E(rc) = 1

nc

nc∑
i=1

1
Nc

Nc∑
i=1

Yci
Xci

,

which implies that,

E(rc) = 1
nc

nc∑
i=1

Rc = 1
nc
ncRc = Rc

Hence the proof.

Theorem 4.1: The estimator ŶD is an unbiased estimator for finite popula-
tion total YT under a large sample assumption such that mc, is very close to
nc2

This proof involves showing that E(ŶD) = YT .

That is, showing that

E(ŶD) = E

(
k∑
c=1

2∑
j=1

[
rcjXTcj +

Ncj − 1

ncj − 1
(ytcj − rcjxtcj)

])
= YT
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Now, E(ŶD) can be expanded as

E(ŶD) =

k∑
c=1

[
E(rc1XTc1+rc2XTc2)+

Nc1 − 1

nc1 − 1
E(ytc1−rc1xtc1)+

Nc2 − 1

nc2 − 1
E(ytc2−rc2xtc2)

]
(4.8)

From Lemma 4.1, E(rcjXTcj) = RcjXTcj so that E(ŶD) becomes

E(ŶD) =

k∑
c=1

[
(Rc1XTc1+Rc2XTc2)+

Nc1 − 1

nc1 − 1
E(ytc1−rc1xtc1)+

Nc2 − 1

nc2 − 1
E(ytc2−rc2xtc2)

]
(4.9)

Now,

ytc1 − rc1xtc1 =nc1yc1 − nc1rc1xc1

=

nc1∑
i=1

yci1 − nc1rc1xc1

=

nc1∑
i=1

yci1
xci1

xci1 − nc1r̄c1x̄c1

=

nc1∑
i=1

(xci1 − x̄c1)(rci1 − r̄c1)

which reduces to,

ytc1 − rc1xtc1 = (nc1 − 1)srxc1 (4.10)

Similarly,
ytc2 − rc2xtc2 = nc2yc2 − nc2rc2xc2

That is,

ytc2 − rc2xtc2 = nc2

mc∑
i=1

1

mc
yci2 −mcrc2xc2 (4.11)

Assuming that mc is large and is close to nc2 such that mc ≈ nc2, for all
c = 1, 2, ...k, then (ytc2 − rc2xtc2) in equation (4.11) can be simplified as
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follows

ytc2 − rc2xtc2 =

nc2∑
i=1

yci2 − nc2rc2xc2

=

nc2∑
i=1

yci2
xci2

xci2 − nc2r̄c2x̄c2

=

nc2∑
i=1

(xci2 − x̄c2)(rci2 − r̄c2)

which can be expressed as,

ytc2 − rc2xtc2 = (nc2 − 1)srxc2 (4.12)

Therefore, substituting equation (4.10) and equation (4.12) in equation (4.9)
and assuming that mc ≈ nc2 gives,

ŶD =

k∑
c=1

[ (
Rc1XTc1 +Rc2XTc2

)
+

(Nc1 − 1)

(nc1 − 1)
(nc1 − 1)(srxc1)

+
(Nc2 − 1)

(nc2 − 1)
(nc2 − 1)(srxc2)

]
Now,

E(ŶD) =

k∑
c=1

[ (
Rc1XTc1 +Rc2XTc2

)
+

(Nc1 − 1)

(nc1 − 1)
E(nc1 − 1)(srxc1)

+
(Nc2 − 1)

(nc2 − 1)
E(nc2 − 1)(srxc2)

]
which simplifies to

E(ŶD) =

k∑
c=1

[(Rc1XTc1 +Rc2XTc2) + (Nc1− 1)E(srxc1) + (Nc2− 1)E(srxc2)]

(4.13)
That is,

E(ŶD) =

k∑
c=1

[(Rc1XTc1 +Rc2XTc2)+(Nc1−1)Srxc1 +(Nc2−1)Srxc2] (4.14)
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By definition,

Srxcj = 1
Ncj−1

Ncj∑
i=1

(Xcij −Xcj)(Ycij − Y cj) = 1
Ncj−1(YTcj −NcjRcjXcj)

so that equation (4.14) becomes

E(ŶD) =
k∑
c=1

[(Rc1XTc1+Rc2XTc2)+(YTc1−Nc1Rc1Xc1)+(YTc2−Nc2Rc2Xc2)]

That is,

E(ŶD) =
k∑
c=1

[YTc1 + YTc2] =
k∑
c=1

YTc = YT

Hence the proof.

For Mean Squared Error (MSE), the expression for MSE of ŶD, by defini-
tion, is

MSE(ŶD) = E[ŶD − YT ]2

which can be expressed as

MSE(ŶD) =E[ŶD + E(ŶD)− E(ŶD)− YT ]2

=E[ŶD − E(ŶD)]2 + [E(ŶD)− YT ]2

=V ar(ŶD) + [Bias(ŶD)]2

But under a large sample assumption and that mc ≈ nc2, Bias(ŶD) asymp-
totically tends to 0, so that

MSE(ŶD) = V ar(ŶD) (4.15)

We now obtain the expression for V ar(ŶD). We shall use the following the-
orem,

Theorem 4.2: Under large sample assumption, variance of ŶD is given as

V ar(ŶD) =

k∑
c=1

2∑
j=1

Ncj(Ncj − ncj)
ncj

[
S2
ycj+R

2
cjS

2
xcj−2RcjSxycj+

1

ncj − 1

[
S2
rcjS

2
xcj+Srxcj

]]
(4.16)
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Proof. In this proof, the results by Hartley and Ross (1954) and Goodman
and Hartley (1958) on the properties of an unbiased ratio estimator are con-
sidered.

Hartley and Ross (1954) and Goodman and Hartley (1958) considered an
unbiased ratio estimator

ru = r1 +
n(N − 1)

(n− 1)NX
(y − r1x) see equation (3.19)

where r1 = 1
n

n∑
i=1

yi
xi

so that an unbiased ratio estimator for finite population

total becomes
ŶT = r1XT +

n(N − 1)

(n− 1)
(y − r1x)

Goodman and Hartley (1958) obtained variance of ru for a sample of any
size as

V ar(ru) =
1− f
nX

2

[
S2
y +R

2
S2
x − 2RSxy +

1

n− 1

[
S2
rS

2
x + Srx

]]
, (4.17)

where Ri = Yi
Xi

is the population observation ratio, R is the population mean
of Ri and S2

r is the population variance of Ri, Srx is the population covari-
ance of R and X while f = n

N is the sampling fraction.

To derive the expression for V ar(ŶD), ŶD is expressed as

ŶD =

k∑
c=1

2∑
j=1

[
rcjXTcj +

ncj(Ncj − 1)

ncj − 1

(
ycj − rcjxcj

) ]
(4.18)

Now, using NXru as an unbiased estimator for YT , then using ru variance of
the unbiased ratio estimator ŶD for finite population total YT in SRSWOR
is given as

V ar(ŶD) =
N(N − n)

n

[
S2
y +R

2
S2
x − 2RSxy +

1

n− 1

[
S2
rS

2
x + Srx

]
Therefore, in stratified random sampling and under non-response, we have
V ar(ŶD) given as

V ar(ŶD) =

k∑
c=1

2∑
j=1

Ncj(Ncj − ncj)
ncj

[
S2
ycj+R

2
cjS

2
xcj−2RcjSxycj+

1

ncj − 1

[
S2
rcjS

2
xcj+Srxcj

]]
(4.19)
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which is the required proof.

Now, under a large sample assumption, the coefficient 1
(ncj−1)

becomes neg-
ligible so that equation (4.19) reduces to

V ar(ŶD) =

k∑
c=1

2∑
j=1

Ncj(Ncj − ncj)
ncj

[
S2
ycj +R

2
cjS

2
xcj − 2RcjSxycj

]
, (4.20)

Further, variance of the estimator in the cth stratum in subgroup j can be
expressed as

V ar(ŶDcj) =
Ncj(Ncj − ncj)

ncj

[
S2
ycj+R

2
cjS

2
xcj−2RcjSxycj+

1

ncj − 1

[
S2
rcjS

2
xcj+Srxcj

]]
(4.21)

and the unbiased estimator of V ar(ŶDcj) becomes

̂V ar(YDcj) =
Ncj(Ncj − ncj)

ncj

[
s2
ycj+r

2
cjs

2
xcj−2rcjsxycj+

1

ncj − 1

[
s2
rcjs

2
xcj+srxcj

]]
(4.22)

where s2
ycj = 1

ncj−1

ncj∑
i=1

(ycij − ycj)2, s2
xcj = 1

ncj−1

ncj∑
i=1

(xcij − xcj)2 and s2
rcj =

1
ncj−1

ncj∑
i=1

(rcij − rcj)
2 are the respective unbiased estimators for S2

y , S2
x and

S2
r while sxycj = 1

ncj−1

ncj∑
i=1

(xcij − xcj)(ycij − ycj) and srxcj = 1
ncj−1

ncj∑
i=1

(rcij −

rcj)(xcij − xcj) are the respective estimators for Sxy and Srx.

Now, V ar(ŶD) can further be expressed as

V ar(ŶD) =

k∑
c=1

2∑
j=1

Ncj(Ncj − ncj)
ncj

[
S2
ycj +R

2
cjS

2
xcj − 2RcjρcjSxcjSycj

]
(4.23)

where ρcj is the coefficient of correlation between X and Y while Sxcj and
Sycj are respective standard deviations of X and Y , all in stratum c, sub-
group j.

From equation (4.23), we observe that MSE(ŶD) decreases as the stratum
sample sizes in the first sampling and the second sampling phases becomes
large. Also, for a sufficiently large ρcj , V ar(ŶD) reduces significantly. That
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is, V ar(ŶD) decreases when the regression line of Y on X is a straight line
that passes through the origin, which is an assumption in ratio estimation.

Corollary 4.1: For large populations, and consequently large samples, V ar(ŶD)

can be expressed as

V ar(ŶD) =

k∑
c=1

2∑
j=1

Ncj − ncj
ncj

Ncj∑
i=1

(
Ycij −RcjXcij

)2 (4.24)

Proof. To prove Corollary 4.1, consider equation (4.20) and express S2
ycj ,

S2
xcj and Sxycj as follows

S2
ycj = 1

Ncj−1

Ncj∑
i=1

(
Ycij − Y cj

)2

S2
xcj = 1

Ncj−1

Ncj∑
i=1

(
Xcij −Xcj

)2

Sxycj = 1
Ncj−1

Ncj∑
i=1

(
Xcij −Xcj

) (
Ycij − Y cj

) (4.25)

Using the expressions for S2
ycj , S

2
xcj and Sxycj in equation set (4.25),

S2
ycj +R

2
cjS

2
xcj − 2RcjSxycj can be expanded as follows

S2
ycj +R

2
cjS

2
xcj − 2RcjSxycj =

1

Ncj − 1

Ncj∑
i=1

{(
Ycij − Y cj

)2
+R

2
cj

(
Xcij −Xcj

)2

− 2Rcj
(
Xcij −Xcj

) (
Ycij − Y cj

)}
=

1

Ncj − 1

Ncj∑
i=1

[ (
Ycij − Y cj

)
−Rcj

(
Xcij −Xcj

) ]2
So that the expression of V ar(YD) in equation (4.20) can be simplified as

V ar(ŶD) =

k∑
c=1

2∑
j=1

Ncj(Ncj − ncj)
ncj

{
1

Ncj − 1

Ncj∑
i=1

[ (
Ycij − Y cj

)
−Rcj

(
Xcij −Xcj

) ]2}
(4.26)

That is,

V ar(ŶD) =

k∑
c=1

2∑
j=1

Ncj(Ncj − ncj)
ncj

{
1

Ncj − 1

Ncj∑
i=1

[
Ycij−Y cj−RcjXcij+RcjXcj

]2},
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which further reduces to,

V ar(ŶD) =

k∑
c=1

2∑
j=1

Ncj(Ncj − ncj)
ncj

{
1

Ncj − 1

Ncj∑
i=1

[
Ycij−RcjXcij

]2} (4.27)

Now, for large populations, the ratio Ncj
Ncj−1 asymptotically approaches 1 so

that equation (4.27) reduces to

V ar(ŶD) =

k∑
c=1

2∑
j=1

Ncj − ncj
ncj

Ncj∑
i=1

[
Ycij −RcjXcij

]2
Hence the proof.

Corollary 4.1, implies that for small samples, we have

V ar(ŶD) =

k∑
c=1

2∑
j=1

Ncj(Ncj − ncj)
ncj

{
1

Ncj − 1

Ncj∑
i=1

(
Ycij −RcjXcij

)2

+
1

ncj − 1

[
S2
rcjS

2
xcj + Srxcj

]}
In Corollary 4.1, the expression for V ar(ŶD) has been obtained under the
assumption that, in the second sampling phase, mc is so close to nc2 such
that nc2mc

tends to 1.

Corollary 4.2: Under proportional allocation,

V ar(ŶD) =

k∑
c=1

2∑
j=1

Ncj(Nj − nj)
nj

{
1

Ncj − 1

Ncj∑
i=1

(
Ycij −RcjXcij

)2

+
Nj

njNcj −Nj
[
S2
rcjS

2
xcj + Srxcj

]} (4.28)

Proof. Under proportional allocation of sample sizes in various strata, we
have

nc =
nNc
N

However, under non-response, the allocated sample size in stratum c re-
sponse group j is given by

ncj =
njNcj
Nj
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When substituted in (4.19) and simplified, V ar(ŶD) becomes

V ar(ŶD) =

k∑
c=1

2∑
j=1

Ncj(Nj − nj)
nj

{
1

Ncj − 1

Ncj∑
i=1

(
Ycij −RcjXcij

)2

+
Nj

njNcj −Nj
[
S2
rcjS

2
xcj + Srxcj

]}
Hence the proof.

For consistency, let {Ŷ ∗D} be the sequence of point estimators of finite popu-
lation total. By definition, the sequence {Ŷ ∗D} is said to be weakly consistent
for YT if Ŷ ∗D converges in probability to YT as the sample size becomes large
(Cochran, 1977).

Theorem 4.3: For a large population and consequently a large sample size,
the unbiased ratio-type estimator ŶD is a consistent estimator of the finite
population total YT .

Proof. Here, Chebyshev’s inequality is used to prove that ŶD is a consistent
estimator for YT .

