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Abstract 

 

 Near-infrared Raman spectroscopy is a spectroscopic technique capable of providing 

fingerprint-type information on biochemical molecules. For the early detection of cancer, specific 

biomarkers, e.g., biofluids’ biomarkers, need to be detected with high sensitivity. This enhances 

diagnostic accuracy in detecting biochemical fingerprints that would point to onset of cancer 

development. The aim of this study was to test and evaluate novelized machine learning techniques 

for detection and identification of trace biomarker alterations in saliva and blood pointing to the 

onset and progression of leukemia and breast cancers via a laser Raman spectral analysis approach. 

The spectral measurements were done in 393-2063 cm-1 region, based on a 785 nm excitation laser. 

The spectral data analysis were done in the 500-1800 cm-1 region; the considered fingerprint region 

for biological specimens.  

 Trace biomarkers were studied by analysis of intermediate and higher-order principal 

components.  The utility of intermediate and higher-order principal components in revealing trace 

biochemical alterations (trace biomarkers) in biological samples was first experimented on 

prostatic cells’ spectra data. The statistical relevance of principal components were determined by 

the use of the two-sample t-test and the effect size statistical criteria. For breast cancer and 

leukemia studies, the concentrations of trace biomarkers were estimated using the partial least 

squares regression model applied to the spectra of pure compounds and the biofluids spectrum. 

Whole blood and saliva simulates spiked with prepared concentrations of the various biochemical 

components ranging from 1 ppm to 500 ppm were used for for method development. Then, various 

optimized machine learning techniques that included independent component analysis (ICA), 

multidimensional scaling (MDS), partial least square discriminant analysis (PLS-DA), kernel 

density estimators, support vector machines (SVM), and backpropagation neural networks 

(BPNN) were utilized to analyze and classify the blood and saliva trace biomarkers’ Raman spectra 

from healthy and diseased subjects. 

 Results using pairwise comparison of mean intensity (peak intensity ratios) and 

multivariate statistical techniques disclosed that biochemical changes of proteins, lipids, and 

nucleic acid components can be associated with prostate cancer, breast cancer, and leukemia 

progression. Four prominent regions: cytosine / guanine (566 ± 0.70 cm-1), glycerol (630 cm-1), 

saccharides (1370 ± 0.86 cm-1), tryptophan (1618 ± 1.73 cm-1); and six subtle regions:  

phospholipids (1076 cm-1),  amide III (1232, 1234 cm-1), amide III (1276, 1278 cm-1), 
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phospholipids / nucleic acids (1330, 1333 cm-1), lipids (1434, 1442 cm-1), amide II (1471, 1479 

cm-1) were identified, which can be regarded as useful biomarkers for prostate cancer diagnosis. 

Six spectral bands were determined: glycerol (589 cm-1), tryptophan / phosphatidylinositol (594 

cm-1), glutamate / tryptophan (630 cm-1), glutamate (1626 cm-1), glycine / valine (1630 cm-1), and 

amide I / β-carotene (1638 cm-1) which can be regarded as new biomarkers of breast cancer in the 

blood-based breast cancer spectroscopy. 

 The fitting model revealed that trace proteins, nucleic acids, and lipid biochemicals in 

blood and saliva increased with breast malignancy, whereas amounts of glycogen decreased with 

progression of breast malignancy. For blood samples, the determined concentrations of proteins, 

saccharides, amino acids, nucleic acids and lipids components in diseased patients were in the 

range of 237.82-384.96 ppm, 36.4-84.3 ppm, 14.31-83.69 ppm, 66.4-96.8 ppm, and 71.95-297 

ppm, respectively, whereas respective concentrations in control samples were 233.86 ppm, 73.7 

ppm, 10.48 ppm, 62.1 ppm, and 18-190 ppm. For saliva samples, concentrations of 62.5-126.3 

ppm, 11.5-33.9 ppm, 4.90-20.6 ppm, 7.60-9.16 ppm, and 359.6 ppm representing trace proteins, 

saccharides, amino acids, nucleic acids and lipids in diseased patients were obtained. The 

respective concentrations in control samples were 27.7 ppm, 33.9 ppm, 2.17-3.66 ppm, 7.35 ppm, 

and 43.9-145.2 ppm.  

 The quantitative analysis based on the selected trace biomarker regions suggested that 

biochemical changes of proteins and membranous lipids increased with leukemia malignancy 

whereas biochemical changes of nucleic acids, glycogen, and non-membranous lipids decreased 

with leukemia malignancy. For blood samples, the determined concentrations of proteins, 

saccharides, amino acids, nucleic acids and lipids components in diseased patients were 6.14 ppm,  

2.8 ppm, 1.89-11.1 ppm, 32.25 ppm, and 2.21-3.9135 ppm, respectively, whereas respective 

concentrations in control samples were 4.04 ppm, 2.72 ppm, 2.29-14.7 ppm, 15.61 ppm, and 4.32-

7.1565 ppm. For saliva samples, concentrations of 8.737 ppm, 7.82 ppm, 15.88-17.80 ppm, 5.077 

ppm, 0.282-3.645 ppm representing trace proteins, saccharides, amino acids, nucleic acids and 

lipids in diseased patients were obtained. The respective concentrations in control samples were  

11.39 ppm, 14.90 ppm, 1.72-5.04 ppm, 1.069 ppm, and 1.81-4.769 ppm. 

 The cross-validated models utilized to analyze and classify the blood and saliva Raman 

spectra from healthy subjects, breast tumor patients, and leukemia patients yielded diagnostic 

sensitivities of 46% to 100%, as well as specificities of 71% to 100%. Although the number of 

samples involved in this study were few, the results demonstrate that analysis of Raman spectra of 
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blood and saliva using optimized machine learning diagnostic algorithms has great potential for 

the noninvasive and label-free detection of breast cancer and leukemia.  
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Chapter 1    Introduction 

 

1.1.  Background 

 One of the most serious threats to humanity is cancer, which is one of the most well-known 

human diseases. Cancer is a disorder marked by the growth of abnormal cells (American Cancer 

Society, 2017). The GLOBOCAN database indicated 12.7 million and 18.1 new cancer cases 

occurred in 2008 and 2018, respectively whereas 7.6 million and 9.6 million cancer deaths 

occurred in 2008 and 2018, respectively (Ferlay et al., 2010; Freddie et al., 2018). By 2030, there 

could be twenty two million new cancer cases and thirteen million cancer deaths due to the 

acceptance of risky lifestyles (American Cancer Society, 2015). According to a previous study that 

determined the incidences of cancers in Nairobi population between 2004-2008, prostate and 

breast cancers were the most common among men and women respectively, with age standardized 

incidence rates (ASR) of 40.6 / 100,000 and 51.7 / 100, 000 respectively (Korir et al., 2015). 

 Traditionally, histopathological examination of biopsy samples (Ci et al., 1999) and 

imaging techniques (Parawira, 2009; Beata et al., 2012) are generally utilized for breast cancer 

diagnosis. Similarly, histopathological analysis of blood specimen (complete blood picture test) is 

the most preferred diagnostic method for leukemia diagnosis.  Such diagnostic processes are 

subjective, time consuming, and costly (Ci et al., 1999; Parawira, 2009; Beata et al., 2012). 

Furthermore, histopathological processes involve conventional excisional biopsy procedures 

which could be potentially hazardous due to their invasive nature.  

 In the recent past, non – invasive real time optical diagnostic (spectroscopic) techniques 

have been adopted as better alternatives in clinical medicine. The spectroscopy techniques are 

based on interaction of materials (e.g., biological samples) with electromagnetic radiation via 

processes such as absorption, transmission, reflection and scattering (Fotakis et al., 2007).  

Regarding vibrational spectroscopy e.g., Raman and infrared spectroscopy, the sample molecules 

are excited into their vibrational states when radiation interacts with biological materials, thereby 

generating fingerprints of active biomolecule vibrations (e.g., nucleic acids, proteins, lipids, and 

carbohydrates) of tissues and cells. The obtained fingerprints may be used to explain the 

biochemical and morphological changes during disease progression (e.g., in cancer development). 
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1.1.1 Raman spectroscopy 

 Raman spectroscopy is a nondestructive analytical vibrational spectroscopy technique that 

reveal fingerprints of active biomolecular vibrations from biological tissues and cells. Raman 

spectroscopy utilizes scattering (Stokes and anti-Stokes scattering) to excite targeted molecules 

into the vibrational excited states (Fotakis et al., 2007; Matthäus et al., 2008). Photon energy loss 

or gain may be used to image Stokes and anti-Stokes scattering, respectively. The scattered 

radiation is dispersed in a spectrometer, recorded and analyzed. The observed Raman bands are 

typically narrow, relatively easy to resolve, and exhibit specific vibrational modes that reveal the 

studied sample materials' fingerprints / associated signatures e.g., biomarkers (Matthäus et al., 

2008). Furthermore, since molecular vibrations are highly influenced by a molecule's 

conformation and its chemical environment (Schie, 2013), spectral analysis may help distinguish 

active molecular bands and assess the impact of the microenvironment on studied samples, such 

as biological cells. Apart from being a fast and objective technique (Matthäus et al., 2008), Raman 

spectroscopy also has the following advantages: (i) is far less intrusive, (ii) reagent free in most 

cases, (iii) has a lot of depth and spatial resolution (≤ 1µm), and (iv) water bands have no impact 

on Raman spectra measurements (Chowdary et al., 2006; Talari et al., 2015). The latter can be 

attributed to phenomenon of strongest bands associated with water being found in the high 

wavenumber region, meaning the water bands have little effect on most Raman spectra in rich 

fingerprint region (500-1800 cm-1) associated with biological samples (Shipp et al., 2017). 

 A major drawback with Raman spectroscopy (especially on biological samples) is its weak 

signals being dominated by broadband fluorescence emissions. This can be attributed to the low 

percentage of incident photons (≈ 0.001%) that produces inelastic Raman signal suitable for 

Raman measurements (Matthäus et al., 2008). For instance, though both fluorescence and Raman 

spectroscopy are based on vibronic effects, Raman scattering is at least 6 orders of magnitude 

weaker than fluorescence (Matthäus et al., 2008). Nevertheless, Raman spectroscopy (including 

micro-spectroscopy) possess key features that make it attractive to scientists (Fotakis et al., 2007): 

The technique is extremely precise due to the peculiar fingerprint existence of the Raman 

spectrum. Furthermore, Raman microscopes have excellent spatial resolution, which aids in the 

study of small features, such as cellular analysis. Raman spectroscopy is also nondestructive and 

can be done in situ, reducing the amount of time spent sampling. Other encouraging advances 

include the availability of advanced fiber-optic Raman probes for remote sample analysis, the 

availability of Raman databases for identifying unknown sample components, and the ease with 
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which Raman setup systems can be used. For instance, Raman microscopes are easy to use and are 

easily coupled to one’s choice of excitation sources, spectrographs and charge-coupled devices 

(CCD). With above advantages, coupled with utilization of near infrared (NIR) laser excitation 

(that minimize fluorescence effects) and high throughput dispersive spectrometers, Raman 

spectroscopy has consequently previously demonstrated its potential for biomedical diagnosis in 

various malignancy (Chowdary et al., 2006; Rehman et al., 2010; Shafer-peltier et al., 2002). 

  Raman microspectroscopy was utilized in understanding gross biochemical differences in 

breast cancer (Chowdary et al., 2006; Rehman et al., 2010; Shafer-peltier et al., 2002) and 

leukemia (Erukhimovitch et al., 2006; MartinEspinoza et al., 2008; Babrah et al., 2007) 

progression where various findings regarding biochemical changes in studied samples have been 

reported. In these studies, biochemical changes majorly attributed to proteins, lipids, nucleic acid 

components can be associated with onset and progression of breast cancer and / or leukemia 

progression. However, in spite of tissues being regarded as a gold standard technique for breast 

cancer diagnosis, the method is costly, invasive; meaning generally uncomfortable to patients, and 

inconvenient (from a scheduling perspective) (Jr et al., 2014). Similarly, although use of blood 

fluid as a gold standard method for leukemia diagnosis is well established, little effort has been 

made to use other body fluids as an alternative technique for leukemia diagnosis, e.g., the saliva-

based Raman spectroscopy.  

 The detection of cancers after they have advanced to the point of being metastatic and drug 

resistant has proved to be a difficult issue. In order to effectively treat and manage cancer, early 

detection and timely diagnosis is crucial. This necessitates need for studying biomarkers in the 

cancer patient’s’ biofluids (fluid biomarkers) with aim of obtaining supplementary information 

that could aid early detection of the cancer (Martin et al., 2010). Fluid biomarkers are components 

in patient’s fluids, that would reveal presence of cancer e.g., macromolecules that originate from 

tumor cells  (lipids, proteins, RNA, microRNA, DNA) and circulating cells (circulating tumor cells 

(CTC), immune cells, stromal cells, endothelial cells) (Martin et al., 2010; Kaczor-Urbanowicz et 

al., 2017). The utility of body fluids, example, blood and saliva as alternative samples for cancer 

diagnosis is still a developing field of research interest.  Utility of saliva is advantageous because 

of its noninvasive safe collection, easy to collect, high –speed sampling, heterogeneity in 

diagnosis, provision of real time information, easy to transport, and convenient storage for later 

analysis (Pfaffe et al., 2011; Zhang et al., 2016). Similarly, blood is easy to sample and prepare 

for further analysis (Khanmohammadi et al., 2010). Furthermore, blood and its constituents tend 
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to be the most convenient for biomarker detection due to their widespread availability, well-

established sample collection) protocols, and the ability to replicate the test as frequently as needed 

to track disease development or treatment response (Baker et al., 2016).  

 In terms of the utility of blood and saliva for cancer diagnostics, previous histochemistry 

studies have shown that two major proteins, CA15-3 and c-erB2, are the most important 

biomarkers for breast cancer diagnosis (Malamud et al., 2011; Singh et al., 2014; Tabak et al., 

2001; Agha-Hosseini et al., 2009). In addition, one study found that the HSP90A protein could be 

used as a biomarker for the metastatic stage of breast cancer (Kazarian et al, 2017). These findings 

confirm that biochemical changes in serum and salivary proteins can be used as prognostic markers 

for diagnosis of breast cancer. Previously, biochemical elements of salivary proteins have been 

used in Raman spectroscopy for breast cancer diagnosis (Feng et al., 2015; Wu et al., 2015), where 

Raman peaks corresponding to amide regions were pronounced in malignant samples. Previous 

serum-based Raman studies (Nargis et al., 2019; Pichardo-Molina et al., 2007; Bilal et al., 2017; 

Vargas-Obieta et al., 2016) have shown that Raman spectral differences in healthy and diseased 

breast cancer samples can be mainly attributed to DNA, proteins, and lipids alterations. Besides, 

these findings (Nargis et al., 2019; Pichardo-Molina et al., 2007; Bilal et al., 2017; Vargas-Obieta 

et al., 2016) suggest that biochemical changes due to serum proteins are predominant during breast 

malignancy.  

 In the case of leukemia, enzyme-linked immunosorbent assay methods on saliva showed 

that salivary DNA and RNA biomarkers could be reliably identified in leukemic patients (Rasi et 

al., 2011; Chen et al., 2014), implying that nucleic base conformational changes, such as adenine, 

cytosine, thymine, and uracil, could be useful for leukemia diagnosis. Furthermore, based on 

several genome and transcriptome studies, a systematic analysis of known elevated circulating 

miRNAs associated with chronic lymphocytic leukemia indicated salivary miRNAs (95, 29a, 222, 

20a, 150, 451, 135a, 486-5p) may be associated with the presence of leukemia (Allegra et al., 

2012). Furthermore, salivary 92 miRNA levels have been found to rise, especially in patients with 

acute myeloid leukemia (Allegra et al., 2012). These results support previous findings (Rasi et al., 

2011; Chen et al., 2014), which show that biochemical changes in nucleic acid components play a 

catalytic role in leukemia proliferation. 

 Imaging spectroscopy, unlike traditional Raman spectroscopy, simultaneously captures 

spectral and spatial information in studied samples (Dyson et al., 2004; Bearman et al., 2003).  

Raman microspectrometry, which combines Raman spectroscopy and microscopy, is a dependable 
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technique for obtaining spatially resolved spectroscopic information on minute quantities of 

microscopic structures within a biological sample (Lasch et al., 1997). With this technique, 

chemical maps" (CM) or functional group maps (Bearman et al., 2003) can be generated which, 

in essence, can be directly compared to light microscope observations (Lasch et al., 1997). To that 

end, Raman spectroscopy and imaging were used to analyze noncancerous and cancerous human 

breast tissues from the same patient (Brozek-Pluska et al., 2012), with the most important 

variations observed in regions associated with proteins, carotenoids, and lipids. In other research, 

Raman microspectrometry was used to discern basal cell carcinoma from non-cancerous tissue, 

pointing to the possibility of creating an in vivo diagnostic technique for tumor boundary 

demarcation (Nijssen et al., 2002). During the examination and classification of optical absorption 

properties of bone marrow cells in an acute lymphoblastic leukemia sample, spectral microscopy 

was also used to obtain a large number of narrow-band images in the broad spectral range of the 

optical spectrum (Katzilakis et al., 2004). In terms of detecting, identifying, and mapping their 

spectral absorption properties, the study revealed a statistically significant difference (p < 0.0001) 

between normal lymphocytes and lymphoblasts. 

 The lack of quantification of biochemical changes occurring during cancer development is 

a disadvantage of blood-based and saliva-based leukemia and breast Raman studies. Another 

difficulty in bio-spectroscopy is that analytes in blood and saliva are found in low concentrations 

(Pfaffe et al., 2011; Christodoulides et al., 2005). The problem is exacerbated by a general lack of 

detailed understanding of the information material that may be accessible from infrared spectra of 

complex biological samples (Lasch et al., 1997), meaning that robust techniques e.g., machine 

learning techniques (MLTs) would be crucial for data mining. It is our belief the combination of 

Raman microspectrometry with machine learning techniques (MLTs) can provide high sensitivity, 

accuracy, precision and speedy non-destructiveness in-situ and in-vitro diagnostic capabilities. 

This can be attributed to their ability of mining complex analytical information between observed 

variables and measurements (Wang et al., 2014; Varmuza et al., 2008). 

 

1.1.2 Machine learning techniques 

 Machine learning techniques (MLTs) are computational intelligent methods for extracting 

maximum analytical information from measured data (Wang et al., 2014). Thus, MLTs are capable 

of capturing unknown underlying multivariate relationships between observed variables (Varmuza 

et al., 2008). Preprocessing, feature extraction, and classification algorithms are some of the 
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machine learning techniques that can be used to process non-resonant Raman spectra in Raman 

spectroscopy (Rodionova et al., 2006). Generally, the prominent preprocessing techniques utilized 

to mitigate fluorescence noise among other non-linearities in the measurements include wavelet 

transformations, derivative filters, baseline subtraction using polynomial fittings, and Principal 

Component Analysis (PCA) (Lasch, 2012). The wavelet transformation algorithms are purely 

frequency domain techniques. Apart from being advantageous in filtering out the lower frequency 

components (which majorly comprise fluorescence noise) from the measured Raman spectra 

(Lasch, 2012), wavelet transformations techniques are versatile, efficient and offer multi – 

resolution decomposition (Wang et al., 2014). Nevertheless, challenges associated with wavelet 

filtering such as under and / or over filtering and subjectivity in analysis, limit their applications 

in practical clinical set-up. Instead, the polynomial baseline fitting techniques which offer speed, 

simplicity, convenience and reliability in preserving the Raman line shapes (Lasch, 2012), are 

generally preferred in many Raman studies. Apart from fluorescence background removal aspects, 

some techniques may offer smoothing capability without greatly affecting the resultant spectra. 

These include Savitzky-Golay algorithms and wavelet transformations (Bilal et al., 2017; Hu et 

al., 2007). 

 Feature extraction techniques majorly comprise linear and nonlinear techniques that reduce 

redundancy in spectra variables, thereby retaining most significant biochemical information within 

the datasets. The commonly known linear methods include Principal Component Analysis (PCA), 

Partial Least Squares (PLS), and Independent Component Analysis (ICA). Although PCA is a 

good way to reduce spectra data, ICA has been shown to perform better, especially in non-

Gaussian data, by revealing physically measurable components (independent components) and 

their concentration profiles (Chung et al., 2005; Yao et al., 2012). Nonlinear methods include self-

organizing maps (SOMs), multidimensional scaling (MDS), and auto-associative feedforward 

neural networks (AFN). Intensive computation is one of the drawbacks of nonlinear methods, and 

their efficiency is highly dependent on parameter selection and configuration (Simeonova et al., 

2010; Kolehmainen et al., 2001).  

 PCA and PLS are often used along with Linear Discriminant Analysis (LDA) algorithms 

during spectral analysis. Machine learning techniques of LDA, artificial neural networks (ANN), 

naïve Bayesian, and support vector machines (SVM) are classification techniques that can be used 

to discriminate spectral data amongst samples (Bird et al., 2008). Being a low dimensional 

classifier, LDA require already dimensionally reduced data, and fits well with feature space that is 
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linearly separable (Li et al., 2012). SVM is used to solve problems of two groups (classes) that 

require optimal efficiency. Nevertheless, it requires lengthy training time and optimal choice of 

kernel parameters (Gautam et al., 2015).  Unlike the Bayesian classifiers that works well on small 

data sets, ANN easily handles large multi-class data problems, both linear and non – linear in 

feature space (Wang et al., 2014). Several reviews extensively detailing various applications of 

MLTs in extracting spectra information during cancer diagnostics are highlighted elsewhere 

(Wang et al., 2014; Gautam et al., 2015; Kendall et al., 2009; Chandra et al., 2015). 

 Raman microspectrometry has extensive datasets that include both spectral and spatial 

details. Detection and / or collection of suitable spectra for subsequent processing, as well as 

spectral classification or pixel-unmixing, are all part of spectral image analysis (Bearman et al., 

2003; Lasch, 2012). Each pixel is assigned to one or more spectrally specified classes during 

classification. Classification is equivalent to spectral segmentation. A pixel or object is allocated 

to a single class using one or more of a number of metrics (Lasch, 2012). If pixels are made up of 

more than one spectral class, the pixels must be "unmixed," resulting in estimates of the 

percentages of each class present. Two methods can be used to decide which spectra to use for the 

classification procedure, i.e., reference spectra may be chosen from obvious image structures or 

from existing spectral libraries (Bearman et al., 2003). Alternatively, statistical analysis techniques 

such as principal component analysis (PCA) or clustering methods can be used to derive insightful 

spectra (Bearman et al., 2003; Lasch, 2012). 

 It should however be noted that reliability of selected MLTs can be limited by problems of 

poor data quality, low accuracy (overall classification accuracy, sensitivity, specificity), numerical 

instability and slower real-time processing of information in a real practical clinical setup. These 

challenges can be attributed to improper initialization (of kernel parameters), high nonlinearity of 

datasets, and sensitivity to Hughes phenomenon (Bishop et al., 2006). For instance, a challenge 

could be determining the least number of wavelengths required to disclose significant details for 

disease diagnosis. While it may seem obvious that having more spectral data and a higher spectral 

resolution would improve analytical accuracy, this is not always the case. Many wavelengths are 

likely to be "uninformative," and including them in the dataset simply adds noise, hence 

demanding inclusion of a dimension reduction algorithm such as PCA. However, if such 

techniques are optimized in novel ways, e.g., proper adjustment of kernel parameters, application 

of enhanced feature extraction approaches, and combining optimized dimensional reduction 
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techniques with advanced classifiers (e.g., ANN, SVM), it may be possible to enhance their 

information extraction capability.  

 

1.2 Problem statement  

The utility of body fluids (such as saliva, blood and urine) in cancer diagnosis utilizing Raman 

microspectroscopy is attractive but is still an underdeveloped research front. Extraction and 

multivariate interpretation of the subtle disease biomarkers from the samples spectra (crucial for 

early cancer diagnosis) requires the combination of sensitive microspectrometry and robust 

machine learning techniques to realize rapid and comprehensive sensitive cancer diagnostics. 

 

1.3 Research objectives 

 

1.3.1 General objective 

 The main objective of this research was to design, test and evaluate novel machine learning 

techniques for detection and quantification of biomarker occurrences and multivariate alterations 

in saliva and blood that can point to the onset and progression of leukemia and breast cancers via 

laser Raman spectral analysis.  

 

1.3.1.1 Specific objectives 

i. To identify and determine the concentrations of trace biomarkers of leukemic and breast 

cancer in saliva and blood using laser Raman microspectroscopy.  

ii. To correlate the obtained biomarker levels in (i) as well as their alterations in the selected 

body fluids matrices to cancer presence and severity based on concentration levels of 

biochemical changes and the band ratios of trace spectral markers.  

iii. To apply robust and hybridized machine learning techniques (higher-order PCA, ICA, 

MDS, PLS-DA, and kernel density estimators) in the extraction and multivariate 

exploratory analysis and interpretation of the biomarkers embedded in the measured 

spectra.  

iv. To develop conceptual diagnostic models to detect and characterize breast and leukemia 

cancers in their various stages based on the information obtained in (i), (ii) and (iii) above, 

based on support vector machine (SVM) and artificial neural networks (ANN).    
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v. To test the developed diagnostic models for proof of concept, to detect and predict the 

status of breast and leukemia cancers in clinical liquid biopsies samples.  

 

1.4 Justification and significance of the study 

 Cancer diseases have risen dramatically worldwide in recent years, putting a strain on many 

families. Cancer affects people of all ages and socioeconomic backgrounds, with the risk of 

developing cancer rising with age. In the long term, this has had a negative effect on poverty 

alleviation and sustainable growth. In regard to developing countries, the rapid increase in the 

number of cancer cases has increased public health crisis with a critical and direct negative impact 

on the first three Millennium Development Goals (MDGs) namely; poverty, education, and gender 

equity. The fact that most cancer patients are diagnosed at an advanced stage, when treatment 

options are minimal, means that prognoses are poor and fatality rates are high. 

 Highly sensitive and unique biomarkers are needed for early cancer detection. Biomarkers 

in biofluids, such as whole blood and saliva, may be particularly useful in detecting the existence 

of early tumors in the body. Although spectroscopy with the help of machine learning techniques 

has aided human cancers’ diagnostics, a major challenge has been development of robust 

algorithms that would enhance quick and real time detection of cancers at their early stage of 

development. The problem is further compounded by a challenge in detecting analyte 

concentrations of biofluid biomarkers that originate from tumor cells which include, 

deoxyribonucleic acids (DNA), ribonucleic acids (RNA), micro-ribonucleic acids (µRNA), 

circulating tumor cells (CTC), proteins, and lipids. Further, machine learning technique algorithms 

are generally limited by problems of poor prediction quality / accuracy, numerical instability and 

slower real-time processing of information in a practical clinical setup. This demands utility of 

optimized machine learning techniques - hereby referred to as novel machine learning techniques. 

The combination of Raman microspectroscopy and novel machine learning techniques in 

analyzing body fluids has the potential to reveal weak cellular biochemical and structural 

alterations that would point to early cancer biomarkers even when the original spectra signals from 

the spectroscopic devices are weak and prone to noise interference.  

 

1.5 Scope and limitations of the study 

 This was a matched case-control study that aimed at designing, testing and evaluating 

novelized machine learning techniques for detection and quantification of biomarker occurrences 
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and multivariate alterations in saliva and blood that can point to the onset and progression of 

leukemia and breast cancers via laser Raman spectral analysis. It was problematic to obtain enough 

sample sizes of the willing diseased and healthy (control) participants. By calculation 

(Kasiulevičius et al., 2006), the study aimed at enrolling 150 breast cancer case patients with 1 

matched control(s) per case to be able to reject the null hypothesis that the odds ratio equals 1 with 

probability (power) = 0.9. Similarly, about 250 leukemic cancer case patients with 1 matched 

control(s) per case were expected to be included in this study to be able to reject the null hypothesis 

that the odds ratio equals 1 with probability (power) = 0.9. All the type I error probabilities 

associated with the test of these null hypotheses are based on an uncorrected chi-squared statistic 

evaluation. In this study, a group of 23 healthy  volunteers / controls (age 34-56 years) and 20 

malignant patients (age 41-65 years) all-female participated in breast cancer study while a group 

of 18 healthy  volunteers / controls (age 20-45 years) and 9 malignant patients (age 24-72 years) 

both males and females participated in the leukemia study.  Subsequently, the biochemical 

information gathered from the biofluid samples (blood and saliva) proposed in this study may not 

be generalizable and conclusive for leukemia and breast cancer diagnostics since the willing 

participants may not represent the required random sample size.  

 To evaluate whether intermediate and high-order principal components were potentially 

useful at detecting trace biochemical changes in biological samples' Raman spectra, suitable breast 

and leukemic cell lines were needed. The necessary breast and leukemic cell lines were unavailable 

for the study. Therefore, the metastatic androgen insensitive (PC3) and immortalized normal 

(PNT1a) human prostate cell lines were chosen for a model tissue Raman spectroscopy analysis.   

 

1.6 Study hypothesis 

 The working hypothesis of this study is that combination of robust machine learning 

techniques and Raman microspectroscopy will be able to detect and quantify biomarker 

occurrences and multivariate alterations in saliva and blood of leukemia and breast cancer patients 

at high degree of sensitivity and specificity accuracies.    
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Chapter 2    Literature Review 

 

2.1 Introduction 

 Compared to conventional methods, utility of body fluids for cancer diagnostics via Raman 

microspectroscopy is attractive but is still a developing field of research interest due to a number 

of challenges mainly regarding the sensitivity of detection, extraction and quantitative 

microanalysis of the subtle biomarkers in the spectra and images particularly at single cell level.  

By 2008, cancer was a leading cause of deaths globally (American Cancer Society, 2011). Cancer 

was estimated to be a leading cause of death in 91 of 172 countries by the age of 70 years (Freddie 

et al., 2018). Its prevalence is further enhanced by adoption of risky modern lifestyles such as 

physical inactivity / sedentary lifestyle, smoking, poor diet, and reproductive factors (American 

Cancer Society, 2017). 

 Utility of biofluids e.g., saliva and blood for cancer diagnostics would be a field of interest 

for the rarely early diagnosed common cancers in women and in Kenya’s population, i.e., breast 

cancer, and leukemia, respectively. There are already two recent studies available in literature in 

which cancer incidences in Kenya’s population are reported (Korir et al., 2015; Antabe et al., 

2020). According to these findings, breast cancer had the highest age-standardized incidence rates 

(> 50) in Kenya's female population (Korir et al., 2015), and accounted for 23% of all cancer cases 

among women in Kenya (Antabe et al., 2020). Elsewhere, recent GLOBOCAN (2018) report 

showed breast cancer being the topmost frequent cancer amongst females, with new cases at 12.5% 

growth (Kenya-Globocan, 2018). Similarly, earlier reports showed leukemia had the lowest age 

standardized incidence rates (< 3) in Kenya’s population (Korir et al., 2015). By 2018, statistics 

showed the 5-year prevalence (all ages) of leukemia in Kenya’s population was 7.55 (n = 3,845)  

(Kenya-Globocan, 2018). Nonetheless, 3200 new cancer cases were estimated in children under 

the age of 18, with leukemia being one of the most common cancers in children, accompanied by 

brain cancers, Hodgkin's kidney cancer, cancer of the naso-pharynx, and Non-lymphoma (Ministry 

of Health, Kenya, 2019). According to data from Kenyatta National Hospital, majority of cancers 

(64%) are diagnosed when already advanced to malignant stages, when cure is difficult to achieve 

(Ministry of Health, Kenya, 2019). Table 2.1 summarizes the incidence rates of selected cancers 

in Nairobi County in the years 2004 – 2008 (Korir et al., 2015).   
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Table 2.1: Incidence* of cancers in Nairobi County during 2004–2008 period (Korir et al., 2015).     

   (Incidence per 100, 000) 

Gender Cancer Number of patients,  

% of population 

Age standardized  

incidence rates (ASR) 

Men Prostate 

Lung and trachea 

Leukemia 

Oesophagus 

Stomach 

Colon, rectum, and anus 

Lymphoma 

606,  15.6% 

99,     2.5% 

105,   2.7% 

333,   8.6% 

243,   6.2% 

296,   7.6% 

206,   5.3% 

40.6 

5.4 

2.7 

15 

11.1 

12.1 

6.7 

Women Breast 

Cervical 

Lung and trachea 

Leukemia 

Oesophagus 

Stomach 

Colon, rectum, and anus 

Lymphoma 

1154,   22.7% 

1073,   21.1% 

53,       1% 

71,       1.4% 

248,     4.9% 

193,     3.8% 

242,     4.8% 

142,     2.8% 

51.7 

46.1 

3.2 

2.8 

14.8 

11.3 

12.4 

7.1 

 

* Incidence rate statistics quantify the number of newly diagnosed cancer cases in a specified 

population over a defined time period, usually expressed per 100,000 people per year (American 

Cancer Society, 2011). 

 

  The routine diagnostic procedures for breast cancer and leukemia include 

histopathological examination of biopsy samples, fluorescence, optical bioluminescence, 

ultrasound, magnetic resonance imaging, X-ray mammography, and computed tomography (Ci et 

al., 1999; Nargis et al., 2019). However, these methods have a range of disadvantages, including 

the fact that they are frequently subjective, take a long time to yield results, and expensive (Ci et 

al., 1999; Beata et al., 2012). Low resolution and sensitivity are also problems, and X-ray uses 

potentially hazardous radiation, which can be detrimental to patients (Nargis et al., 2019). 

Moreover, conventional excisional biopsy procedure could be potentially hazardous due to its 
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invasive nature, and pathological grading may be highly subjective (Beata et al., 2012).  Besides, 

these techniques only reveal cancers at already advanced stages (Nargis et al., 2019). This 

illustrates the importance of developing extremely responsive, real time, less intrusive, and 

relatively cost-effective cancer diagnostic methods for early early cancer diagnosis. 

 The relatively recent preference of liquid biopsy (biofluids) to tissue biopsy is 

revolutionizing the clinical approach towards cancer diagnosis. Biofluids have specific properties 

that can be assessed and analyzed objectively as markers of natural biologic processes, pathogenic 

processes, or therapeutic intervention responses- the so-called biomarkers (Baker et al., 2016).  

Biomarkers in body fluids can be useful in early-stage disease screening, differential diagnosis of 

the disease with other conditions, disease prognosis independent of treatment, prediction of 

treatment response, and disease monitoring (Baker et al., 2016). Biomarkers in body fluids include, 

(i) blood biomarkers, and (ii) biomarkers from other body fluids; depending on tumor location, for 

example, pleural fluid, tears, bile, sputum, urine, saliva, pancreatic juice, cerebrospinal fluid, and 

ascitic fluid (Baker et al., 2016). Circulating tumor cells (CTC) and macromolecules (RNA, DNA, 

µRNA, proteins, lipids) are examples of biomarkers (Martin et al., 2010). The principle of looking 

for cancer biomarkers in biofluids before development of disease symptoms seem to be a 

promising avenue for early cancer detection. This can be partly attributed to benefits of fluid 

sampling including being generally accepted, easily repeatable, simple to use, non-intrusive, and 

cost-effective. Furthermore, biomarkers found in bodily fluids enhance ability to detect a wide 

range of primary tumors and metastases in the body (Martin et al., 2010). 

 Given that majority of tumours are vascularized, the cancer biomarkers can be shed into 

the blood- stream (Baker et al., 2016). Furthermore, blood and its constituents tend to be the most 

convenient for biomarker detection due to their widespread availability, well-established sample 

collection) protocols, and the ability to replicate the test as frequently as needed to track disease 

development or treatment response (Baker et al., 2016). Utilization of saliva for disease diagnosis 

is relatively practical since its collection is noninvasive, easy to collect, transport, store, and safer 

for handling unlike other body fluids such as blood (Pfaffe et al., 2011). Besides, it requires 

minimal sample preparation (Emekli-Altufran et al., 2008). Further, many compounds found in 

blood e.g. growth factors, hormones, antibodies, and enzymes are also found in saliva, hence 

providing an alternative mechanism of studying emotional, hormonal, nutritional, and metabolic 

variations in human. Various processes for example, passive diffusion, ultrafiltration, and active 

transportation may move these compounds from the bloodstream into the salivary glands (Pfaffe 
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et al., 2011). Consequently saliva as a biofluid has been widely utilized in diagnosing various 

diseases such as cardiovascular (Meurman, 2010), renal (Walt et al., 2007), diabetes (Rao et al., 

2009), autoimmune disorders (Hu et al., 2007), and systemic malignancies (Farnaud et al., 2010; 

Streckfus et al., 2004; Streckfus et al., 2000).  

 Biofluids, like other cells and tissues in human body, have vibrational spectra with distinct 

bands that indicate their biomolecular composition (Baker et al., 2016). The quest for specific 

disease markers in biofluids using photonic approaches, primarily vibrational spectroscopic 

approaches, has recently led to emergence of a new field in biomedical sciences - the 

biospectroscopy. This field has been extensively utilized in breast cancer and leukemia diagnostics 

as described in section 2.2 and section 2.3. 

 

2.2 Breast cancer  

   Raman microspectroscopy has already been widely employed in previous breast 

malignancy diagnosis. For instance, a previous study suggested the ratio of intensities of the bands 

of total amounts of protein (I3473 / I3005), lipids (I2924 / I2853), amide I (I1655 / I1549), DNA (I1236 / 

I1080), collagen (I1204/ I1655), and carbohydrates (I1055 / I1467) contents indicated the proteins, amide 

I, DNA activities, and carbohydrate levels increased with breast malignancy, while  relative 

number of methyl groups (lipids) and collagen contents decreased with breast malignancy 

(Venkatachalam et al., 2008). In this study, the band intensity ratios at (I3473 / I3005), (I2924 / I2853), 

(I1655 / I1549), (I1080 / I1236), (I1204/ I1657), and (I1055 / I1467) were (cancer-1.51; normal-0.67), (cancer-

0.82; normal-0.87), (cancer-2.53; normal-1.74), (cancer-2.11; normal-0.97), (cancer-0.56; normal-

1.9), and (cancer-1.33; normal-0.69), respectively. In contrast, another study indicated amounts of 

collagen, fatty contents, nuclear – to – cytoplasm ratios (nucleic acids) increased in all cancerous 

breast tissues, although the relative increment of collagen was highly pronounced in samples 

undergoing fibrocystic changes (Haka et al., 2005). Therefore, nucleic acid bases and de novo 

lipogenesis processes may be viewed to play a catalytic role in breast cancer progression (Long et 

al., 2018). Raman spectroscopic measurements were performed on healthy and diseased breast 

tissues, where the PCA was utilized for discrimination (Chowdary et al., 2006). The study revealed 

that spectral profiles of normal tissues indicated pronounced levels of lipids. In contrast, the study 

revealed that both malignant and benign tissues had more proteins and lower levels of lipids in 

their spectral profiles. Furthermore, lipids were found in greater abundance in malignant tissues 

than in benign tissues. Another study (Gonzálezsolís et al., 2011) observed dominance of protein 
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biochemical alterations where tryptophan, protein and amide III (at 1244 cm-1) biomolecular 

alterations majorly featured in late stages of breast cancer progression, implying oxidative stress 

in tissues was a major factor during breast cancer progression (Marinello et al., 2014). Previous 

reviews demonstrating applicability of IR (including FTIR) Raman spectroscopy in breast cancer 

diagnostics are provided elsewhere (Wang et al., 2009). From these reviews, it can be concluded 

that processes of proteins degradation, nucleic acid bases alterations and production of lipids via 

de novo lipogenesis are considered as potential biomarkers for breast cancer diagnostic procedures. 

 It can be seen from the above studies that breast cancer tissues can be studied to assess the 

viability of biochemical changes occurring in tissue. The detected changes can be classified into 

different groups which include normal, fibroadenoma, ductal carcinoma, hyperplasia, and invasive 

ductal carcinoma (Rehman et al., 2010). Furthermore, because of its sensitivity to changes in the 

composition and amount of biomolecules in the tissues, Raman spectroscopy may be employed 

for quantitative and qualitative study of cancerous breast tissues. Despite the capability of Raman 

spectroscopy in examining biochemical changes in biopsy and hence differentiating the different 

stages of breast cancer, the utility of tissues as the gold standard for clinical diagnosis of breast 

cancers has been cited to be occasionally inconvenient (from a scheduling perspective), costly, and 

mainly invasive thereby uncomfortable to patients (Jr et al., 2014). 

 The saliva biomolecules (such as DNA, mRNA, microRNA, proteins, metabolites, 

microbiota) have been previously utilized as biomarkers in exploring systemic malignancies 

(Malamud et al., 2011; Singh et al., 2014; Tabak, 2001; Agha-Hosseini et al., 2009). Previously, 

two major proteins i.e., the c-erB2 and CA15-3 proteins have been the most significant biomarkers 

for breast cancer diagnosis (Malamud et al., 2011; Singh et al., 2014; Tabak, 2001; Agha-Hosseini 

et al., 2009). The c-erB2 is a receptor tyrosine kinase and the CA15-3, is a tumor marker found on 

cancer cell’s surface (Malamud et al., 2011; Singh et al., 2014). These proteins ordinarily shed 

into the bloodstream and have therefore been regularly used to monitor advanced and metastatic 

breast cancer cases. For example, scientists have previously discovered that women with breast 

cancer have higher levels of c-erB2 and CA15-3 proteins in their saliva than healthy women 

(Malamud et al., 2011; Singh et al., 2014; Tabak, 2001; Agha-Hosseini et al., 2009). In another 

serum based study (Duffy, 2006), CA-153 protein was suggested as a possible prognostic marker 

because of its dramatically increased levels in saliva and serum of breast malignancy patients. This 

was in line with a recent study that found CA15-3 and HSP90A proteins to be serum biomarkers 

that may be useful for metastatic breast cancer diagnosis (Kazarian et al., 2017). Elsewhere, the 
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CA 125 protein biomarker was found to be higher in breast cancer patients' saliva and serum 

samples than in healthy controls (Mittal et al., 2011). These findings support the idea that serum 

and salivary proteins play an important role in the detection of breast cancer. 

 Tumor cells and non-malignant cells, are known to shed DNA into the circulatory system 

– the so called cell-free DNA (cfDNA) (Jr et al., 2014). Hence, another mechanism for utilizing 

saliva for cancer diagnostics is comparing (i) DNA - methylation patterns (genome and epigenome 

studies) and (ii) µRNA (transcriptome studies) between sick and healthy controls (Zhang et al., 

2014). Circulating µRNA play a key role in cell differentiation and proliferation (Allegra et al., 

2012), and have therefore featured in detection of breast malignancy. Previously, research findings 

have shown that µRNA is often dysregulated in breast cancer patients as compared to controls 

patients. For instance, a transcriptomic and proteomic study aimed at discovering and pre-

validating biomarkers in saliva for oncological application (Zhang et al., 2014), revealed eight 

µRNA biomarkers (S100A8, H6PD, IGF2BP1, CSTA, , GRM1, GRIK1, MDM4, TPT1) and one 

protein biomarker (CA6) that possessed reliable discriminatory power of 92% accuracy (83% 

sensitivity and 97% specificity) for classifying between breast cancer patients and controls. In 

addition, a comprehensive review of known circulating miRNAs by Allegra et al., (2012), has 

previously observed that the 10b, 34a, 195, let-7, and 223 as the common miRNAs prominently 

pronounced in breast cancer patients. In addition, other studies have previously observed enhanced 

levels of DNA bases of proline and valine being associated with advanced stages of breast cancer 

(Porto-Mascarenhas et al., 2017), further confirming the role of DNA methylation in cancer 

progression. 

 Spectroscopically, biochemical components in saliva have traditionally been used for 

diagnosis of other types of cancer for example, oral cancer (Calado et al., 2019), diabetes (Scott et 

al., 2010), periodontitis (Gonchukov et al., 2012), and lung cancer (Li et al., 2012). In the case of 

breast cancer, there are only a few studies in the literature that show salivary proteins and sialic 

acid components in saliva can be used to diagnose the disease. Biochemical components of salivary 

proteins have been traditionally employed in diagnosis of breast cancer (Feng et al., 2015; Wu et 

al., 2015). Significant (Students t-test, p < 0.05) Raman peaks attributed to amide conformations 

displayed pronounced Raman signals in breast malignancy, indicating that observed changes in 

amino acids due to C-N stretching modes of proteins (1049, 1084 cm-1), amide III (1265 cm-1), 

amide I (1684 cm-1), CH3CH2 wagging mode of collagen (1340 cm-1), phenylalanine (1004 cm-1) 

increased with malignancy (Movasaghi et al., 2007). Elsewhere, breast cancer patients were 
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differentiated from benign and healthy subjects using a separate technique based on attenuated 

total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy in saliva samples (Ferreira 

et al., 2020). At wavenumber 1041 cm−1, absorbance levels in saliva of breast cancer patients were 

significantly higher than in benign patients, according to the study. Furthermore, region-of curve 

(ROC) analysis of 1041 cm−1 peak showed that the components in the 1302.9-1433 cm−1 

wavenumber range were elevated in saliva of breast cancer patients relative to control and benign 

patients, suggesting a good accuracy in separating breast cancer from benign and control patients. 

The 1041 cm−1 and 1433–1302.9 cm−1 wavenumber regions can be attributed to biochemical 

changes due to collagen proteins and CH2 and / or CH3 bending, twisting, and wagging modes of 

collagen proteins and lipids, respectively (Chandra et al., 2015). It can therefore be concluded that 

saliva proteins could be used as prognostic markers for breast cancer detection.  

 Different from utility of protein biomarkers for breast cancer diagnostics, SERS on sialic 

acid in saliva of controls and breast cancer patients was evaluated for breast malignancy diagnosis 

(Hernández-arteaga et al., 2017). The mean concentration of sialic acid in saliva was found to be 

predominant (Students t-test, p < 0.05) in breast cancer patients than among healthy controls, and 

the test yielded sensitivity and specificity of 94%, and 98%, respectively.  The results suggest 

Raman spectroscopic study of sialic acid components in saliva may be a useful method for breast 

cancer diagnosis. It is our view that saliva-based Raman studies for breast cancer diagnosis should 

be extended to include other biomarkers e.g., DNA, lipids, and saccharides, to achieve 

complementary information for better diagnosis.  

 The utility of blood biofluid in diagnosis of breast cancer is well established.  Previous 

serum-based Raman studies (Nargis et al., 2019; Pichardo-Molina et al., 2007; Bilal et al., 2017; 

Vargas-Obieta et al., 2016) have shown that DNA, proteins, and lipids alterations are primarily 

responsible for Raman spectral variations in healthy and diseased breast cancer patient’s samples. 

First, Pichardo-Molina et al., (2007) found seven band ratios corresponding to proteins, 

polysaccharides, and phospholipids biomarkers were statistically significant for discriminating 

between the spectra of control and breast cancer patients.  Also, Raman spectral features due to 

biochemical changes of proteins and DNA were only present in blood samples of breast cancer 

patients when compared to that of the normal persons (Nargis et al., 2019). Elsewhere, lycopene 

(1528 cm-1), phosphatidylserine (525 cm-1), quinoid ring (1594 cm-1), calcium oxalate (913 cm-1), 

and calcium hydroxyapatite (963 cm-1) were identified as biomarkers linked to occurrence of breast 

cancer whereas Raman shifts assigned for tryptophan (1363 cm-1), proline (930 cm-1), valine (930 
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cm-1), glycogen (854 cm-1), and tyrosine (858 cm-1) were regarded as potential biomarkers for the 

nonexistence of breast malignancy (Bilal et al., 2017). A study by Vargas-obieta et al., (2016) 

showed mixed biochemical contributions from control and breast cancer serum patients primarily 

at  622 cm-1 (phenylalanine), 642 cm-1 (tyrosine), 695 cm-1 (polysaccharides), 714 cm-1 

(polysaccharides), 742 cm-1 (lipids), 754 cm-1 (tryptophan), 875 (tryptophan), and 1,083 cm-1 

(phospholipids), 1002 cm-1 (phenylalanine), 1,155 cm-1  (β carotene), 1328 cm-1  (tryptophan), and 

1556 cm-1  (tryptophan), though  control serum spectrum depicted higher amounts of carotenoids 

components (1002 cm-1, 1155 cm-1, 1167 cm-1, 1523 cm-1). It can be concluded that biochemical 

changes due to proteins were predominant during breast malignancy. Moreover, a decrement in 

carotenoid levels with cancer is a sign of increased carotenoid degeneration. A limitation with 

these reported blood-based Raman studies for breast malignancy detection is lack of a chemical / 

morphological model aimed at quantifying the observed biomarker alterations.  

 

2.3 Leukemia 

 Leukemia is predominantly a blood and bone marrow cancer, classified (according to rate 

of growth and cell type) as either acute lymphocytic (ALL), chronic lymphocytic (CLL), acute 

myeloid (AML), or chronic myeloid (CML) (American Cancer Society, 2017).  By 2013, leukemia 

had risen to tenth place in terms of cancer incidence and ninth place in terms of cancer deaths, with 

1 / 127 men versus 1 / 203 women developing leukemia between birth and age of up to 79 years 

(Naghavi, 2015). It accounts for 29% of all childhood cancers in children aged 0 to 14, but most 

cases are diagnosed in adults aged 20 and up, with CLL (37%) and AML being the most common 

forms (31%) (American Cancer Society, 2017). 

 Previous reviews have extensively demonstrated applicability of blood-based FTIR and 

Raman spectroscopy in leukemia studies (Wang et al., 2014; Kendall et al., 2009), suggesting 

blood is a key biofluid for leukemia diagnostics. For instance, a previous serum-based leukemia 

study observed increased levels of carotenoid and protein in control samples when compared to 

diseased patients (MartinEspinoza et al., 2008). In addition, there was absence 853 cm-1 (protein) 

band in leukemic spectrum when compared to control spectrum. Application of PCA and LDA 

showed machine learning techniques’ strength in differentiating spectra of the normal and diseased 

groups. Elsewhere, spectroscopic work based on leukemic cell lines (lymphoma, lymphoid, 

myeloid leukemia cells) and incorporating multivariate statistical techniques of PCA and LDA 

observed major spectral differences occurring in 4000 - 400 cm-1 region with heightened nucleic 
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acid contents observed in myeloid cell lines, while lymphoma cell line had decreased levels of 

amide proteins (Babrah et al., 2007). Also, another blood-based leukemia study on normal 

(control) and patients suffering from chronic lymphocytic leukemia (CLL) employing  cluster 

multivariate analysis algorithms was reported (Erukhimovitch et al., 2006), where the  results 

showed biochemical alterations of deoxyribose, phospholipids, and DNA significantly reduced in 

all normal patients. Moreover, the cluster analysis at these specific regions demonstrated clear 

discrimination between diseased and healthy patients.    

  However, to the best of author’s knowledge, saliva-based leukemia studies 

employing Raman spectroscopy as a vibrational technique have not been reported, although saliva-

based leukemic studies in enzyme-linked immunosorbent assay methods are well established. For 

instance, DNA genomic study on leukemia performed on saliva and urine samples showed saliva 

could be useful for leukemia diagnosis (Rasi et al., 2011). Recently, it was shown that leukemic 

signatures can be detected from salivary RNA, results that agreed to those obtained from the bone 

marrow (Chen et al., 2014). Indeed, a comprehensive review of known elevated circulating 

miRNAs associated with chronic lymphocytic leukemia, based on several genome and 

transcriptome studies has suggested the salivary µRNAs could be associated with presence of 

leukemia (Allegra et al., 2012). Moreover, the salivary 92 miRNA was shown to increase 

especially in acute myeloid leukemia patients (Allegra et al., 2012). It is believed the 

differentiation of nucleic acids components play a key role during cancer proliferation (Rasi et al., 

2011). Notably, other studies have shown salivary amylase as a potential marker for presence and 

progression of leukemia. For instance, when comparing leukemic patients to controls, leukemic 

patients displayed higher levels of amylase and total proteins in their saliva (Ashok et al., 2010). 

This partly agreed with other work (Singh et al., 2014), that reported elevated saliva amylase levels 

in leukemic patients when compared to control ones. It is thought that increased amylase levels in 

body fluids may be an indication of inflammation of the body organs for example, the pancreas, 

due to underlying medical conditions (Ashok et al., 2010; Singh et al., 2014). 

 

2.4 Machine learning-fluid biomarkers detection approach for cancer diagnosis    

 Based on above findings, it is evidently clear that there lies great possibility of exploring 

the potential blood and salivary biomarkers for diagnosis of cancers. However, saliva has a range 

of drawbacks some of which are shared with other sources of biomarkers like blood, and others 

that are more unique to salivary gland physiology (Pernot et al., 2014). For instance, composition 
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of saliva (biomarkers) and flow can be influenced by many factors, for example, smoking, oral 

diseases and stimulation methods (Shirtcliff et al., 2000). In addition, brushing teeth may cause 

blood to leak into the saliva, resulting in an increase in molecule concentration (Kivlighan, et al., 

2005). This demonstrates importance of homogenizing time and saliva sampling conditions 

(Pernot et al., 2014), a vital consideration that was taken into account during saliva collection in 

this study.  

 A key challenge in bio-spectroscopy is that the analytes in blood and saliva exist in low 

concentrations (Pfaffe et al., 2011; Christodoulides et al., 2005). Previous studies have shown 

biochemical components in whole blood and saliva in a human body exist in various ranges of 

concentrations. For instance, concentrations of protein, lipids, DNA, RNA and saccharides 

components in blood range in following limits; protein: 6-8 g / dl, lipids: 35-135 mg / dl, DNA: 

14-17 mg / l, RNA: 144-166 mg /l, and saccharides: 80-120 mg / dl.  For saliva, protein: 0.72-2.45 

mg / ml, lipids: 0.9-1.3 mg / dl, DNA: 1 – 100 ng / µl, RNA: 4,912 – 15,473 ng / µl, and 

saccharides: 0.005-0.01 mg / ml (Saroch et al., 2012; Hughes et al., 2019; Poehls et al., 2018;  

Brozoski et al., 2017; Jurysta et al., 2009; Panchbhai, 2012; Id et al., 2020; Mcmenamy et al.,  

1957; Gahan, 2010; Leeman et al.,  2018). It should however be noted that plasma and saliva 

biomarkers may not be directly correlated to each other because salivary biomarkers can be 

produced locally, for example in gum, or  the salivary glands (Pernot et al., 2014). As suggested 

in previous studies, the molecule's concentration in saliva is usually much lower than in blood 

(Pernot et al., 2014). For instance, saliva contains plasma steroids in the range of 1% to 10%, a 

factor attributed to binding of carrier proteins (Fraumeni, 2011). It should however be noted that 

other biofluids in direct contact with diseased tissue, such as sputum, pancreatic juice, ascitic, 

cerebro-spinal, and urine, bile fluids, are of great importance as media to detect biomarkers that 

are secreted or shed locally (Baker et al., 2016). It would be expected that the biomarkers should 

be found in these fluids in higher concentrations than in the blood. Furthermore, since local 

biofluids have a less complex molecular structure than blood, their detection can be conveniently 

done. Despite these limitations, blood and salivary biomarkers can be used as a complement to 

conventional screening methods, aided by inclusion of robust machine learning techniques for 

accurate diagnostics.  

  With regard to Raman spectroscopy, a key issue is the identification and isolation 

of subtle biochemical differences in the biofluids (especially at the onset of disease progression) 

due to their low concentration against elevated background and fluorescence noise. To address this 
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problem, several techniques have been developed, including the Surface-Enhanced Raman 

Scattering (SERS), Resonance Raman Scattering (RRS), Tip-Enhanced Raman scattering (TERS), 

and Coherent Anti-Stokes Raman Scattering (CARS). Specific details regarding these techniques 

can be found elsewhere (Wachsmann-hogiu et al., 2009; Israelsen et al., 2017). Among these 

techniques, SERS can easily detect Raman scattering from single molecules, making it suitable for 

label-free spectroscopy (Wachsmann-hogiu et al., 2009). SERS is also beneficial because of 

Raman scattering's molecular specificity and high sensitivity in probing subtle molecular profile 

changes (Avram et al., 2020). As a result, SERS has become the method of choice for leukemia 

and breast cancer research. 

 As compared to traditional Raman spectroscopy, SERS on breast cancer cells showed 

chemical constituents in the cell nucleus and cytoplasm, such as DNA, RNA, and the amino acids 

tyrosine and phenylalanine, could be detected with improved sensitivity (González-Solís et al., 

2013). Furthermore, the observed SERS spectra needed less laser exposure time (≈ 5 seconds) than 

Raman spectra, which took 40 to 60 seconds to obtain a spectrum with well-defined peaks. 

Recently, salivary proteins have been discovered to be potentially useful for noninvasive and label-

free breast cancer detection (Feng et al., 2015). However, although the first seven factor latent 

variables (LVs) accounted for ≈ 92 percent of total variance, only two discriminant functions (LV1 

and LV2) specifically distinguished levels of malignancy, and the remaining latent variables were 

discarded. Vargas-Obieta et al., (2016) demonstrated that SERS and PCA-LDA could be used to 

differentiate between breast cancer and control samples with high sensitivity and specificity using 

serum samples. Furthermore, biomolecules such as phenylalanine, tryptophan, carotene, tyrosine, 

glutathione, amide I, and amide III were identified at low concentrations thanks to the strongly 

enhanced Raman bands in the 600–1800 cm-1 region. However, as opposed to notion that the first 

principal components accounting for largest variances could have been useful for spectral 

discrimination, only the seventh (PC7), eighth (PC8), and tenth (PC10) principal components 

allowed the best discrimination between breast cancer and control serum samples in the region 

600-1800 cm-1 region, suggesting that higher-order principal components maybe potentially useful 

for spectra discrimination. SERS of serum was also used to detect bio-molecular variations at 

various stages of breast cancer, with PCA-LDA of SERS spectra being found to differentiate 

healthy from breast cancer patients with sensitivity of 92 percent and specificity of 85 percent, as 

well as subjects with breast cancer at various stages with diagnostic efficiency of sensitivity and 

specificity of 80% (Cervo et al., 2015). The distinction between the SERS spectra of the control 
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and diseased groups was clearly defined by the scores discrimination due to the first two 

discriminant functions. The prominent metabolites differences, especially uric acid and 

hypoxanthine at 721 cm-1, 1093 cm-1, 1324 cm-1, and 1444 cm-1, could be attributed to this 

separation. As a result, it's unclear if further analysis on the weak/subtle metabolites detected by 

high-order PCs could have beneficial in spectra discrimination.  