From equation (4.19), V ar(ŶD) is expressed as

V ar(ŶD) =

k∑
c=1

2∑
j=1

Ncj(Ncj − ncj)
ncj

{
1

Ncj − 1

Ncj∑
i=1

(
Ycij −RcjXcij

)2

+
1

ncj − 1

[
S2
rcjS

2
xcj + Srxcj

]}
For jth response group, V ar(ŶDj) can be expressed as

V ar(ŶDj) =

k∑
c=1

Ncj(Ncj − ncj)
ncj

{
1

Ncj − 1

Ncj∑
i=1

(
Ycij −RcjXcij

)2

+
1

ncj − 1

[
S2
rcjS

2
xcj + Srxcj

]} (4.29)

Considering the expression for V ar(ŶDj) and assuming a large population
and consequently a large sample, it can be shown that ŶDj is a consistent
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estimator for YTj using Chebyshev’s inequality. That is, as the sample size
ncj increases, the difference Ncj − ncj tends to zero such that

lim
ncj→Ncj

Pr{|ŶDj − YTj | > ε} = 0 (4.30)

for every ε > 0

Now, using the Chebyshev’s inequality, ŶDj is a consistent estimator for YTj
if

Pr{|ŶDj − YTj | > ε} ≤
V ar(YDj)

ε2

so that

Pr{|ŶDj − YTj | > ε} ≤ =
V ar(YDj)

ε2

=
1

ε2

k∑
c=1

Ncj(Ncj − ncj)
ncj

{
1

Ncj − 1

Ncj∑
i=1

(
Ycij −RcjXcij

)2

+
1

ncj − 1

[
S2
rcjS

2
xcj + Srxcj

]}
(4.31)

Taking limits as ncj → Ncj , the right hand side of equation (4.31) tends to
zero.

Hence, ŶDj
p−−→ YTj , which is the condition for consistency. Since ŶDj is a

consistent estimator for YTj , it implies that ŶD is a consistent estimator for
YT .

Hence the proof.

Suppose in each stratum, the sample sizes for both phase I and phase II are
large, then using the central limit theorem, the confidence interval of YT is
given by

ŶD ± Zα
2

√
V ar(ŶD) (4.32)

Where Zα
2

is the co-efficient value (1− α
2 ), which is obtained from the stan-

dard normal table at (1− α)100% confidence level.
Next is to show that ŶD is a best linear unbiased estimator for YT .

50



By definition, an estimator θ̂ is said to be a best linear unbiased estimator
for an unknown parameter θ based on data X if it is unbiased such that
E[b′X] = θ, is a linear function of X such that the estimator can be writ-
ten as b′X, where b′ is a vector of constants, and has the smallest variance
among all other unbiased linear estimators. (see Cochran, 1977).

Now, from the expression for ŶD, ŶD is a best linear unbiased estimator for
YT if and only if rcj is a best linear unbiased estimator for Rcj for j = 1, 2.

But from the optimality condition of the usual ratio estimator constructed
under SRSWOR, the proposed estimator is the best linear unbiased estima-
tor of finite population total when:

(i) the linear relationship of ycij on xcij passes through the origin such
that ycij = βcjxcij + εcij , where ε

′

cijs are independently and identically
distributed with E(εcij/xcij) = 0 and βcj is the cth − stratum slope
parameter in partition j

(ii) the line in (i) above is proportional to xcij such that V ar(ycij/xcij) =

E(ε2
cij) = Dxcij , where D is a non-negative constant.

That is, rcj is a best linear unbiased estimator for Rcj for j = 1, 2 and ŶTcj is
the best linear unbiased estimator for YTcj if, for a fixed xcj , E(ycij) = βcjxcj
and V ar(xcij) ∝ xcj , so that V ar(xcij) = πcjxcj , where πcj is the proportion-
ality constant in stratum c, response group j.

Let y
cj

= (yc1j , yc2j , . . . , ycnj)
′ and xcj = (xc1j , xc2j , . . . , xcnj)

′ denote two
vectors of observations on ycij ′s and xcij ′s. Then, for a fixed xcj ,

(i) E(y
cj

) = βxcj and

(ii) V ar(y
cj

) = Π = πdiag(xc1j , xc2j , . . . , xcnj), where diag(xc1j , xc2j , . . . , xcnj)

is the diagonal matrix with xc1j , xc2j , . . . , xcnj as the diagonal ele-
ments.

Therefore, the best linear unbiased estimator of βcj is obtained by minimiz-
ing the function

S2
cj = (y

cj
− βcjxcj)′Π−1(y

cj
− βcjxcj)
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which can be expressed as

S2
cj =

ncj∑
i=1

(ycij − βcjxcij)2

πcjxcij
(4.33)

Differentiating equation (4.33) with respect to βcj and equating to 0 gives

ncj∑
i=1

(ycij − β̂cjxcij) = 0 (4.34)

which implies that β̂cj = 1
ncj

ncj∑
i=1

ycij
xcij

= rcj . Hence, rcj is the linear unbiased

estimator of Rcj .

Since rcj is a best linear unbiased estimator for Rcj for j = 1, 2, it implies
that ŶDcj is the BLUE of YTcj and consequently, ŶD is the BLUE of YT .

We now compare variance of ŶD under proportional allocation and under
SRSWOR.

Theorem 4.4: Under a large sample assumption, the estimator ŶD is more
efficient under proportional allocation of sample sizes than when SRSWOR
sampling scheme is used.

Proof. Let the variance of ŶD under SRSWOR be denoted as V ar(ŶD)S and
variance of ŶD under proportional allocation be denoted as V ar(ŶD)prop.
Therefore, this proof involves comparing V ar(ŶD)prop and V ar(ŶD)S , where

V ar(ŶD)S =

2∑
j=1

Nj(Nj − nj)
nj

{
1

Nj − 1

Nj∑
i=1

(
Yij −RjXij

)2

+
1

nj − 1

[
S2
rjS

2
xj + Srxj

]}
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and

V ar(ŶD)prop =

k∑
c=1

2∑
j=1

Ncj(Nj − nj)
nj

{
1

Ncj − 1

Ncj∑
i=1

(
Ycij −RcjXcij

)2

+
Nj

njNcj −Nj
[
S2
rcjS

2
xcj + Srxcj

]}
For jth response group, V ar(ŶDj)prop and V ar(ŶDj)S can be expressed as,

V ar(ŶDj)S =
Nj(Nj−nj)

nj

{
S2
yj + 1

nj−1

[
S2
rjS

2
xj + Srxj

]}
V ar(ŶDj)prop =

(Nj−nj)
nj

k∑
c=1

Ncj

{
S2
cyj + Nj

njNcj−Nj

[
S2
crjS

2
cxj + Scrxj

]}
(4.35)

Since the constant coefficient (Nj−nj)
nj

is common in both V ar(ŶDj)prop and
V ar(ŶDj)S , equation (4.35) thus reduces to

Nj

{
S2
yj + 1

nj−1

[
S2
rjS

2
xj + Srxj

]}
k∑
c=1

Ncj

{
S2
cyj + Nj

njNcj−Nj

[
S2
crjS

2
cxj + Scrxj

]}
For large samples such that the ratio 1

ncj−1 is very close to 1
ncj

and the ratio
1

nj−1 is very close to 1
nj

, expressions for V ar(ŶDj)prop and V ar(ŶDj)S can
be simplified and partitioned as

V ar(ŶDj)S = NjS
2
yj︸ ︷︷ ︸

A

+
Nj
nj

[
S2
rjS

2
xj + Srxj

]
︸ ︷︷ ︸

B

V ar(ŶDj)prop =

k∑
c=1

NcjS
2
cyj︸ ︷︷ ︸

A′

+Nj

k∑
c=1

1

ncj

[
S2
crjS

2
cxj + Scrxj

]
︸ ︷︷ ︸

B′

(4.36)

The task is therefore to compare the corresponding partitions.

Now, from equation set (4.36), we have S2
yj = 1

Nj−1

k∑
c=1

Ncj∑
i=1

(
Ycij − Y j

)2,

which can be expanded and simplified as
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S2
yj =

1

Nj − 1

k∑
c=1

Ncj∑
i=1

(
Ycij − Y cj + Y cj − Y j

)2

=
1

Nj − 1

k∑
c=1

Ncj∑
i=1

[ (
Ycij − Y cj

)
+
(
Y cj − Y j

) ]2
=

1

Nj − 1

k∑
c=1

Ncj∑
i=1

{(
Ycij − Y cj

)2
+
(
Y cj − Y j

)2
+ 2
(
Ycij − Y cj

) (
Y cj − Y j

)}
=

1

Nj − 1

k∑
c=1

{
(Ncj − 1)S2

cyj +Ncj
(
Y cj − Y j

)2
}

But for large population sizes, the ratio 1
Ncj−1 is so close to 1

Ncj
and the ratio

1
Nj−1 tends to 1

Nj
so that S2

yj can be expressed as

S2
yj =

1

Nj

{ k∑
c=1

NcjS
2
cyj +

k∑
c=1

Ncj
(
Y cj − Y j

)2
}

(4.37)

Similarly,

S2
rj =

1

Nj − 1

k∑
c=1

Ncj∑
i=1

(
Rcij −Rcj +Rcj −Rj

)2

=
1

Nj − 1

k∑
c=1

{
(Ncj − 1)S2

crj +Ncj
(
Rcj −Rj

)2
}

But for large population sizes sizes, the ratio 1
Ncj−1 is so close to 1

Ncj
and the

ratio 1
Nj−1 tends to 1

Nj
so that S2

rj can expressed as

S2
rj =

1

Nj

{ k∑
c=1

NcjS
2
crj +

k∑
c=1

Ncj
(
Rcj −Rj

)2
}

(4.38)

and

S2
xj =

1

Nj − 1

k∑
c=1

Ncj∑
i=1

(
Xcij −Xcj +Xcj −Xj

)2

=
1

Nj − 1

k∑
c=1

{
(Ncij − 1)S2

cxj +Ncj
(
Xcj −Xj

)2
}
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Similarly, for large population sizes such that the ratios 1
Ncj−1 is so close to

1
Ncj

and 1
Nj−1 tends to 1

Nj
, then S2

xj becomes

S2
xj =

1

Nj

{ k∑
c=1

NcjS
2
cxj +

k∑
c=1

Ncj
(
Xcj −Xj

)2
}

(4.39)

Now substituting equation (4.37) in equation (4.36) gives

A =
{ k∑

c=1

NcjS
2
cyj +

k∑
c=1

Ncj
(
Y cj − Y j

)2
}
,

so that M= A− A′ becomes

M =

k∑
c=1

{
NcjS

2
cyj +Ncj

(
Y cj − Y j

)2 −NcjS2
cyj

}
=

k∑
c=1

Ncj
(
Y cj − Y j

)2
, which is a positive constant

Clearly, M> 0 for all values of c = 1, 2, ..., k and j = 1, 2.

To compare B and B
′
, the difference can be expressed as

M∗= B −B
′
=

1

nj

[
S2
rjS

2
xj + Srxj

]
−

k∑
c=1

1

ncj

[
S2
crjS

2
cxj + Scrxj

]
=

1

nj

[
S2
rjS

2
xj + SrjSxj

]
−

k∑
c=1

1

ncj

[
S2
crjS

2
cxj + ScrjScxj

]
But in sample surveys, stratification reduces variance of estimators for pop-
ulation parameters such that the constant 1

nj

[
S2
rjS

2
xj + SrjSxj

]
is far much

greater than
k∑
c=1

1
ncj

[
S2
crjS

2
cxj + ScrjScxj

]
so that, M∗> 0.

Therefore, since both M and M∗ are greater than zero, it implies that the dif-
ference V ar(ŶDj)S − V ar(ŶDj)prop gives a positive constant, which further
implies that V ar(ŶD)S − V ar(ŶD)prop > 0. It can thus be concluded that
the estimator YD is more efficient under proportional allocation than under
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SRSWOR.

Hence the proof.

4.3 Combined Ratio Form of ŶD

Use of combined ratio estimation in stratified random sampling date back
to 1946, where instead of using ratio estimates in each stratum to obtain the
overall estimate of the population total, a single combined ratio estimator
is derived for all the strata and used in estimation (Hansen, Hurwitz and
Gurney, 1946; Cochran, 1977). Use of combined ratio estimation method
is due to the fact that if separate ratio estimation method were to be used
in the estimation problem, the accumulated bias, when aggregated over all
strata, can be quite significant and consequently reducing efficiency of the
estimator. One possible solution to reducing this accumulated bias is the
use of combined ratio estimation method. That is, combined ratio estimator
is much less prone to the risk of bias compared to separate ratio estimator.

In combined ratio estimation, the standard estimators for YT and XT are

first obtained as Ŷst =
k∑
c=1

Ncyc, and X̂st =
k∑
c=1

Ncxc respectively. Using

these estimators, the estimator for finite population total is then obtained as

ŶT =
Ŷst

X̂st

XT =
yst
xst

XT (4.40)

where yst = Ŷst
N , xst = X̂st

N are the respective estimators for population
means of Y and X from the stratified sample and the estimator of the com-
bined ratio R = Y

X
is defined as R̂ =

yst
xst

.

Cochran (1977) gives the expressions of Bias(ŶT ) and Var(ŶT ) under com-
bined ratio estimation, to a first order approximation, as

Bias(ŶT ) = YT

k∑
c=1

n2
c

N2
c

(Nc − nc)
ncNc

(
S2
xc

X
2
− ρc

Sxc

X

Syc

Y

)
(4.41)
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and

V ar(ŶT ) =

k∑
c=1

N2
c (Nc − nc)
ncNc

(
S2
yc +R2S2

xc − 2RρcSxcSyc
)

(4.42)

where, S2
yc = 1

Nc−1

Nc∑
i=1

(Yci−Y c)2 and S2
xc = 1

Nc−1

Nc∑
i=1

(Xci−Xc)
2 are the stra-

tum adjusted population variances for the response variable Y and auxiliary
variable X and ρc is the population correlation coefficient between X and Y
in stratum c

In this study, R∗ is used to denote the population combined ratio and is
defined as

R∗ =

k∑
c=1

YTc

k∑
c=1

XTc

=

k∑
c=1

NcY c

k∑
c=1

NcXc

(4.43)

with a corresponding sample combined ratio expressed as

r∗ =

k∑
c=1

ncyc

k∑
c=1

ncxc

(4.44)

However, under non-response, the population combined ratio R∗ is parti-
tioned as

R∗1 =

k∑
c=1

Nc1Y c1

k∑
c=1

Nc1Xc1

and R∗2 =

k∑
c=1

Nc2Y c2

k∑
c=1

Nc2Xc2

and the sample combined ratio r∗ as

r∗1 =

k∑
c=1

nc1yc1

k∑
c=1

nc1xc1

and r∗2 =

k∑
c=1

mcyc2m

k∑
c=1

mcxc2m
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Assuming large samples such that the fraction 1
mc

is very close to 1
nc2

so that

yc2m tends to yc2, then r∗2 =

k∑
c=1

nc2yc2

k∑
c=1

nc2xc2

Now, using r∗ij = yij
xij

, i = 1, 2, ..., nj , j = 1, 2 and R∗ij = Yij
Xij

, i = 1, 2, ..., Nj ,
j = 1, 2 as the sample and population observation ratios respectively, then
the sample mean observation ratio is defined as

r∗ =
1

n

2∑
j=1

nj∑
i=1

yij
xij

(4.45)

and considered as an estimator for

R
∗

=
1

N

2∑
j=1

Nj∑
i=1

Yij
Xij

(4.46)

Similarly, r∗j = 1
nj

nj∑
i=1

yij
xij

is an estimator for R∗j = 1
Nj

Nj∑
i=1

Yij
Xij

.

The respective estimators for Sxyj = 1
Nj−1

Nj∑
i=1

(Xij − Xj)(Yij − Y j) and

Srxj = 1
Nj−1

Nj∑
i=1

(Rij − R
∗
j)(Xij −Xj) are sxyj = 1

nj−1

nj∑
i=1

(xij − xj)(yij − yj)

and srxj = 1
nj−1

nj∑
i=1

(rij − r∗j)(xij − xj).

Using this notations, a combined ratio estimator of finite population total
under non-response is thus suggested as,

ŶDC =

k∑
c=1

2∑
j=1

[
r∗jXTcj +

Ncj − 1

ncj − 1
{ytcj − r∗jxtcj}

]
(4.47)

Next is to show how the combined ratio estimator ŶDC is constructed . In
SRSWOR, the usual ratio estimator r = y

x is used as the estimator for the
population ratio R = Y

X
. Similarly, in stratified random sampling, rc =

yc
xc

is

used to estimate the stratum population ratio Rc = Y c
Xc

so that Ŷ c = rcXc or

equivalently, ŶTc = NcrcXc =
k∑
c=1

rcXTc, where c = 1, 2, ..., k.
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However, in combined ratio estimation, the sample combined ratio

r∗ =

k∑
c=1

ncyc

k∑
c=1

ncxc

(4.48)

is used as an estimator for

R∗ =

k∑
c=1

YTc

k∑
c=1

XTc

=

k∑
c=1

NcY c

k∑
c=1

NcXc

(4.49)

Now, using r∗ij = yij
xij

(i = 1, 2, ..., nj , j = 1, 2) and r∗, estimator for YT can
expressed as

ŶT =

k∑
c=1

2∑
j=1

ŶTcj =

k∑
c=1

2∑
j=1

r∗jXTcj , (4.50)

which implies that

Bias(ŶT ) =

k∑
c=1

2∑
j=1

Bias(ŶTcj)

But from equation (4.4), Bias(ŶTcj) = −(Ncj−1)Srxcj and that the unbiased
estimator for Bias(ŶTcj) is

̂Bias(ŶTcj) = −(N1 − 1)srxcj

which can be expanded as

̂Bias(ŶTcj) = −
Ncj − 1

ncj − 1
{ytcj − r∗1xtcj} (4.51)

By definition, bias in ŶTcj is given as

Bias(ŶTcj) = E
(
ŶTcj

)
− YTcj

so that the unbiased estimator for YTcj is given by

ŶTcj − ̂Bias(ŶTcj)
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where ŶTcj = r∗jXTcj

That is, the unbiased estimator for YTcj can be expressed as

ŶTcj = r∗jXTcj +
Ncj − 1

ncj − 1

{
ytcj − r∗jxtcj

}
(4.52)

so that summing over all the strata and in both response groups, the estima-
tor for the overall finite population total becomes

ŶT =

k∑
c=1

2∑
j=1

[
r∗jXTcj +

Ncj − 1

ncj − 1

{
ytcj − r∗jxtcj

}]
Hence the derivation.

To study some asymptotic properties of ŶDC , the following lemma is con-
sidered.

Lemma 4.2: The sample ratio mean r∗ is unbiased for the population ratio
mean R∗

Proof. To prove the lemma, we need to show that E(r∗) = R
∗.

Now,

E(r∗) =E(
1

n

n∑
i=1

R∗i )

=
1

n

n∑
i=1

E(R∗i )

=
1

n
nR
∗

=R
∗

Hence the proof.

Using the the proof in Lemma 4.2, it follows that the sample ratio mean for
the jth group r∗j is unbiased for population ratio mean for the jth group R∗j
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Theorem 4.5: The estimator ŶDC is unbiased estimator of the finite popu-
lation total YT

Proof. Here, we need to show that E(ŶDC) = YT .

That is,

E
(
ŶDC

)
= E

(
k∑
c=1

2∑
j=1

[
r∗jXTcj +

Ncj − 1

ncj − 1
{ytcj − r∗jxtcj}

])
= YT

where,

E
(
ŶDC

)
=

k∑
c=1

2∑
j=1

[
E
(
r∗jXTcj

)
+
ncj(Ncj − 1)

ncj − 1
{E
(
ycj
)
− E

(
r∗jxcj

)
}
]

(4.53)
Using the result in Lemma 4.2 and assuming a large population and conse-
quently a large sample such that 1

ncj−1 approaches 1
ncj

and 1
Ncj−1 is so close

to 1
Ncj

, then equation (4.53) reduces to

E
(
ŶDC

)
=

k∑
c=1

2∑
j=1

[
R
∗
jXTcj +Ncj{E

(
ycj
)
− E

(
r∗jxcj

)
}
]

(4.54)

Now, E
(
r∗jxcj

)
= E

(
r∗j
)
E (xcj) since Cov

(
r∗j , xcj

)
= 0.

Also, under SRSWOR, ycj is an unbiased estimator of Y cj so that equation
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(4.54) can be expressed as

E
(
ŶDC

)
=

k∑
c=1

2∑
j=1

[
R
∗
jXTcj +Ncj{Y cj − E

(
r∗j
)
E (xcj)}

]
=

k∑
c=1

2∑
j=1

[
R
∗
jXTcj +Ncj{Y cj −R

∗
jXcj}

]
=

k∑
c=1

2∑
j=1

[
R
∗
jXTcj +NcjY cj −NcjR

∗
jXcj

]
=

k∑
c=1

2∑
j=1

[
R
∗
jXTcj + YTcj −R

∗
jXTcj

]
=

k∑
c=1

2∑
j=1

YTcj

=YT

Hence the proof.

Using ŶDC as an estimator for YT , MSE(ŶDC) is expressed as,

MSE(ŶDC) =E
[
ŶDC − YT

]2
=E
[
ŶDC + E(ŶDC)− E(ŶDC)− YT

]2
=E
[
ŶDC − E(ŶDC)

]2
+
[
E(ŶDC)− YT

]2
=V ar(ŶDC) +

[
Bias(ŶDC)

]2
Since ŶDC is unbiased, the expression for MSE(ŶDC) reduces to,

MSE(ŶDC) = V ar(ŶDC) (4.55)

Theorem 4.6: Under a large sample assumption, variance of ŶDC is given
as

V ar(ŶDC) =

k∑
c=1

2∑
j=1

{Ncj(Ncj − ncj)
ncj

[
S2
ycj +R

∗2
j S

2
xcj − 2R

∗
jρcjSxcjSycj

]}
(4.56)
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Proof. To evaluate the expression for V ar(ŶDC), a similar approach as done
for V ar(ŶD) is used. From equation (4.47)

ŶDC =

k∑
c=1

2∑
j=1

[
r∗jXTcj +

Ncj − 1

ncj − 1
{ytcj − r∗jxtcj}

]
Using the results by Hartley and Ross (1954) and Goodman and Hartley
(1958), the general expression for V ar(ŶDC) is

V ar(ŶDC) =

k∑
c=1

2∑
j=1

Ncj(Ncj − ncj)
ncj

[
S2
ycj +R

∗2
j S

2
xcj − 2R

∗
jSxycj

+
1

ncj − 1

{
S2
r∗jS

2
xcj + Sr∗xcj

}]
However, Sr∗xcj = 0, for all j = 1, 2 and c = 1, 2, ..., k so that V ar(ŶDC)

reduces to

V ar(ŶDC) =

k∑
c=1

2∑
j=1

Ncj(Ncj − ncj)
ncj

[
S2
ycj +R

∗2
j S

2
xcj − 2R

∗
jSxycj

+
1

ncj − 1

{
S2
r∗jS

2
xcj

}] (4.57)

For large samples such that the coefficient 1
(ncj−1)

asymptotically approaches
zero and becomes negligible, the second part of equation (4.57) becomes
negligible so that V ar(ŶDC) becomes

V ar(ŶDC) =

k∑
c=1

2∑
j=1

Ncj(Ncj − ncj)
ncj

[
S2
ycj +R

∗2
j S

2
xcj − 2R

∗
jSxycj

]
(4.58)

or equivalently,

V ar(ŶDC) =

k∑
c=1

2∑
j=1

{Ncj(Ncj − ncj)
ncj

[
S2
ycj +R

∗2
j S

2
xcj − 2R

∗
jρcjSxcjSycj

]}
(4.59)

Hence the proof.

The expression in equation (4.59) implies that MSE(ŶDC), or equivalently
V ar(ŶDC), decreases as the cth stratum sample size in response group j be-
comes large. Also, the precision of YDC is improved for a sufficiently large

63



ρj . Therefore, for both separate and combined ratio estimation methods,
variances of ŶD and ŶDC reduces when the sample size increases and when
there is a perfect correlation between Y and X.

Using Corollary 1 under Theorem 4.2, it can be shown that

V ar(ŶDC) =

k∑
c=1

2∑
j=1

Ncj(Ncj − ncj)
ncj

{
1

Ncj − 1

Ncj∑
i=1

(
Ycij −RjXcij

)2
}

(4.60)
To determine whether the estimator ŶDC is consistent for estimating YT , a
sequence of point estimators for finite population total, denoted as {ŶDC},
is considered. By definition, the sequence is said to be weakly consistent
for YT if ŶDC converges in probability to YT as the sample size becomes
large (Cochran, 1977).

Theorem 4.7: The combined ratio estimator ŶDC is a consistent estimator
for finite population total YT .

Proof. Proofing the consistency of ŶDC in estimator YT involves showing
that as the stratum sample size in response group j, ncj tends to Ncj , vari-
ance of ŶDC diminishes such that for every small positive constant ε, the
relation,

lim
ncj→Ncj

Pr{|ŶDC − YT | > ε} = 0, (4.61)

holds.
That is, ŶDC is consistent if the sample sizes in each stratum and in the two
response groups becomes large and gets close to the corresponding stratume
population sizes in both response groups, its variance tends to zero. Or
equivalently, as ncj becomes large and gets very close to Ncj , for every
ε > 0,

Pr{|ŶDC − YT | > ε} ≤ V ar(ŶDC)

ε2

=

k∑
c=1

2∑
j=1

Ncj(Ncj − ncj)
ncj

[
S2
ycj +R

∗2
j S

2
xcj − 2R

∗
jSxycj

]
(4.62)
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Now, as ncj → Ncj , the limit for V ar(ŶDC) is obtained as

lim
ncj→Ncj

k∑
c=1

2∑
j=1

Ncj(Ncj − ncj)
ncj

[
S2
ycj +R

∗2
j S

2
xcj − 2R

∗
jSxycj

]
= 0 (4.63)

Thus, ŶDC
p−−→ YT , which is the condition for consistency.

Hence the proof

Assuming a large sample normal distribution in both sampling phase I and
phase II, the confidence interval of YT is given by

ŶDC ± Zα
2

√
V ar(ŶDC) (4.64)

where Zα
2

is the co-efficient value (1− α
2 ), which obtained from the standard

normal table at (1− α)100% confidence level.

4.4 Comparison of Separate and Combined Ratio Estimators

In this section, we compare the efficiency of the estimators ŶD and ŶDC .

Theorem 4.8: Performance of ŶD relative to that of ŶDC depends on the
absolute difference between the strata mean ratio Rcj in response group j

and the jth response group overall population mean ratio R∗j .

Proof. The expressions for ŶD and ŶDC are given as

ŶD =

k∑
c=1

2∑
j=1

[
rcjXTcj +

Ncj − 1

ncj − 1
{ytcj − rcjxtcj}

]
,

and

ŶDC =

k∑
c=1

2∑
j=1

[
r∗jXTcj +

Ncj − 1

ncj − 1
{ytcj − r∗jxtcj}

]
with the corresponding variances (or equivalently, MSE’s) expressed as

V ar(ŶD) =

k∑
c=1

2∑
j=1

Ncj(Ncj − ncj)
ncj

[
S2
ycj+R

2
cjS

2
xcj−2RcjSxycj+

1

ncj − 1

[
S2
rcjS

2
xcj+Srxcj

]]
(4.65)
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and

V ar(ŶDC) =

k∑
c=1

2∑
j=1

{Ncj(Ncj − ncj)
ncj

[
S2
ycj+R

∗2
j S

2
xcj−2R

∗
jSxycj+

1

ncj − 1
S2
r∗jS

2
xcj

]}
(4.66)

However, under large sample approximations,

V ar(ŶD) =

k∑
c=1

2∑
j=1

{Ncj(Ncj − ncj)
ncj

[
S2
ycj +R

2
cjS

2
xcj − 2RcjSxycj

]}
(4.67)

and

V ar(ŶDC) =

k∑
c=1

2∑
j=1

{Ncj(Ncj − ncj)
ncj

[
S2
ycj+R

∗2
j S

2
xcj−2R

∗
jSxycj

]}
(4.68)

To compare the variances of ŶD and ŶDC , it can be noted from equation
(4.67) and equation (4.68) that the expressions V ar(ŶD) and V ar(ŶDC) dif-
fer only in the form of the ratio estimate Rcj and R∗j .

Let ∆ = V ar(ŶDC)− V ar(ŶD) so that

∆ =

k∑
c=1

2∑
j=1

Ncj(Ncj − ncj)
ncj

[(
R
∗2
j −R

2
cj

)
S2
xcj − 2

(
Rcj −R

∗
j

)
ρcjSxcjSycj

]
=

k∑
c=1

2∑
j=1

Ncj(Ncj − ncj)
ncj

[(
R
∗
j −Rcj

)2

S2
xcj + 2

(
R
∗
j −Rcj

)(
RcjS

2
xcj − ρcjSxcjSycj

) ]
It can be observed that the difference ∆ depends on the absolute difference
between the strata mean ratio Rcj in response group j and the jth response
group overall population mean ratio R∗j . Further, assuming that the regres-
sion line of Y on X is linear and passes through the origin in each stratum,
the value of

(
RcjS

2
xcj − ρcjSxcjSycj

)
vanishes. That is,(

RcjS
2
xcj − ρcjSxcjSycj

)
tends to zero,

which implies that,

Rcj = ρcj
Sycj
Sxcj

.

66



Under this condition, MSE(ŶDC) > MSE(ŶD) so that ŶD becomes more
precise than ŶDC . In this case, the level of precision of ŶD will be improved
if Rcj 6= R

∗
j . However, if Rcj = R

∗
j , ŶDC and ŶD have equal performance.

Hence the proof.

4.5 Chapter Summary

In this chapter, an unbiased ratio-type estimator for finite population to-
tal in stratified random sampling under non-response has successfully been
constructed. Both separate and combined ratio estimation methods have
been considered and in each case, asymptotic properties of the constructed
ratio-type estimators have been studied. A comparison of the constructed
separate ratio-type estimator and the usual ratio estimator shows that the
constructed estimator is more efficient than the usual ratio estimator. From
the optimality conditions, we have noted that the suggested unbiased ratio-
type estimator is a best linear unbiased estimator for finite population total
when rcj is a best linear unbiased estimator for Rcj (j = 1, 2). Also, it has
been observed that performance of the constructed unbiased ratio estimator
under separate and combined ratio estimation methods depends on the ab-
solute difference between the strata mean ratio Rcj in response group j and
the jth response group overall population mean ratio R∗j .
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5. REGRESSION-BASED UNBIASED RATIO ESTIMATORS

5.1 Introduction

In this chapter, construction of regression and multivariate forms of unbi-
ased ratio estimator for finite population total in stratified random sampling
under non-response is done. Their performance is compared with known
ratio estimators.