 Similarly, the SERS technique has been a critical diagnostic method in the study of 

leukemia onset and progression. For example, SERS-based quantification of leukemia cells spiked 

in control cells revealed that the key differences between monocyte lysates from three healthy 

donors and lysates from the leukemia cell line THP-1 were primarily due to the protein to nucleic 

acid ratio within each cell type (Hassoun et al., 2018). Also, a previous study demonstrated 

hematologic malignancy and chronic lymphocytic leukemia could be detected using SERS gold 

nanoparticles (Nguyen et al., 2010). Aside from the SERS signal remaining high after incubation 

in Eosin, Hemotoxylin, and Giemsa stains, the gold nanoparticles were found to exhibit a persistent 

strong Raman enhancement for samples after one month. These findings suggests SERS possessed 

significant advantage over fluorescence in probing chronic lymphocytic leukemia (CLL) cells. In 

a separate analysis, SERS of DNA derived from an acute myeloid leukemia (AML) cell line 

showed a lower intensity of 5-methylcytosine (1005 cm-1) than standard DNA (Moisoiu et al., 

2019). The findings showed that cancer DNA's methylation pattern affects DNA adsorption 

geometry, resulting in higher adenine SERS intensities for cancer DNA. The PCA-LDA 

employing the first two principal components (PC1, PC2) that accounted for 68% variance yielded 

an overall accuracy of 82.2%, and sensitivity of 75%. It is observed that the remaining PCs that 

accounted for significant amount of variance (32%) were discarded, suggesting that further 

analysis on discarded PCs could have been potentially useful in revealing other significant subtle 

bio-chemical components for spectra discrimination. The human myeloid leukemia cells (HL60, 

K562) were recently differentiated from normal human bone marrow mononuclear cells using a 

combination of electroporation-based SERS technique, PCA-LDA, and PLS diagnostic algorithms 

(BMC) (Yu et al., 2017). PCA-LDA had a sensitivity and specificity of 98.3 percent and 98.3 

percent, respectively, in distinguishing leukemia cell SERS spectra from normal cell SERS spectra, 

while the PLS approach had a diagnostic accuracy of 96.7 percent in predicting unidentified 

subjects. However, PCA-LDA concentrated on the first three PCs, which accounted for 83.5 

percent of the variance: PC 1 (52.876 %), PC 2 (28.976 %), and PC 4 (1.650 %). As a result, it's 
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unclear if the remaining PCs (16.5 %) may have revealed loading vectors (biochemical 

assignments) which may have been useful for cell diagnostic classification.  

 The utility of higher-order principal components is one possible solution for mining 

potentially important subtle biochemical alterations for disease diagnostics. This technique has not 

been explored in the conventional Raman and SERS studies of breast cancer and leukemia. 

Principal component analysis (PCA) is a commonly used multivariate analysis technique for 

eliminating redundancy in original datasets, and has chiefly featured in diagnosis of breast cancer  

(Feng et al., 2015; Nargis et al., 2019; Bilal et al., 2017; Vargas-Obieta et al., 2016; Cervo et al., 

2015) and leukemia (MartinEspinoza et al., 2008; Babrah et al., 2007; Moisoiu et al., 2019; YU 

et al., 2017). The aim of PCA is to reduce dimensionality while allowing for as much variance in 

the original data set as possible (Martinez et al., 2005). However, only the few principal 

components that explain much variance are retained while the remaining PCs (high-order PCs) are 

discarded (Jolliffe, 2002). As a result, in the presence of much higher variance signals, the low-

variance signals (in the case of the present study weak Raman bands corresponding to trace and 

ultra-trace disease biomarkers) may become lost in the noise of higher principal components 

(Pelletier, 2003). According to Jolliffe (2002), analyzing intermediate and high-order principal 

components can be useful in obtaining additional knowledge about between-group variation. This 

is in line with findings by Pelletier (2003) who suggested that analyzing the omitted higher 

principal components (intermediate- and higher-order principal components) may be a useful tool 

for detecting analyte information.  

  A major limitation with PCA is the requirement that the data should lie on linear subspace 

(Luo et al., 2008). Thus, although PCA make the loading vectors uncorrelated to each other, the 

components may not be statistically independent.  Therefore, spectrum components may interact 

with one another, making it difficult to determine their precise concentrations of the constituent 

biochemical components. In this regard, Independent Component Analysis (ICA) has been 

suggested as a better alternative to PCA, owing to its ability of optimizing independence conditions 

to give more meaningful components (Masood et al., 2006). Furthermore, ICA works with non-

Gaussian data, producing physically observable concentration profiles and spectral components. 

With such capability, the low variant signals (subtle occurrences and multivariate alterations) 

determined with the help of high-order principal components can be further explored using ICA 

to ensure their mutual independence during quantification. To the best of author’s knowledge, this 
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has not been previously done in breast and leukemia studies. However, it should be noted that the 

performance is dependent on the correct choice of ICA model dimensionality (Taleb et al., 2006).  

There are many versions of ICA which include fast independent component analysis (FASTICA), 

joint approximate diagonalization of eigenmatrices (JADE), kernel ICA (KICA), Infomax ICA 

and Mean-field ICA (MF-ICA) (Wang et al., 2008; Boiret et al., 2014). Amongst the ICA versions, 

the FASTICA algorithm is a suitable choice for blood and saliva spectral data analysis owing to 

its ability of estimating only certain desired ICs, rather than solving the entire mixing matrix (Wang 

et al., 2008).  

 Previous works on blood and saliva-based breast cancer and leukemia studies show PCA 

was used alongside LDA (Nargis et al., 2019; Bilal et al., 2017; Vargas-Obieta et al., 2016;  

MartinEspinoza et al., 2008; Babrah et al., 2007). Being a low dimensional classifier, LDA require 

already dimensionally reduced data, and works efficiently well with linearly separable feature 

space (Wang et al., 2014). In event of high-nonlinear datasets, SVM, and ANN would be suitable 

techniques for pattern recognition and nonlinear regressions; a task that has hardly been explored 

in aforementioned breast cancer and leukemia works. It should however be noted that evolutionary 

genetic classification algorithms are known to suffer numerical instability especially when no 

proper initialization is provided. SVM has been the most popular kernel - based machine learning 

algorithm for both regression and classification purposes (Ratle et al., 2010; Archibald et al 2007; 

Switonski et al., 2010). It deals with two-class problems where maximum performance is required. 

Key challenges with SVM include i) it requires lengthy training time, ii) its outputs represent 

selections rather than future probabilities, iii) formulation of classes greater than two is  usually 

problematic, and iv) predictions must be certain / positive (Wang et al., 2014; Bishop et al., 2006). 

 The optimal choice of kernel parameters has been suggested as a potential method of 

achieving better performance with ANN and SVM (Wang et al., 2014). For SVM, a dataset with 

a low training samples to input dimensionality ratio and high dimensional data provide the best 

generalization efficiency (Belousov et al., 2002). However, the selection of an optimal kernel 

function for a given task or clear guidelines for using specific kernels is still of research interest. 

The efficiency of an SVM classifier is largely determined by the kernel it employs, taking into 

account size and speed constraints in both training and testing. For saliva and blood-based breast 

cancer and leukemia studies, a potential method of achieving greater SVM classifier’s 

performance, and which has not been experimented in aforementioned studies could be testing a 

set of cost values. The cost value with the lowest cross-validation classification error can then be 
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chosen as the best for further data analysis. For ANN, the training of neural network classifiers 

necessitates a lot of computation and is plagued by issues like convergence to local minima and 

outlier vulnerability (Tu, 1996). The high nonlinearity associated with neural network methods 

may result in trapping in local minima and thus limiting their discrimination power (Tang et al., 

2009). Furthermore, since neural networks are extremely sensitive to the Hughes phenomenon, 

they are ineffective when dealing with a large number of spectral bands (> 41) (Camps-valls et al., 

2005). To get around this problem, one possible solution is to use error feedback from the training 

samples to adjust the weights, bringing the network prediction of the correct outputs for the training 

samples closer to the true values.  In particular, experimentation can be performed by adjusting 

the number of neurons per layer, the learning rate, alpha values and the number of iterations. 

 There is currently a scarcity of studies using novelized machine learning methods, such as 

low variance principal components, to investigate useful subtle markers for breast cancer and 

leukemia diagnosis. Further, previous studies have not realized quantification of the potentially 

useful low variance signals.  Moreover, the diagnostic usefulness of determined low variance 

signals are not definitely clear, particularly where maximization of generalization performance is 

required in a two-class problem  and in a multiclass problem where data nonlinearity is more likely 

to occur, for example, in ANN classification problem.  
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Chapter 3    Principles of Quantitative Raman spectroscopy 

 

3.1 Basics of Raman spectroscopy 

 Upon interaction of electromagnetic radiation with a material, the possible processes 

include absorption, transmission, reflection and scattering (Fotakis et al., 2007). Absorption 

process happen when the transitions between bound states are in resonance with the incident 

photons. The bound transitions states could be vibrational, electronic, and rotational. Based on 

electromagnetic spectrum, electronic transitions take place in the visible, ultraviolet, and near-

infrared regions, while rotational and vibrational take place in the far-infrared and infrared regions, 

respectively (Fotakis et al., 2007). Light transmission shows low (weak) to no absorption.  

Scattering of of electromagnetic radiation can be categorized into elastic / Rayleigh scattering or 

inelastic / Raman scattering scattering. The energy of dispersed radiation in Rayleigh scattering 

has the same wavelength (and frequency) as the incident radiation. The higher and low scattered 

frequencies are categorized into anti-Stokes and Stokes Raman, respectively, thanks to Sir 

Chandrasekhara Venkata Raman (1888-1970) who discovered the Raman effect in 1928 (Chandra 

et al., 2015).  

 Raman spectroscopy utilizes scattering phenomenon to excite targeted molecules into the 

vibrationally excited state (Fotakis et al., 2007; Matthäus et al., 2008), where the anti-Stokes and 

Stokes scattering can be visualized in terms of photon energy gain or loss as depicted in Figure 

3.1. The molecule is excited from its ground state into a virtual excited state by incident 

monochromatic radiation at frequency  �� (and energy = ℎ�� ). In the case of Rayleigh scattering, 

the molecule relaxes back to its ground state and releases a photon of equal energy. In Stokes 

Raman scattering, the molecule relaxes to an excited vibrational level of the ground electronic 

state, releasing a photon whose energy (frequency: �� = �� − ��) is lower by the corresponding 

vibrational continuum. Since�� < ��, there is increment in size of wavelength (λ). It can also be 

seen (Figure 3.1) that the molecule transitions from an excited vibrational level of the ground 

electronic state to a virtual state in anti-Stokes Raman scattering, then relaxes to the ground level, 

releasing a photon of energy increased by one vibrational quantum (frequency: �
� = �� + ��). 

Since  �� > ��, there is decrement in size of wavelength  (λ) shortens.  
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Figure 3.1 Diagram of energy levels demonstrating processes of anti-Stokes, Rayleigh, and anti-

Stokes Raman scattering (Fotakis et al., 2007). 

  

 Raman spectrum is obtained upon spectrally resolving the scattered radiation (Fotakis et 

al., 2007). This is a graph of dispersed / scattered light intensity as a function of the difference in 

frequency between incident and scattered radiation (�) / Raman shift (in cm-1 units). The 

observed Raman bands reveal vibrational modes that explain unique fingerprints of the sample 

materials under investigation (Matthäus et al., 2008). Furthermore, since molecular vibrations are 

strongly influenced by conformation of the molecule and its chemical environment (Schie, 2013), 

spectral analysis may assist in identifying active molecular bands and assessing the impact of the 

microenvironment on studied samples, for example, biological cells.  

 In Raman spectroscopy, a large percentage of incident photons (> 99.9%) undergo elastic 

Rayleigh scattering. Therefore, only a small percentage of incident light (≤ 0.001%) undergo 

inelastic scattering (with frequencies �� ± ��), which can be considered useful for molecular 

characterization. For this reason, a major drawback with spontaneous Raman scattering is its weak 

signals and which are mostly dominated by broadband fluorescence emissions. For instance, 

though both fluorescence and Raman spectroscopy are based on vibronic effects, Raman scattering 

is at least 6 orders of magnitude weaker than fluorescence (Matthäus et al., 2008). Nevertheless, 

Raman spectroscopy (including microspectroscopy) possess key features that make it attractive to 

scientists (Fotakis et al., 2007): First, the technique is extremely precise due to the unique 

fingerprint aspect of the Raman spectrum. Furthermore, Raman microscopes have excellent spatial 

resolution, which aids in the study of small features, for example, in sub-cellular analysis. Raman 

spectroscopy is also nondestructive, and can be performed in situ thus minimizing sampling time. 

�� 

ℎ�� ℎ�� ℎ�� ℎ�� ℎ(�� − ��) ℎ(�� + ��) 
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� = 2 
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Other positive attributes include: availability of advanced fiber-optic Raman probes for remote 

sample analysis, availability of Raman databases for identification of unknown sample 

components (e.g. in soil and mineral analysis), and easy versatility usage nature of Raman set up 

systems. For instance, Raman microscopes are easy to use and are easily coupled to ones choice 

of excitation sources, spectrographs and CCD (charge-coupled devices)   

 

3.2 Theory of Raman spectroscopy 

 The phenomena behind Raman spectroscopy are better understood upon studying the 

interaction of the photons with the molecule utilizing the Time Independent Schrödinger equation. 

Time-independent Schrödinger equation for free particles with energy �� is given by (Schwabl, 

2007; Abdelrahman et al., 2014): 

− ħ�2� ������� =  ����                                                                         (3.1) 

It is observed in equation (3.1) that the potential vanishes since the particles are free. The solution 

of this equation is �� =  "#$%                                                                                            (3.2) 

which can be rewritten as               �� =  &�'()*�                                               (3.3) 

Substituting equation (3.3) in equation (3.2), we obtain ����% = −*&�)+�*�                                                                            (3.4) 

and  ������� = −*�&�'()*� = − *���                                                   (3.5) 

Therefore, equation (3.3) becomes  

− ħ�*�2� �� =  ����                                                                             (3.6) 

And because 

�� = ħ�/�2�                                                                                              (3.7) 

then 

− ħ�*�2� �� = ħ�/�2�  ��                                                                          (3.8) 

Now, * = /. Therefore, 
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�� =  &�'()/��                                                                                     (3.9) 

Substituting the Eigen function �3 of the photon in Schrödinger equation (3.3) the equation 

becomes 

− ħ�2� ���3��� =  �3�3                                                                               (3.10) 

 

Solving equation (3.10), we obtain wave equation in equation (3.11) �3 =  &3'()/3�                                                                                      (3.11) 

Upon interaction of electrons of the molecule and photons, we obtain a wave equation  �5  

as follows �5 =  ���3                                                                                              (3.12) 

which can be rewritten as,   �5 = &�&3'()/��'()/6�                                         (3.13) 

 Using trigonometric relations and substituting &�&3 by &5 , equation (3.13) can be 

rewritten as  

�5 =  &52 7cos;/� + /6< � + cos;/� − /6< �=                                  (3.14) 

In equation (3.14),  (/� + /6) represents the photons' absorption by the electron while  

 (/� − /6) represents the photon’s emission by the electron. 

Including equation (3.13) into equation (3.14), we obtain 

�5 =  &52 7cos;/� + /6< � + cos;/� − /6< �= + &3'()/6�         (3.16) 

It can be observed (equation 3.16) that there are three wavelengths  >� + >6, >� − >6, and >6, 

which represent anti-Stokes Raman, Stokes-Raman and Rayleigh scattering, respectively.  

 Most molecules are contained in the ground state at room temperature. According to 

Boltzmann's theorem, the Stokes Raman lines are far more intense than the anti-Stokes Raman 

lines in thermal equilibrium (Larkin, 2011). It's worth noting that the polarization of the scattered 

beam might not be identical to that of the incident beam (Smith et al., 2005). As noted (Figure 

3.2), Raman spectrometers contain analyzer component for analyzing the polarization of the 

scattered beam. Besides, it has polarizer component that i) ensures radiation is plane polarized and 

ii) determines the angle of the plane of the incident radiation. The analyzer allows polarized beam 

to pass through only in one plane, first by allowing transmission of scattered radiation in the plane 
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of the incident radiation (parallel scattering) and then allow beam whose polarization direction has 

been changed at 90o by the molecule M (perpendicular scattering).  

  

 

Figure 3.2 The schematic structure of a Raman instrument.  

  

The intensity of Raman scattered radiation (?#@) is given by (Larkin, 2011): 

?#@ = A�BCD#@�E#?�  ∝  �C?�E G�H�IJ�                                  (3.17) 

where  A = factors of instrumentation 

 �B = scattered photon frequency, 

 D#@ = the transition probability, 

 E# = E = concentration of scattering molecules, 

 ?� = intensity of incident radiation (laser intensity), 

 � = frequency of incident radiation (exciting laser),  H = polarizability of the molecules, 

 I = vibrational amplitude. 

Equation (3.17) implies that i) quantification of molecular signatures is possible since Raman 

signal is concentration dependent, ii) Raman intensity of the various molecular bands increases by 

using shorter wavelength excitation or increasing the laser flux power density, and iii) only 

molecular vibrations which cause a change in polarizability are Raman active as governed by:  
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G�H�IJ� ≠ 0.                                                                                (3.18) 

  Another observation concerns the parallel connection between Infrared (IR) 

absorption and Raman scattering (Schrader, 1995; Lewis et al., 2001). IR absorption is a one-

photon effect that occurs when the frequency of IR radiation and the vibrational frequency of a 

specific normal mode of vibration are in direct resonance. As a result, the dipole moment of the 

molecule changes in relation to its vibrational motion. In this case, the IR photon interacts with the 

molecule, the photon vanishes, and the molecule's vibrational energy is raised by the photon's 

energy at the vibrational resonance frequency. Raman scattering, on the other hand, is a two-photon 

reaction involving a polarizability change of the molecule in relation to its vibrational motion. 

Electrons and nuclei are forced to travel in opposite directions when a molecule is exposed to an 

electric field. As polarizability interacts with incoming radiation, it induces a dipole moment in 

the molecule that is proportional to the electric field intensity and molecular polarizability α. The 

radiation emitted by this induced dipole moment contains the observed Raman scattering.  

 

3.3 Raman spectrometric instrumentation 

 A Raman spectrometer simply consists of excitation source (in this study, a laser source), 

optical filters, charge-coupled device (CCD), and a spectrograph / spectrometer (Figure 3.3). 

Briefly, the laser light illuminates the sample. The optical filters consists of excitation and emission 

filters. Narrow band-pass filters are used to block laser noise in the excitation filters. The emission 

filter is made up of an edge long-pass filter that suppresses Rayleigh light while allowing scattered 

Raman signals to pass through to the Raman spectrograph, imaging spectrograph, and CCD 

camera. The illumination pinhole effectively creates a single point source, which the objective 

refocuses onto the sample to analyze each point on the sample. The confocal pinhole functions as 

a spatial filter, allowing only in-focus light to pass through while effectively eliminating out-of-

focus light from the specimen. When the image point on the detector has the same focus as the 

illumination light spot on the target plane, the object and images are said to be confocal (i.e., the 

object point and the image point lie on the optically conjugated planes). Several laser mirrors guide 

the laser beam to the sample, which is then centered onto the sample using a microscope objective. 

The backscattered light is captured by the objective lens and guided to the spectrograph's entrance 

slight. The notch filter (or edge long-pass filter) reduces the transmission of intense Rayleigh lines 
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through the spectrograph. The scattered radiation is then reported on a CCD array detector using 

a diffraction grating spectrograph. 

 

 

 

Figure 3.3 Schematic illustration of a typical Raman spectrometric set up.  

 

 The choice of particular laser is one of the most important consideration in any 

spectroscopic study (Schie, 2013; Byrne et al., 2015). From equation (3.17), Raman lines intensity (?) depends on laser frequency's fourth power (�) where (?H�C). As a consequence, at shorter 

wavelengths, scattering efficiency is higher, resulting in faster integration times (Byrne et al., 

2015). However, while shorter wavelength laser sources e.g., 532 nm, improve signal efficiency 

(and thus detector performance), they also increase sample photodegradation and autofluorescence 

(Schie, 2013). Moreover, utility of higher wavelength sources (in µm scale) pose challenge of 

lower quantum efficiency of detectors and significantly reduced cross section (Schie, 2013). The 

most common compromise therefore include utilizing near-infrared (NIR) excitation sources such 

as 785 nm, 830 nm and 1064 nm. Such excitation sources have good sample (for example, tissues) 

penetration depths thereby exciting large volumes of sample (Wang et al., 2014). Moreover, 

excitation at longer wavelengths (785 and 1064 nm) is frequently used as optimal for measuring 

of fresh tissues due to relatively low background (Synytsya et al., 2014). In general, 785 nm is the 
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most preferred excitation laser wavelength in bio spectroscopy studies because it provides a 

balance of performance with less excitation efficiency but also lower fluorescence (Synytsya et 

al., 2014). 

 

3.4 Calibration regression for quantitative Raman spectral analysis 

 The most widely used regression methods for quantification of multivariate spectral data 

are partial least-squares (PLS), ANN, principal component regression (PCR), multivariate linear 

regression (MLR) variants, ridge regression (RR), continuum regression (CR) and support vector 

regression (SVR) (Geladi et al., 2016; Salem et al.,  2014; Awad et al., 2015). The ANN and SVR 

regression techniques work very well in nonlinear situations and with large heterogeneous data 

sets (Geladi et al., 2016; Awad et al., 2015). It is based on the perceptron – the so considered basic 

building block of ANN. Perceptron is the name initially given to a binary classifier. However, 

perceptron can be viewed as a function which takes certain inputs and produces a linear equation 

which is nothing but a straight line (Rezaeianzadeh, 2014). Generally, sigmoid function or other 

similar classification algorithms, for example, linear kernel, polynomial kernel, and Gaussian 

radial basis function (RBF) are used as activation functions. The process involves feeding input to 

a neuron in the next layer to produce an output using an activation function (Rezaeianzadeh, 2014). 

This process is called as ‘feed forward’. After producing the output, error (or loss) is calculated 

and a correction is sent back in the network. This process is called as ‘back propagation’ 

(Rezaeianzadeh, 2014). The back propagation process aims at achieving the smallest training error 

as a function of the added neurons to the intermediate layer (Okonda et al., 2017). The back-

propagation ANNs are the most useful for calibration purposes (Geladi et al., 2016).  However, in 

comparison to the traditional linear regression techniques e.g., partial least-squares (PLS), ANN 

regression often give less stable and less robust results (Geladi et al., 2016). 

 Support Vector Regression; a method that uses the same principle as the SVMs, is also 

applicable for quantifying large nonlinear heterogeneous data sets.  The objective of support vector 

regression is to basically consider the points that are within the decision boundary line. The best 

fit line is the hyperplane that has a maximum number of points (Salem et al., 2014; Awad et al., 

2015). In other words, the straight line that is required to fit the data is referred to as hyperplane. 

The data points on either side of the hyperplane that are closest to the hyperplane are called support 

vectors (Salem et al., 2014). Unlike other regression models that try to minimize the error between 

the real and predicted value, the support vector regression tries to fit the best line within a threshold 
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value Suárez et al., 2011). The threshold value is the distance between the hyperplane and 

boundary line (Salem et al., 2014). The fit time complexity of support vector regression is more 

than quadratic with the number of samples which makes it hard to scale to datasets with more than 

a couple of 10000 samples. Support vector regression technique has many advantages which 

include (Awad et al., 2015): being robust to outliers, easy update of decision model, excellent 

generalization capability, high prediction accuracy, and easy implementation. However, they have 

shortcomings which include (Awad et al., 2015):  (i) They are not suitable for large datasets, (ii) 

They underperform in cases where the number of features for each data point exceeds the number 

of training data samples, and (iii) The decision model does not perform very well when the data 

set has more noise i.e. target classes are overlapping. 

 PLS regression is a commonly preferred technique in biospectroscopy. The PLS regression 

model can be thought of as a combination of principal component regression (PCR) and 

multivariate linear regression (MLR) (Allegrini et al., 2014). The PLS regression is a common 

technique for quantitative Raman spectroscopy. The aim of quantitative Raman spectral analysis 

is to deduce the composition from the Raman spectrum of a sample. Based on working principal 

of PCR and MLR (Allegrini et al., 2014), PLS can be interpreted to be a factorial analysis that 

simultaneously take both spectral and biochemical data into account (Weinmann et al., 1998). PLS 

has an advantage over PCR in that it needs fewer components in the model, making it easier to 

identify outliers and groupings in datasets (Geladi et al., 2016). PLS regression does not entail a 

priori knowledge of the spectra of all the components in a complex mixture, unlike other spectrum 

analysis approaches. Moreover, the success of PLS regression is pegged on establishing a suitable 

efficient model during the calibration phase, whose optimal number of factors to be used are 

determined by validating model (Weinmann et al., 1998). Further details regarding conceptual 

principles of PLS regression can be found elsewhere (Geladi et al., 2016; Valderrama et al., 2007). 

 For spectroscopy works, multivariate analysis of PLS regression involves solving the 

equation L = M('. N) + � where L = original spectra (measured spectrum), '. N = spectra of 

calibration samples, M = concentrations matrix to be projected, and � = residuals (Stone et al., 

2007). The equation provides the best fit of basis spectra found within the measured spectrum. It 

further assumes residual is held to a minimum so that the key components of measured spectra are 

the chosen spectral components (Stone et al., 2007). Careful consideration should be taken into 

account when choosing the number of models to include in the model. Selecting too few 
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components results in a poor model, while selecting too many components results in a model that 

is susceptible to noise (Geladi et al., 2016). 

 The fit of the model can be evaluated by scatter plotting the values for the test set against 

the measured values for model validation. A diagonal scatter plot should be the product of a good 

model. Alternatively, the linearity can be used to estimate the model qualitatively by comparing 

the distribution of residuals to the reference values (Frost, 2016). In addition, the accuracy of the 

model can be evaluated by determining the coefficient of multiple determination during cross-

validation (R2
val) and the root mean squared error of prediction (OPN�D), according to the 

following equation (Frost, 2016; Sichangi et al., 2018). 

OPN�D = Q∑ (S6TUV,# − S#)�X#YZ �                                         (3.19) 

where S6TUV,# refers to predicted concentration; S# is the known concentration for sample i and n 

is the number of samples. 

 

3.5 Multivariate machine learning techniques for Raman spectral analysis 

 To better understand biochemical differences between samples categories, machine 

learning techniques are performed with aim of revealing similarities and differences in signature 

profiles embedded in overlapping spectra. 

 

3.5.1 Principal component analysis (PCA) 

 The principal component analysis (PCA) is a popular data dimensionality reduction 

technique aimed at extracting the smallest number of principal components that represent most 

important information in the original multivariate data. Although there are many variants of PCA 

algorithms, the singular value decomposition principal component analysis (SVD-PCA) is often 

preferred in reducing redundancy of the spectral information owing to its matrix factorization 

algorithm flexibility (Martinez et al., 2005; Trauth, 2015). The SVD-PCA is a chemometric 

method that seeks to obtain a lower rank approximation to matrix X (Martinez et al., 2005),  

X = U]D]V]5                                                                  (3.20)           
where Uk is a n×k matrix containing the first k columns of U, Vk is the p×k matrix whose columns 

are the first k columns of V, and Dk is a k×k diagonal matrix whose diagonal elements are the k 

largest singular values of X. The approximation is usually the best one in least squares sense; to 
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provide principal components (PCs) that contain the main amount of variance (potential 

information) pertaining to the data. The first principal components (loads) that describe the greatest 

variance from the mean is often utilized during subsequent analysis (Crow et al., 2005). 

 

3.5.2 Linear discriminant analysis (LDA) 

 The goal of the LDA technique is to project the original data matrix onto a lower 

dimensional space (Tharwat et al., 2017). Being a low dimensional classifier, LDA require already 

dimensionally reduced data, for instance by PCA, and fits well with feature space that is linearly 

separable (Li et al., 2012). The LDA technique is developed to transform the features into a lower 

dimensional space, which maximizes the ratio of the between-class variance to the within-class 

variance, thereby guaranteeing maximum class separability (Li et al., 2012; Tharwat et al., 2017). 

 LDA follows three steps to achieve dimensional reduction of datasets (Varmuza et al., 2008; 

Tharwat et al., 2017): (i) calculation of the between-class variance or between-class matrix, (ii) 

calculation of the distance between the mean and the samples of each class, i.e., the within-class 

variance or within-class matrix, and (iii) construction of the lower dimensional space which 

maximizes the between-class variance and minimizes the within-class variance. 

 

3.5.3 Independent component analysis (ICA) 

 ICA is a blind source separation algorithm that seeks to find a nonlinear representation of 

non- Gaussian data such that, independent components (ICs) highly correlated to the spectral 

profiles of components in the mixtures are extracted (Wang et al., 2008; Trauth, 2015). ICA aims 

at estimating k independent vectors (independent components) from a noise-free model (Boiret et 

al., 2014); L = A. S                                                                  (3.21) 

where X is a (n x m) matrix, S is a (k x m) matrix of k independent independent components,  and 

A is a (n x k) matrix of coefficients of X. A computed matrix U constituted by the independent 

components would therefore be given by  b = W. X = W. (A. S) = S                                    (3.22) 

There are many versions of ICA such as fast independent independent component analysis 

(FASTICA), joint approximate diagonalization of eigenmatrices (JADE), kernel ICA (KICA), 

Infomax ICA and Mean-field ICA (MF-ICA) (Wang et al., 2008; Boiret et al., 2014). The fast 
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independent component analysis (FASTICA) algorithm is often preferred for spectral analysis due 

to its ability of estimating only certain desired ICs, rather than solving the entire mixing matrix 

(Wang et al., 2008). 

 

3.5.4 Multidimensional scaling (MDS) 

 Multidimensional scaling is a technique for the analysis of similarity or dissimilarity data 

on a set of objects (Leeuw, 2005). MDS attempts to model such data as distances among points in 

a geometric space (Martinez et al., 2005; Leeuw, 2005). The main reason for doing this is that one 

wants a graphical display of the structure of the data, one that is much easier to understand than an 

array of numbers and, moreover, one that displays the essential information in the data, smoothing 

out noise (Leeuw, 2005). The most widely assumed metric in MDS is the Euclidean, in which the 

distance between two points  j and k is defined as (George et al., 2020): 

d@] = ef(L@T − L]T)�g
TYZ h

Z �i                                   (3.23) 

where L@T and L]T are the rth coordinates of points j and k, respectively, in an R-dimensional 

spatial representation. It should be noted that two-way multidimensional scaling use either the 

Euclidean metric or the Minkowski ρ (or Lρ) metric, which defines distances as (George et al., 

2020; Weinberg, 1991):  

d@] = ef(L@T − L]T)jg
TYZ h

Z ji     (k ≥ 1)               (3.24) 

Equation (3.24) includes Euclidean distance as a special case in which ρ = 2. 