5.2 Regression Form of ŶD

A regression estimator increases the precision of the estimator of finite pop-
ulation total by utilizing some auxiliary information. In the usual ratio es-
timation, efficiency of the ratio estimator is improved when the regression
line of the response variable Y on the auxiliary variable X passes through
the origin such that Yi = βXi + ei, where β is the regression coefficient and
ei is the error term and i = 1, 2, . . . , N (say). This condition of linear re-
gression between Y and X is not always the case. In such cases, regression
estimation becomes the best approach. In this study, a regression estima-
tor is constructed using the suggested estimator ŶD and properties studied
under the assumption of large populations and consequently large sample
sizes.

To improve the estimator of population mean Y , a general form of the re-
gression estimator

Ŷ R = y + µ(x−X) is considered (5.1)

where x is an unbiased estimator of population mean X of the auxiliary
variable X, y is the conventional sample mean per unit estimator of Y and
µ is any constant suitably chosen such that V ar(Ŷ R) is minimum.
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By definition, the expression for V ar(Ŷ R) is obtained from

V ar(Ŷ R) =E
[
Ŷ R − E

(
Ŷ R

)]2

=
N − n
nN

N∑
i=1

[ (
Yi − Y

)
+ µ

(
Xi −X

) ]2
N − 1

=
N − n
nN

(
V ar(y) + µ2V ar(x) + 2µCov(x, y)

)
=
N − n
nN

(
S2
y + µ2S2

x + 2µSxy
)

Now, using ordinary least square method, the optimum value of µ that min-
imizes V ar(Ŷ R) is

µ̂opt = −Cov(x, y)

V ar(x)
= −

Sxy
S2
x

(5.2)

Consider the linear model
Y = βX + e (5.3)

where e is an error term that arise due to lack of exact relationship be-
tween the auxiliary variable X and the response variable Y . The optimum
value of β is obtained by minimizing

∑
e2
i based on n paired observations

(xi, yi), i = 1, 2, ..., n, which is obtained as

β̂opt =
Cov(x, y)

V ar(x)
=
Sxy
S2
x

(5.4)

Comparing equation (5.2) and equation (5.4)gives

µ̂opt = −β̂opt

so that Y R can now be expressed as

Ŷ R = y + β(X − x) (5.5)

with a corresponding variance expressed as

V ar(Ŷ R) =
N − n
nN

(
S2
y + β2S2

x − 2βSxy
)

(5.6)

which simplifies to

V ar(Ŷ R)min =
N − n
nN

(
1− ρ2

xy

)
S2
Y (5.7)
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where ρXY is the correlation coefficient between X and Y .

Unbiased sample estimates for V ar(Ŷ R) and V ar(Ŷ R)min are therefore given
as

v(Ŷ R) =
N − n
nN

(
s2
y + β2s2

x − 2βsxy
)

and
v(Ŷ R)min =

N − n
nN

(
1− ρ2

xy

)
s2
y

Now, to obtain the regression estimator for population total under SRSWOR,
equation (5.5) is multiplied by N and its corresponding minimum variance
is obtained by multiplying equation (5.7) by N2.

As previously noted in stratified random sampling with k strata,that we can
either have separate regression estimator or combined regression estimator
for finite population total depending on whether we use the form ŶD or
ŶDC in the estimation procedure. Separate regression estimator for finite
population total can be expressed as

ŶR(St) =

k∑
c=1

NcŶ Rc (5.8)

where Ŷ Rc = yc + βc(Xc − xc) is the regression mean estimate in each stra-
tum.

To obtain a combined regression estimator, all sample information in all
strata is combined first and then implemented in the regression estimator.
Let Ŷ RC denote the combined regression estimator for population mean,

then by defining yst =
k∑
c=1

Nc
N Ŷ Rc and xst =

k∑
c=1

Nc
N X̂Rc, Ŷ RC can be obtained

using
ŶRC = yst + β(X − xst) (5.9)

Even though several studies have been done on regression estimation method,
focus has been on using complete data to estimate population mean. In this
study, separate regression estimation is considered and a regression estima-
tor is constructed under non-response in the response variable. A regression
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form of the estimator ŶD, denoted as ŶDR, is therefore suggested as

ŶDR =

2∑
j=1

k∑
c=1

Ncj

[
Ŷ
∗
cj + βcj

(
Xcj − xcj

) ]
(5.10)

where Ŷ
∗
cj = ŶTcj

Ncj
.

For cth stratum and in jth response group, ŶDRcj is expressed as

ŶDRcj = Ncj
[
Ŷ
∗
cj + βcj

(
Xcj − xcj

) ]
(5.11)

To study some properties of ŶDR, an assumption that the regression coef-
ficient is known in prior as β0cj (say) is made, so that ŶDR is expressed
as

ŶDR =

2∑
j=1

k∑
c=1

Ncj

[
Ŷ
∗
cj + β0cj

(
Xcj − xcj

) ]
Theorem 5.1: ŶDR is an unbiased estimator for finite population total YT .

Proof. This proof involves showing that E(ŶDR) = YT .

Consider a random sample (xi, yi), i = 1, 2, ..., n drawn by SRSWOR. Then
E(ŶDR) is obtained as follows

E
(
ŶDR

)
=

2∑
j=1

k∑
c=1

NcjE
[
Ŷ
∗
cj + β0cj

(
Xcj − xcj

) ]
=

2∑
j=1

k∑
c=1

Ncj

[
Y
∗
cj + β0cj

(
Xcj − E (xcj)

) ]
=

2∑
j=1

k∑
c=1

Ncj

[
Y
∗
cj + β0cj

(
Xcj −Xcj

) ]
=

2∑
j=1

k∑
c=1

NcjY
∗
cj

=YT

Hence the proof.
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To obtain the expression for V ar(ŶDR), a case of an arbitrary value for the
regression coefficient in considered.

Theorem 5.2: For a known value of the regression coefficient, the expres-
sion of V ar(ŶDR) is given as

2∑
j=1

k∑
c=1

Ncj(Ncj − ncj)
ncj

[
S2∗
ycj + β2

0cjS
2
xcj − 2β0cjSxycj

]
(5.12)

where S2∗
ycj is Var(Ŷ

∗
cj).

Proof. Here, we obtain the expression of V ar(ŶDR) for a known regression
coefficient and we proceed as follows,

V ar(ŶDR) =E
[
ŶDR − E(ŶDR)

]2
=E
[ 2∑
j=1

k∑
c=1

Ncj

[
Ŷ
∗
cj + β0cj

(
Xcj − xcj

) ]
− YT

]2

=E
[ 2∑
j=1

k∑
c=1

Ncj

[
Ŷ
∗
cj + β0cj

(
Xcj − xcj

) ]
−

2∑
j=1

k∑
c=1

NcjY cj

]2

=

2∑
j=1

k∑
c=1

N2
cjE
[(

Ŷ
∗
cj − Y cj

)
− β0cj

(
xcj −Xcj

) ]2

=

2∑
j=1

k∑
c=1

N2
cj

[
E
(
Ŷ
∗
cj − Y cj

)2

+ β2
0cjE

(
xcj −Xcj

)2 − 2β0cjSxycj

]
=

2∑
j=1

k∑
c=1

Ncj(Ncj − ncj)
ncj

[
S2∗
ycj + β2

0cjS
2
xcj − 2β0cjSxycj

]
where, Sxycj = β0cjE

(
xcj −Xcj

)(
Ŷ
∗
cj − Y cj

)
Hence the proof.

As ncj becomes large and tends close to Ncj , the expression for V ar(ŶDR)

tends to zero. That is,

lim
ncj→Ncj

V ar(ŶDR)→ 0 (5.13)
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This is an indication that ŶDR is not only unbiased, but also a consistent
estimator for finite population total.

Corollary 5.1 An unbiased sample estimate of variance of ŶDR is thus given
as

̂V ar(ŶDR) =

2∑
j=1

k∑
c=1

Ncj(Ncj − ncj)
ncj(ncj − 1)

[
s2∗
ycj + β2

0cjs
2
xcj − 2β0cjsxycj

]
(5.14)

Now, for the jth response group in stratum c, V ar(ŶDRcj) is obtained from
the expression

V ar(ŶDRcj) =
Ncj(Ncj − ncj)

ncj

[
S2∗
ycj + β2

0cjS
2
xcj − 2β0cjSxycj

]
(5.15)

The problem now is how to obtain the value of β0cj that minimizes V ar(ŶDRcj)
in all the strata.

Theorem 5.3: The optimal value of β0cj that minimizes V ar(ŶDRcj) is given
by

β0cj = Bcj =
Scjxy

S2
cjx

=

Ncj∑
i=1

(
Ycij − Y cj

) (
Xcij −Xcj

)
Ncj∑
i=1

(
Xcij −Xcj

)2

(5.16)

to give a minimum variance expressed as

V ar(ŶDRcj)min =
Ncj(Ncj − ncj)

ncj
S2∗
ycj

[
1− ρ2

cj

]
(5.17)

where Bcj is the population regression coefficient of Y on X and ρcj is the
population correlation coefficient betweenX and Y , both in the jth response
group in stratum c.

Proof. To proof that the optimal value of β0cj is expressed as given in equa-
tion (5.16) and V ar(ŶDRcj)min is obtained using the expression in equation
(5.17), the value of Bcj can theoretically be pre-assigned since it does not
depend on the characteristic of any sample drawn.

73



Now, in equation (5.15), let

β0cj = Bcj + q =
Sxycj

S2
xcj

+ q, where q is any constant (5.18)

to obtain

V ar(ŶDRcj) =
Ncj(Ncj − ncj)

ncj

[
S2∗
ycj +

(
Sxycj

S2
xcj

+ q

)2

S2
xcj − 2

(
Sxycj

S2
xcj

+ q

)
Sxycj

]
=
Ncj(Ncj − ncj)

ncj

[
S2∗
ycj +

(
S2
xycj

S4
xcj

+ 2q
Sxycj

S2
xcj

+ q2

)2

S2
xcj − 2

(
Sxycj

S2
xcj

+ q

)
Sxycj

]
=
Ncj(Ncj − ncj)

ncj

[(
S2∗
ycj −

S2
xycj

S2
xcj

)
+ q2S2

xcj

]
(5.19)

Clearly, equation (5.19) is minimum when q = 0. Under this condition,

V ar(ŶDRcj)min =
Ncj(Ncj − ncj)

ncj

[(
S2∗
ycj −

S2
xycj

S2
xcj

)]
(5.20)

But Sxycj = ρxycjSxcjS
∗
ycj then,

V ar(ŶDRcj)min =
Ncj(Ncj − ncj)

ncj
S2∗
ycj

[
1− ρ2

cj

]
(5.21)

Hence the proof.

Therefore, for the entire population, minimum variance of ŶDR is expressed
as

V ar(ŶDR)min =

k∑
c=1

2∑
j=1

Ncj(Ncj − ncj)
ncj

S2
ycj

[
1− ρ2

cj

]
(5.22)

To examine the departure of β0cj from Bcj without any substantial loss of
precision, equations (5.19) and (4.46) are used such that

V ar(ŶDRcj) =
Ncj(Ncj − ncj)

ncj

[
S2∗
ycj

(
1− ρ2

cj

)
+ (β0cj −Bcj)2 S2

xcj

]
= V ar(ŶDR)min

[
1 +

(β0cj −Bcj)2 S2
xcj

S2∗
ycj

(
1− ρ2

cj

) ] (5.23)
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But from Bcj =
S∗xycj
S2
xcj

, equation (5.23) can be simplified as follows

V ar(ŶDRcj) = V ar(ŶDR)min

[
1 +

(β0cj −Bcj)2

B2
cj

S2
xcjB

2
cj

S2∗
ycj

(
1− ρ2

cj

)]
= V ar(ŶDR)min

[
1 +

(
β0cj

Bcj
− 1

)2 S2
xcj

S2∗
ycj

(
1− ρ2

cj

) S2
xycj

S4
xcj

]
= V ar(ŶDR)min

[
1 +

(
β0cj

Bcj
− 1

)2 S2
xycj

S2∗
ycjS

2
xcj

(
1− ρ2

cj

)]
= V ar(ŶDR)min

[
1 +

(
β0cj

Bcj
− 1

)2 ρ2
cj(

1− ρ2
cj

)]
(5.24)

Now, using least square method, the value of βcj that minimizes V ar(ŶDRcj)
is obtained by differentiating equation (5.15) with respect to βcj and equat-
ing to zero and this procedure gives

β̂cj(opt) =
Sxycj

S2
xcj

=
ρcjSxcjS

∗
ycj

S2
xcj

(5.25)

so that substituting the expression for βcj(opt) in equation (5.15) simplifies
to

V ar(ŶDRcj)min =
Ncj(Ncj − ncj)

ncj
S2∗
ycj

[
1− ρ2

cj

]
.

Theorem 5.4: If βcj is the least square estimate of Bcj and

ŶDRcj = Ncj

[
Ŷ
∗
cj + βcj

(
Xcj − xcj

) ]
, (5.26)

then using simple random samples of size ncj , where ncj is large,

V ar(ŶDRcj) =
Ncj(Ncj − ncj)

ncj
S2∗
ycj

[
1− ρ2

cj

]
Proof. By definition, the sampling error of an estimator θ̂ for a parameter θ
is obtained from the quantity θ̂ − θ (Cochran, 1977). That is, the sampling
error of ŶDRcj is obtained from the quantity ŶDRcj − YTcj .
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Now,

ŶDRcj − YTcj =Ncj

[
Y
∗
cj + βcj

(
Xcj − xcj

) ]
− YTcj

=Ncj

[
Y
∗
cj + βcj

(
Xcj − xcj

)
− Y cj

]
=Ncj

[
Y
∗
cj − Y cj + βcj

(
Xcj − xcj

) ]
For approximations, we substitute βcj with Bcj in equation (5.26) to get

ŶDRcj = Ncj

[
Y
∗
cj +Bcj

(
Xcj − xcj

) ]
(5.27)

In this approximation, the error committed is (Bcj − βcj)
(
Xcj − xcj

)
. In a

simple random sample of size ncj , this quantity is of size 1
ncj

since
(
Xcj − xcj

)
and (Bcj − βcj) are both of order 1√

ncj
. But in SRSWOR, the error in the

sample mean of the variate (ycij −Bxcij) is the same as the sampling error
in ŶDRcj . Hence, the sampling error in ŶDRcj is of order 1√

ncj
and conse-

quently, the leading term in E
(
ŶDRcj − YTcj

)2

is V ar(ŶDRcj).

That is, for large samples,

E
(
ŶDRcj − YTcj

)2

= V ar(ŶDRcj) =
Ncj(Ncj − ncj)

ncj
S2∗
ycj

[
1− ρ2

cj

]
(5.28)

Hence the proof.

Given some preassigned β0cj , he departure from βcj(opt) is evaluated as fol-
lows,

Theorem 5.5: Given some pre-assigned β0cj and βcj(opt) obtained from
some sample data, V ar(ŶDR) depends on the difference between β0cj and
βcj(opt).

Proof. In this proof, V ar(ŶDR) is shown to depend on the departure of β0cj

from βcj(opt).
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From equation (5.25), βcj(opt) = Sxycj
S2
xcj

= ρcjSycj
Sxcj

so that

V ar(YDR) =

2∑
j=1

k∑
c=1

Ncj(Ncj − ncj)
ncj

[
S2∗
ycj + β2

0cjS
2
xcj − 2β0cjSxycj

]
=

2∑
j=1

k∑
c=1

Ncj(Ncj − ncj)
ncj

[
S2∗
ycj + β2

0cjS
2
xcj − 2β0cjρcjSxcjSycj

]
=

2∑
j=1

k∑
c=1

Ncj(Ncj − ncj)
ncj

[
S2∗
ycj + β2

0cjS
2
xcj − 2β0cjρcjSxcjSycj − ρ2

cjS
2∗
ycj + ρ2

cjS
2∗
ycj

]
But from βcj(opt) =

ρcjS
∗
ycj

Sxcj
, ρcjSxcjS∗ycj = S2

xcjβcj(opt) so that V ar(YDR) can
be expressed as

V ar(YDR) =

2∑
j=1

k∑
c=1

Ncj(Ncj − ncj)
ncj

[ (
1− ρ2

cj

)
S2∗
ycj + β2

0cjS
2
xcj − 2β0cjS

2
xcjβcj(opt) + β2

cj(opt)S
2
xcj

]
=

2∑
j=1

k∑
c=1

Ncj(Ncj − ncj)
ncj

[ (
1− ρ2

cj

)
S2∗
ycj +

(
β0cj − βcj(opt)

)2
S2
xcj

]
(5.29)

From equation (5.29), it can be noted that as the difference between β0cj

and βcj(opt) increases, variance of ŶDR increases.

Hence the proof.

5.3 Efficiency of ŶDR

In this section, efficiency of ŶDR relative to that of the mean per unit esti-
mator ŶT (SRS) and the usual ratio estimator ŶTR is evaluated. This is done
under stratified random sampling. Also, efficiency ŶDR relative to that of
ŶD is compared.

Using stratum c and response group j, the MSE’s under the assumption of
large samples are expressed as

MSE(ŶDRcj) =
Ncj(Ncj−ncj)

ncj

[ (
1− ρ2

cj

)
S2∗
ycj

]
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MSE(ŶDcj) =
Ncj(Ncj−ncj)

ncj

[
S2
ycj +R

2
cjS

2
xcj − 2RcjρcjSxcjSycj

]
MSE(ŶTRcj) =

Ncj(Ncj−ncj)
ncj

[
S2
ycj +R2

cjS
2
xcj − 2RcjρcjSxcjSycj

]
MSE(ŶTcj)SRS =

Ncj(Ncj−ncj)
ncj

S2
ycj

ComparingMSE(ŶDRcj) andMSE(ŶTcj)SRS , it can be observed thatMSE(ŶDRcj) =(
1− ρ2

cj

)
MSE(ŶTcj)SRS .

But 0 < ρ2
cj < 1, which implies that MSE(ŶDRcj) < MSE(ŶT )SRS . Hence,

ŶDRcj is more precise than ŶT (SRS) and consequently, ŶDR performs better
than ŶT (SRS).

Comparison of ŶDRcj and ŶTRcj shows that ŶDRcj gives precise estimates
than ŶTRcj only if MSE(ŶDRcj) < MSE(ŶTRcj)

or if
(
1− ρ2

cj

)
S2
Y cj ≤ S2

ycj +R2
cjS

2
xcj − 2RcjρcjSxcjSycj

or if (RcjSxcj − ρcjSycj)2 ≥ 0

which is always true for all Rcj , Sxcj , ρcj , Sycj

Hence, ŶDRcj performs better than ŶTRcj and consequently ŶDR is better
than ŶTR.

For ŶDRcj and ŶDcj , ŶDRcj is more efficient than ŶDcj only ifMSE(ŶDRcj) <

MSE(ŶDcj)

or if
(
1− ρ2

cj

)
S2
Y cj ≤ S2

ycj +R
2
cjS

2
xcj − 2RcjρcjSxcjSycj

or if
(
RcjSxcj − ρcjSycj

)2 ≥ 0

which is always true for all Rcj , Sxcj , ρcj , Sycj

Hence, ŶDRcj is a better estimator than ŶTRcj , consequently ŶDR is more
efficient than ŶTR.
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Clearly, from the comparisons of ŶDR and other ratio estimators, we have
observed that ŶDR performs better than other ratio estimators.

5.4 Multivariate Form of ŶD

In multivariate ratio estimation, an estimator is obtained using a p-component
auxiliary random vector. In this section, therefore, we construct a multivari-
ate form of the unbiased ratio estimator in equation (4.1). That is, a multi-
auxiliary variables Xi, i = 1, 2, . . . , N is considered.

In this section, the general multivariate ratio form suggested by Olkin (1958)
and the multivariate ratio form in stratified random sampling suggested by
Ngesa et al. (2012) is used. Olkin (1958) suggested a multivariate ratio
estimator for population total under simple random sampling scheme as

ŶMR =

p∑
l=1

Wl
y

xl
Xl =

p∑
l=1

WlrlXl (5.30)

where W ′l s are weights with a linear constraint that
p∑
l=1

Wl = 1

While extending the work of Olkin (1958), Ngesa et al. (2012) considered
a stratified random sampling scheme with varying weights in each stratum
and defined a multivariate ratio estimator for finite population total using
two auxiliary variables as

ŶMRE =

k∑
c=1

ŶMRc (5.31)

where ŶMRc is the stratum estimator for stratum finite population total in
stratum c and is computed from the relation

ŶMRc = Wc1ŶTc1 +Wc2ŶTc2

subject to the condition that
p∑
l=1

Wcl = 1 and that ŶTcl = y
xl
Xl, c = 1, 2, . . . , k.
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Using simulated data, Ngesa et al. (2012) observed that their proposed
estimator in equation (5.31) had a smaller bias compared to Olkin’s. Multi-
variate ratio estimator constructed by Olkin (1958) and Ngesa et al. (2012)
were, however, constructed using a biased ratio estimator. Moreover, the
estimators ŶMR and ŶMRE do not address the problem of non-response
To construct a multivariate form of the estimator YD, Xcijl shall be used
to denote ith observation for the lth auxiliary variable in partition j within
stratum c where i = 1, 2, . . . , Ncj , j = 1, 2 and c = 1, 2, . . . , k.. Using Ycij and
Xcijl, a multivariate ratio estimator is defined as

ŶMD =

k∑
c=1

2∑
j=1

p∑
l=1

Wcjl

[
rcjlXTcjl +

Ncj − 1

ncj − 1
(ytcj − rcjlxtcjl)

]
(5.32)

where rcjl is the mean observation ration for the lth auxiliary variable in
partition j within stratum c and XTcjl is the the lth auxiliary variable popu-
lation total.

Now, equation (5.32) can equivalently be expressed as

ŶMD =

k∑
c=1

2∑
j=1

[
Wcj1ŶTcj1 +Wcj2ŶTcj2+, · · · ,+WcjpŶTcjp

]
(5.33)

so that, from equation (5.33), the expression for the multivariate unbiased
ratio estimator in particular stratum, c, say, is given as

ŶMDc =

2∑
j=1

(
Wcj1ŶTcj1 +Wcj2ŶTcj2+, · · · ,+WcjpŶTcjp

)
for j = 1, 2

(5.34)
Equation (5.32) is the general multivariate form of the estimator (4.2) under

the linear constraint that
p∑
l=1

Wcjl = 1.

In the subsequent steps, we shall consider only stratum c (say) and jth par-
tition, where the multivariate unbiased ratio estimator for finite population
total in stratified random sampling under non-response is expressed as

ŶMDcj = Wcj1ŶTcj1 +Wcj2ŶTcj2+, · · · ,+WcjpŶTcjp (5.35)
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Next, we wish to obtain variance of the multivariate form of the proposed
estimator. Using ŶMDcj as the unbiased multivariate ratio estimator for YTcj .
In this property, two cases of the auxiliary variable are considered.

Case I: When p = 2,

Theorem 5.6: For a two component auxiliary random vector, variance of
the multivariate unbiased ratio estimator ŶMD is given as

V (ŶMD) =

k∑
c=1

2∑
j=1

[
W 2
cj1Vcj1 + 2Wcj1Wcj1Vcj12 +W 2

cj2Vcj2

]
(5.36)

Proof. For p = 2, equation (5.34) reduces to

ŶMDcj =
∑
j=1

(
Wcj1ŶDcj1 +Wcj2ŶDcj2

)
(5.37)

so that for j = 1, we have

ŶMDc1 = Wc11ŶDc11 +Wc12ŶDc12 (5.38)

Now, for any cth stratum, say, the population total YTc is obtained from

YTc =
2∑
j=1

YTcj so that if we substract YTc1 from both sides of equation

(5.38), we obtain

ŶMDc1 − YTc1 = Wc11ŶDc11 +Wc12ŶDc12 − YTc1 (5.39)

But in each stratum and in each response group, Wcj1 + Wcj2 = 1, which
implies that

YTc1 = (Wc11 +Wc12)YTc1 (5.40)

Replacing equation (5.40) to the right hand side of equation (5.39) gives

ŶMDc1 − YTc1 = Wc11ŶDc11 +Wc12ŶDc12 − (Wc11 +Wc12)YTc1

= Wc11(ŶDc11 − YTc1) +Wc12(ŶDc12 − YTc1)
(5.41)

Squaring both sides of equation (5.41) and taking expectation results to

V (ŶMDc1) = W 2
c11V (ŶDc11) + 2Wc11Wc12Cov(ŶDc11, ŶDc12) +W 2

c12V (ŶDc12)

(5.42)
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By letting Vc11 = Var(ŶDc11), Vc12 = Var(ŶDc12) and
Vc112 = Cov(ŶDc11, ŶDc12), equation (5.42) can be written as

V (ŶMDc1) = W 2
c11Vc11 + 2Wc11Wc12Vc112 +W 2

c12Vc12 (5.43)

In matrix form,

V (ŶMDc1) = V
(
Wc11ŶDc11 +Wc12ŶDc12

)
= V

([
Wc11 Wc12

] [ŶDc11

ŶDc12

])
=
[
Wc11 Wc12

] [ Vc11 Vc112

Vc112 Vc12

][
Wc11

Wc12

]
= Wc1

′ Σ Wc1

(5.44)

where Σ is variance-covariance matrix.

Therefore, for the entire population, variance of ŶMD is expressed as

V (ŶMD) =

k∑
c=1

2∑
j=1

[
W 2
cj1Vcj1 + 2Wcj1Wcj1Vcj12 +W 2

cj2Vcj2

]
(5.45)

Hence the proof.

Case II: When p ≥ 3

Theorem 5.7: For p ≥ 3, variance of ŶMD is obtained using the expression

V (ŶMD) =

k∑
c=1

2∑
j=1

p∑
l=1

W 2
cjlVcjl + 2

k∑
c=1

2∑
j=1

p−1∑
l=1

WcjlWcjl′Vcjll′ (5.46)

Proof. For p ≥ 3, the multivariate estimator in stratum c takes the general
form

ŶMDcj = Wcj1ŶDcj1 +Wcj2ŶDcj2+, . . . ,+WcjpŶDcjp (5.47)

For a particular response group j = 1 (say), the multivariate estimator be-
comes

ŶMDc1 = Wc11ŶDc11 +Wc12ŶDc12+, . . . ,+Wc1pŶDc1p (5.48)
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Now, subtracting ŶTc1 from equation (5.48) gives

ŶMDc1 − YTc1 = Wc11ŶDc11 +Wc12YDc12+, . . . ,+Wc1pŶDc1p − YTc1 (5.49)

Substituting the linear constraint
p∑
l=1

Wc1l = 1 in equation (5.49) and rear-

ranging gives

ŶMDc1−YTc1 = Wc11(ŶDc11−YTc1)+Wc12(ŶDc12−YTc1)+, . . . ,+Wc1p(ŶDc1p−YTc1)

(5.50)
Squaring both sides of equation (5.50) and taking expectation simplifies to

V (ŶMDc1)

p∑
l=1

W 2
c1lVc1l + 2

p−1∑
l=1

Wc1lWc1l′Vc1ll′ (5.51)

where Vc1l = Variance(ŶDc1l), Vc1ll′ = Covariance(ŶDc11, ŶDc1l′) and l′ 6= l

For the entire population, the expression for variance of ŶMD takes the form

V (ŶMD) =

k∑
c=1

2∑
j=1

p∑
l=1

W 2
cjlVcjl + 2

k∑
c=1

2∑
j=1

p−1∑
l=1

WcjlWcjl′Vcjll′ (5.52)

Hence the proof.

The problem now is obtaining the expressions for the values of Wcj1 and
Wcj2 that minimize V (ŶMD) for p = 2.

Theorem 5.8: Consider the case of p = 2, the values of the weights Wcjl’s
that minimize V (ŶMDcj) is given by the expressions

Wcj1 =
(Vcj2 − Vcj12)

(Vcj1 − 2Vcj12 + Vcj2)
(5.53)

and
Wcj2 =

(Vcj1 − Vcj12)

(Vcj1 − 2Vcj12 + Vcj2)
(5.54)

Proof. In this proof, the problem is finding the expressions for the values of

Wcjl’s that minimize V (ŶMDcj) subject to the linear condition
2∑
l=1

Wcjl = 1.

Considering a particular response group j = 1, (say), so that the focus is to
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minimize V (ŶMDc1) subject to the condition that Wc11 + Wc12 = 1. To do
this, we conditionally minimize the function

Φ = V (ŶMDc1) + λ(1−Wc11 −Wc12) (5.55)

where λ is the Lagrange’s Multiplier.

From equation (5.43), V (ŶMDc1) is expressed as

V (ŶMDc1) = W 2
c11Vc11 + 2Wc11Wc12Vc112 +W 2

c12Vc12 (5.56)

which, when replaced in equation (5.55) gives

Φ = W 2
c11Vc11 + 2Wc11Wc12Vc112 +W 2

c12Vc12 + λ(1−Wc11 −Wc12) (5.57)

To minimize Φ, equation (5.57) is differentiated partially with respect to
Wc11 and Wc12 separately and equated to 0 as shown below

∂Φ

∂Wc11
= 2Wc11Vc11 + 2Wc12Vc112 − λ (5.58)

and
∂Φ

∂Wc12
= 2Wc12Vc12 + 2Wc11Vc112 − λ (5.59)

Equating both equations (5.58) and (5.59) to zero gives

Wc11(Vc11 − Vc112) = Wc12(Vc12 − Vc112) (5.60)

But Wc12 = 1−Wc11 so that equation (5.60) can be expressed as

Wc11(Vc11 − Vc112) = (1−Wc11)(Vc12 − Vc112)

which implies that

Wc11{(Vc11 − Vc112) + (Vc12 − Vc112)} = (Vc12 − Vc112) (5.61)

From equation (5.61), we have

Wc11 =
(Vc12 − Vc112)

{(Vc11 − Vc112) + (Vc12 − Vc112)}

=
(Vc12 − Vc112)

(Vc11 − 2Vc112 + Vc12)

(5.62)
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On the other hand, the value of Wc12 that minimizes Φ is obtained using the
linear condition Wc12 = 1−Wc11 and is thus given by

Wc12 =
(Vc11 − Vc112)

(Vc11 − 2Vc112 + Vc12)
(5.63)

Now, using a similar procedure for j = 2, we obtain

Wc21 =
(Vc22 − Vc212)

(Vc21 − 2Vc212 + Vc22)
(5.64)

and
Wc22 =

(Vc21 − Vc212)

(Vc21 − 2Vc212 + Vc22)
(5.65)

Therefore, from equations (5.62), (5.63), (5.64) and (5.65), it can be seen
that for p = 2,

Wcj1 =
(Vcj2 − Vcj12)

(Vcj1 − 2Vcj12 + Vcj2)
and Wcj2 =

(Vcj1 − Vcj12)

(Vcj1 − 2Vcj12 + Vcj2)

Hence the proof.