 

3.5.5 Support vector machine (SVM)  

 Support vector machine is a supervised machine learning algorithm that can be used for 

classification and regression problems. The working principle of SVM is based on the fitting 

function (Han et al., 2017): 

m(�) = f H#S#
X

#YZ A(�, �#) + n�                                (3.25) 

where A(�, �#) is a kernel function; �# is the training sample eigenvector; and � is the recognizing 

sample eigenvector (Singla et al., 2011). The parameter H# is restricted to 0 ≤ H#  ≤ M and can be 
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estimated by maximizing a Lagrangian. M is the cost parameter that determines the amount of 

regularization, that is, the parameter M (cost function) determines the classification error term 

(Bouzalmat et al., 2014). There are various SVM functions e.g., the linear and radial basis 

functions (RBF) kernel functions defined as (Han et al., 2017; Singla et al., 2011): 

A(�, �#) = � ∙ �#                                                            (3.26) 

A(�, �#) = exp(−t‖� − �#‖�)                                 (3.27) 

In spectroscopy, spectral data analysis looks for the best RBF function parameter t, as well as the 

best regularization parameter, M, for the efficient optimization process. The optimal t and M values 

are sorted in such a way that the effect is sufficient to create a decision surface without 

misclassifying the training set, hence reducing over-prediction. The t and M are obtained from the 

grid search for the highest cross-validation accuracy.  

 

3.5.6 Back propagation neural network (BPNN) 

 The backpropagation network belongs to a class of artificial neural networks (ANN). 

ANNs are biologically inspired computational networks which learn to approximate a 

unidirectional mapping from an n-dimensional input space OX to an m-dimensional output space O� (where n represents the number of input variables, m represents the number of output variables)  

(Marini et al., 2008). The implementation of backpropagation neural network (BPNN) is based on 

the fitting function (Marini et al., 200; Wythoff, 1993):  

S = m(f v#�#
X

#YZ + w)                                                    (3.28) 

where S represents the neuron output, i.e., the value of the nonlinear function m (the neuron itself) 

corresponding to the inputs  �#;  �# represents the input’ weights; v# represents the node bias 

(offset); and w represents  the number of node synapses. The performance is optimized by 

minimizing the mean squared error (PN�) (equation 3.29) by adjusting the network weights.  

PN� = 1� f xf;S#@ − (#@<��
@YZ yX

#YZ                                     (3.29) 

where S#@ represents the correct pattern outputs for a pattern +; (#@ represents the network estimates 

for pattern +; m represents the number of output nodes; and n represents the training patterns counts.  
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Chapter 4    Materials and Methods 

 

4.1 System Configuration and Optimization 

 This section outlines the system configuration and optimization procedures that were 

undertaken during spectral measurements.  

 

4.1.1 STR Raman spectrometer system 

 The STR series Raman spectrometer was used to record Raman spectra. This spectrometer 

is available at the Department of Physics, University of Nairobi. Briefly, this setup (Figure 4.1) 

comprises the 785 nm and 532 nm excitation lasers. The excitation laser beam traverses through 3 

meter  length,  multimodal 10 µm  core  diameter  optical  fiber  connected  to  the  Raman  optics 

assemblage. The Raman light travels through the 3m length, 50 µm core diameter fiber from 

Raman optics to the spectrometer. The Raman optics assemblage is coupled with confocal Raman 

optical microscope system (Olympus BX51, Olympus Corporation, Tokyo). The assemblage 

houses a combination of neutral density (ND) filters (in various orders of percentage 

transmissions), band pass filters and long pass filters (all from Semrock Corporation) interfaced to 

shutter controller, motorized stage controller (MAC 6000 system) and motorized XYZ stage - BP-

3”X2’’(all from Ludl Electronics Products, Ltd).  

 Raman signals are  detected  by  combination  of  0.3 mm  imaging  triple  grating  

spectrograph  (Princeton Instruments, Acton SpectraPro2300) and  a  -75o C Pentium cooled 

Halogen charge-coupled device (CCD). The LL01-532 and LL01-785 neutral density filters are 

used to reject unwanted lines from 532 nm and 785 nm excitation sources, respectively. Rayleigh 

scatterings are removed by LP03-532RU and BLP01-785R long- pass edge filters respectively (all 

from Semrock Corporation). The window-based STR Raman version 1.9.3 software is used to set 

and manage the experimental parameters. 

 

4.1.1.1 STR Raman spectrometer system power loss characteristics 

 As described in Section 3.2, the choice of optimum excitation wavelength for biological 

studies must balance between minimizing induced fluorescence signals and the fourth power 

dependency (�C) of laser frequency(�) (Larkin, 2011). The best compromise in many research 

works has been utility of near-infrared (NIR) excitation sources such as 785 nm, 830 nm and  
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Figure 4.1 Schematic diagram of a customized STR Raman spectrometer system.  

KEY: DPSS - diode-pumped solid-state; CL - collimator lens; ND - neutral density filter (1, 5, 10, 

25, 50, 100 %); SND  - shutter neutral density filter (0.1%,  x2); BP  - Band pass filter; 50 / 50 B.S. 

- beam splitter (50 % reflection, 50 % transmission); LPF - long pass filter; 10 / 90, B.S. - Beam 

splitter (10 % reflection, 90 % transmission); CCD  - charge-coupled device; TS  - translational stage 

(XYZ stage); PC - personal computer; USB -universal serial bus. 
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1064 nm. Therefore, this work was based on 785 nm excitation laser due to following advantages 

(Zhao et al., 2014): First, the fluorescence background emanating from tissues is relatively lower 

at 785 nm laser excitation than at shorter excitation wavelengths, for example, the 532 nm 

wavelength. Secondly, the wavelength at 785 nm excitation penetrates tissues more deeply than 

shorter wavelengths. Moreover, the tissue's Raman quantum yield is higher at this excitation 

wavelength than at longer excitation wavelengths. 

 To get an understanding of energy transfers (and losses) through system components up to 

the sample on the stage, the 785 nm laser powers were measured after several components i.e., 

collimator lens (CL), neutral density filters (ND), shutter neutral density filters (SND), band pass 

filter (BP), flat mirror, 50 / 50 BS (beam splitter; 50 % reflection, 50 % transmission) and the x80 

objective lens. This was done using a calibrated Newport photodiode (detector 818-SL) fitted with  

a neutral density filter (OD3) coupled to a Newport optical power meter (model 840) (power 

density: 0.1 mWm-2 – 2000 Wm-2). The respective measured power losses are summarized in Table 

4.1. 

 

Table 4.1 The power losses in the STR Raman system's main components 

System components Measured Power (mW) Power loss (dB) 

Diode N-IR (785 nm) laser 100 --- 

Collimator lens (CL) 64.1 1.9314 

Neutral density filter (ND; 100%) 64.0 0.00678 

Shutter neutral density filter (SND) 31.2 3.1202 

Flat mirror (reflective) 24.9 0.9795 

50 / 50 beam splitter 13.58 0.2633 

x80 ULWD objective (0.80) 

Spot size: 10.85 µm 

9.8 0.1416 

x80 LWD objective (0.50) 

Spot size: 13.32 µm  

11.2 0.0836 

  

 We observed that the largest loss of laser light energy occurred between the laser head and 

the collimator lens (CL), neutral density filter (ND), and shutter neutral density filter (SND), as 

shown in Table 4.1. This loss of laser light energy can be attributed to energy losses through optical 

medium via mechanisms of reflection, absorption, and scattering (Fotakis et al., 2007). After 
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repeated experiments based on x80 objective,  it was observed that the maximum measured power 

on the sample surface ranged between 9.72 ± 0.02 mW to 11.56 ± 0.32 mW. Consequently, all the 

subsequent Raman measurements regularly took into account the laser power on sample surface 

during all actual measurements on biofluid samples.  

  

4.1.1.2 Stability of laser output characteristics 

 The warm-up and power output stability characteristics of the 785 nm laser were tested 

over a two-hour period after the laser was turned on. The laser intensity was measured using a 

calibrated Newport photodiode (detector 818-SL) fitted with a neutral density filter (OD3) coupled 

to a Newport optical power meter (model 840) (power density: 0.1 mWm-2 – 2000 Wm-2), every 

15 seconds. Similarly, ambient temperature (thermometer:  MOD BA-888 Oregon SCIENTIFIC) 

was measured every 15 seconds. Respective plots of measured laser output and ambient 

temperature versus time is shown in Figure 4.2.  

 

Figure 4.2 Plot of laser output power at 785 nm (in watts / square meter) and ambient temperature 

(oC) versus time (hours). 

  

 It was observed that the laser power (and power density) increased drastically in the first 

15 minutes from switching on the laser. This can be attributed to the initial coherent emission when 

a laser current (ILD) above a certain threshold flows through it. Previous studies have shown that 



43 

 

laser diodes do not have a constant optical output power, particularly in the first 1 hour after being 

switched on (Semleit et al., 1997; Zhou, 2015). In this study, the laser power density was found to 

gradually decrease from the 20th up to the 75th minute, where it stabilized over a period of the next 

two to five hours. This trend was consistently observed after repeating similar measurements in 

the next three days. Moreover, there was a gradual rise in ambient temperature, which attained 

approximate levels of 22.29 ± 0.41 oC at the point of laser power stability. The increment of 

ambient temperature could be attributed to the heat dissipation from the laser and STR series 

Raman device. However, it should be noted that variations in environmental temperatures might 

lead to a higher root mean square noise levels in the optical output power, hence lower excitation 

efficiency (Semleit et al., 1997; Zhou, 2015). Based on this finding, the 785 nm laser was always 

switched on for about 1.5 hours prior to beginning Raman measurements, and the air conditioner 

was always set at 22 oC, to ensure constant room temperature, hence stable laser output power. 

Moreover, Raman measurements were performed within a period of five hours. 

 

4.1.1.3 Wavelength stability of laser 

 The Raman spectrum of crystalline silicon material was measured every minute during the 

2 hour warm-up cycle in order to assess the wavelength stability of the 785 nm laser. The air 

conditioner was initially set at 22o C and laser was switched on for more than 1.5 hours before 

measurements. Figure 4.3 (a) shows the measured crystalline silicon spectrum versus time 

(minutes). The silicon peak was found to have a mean wave position of 519.49 ± 0.0075 cm-1 

within the 2 hours measurements (Figure 4.3 (b)). Thus, to ensure wavelength stabilities during 

subsequent Raman measurements, the STR system was regularly recalibrated after every 2 hours. 

 

4.1.1.4 Choice of optimal substrates for biological samples measurements 

 The suitability of available substrates for biological spectral measurements in our 

laboratory, which included the ordinary microscopic glass slides, silver-coated glass slides, and 

calcium fluoride substrates were evaluated. Using 785 nm excitation laser, a total of 5 spectra, 

exposure time = 50 seconds were measured and averaged for graphical analysis. Fig. 4.4 shows 

the average spectrums of ordinary glass slides, silver-coated glass slide, and calcium fluoride 

substrates. It can be observed that the ordinary glass fluoresces highly fluoresced around 1380  

cm-1 band, and was therefore found unsuitable for Raman measurements in the 400-1800 cm-1 

region. The silver paint coated glass and calcium fluoride substrates had minimal fluorescence,  
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Figure 4.3 (a) The measured crystalline silicon position at 519 - 520 cm-1 against time (in minutes), 

and (b) mean wavenumber position of crystalline silicon (519.49 ± 0.0075 cm-1).  The power on 

sample surface ≈ 9.8 ± 0.26 Mw, spot size ≈ 10.85 µm.  

 

although calcium fluoride substrate performed better than all the other substrates, which agrees 

with other findings (Byrne et al., 2015).  In this study, it was observed that the silver-coated glass 

slides could not be used for spectral measurements of saliva, because saliva deposits could not be 

practically identified on the substrate surface. However, silver-coated glass slides yielded 

enhanced and clearer Raman spectra from blood fluids. Moreover, the calcium fluoride was 

observed to be a better substrate owing to its Raman peaks free characteristics in the 400-1800  

cm-1 region (Byrne et al., 2015). Therefore, the current study undertook Raman measurements on 

blood and saliva samples using silver coated glass slides and calcium fluoride substrates, 

respectively.  

 

4.1.1.5 Effects of ambient light on measurements 

 The effects of ambient light on spectral measurements were evaluated by measuring the 

Raman spectrum of calcium fluoride substrate in 150-1900 cm-1 region, under several experimental 

conditions which included: when fluorescent lights were switched on or off, halogen light 

intensities set at maximum and minimum values, and desktop screen away and close to the sample 

area. Prior to taking Raman measurements, the 785 nm laser was switched on for approximately 2 

hours, and the air conditioner was constantly set at 22 oC. This ensured laser power stability during 

(a) (b) 
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the measurements. To improve signal intensity, the substrates were illuminated with 785 nm laser 

at exposure times 100 seconds. Figure 4.5 shows the effects of ambient light on spectral curves of 

calcium fluoride substrate. 

  

 

 

Figure 4.4 Average spectrums of ordinary glass slides, silver coated glass slide, and calcium 

fluoride substrates; laser power on sample surface 10.1 ± 0.04 mW;   spot size ≈ 10.85 µm, 

exposure time = 50 seconds.  

 

 About eight Raman peaks (320, 363, 381, 411, 428, 1266, 1341, 1535 cm-1) were observed, 

as shown in Figure 4.5. The intense peaks at 381 cm-1, 411 cm-1, 1266 cm-1, 1341 cm-1, and 1535 

cm-1 points to spectral contributions from fluorescent lamps whereas the (363 cm-1, 428 cm-1 ) 

bands explain the spectral contributions from tungsten halogen lamps (Zhao et al., 2014;  

Desroches et al., 2015). The peak at 320 cm-1 is specific to Raman grade calcium fluoride substrate 

materials (Lewis et al., 2017). Based on this data, the subsequent Raman measurements were 

limited to 400-1800 cm-1 region and taken in complete darkness. Nevertheless, it was impossible 

to turn off the computer’s liquid crystal display (LCD) monitor. However, the LCD monitor was 

always kept pointing away from the point of measurements, and not too close to where 

measurements were made. The LCD monitor did not seem to have a noticeable impact on the 

measured spectra, according to a visual analysis of the measured spectra. 
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Figure 4.5 Spectrum showing the effects of ambient light on spectral curve of calcium fluoride 

substrate in (a) 200 – 600 cm-1, and (b) 1200 – 1600 cm-1 regions.  

KEY: C – ambient light switched on, halogen light and epi-illumination set at maximum intensity 

/ level; D - ambient light switched off but halogen light and and epi-illumination set at maximum 

intensity / level; E - ambient light switched off, halogen light set at maximum intensity / level and 

epi - illumination switched off; F - ambient light switched off, halogen light set at minimum value 

and epi - illumination switched off; G- ambient light switched off, halogen light set at minimum 

value and epi - illumination set at maximum value; H – ambient light switched off, halogen light 

set at minimum value, epi illumination switched off and desktop screen light blocked from sample 

surface.  

 

4.1.1.6 The effect of power density and exposure times on signal-to-noise ratio (SNR). 

 The effects of exposure times and power levels on SNR of Raman peaks were evaluated by 

measuring spectra of blood and saliva samples using an x80 objective at ≈12 mW laser power on 

the sample surface. The resulting averaged spectra of 10 measured spectra of blood and saliva are 

shown (Figure 4.6 (a), (b)). 

 The SNR values were calculated based on equation (4.1) (McCreery, 2001) for different 

integration times at chosen Raman bands, namely (1241 cm-1, 1445 cm-1) for blood samples, and 

(1268 cm-1, 1539 cm-1) for saliva samples. These bands were selected for determination of SNR 

values because they provide biochemical information regarding protein to lipid ratios in biological  

samples (Movasaghi et al., 2007).  

(a) (b) 
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Figure 4.6 Raman spectra of (a) blood, and (b) saliva from a grade 3 breast cancer patients, 

demonstrating the effect of exposure times on SNR of selected bands, in total exposure times of 60 

seconds (i), 90 seconds (ii), and 120 seconds (iii).  

 

NEO =  N̅{|                    (4.1) 

The N̅ and {| in equation (4.1) represented the average peak height and the peak height’s standard 

deviation, respectively. The respective SNR ratios are summarized in Table 4.2. Evaluation of SNR 

values showed the exposure time of 120 seconds delivered the optimal intensity signal without 

burning the sample. The sample damage was determined by checking for burning marks on the 

sample after measurements.  

 

Table 4.2 The SNR values of saliva and blood Raman peaks measured at different exposure times  

Wavelength / nm = 785 nm 

    Blood     Saliva  

Exposure time   

 (seconds)      Signal-to-Noise Ratio at wavenumber shift (in cm-1) 

       1241 1445   1268  1539 

    60        2.3              1.7   8.9    0.8   

    90        4.2              2.6   10.7     1.1 

    120        9.8              5.6   14.3     3.5   

(b) (a) 
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 As seen in Figure 4.6 (a), it is evidently clear that blood spectra is dominated by 

hemoglobin and fibrin which are protein components that constitute building blocks of red blood 

cells and plasma, respectively (Lbany et al., 2015). For instance, the 999 cm-1, 1373 cm-1, and 

1622 cm-1 are characteristic peaks of hemoglobin. The 967 cm-1 and 1241 cm-1 peaks can be 

attributed to pure fibrin, which is a major component of coagulated blood. The 1241 cm-1 band 

reveals amide III vibrational modes of proteins in form of C–N stretching, N–H bending, and C–

C stretching (Rehman et al., 2013). Based on the available literature (Rehman et al., 2013; 

Sikirzhytski et al., 2010), the biochemical alterations in saliva spectra (Figure 4.6 (b)) can be 

assigned to cholesterol (418 cm-1), cholesterol esters / cysteine (539 cm-1), cholesterol esters / C-

C twisting of proteins (617 cm-1), nucleic acids (655 cm-1, 722 cm-1, 1096 cm-1, 1140 cm-1, 1185 

cm-1, 1281 cm-1, 1426 cm-1, 1511 cm-1, 1679 cm-1), amino acids (793 cm-1, 978 cm-1, 1598 cm-1), 

phosphodiesters (824 cm-1), phospholipids / proteins (878 cm-1), proteins / glycogen (937 cm-1), 

amide III (1281 cm-1), CH3CH2 wagging modes in collagen and purine nucleic acid bases (1324 

cm-1), lipids / proteins (1382 cm-1, 1549 cm-1), and lipid esters (1744 cm-1).  

 

4.2 Cell culture:  in vitro application in cancer research 

 In the last decade, in vitro cancer research has relied heavily on animal cell culture. The 

word "cell culture" refers to the process of growing eukaryotic, prokaryotic, or plant cells under 

controlled conditions. Therefore, animal cell culture refer to propagation of cells derived from 

animal cells (Freshney, 2006). The cells may have been directly extracted from tissue and 

disaggregated by enzymatic means before cultivation, or they may have been derived from a 

previously identified cell line or cell strain (Freshney, 2006). The cells are normally passaged to 

provide more space for continued growth by moving them to a new vessel with fresh growth 

medium. 

 For cell proliferation to occur, artificial formulations / environments including supplies of 

essential nutrients (vitamins, carbohydrates, amino acids, and minerals), growth factors, hormones 

and essential gases (carbon dioxide and oxygen) are used (Masters et al., 2007). Carbohydrates are 

supplemented in form of glucose. In some instances, it is replaced with with galactose to decrease 

lactic acid build up, because galactose is metabolized at a slower rate. Other carbohydrates sources 

include amino acids (particularly L-glutamine) and pyruvate. In addition to nutrients, tissue culture 

media contain bicarbonate that necessitate a 5% carbon dioxide atmosphere to maintain the pH at 

7.4 and and osmolality of culture system (Masters et al., 2007). The pH is maintained by one or 
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more of buffering systems; the CO2 or / and Na2CO3. Most mammalian cell lines grow well at pH 

7.2 - 7.4 (Masters et al., 2007).The commonly used media are Eagles Minimum Essential Medium 

(EMEM) and Dulbecco’s Modified Eagle’s Medium (DMEM). The EMEM and DMEM may 

generally be classified as complete culture media (basal media). These are media supplemented 

with other media additives such as serum, L-glutamine, and antibiotics. When complete media is 

supplemented with other percentage formulations of fetal bovine serum, antibiotics, fungizones 

and L-glutamine, a new media hereby referred to as growth media is obtained. Growth media is 

used for initiating growth of cells in tubes. It is worth noting that L-glutamine is an important 

amino acid that is necessary for protein synthesis, energy production, and nucleic acid metabolism 

in virtually all mammalian cells grown in culture (Masters et al., 2007). 

 Amino acids, proteins, vitamins, carbohydrates, lipids, hormones, growth factors, minerals, 

and trace elements are all contained in animal serum. Serum acts as a buffer for the culture 

medium, inhibits proteolytic enzymes, and increases the viscosity of the medium. In addition, 

serum provide hormonal factors for stimulating cell growth and proliferation, promotes 

differentiated functions, provides transport proteins, and enhances attachment and spreading 

factors (Rauch et al., 2009; Brunner et al., 2009). Sera from fetal and calf bovine sources are 

commonly used to support the growth of cells in culture (Brunner et al., 2009). A cocktail of almost 

all factors required for cell attachment; termed as Fetal Bovine Serum (FBS), is commercially 

available for propagation of human and animal cells. 

 

4.2.1 PC3 and PNT1a cells preparation  

 First, a spectrometric analysis of biochemical changes in a model tissue during cancer 

initiation and proliferation was carried out. The aim of this preliminary study was to evaluate how 

intermediate and high-order principal components can be useful at detecting subtle biochemical 

changes in biological samples' Raman spectra. Due to unavailability of suitable breast and 

leukemic cell lines, the metastatic androgen insensitive (PC3) and immortalized normal (PNT1a) 

human prostate cell lines were chosen for a model tissue Raman spectroscopy analysis.   

 The metastatic androgen insensitive (PC3) and immortalized normal (PNT1a) human 

prostate cell lines at passages (subculture levels) 3 and 4, respectively, were prepared at Kenya 

Medical Research Institute (KEMRI), Nairobi.  Both cell lines were cultured in Dulbecco’s 

Modified Eagle Medium (DMEM (1x))(Gibco® by Life Technologies™, USA), supplemented 

with 10 %, by volume, fetal bovine serum (FBS) (ATCC® 30-2020™, USA), 1 % Fungizone 
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Amphotericin B, 250 µg/ml (Gibco® by Life Technologies™, UK), 1 % L-glutamine 200Mm 

(100x) (Gibco® by Life Technologies™, USA), 1 % penicillin-streptomycin and 0.1 % 

Gentamycin solution 50 mg/ml (all from Sigma® Life Science, USA), at 37 °C in a humidified 

atmosphere containing 5% CO2. Each cell line was simultaneously proliferated in three batches at 

seeding densities of 1.5x106, 1.2x106 and 1.0x106 viable cells/ml, whose cells were harvested after 

48 hours (stage 1), 72 hours (stage 2),  and 96 hours (stage 3), respectively. Further, sterilized 

calcium fluoride substrates (Crystran, UK) were introduced into T-75 plug seal capped cell culture 

flasks (Corning® Flask) to allow cell attachments. It should be noted that cell culture flasks have 

surface activated growth area surfaces treated with specific chemicals e.g., poly-d-lysine or 

collagen 1, for optimal adhesion and best proliferation of adherent cells. Nevertheless, it was 

expected that proliferating cells could naturally attach on calcium fluoride substrates. Therefore, 

no coating was done on substrates to enhance PC3 and PNT1a cells proliferation and adhesion.  

 Cell harvesting was done by first removing the substrates (containing attached monolayer 

cells). The substrates  were briefly  washed  in  the Hanks’  balanced  salt solution,  fixated  in 

acetone ≥ 99.5 % A.C.S. reagent (Sigma® Life Science, USA) for approximately 8 minutes, rinsed 

with double distilled Millipore water, then allowed to dry overnight in the biosafety chamber. The 

attached monolayer cells were later examined by visual observation using the Raman optical 

microscope system. The remaining cells in T-75 flasks were detached by the usual trypsinization 

procedure, then centrifuged twice at 1200 revolutions per minute (r. p. m.) for 5 minutes. The 

resultant cells were twice washed in a 1.5 ml Phosphate-buffered saline solution (Sigma-Aldrich®, 

USA) and centrifuged at 1200 r. p. m. for 5 min after each wash. After removing remaining 

supernatants, cells were vortexed again, then suspended in 1.5 ml Phosphate-buffered saline 

solution and stored at -80o C.   

 

4.3 Blood and saliva samples collection  

 A group of 23 healthy  volunteers / controls (age 34-56 years) and 20 malignant patients 

(age 41-65 years) all-female participated in breast cancer study while a group of 18 healthy  

volunteers / controls (age 20-45 years) and 9 malignant patients (age 24-72 years) both females 

and males participated in the leukemia study. All healthy (control) and diseased volunteers were 

from the Kenyatta National Hospital (KNH), Kenya. To take part in the study, all of the years old 

participants signed a written consent form. The Kenyatta National Hospital – University of Nairobi 

(KNH – UoN) Ethics and Research Committee granted permission for the study (ERC certificate 
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number: P112 / 03 / 2018). The specimen collection were performed by Dr. Daniel K. Ojuka, Prof. 

Jessie N. Githanga, and Peninah Kabethi, all from the Kenyatta National Hospital. 

 For clarity, the recruited healthy volunteer / control(s) patients were the consenting patients 

admitted at KNH as suspected breast and leukemic cancerous cases but diagnosed to be non-

malignant cases (for breast cancer) and non-leukemic cases, respectively.  In contrast, the recruited 

consenting breast cancer and leukemia patients (diseased cases) were patients admitted for 

suspected breast or leukemia cancers illness and diagnosed to have malignant tumors (for breast 

cancer) and leukemia, respectively. 

 About 2 ml volumes of peripheral venous blood and unstimulated saliva were collected 

from participants during morning hours (9-11 am). Saliva specimens containing traces of blood 

were immediately discarded and recollected. Every specimen was put into a sterile test tube. All 

tubes were disinfected before collection of fluid. Ethylenediaminetetraacetic acid was used as 

anticoagulation agent for blood samples. Blood and saliva test tubes were placed in walk-in 

freezers and transported to the Kenya Medical Research Institute (KEMRI) laboratory at a 

temperature of ≤ 4 oC. The period of transportation was no longer than two hours which guaranteed 

biological properties of samples were preserved (Chiappin et al., 2007). 

 Different from prostatic cells whose staging was categorized according to the periods of 

cell harvesting, i.e., 48 hours (stage 1), 72 hours (stage 2),  and 96 hours (stage 3), blood and saliva 

samples were categorized according to the status (healthy, diseased) of the consenting participants. 

First, the pathology reports of the consenting participants were reviewed. For diseased patients, 

the staging and histological grading of the breast tumor and leukemia was done according to the 

World Health Organization guidelines. For breast cancer, tumor grading was accomplished using 

the Nottingham modification of the Scarff-Bloom-Richardson grading system (Elston et al., 1991). 

In addition, tumor staging was reported using the TNM system adopted by UICC and the American 

Joint Committee on Cancer (Sobin et al., 2009).  For leukemia, malignancy levels were staged and 

graded using the French-American-British (FAB) and the morphologic or cytochemical 

differentiation (AML) classification systems (Hong et al., 2017; Krause, 2000). The classification 

was done by accredited pathologists experienced in breast and / or leukemia pathology. In this 

study, malignancies were classified into grade 1 cancer (early malignancy), grade 2 cancer 

(medium malignancy), and grade 3 cancer (late malignancy). In line with this classification, and 

for identification during spectroscopic analysis, samples collected from patients diagnosed with 

grade 1 cancer, grade 2 cancer, and grade 3 cancer  were categorized as  ‘grade 1 cancer’, ‘grade 
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2 cancer’, and ‘grade 3 cancer’, respectively. The samples collected from healthy volunteers were 

categorized as ‘controls’. The details regarding samples for breast malignancy and leukemia are 

provided in Appendices I and II, respectively. The biofluid samples were refrigerated at -20o C, 

and spectral measurements were performed within a period of 48 hours. For the sample collection, 

the study applied the criteria outlined in section 4.3.1. 

 

4.3.1 Inclusion and exclusion criteria 

 

4.3.1.1 Breast cancer 

Inclusion criteria  

Cancer patients: Age ≥ 18 at the time of signing the informed consent form, with confirmed case 

of breast cancer, or a candidate to mastectomy, and not on chemotherapy. 

Controls: Age ≥ 18 at the time of signing the informed consent form, without breast diseases 

history or detectable abnormalities by self-examination.   

Exclusion criteria 

Cancer patients: with benign tumors or already treated, and diagnosed with any other malignancies 

within 5 years.  

Controls: with breast diseases history and detectible abnormalities by self-examination  

(enlarged supraclavicular lymph nodes, painful lumps, thickening and dimpling of the breast skin, 

change in size of affected breast, change in size of affected breast, redness, swelling and increased 

warmth (in inflammatory breast), crusting, ulcers or scaling on the nipple, bloody discharge from 

nipple, signs from metastasis (respiratory (pleural effusion, consolidation), abdomen (jaundice, 

hepatomegaly, ascites), neuromuscular (headache, seizure, papilloedema)). 

 

4.3.1.2 Leukemia  

Inclusion criteria  

Patients: Age ≥ 18 at the time of signing the informed consent form, with any confirmed case of 

leukemia, and not on chemotherapy.  

Volunteers:  Without suspected case of leukemia after undergoing complete blood picture test.    

Exclusion criteria  

Patients: Already treated of leukemia cancer, or treated with any other form of malignancy within 

five years. 
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Volunteers: With any form of leukemia cancer, or any other form of malignancy. 

 

4.4 Sample preparation 

 

4.4.1 Whole blood and saliva biofluids samples 

The frozen whole blood and saliva aliquots were retrieved from the freezing chambers and thawed 

at approximately 15 oC for 15 minutes. To extract oral mucous epithelial cells and food waste, 

thawed saliva samples were centrifuged for 5 minutes at 7000 revolutions per minute (Li et al., 

2012). No further processing was performed on blood samples. About 5 µl blood and saliva drops 

were deposited onto freshly sterile prepared silver coated glass and CaF2 substrate, respectively. 

For the next three hours, the sample drops were allowed to dry fully in the biosafety chamber at 

15 oC. After that, the investigations began at Spectroscopy and Imaging Laboratory, Department 

of Physics. 

 

 4.4.2 Whole blood and saliva simulates 

 In this study, blood tissue equivalent (base matrix) was prepared using 22% high purity 

triolein in water (by weight), xanthan gum (Sigma® Life Science, USA), and 10 µm nylon particles 

of density ≈ 1.032 g/ cm3 (OrgasolTM) at Kenya Medical Research Institute, Nairobi (Ng et al., 

2019). As defined in section 4.4.3, the mixture was stirred to ensure a homogeneous solution and 

spiked with prepared concentrations of various biochemical components (see section 4.4.3) in the 

range of 1-500 ppm. This range was chosen based on the typically known concentration ranges of 

biochemical components i.e., proteins, lipids, DNA, RNA, and saccharides in whole blood and 

saliva in a human body as detailed in Table 4.3. For saliva simulate, BiochemazoneTM artificial 

saliva (pH = 6.8) was used. The saliva was then spiked with prepared concentrations of various 

biochemical components in the range of 1-500 ppm, detailed in section 4.4.3. 

 

4.4.3 Calibration set design for biochemical components formulation 

 Previous studies have showed that Raman spectroscopy may provide a methodology for 

noninvasive detection of diseases by quantifying the biochemicals which are present in normal and 

diseased tissues, such as proteins, lipids, and nucleic acids, with accurate information for 

classifying and grading malignancy (Stone et al., 2007; Byrne et al., 2020; Jr et al., 2014). This 

involves modeling spectra of specific chosen biochemical components that represent biochemical 
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changes of proteins, lipids, nucleic acids and saccharides e.g., albumen, actin, collgane type 1, 

elastin, leucine, DNA, glycogen, blood (hemoglobin), phosphatidylcholine (phospholipids), and 

beta-carotene, in order to estimate the “Raman concentration,” i.e., the relative concentration based 

on the Raman scattering of each molecule in the tissue spectrum (Stone et al., 2007; Byrne et al., 

2020; Jr et al., 2014). 

 For quantification purposes, pure basic biochemical components which included 

ribonucleic acid (RNA) extract from whole blood sample (≥99%), bovine serum albumin (≥98%), 

glycogen type IX from bovine liver (≥85%), glycerol trioleate derived from glycerol (≥99%), 

triolein, L-glutamic acid potassium salt monohydrate (≥99%), and glycine (≥98.5%) were 

employed in this study. The chosen pure components represented nucleic acids, amino acids, 

proteins, polysaccharides, and lipid compounds in cellular constituents. In this study, the albumin 

was chosen to represent proteins whereas glutamate and glycine represented amino acids. It should 

be noted that plasma protein is chiefly made of albumin component (Ong et al., 2012).  Glycine is 

a biosynthetic precursor to porphyrins used in red blood cells, whereas polysaccharides in cells are 

mainly in form of glycogen (Ong et al., 2012). Besides, glycine and glutamine are precursors of 

nucleotides (Berg et al., 2012). To represent membranous and non-membranous lipids, triolein 

and glycerol were chosen, respectively (Ong et al., 2012). The extraction process of RNA 

component was performed by QIAGEN® extraction method (Gmbh, 2010), at KEMRI, Nairobi. 

All the other components were purchased from Gibco by Life Technologies™, USA and Sigma® 

Life Science, USA.  

 To make fully-dissolved condensed stocks, the pure basic biochemical components were 

weighed and diluted to specific volumes with distilled water. Based on expected  typical ranges of 

proteins, lipids, DNA, RNA and saccharides in whole blood and saliva of human body (Table 4.3), 

whole blood and saliva simulates were spiked with prepared concentrations of the various 

biochemical components, in the range of 1-500 ppm (Table 4.4). The mixtures were stirred for few 

minutes to ensure a homogeneous solution. Twenty five samples (mixed concentrations) were 

prepared and frozen at -20o C for spectroscopic measurements.  
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Table 4.3 Typical concentration ranges of biochemical components in whole blood and saliva in 

a human body (Saroch et al., 2012; Hughes et al., 2019; Poehls et al., 2018; Brozoski et al., 2017; 

Jurysta et al., 2009; Panchbhai, 2012; Id et al., 2020; Mcmenamy et al., 1957; Gahan, 2010; 

Leeman et al., 2018) 

     Blood                   Saliva 

Components      Concentrations (g / dl, mg / dl, mg / l, mg / ml, ng / µl, ppm) 

Protein     6-8 g / dl (60,000-80,000 ppm)       0.72-2.45 mg / ml (720-2,450 ppm) 

Lipids     35-135 mg / dl (350-1350 ppm)       0.9-1.3 mg / dl (9-13 ppm) 

DNA         14-17 mg / l (14-17 ppm)            1 – 100 ng / µl (1-100 ppm) 

RNA        144-166 mg /l (144-166 ppm)             4,912 – 15473 ng / µl (4,912-15,473 ppm) 

Saccharides        80-120 mg / dl (800-1,200 ppm)       0.005-0.01 mg / ml (5-10 ppm) 

 

4.5 Raman spectral data acquisition  

 Raman measurements for simulate samples, whole blood, saliva, pure biochemical 

components, and prostatic cell lines (PC3, PNT1a) were done with similar configuration. Briefly, 

the spectrograph was tuned at 600g / mm with 750 nm blazing wavelength. Actual spectral 

measurements were performed in the range of 393-2063 cm-1, spectral resolution ≈ 1.35 cm-1, 

exposure time = 120 seconds, using an 80x objective of the microscope. The measured laser power 

at sample surface and the spot size of excitation beam were ≈ 10.38 ± 0.09 mW, and ≈ 51.85µm, 

respectively. The instrument was calibrated before fresh measurements using the reference band 

of silicon at 520.5 cm-1, in 2 hours intervals to ensure wavelength stability (Desroches et al., 2015). 

Automatic cosmic rays removal was done by the window based STR Raman software (version 

1.9.3). To obtain a mean spectrum, 15-20 spectra were measured from five random points for each 

sample. Raman measurements were done in darkness to minimize possible spectral artifacts from 

fluorescent and microscope light sources (Desroches et al., 2015). 
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Table 4.4. Calibration set design for biochemical components formulation in whole blood and 

saliva 

      Concentration (mg / ml) 

Sample  Albumen       Glycogen     Glutamate      Glycerol       Glycine       RNA             Triolein 

 1    0.5               0.1           0.0000001      0.01      0.2             0.0000001      0.001 

 2            0.4               0.3           0.000001        0.3      0.2             0.01            0.001 

 3            0.01               0.001           0.01          0.0001      0.3             0.4            0.00001 

 4            0.00001   0.1           0.2          0.3      0.2             0.4            0.01 

 5            0.000001   0.0000001   0.2          0.4      0.0000001 0.3            0.2 

 6            0.01               0.5           0.01          0.00001      0.0000001  0.01            0.00001 

 7            0.000001   0.0001         0.01          0.001      0.01 0.0001            0.1 

 8            0.1               0.0000001   0.2          0.01      0.00001 0.3            0.4 

 9            0.4               0.001           0.5          0.3      0.00001 0.001            0.01 

 10          0.5               0.4           0.2          0.3      0.4             0.01            1*10-7 

 11          0.0001   0.2           0.01          0.3      0.01 0.0000001 0.1 

 12          0.2               0.4           0.01          0.000001     0.5             0.5             0.01 

 13          0.001   0.001           0.3          0.3      0.2             0.5             1*10-6 

 14          0.5               0.01           0.5          0.3      0.2             0.001             0.1 

 15          0.001   0.2           0.001          0.5      0.000001 0.3             0.01 

 16          0.0000001   0.01           0.00001          0.0000001   0.4             0.000001         0.5 

 17          0.5               0.4           0.2          0.001      0.5             0.001             0.5 

 18          0.1               0.5           0.5          0.5      0.001 0.2             0.3 

 19          0.00001 0.01           0.0000001      0.00001      0.01 0.5             0.01 

 20          0.000001 0.01           0.0001          0.1      0.001 0.01             0.0001 

 21          0.01             0.00001         0.4          0.3      0.5             0.2             1*10-7 

 22          0.01             0.5           0.1          0.001      0.4             0.3             0.3 

 23          0.1             0.5           0.3          0.01      0.1             0.01             0.5 

 24          0.5             0.2           0.3          0.01      0.1             0.01             0.5 

 25          0.0000001    0.000001       0.00001          0.0001      0.001 0.5             0.01 
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4.6 Raman spectral analysis 

 In this study, prominent and subtle biochemical alterations in the studied samples were 

determined, followed by various machine learning techniques analysis procedures, as summarized 

in the conceptual framework in Figure 4.7.  The spectral data analysis was restricted to the  

500-1800 cm-1 range. The spectral data analysis was restricted to the 500–1800 cm-1 range. The 

spectral region 500-1800 cm-1 is the most frequently observed spectral region for Raman based 

biochemical investigations and is therefore considered the fingerprint region for biological 

specimens (Byrne et al., 2015). In general, depending on the goal of the study, spectral data pre-

processing involved co-adding, averaging, linear baseline correction, and spectral normalization 

(Bryne et al., 2015; Ryabchykov et al., 2019). Spectral analysis was done in two steps: first, by 

examining the prominent bands, followed by analysis of subtle spectral markers (weak variance 

signals). 

 

4.6.1. Determination of prominent Raman bands for cancer diagnostics 

 The prominent Raman band alterations were investigated by comparing the band intensity 

profiles of control and diseased samples. To further investigate the band intensity differences in 

these spectral profiles, the difference spectra were computed by subtracting the normalized mean 

spectral intensities of normal samples from the normalized mean spectral intensities of diseased 

samples. The two sample t-test (p < 0.05) was used to determine statistical significance of 

difference bands. 

 

4.6.2. Determination of subtle Raman bands for cancer diagnostics 

 The subtle Raman bands in prostate, breast cancer and leukemia progression were 

determined using a technique that has not been previously employed in other related leukemia and 

breast cancer studies (MartinEspinoza et al., 2008; Babrah et al., 2007; Feng et al., 2015; Nargis 

et al., 2019; Bilal et al., 2017; Vargas-Obieta et al., 2016; Cervo et al., 2015; Moisoiu et al., 2019; 

Yu et al., 2017) i.e., the use of intermediate and high-order principal components. In this study, 

applicability of intermediate and high-order principal components in revealing subtle biochemical 

alterations during cancer progression was tested with prostatic cells spectral datasets.  
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Figure 4.7 Schematic overview of the data processing and machine learning steps explored in this 

study. PLS, partial least squares; SVD, singular value decomposition; PCA, principal component 

analysis; R2
val, root-mean-square error of cross- validation; RMSEP, root mean squared error of 

prediction; RSD, relative standard deviation; LD, limit of detection; LQ, limit of quantification;  

U, scores; S, size of scores; V, loadings; ICA, independent component analysis; MDS, 

multidimensional scaling; SVM, support vector machine; ANN, artificial neural networks; BPNN, 

backpropagation neural networks.  
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 First, all collected raw spectra were baseline corrected followed by normalization. The 

prostatic cells data were normalized to their maximum intensity whereas the leukemia and breast 

cancer datasets were normalized at the CH2 deformation band near 1445 cm-1. The 1445 cm-1 band 

was selected because it reveals biochemical information regarding protein to lipid ratios in 

biological samples (Movasaghi et al., 2007).  It should be noted, however, that spectral datasets 

were not denoised in order to retain all relevant features. Then, the Raman spectra of healthy 

(control) samples were combined with spectra of diseased samples to form single matrices i.e., ���� where � represented wavenumbers (781) and � represented total number of spectra (i.e., 

sum of controls and diseased samples’ spectra). For prostatic cells, three matrices labelled stage1 

(X781 x 154), stage2 (X781 x 160), and stage3 (X781 x 198) were obtained. For breast cancer, the matrices 

for blood samples were grade1 (X781 x 518), grade2 (X781 x 573), and grade3 (X781 x 671) whereas matrices 

for saliva samples were grade1 (X781 x 559), grade2 (X781 x 611), and grade3 (X781 x 775). For leukemia, 

samples were successfully obtained from consenting patients whose malignancy was at advanced 

stages (stage 3). No consenting patient with stage 1 or stage 2 leukemia malignancy was available. 

Therefore, the matrices for leukemic blood and saliva samples were grade3 (X781 x 408) and grade3 

(X781 x 421), respectively.  

 In order to understand the samples (scores) discrimination and their related biomarkers, all 

of these matrices were analyzed using SVD-PCA (Martinez et al., 2005). With this procedure, 

three matrices; U representing scores, S representing scores’ size, and V representing loadings were 

obtained, according to the following equation (Cordella, 2012): 

 ��� = 
��������                                              (4.2) 

 

where 

 = 1; �
 = 1. In this study, U, S, and V yield information regarding scores (samples) 

/ spectra discrimination, number of principal components, and the correlation loadings 

(wavenumbers), respectively. This was coded in MATLAB 2018a scripting environment, as 

detailed in Appendix III. The number of PCs were determined by examining the scree plots. The 

statistical significance of PCs was calculated using the Students t-test and effect effect size 

(Pearson correlation coefficients (r), Cohen's d values) criteria (Sullivan et al., 2012). The Cohen’s 

d values for each PC scores were determined using the following equations (Thalheimer et al., 

2020): 
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� =  (x�)� − (x�)�s�                                                         (4.3) 

 

s� =  �(n� − 1)s� + (n� − 1)s� n� +  n�                        (4.4) 

 

where d = Cohen’s d effect size, (x�) = mean of diseased or normal conditions, s = standard 

deviation, n = number of samples, t = diseased condition, c = control condition. The Cohen d effect 

sizes were classified as small (d =0.2), medium (d = 0.5), and large (d  ≥ 0.8) (Sullivan et al., 

2012). This was done in Microsoft Excel (2010) platform. The resulting p-values were adjusted 

using the Holm–Bonferroni method to ensure that all experiments had a family-wise alpha of 0.05 

(Jafari & Ansari-pour, 2019). This was done using p.adjust (Bonferoni) function in R scripting 

environment. Using a variety of adjustment methods, the p.adjust (Bonferoni) function calculates 

modified p-values from a collection of unadjusted p-values. 

 Next, LDA classification models were created using the fitting coefficients of principal 

components from PCA, and the classifier was trained using a k-fold cross validation process. The 

correlation between the original discrete variables and PC scores was evaluated by examining the 

computed loadings. The loadings were used to approximate the biochemical details that the PC 

scores and the original discrete variables shared in this analysis. The scatter plots of intermediate- 

and higher-order principal components were further evaluated and the subtle spectral markers 

(loading vectors) extracted by visual examination for further analysis. 

  

4.6.3 Quantitative Raman spectral analysis using partial least-squares regression    

 The partial least squares (PLS) regression model was used to match the mean spectra of 

the calibration samples to the mean spectra of the different pathologies in whole blood and saliva, 

allowing for quantitative spectrochemical analysis of subtle band alterations (Høy et al., 2012). 

Cross-validation based on the singular value decomposition PCA approach was used to perform 

partial squares regression. PCA served to reduce dimensionality of spectral datasets. About 70% 

(≈ 2/3) of spectra were used for training / calibrating the model (tuning the parameters of a model) 

and the remaining 30% (≈ 1/3) of spectra were used for testing the model (evaluating the model’s 

performance). The data were mean-centered, and the internal validation was done using k (=10) 

fold cross-validation. The training set was randomly partitioned into k (=10) equal-sized 
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subsamples using this technique. A single subsample from the k (=10) subsamples was held as the 

validation set for testing the model, while the remaining k-1 (=9) subsamples served as the training 

set. This procedure was repeated k (=10) times, with each subset serving as the validating set once. 

Then, the performance of the model was determined by calculating the average performance across 

all k (=10) trials. The determined subtle peaks were used for subsequent spectral calibration and 

model evaluation. The accuracy was optimized by careful choice of optimal components during 

cross-validation process. The non-negative constrained fitting method was chosen in this study to 

eliminate the possibility of negative coefficients, which would result in distorted fitting. 

 At a significance level of 5%, outliers were identified by detecting i) residual levels in the 

analytical concentrations or, ii) samples with high leverage and residuals in the spectral data 

(Valderrama et al., 2007). Correlating the real values with the expected values from the prediction 

set was used to assess the PLS model's fit. In addition, the linearity was used to estimate the model 

linearity qualitatively using the residuals distribution against parameters of reference (Frost, 2016). 

The coefficient of multiple determination during cross-validation (R2
val) and the root mean 

squared error of prediction ("��#$) were used to determine the model's accuracy (Frost, 2016; 

Sichangi et al., 2018). 

"��#$ = �∑ (&'()*,, − &,) �,-. �                     (4.5) 

where &'()*,, refers to predicted concentration; &, is the known concentration for sample i ; n 

represents samples count. The limits of detection (LD) and quantification (LQ) were determined 

according to the equation 4.6 and equation 4.7, respectively (Desimoni et al., 2015): 

01 = 3.3 ∗ 34567 8                                                    (4.6)   
0: = 10 ∗ 34567 8                                                    (4.7) 

where 45/6 represents the standard deviation of the response (4) and 7 represents the slope of the 

calibration curve. The values 3.3 and 10 are expansion factors obtained assuming a 95% 

confidence level (Desimoni et al., 2015). 

 The accuracy and reliability of PLS regression model was evaluated by analysis of 

separately prepared standard whole blood and saliva simulates spiked with prepared concentrations 
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of various biochemical components: albumen-0.4 mg/ml; glycogen-0.1 mg/ml; glutamate-0.001 

mg/ml; glycerol-0.01 mg/ml; RNA-0.002 mg/ml and triolein-0.3. At each step, four measurements 

were taken, and the standard deviation of the measurements was calculated using the equation 

below (Gontijo et al., 2014), 

>, = �∑ (ŷ,@ − ỹ,) (B@-.C, − 1                                                                           (4.8) 

where ỹ, represents the mean value of the measurements per level and C, represented the total 

number of measurements made on each level. The standard deviation relative to the mean was 

calculated as follows (Gontijo et al., 2014), 

  

"�1 = ∑ >,ỹ, . 100�,-. E                                                                              (4.9) 

where >, and E are standard deviation and the number of concentration levels evaluated, 

respectively. 

 

4.6.4 Multivariate statistical analysis of trace biomarkers alterations 

 In a Raman spectrum, the different spectral markers can be regarded as independent 

variables, and the intensities correspond to the magnitudes of the variables. Therefore, the matrices 

of the determined subtle spectral markers were subjected to the independent component analysis 

(ICA). The ICA was adopted on the fast fixed-point estimation algorithm using Maximum 

Likelihood (ML) criterion in MATLAB 2018a scripting environment, as detailed in Appendix D. 

The use of ICA analysis was motivated by the fact that Raman data consists of a set of independent 

signals (e.g. various forms of proteins) additively combined to form a single protein band, which 

necessitated need for mutual independence during quantification. In ICA, spectral data were mean 

centered, whitened and followed by several iterations until convergence leading to determination 

of independent components. The algorithm was based on the following expression (Hyvärinen et 

al., 2000).  GH = G + �IJK(L,)M�IJK(N,) + #OK(&)&PQG                            (4.10) 

where   & = GR,  N, = −#O&,K(&,)P, and L, = −1/(N, − #OKS(&,)P)         
In this case, the matrix  G needs to be orthogonalized after every step in a symmetrical manner. 

The convergence speed can be optimized by careful choice of matrices �IJK(L,) and �IJK(N,). 
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In this study, the performance of the method was optimized by choosing a suitable nonlinearityK, 

where the nonlinearity K function; K(T) = TU was chosen due to its optimal performance. The 

decorrelation approach based on deflation technique was used where the independent components 

were estimated one-by-one. Moreover, the stabilized version of the fixed-point algorithm was used 

to ensure algorithm convergence. The maximum number of iterations were set at 1000.  

 A challenge with ICA is the assumption that independent signals � =M�.(V), �.(V), … , �X(V)Q  combine linearly to form signals Y(V) = Z�(V), where both Z (mixing 

matrix) and � are uknown. It's worth noting that linear transform methods enforce a linear structure 

on the analyzed data and can't model nonlinearity well (Wang et al., 2014). For modeling high 

nonlinear dimensional data sets with a limited number of samples, a nonlinear feature extraction 

approach such as multidimensional scaling (MDS) would be most suitable (Wang et al., 2014). 

The aim of MDS is to find a configuration of data points in a low-dimensional space such that the 

distances between points in the low-dimensional space accurately reflect the proximity between 

objects in the full-dimensional space (Martinez et al., 2005). In the present study, the ICA analysis 

was extended to include MDS as a potential non-linear dimensional reduction algorithm in blood 

Raman datasets. To achieve excellent diagnostic sensitivity, independent components were further 

analyzed using Minkowski MDS metrics (Weinberg, 1991), PLS-DA, mahalanobis 

multidimensional metrics (MDS) and the potential functions (kernel density estimators). This was 

done in MATLAB 2018a scripting environment, as detailed in Appendices V to VII. 

 The Mahalanobis distance calculation has a well-known mathematical foundation 

(McLachlan, 1999), and it is commonly used for spectral discrimination. It provides a statistical 

measure of how well the unknown sample spectrum fits or does not match in addition to spectral 

discrimination (Chowdary et al., 2006). As a result, it is a statistical measure of the distance 

between two spectra. Previous works have demonstrated that kernel density estimators (potential 

functions) are always as good as discrete functions and often better (Coomans et al., 1981), and 

their utility can be considered as one method of optimizing the ICA-MDS model to achieve higher 

diagnostic accuracy. Briefly, each sample of the training set is treated as a point in the pattern 

space by the potential functions. There is a potential field around this point that decreases with 

distance from the sample (Coomans et al., 1981). As a result, samples in close proximity to a 

strong potential field appear to cluster in space. In the present study, the total potential of the class 

in the location of the test sample was used to evaluate the classification of a new sample into one 

of the classes (controls versus diseased). The cumulative potential was calculated by adding the 
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individual potentials of the class samples and then classifying the test item into the class with the 

highest cumulative potential (Forina et al., 1991). 

 Separately, diagnostic models based on SVM and ANN were used to detect and 

characterize breast and leukemia cancers spectra during classification. For ANN, we used the 

backpropagation neural networks (BPNN) algorithm. Detailed implementations of BPNN and 

SVM models in MATLAB 2018a scripting environment are provided in Appendices H and I, 

respectively. For SVM, the fitting function defined in equation (3.25) was used. The parameter L, 
was restricted to 0 ≤ L,  ≤ \ and estimated by maximizing a Lagrangian. The linear and radial 

basis functions (RBF) SVM kernel functions defined in equations (3.26) and (3.27) were adopted.   

The data analysis looked for the best RBF function parameter ], as well as the best regularization 

parameter, \, for the efficient optimization process. The optimal ] and \ values were sorted in 

such a way that the effect was sufficient to create a decision surface without misclassifying the 

training set, hence reducing over-prediction. The ] and \ were obtained from the grid search for 

the highest cross-validation accuracy. In order to increase model accuracy, k (=10) folds cross-

validation was used during data analysis.  

 The backpropagation nets were implemented using the fitting function defined in equation 

(3.28), and performance estimated through the mean squared error (��#)defined by equation 

(3.29).  The adjustment of weights during training provides the adaptive fitting capabilities of 

backdrop nets (Marini et al., 2008). To improve the BPNN model accuracy, learning was 

accomplished by adjusting the weights shown in equation (4.14), using error feedback from the 

training examples, so as to bring the network estimates of the correct outputs for the training 

patterns closer to the true values. The learning law was regulated by the learning rate (^) (in the 

range of 0.0001 to 0.1) and the momentum term (L) (in steps of 0.1, range: 0.1-0.9). The learning 

rate (^) was a user defined criterion (value) that enabled some control over the scale of the weight 

changes during training of the model, while the momentum term (L)  governed the canceling of 

opposing components of the phase at successive positions and the enhancement of reinforcing 

components (Marini et al., 2008). This allowed acceleration over long stretches of shallow but 

relatively steady gradient, as well as exit from local minima (Wythoff, 1993). The 10 folds cross-

validation at 1000 number of iterations was applied in order to improve the model accuracy. About 

15 to 30 neurons per layer were chosen, since they were observed to deliver the best accuracy 
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without over-prediction. Detailed implementations of BPNN and SVM models in MATLAB 

2018a scripting environment are provided in Appendices VIII and IX, respectively. 

 The average performance of the PCA-LDA and PLS-DA models was assessed by 

calculating the sensitivity, specificity, and accuracy values. In this context, sensitivity 

characterized the test method's ability to detect the disease in diseased subjects, whereas specificity 

characterized the test method’s ability to detect the absence of disease in healthy subjects (Vargas-

Obieta et al., 2016). The accuracy value represented the proportion of true positive results (both 

true positive and true negative) in the selected population. The sensitivity, specificity, and accuracy 

values were calculated as follows (Wang et al., 2008):  

Sensitivity =  TP(TP + FN)                                                                      (4.11) 

Specificity =  TN(TN + FP)                                                                       (4.12) 

Accuracy =  TN + TP(TN + FP + FN + FP)                                                     (4.13) 

where TP, TN, FN, and  FP represented the true positives, true negatives, false negatives, and false 

positives, respectively.  
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Chapter 5    Results and Discussions 

 

 As clearly described in section 4.2.1, a spectrometric analysis study was undertaken with 

the aim of evaluating the potential of intermediate- and high-order principal components in 

revealing subtle biochemical changes in spectral profiles of biological samples. Therefore, an in 

vitro tissue model based on metastatic (PC3) and normal (PNT1a) human prostate cell lines was 

chosen for this study. Based on the promising results obtained with prostatic cells datasets, we 

employed similar technique i.e., use of intermediate- and high-order principal components, on 

blood and saliva Raman spectra taken from healthy volunteers, breast cancer and leukemia 

patients. 

 

5.1 Raman spectroscopic characterization of PC3 and PNT1a cells  

5.1.1 Analysis of prominent biochemical alterations 

 Figure 5.1 (a) and (b) shows optical photomicrographs of unstained PC3 and PNT1a 

monolayer cells grown on calcium fluoride (CaF2) substrates, respectively. As expected, the PC3 

and PNT1a are typically adherent cells that grow attached to a substrate in discrete patches, usually 

with regular dimensions (ideally polygonal shapes). Here, it is noted the attached monolayer cells 

have epithelial morphological features with the nucleus (i), cytoplasm (ii), and cell wall (iii) 

locations discernible in both images. 

 

 

 

 

  

 

 

 

 

Figure 5.1 Photomicrographs of (a) PC3 and (b) PNT1a monolayer cells grown on calcium 

fluoride (CaF2) substrates at 50x magnification, with (i) nucleus, (ii) cytoplasm and (iii) cell wall 

constituents clearly visible in both cells.  
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 The biochemical assignments of peaks were done in accordance with the Raman 

spectroscopy of tissues, body fluids, or bio-molecules as reported in the literature (Chandra et al., 

2015; Movasaghi et al., 2007; Gelder et al., 2007). This was done in consideration of position and 

possible wavelength differences of each particular Raman band. Theoretically, spectral resolution 

in a dispersive Raman spectrometer is determined by many factors which include, spectrometer 

focal length, diffraction grating, laser wavelength and the detector (McCreely, 2001). Therefore, 

the Raman bands within ± 10 cm-1 were considered to represent the same Raman peak due to 

potential of varying detection conditions and experimental errors. This choice of wavelength 

difference was further motivated based on the work of McCreely (L, 2001) who suggested that 

most analytical Raman applications involve liquids and solids in which Raman bandwidths are 

significantly greater than those in the gas phase, hence the narrowest linewidths encountered in 

most liquid and solid samples range from 3 cm-1 to 10 cm-1 (McCreely, 2001). 

 Figure 5.2 (a) shows an example of as-collected averaged, minimally denoised, and 

baseline corrected raw spectra in PC3 and PNT1a samples. Examination of both spectra show the 

primary Raman bands featuring at 519 cm-1, 615 cm-1, 638 cm-1, (700, 702 cm-1), (852, 857 cm-1), 

889 cm-1, (921, 927 cm-1), 1001 cm-1, 1084 cm-1, 1126 cm-1, (1256, 1261 cm-1), (1445, 1450 cm-

1), (1552, 1554 cm-1), 1602 cm-1 and 1657 cm-1. The respective Raman band assignments are 

provided in Table 5.1. Figure 5.2 (b) shows the stacked mean Raman spectrums that explain 

biochemical alterations occurring during all stages of cell proliferation, in both cell lines. It should 

be noted the spectra have been linearly offset for comparison purposes.  

 The spectra demonstrate a similar spectral pattern though there are minor Raman shifts. 