Corollary 5.2: From Theorem 5.8, the minimum variance of ŶMDcj at the
optimal values of Wc11 and Wc12, denoted by Vmin(ŶMDcj), is given by

Vmin(ŶMDcj) =
Vcj1Vcj2 − V 2

cj12

Vcj1 + Vcj2 − 2Vcj12
(5.66)

Proof. Using the expressions for Wcj1 and Wcj2 given in equations (5.53)
and (5.54), the expression for the minimum variance of ŶMDcj is given by

Vmin(ŶMDcj) =
Vcj1Vcj2 − V 2

cj12

Vcj1 + Vcj2 − 2Vcj12

Now, from equation (5.43),

V (ŶMDcj) = W 2
cj1Vcj1 + 2Wcj1Wcj2Vcj12 +W 2

cj2Vcj2 (5.67)

Substituting the expressions for Wcj1 and Wcj2 given as

Wcj1 =
(Vcj2 − Vcj12)

(Vcj1 − 2Vcj12 + Vcj2)
and Wcj2 =

(Vcj1 − Vcj12)

(Vcj1 − 2Vcj12 + Vcj2)
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in equation (5.67) and simplifying gives

Vmin(ŶMDcj) =
Vcj1Vcj2 − V 2

cj12

Vcj1 + Vcj2 − 2Vcj12

Hence the proof.

Corollary 5.3: An unbiased estimator for Vmin(ŶMDcj) for p = 2 is given
by

̂Vmin(ŶMDcj) =
vcj1vcj2 − v2

cj12

vcj1 + vcj2 − 2vcj12
(5.68)

where vcj1, vcj2 and vcj12 are unbiased estimators for Vcj1, Vcj2 and Vcj12

respectively.

Corollary 5.4: If Vcjll′ = Covariance(ŶDcjl, ŶDcjll′) = 0 for any l 6= l′,
variance of ŶMD reduces to

V (ŶMD) =

k∑
c=1

2∑
j=1

p∑
l=1

W 2
cjlVcjl (5.69)

Corollary 5.5: If Vcjll′ = 0 for any l 6= l′ and p = 2, then

Wcj1 =
Vcj2

(Vcj1 + Vcj2)
and Wcj2 =

Vcj1
(Vcj1 + Vcj2)

(5.70)

and the corresponding Vmin(ŶMDcj) is given by

Vmin(ŶMDcj) =
Vcj1Vcj2
Vcj1 + Vcj2

(5.71)

Now, for the general multivariate form, ŶMD, we conditionally minimize
the function

Θ =

k∑
c=1

2∑
j=1

(
p∑
l=1

W 2
cjlVcjl + 2

p−1∑
l=1

WcjlWcjl′Vcjll′ + λ(1−
p∑
l=1

Wcjl)

)
(5.72)
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where λ is the Lagrange’s Multiplier.

Equation (5.72) is minimized by differentiating Θ partially with respect to
Wcjl and equating to zero to get

∂Θ

∂Wcjl
= 2WcjlVcjl + 2

p−1∑
l=1

Wcjl′Vcjll′ − λ for l = 1, 2, ..., p (5.73)

In particular,

∂Θ
∂Wcj1

= 2Wcj1Vcj1 + 2Wcj2Vcj12 + 2Wcj3Vcj13 + · · ·+ 2WcjpVcj1p − λ
∂Θ

∂Wcj2
= 2Wcj1Vcj21 + 2Wcj2Vcj2 + 2Wcj3Vcj23 + · · ·+ 2WcjpVcj2p − λ

∂Θ
∂Wcj3

= 2Wcj1Vcj31 + 2Wcj2Vcj32 + 2Wcj3Vcj3 + · · ·+ 2WcjpVcj3p − λ
...
∂Θ

∂Wcjp
= 2Wcj1Vcjp2 + 2Wcj2Vcjp2 + 2Wcj3Vcjp3 + · · ·+ 2WcjpVcjp − λ

(5.74)
Equating the set of equations (5.74) to zero gives,

2Vcj1 2Vcj12 2Vcj13 · · · 2Vcj1p
2Vcj21 2Vcj2 2Vcj23 · · · 2Vcj2p
2Vcj31 2Vcj32 2Vcj3 · · · 2Vcj3p

...
...

2Vcjp2 2Vcjp2 2Vcjp3 · · · 2Vcjp




Wcj1

Wcj2

Wcj3
...

Wcjp

 =


λ

λ

λ
...
λ


Or equivalently,

Vcj1 Vcj12 Vcj13 · · · Vcj1p
Vcj21 Vcj2 Vcj23 · · · Vcj2p
Vcj31 Vcj32 Vcj3 · · · Vcj3p

...
...

Vcjp2 Vcjp2 Vcjp3 · · · Vcjp




Wcj1

Wcj2

Wcj3
...

Wcjp

 =


λ
2
λ
2
λ
2
...
λ
2

 (5.75)

which is a consistent linear system of p linear equations. A consistent linear
system is a linear system with unique solutions.

The augmented matrix of the linear system given in equation (5.75) is given
as
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Vcj1 Vcj12 Vcj13 · · · Vcj1p q

Vcj21 Vcj2 Vcj23 · · · Vcj2p q

Vcj31 Vcj32 Vcj3 · · · Vcj3p q
...

...
...

Vcjp2 Vcjp2 Vcjp3 · · · Vcjp q

 (5.76)

where q = λ
2 , while the coefficient matrix is given as

Vcj1 Vcj12 Vcj13 · · · Vcj1p
Vcj21 Vcj2 Vcj23 · · · Vcj2p
Vcj31 Vcj32 Vcj3 · · · Vcj3p

...
...

Vcjp2 Vcjp2 Vcjp3 · · · Vcjp


Now, equation (5.75) can be expressed as

V W = λ (5.77)

so that using row operations, values of the weights can be obtained from

I W = V−1λ, (5.78)

where I is an identity matrix.

For known values of Vcjl and Vcjll′ (where l = 1, 2, 3, . . . p and l 6= l′) row
operations can involve any or all of the following

i) Adding a multiple of one row to another row(s)

ii) Interchanging two rows

iii) Multiplying all entries of one row by a non-zero constant

Using these row operations to reduce equation (5.79) to
1 0 0 · · · 0 d1

0 1 0 · · · 0 d2

0 0 1 · · · 0 d3
...

...
...

0 0 0 · · · 1 dp

 (5.79)

gives the solution of the linear system (5.75) as Wcjl = dl. That is, Wcj1 =

d1,Wcj2 = d2, . . . ,Wcjp = dp.
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5.5 Simulation Study

In this section, performances of the estimators ŶD, ŶDC , ŶDR and ŶMD are
verified using simulated data. A hypothetical population of 300 units con-
sisting of three strata (c = 1, 2, 3), where the stratum sizes are randomly
generated such that the sum equals to 300, is considered. Krejcie-Morgan-
Sample-Size-Table is used to get overall sample size as 170 and the stratum
sample sizes are allocated using proportional allocation technique. For uni-
variate estimation, normally distributed random vectors for the auxiliary
variable X and for the response variable Y are generated and a linear model
of Y on X is fit in each stratum using the linear regression model in R. For
multivariate estimation, another auxiliary variable is added so that we have
a two-component auxiliary random vector. A random number generator is
then used to identify sample units in each response group in all the three
strata. That is, sampling is done index-wise such that if ith index is selected
then the sample element will be the ith pair (Xi, Yi). For the non-response,
a non-response rate of 20% is assumed. Using this procedure, population
and sample sizes are obtained as shown in Table 5.1.

Table 5.1: Stratum Population and Sample Sizes

Stratum Id. Response Group Pop. Size, Ncj Sample Size, ncj Subsample, mc

Stratum 1
j=1 133 75 -
j=2 34 19 16

Stratum 2
j=1 75 42 -
j=2 19 11 10

Stratum 3
j=1 31 18 -
j=2 8 5 4

From Table 5.1, it is observed that in each stratum, a sub-sample of size mc

is obtained from the nc2 non-responding units and an assumption that the
sub-sampled units will fully respond is made.

Next is to show how the random data set was generated from normal popu-
lation with different parameters as shown in Table 5.2
From Table 5.2, both the response variable and the auxiliary variables are
from normal population with different parameters in each stratum. The
weights column gives randomly generated values from uniform distribution
for each stratum using R software. Values of the weights in multivariate
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Table 5.2: Random Data Parameters

Stratum Study Variable, Y
Auxiliary Random Vector, X Weights

p=1, X1 p=2, X2 Wcj1 Wcj2

Stratum 1 rnorm(167, 35, 12) rnorm(167, 45, 14.5) rnorm(167, 43, 18) 0.76 0.24
Stratum 2 rnorm(94, 35, 11) rnorm(94, 40, 12) rnorm(94, 42, 14) 0.67 0.33
Stratum 3 rnorm(39, 48, 14) rnorm(39, 32, 16) rnorm(39, 45, 14.5) 0.50 0.50

ratio estimation can be obtained using randomly generated values such that
the sum of the weights is 1 (one) or utilizing sample information using ex-
pression given in equation (5.68). The weights shall be used in multivariate
estimation of population total for a two-component auxiliary random vector.

We shall begin with univariate estimation of finite population total using
one auxiliary variable X1. In univariate estimation, efficiency of the esti-
mators ŶD, ŶDC and ŶDR is compared with the usual ratio estimator under
SRSWOR and under stratified random sampling. The following estimators
are, thus, considered:

Ratio estimator under SRSWOR, t1 =
2∑
j=1

rjXTj , where rj =
yj
xj

Ratio estimator under stratified sampling, t2 =
2∑
j=1

k∑
c=1

rcjXTcj , where rcj =

ycj
xcj

Unbiased ratio estimator under SRSWOR, ŶD(SRS) =
2∑
j=1

[
rjXTj+

Nj−1
nj−1 (ytj − rjxtj)

]
,

where rj =
yj
xj

Unbiased separate ratio estimator, ŶD =
k∑
c=1

2∑
j=1

[
rcjXTcj+

Ncj−1
ncj−1 (ytcj − rcjxtcj)

]
Unbiased combined ratio estimator, ŶDC =

k∑
c=1

2∑
j=1

[
r∗jXTcj+

Ncj−1
ncj−1 {ytcj − r

∗
jxtcj}

]
,

where r∗j =

k∑
c=1

ncjycj

k∑
c=1

ncjxcj
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Unbiased regression estimator, ŶDR =
2∑
j=1

k∑
c=1

Ncj

[
Ŷ
∗
cj + β0cj

(
Xcj − xcj

) ]
with a corresponding variances:

V ar(t1) =
2∑
j=1

Nj(Nj−nj)
nj

[
S2
yj +R2

jS
2
xj − 2RjSxyj

]
V ar(t2) =

k∑
c=1

2∑
j=1

Ncj(Ncj−ncj)
ncj

[
S2
ycj +R2

cjS
2
xcj − 2RcjSxycj

]
V ar(ŶD(SRS)) =

2∑
j=1

Nj(Nj − nj)
nj

[
S2
yj +R

2
jS

2
xj − 2RjSxyj

+
1

nj − 1

{
S2
rjS

2
xj + Srxj

}]
V ar(ŶD) =

k∑
c=1

2∑
j=1

Ncj(Ncj − ncj)
ncj

[
S2
ycj +R

2
jS

2
xcj − 2RjSxycj

+
1

ncj − 1

{
S2
rjS

2
xcj + Srxcj

}]
V ar(ŶDC) =

k∑
c=1

2∑
j=1

Ncj(Ncj − ncj)
ncj

[
S2
ycj +R

∗2
j S

2
xcj − 2R

∗
jSxycj

+
1

ncj − 1

{
S2
r∗jS

2
xcj + Sr∗xcj

}]
V ar(ŶDR) =

2∑
j=1

k∑
c=1

Ncj(Ncj−ncj)
ncj

[
S2
Y cj + β2

0cjS
2
Xcj − 2β0cjSXY cj

]
Performances of the estimators are examined at four different levels. The
first level involves comparing the adopted sub-sampling method with an-
other non-response correction method, which is partial deletion method.
The second level of comparison involves comparing performance of ŶD un-
der SRSWOR (ŶD(SRS)) and under stratified random sampling. The third
level of comparison entails examining the performance of different forms
of ŶD constructed under stratified random sampling. Here, efficiency of ŶD,
ŶDC and ŶDR is examined relative to ŶD(SRS). The last level of comparison
shall involve comparing the performance of the multivariate unbiased ratio
estimator ŶMR relative to the multivariate estimators by Olkin (1958) and
Ngesa et al. (2012). For univariate estimation, only the first three levels of
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comparisons are considered.

Now for the univariate, the summary statistics for the response and the aux-
iliary variables were obtained as shown in Table 5.3 and Table 5.4.