Figure 5.2(b) reveals the mean positions (and the standard errors) of notable major Raman band 

contributions in both cells, whose biochemical assignments are well known (Movasaghi et al., 

2007). They include 519 ± 1.30 cm-1 (phosphatidylinositol), 719 ± 3.78 cm-1 (phospholipids, 

nucleic acids), 857 ± 1.84 cm-1 (proline, tyrosine proteins), 1003 ± 1.49 cm-1 (phenylalanine), 1083 

± 1.94 cm-1 (C-N stretch of proteins and lipids), 1253 ± 1.87 cm-1 (nucleic acids, lipids), 1449 ± 

1.35 cm-1 (C-H vibration of proteins and lipids) and 1659 ± 1.33 cm-1 (Amide I), with the strongest 

Raman bands occurring around 519 ± 1.30 cm-1,  1253 ± 1.87 cm-1, 1449 ± 1.35 cm-1 and 1659 ± 

1.33 cm-1.   
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Figure 5.2 (a) Examples of as-collected averaged, minimally denoised, and baseline corrected raw 

spectra in PC3 and PNT1a cells, and (b) the mean spectra of cell samples. The spectra shown in 

(b) have been linearly offset for comparison. The numbers (1, 2, 3) enclosed in brackets identify 

stage 1 (48 hours), stage 2 (72 hours), and stage 3 (96 hours) spectral measurements.  

 

(a) 

(b) 
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Table 5.1 Raman band assignments of PC3 and PNT1a prostatic cells  

Raman shift  Functional groups and molecular vibration assignments    References 

   (cm-1)       

519             δ(CH2), δ(CH3) deformations (phosphatidylinositol)               (Movasaghi et al., 2007) 

615  Cholesterol esters                (Chandra et al., 2015)               

638  C-C stretch, C-C twisting of tyrosine proteins           (Gelder et al., 2007)            

700, 702 υ(C-S) stretch of cholesterol esters             (Chandra et al., 2015)   

852, 857 Ring breathing modes (tyrosine proteins           (Jr et al., 2014) 

889  Structural protein modes of tumors                       (Movasaghi et al., 2007) 

921  C-C stretch (proline ring, glucose, lactic acid)          (Chandra et al., 2015) 

927  υ(C-C) stretch of proline and valine proteins           (Gelder et al., 2007)   

1001  Symmetric ring breathing mode of phenylalanine           (Magalhães et al., 2018) 

1084  Phosphodiester groups in nucleic acids,            (Chandra et al., 2015) 

  C-N stretching of proteins   

1126  C-N stretch (proteins), υ (C-C) stretch (phospholipids)      (Magalhães et al., 2018) 

1256, 1261 C-H bend (phospholipids), C-N stretch (proteins),           (Jr et al., 2014)        

  CH2 twisting and wagging (lipids, proteins)  

  CH2 bending (proteins) 

1445  CH2CH3 bending modes of collagen and phospholipids,    (Corsetti et al., 2018) 

      δ(CH2), δ(CH3) of collagen protein assignments,  

  δ(CH2), δ(CH3) scissoring of phospholipids  

 1450  CH2 bending (proteins), C-H vibration (lipids),            (Corsetti et al., 2018) 

  Ring breathing modes of DNA / RNA bases            (Jr et al., 2014)  

1552, 1554 υ(C=C) stretching modes (tryptophan), Amide II (           (Huang et al., 2003) 

1582                C = C bending mode of phenylalanine (proteins)                (Corsetti et al., 2018) 

1602  C=C bending modes (phenylalanine, tyrosine)                    (Corsetti et al., 2018) 

1657  C=O stretch (proteins, lipids), C = C stretch (lipids),          (Chandra et al., 2015) 

             nucleic acids                 (Jr et al., 2014) 
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 The difference spectra between the normalized mean baseline corrected spectrum of PC3 

cells and that of PNT1a cells are shown in Figure 5.3(a)–(c). Positive bands explain alterations 

that were more prevalent in PC3 cells, while negative bands explain alterations that were more 

prevalent in PNT1a cells.  

 

 

Figure 5.3 The difference spectrum between the normalized (a) stage 1 (48 hours), (b) stage 2 (72 

hours), and (c) stage 3 (96 hours) PC3 and PNT1a spectral datasets. Examination of difference 

spectrum according to the cell proliferation cycles shows PC3 samples have heightened Raman 

peaks at 566 ± 0.70 cm-1, 630 cm-1, 972 ± 1.17 cm-1, 1186 cm-1, 1520 ± 1.41 cm-1, and 1743 cm-1. 

The PNT1a samples have heightened Raman peaks at 550 ± 0.23 cm-1, 719 ± 1.31 cm-1, 852 ± 0.47 

cm-1, 948 ± 1.88 cm-1 1250 ± 2.86 cm-1, 1332 ± 1.64 cm-1, 1450 ± 2.20 cm-1, and 1660 cm-1. 

(a) (b) 

(c) 
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 Generally, the difference spectra shows PC3 samples exhibiting heightened alterations 

around 566 ± 0.70 cm-1 (cytosine, guanine), 630 cm-1 (glycerol), 972 ± 1.17 cm-1 (nucleic acids),  

1186 cm-1 (guanine, anti-symmetric phosphate vibrations), 1520 ± 1.41 cm-1 (cytosine, C-C stretch 

mode (β – carotene accumulation)) and 1743 cm-1 (C = O stretch mode, lipids) during all stages of 

proliferation cycle (Chandra et al., 2015; Jr et al., 2014). Similarly, PNT1a samples have same 

heightened biochemical alterations around 550 ± 0.23 cm-1 (cytosine, guanine, tryptophan, 

glycerol),  719 ± 1.31 cm-1 (nucleic acids),  852 ± 0.47 cm-1 (proline, tyrosine, polysaccharides), 

948 ± 1.88 cm-1 (proline), 1250 ± 2.86 cm-1 (Amide III), 1332 ± 1.64 cm-1 (nucleic acids, CH3CH2 

wagging (of collagen)) 1450 ± 2.20 cm-1 (lipids, proteins) and 1660 cm-1 (Amide I) during all 

stages of proliferation cycle (Movasaghi et al., 2007; Gelder et al., 2007). It is also noted stage 2 

and stage 3 PNT1a spectra have common band alterations around 623 cm-1 (phenylalanine, 

adenine),  664 cm-1 (nucleic acids),  898 ± 0.20 cm-1 (saccharides), 1066 cm-1 (proline collagen), 

1152 ± 1.44 cm-1 (proteins, carotenoids), 1370 ± 0.86 cm-1 ( saccharides),  1573 cm-1 (guanine, 

adenine, proteins), 1618 ± 1.73 cm-1 (tryptophan) and 1675 cm-1 (Amide I) (Movasaghi et al., 

2007; Gelder et al., 2007). Further, the spectral marker at 576 cm-1 (phosphatidylinositol) is present 

during the first two stages of PNT1a cell proliferation cycles, and later present during late 

proliferation cycle (stage 3) of malignant (PC3) cells. This suggests presence of enhanced lipid 

alterations during advanced malignancy.  

 To evaluate whether the observed bands (Figure 5.3) could be utilized in prostate cancer 

diagnosis, we examined their respective statistical significance (based on their actual preprocessed 

mean intensities) using a combination of the Student t-test and ANOVA test: two factor without 

replication tools in Microsoft® Excel. The Student t-test for each band were determined using array 

of matrices from intensities arising from the the mean ± standard deviations of the bands of interest. 

The tests on averaged intensities around these bands showed they were statistically significant (p 

< 0.05), with exception of 576 cm-1 band, meaning the biochemical changes at the 576 cm-1 band 

could not be used to segregate the control (PNT1a) group from the diseased (PC3) cells group.  

 The peak intensity ratios of Raman spectra measurements have been earlier reportedly 

utilized in classifying diseased and healthy samples (Huang et al., 2003). A similar analysis was 

performed on the observed prominent difference bands in Figure 5.3 (a) – (c), where ratio values 

(i.e. IC / IN) were calculated by dividing the normalized intensities of PC3 cells spectra (IC) by 

normalized intensities of PNT1a cells spectra (IN). Table 5.2 highlights the bands (566 ± 0.70 cm-

1, 630 cm-1, 1370 ± 0.86 cm-1, 1618 ± 1.73 cm-1) whose band intensity ratios were found to increase 
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or decrease with stage of cell proliferation. The ratio values at 566 ± 0.70 cm-1 and 630 cm-1 bands 

increased with stage of cell proliferation, while ratio values at 1370 ± 0.86 cm-1 and 1618 ± 1.73 

cm-1 were found to decrease with stage of cell development. 

 

Table 5.2. Comparison of peak intensity ratios between malignant (PC3) and normal cells (PNT1a) 

at 566 ± 0.70 cm-1, 630 cm-1, 1370 ± 0.86 cm-1, and 1618 ± 1.73 cm-1 spectral regions 

             Stage 1        Stage 2                Stage 3    

         Raman intensities (arbitrary units)            Band ratios  

Raman shift    PNT1a    PC3     PNT1a    PC3     PNT1a   PC3   PC3(1)      PC3(2)        PC3(3) 

    (cm-1)             PNT1a(1)  PNT1a(2)   PNT1a(3)  

     565              0.90     0.87     0.75        0.85     0.75      0.87    0.967   1.133         1.16 

     568       0.81    0.87      0.77        0.86     0.77      0.89    1.074          1.117         1.156 

     630              0.69    0.79      0.73        0.86     0.62      0.85    1.145          1.178         1.371 

     1368  0.51       0.47      0.72        0.66     0.68      0.58    0.922          0.917         0.853 

     1372  0.40       0.44      0.71        0.65     0.60      0.53    1.1              0.915         0.883 

     1617            0.32       0.35      0.46        0.43     0.58      0.53    1.094          0.935         0.914 

     1621            0.30       0.32      0.59        0.54     0.49      0.44    1.067          0.915         0.898 

 

 The increasing peak ratios around 566 ± 0.70 cm-1 band suggests increase of nucleic acids 

bases (cytosine, guanines) with malignancy. This correlates with other closely related prostatic 

studies (Stone et al., 2007; Crow et al., 2003; Taleb et al., 2006) which have suggested that spectral 

intensities of DNA related bands in prostate samples increase with malignancy, a factor attributed 

to enlarged nuclei in malignant cells than for normal cells and therefore greater abundance of DNA 

content in malignant samples (Taleb et al., 2006). For instance, findings by Crow et al., (2003) 

showed nucleic acid contents in malignant prostate biopsies were higher compared to benign 

prostatic hyperplasia (BPH) ones. Further, a study that investigated biochemical alterations for the 

different tissue pathologies within the bladder and prostate gland region noted the DNA content 

increased with malignancy (Stone et al., 2007), and  DNA contents were observed to be higher in 

malignant (LNCaP) cells when compared with normal (PNT1a ) cells (Taleb et al., 2006). The 

increasing peak ratios   around 630 cm-1 band suggests increment of lipids with malignancy. A 

closely related study by Matias et al., (2011), observed adipocyte levels increase with severity of 

malignancy, a factor attributed to the production of lipids via de novo lipogenesis (Long et al., 
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2018). The decreasing peak ratio values observed around 1370 ± 0.86 cm-1 and 1618 ± 1.73 cm-1 

bands suggests that saccharides and tryptophan levels decreased with malignancy. The decrease 

of saccharides levels fit in with the findings of a previous cell line based - study where glycogen 

content was found to be lower in prostatic adenocarcinoma pathologies, compared to benign 

pathologies (Crow et al., 2003), a factor attributed to enhanced glucose uptake by cells during 

onset of tumor development for conversion to lactate molecules necessary for energy production 

during cell proliferation (Klement et al., 2013). The systematic decrement of tryptophan levels 

with malignancy is an indication of prostate malignancy undergoing increased tryptophan 

degradation. 

 PCA is a suitable dimensional reduction multivariate technique that filter out variables 

according their levels of variance (Corsetti et al., 2018). PCA was applied to the observed 

difference bands’ spectra (Figure 5.3 a-c) for stage 1, stage 2 and stage 3 of proliferation cycle. 

The contribution rates to the total variation of spectra of the first two PCs (PC 1 and PC 2) were 

99.13%, 99.19%, and 99.64%, respectively; hence, the first two principal components accounted 

for a greater percentage of the total variability, and were therefore selected for subsequent analysis. 

The score plot of the control and diseased groups was achieved using PC 1 and PC 2; which 

represented group discrimination. Further, LDA was used on PC 1 and PC 2 to evaluate their 

ability of spectra discrimination. In addition, LDA was included to ensure that the distribution of 

the data across the scatter plot was due to variations in spectral features correlated to a pathological 

state but not other less relevant biological parameters e.g. spectral noise (Nargis et al., 2019). It 

was noted that majority the scores / spectra belonged to PNT1a or PC3 classes separated at the two 

sides of the discriminant line (Figure 5.4 a-c), demonstrating the samples could be discriminated 

well using PCA-LDA. Diagnostic performance of PCA-LDA was based on accuracy, sensitivity 

and specificity parameters, as explained in equations 4.11 to 4.13. The overall classification 

accuracies obtained were 97%, 98% and 98% for stages 1, 2 and 3 spectral datasets, respectively. 

The achieved sensitivity parameters were 100%, 100%, and 100%, respectively.  
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Figure 5.4 The score plots of PC 1 and PC 2 for (a) stage 1 (48 hours), (b) stage 2 (72 hours), and 

stage 3 (96 hours) spectral measurements, respectively, based on the difference bands (Figure 5.3 

a-c). Each score represents the measured spectra. The achieved classification accuracies of PCA-

LDA based on the first twenty selected principal components (PCs) were 97%, 98%, and 98%  

respectively. The sensitivity measurement values for PC3 cells were 99%, 98%, and 99%, 

respectively.  

 

 The associated loadings (Figure 5.5(a-c)) shows the bands at (558, 564, 630 cm-1) and 

(1331, 1337, 1441, 1446, 1449, 1452, 1454 cm-1) dominantly determined the assignment of scores 

into the malignant (PC3) and normal (PNT1a) classes respectively. The bands at (558-564 cm-1, 

630 cm-1) and (1331 - 1337 cm-1) indicated heightened nucleic acid and lipid biochemicals, 

respectively. The bands within 1440-1460 cm-1 region pointed to mixed lipids, nucleic acid and  

(a) (b) 

(c) 
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Figure 5.5 The second principal component (PC 2) loadings that explain discrimination of PC 3 

cell scores and PNT1a scores.  

(a) 

(b) 

(c) 
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protein alterations in both cells. Further, the 1571 cm-1 and 1616 cm-1 bands strongly determined 

discrimination of late malignancies. These bands are attributed to (guanine, adenine) and (tyrosine, 

tryptophan) alterations, respectively (Chandra et al., 2015). 

 

5.1.2 Analysis of subtle biochemical alterations in prostatic cells  

 As observed in Figure 5.2(b), the 520-715 cm-1, 725-855 cm-1, 860-1000 cm-1, 1085-1250 

cm-1, 1255-1445 cm-1, and 1450-1655 cm-1 spectral regions were dominated by subtle Raman 

peaks. A key challenge is singling out weak Raman bands significant for disease diagnostics. 

Therefore, utility of intermediate- and high-order principal components was adopted as a potential 

method of mining significant weak variance signals (subtle Raman peaks) for prostate cancer 

diagnosis. Figure 5.6 shows the eigenvalues of the measured mean Raman spectra plotted as a 

function of the number of principal components. As highlighted in Section 4.6.2, the prostatic cells 

datasets were baseline corrected by the linear method and normalized to their maximum intensity, 

but without denoising to preserve all pertinent spectral features in the data sets. The eigenvalues 

indicate that about 5 principal components accounted for the largest variance in the spectral 

datasets. Table 5.3 shows categorization of principal components as either lower, intermediate, or 

higher-order principal components based on the size of variances and cumulative percentages of 

the total variation.  

 

Table 5.3 Categorization of principal components (PCs) based on their cumulative percentage of 

total variation and the variance sizes: low-, intermediate-, and high-order PCs 

Spectral  

dataset 

  Low-order PCs 

(<99% of the 

cumulative 

variance and 

>1.0 average 

eigenvalue) 

 Intermediate-order 

PCs (between 99% 

and 99.5% of the 

cumulative 

variance) 

 High-order PCs (>99.5% of 

the cumulative variance and 

<1.0 average eigenvalue 

Stage 1   1  2 – 16  17 – 154 

Stage 2   1  2 – 22  23 – 160 

Stage 3   1  2  3 – 198 
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Figure 5.6 Scree plots showing eigenvalues explained as a function of the number of principal 

components, for (a) stage 1, (b) stage 2, and (3) stage 3 spectral datasets.  

  

 It was noted the first principal component (PC 1) could be categorized as a low-order 

principal component. For stage 1 dataset of both cell lines (PC3 and PNT1a), principal components 

2 to 16 were categorized as intermediate - order PCs. For stages 2 and 3 datasets, intermediate - 

order principal components were 2 to 22, and 2, respectively. The remaining principal components 

were categorized as higher-order principal components. The first two principal components (PC 1, 

PC 2) were found to account for the largest variance of the data. Overall, the total cumulative 

variances accounted for by the first two principal components (PC 1, PC 2) in stage 1, stage 2 and, 

stage 3 datasets were 99.13%, 99.02%, and 99.58%, respectively, meaning PC 1 and PC 2 

explained the prominent biochemical alterations associated with PC3 and PNT1a proliferation. To 

(c) 

(a) (b) 
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determine which PCs scores were potentially significant for sample discrimination, the PCs were 

subjected to the two sample t-test and effect size (Cohen’s d, Pearson’s correlation coefficient r) 

statistical criteria, as described in Section 4.6.2. Table 5.4 shows the p values and effect sizes 

computed for the first 10 principal components.  Significant differences (p <0.05) between the 

principal component scores were observed in (PCs 1-5), (PCs 1-3, 8), and (PCs 1-6, 8) in stage 1, 

stage 2 and stage 3 spectral datasets, respectively.  

 

Table 5.4 The Student t-test (p-values), and effect sizes (Cohen-d, Pearson’s correlation 

coefficients (r)) showing the relationship between the principal component scores of normal 

(PNT1a) and malignant (PC3) cells 

     Spectral datasets 
 
 Stage 1         Stage 2     Stage 3 
 
  PC p-value         Cohen d     r    p-value        Cohen d     r     p-value        Cohen d     r 
 
  1 0.003            1.22         0.52     0.04               1.32        0.55      0.04             2.27        0.75  

  2 4.04 x 10-19    0.99         0.44    2.11 x 10-39     1.18         0.51     3.56 x 10-39     2.36          0.76 

  3 0.0095            0.39         0.19    9.98 x 10-10    0.99        0.44     0.029      0.18          0.09 

  4 7.13 x 10-18    1.17         0.50    0.42        0.03         0.02      1.51 x 10-18    1.38          0.57 

  5 3.24 x 10-10    1.08         0.48    0.20                0.13       0.06     0.0088   0.34          0.17 

  6        0.18            0.15         0.07     0.32                0.08       0.04     0.0082   0.19          0.09 

  7 0.21            0.13         0.06     0.36                0.06       0.03     0.413                0.03          0.02 

  8 0.09            0.21         0.11    0.03                0.29       0.14     0.02                   0.03          0.01 

  9 0.20            0.14         0.07    0.23        0.41       0.20     0.46                   0.02          0.01 

 10       0.11                0.19         0.09     0.33                0.07       0.04     0.44               0.02        0.01          

 
 Generally, the first principal component (PC 1) had the large effect sizes in all datasets, 

which included d = 1.22, d = 1.32, and d =2.27 for stage 1, 2 and 3 spectral datasets, respectively. 

Further, the respective explained total variances were 98.85%, 98.88% and 99.19%. The utility of  

observed PCs in cells discrimination was further evaluated by plotting their canonical variable 

distributions (Figure 5.7 (a, c, e)).  
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Figure 5.7 The canonical variable distribution plots (a, c, e) showing distinct positions of 

significant principal components, and the score plots of intermediate and higher-order PCs and the 

diagnostic line from LDA for (b) stage 1, (d) stage 2, and (f) stage 3 spectral measurements.  

  

(a) (b) 

(d) (c) 

(e) (f) 
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 The canonical variable distribution plots for stage 1, stage 2, and stage 3 datasets showed 

PCs (2, 3, 4, 5), (2, 3, 8, 9) and (2, 4, 5, 6)  had the largest standardized loadings values, 

respectively, a parameter that demonstrated their potential strength for cells discrimination 

according to the level of malignancy. The principal components (2, 3, 4, 5), (2, 3, 8, 9) and (2, 4, 

5, 6) in stage 1, 2 and 3 datasets were therefore used for cells discrimination. This was done by 

examining the scatter plots of PC scores and their respective loadings vectors, where the loading 

vectors reflects the weights of biochemical components in each spectrum (Corsetti et al., 2018). 

The score plots highlighted the natural groupings of each of the principal components for the cell 

types. It was found that intermediate and higher-order PCs 2 (0.29%), 2 (0.42%), and  4 (0.93%) 

had best grouping of both cells types for stage 1, 2, and 3 spectral data respectively. Examination 

of loading vectors showed the groupings / discriminations were attributed to the prominent 

biochemical differences between the cells (Figure 5.3). 

 It was observed that some level of clustering was present due to PC 5 (0.03%), PC 8 

(0.02%) and PC 5 (0.01%) in stage 1, 2, and 3 spectral data respectively (Figure 5.7 b, d, f). These 

discriminations were attributed to the subtle biochemical differences between the malignant and 

normal cells. It can be seen that the observed PC scores can be associated with particular loading 

vectors; where the scores refer to the weight of particular biochemical components in each 

spectrum. For instance, the few extreme scores defined by Figure 5.7 (d) can be explained by 

respective prominent bands in the loading vectors spectrum. Given that the aim of this study was 

to investigate the subtle biochemical alterations (weak variance signals) associated with prostate 

cancer progression, the following principal components were selected for further analysis: PC 5 

(0.03%) for stage 1,  PC 8 (0.02%) for stage 2 and PC 5 (0.01%) for stage 3 datasets. The principal 

component loadings that explained scores discrimination due to PC 5 (0.03%) for stage 1, PC 8 

(0.02%) for stage 2 and PC 5 (0.01%) for stage 3 datasets are shown in Figure 5.8 (a), (b), and (c) 

respectively. 
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Figure 5.8 Loading vectors explaining the distribution of low- order PC (PC 1) scores against the 

intermediate-order PCs scores (PC 5 for stage 1, PC 8 for stage 2, PC 5 for stage 3) in (a) stage 1 

(48 hours), (b) stage 2 (72 hours) and (c) stage 3 (96 hours) spectral datasets, respectively. 

Loadings profiles are noted to contain useful peaks amid noisy features. The useful peaks were 

extracted by adjustment of threshold and sensitivity levels / parameters in peak finding function in 

Omnic® software from Themo Scientific. Sensitivity levels were set at a low value (30%) so that 

noise and other unimportant features above threshold value were eliminated.  

 

 

 

 

(c) 

(b) (a) 
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 As previously explained, the Cohen d effect sizes were classified as small (d =0.2), medium 

(d = 0.5), and large (d  ≥ 0.8) (Sullivan et al., 2012). Thus, Table 5.4 shows PC 5 (0.03%) for stage 

1 dataset had a large effect size whereas PC 8 (0.02%) for stage 2 and PC 5 (0.01%) for stage 3 

datasets had medium effect sizes. The loadings profiles (Figure 5.8 (a-c)) were noted to contain 

useful peaks amid noisy features. A possible method of extracting useful peaks from noise would 

be to denoise or smooth the loading profiles. However, this would introduce spectral artifacts, peak 

shifts, and loss of useful peaks. Therefore, the peaks were extracted in their raw form by adjusting 

threshold and sensitivity levels / parameters of peak finding function in Omnic® software from 

Themo Scientific. It should be noted the sensitivity levels were kept at low values (30%) to 

eliminate noisy peaks, and only the most intense loading vectors that explained scores distribution 

in Figure 5.7 (b, d, f) were extracted and used for further analysis. Detailed information concerning 

the loading vectors (which in this case are weak Raman bands) that explained natural groupings 

of PNT1a and PC3 scores using intermediate-and high-order PC 5 (0.03%) for stage 1, PC 8 

(0.02%) for stage 2 and PC 5 (0.01%) for stage 3 datasets are shown in Table 5.5.   

 It was observed (Table 5.5) that the loading vectors (Raman bands) at 771 cm-1, 871 cm-1, 

1122 cm-1, 1176 cm-1, 1614 cm-1 (for stage 1), 1068 cm-1, 1191 cm-1, 1333 cm-1, 1471 cm-1, 1524 

cm-1, 1586 cm-1 (for stage 2) and 1076, 1089 cm-1, 1278 cm-1, 1596 cm-1, 1631 cm-1, 1712 cm-1 

(for stage 3) had the most influence for the assignment of scores into the malignant class (PC3 

cells). Likewise, the loading vectors at (1014, 1092, 1232, 1468, 1776 cm-1), (704, 1217, 1271, 

1274, 1531 cm-1) and (641, 697, 1319, 1377, 1577 cm-1) had the most influence for the assignment 

of scores into the normal class (PNT1a) for stage 1, 2, and 3 measurements respectively. It should 

be noted that the loading vectors at (1232, 1330, 1442 cm-1), (1471 cm-1), and (1076, 1278 cm-1) 

were common for the two cell lines in stage 1, 2, and 3 datasets respectively. The two sample t-

test on averaged normalized intensities on these bands indicated they were statistically significant 

(Students t-test, p < 0.05). 

 To better understand these differences, band intensity ratios (IC / IN) were determined at all 

observed loading vectors (weak Raman bands), by dividing the normalized intensities of diseased 

(PC3 cells) Raman spectra (IC) by the respective normalized intensities of control (PNT1a cells) 

Raman spectra (IN). The band intensity ratio values at 1076 cm-1 and 1232 cm-1 bands were found 

to increase with the stage of cell proliferation (Table 5.6).  
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Table 5.5 The Raman bands (loading vectors) that explain natural groupings of PNT1a and PC3 

scores using the fifth principal component (PC 5 (0.03%)) for stage 1, eighth principal component 

(PC 8 (0.02%)) for stage 2 and fifth principal component (PC 5 (0.01%)) for stage 3 spectral 

datasets (the values are in units of cm-1) 

                                                   Prostatic cells 
       
PC3    PNT1a   
       
Stage 1 Stage 2 Stage 3  Stage 1 Stage 2 Stage 3 
       
604 508 574  1007 517 641* 
668 564 786  1014* 704** 697* 
730 869 833  1092* 716 1076c 
771* 913 884  1232*a 752 1209 
841 1068* 900  1330a 772 1278c 
871* 1077 969  1391 1217* 1319* 
976 1191* 1027  1442a 1271* 1377* 
1122* 1333* 1076*c  1468* 1274* 1577* 
1176* 1471*b 1089*  1681 1364  
1232a 1524* 1094  1776* 1471b  
1330a 1586* 1100   1514  
1339  1123   1531*  
1442a  1158   1557  
1614*  1240     
  1269     
  1278*c     
  1439     
  1482     
  1561     
  1596*     
  1631*     
  1641     
  1699     
  1712*     
  1724     

 
KEY: The asterisks (*) identify the loading vectors (weak Raman bands) that had the most 

influence in the assignment of scores for each of the two cell lines. Superscripts a, b, c identify the 

loading vectors (weak Raman bands) that were common for both cell lines.  
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Table 5.6 Comparison of peak intensity ratios between malignant (PC3) and normal cells (PNT1a) 

based on the subtle Raman peaks at 1076 cm-1 and 1232 cm-1. The numbers 1, 2, and 3 enclosed 

in brackets identify the stage of cell proliferation 

             Stage 1        Stage 2                Stage 3    

         Raman intensities (arbitrary units)       Band ratios*  

Raman shift    PNT1a    PC3      PNT1a    PC3     PNT1a  PC3   PC3(1)      PC3(2)        PC3(3) 

    (cm-1)             PNT1a(1)  PNT1a(2)    PNT1a(3)  

     1076           0.67         0.65     0.64         0.64     0.74     0.77     0.970         1.0              1.04 

     1232           0.60         0.55     0.74         0.68     0.79     0.78     0.917         0.919          0.987 

 

KEY: The asterisks (*) identify the band ratios computed by dividing the normalized intensities 

of diseased (PC3 cells) Raman spectra (IC) by the respective normalized intensities of control 

(PNT1a cells) Raman spectra (IN). 

 

 The 1076 cm-1 band is linked to stretching modes of phosphate components that emanate 

from nucleic acids and is thought to suggest nucleic acid levels heighten with malignancy 

(Movasaghi et al., 2007). The alterations around 1232 cm-1 band indicate antisymmetric phosphate 

stretching vibrations due to nucleic acids and Amide III alterations (Rehman et al., 2013). 

Therefore, the increasing ratios of normalized intensities of PC3 cells (IC) to normalized intensities 

of PNT1a cells (IN) suggest prostate malignancy can be associated with an increase in relative 

amounts of nucleic acids and Amide III alterations.  The rest of loading vectors (Table 5.5) can be 

mainly attributed to subtle nucleic acids and protein alterations, and their specific assignments are 

explained elsewhere (Chandra et al., 2015; Movasaghi et al., 2007; Gelder et al., 2007). 

 The use of high-order principal components is still underexplored as a machine leaning 

tool for the analysis of prostatic tissues. In fact, prostate cancer Raman studies prefer use of the 

first few principal components (PCs) because they account for large proportions of variance 

(Theophilou et al., 2015; Musto et al., 2017; Corsetti et al., 2018; Matias et al., 2011; Crow et al., 

2005; Patel et al., 2010). However, adding a supervised constraint on the PCA e.g., LDA, for 

discrimination purpose increases weight of underlying spectral features in the classification by 

eliminating variations in spectral features not correlated to a pathological state but other less 

relevant biological parameters (Nargis et al., 2019).  A previous review on applications of Raman 

spectroscopy for prostate cancer (Kast et al., 2014), shows the majority of prostate-based Raman 
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studies reported dominance of proteins, lipids, and nucleic acids alterations, especially at 1000 cm-

1, 1200-1350 cm-1, 1450 cm-1, and 1600-1700 cm-1 regions. To the best of authors’ knowledge, 

spectroscopic prostate studies based on the utility of higher-order PCs; which account for 

negligible variance (assumed noise) have not been reported. In this study, the observed subtle 

bands can be explained in consideration of different experimental conditions that could have 

limited detection of optimum Raman signals e.g., scattering efficiency of laser wavelength (thus 

the laser power irradiation over the sample), and the large background due to scattering from the 

sample itself, substrate and the microscope objective (Byrne et al., 2015). Generally, the large 

background effects may swamp any weak Raman signals present, although they could be of 

diagnostic value. Further, useful Raman bands may not be optimally detected during experiments.  