Table 5.3: Summary Statistics for SRSWOR

Statistics
Response Group

Total
j=1 j=2

XTj 10694.11 2665.41 13359
rj 0.7399 0.7169
S2
xj 207.59 165.02 372.61
S2
yj 166.46 147.09 313.55
S2
rj 0.282 0.103 0.385
Sxyj 13.10 10.44 23.54
Srxj -4.79 -2.46 -7.25

Table 5.3 shows summary statistics for SRSWOR for computation of t1 and
ŶD(SRS). That is, the table gives the summary statistics if the three strata
are collapsed. It can be noted from Table 5.3 that for the population totals
of the auxiliary variable were found to be 10694.11 and 2665.41 for the
responding and non-responding groups respectively. The table also gives
sample estimates for S2

xj , S
2
yj , S

2
rj , Sxyj and Srxj . All the values in Table

5.3 are used to compute t1 and YD(SRS). For stratified population, summary
statistics are as shown in Table 5.4.
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Table 5.4: Summary Statistics

Statistics.
Stratum 1 Stratum 2 Stratum 3

Total
j=1 j=2 j=1 j=2 j=1 j=2

ytcj 2714.32 480.25 1474.99 381.09 514.80 116.69 5682.14
xtcj1 3522.63 729.60 1859.57 403.89 907.67 234.98 7658.34
XTcj1 6193.24 1529.88 3019.30 732.60 1481.57 402.93 13359.52

ycj 36.19 30.02 35.12 38.11 28.60 29.17
xcj1 46.97 45.60 44.28 40.39 50.43 58.75

rcj1 0.7000 0.6915 0.7599 0.8322 0.6399 0.5520
rcj1 0.7705 0.6582 0.7932 0.9436 0.5672 0.4966
r∗j1 j = 1, r11 = 0.7479 j = 2, r12 = 0.7147

s2ycj 139.30 166.99 132.23 112.17 337.28 97.90 985.8797
s2xcj1 244.02 157.49 171.40 98.00 131.30 192.75 994.9591
s2rcj1 0.1664 0.0840 0.5177 0.0902 0.1670 0.0590 1.0843

sxycj1 37.50 52.367 -16.361 28.129 4.146 -89.56 16.221
srxcj1 -4.26 -1.619 -6.584 -1.628 -1.837 -3.09 -19.018
ρxycj 0.2034 0.3229 -0.1087 0.2683 0.0197 -0.652
βcj 0.1537 0.3325 -0.095 0.287 0.0316 -0.465

Table 5.4 gives the estimates of population totals, ratio means, variances,
covariances, correlation coefficients and regression coefficients for all the
strata in each response group. Though the correlation coefficients in each
stratum ρxycj are not zero, the values, however, indicate a weak relationship
between X and Y in each stratum. A look at the values of ρxycj and βcj
shows that the paired values have the same sign and this supports existence
of linear relationship between X and Y . For example, in stratum 1 at j = 1,
both values are positive, while in stratum 2 at j = 1, both values are neg-
ative. It is worth noting that the subscript 1 (for example s2

xcj1 or xcj1) is
used to imply statistics computed with respect to the first component of the
auxiliary random vector. All values in Table 5.4 are used to examine perfor-
mances of t2, ŶD(SRS), ŶD, ŶDC and ŶDR whose statistics are given in Table
5.5.
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Table 5.5: Results of Univariate Estimation

Stratum 1 Stratum 2 Stratum 3
Total

j=1 j=2 j=1 j=2 j=1 j=2

t1 j = 1, t11 = 7997.06 j = 2, t12 = 1904.70 9901.75
ŶD(SRS) j = 1, ŶD1(SRS) = 8000.82, j = 2, YD2(SRS) = 1904.32 9905.14

t2 4772.10 1007.00 2394.90 691.24 840.30 200.10 9905.66
ŶD 4778.50 1004.50 2406.10 699.62 831.56 192.04 9912.32
ŶDC 4774.50 1003.178 2409.87 708.84 818.48 169.15 9883.60
ŶDR 4770.27 997.70 2434.86 689.63 828.98 223.19 9944.62

MSE(t1) j = 1, MSE(t11) = 48414.51 j = 2, MSE(t12) = 13642.42 62056.94
MSE(ŶD(SRS)) MSE(ŶD1(SRS)) = 48077.27 MSE(ŶD2(SRS)) = 13705.25 61782.51

MSE(t2) 23291.31 6362.19 15683.62 2504.44 8392.70 1885.05 58119.32
MSE(ŶD) 21276.40 6527.39 15208.00 2291.84 8662.73 2066.14 56032.53
MSE(ŶDC) 22671.47 6607.19 15015.77 2092.86 9086.66 2598.21 58072.16
MSE(ŶDR) 13734.70 5721.54 7700.27 1780.02 7548.42 450.27 36935.20

PRE(t1) 100.00%
PRE(ŶD(SRS)) 100.44%

PRE(t2) 106.78%
PRE(ŶD) 110.26%
PRE(ŶDC) 106.39%
PRE(ŶDR) 167.62%

From Table 5.5, it is observed that the estimates of population total using
different estimators do not vary significantly from one another with the least
estimate being ŶDC = 9883.60 and the highest being ŶDR = 9944.62. From
the simulated data, the true population total is 10209.35. Now, comparing
the estimates from different estimators and the true population total, it can
be noted that ŶDR has the least absolute deviation from the true mean of
264.73 while ŶDC has the highest absolute deviation from the true mean of
325.75. Therefore, based on bias alone, one can prefer ŶDR, the regression
estimator, to other ratio-type estimators. This conclusion is, however, de-
pendent on the MSE’s of the estimators.

Though in our theoretical proofs, the estimators ŶD, ŶDC and ŶDR were
all shown to be unbiased for finite population total, the population total es-
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timates, however, indicate otherwise. This can be attributed to the weak
correlation between X and Y as presented in Table 5.4. As previously men-
tioned that the use of auxiliary variable in estimation of population param-
eters is based on the existence of a perfect linear relationship between X

and Y such that the regression line of Y on X passes through the origin.
That is, efficiency of any ratio-type estimator is improved if the correlation
coefficients ρxycj’s is close to one. This condition is not met based on the
coefficient values given in Table 5.4.

To examine the appropriateness of the adopted sub-sampling method in this
study, PRE’s of t1 and ŶD(SRS) are compared. By definition, the percent
efficiency of ŶD(SRS) relative to t1 is obtained as follows

PRE(ŶD(SRS)) =
MSE(t1)

MSE(ŶD(SRS))
× 100

=
62056.94

61782.51
× 100

=100.44%

The value 100.44% implies that based on the sampled data, the gain in pre-
cision if sub-sampling method is used compared to partial deletion would
be 0.44%. Though this value is small, there is, however, gain in precision
since 100.44% > 100.00%.

For comparison of the sampling scheme, performances of ŶD under SR-
SWOR and under stratified random sampling are compared. That is, for
this procedure, MSE(ŶD(SRS)) and MSE(ŶD) are compared. From Table
5.5, MSE(ŶD(SRS)) = 61782.51 and MSE(ŶD) = 56032.56, which implies
that ŶD is more efficient than ŶD(SRS) and the gain in precision is[

61782.51

56032.53
× 100

]
− 100 = 10.26%.

The value 10.26% implies that stratification improves precision of ŶD by
10.26%. A similar conclusion can be made by comparing t1 and t2, with
the respective MSE’s being 62056.94 and 58119.32. In this case, the gain in
precision due to stratification is[

62056.94

58119.32
× 100

]
− 100 = 6.8%.
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This observation does not contradict a known knowledge that stratification
improves efficiency estimators (Cochran, 1977).

In each stratum, comparison of MSEs of t2, ŶD and ŶDC in Table 5.5 with
respect to the values of rcj1, r∗j1 and rcj1 in Table 5.4 reveals some under-
lying trend. Results in these two tables show that in each stratum and each
response group, the smaller the value of any of the ratios, the smaller the
corresponding MSE of the population estimate. For instance, for stratum
1, response group 1, r111 = 0.7705, r∗11 = 0.7479 and r111 = 0.7000 and the
corresponding MSEs are MSE(t2) = 23291.31, MSE(ŶDC) = 22647.59 and
MSE(ŶD) = 21276.40. This trend is repeated in all the strata and in all re-
sponse groups.

A similar conclusion can be made when MSE(ŶDC) and MSE(ŶD) are com-
pared with respect to r∗j and rcj . In Section 4.5, it was proofed that efficiency
of either ŶD or ŶDC depends on the values of R∗j and Rcj . The simulated
data supports this proof by showing that MSE(ŶDC) and MSE(ŶD) depends
on the values of r∗j and rcj . For the unbiased regression estimator, ŶDR pro-
duces efficient estimator in all the strata and response groups.

For different forms of ŶD, MSE’s of ŶD, ŶDC and ŶDR are compared using
ŶD(SRS) as the base estimator. The respective PRE’s for ŶD, ŶDC and ŶDR
are 110.26%, 106.39% and 167.62%. These values imply that the regression
estimator ŶDR performs better than ŶD and ŶDC , with a gain in precision
of 67.62%. This observation supports the proof in Section 5.3, where we
showed that ŶDR performs better than other ratio-type estimators in both
SRSWOR and stratified random sampling. Now, relating the absolute devi-
ations of estimates given by ŶD, ŶDC and ŶDR and the corresponding PRE’s,
it can be observed that ŶDR has the smallest absolute difference but a higher
PRE, while ŶDC has the largest absolute difference but the least PRE. This
relation implies that the regression form of the estimator ŶD performs bet-
ter than other unbiased ratio-type estimators in estimating finite population
total in stratified random sampling under non-response.

From the results of the univariate estimation, it can be concluded that sub-
sampling method suggested by Hansen and Hurwitz (1946) produces more
efficient estimators than partial deletion method of correcting non-response.
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It has also been observed that stratification improves efficiency of estima-
tors compared to SRSWOR. Further, the results have indicated that perfor-
mance of separate ratio estimator over combined ratio estimator depends on
the absolute difference between the combined ratio and the individual ratios
in each stratum. In addition, univariate results have confirmed that regres-
sion estimation produces more efficient estimators compared to SRSWOR
and stratified random sampling. All these observations are consistent with
the known literature knowledge on ratio estimation.

For the fourth level of comparison, performance of the multivariate esti-
mator ŶMD for finite population total is examined using a two-component
auxiliary random vector. From equation (5.33), the overall multivariate es-
timator of finite population total is a linear function of the population total
estimator obtained using each component of the auxiliary random vector
pre-multiplied by the weights Wcjl for l = 1, 2, ..., p. Values in Table 5.4
and Table 5.5 give summary statistics with respect to the first component
(X1) of the auxiliary random vector (X). For the second component of the
auxiliary random vector, summary statistics is given in Table 5.6.

Table 5.6: Summary Statistics for X2

Stratum 1 Stratum 2 Stratum 3
Total

j=1 j=2 j=1 j=2 j=1 j=2

xtcj2 3066.19 669.83 1754.97 478.26 811.11 183.61 6963.97
xcj2 40.88 41.86 41.79 47.83 45.06 45.90
XTcj2 5464.19 1360.60 3164.01 808.27 1469.63 352.06 12618.76

rcj2 0.8583 0.8065 0.7909 0.7826 0.5883 0.6052
rcj2 0.8853 0.7172 0.8404 0.7968 0.6346 0.6355
rj2 j = 1, r12 = 0.8206 j = 2, r22 = 0.7344

s2xcj2 261.97 328.95 211.95 143.33 139.74 399.53 1485.47
s2rcj2 0.781 0.556 0.253 0.0073 0.193 0.168 2.034

sxycj2 -7.54 100.38 12.83 23.63 16.79 15.01 161.1
srxcj2 -10.79 -8.47 4.72 -1.90 -2.09 -6.09 -34.06

From Table 5.6, the subscript 2 is used to indicate that the values in the
table are computed with respect to X2. Therefore, to obtain the multivariate
estimate of finite population total using a two-component auxiliary random
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vector, the values in Table 5.4, Table 5.6 and the weights in Table 5.3are
used. While computing Var(ŶMD), an assumption that Cov(Ycjl, Ycjl′) = 0,
for all l 6= l′ is made, so that

V (ŶMD) =

k∑
c=1

2∑
j=1

[
W 2
cj1Vcj1 +W 2

cj2Vcj2

]
.

A similar procedure is used to obtain the estimate of finite population total
using a multivariate form of ŶDC , which shall be denoted as ŶMDC . There-
fore, performances of ŶMD and ŶMDC are compared against the multivariate
ratio estimator by Olkin (1958) and by Ngesa et al. (2012), denoted as tO
and tN respectively. For Olkin’s estimator (1958), the weights are obtained
from the averages of the randomly generated weights such that for j = 1,
W1 = 0.64 and for j = 2, W1 = 0.36. The four multivariate estimators are,
thus, expressed as:

tO =
2∑
l=1

Wl
y
xl
Xl =

2∑
l=1

WlrlXl

tN =
k∑
c=1

ŶMRc

ŶMD =
k∑
c=1

2∑
j=1

2∑
l=1

Wcjl[rcjlXTcjl + Ncj−1
ncj−1 (ytcj − rcjlxtcjl)]

ŶMDC =
k∑
c=1

2∑
j=1

2∑
l=1

Wcjl[r
∗
cjlXTcjl + Ncj−1

ncj−1 (ytcj − r∗cjlxtcjl)]

Using these multivariate estimators and the randomly generated weights
given in Table 5.2, summary statistics are obtained as given in Table 5.7
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Table 5.7: Results for Multivariate Estimation

Stratum 1 Stratum 2 Stratum 3
Total

j=1 j=2 j=1 j=2 j=1 j=2

tO j = 1, tO1 = 6337.98 j = 2, tO2 = 3649.55 9987.53
tN 4392.12 1385.43 2067.71 1090.07 520.2 578.25 10033.77
ŶMD 4395.08 1392.65 2080.83 1090.84 511.80 578.73 10049.72
ŶMDC 4390.48 1394.64 2089.45 1093.17 493.20 578.04 10038.97

MSE(tO) j = 1, MSE(tO1) = 25418.52 j = 2, MSE(tO2) = 9368.08 34786.61
MSE(tN) 16911.3 2543.93 8164.61 1979.19 2569.44 2564.02 34732.49
MSE(ŶMD) 16059.47 2569.46 7855.69 1882.06 2682.22 2548.93 33597.88
MSE(ŶMDC) 16911.3 2419.24 7677.25 1926.99 2925.09 2891.85 34751.72

PRE(tO) 100.00%
PRE(tN) 100.16%
PRE(ŶMD) 103.54%
PRE(ŶMDC) 100.10%

Table 5.7 gives population total estimates as given by the aforementioned
multivariate estimators. Corresponding variances and the percent relative
efficiency with respect to the Olkin’s estimator (1958) are also given in the
table. A look at the population total estimates in Table 5.7 reveals that there
is no big difference in the multivariate estimates except for Olkin’s estima-
tor that has the least value. A look at absolute differences between the esti-
mates and the actual population total (which is 10319.35) in both univariate
(Table 5.5) and multivariate results shows that multivariate estimators gen-
erally have less absolute deviations. But this observation is, nevertheless,
based on the values of the weights.

It is worth noting that Olkin’s multivariate estimator is calculated under SR-
SWOR using patial deletion to take care of the non-response. To check for
appropriateness of sub-sampling method suggested by Hansen and Hurwitz
(1946) over partial deletion, MSE’s of tO and tN are compared. From Ta-
ble 5.7, MSE(tO) = 34786.61 and MSE(tN ) = 34721.49 with corresponding
PRE’s of 100.0% and 100.16%. These PRE’s indicate that if stratification
were to be used instead of SRSWOR, there would be an increase in preci-
sion of the estimator by 0.16%, an observation consistent with the finding of
Ngesa et al. (2012).
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The results in Table 5.7 further indicate that both ŶMD and ŶMDC perform
better than tO since the respective PRE’s indicates an improved precision by
3.54% and 0.1%. Still this is an indication that stratification improves effi-
ciency of estimators. However, when performances of both ŶMD and ŶMDC

are compared with that of tN , a different observation is made. Based on the
PRE’s, it can be seen that tN is slightly more efficient that ŶMDC but less
efficient than ŶMD. On the question of whether to use separate multivariate
ratio estimator or combined multivariate ratio estimator, respective MSE’s
of ŶMD and ŶMDC are compared as shown below

PRE(ŶMD) =
(MSE(ŶMDC)

MSE(ŶMD)
× 100

)
− 100 = 3.5% (5.80)

From equation (5.80), it is clear that when separate multivariate ratio esti-
mator is used instead of a combined multivariate ratio estimator, there is a
gain in precision by 3.5%. Using the PRE’s and the population total esti-
mates of the multivariate estimators, it can be conclude that YMD is most
efficient and has the least absolute deviation from the actual population to-
tal.

Though based on the results in Table 5.7, it is observed that ŶMD performs
better than the other multivariate ratio estimators, the estimates, however,
depend on the choice of the weights. From equation (5.70), the expressions
of the optimal values for weights Wcj1 and Wcj2 for p = 2 is given by

Wcj1 =
Vcj2

(Vcj1 + Vcj2)
and Wcj2 =

Vcj1
(Vcj1 + Vcj2)

For Olkin’s estimator (1958), response groupings are used as two different
strata such that for j = 1,

W11 =
48414.51

48414.51 + 60543.53
= 0.44

and
W12 =

60543.53

48414.51 + 60543.53
= 0.56

or equivalently,
W12 = 1− 0.44 = 0.56.
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Table 5.8: Univariate Variances and Optimal Weights

Estimator Stratum Resp. group
Univariate Variances Optimal Weights

l=1 l=2 Wcj1 Wcj2

tO -
j=1 48414.51 60543.53 0.44 0.56
j=2 13642.42 11741.06 0.54 0.46

tN

c=1
j=1 23291.30 36836.1 0.39 0.61
j=2 6362.19 7363.05 0.46 0.54

c=2
j=1 15683.60 15353.80 0.51 0.49
j=2 2504.44 2833.22 0.47 0.53

c=3
j=1 8392.70 8335.80 0.50 0.50
j=2 1885.05 1948.68 0.49 0.51

ŶMD

c=1
j=1 21276.40 37777.13 0.36 0.64
j=2 6527.39 8831.62 0.42 0.58

c=2
j=1 15208.02 14479.42 0.51 0.49
j=2 2291.84 2803.02 0.45 0.55

c=3
j=1 8662.73 8224.63 0.51 0.49
j=2 2066.14 1971.30 0.51 0.49

ŶMDC

c=1
j=1 22647.60 34013.20 0.40 0.60
j=2 6630.97 7987.40 0.45 0.55

c=2
j=1 15002.10 15032.30 0.50 0.50
j=2 2100.27 2662.76 0.44 0.56

c=3
j=1 9083.28 9073.94 0.50 0.50
j=2 2617.08 2493.46 0.51 0.49

Using this formula, other weights for other multivariate ratio estimators are
computed as shown in Table 5.8.
From Table 5.8, the column for l = 1 represents univariate variances using
the first component (X1) of the auxiliary random vector, while the second
column for l = 2 represents univariate variances using the second compo-
nent. In Table 5.2, values for the weights for each stratum in each response
group are randomly generated, while for SRSWOR (Olkin’s multivariate
estimation), the averages of the randomly generated weights are used. On
the other hand, under minimum variance, the optimal values for the weights
in each response group and stratum are used. For this reason, different val-
ues for the weights are used for each multivariate ratio estimator in each
stratum and response group.
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Using these optimal weights shown in Table 5.8, a summary of the optimal
MSE’s is obtained as shown in Table 5.9. Only MSE’s and PRE’s of the
multivariate estimators are considered.

Table 5.9: Minimum Variance under Optimal Weights

Stratum 1 Stratum 2 Stratum 3
Total

j=1 j=2 j=1 j=2 j=1 j=2

MSE(tO) j = 1, MSE(tO1) = 28252.15 j = 2, MSE(tO2) = 6452, 69 34704.83
MSE(tN) 17320.26 3486.05 7761.98 1349.60 4182.27 959.23 35059.39
MSE(ŶMD) 18221.36 4099.02 7435.27 1312.18 4230.36 1011.03 36309.22
MSE(ŶMDC) 15875.07 3748.99 7508.62 1240.58 4539.31 1279.88 34198.45

PRE(tO) 100.00%
PRE(tN) 98.99%
PRE(ŶMD) 95.58%
PRE(ŶMDC) 101.50%

Table 5.9 shows that ŶMDC has the least variance while ŶMD has the highest
MSE. This implies that the combined multivariate unbiased ratio estimator
is most efficient among the multivariate ratio estimators. The PRE’S For
tN and ŶMD is an indication that the Olkin’s estimator performs better than
these two. For ŶMDC , the gain in precision over Olkin’s multivariate es-
timator (1958) is 1.5%. Based on this observation, we can thus conclude
that ŶMD performs better when we use randomly generated weights, while
YMDC performs better when we use optimal values of the weights.

5.6 Chapter Summary

In this chapter, regression-based unbiased ratio estimators for finite popula-
tion total in stratified random sampling under non-response is constructed.
The problem of non-response in the study variable has been addressed using
the Hansen-Hurwitz sub-sampling method. Using an unbiased ratio estima-
tor, both univariate and multivariate regression-based estimators have been
successfully constructed. Asymptotic properties of the suggested regression-
based unbiased ratio estimators, such as biasness, variance and optimality
conditions, have been studied. Using simulated data, performance of the
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proposed estimators have shown improved efficiency relative to the known
regression-based estimators in literature. Simulation results have supported
the theoretical proofs in both chapter four and chapter five. Conclusively,
the suggested ratio-type estimators perform better than the known ratio-
estimators in literature.
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6. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

6.1 Introduction

This chapter summarizes the work done, conclusions and recommendations
for further research.

6.2 Summary

In sample surveys, use of ratio estimators in estimation procedures has been
extensively adopted by several researchers. This has been done using one
or more auxiliary variables or attributes. As a result, several ratio-type esti-
mators have been constructed. These estimators have, however, suffered a
common drawback that the estimators are biased, though the bias becomes
negligible as the sample size increases. Little effort has been done on how
to minimize bias of ratio estimators while retaining their essential estima-
tors. However, using the bias of the usual ratio estimator, an unbiased ratio
estimator has been constructed. In this study, an unbiased ratio estimator
for finite population total in stratified random sampling under non-response
has been constructed.

In this study, the main objective of construction of an unbiased ratio es-
timator for finite population total in stratified random sampling under non-
response has been motivated by the fact that standard ratio estimators are bi-
ased and thus, the need to develop unbiased ratio estimators. Therefore, un-
biased ratio estimator in stratified random sampling using both separate and
combined ratios has been developed, while considering both univariate and
multivariate estimation procedures. The regression form of the constructed
unbiased ratio estimator has also been obtained. In each case, asymptotic
properties of the constructed estimators have been studied. Further, opti-
mum conditions under which the constructed estimators perform best have
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been established. Using simulated data, asymptotic properties of these un-
biased ratio-type estimators have been verified.

In simulation, a hypothetical population of 300 units with three strata of
stratum sizes 167, 94 and 39 has been considered. Random values have
been generated from normal population by changing the parameters for
each variable in each stratum and a linear model between the study vari-
able and the auxiliary variable was then fit. Simple random samples were
then obtained from each stratum without replacement and various sample
statistics computed. For regression ratio estimation, a predetermined regres-
sion model of the study variable on the auxiliary variable has been assumed,
while for multivariate unbiased ratio estimation, a two-component auxiliary
random vector has been considered. Performance of constructed unbiased
ratio-type estimators have been evaluated using their respective percent rel-
ative efficiency.

From the theoretical and simulation results, it has been observed that, due to
the observed least MSE’s, the suggested estimators perform better than the
usual ratio estimator under SRSWOR. This improved efficiency has been
observed for both separate and combined unbiased ratio estimators. This
finding is consistent with the knowledge that stratification improves the
level of precision of estimators. Moreover, when compared using strati-
fied random sampling, the suggested unbiased ratio estimator has still been
observed to perform better than the usual ratio estimator. Among a class
of unbiased ratio estimators, the results indicate that the unbiased ratio es-
timator is a best linear unbiased estimator since it is not only unbiased but
has the least variance among a class of unbiased linear estimators for finite
population total.

While comparing separate and combined unbiased ratio estimators, it has
been noted that superiority of either separate or combined ratio estimators
over the other depends on the absolute difference between the stratum mean
ratios and the overall mean ratio in each response group. However, despite
this observation, the results further indicate that the unbiased regression
ratio estimator performs better than both separate and combined unbiased
ratio estimators. This is based on the corresponding PRE’s. In particular,
the regression form of the unbiased ratio estimator has a minimum variance
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only when the covariance is the product of the regression coefficient and
variance of the auxiliary variable, an observation consistent with the known
knowledge on regression estimators.

In multivariate ratio estimation, it has been observed that the estimates of
population parameters depend on the choice of the weights for each com-
ponent of the auxiliary random vector. In multivariate ratio estimation,
weights can be randomly generated such that the sum equals to 1 (one)
or can be computed using the expressions for the optimal weights. Us-
ing randomly generated values for weights in each stratum, it was observed
that the separate unbiased ratio estimator performs better than the combined
unbiased ratio estimator. This observation is, however, reversed when op-
timal values of the weights are used. That is, under optimal weights, the
combined unbiased ratio estimator performs better than the separate unbi-
ased ratio estimator. All these observation have been based on large sample
approximations and proportional allocation of sample sizes in each stratum.

6.3 Conclusion

In this study, the general objective was to construct an unbiased ratio esti-
mator for finite population total in stratified random sampling under non-
response. Specifically, the study aimed at constructing an unbiased ratio es-
timator in stratified random sampling under non-response. Also, the study
aimed at deriving regression and multivariate forms of the constructed esti-
mator. Moreover, the study aimed at carrying out a simulated study to com-
pare performance of the constructed unbiased ratio estimators. To achieve
these specific objectives, the assumption of large samples, proportional al-
location of sample sizes in each stratum and non-response only on the re-
sponse variable has been made. From the results, it can be concluded that
using Hansen-Hurwitz sub-sampling technique, the constructed unbiased
ratio estimator performs better than the usual ratio estimator constructed
under SRSWOR and under stratified random sampling. Nevertheless, the
choice between separate unbiased ratio estimator over combined unbiased
ratio estimator, or vice versa, depends on the absolute difference between
the mean ratios in each stratum and the overall mean ratio.
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Efficiency of a ratio estimator is improved when there is a perfect linear
relationship between the response variable and the auxiliary variable. This
has been confirmed by the properties of the regression unbiased ratio es-
timator. From the properties of the regression ratio-type estimator, it can
be concluded that regression estimation yields estimators with high levels
of precision, especially when the regression line of the response variable
on the auxiliary variable passes through the origin. Further, under optimal
conditions, precision of the constructed regression unbiased ratio estimator
is improved when the correlation coefficient in each stratum and response
group asymptotically tends to one.

Though the general form of the multivariate ratio estimator involves ex-
pressing finite population total as a linear function of the totals obtained us-
ing each component of the auxiliary random vector pre-multiplied by some
weights, it has been observed that the choice of the values of the weights
is also vital in multivariate ratio estimation procedures. That is, from the
results, it can be concluded that multivariate ratio estimates of various pop-
ulation parameters and the corresponding MSE’s of different multivariate
ratio estimators is highly dictated by the values of the weights. Therefore,
to evaluate performance of any multivariate ratio estimator, only optimal
values of the weights should be used.

6.4 Contributions of the Study to Knowledge

This study focused on how to estimate finite population total in stratified
random sampling under non-response using an improved ratio estimator.
This study has shown how sub-sampling technique can be used to address
the problem of non-response, especially in stratified random sampling tech-
nique. In particular, this study has shown how an unbiased ratio estimator
can be constructed using separate, combined, regression and multivariate
ratio estimation procedures. This is a major contribution to literature de-
velopment since in each case, the asymptotic properties have not only been
studied, but have also been verified using simulated data. Moreover, in
each case, optimality conditions have been studied, an area that has not
been extensively studied. The findings of this study are, therefore, crucial
in literature development on ratio estimation problems involving more than
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one auxiliary variable and where there is non-response.

6.5 Recommendations for Further Research

From the results of this study, we recommend that the following areas still
require further research:

(i) Construction of an unbiased ratio estimator under non-response in
both response variable and auxiliary variable(s).

(ii) Construction of the regression form of the unbiased ratio estimator
when there is no perfect relationship between the survey variable and
auxiliary variable(s)

(iii) Construction of an unbiased ratio estimator in the case of auxiliary
attribute(s) under non-response.

(iv) Construction of a multivariate form of unbiased ratio estimator when
both auxiliary variable and response variable are random vectors.

(v) Construction of a multivariate form of unbiased ratio estimator when
p ≥ 3.

(vi) Construction of a multivariate form of unbiased ratio estimator when
Cov(Ycjl, Ycjl′) 6= 0.
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Appendix A

SIMULATION CODE

> Consider a hypothetical population of size N=300 with 3 strata
> p<-runif(3)
> q<-p/sum(p)
> N’<-300*q
> N<-round(N’, digits=0)
> Stratum Population Sizes<- 94 39 167
> # Use Krejcie-Morgan-Sample-Size-Table to get overall sample size as
170 and proportional allocation to get stratum sample sizes

> A11<-rnorm(167,35,12)
> B11<-rnorm(167,45,14.5)
> Y1<-round(A11,digits=2) # response variable in stratum 1
> X1<-round(B11,digits=2) # auxiliary variable in stratum 1
> Stratum1<-as.data.frame(cbind(X1,Y1))
> lm1<-lm(Y1∼X1)

> A22<-rnorm(94,35,11)
> B22<-rnorm(94,40,12)
> Y2<-round(A22,digits=2) # response variable in stratum 2
> X2<-round(B22,digits=2) # auxiliary variable in stratum 2
> Stratum2<-as.data.frame(cbind(X2,Y2))
> lm2<-lm(Y2∼X2)

> A33<-rnorm(39,48,14)
> B33<-rnorm(39,32,16)
> Y3<-round(A33,digits=2) # response variable in stratum 3
> X3<-round(B33,digits=2) # auxiliary variable in stratum 3
> Stratum3<-as.data.frame(cbind(X3,Y3))



> lm3<-lm(Y3∼X3)
> # Assume non-response rate of 20% in each stratum
> # Partition each stratum into the two response groups in each stratum
>
>
>
> S11id<-sample(1:133,75,replace=FALSE,prob=NULL)
> S12id<-sample(1:34,19,replace=FALSE,prob=NULL)
> m1id<-sample(S12id,16,replace=FALSE,prob=NULL)
> S21id<-sample(1:75,42,replace=FALSE,prob=NULL)
> S22id<-sample(1:19,11,replace=FALSE,prob=NULL)
> m2id<-sample(S22id,10,replace=FALSE,prob=NULL)
> S31id<-sample(1:31,18,replace=FALSE,prob=NULL)
> S32id<-sample(1:8,5,replace=FALSE,prob=NULL)
> m3id<-sample(S32id,4,replace=FALSE,prob=NULL)
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