 For instance, previous closely related work on prostate cancer cells by Corsetti et al., 

(2018) and Crow et al., (2005) reported related prominent bands around  (880, 1184, 1588, 1614 

cm−1) and (1094 / 96, 1125, 1576 cm−1) respectively. Similarly, the 1328 cm−1 and 643 cm−1 bands 

were observed as prominent bands by Matias et al., (2011) and Patel et al., (2010), respectively.  

Although the present study detected similarly closely related loading vectors which include 871 

cm−1, 1094 cm−1, 1122 / 1123 cm−1, 1191 cm−1, 1330 / 1333 cm−1, 1586 cm−1 and 1614 cm−1 as 

shown in table 5.5, their Raman intensities were generally subtle, therefore could not be detected 

in spectral profiles shown in Figure 5.2 (b) and Figure 5.3 (a-c).  However, it should be noted the 

works by Corsetti et al., (2018), Crow et al., (2005), Matias et al., (2011) and Patel et al., (2010) 

were based on 785 nm, 830 nm, 830 nm and 785nm excitation lasers of 135 mW, 300 mW, 80 

mW and 100 mW laser powers, respectively.  The intensity of Raman scattered radiation is directly 

proportional to the frequency of incident radiation (equation 3.17). Therefore, it is not clear if the 

excitation energies at the point of sample surface; and which have not been explicitly stated by the 

authors (Corsetti et al., 2018; Crow et al., 2005; Matias et al., 2011; Patel et al., 2010), played a 

major role in detection of optimum Raman signals in their respective findings. Our results showed 

the loading vectors in Table 5.5 were not spectrally visible in Figure 5.2 b and Figure 5.3 a-c, 

although were statistically significant (p < 0.05). However, as observed (Figure 5.7 (b, d, f)), the 

score plots demonstrated a reasonable level of scores discrimination; significantly strengthening 

the view that there were inherent subtle molecular differences between the two cell lines. These 

results were encouraging and motivated application of intermediate- and higher-order principal 

components in extracting useful weak band variance signals (weak spectral markers) in whole 

blood and saliva spectral datasets for breast cancer and leukemia diagnostics.  
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5.2 Raman spectroscopic characterization of blood and saliva fluids for breast 

cancer diagnostics 

5.2.1 Raman spectroscopy characterization of whole blood 

5.2.1.1 Analysis of prominent biochemical alterations in whole blood spectra 

 The optical photomicrograph of a typical blood sample is shown (Figure 5.9 (a)). The 

characteristic pinkish red color of blood smear is observed, a factor attributed to hemoglobin due 

to iron minerals. Figure 5.9 (b) shows stacked averaged Raman spectrum of control and diseased 

samples in 400 – 1800 cm-1 region, with spectral data normalized at 1446 cm-1 band (lipids / 

proteins). The biochemical assignments of peaks in Figure 5.9 (b-d) were done in accordance with 

the Raman spectroscopy of tissues, body fluids, or bio-molecules as highlighted in literature 

(Pichardo-Molina et al., 2007; Vargas-Obieta et al., 2016; Rehman et al., 2013; Gelder et al., 

2007). Detailed information regarding Raman band assignments are provided in Table 5.7. As seen 

in Figure 5.9 (b), the control samples spectra exhibited higher intensity peaks attributable to 

nucleic acids (744, 1339, 1574 cm-1), phospholipids (744, 965, 1124, 1339, 1446 cm-1), proteins 

(1124, 1240, 1339, 1446, 1574 cm-1) and saccharides (410, 479, 1124 cm-1) when compared to 

diseased samples spectra. On the other hand, diseased samples spectra had higher intense bands 

attributed to proteins (1002, 1617 cm-1), phospholipids (1367 cm-1) when compared to control 

samples spectra.     

 To identify specific constituents explaining biochemical changes in blood of control and 

diseased patients, the spectra differences between the control and diseased samples in the 500-

1800 cm-1 region were considered (Figure 5.9 (c)). Based on literature (Movasaghi et al., 2007; 

Chandra et al., 2015; Gelder et al., 2007), it was observed the bands attributable to saccharides 

(408, 479 ± 0.47, 1125 ± 2.05 cm-1), nucleic acids (742 ± 2.27, 1341 ± 1.08, 1583 ± 2.24 cm-1), 

phospholipids (742 ± 2.27, 968, 1125 ± 2.05, 1341 ± 1.08 cm-1), proteins (998 ± 0.70, 1125 ± 2.05, 

1244 ± 0.70, 1341 ± 1.08, 1583 ± 2.24 cm-1) explained heightened biochemical alterations in 

control samples, validating observations in Figure 5.9(b). Besides, the strongest band occurred at 

1244 ± 0.70 cm-1 and 1583 ± 2.24 cm-1 which suggested that biochemical changes due to proteins 

(amide III, tyrosine, arginine) were predominant in control and diseased samples. The diseased 

samples were found to exhibit heightened band at 845 ± 1.31 cm-1 assigned to   tyrosine proteins.  
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Figure 5.9 (a) The optical photomicrograph of a dried blood sample with a laser spot (+) 

indicated (50x magnification), (b) the overall stacked mean spectra (normal: (n =23); diseased: 

(n = 20), (c) Raman alterations in controls (n = 23), grade 1 (n = 3), grade 2 (n = 7), and grade 

3 (n = 10) diseased samples, and (d) spectra differences between Raman spectra of healthy and 

diseased samples.  

 

 

 

(c) 

(b) 
(a) 

(d) 
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 The blood spectrum ± standard deviations (SD) of controls (n = 23), grade 1 (n = 3), grade 

2 (n = 5), and grade 3 (n = 10) groups were compared, in fingerprint region - 500 – 1800cm-1 

(Figure 5.9 (d)). Note that spectra have been linearly offset for clarity. There were 11 primary 

bands (p < 0.05) at the wavelengths around 665 ± 1.21 cm-1 (nucleic acids, phospholipids),  745 ± 

0.61 cm-1 (nucleic acids, phospholipids),  996 ± 0.84 cm-1 (C-O ribose, C-C stretch), 1001 cm-1 

(phenylalanine), 1122 ± 0.69 cm-1 (proteins, lipids, glucose), 1237 ± 0.47 cm-1 (proteins), 1336 ± 

1.34 cm-1 (proteins, phospholipids, nucleic acids), 1367 ± 0.39 cm-1 (phospholipids), 1444 ± 1.46 

cm-1 (phospholipids, proteins), 1573 ± 0.74 cm-1 (nucleic acids, proteins) and 1616 ± 0.20 cm-1 

(proteins). Besides, there was a spectral feature at 1203 cm-1 uniquely in grade 3 breast cancer 

profile, which can be majorly attributed to protein alterations. The protein bands were based on 

aromatic acids (e.g. tryptophan, phenylalanine, and tyrosine), while nucleic acid alterations were 

mainly due to DNA and RNA bases (cytosine, uracil, adenine, thymine, guanine). 

 As noted in Figure 5.9(d), enhanced peaks were predominantly detected in 600-1800cm-1 

region and the strongest bands occurred at 745 ± 0.61 cm-1, 1001 cm-1, 1237 ± 0.47 cm-1, 1444 ± 

1.46 cm-1, 1573 ± 0.74 cm-1, and 1616 ± 0.20 cm-1. Our finding correspond to (Pichardo-Molina 

et al., 2007; Nargis et al., 2019; Vargas-Obieta et al., 2016) where prominent peaks in blood and 

serum spectra of healthy volunteer controls and patients clinically diagnosed with breast cancer 

were majorly observed in 600-1800 cm-1 region, and bands around 1001 cm-1 and 1444 cm-1 were 

reportedly heightened in all spectra profiles. But, contrary to previous findings (Pichardo-Molina 

et al., 2007; Nargis et al., 2019; Bilal et al., 2017), the 1658 cm-1 band was not detected in our 

work,  a disparity we attributed to the potential compositional differences between whole blood 

and serum samples and the oxygenation state of hemoglobin in whole blood samples (Atkins et 

al., 2017). 
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Table 5.7 Raman band assignments of healthy people and breast cancer patients  

Raman shift      Functional groups and molecular   References 

(cm-1)         vibration assignments          

408, 410     Saccharides                 (Gelder et al., 2007)               

462      Ring breathing modes of phenylalanine      (Rehman et al., 2013) 

479, 483, 479 ± 0.47    υ(COH), υ(CCH), υ(OCH) side group        (Rehman et al., 2013) 

      deformations of saccharides              (Gelder et al., 2007)                                  

612      Cholesterol esters               (Rehman et al., 2013) 

661, 665 ± 1.21              C-S stretching modes (proteins),             (Pichardo-Molina et al., 2007) 

      Phospholipids, ring breathing modes of     (Rehman et al., 2013) 

      DNA / RNA bases (thymine, guanine) 

744, 742 ± 2.27,    C-S stretch of phospholipids,            (Pichardo-Molina et al., 2007)  

745 ± 0.61     Ring breathing modes of DNA bases         (Rehman et al., 2013)  

845 ± 1.31     Single-bond stretching vibrations for            (Pichardo-Molina et al., 2007) 

      tyrosine  

965, 968     δ(=CH wagging) of lipids   (Rehman et al., 2013)         

996 ± 0.84     C-O stretch of ribose, C-C stretch  (Rehman et al., 2013)          

998 ± 0.70, 1002    Symmetric ring breathing mode of   (Vargas-Obieta et al., 2016), 

      phenylalanine 

1036 ± 0.86      CH2CH3 bending modes of phenylalanine    (Pichardo-Molina et al., 2007) 

       and collagen 

1122 ± 0.69,      C-N stretch of proteins, C-C stretch of lipids  (Vargas-Obieta et al., 2016), 

1125 ± 2.05                    and proteins, Glucose                 (Rehman et al., 2013) 

1188      Antisymmetric phosphate vibrations of DNA          (Rehman et al., 2013) 

      and RNA bases cytosine, guanine, adenine)   

1203      Amide III, CH2 wagging (glycine, proline)              (Rehman et al., 2013)   

      Tyrosine, Phenylalanine 

1237 ± 0.47, 1240,     β – sheet. Amide III, CH2 deformations of    (Vargas-Obieta et al., 2016), 

      glycine and proline  

1244 ± 0.70       β – sheet. Amide III, CH2 deformations of    (Pichardo-Molina et al., 2007) 

      glycine and proline  
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Table 5.7 (continued)    Raman band assignments of healthy people and breast cancer patients  

Raman shift      Functional groups and molecular       References 

(cm-1)         vibration assignments          

1296      CH2 deformation of tryptophan, α – helix,       (Vargas-Obieta et al., 2016) 

      and phospholipids    

1336 ± 1.34, 1339,     δ(CH3), δ(CH3), twisting of proteins and          (Vargas-Obieta et al., 2016) 

1341 ± 1.08         phospholipids, α – helix, adenine, guanine     (Rehman et al., 2013) 

1367 ± 0.39     υs(CH3) stretch of phospholipids      (Rehman et al., 2013) 

1424      CH2 bending mode of proteins and lipids     (Rehman et al., 2013)   

1444 ± 1.46, 1446    δ(CH2 / CH3), scissoring ((phospholipids),  (Pichardo-Molina et al., 2007) 

      and proteins 

1504      C-C stretch of phenylalanine, ring breathing  (Rehman et al., 2013) 

       modes of cytosine 

1573 ± 0.74     Ring breathing modes of DNA / RNA bases   (Rehman et al., 2013) 

                                      (guanine, adenine), C=C bending modes of  

                                      tryptophan protein            

1583 ± 2.24    C=C bending modes of phenylalanine            (Pichardo-Molina et al., 2007) 

                                      tyrosine, arginine, and adenine        

1616 ± 0.20, 1617  C = C stretching of tyrosine and tryptophan     (Vargas-Obieta et al., 2016) 

            (Rehman et al., 2013) 

1754    C=O stretch of lipids       (Rehman et al., 2013) 

            

 If we consider grade 1 and grade 2 breast cancer spectra, the diseased samples had common 

intense bands around 612 cm-1 (cholesterol esters), 1036 ± 0.86 cm-1 (phenylalanine proteins), and 

1504 cm-1 (proteins, nucleic acids). In contrast, the late malignancy (grade 3 breast cancer) 

exhibited heightened bands around 462 cm-1 (phenylalanine), 661 cm-1 (nucleic acids, 

phospholipids), 1188 cm-1 (nucleic acids), 1296 cm-1 (proteins, phospholipids), 1424 cm-1  

(proteins, lipids) and 1475 cm-1 (δCH2 modes), with the strongest bands occurring at 462 cm-1  and 

1188 cm-1. The disparity between heightened alterations for diseased samples in grade 1, grade 2, 

and grade 3 breast cancer spectra suggests presence of other biochemical differences during late 

progression of breast malignancy.  
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 As observed in Figure 5.9(d), there were several notable prominent spectral markers. 

However, there were spectral regions with weak Raman peaks, for instance, the 750-960 cm-1 and 

1010-1110 cm-1 regions. Therefore, to investigate the possible significant weak (subtle) 

biochemical alterations useful for scores discrimination, we employed the potential of intermediate 

and higher-order principal components for disease diagnostics as described in Section 4.6.2. 

 

5.2.1.2 Analysis of trace biochemical alterations in whole blood spectra 

 The principal component analysis of spectral datasets was performed in 500-1800 cm-1 

region. The log scree plots that explained scores in spectral datasets for blood samples in grade1, 

grade2 and grade3 spectral datasets are shown in Figure 5.10.  

 

Figure 5.10 The log scree plots that explain scores in (a) grade1, (b) grade2 and (c) grade3 spectral 

datasets for blood samples from healthy (normal) and breast cancer patients. It was noted that the 

number of principal components (PCs) with eigenvalue >1 were 42, 72, and 66, respectively.  

(a) (b) 

(c) 
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 The determined principal components were categorized as lower-, intermediate-, and 

higher-order principal components based on the size of variances and cumulative percentages of 

the total variation criteria as shown in Table 5.8. Moreover, variance method was also applied 

(Martinez et al., 2005), where it was noted that 12, 24 and 17 PCs could be retained for further 

analysis of stage1, stage2, and stage3 spectral datasets, respectively. The strengths and directions of 

correlations between the principal components were examined by use of canonical variable 

distribution plots, shown in Figure 5.11.  

 

Table 5.8 Categorization of PCs based on the cumulative percentage of total variation and the size 

of variances: Low-order PCs (<90% of the cumulative variance and >1.0 average eigenvalue), 

Intermediate-order PCs (between 90% and 95% of the cumulative variance), Higher-order PCs 

(>95% of the cumulative variance)  

    Spectral dataset    low-order PCs Intermediate-order PCs Higher-order PCs 

    Grade1   1-2   3-18    19-300 

   Grade2   1-5   6-15    16-310 

   Grade3              1-4   5-15    16-324 

 

 It is observed the closely clustered principal components were strongly correlated, and their 

significance was found to increase with their distinct positions on the plane. The determined 

statistical values i.e. t-test (p-values), effect sizes (Cohen-d), and Pearson’s correlation coefficients 

(r) that shows relationship between the principal component scores of healthy and diseased blood 

samples are shown in Table 5.9. The first two principal components (PC1, PC2) explained large 

fractions of the data; accounting total cumulative variances of 85.51%, 82.72%, 84.27% for  

grade1, grade2, and grade3 spectral datasets, respectively. Significant differences (p <0.05) between 

healthy and diseased samples scores were mainly observed in the lower and intermediate order 

PCs as shown in Table 5.9. As observed, the PCs 3, 2, and 3 were the most significant for grade1, 

grade2, and grade3 spectral datasets, respectively. Also, they had the largest effect sizes and 

represented 4.51%, 9.84%, and 3.10% of the total variance in their respective input data. Further, 

these PCs had intense canonical loading parameters, which confirms their potential strength in 

samples discrimination (Dattalo, 2014).  
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Figure 5.11 Canonical variable distribution showing the low-, intermediate- and high-order 

principal components for (a) grade1, (b) grade2, and (c) grade3 spectral datasets, respectively.  It is 

observed PCs 3, 2, and 3 have largest canonical loading parameters, suggesting their potential 

strength for higher classification accuracies in samples discrimination which is validated by their 

higher levels of statistical significance and effect sizes (Table 5.9). PCs 7, 3, and 12 have fairly 

higher levels canonical loading parameters and statistical significances, therefore potentially useful 

for discriminating scores due to presence of subtle biochemical alterations (weak variance signals).  

 

 

 

 

(a) (b) 

(c) 
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Table 5.9 The t-test (p-values), and effect sizes ((Cohen-d, Pearson’s correlation coefficients (r)) 

showing relationship between the principal component scores of control and diseased blood 

samples. For clarity, only the statistical values for statistically significant PCs (p < 0.05) are shown 

 
PC    Grade 1               Grade 2     Grade 3 

          p- value      Cohen-d        r         p- value      Cohen-d    r           p- value   Cohen-d        r 

1       6.07 x 10-6     0.63  0.30      0.02               0.21         0.10     0.0085              0.21          0.10 

2       9.59 x 10-7     0.69  0.32      1.27 x 10-36 1.45     0.58     0.02               0.17      0.08 

3       3.25 x 10-84    3.41  0.86      8.91 x 10-22 1.06     0.46     1.09 x 10-69    1.84      0.67 

4       p > 0.05                                       5.96 x 10-19 0.97     0.43     8.68 x 10-8     0.48         0.23 

5       p > 0.05                  p > 0.05       0.01         0.19      0.09 

6       0.01        0.31  0.15       4.93 x 10-5 0.42     0.20      p > 0.05 

7       6.94 x 10-17    1.22  0.52       p > 0.05                                     p > 0.05 

8       p > 0.05       2.1 x 10-10 0.68     0.32      0.002    0.25      0.12 

9      4.09 x 10-6        0.64  0.30    p > 0.05                   0.0005           0.30      0.14 

10     p > 0.05       0.01             0.24     0.12      0.004    0.23      0.11 

11     1.65 x 10-5     0.60  0.28    0.00              0.31     0.15       p > 0.05  

12      p > 0.05       p > 0.05         5.3 x 10-27    1.02        0.45 

13      p > 0.05       p > 0.05         0.006    0.22      0.11 

14     0.000929       0.44 0.21    0.02             0.21     0.10       7.59 x 10-5    0.34     0.17 

15     p > 0.05       p > 0.05         0.002    0.25     0.12 

16     p > 0.05                                         p > 0.05                                      p > 0.05 

17    p > 0.05                  3.98 x 10-12 0.85     0.39       5.85 x 10-5    0.54      0.26 

 

 The LDA was applied to the PCA results, i.e., to low and intermediate order PCs scores as 

a technique of supervision. This ensured that the distribution of the data across the scatter plot was 

due to variations in spectral features correlated to a pathological state but not due to other less 

relevant biological parameters (Nargis et al., 2019). The linear discriminant analysis distinguished 

the healthy and diseased groups as shown (Figure 5.12 a-f). Analysis of official reports from 

pathologists showed the point group marked by blue dots could be associated with control patients’ 

spectra and the group marked by red triangles could be associated with breast cancer patients’ 

spectra. The overall classification accuracies for grade1, grade2 and grade3 spectral datasets were 
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100%, 97% and 93%, respectively, whereas sensitivity and specificity values were (98%, 100%), 

(84%, 100%), and (82%, 98%), respectively. The best LDA discrimination was obtained by 

plotting scores of the first principal component (PC 1) versus PC 3 (4.51%), PC 2 (9.84%), and 

PC 3 (3.10%) scores, for grade1, grade2 and grade3 spectral datasets, respectively, as shown in 

Figure 5.12 a, c, e. The loading plots were analyzed to understand the prominent and subtle 

biochemical alterations contributing to these score discrimination. The loading vectors, which 

explain the weights of biochemical components in spectrum (Corsetti et al., 2018), are shown in 

Figure 5.13 (a-c), and respective band assignments are given in Table 5.10.  

 It can be seen in Figure 5.13 (a-c) that majority of loading vectors had featured as 

heightened biochemical alterations in Figure 5.9(c) and (d). Therefore, the samples discrimination 

(in Figure 5.12 (a), (c), (e)) were attributed to the heightened biochemical differences between the 

malignant and the normal samples of the studied patients. The loading plots of PC 3 (4.51%), PC 

2 (9.84%) and PC 3 (3.10%) revealed that the changes in tyrosine proteins (850, 854, 860 cm-1), 

phospholipids (1075, 1078, 1086 cm-1), and nucleic acids (1530, 1532 cm-1) were prominent in 

blood samples of diseased patients, whereas changes in  proteins (745, 752, 755 cm-1), amide III 

(1240, 1245 cm-1), and tryptophan / phospholipids (1331, 1341, 1343 cm-1) were prominent in 

blood samples of control patients. Besides, the alterations in phenylalanine (1002 cm-1) and 

proteins / phospholipids (1126, 1127 cm-1) were prominent in blood samples of control patients in 

early stages (grade 1, grade 2) of cancer development whereas alterations in saccharides (982, 985 

cm-1), tyrosine / phenylalanine proteins (1610, 1615 cm-1), amide I (1643, 1648 cm-1) and nucleic 

acid base of thymine (1713, 1717 cm-1) were prominent in blood samples of diseased patients in 

early stages (grade 1, grade 2) of cancer development Further, changes in CH2CH3 bending modes 

of collagen and phospholipids (1032 cm-1), nucleic acid base of uracil (1502 cm-1), nucleic acid 

base of cytosine (1695 cm-1) and primary metabolite of citric acid (1733 cm-1) were present during 

late stages of cancer development (Rehman et al., 2013). This result is in accordance with previous 

findings (Nargis et al., 2019; Vargas-Obieta et al., 2016), where spectral features at 848 cm-1 and 

1083 cm-1 were found to depict higher Raman intensities in the mean Raman spectra of patient 

samples, and spectral features around 761 cm-1 had higher Raman intensities in spectra of 

control/healthy volunteers. However, contrary to findings by vargas-Obieta et al., (2016), the peak 

at 742 cm-1 could be associated with diseased patients rather than healthy volunteers.        
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Figure 5.12 Scatter plots showing distribution of the first principal component (PC 1) versus 

various PCs (2, 3, 7, 12) scores and the diagnostic line for LDA for (a, b) grade1, (c, d) grade2, and 

(e, f) grade3, spectral datasets, respectively. The overall PCA-LDA classification accuracies for 

grade 1, 2 and 3 spectral datasets were 100%, 97% and 93%, respectively. 

 

 

(a) 

(c) 

(e) 

(b) 

(d) 

(f) 
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Figure 5.13 Linear discriminant functions showing loading vectors associated with scores 

discrimination in Figure 5.12 (a, c, e). The loading vectors explain the prominent biochemical 

alterations differences between healthy and diseased samples.  

 

 The LDA discrimination between healthy and diseased scores was further examined using 

the remaining significant PCs in Table 5.9. Some reasonable level of samples discrimination was 

observed in loading plots of PCs 7 (0.32%), 3(3.63%), and 12 (0.22%), in grade1, grade2, and 

grade3 spectral datasets, respectively, as shown in Figure 5.12 b, d, and (f). This was in agreement 

with their fairly high levels of statistical significance (Table 5.9), and canonical loading parameters 

(Figure 5.11). The respective loading vectors are shown in Figure 5.14 (a), (b), (c), and band 

assignments are provided in Table 5.10.  

(b) 

(c) 

(a) 
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 Examination of scatter plots and their respective loading vectors (Figure 5.14) showed the 

subtle biochemical alterations could be mainly associated with the few extreme vertically end 

scores on the scatter plane, where the bands around (589, 594, 630, 1160, 1250, 1347, 1358 cm-1) 

and (858, 868, 1005, 1626, 1630, 1638 cm-1) generally explained the common subtle biochemical 

alterations in diseased and control (healthy) samples, respectively. By visual inspection, these 

bands had not been detected in the Raman spectra shown in Figure 5.9 (c) and (d). Therefore, the 

sample discriminations in Figure 5.12 (b), (d), and (f) can be attributed to the subtle biochemical 

differences alterations between the malignant and the normal samples of the studied patients. 

These subtle biochemical differences were mainly due to nucleic acids, proteins, and lipids, where 

the protein bands were based on aromatic acids of glutamate, phenylalanine, tryptophan, tyrosine, 

proline, glycine, and valine. In particular, the loading plots of PCs 7 (0.32%), 3(3.63%), and 12 

(0.22%) revealed that the subtle changes in glycerol (589 cm-1), tryptophan / phosphatidylinositol 

(594 cm-1), glutamate / tryptophan (630 cm-1), β-catotene (1160 cm-1), amide III (1250 cm-1), 

tryptophan / α-helix / phospholipids (1347 cm-1) and tryptophan / guanine (1358 cm-1) were present 

in blood samples of diseased patients, whereas subtle changes in tyrosine proteins (858 cm-1), 

proline / saccharides (868 cm-1), phenylalanine (1005 cm-1), glutamate (1626 cm-1), glycine / valine 

(1630 cm-1) and amide I (α-helix) / β-carotene were present in blood samples of control patients.  
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Figure 5.14 Linear discriminant functions showing loading vectors associated with scores 

discrimination in Figure 5.12 (b, d, f). The loading vectors explain the subtle biochemical 

alterations differences between healthy and diseased samples. The bands at (858, 868, 1005, 1626, 

1630, 1638 cm-1) and (589, 594, 630, 1160, 1250, 1347, 1358 cm-1) explains subtle biochemical 

alterations in blood samples of controls (healthy) and breast cancer stricken patients, respectively. 

 

 

 

 

 

 

(b) 

(c) 

(a) 
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Table 5.10 Raman band assignments of alterations in blood samples of healthy and breast cancer 

patients  

Raman shift  Functional groups and molecular vibration     References 

 (cm-1)             assignments 

589  Symmetric stretching vibrations, glycerol        (Rehman et al., 2013)      

594  δ(CH2 / CH3) deformations (phosphatidylinositol),     (Gelder et al., 2007) 

  and tryptophan proteins,           

630  υ(C-S), glutamate, C-C twisting modes of tryptophan   (Chandra et al., 2015) 

745  C-S stretch of phospholipids, ring breathing modes     (Pichardo-Molina et al., 2007) 

  of DNA / RNA bases (thymine)               (Vargas-Obieta et al., 2016) 

752, 755          Symmetric breathing of tryptophan                        (Pichardo-Molina et al., 2007) 

850  Ring breathing modes of tyrosine proteins                 (Vargas-Obieta et al., 2016) 

854, 860 Ring breathing modes of tyrosine proteins            (Pichardo-Molina et al., 2007) 

868  C-C stretch of proline, C-O-C skeletal mode  (Chandra et al., 2015) 

  of saccharides)        

982, 985 C-C stretching, β-sheet (proteins), C-O-C skeletal    (Rehman et al., 2013) 

  mode of saccharides 

1002, 1005 Symmetric ring breathing mode of phenylalanine        (Pichardo-Molina et al., 2007) 

1075, 1078 C-C and C-O stretch of phospholipids             (Rehman et al., 2013)  

1086  O-P-O and C-C stretch of phospholipids             (Vargas-Obieta et al., 2016) 

1126, 1127 C-N stretch (proteins), υ (C-C) stretch of             (Pichardo-Molina et al., 2007) 

  phospholipids 

1160  C-C / C-N stretching (proteins), ring breathing    (Gelder et al., 2007) 

                        modes of DNA / RNA bases (adenine, guanine)      

1240, 1245 Asymmetric phosphate vibrations, β – sheet               (Rehman et al., 2013)  

  (amide III), CH2 (glycine and proline)      

1250  β – sheet (amide III collagen assignment)              (Vargas-Obieta et al., 2016) 

1331  C-N stretch of tryptophan proteins, α-helix,               (Movasaghi et al., 2007) 

                        and phospholipids 

1341, 1343 C-N stretch of tryptophan, α-helix, phospholipids  (Vargas-Obieta et al., 2016) 

1347  C-N stretch of tryptophan, α-helix, phospholipids  (Movasaghi et al., 2007) 
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Table 5.10 (continued) Raman band assignments of alterations in blood samples of healthy and 

breast cancer patients  

Raman shift  Functional groups and molecular vibration      References 

 (cm-1)             assignments 

1358  C-N stretch of tryptophan, ring breathing modes of    (Chandra et al., 2015) 

  DNA / RNA bases (guanine)                         

1530, 1532 Ring breathing modes of DNA / RNA bases     (Rehman et al., 2013) 

  (adenine, guanine, cytosine)                  

1610, 1615 NH2 bending of tyrosine, phenylalanine             (Pichardo-Molina et al., 2007) 

1626  C=C stretch, glutamate                  (Gelder et al., 2007)      

1630   C=C stretch, glycine, valine        (Rehman et al., 2013)  

1638  Amide I (α-helix), β-carotene                 (Rehman et al., 2013)  

1643, 1648 Amide I (α-helix)                  (Chandra et al., 2015) 

1695  Amide I (α-helix)       (Gelder et al., 2007).   

1713, 1717 C=O stretch of DNA / RNA bases (thymine)    (Movasaghi et al., 2007) 

 

 

5.2.1.3 Quantitative analysis of trace biomarkers in whole blood spectra using partial least- 

squares regression 

 First, we examined the Raman spectra of the pure biochemical components that were 

chosen to represent the major biochemical groups in cellular constituents which include nucleic 

acids, proteins, lipids, amino acids and polysaccharides. Figure 5.15 shows the Raman spectra of 

selected basic pure biochemical components, i.e., the bovine serum albumin, glycogen type IX 

from bovine liver, glycerol trioleate derived from glycerol, triolein, L-glutamic acid potassium salt 

monohydrate, glycine and RNA extract that were used for preparation of calibration samples 

(spectra have been linearly offset for clarity). The observed bands for albumen, glycogen, 

glutamate, glycine, RNA and triolein biochemical components included (856, 1001, 1244, 1444, 

1653 cm-1), (853, 867, 937, 1053, 1120, 1334 cm-1), (664 cm-1), (602, 890, 1321 cm-1), (653, 929, 

1009, 1061, 1344 cm-1), and (831, 1141, 1227, 1658 cm-1) respectively, which agreed with 

expected biochemical assignments in literature (Gelder et al., 2007; Rehman et al., 2013). The 

high intensity peak at 1009 cm-1 in RNA spectrum is assigned to cytosine (Gelder et al., 2007). 

Although RNA extract was assumed to have DNA contamination, it was noted the common band 
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associated with ring breathing modes of adenine e.g., the 785 cm-1 marker, commonly seen in in 

DNA spectra could not be detected.    

 The model fitting was evaluated by correlating the reference values and the values 

calculated by the models of the prediction set. It was observed that 8 optimal components 

accounting for total cumulative variance of 98.99% yielded the best model. The  predicted versus 

measured regression plots showing how the PLS model predicted concentration levels for the 

calibration samples and how well the model could be expected to perform during the quantification 

of new similar matrix composition are shown in Figure 5.16. It can be observed that the model 

worked well for RNA, triolein, glycerol, glycogen, and albumen components. However, the model 

did not work well for the glycine component ("pqr < 0.8), and the glycine component was 

therefore discarded during the quantification study. The limits of detection for biochemical 

compounds in simulate whole blood samples are summarized in Table 5.11. It is observed the 

biochemical components were quantifiable using the trained PLS regression model and the 

detection limits lie in the range of calibration set. LOD values suggested there were adequate 

analyte concentration present to yield an analytical signal that could be well measured from 

analytical noise, whereas LOQ demonstrated quantitative results could be obtained with a specified 

degree of confidence (Taleuzzaman, 2018). Besides, the low RMSEP values calculated by 

summing all squared prediction errors during cross-validation suggested higher reliability and 

predictive ability of the model (Gontijo et al., 2014), which was verified by the corresponding 

higher "  values. The accuracy and reliability of the PLS regression model was assessed by 

analyzing concentration levels of a standard laboratory reference material (simulate blood fluid) 

spiked with known concentrations of biochemical components (Table 5.12). It can be seen that the 

biochemical components levels were in agreement with known values in a typical standard sample 

in the range of ≤ 10%. The relative amounts of biochemical components (ppm) were calculated by 

fitting the basal spectra in spectral datasets of the 13 spectra markers measured from blood samples 

at 589, 594, 630, 858, 868, 1005, 1160, 1250, 1347, 1358, 1626, 1630, and 1638 cm-1, and their 

results are summarized in Table 5.13. 
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Figure 5.15 Mean Raman spectra of the biochemical constituents used in the concentration fit. 

The spectra have been linearly offset for clarity. 

 

 

Table 5.11 Detection limits of biochemical components for Raman analysis of simulate blood 

fluid  

         Detection limits (mg/ml) 

Biochemical component LOD  LOQ  ("��#$)  "  

  Albumen   0.0144  0.0438    0.00168  0.9934 

  Glycogen   0.018  0.056    0.00201  0.988 

  Glutamate   1.683*10-8 5.1*10-8   1.825*10-9  1 

  Glycerol   0.0055  0.0169    0.000605  0.998 

  RNA    0.00136 0.0041    0.00014  0.999 

  Triolein   0.0506  0.153    0.0056  0.908 
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Figure 5.16 Regression plots for partial least squares measured versus predicted biochemical 

concentrations of the basal compounds (albumen, glycogen, RNA / DNA, glycerol, triolein and 

glutamate) used in the spectral model, based on the spectra profiles of 13 spectra markers, i.e., 

589, 594, 630, 858, 868, 1005, 1160, 1250, 1347, 1358, 1626, 1630, and 1638 cm-1. 

 

(c) 

(a) (b) 

(e) 

(d) 

(f) 
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Table 5.12 Comparison of biochemical components concentrations in a whole blood simulate 

reference solution and the results obtained from PLS regression  

Biochemical  Concentration   Measured                   Deviation     

Components        (mg / ml)   value (± SD)                  (%)   

Albumen           0.4    0.37 ± 0.02     7.5         

Glycogen           0.1    0.094 ± 0.025     6                      

Glutamate           0.001   0.000953 ± 0.00012    4.7                

Glycerol           0.01   0.0108 ± 0.0024    8         

RNA            0.002   0.0021 ± 0.00011    5              

Triolein           0.3    0.273 ± 0.0036              9                 

 

Table 5.13 Relative amounts of biochemical components in blood samples of healthy and breast        

cancer patients- based on the determined trace biomarker alterations 

             Biochemical components (ppm) 

Disease status  Albumen     glycogen     glutamate     glycerol        RNA        triolein 

  Controls                      233.86        73.7      10.48  190              62.1    18.0 

  Stage 1    237.82        98.0      60.49  234              66.4    71.95 

  Stage 2       286.03        36.4      83.69  271              68.9    99.73 

  Stage 3               384.96        84.3      14.31  297              96.8    101.2  

 

 For plotting, the determined concentration levels of trace biomarker alterations were 

normalized to their mean intensities and their levels to cancer presence and severity compared 

(Figure 5.17). It can be seen that the relative amounts of albumen, triolein, glycerol, and RNA 

increased with disease status(E < 0.05). To the best of our knowledge, there has not been previous 

spectroscopic studies comparing biochemical alterations levels in blood samples of healthy 

(controls) and breast cancer patients, based on few selected spectral regions (589, 594, 630, 858, 

868, 1005, 1160, 1250, 1347, 1358, 1626, 1630, and 1638 cm-1) as demonstrated in this study. 

Nevertheless, although this study was limited in the number of samples in each diseased stage, the 

observed differences in relative amounts of biochemical components gives insight into possible 

pathological differences during breast cancer progression.  
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Figure 5.17 Plot of the relative contribution of selected basal compounds estimated by the Raman 

spectral model applied to the spectra of blood samples from the controls, grade 1, grade 2, and 

grade 3 breast cancer patients. For plotting, the relative amounts of components are normalized to 

their mean amount value.  

 

 By using 600-1800 cm-1 spectral region for characterizing different stages of breast cancer, 

Nagris et al., (2019) found that nucleic acids and proteins were exclusively present in patient 

plasma patients. Similarly, we also performed stage wise comparison for breast cancer in 600-

1800 cm-1 spectral region using the band ratios (i.e., IC/IN)  (not shown) where we found changes 

in nucleotides (689 cm-1), anti-symmetric phosphate vibrations (1185 cm-1), phospholipids (1285 

cm-1) and guanine (1319 cm-1) increased with malignancy. In the current context, the observed 

increase in RNA content with disease status suggests heightened protein synthesizing activity in 

cells, and therefore potential increase in nuclear contents.  

 The increase of albumen component suggested blood samples from diseased patients had 

higher levels of proteins content. In this study, utility of selected spectral regions showed the 

changes in tryptophan (594, 628-632 cm-1), glutamate (628-632, 1626 cm-1), tyrosine (858-860 

cm-1), glycine / valine (1630 cm-1) and amide I (α-helix (1638 cm-1) increased with malignancy.  It 

should be noted that intense spectral regions of proteins have been previously observed in blood 

samples (Nargis et al., 2019) and breast tissues (Chowdary et al., 2006) of breast cancer patients, 

when compared to those from control patients. In Chowdary et al., (2006), spectral differences 

analysis between normal, benign and malignant breast tissues in 800 - 1800 cm-1 region showed 

normal and (benign, malignant) tissues were dominated by lipids (1078, 1267, 1301, 1440, 1654, 
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1746 cm–1) and proteins (stronger amide I, red shifted ∆CH2, broad and strong amide III, 1002, 

1033, 1530, 1556 cm–1) alterations respectively. This dominance of protein biochemical alterations 

was also reported by Gonzálezsolís et al., (2011), where tryptophan protein and amide III (at 1244 

cm-1) biomolecules alterations were observed in late stages of breast cancer progression. The 

increase in protein concentration can be generally attributed to oxidative stress associated with 

breast cancer progression (Marinello et al., 2014). 

 With reference to increase in triolein and glycerol components, our analysis based on 

selected spectral regions suggested the whole blood samples of diseased patients had relatively 

more cell fat than in healthy patients, which was an indication of higher metabolic activity in 

malignant samples. In particular, changes in glycerol (589 cm-1) and phosphatidylinositol (594 cm-

1) were found to increase with malignancy.  From histochemistry perspective, this may be 

explained by the fact that lipid-mobilizing effect of the tumour may be necessary in sustaining 

tumour growth (Mulligan et al., 1991). Literature concerning spectroscopic comparison of lipid 

alterations levels in blood samples of healthy (control) and diseased breast cancer patients is 

scarce, and even the limited  tissue-based studies have previously reported mixed results.  For 

instance, a study by Chowdary et al., (2006) showed normal breast tissues had higher levels of 

lipids when compared to benign and malignant breast tissues, while malignant tissues contained 

relatively more lipids in comparison to benign tissues. Elsewhere, a spectral analysis study by 

Rehman et al., (2010) based on 1522, 1540, 1630 and 1640 cm-1 spectral regions showed that 

dominance of acylglyceride, and proteins in higher and low- nuclear-grade spectrum, respectively. 

Blood serum and blood plasma-based Raman spectroscopy studies aimed at understanding lipid-

mobilizing effects of breast tumors are highly encouraged.    

 PLS-DA scatterplots showing differentiation of stages of cancer are detailed in Figure 5.18. 

The respective significant latent variables (loadings) are shown in Figures 5.19 and 5.20.  In 

classifying healthy (controls) scores against grade 1 breast cancer scores (see Figure 5.19 (a)), the 

loading plots shows negative loadings had higher intensities at 593 cm-1 (tryptophan / 

phosphatidylinositol) and 631 cm-1 (glutamate / tryptophan), meaning control samples had higher 

alterations at these bands, whereas positive loadings had higher intensities at 1357 cm-1 

(tryptophan / guanine), 1626 cm-1 (glutamate) and 1630 cm-1  (glycine, valine)  which can be 

associated with breast cancer stage-1 malignancy. If we consider (see Figure 5.19 (b)), the 

differentiation of healthy (controls) scores against grade 2 breast cancer scores showed control 

scores had higher loadings at 594 cm-1 (tryptophan / phosphatidylinositol) and 632 cm-1 (glutamate 
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/ tryptophan) bands whereas grade 2 breast cancer scores had intense loadings at 1003 cm-1 

(phenylalanine) 1624 cm-1 (glutamate) and 1636 cm-1 (amide I (α-helix)/β-carotene). In Figure 

5.19 (c), positive loadings had higher intensities in the Raman spectral data of healthy (control) 

patients than stage-3 patients, which included those at 1248 cm-1 (amide III) and 1349 cm-1 

(tryptophan / α-helix / phospholipids),  whereas negative loadings had higher intensities in the 

Raman spectral data of grade 3 breast cancer patients than healthy (control) patients, which 

included those at 594 cm-1 ((tryptophan / phosphatidylinositol) 630 cm-1 (glutamate / tryptophan), 

1626 cm-1 (glutamate), 1630 cm-1 (glycine / valine) and 1638 cm-1 (amide I (α-helix)/β-carotene).  

  

   

 

Figure 5.18 PLS-DA scatterplots showing differentiation of spectra of healthy samples, grade 1, 

grade 2, and grade 3 breast cancer samples.  

 

(d) 

(a) (b) 

(e) 

(c) 
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 After the diagnosis of malignancy, it is important to determine the staging of the cancer. 

This will help to know that how far the disease has progressed and also to determine the best way 

to contain and eliminate the breast cancer. In this regard, Raman spectroscopy can potentially be 

of benefit in the differentiation of these stages of breast cancer, hence leading to early diagnosis 

which could be useful for the effective treatment. The progress of cancer was studied by staging 

levels of cancer i.e. breast cancer grade-1 versus breast cancer grade-2, and breast cancer grade -2 

vs breast cancer grade -3. As seen in Figure 5.20 (a), the negative loadings represent the Raman 

spectral features (596, 630, 860 cm-1) that had higher intensities in breast cancer grade -1 patients 

whereas positive loadings represent the Raman spectral features (1003, 1245, 1626, 1637 cm-1) 

that have higher intensities breast cancer grade -2 patients. Comparison of breast cancer grade -2 

and breast cancer grade -3 scores was performed by examining latent variable / loading 2 (LV 2) 

and latent variable / loading 3 (LV 3), as shown in Figure 5.20 (b)-(c). It can be seen that the   

Raman spectral features associated with breast cancer grade -2 included 590, 596, 620, 630 / 632, 

860, 1001 and 1348 cm-1, while spectral features at 1006, 1249, 1347, 1358, 1626 / 7, 1630 and 

1637 cm-1 indicated the heightened biochemical changes during late breast malignancy. 

 To better understand these differences, band ratios i.e., IC/IN were calculated by dividing 

the normalized intensities of diseased spectra (IC) by normalized intensities of control spectra (IN) 

at the determined subtle bands. The ratio values at 589, 594 (tryptophan, phosphatidylinositol), 

628-632 (tryptophan, glutamate), 858-860 (tyrosine), 1158-1163 (nucleic acids) and 1626-1638 

(amide I) were found to increase with malignancy. The band ratios of intensities at the other subtle 

bands demonstrated inconsistent trend across all levels of stage development.  

 The accuracy, sensitivity and specificity classification parameters of PLS-DA diagnostic 

model were analyzed (Table 5.14). The number of correctly identified cases out of total cases led 

to an accuracy of 98%, 98% and 94% for grade -1, grade -2 and grade -3 cancers, respectively. 

The sensitivity, expressed as the number of correctly identified cancer spectra over the total 

number of diseased spectra was found to be 100% for grade 1 cancer,  98% for grade 2 cancer and 

94% for grade 3 cancer. The specificity, expressed as the number of correctly identified healthy 

(control) spectra over the total number of healthy spectra was determined to be >96%, for all stages 

of cancer. 
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Figure 5.19 The loading vector plots that explain differentiation of (a) controls versus grade 1 

breast cancer, (b) controls versus grade 2 breast cancer, and (c) controls versus grade 3 breast 

cancer.  

(a) 

(b) 

(c) 
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Figure 5.20 The loading vector plots that explain differentiation of (a) grade 1 versus grade 2 

breast cancer, and (b), (c) grade 2 versus grade 3 breast cancer.  

 

(a) 

(b) 

(c) 
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Table 5.14 Diagnostic results of PLS-DA on the Raman spectra of whole blood from healthy 

volunteers (controls) and breast cancer patients based on the selected spectral regions (589, 594, 

630, 858, 868, 1005, 1160, 1250, 1347, 1358, 1626, 1630, and 1638 cm-1). 

     Cases 

Disease status   Diagnosis            Breast cancer   Controls   Total    Accuracy   Sensitivity   Specificity   

Grade-1  Breast cancer      50      5         55        98% 100%          99% 

   Controls      6     433           439   

Grade-2  Breast cancer      107     0         107      98% 98%          100% 

   Controls      8     427           435   

Grade-3  Breast cancer      169     21         190      94% 89%          96% 

   Controls      17     418           435   

  

 The results obtained in this study strengthen the view that higher principal components can 

be useful in extracting weak band alterations. For instance spectral markers at (853, 854, 858 cm-

1), (1002, 1003 cm-1) and 1156 cm-1 had been previously identified in works by Vargas-Obieta et 

al., (2016), Bilal et al., (2017), Vargas-Obieta et al., (2016) and  Bilal et al., (2017), respectively. 

Although our work could not optimally detect same spectra markers (see Figure 5.9(b-d)), the 

utility of higher principal components in extracting weak variance signals yielded spectral markers 

at 858 cm-1, 1003 cm-1 and 1160 cm-1, a disparity which can be attributed to different experimental 

conditions. Our study also advances findings of previously related studies (Nargis et al., 2019;  

Khanmohammadi et al., 2010; Pichardo-Molina et al.,  2007; Vargas-Obieta et al., 2016; Bilal et 

al., 2017) in that it identifies biochemical alterations at 589 (glycerol), 594 cm-1 (tryptophan, 

phosphatidylinositol) and 630 cm-1 (glutamate, tryptophan), 1626 (glutamate), 1630 (glycine / 

valine), and 1638 (amide I (α-helix), β-carotene), which have not been previously reported.     

   The PLS-DA was found to perform well in diagnosing and staging of breast malignancy 

when compared to PCA-LDA. This difference is due to the manner in which both algorithms 

handle the datasets.  Different from PCA that consider spectra matrix as one set of data, the PLS 

realizes dimensionality reduction by considering the relations between two data blocks (e.g., X 

and Y) across the same samples (Liu et al., 2016). Consequently, PLS maximizes the covariance 

between X and Y, thus explaining much variance in the datasets (Liu et al., 2016). In our study, 

diagnosis of breast malignancy using PLS-DA model yielded classification accuracies, sensitivity 
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and specificity values of  >90%, indicating that combination of  PLS-DA and Raman spectroscopy 

is a  potential tool for cancer diagnostics in body fluids. 

 

5.2.1.4 Multivariate exploratory analysis of Independent Component Analysis (ICA), 

Multidimensional Scaling (MDS), and Partial least Square Discriminant analysis (PLS-DA) 

for breast cancer diagnostics in blood 

 Identification of every biochemical component in a complex mixture such as that found in 

a cell or tissue may not be possible, because components present exist in many different forms  

each having a slight different Raman spectrum (Shafer-peltier et al., 2002). To obtain a more 

comprehensive picture of the chemical component in their microenvironment within normal or 

diseased tissue, ICA can be used as a pattern recognition algorithm to extract information from 

Raman spectra due to its ability of providing information with statistical independency (Bouzalmat 

& Kharroubi, 2014). ICA by Maximum Likelihood (ML) fast fixed-point estimation algorithm 

was applied on matrix created from the dataset of the 13 spectral regions: 589, 594, 630, 858, 868, 

1005, 1160, 1250, 1347, 1358, 1626, 1630, and 1638 cm-1. These spectral regions were attributed 

to proteins, lipids, and nucleic acids components, where the protein bands were based on aromatic 

acids of glutamate, phenylalanine, tryptophan, tyrosine, proline, glycine, and valine (Table 5.10). 

By looking for maximum likelihood, independent information were separated from the spectra. 

Among separated information, the high frequency noise containing information of baseline shift; 

perhaps generated by the ambient noise and low frequency noise were observed. Before applying 

ICA, all spectra were mean centered in order to enhance the peak information, whitened and 

preprocessed to have unit variance in order to shorten calculation time (Yao et al., 2012). The 

processing time was very short (< 10 seconds) because fast fixed point algorithm was added to 

ML estimation method.  

 Figure 5.21 shows the eigenvalues that were determined by maximum likelihood 

estimation on blood samples. In general, the first eigenvalue was found to be the most intense and 

accounted for much variance during whitening process.  For all datasets, 10 eigenvalues that 

accounted for more than 90% variance were selected for further analysis (Table 5.15). It can be 

seen (Table 5.15) that the sum of eigenvalues (in percentage) for the number of retained 

eigenvalues decreased with stage of cancer progression, meaning there were some additional 

spectral regions in respective datasets that were characteristic of noise, that could not be useful for 

cancer diagnosis (Crow et al., 2005). However, to determine if corresponding coefficients of the 
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combinations decomposed by ICA were useful for diagnosis, the PLS-DA algorithm was included 

for classification. For PLS-DA, 3 latent variables and 10-fold cross-validation groups were found 

appropriate for discriminating control from diseased scores. The respective ICA-PLSDA scatter 

plots for (a) grade 1, (c) grade 2, and (e) grade 3 datasets of whole blood samples from normal and 

breast cancer are shown in Figure 5.22.  

 

 

Figure 5.21 The ICA eigenvalues for Raman spectra of blood samples from healthy volunteers 

and (a) grade 1, (b) grade 2, and (c) grade 3 breast cancer patients. The analysis is performed for 

spectral datasets at 13 spectral bands: 589, 594, 630, 858, 868, 1005, 1160, 1250, 1347, 1358, 

1626, 1630, and 1638 cm-1.  

 

(a) 

(c) 

(b) 
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Table 5.15 Selected dimensions (eigenvalues) and respective explained total variances for ICA by 

Maximum Likelihood (ML) fast fixed-point estimation on Raman spectra of blood samples from 

healthy volunteers (control) and breast cancer patients  

Datasets  Dimensions           Sum of eigenvalues retained (%)   

Grade 1         10    96.61% 

Grade 2         10    94.53% 

Grade 3         10    93.99%   

 

 As observed in Figure 5.22, majority of diseased scores were clustered in a centroid region, 

meaning they shared common biochemical characteristics and spectral regions associated with 

independent components (ICs) were statistically independent. For grade 1 dataset, the fifth (IC5) 

and the sixth (IC6) independent components were observed to dominantly explain the spectral 

regions that influenced clustering of diseased and control scores, respectively. Four independent 

components were instrumental for clustering scores in grade 2 dataset. Analysis shows the fifth 

(IC5) and seventh (IC7) independent components greatly influenced clustering of controls’ scores, 

whereas the ninth (IC9) and tenth (IC10) independent component greatly influenced clustering of 

diseased scores. For grade 3 dataset, the eighth (IC8) and ninth (IC9) independent components 

explains clustering of controls’ scores whereas the tenth (IC10) predominantly influenced 

clustering of diseased scores.  

 To better understand the biochemical alterations responsible for clustering of control and 

diseased scores, the spectral regions (both positive and negative bands) associated with the 

observed ICs were analyzed (Figures 5.23 and 5.24). For clarity, the tentative biochemical 

assignments were detailed in Table 5.10. Analysis of loading vectors showed aromatic acids 

proteins were a major factor in clustering of both control and diseased samples. For instance,  it 

can be observed in Figure 5.23 (a)-(b) that biochemical changes due to proteins (596 cm-1, 620 cm-

1, 850 cm-1, 858 cm-1, 865 cm-1, 1002 cm-1) were a predominant factor in control samples whereas 

biochemical changes due to proteins (592 cm-1, 631 cm-1, 855 cm-1, 1005 cm-1), nuclei acids (1160 

cm-1) and lipids (1349 cm-1) played a key role during early breast cancer progression. If we 

consider Figure 5.23 (c-f), it is observed that changes due to proteins (1002 cm-1, 1006 cm-1, 1247 

cm-1, 1349 cm-1, 1628 cm-1 ), lipids (1349 cm-1), nuclei acids (1359 cm-1) were predominant in 

control samples whereas changes due to proteins (592 cm-1, 630 cm-1, 858 cm-1, 871 cm-1, 1005 
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cm-1, 1624 cm-1) dominated cancer progression, a trend that was replicated during late breast 

malignancy (Figure 5.24 (a-c)).  

 Comparison of the results for PLS-DA and ICA followed by PLS-DA on spectral matrices 

of selected spectral markers suggests that ICA-PLS-DA performed better in revealing majority of 

spectral markers that were responsible for discriminating control from diseased samples (Table 

5.16). In contrast to other dimensional reduction algorithms such as PCA, ICA identifies non-

Gaussian components which are modelled as a linear combination of the biological features (Yao 

et al., 2012). These components are statistically independent, i.e. there is no overlapping 

information between the components, a characteristic property that enabled unmasking all spectral 

markers responsible for samples discrimination, which could not be understood solely by use of 

PLS-DA. The diagnostic results of using independent components followed by PLS-DA in 

discrimination of control and diseased scores are provided in Table 5.17.  

 

Table 5.16 Comparison of chemometric results on subtle spectral markers using PLS-DA and 

ICA-PLS-DA techniques       

   PLS-DA       ICA-PLS-DA 

 Spectral markers / cm-1        Spectral markers / cm-1     

Grade 1 Grade 2  Grade 3            Grade 1           Grade 2            Grade 3  

CTR* DIS* CTR* DIS*  CTR* DIS*            CTR* DIS* CTR* DIS*  CTR*   DIS*       

593 1357 594 1626 1248 594  596 592 1002 592 628 589 

631 1626 632 1634 1349 630  620 631 1006 630 1245 594 

 1630    856  850 855 1247 858 1250 616 

     868  858 1005 1349 871 1347 630 

     1626  865 1160 1359 1005 1630 848 

     1631  1002 1349 1628 1624  856 

     1634       868 

* The CTR and DIS identify the control and diseased status of the whole blood samples 
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Figure 5.22 The ICA-PLS-DA scatter plots for Raman spectra of blood samples from healthy 

volunteers and (a) grade 1, (c) grade 2, and (e) grade 3 breast cancer patients. The independent 

components associated with respective loadings are shown in parts (b), (d), and (f), respectively.   

(a) (b) 

(e) (f) 

(d) (c) 
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Figure 5.23 The spectral markers for independent components of Raman spectra of blood samples 

from healthy volunteers and (a), (b) grade 1, and (c), (f) grade 2 breast cancer patients. 

(b) (a) 

(c) (d) 

(f) (e) 



119 

 

 

Figure 5.24 The spectral markers for (a-c) independent components of Raman spectra of blood 

samples from healthy volunteers and grade 3 breast cancer patients.  

 

 

 

 

 

 

 

 

 

 

(b) 
(a) 

(c) 
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Table 5.17 Diagnostic results of ICA followed by PLS-DA on the Raman spectra of blood from 

healthy volunteers (controls) and breast cancer patients 

     Cases 

Disease   Diagnosis          Breast     Controls    Not             Total    Accuracy   Sensitivity   Specificity  

status                               cancer                      assigned 

Grade-1   Breast cancer     54             2             0               56            100%        100%         100%         

                Controls        1            424          3               428                   

Grade-2   Breast cancer     94             2             1               97             98%         100%       99%           

                Controls        1              414          7               422                   

Grade-3   Breast cancer     164          12            6               192           93%          96%       95%           

                Controls        16            415          3               434                   

 

 It is observed that the overall diagnostic accuracies decreased with malignancy, meaning 

underlying complexity of biochemical alteration in healthy and diseased samples increased with 

malignancy. This agrees with achieved sensitivity values where it was highest in the first two 

stages of malignancy, but lowest in late malignancy, implying significant differences in the 

underlying biochemical changes between blood samples of malignant and control patients. If we 

consider sensitivity parameters, it can be observed that there was better diagnosis of breast cancer 

using ICA-PLS-DA analysis (Table 5.17) when compared to similar analysis using PLS-DA only 

(Table 5.14). For instance, on performing PLS-DA analysis, the sensitivity parameters for grade 2 

and grade 3 datasets analysis were 98% and 89%, respectively (Table 5.14) whereas analysis of 

grade 2 and grade 3 datasets using ICA followed by PLS-DA yielded sensitivities of 100% and 

96%, respectively. 

 The results obtained demonstrates that ICA has capability of producing basis vectors that 

are statistically independent, and not just linearly decorrelated as it happens with PCA. For that 

reason, it provides a more powerful data representation and can therefore be used as a discriminate  

analysis criterion for enhancing PCA. A slight advantage of PCA over ICA is that the resulting 

vectors are sorted by their importance. It should also be be noted that although we can decompose 

the data in several components with ICA, the ICA algorithm will not tell which one of them is the 

most important. Therefore, adding a supervised constraint on the ICA for discrimination purpose 

appears necessary to increase weight of underlying spectral features in the classification, which 

explains why PLS-DA was included for classification. 
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 In the present study, the ICA analysis was extended to include MDS as a potential non-

linear dimensional reduction algorithm in blood Raman datasets. Independent components were 

analyzed using Minkowski MDS metrics (Weinberg, 1991) and the resultant matrices of 

coordinates subjected to PLS-DA. The score plots and diagnostic performances are shown in 

Figure 5.25 and Table 5.18, respectively.     

 

Table 5.18 Diagnostic results of ICA followed by MDS and PLS-DA on the Raman spectra of 

blood from healthy volunteers (controls) and breast cancer patients 

     Cases 

Disease   Diagnosis          Breast     Controls    Not             Total    Accuracy   Sensitivity   Specificity  

status                               cancer                      assigned 

Grade-1  Breast cancer     56  0             0               56            100%        100%         100%         

               Controls       1  423         4               428                   

Grade-2  Breast cancer     94  0             3                97            100%        100%       99%           

               Controls       1  419         3               422                   

Grade-3  Breast cancer     187  5             0               192            96%         97%       96%           

               Controls       17  415         2               434                   
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Figure 5.25 The ICA followed by MDS-PLS-DA scatter plots of Raman spectra of blood samples 

from healthy volunteers and (a) grade 1, (b) grade 2, and (c) grade 3 breast cancers patients. 

 

 Comparison of diagnostic results summarized in Table 5.17 and Table 5.18 suggest that 

inclusion of multidimensional scaling prior to PLS-DA on spectral datasets of blood samples 

yielded better performance in terms of accuracy and sensitivity. In particular, it marginally yielded 

a better diagnosis of late (grade 3) malignancy at sensitivity of 97% (Table 5.18) when compared 

to sensitivity of 96%  achieved by ICA followed by PLS-DA (Table 5.17). The better performance 

of MDS can be attributed to its strength in mapping all pairwise distances between data points into 

small dimensional Euclidean domains (Aflalo et al., 2013), while preserving the intrinsic 

information of pairwise dissimilarities between objects (Liu et al., 2019).  

 

(a) 

(c) 

(b) 
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5.2.1.5 Multivariate exploratory analysis of Support Vector Machine (SVM) and 

Backpropagation neural network (BPNN) for breast cancer diagnostics in blood   

 Two diagnostic models were chosen; the support vector machine (SVM) and 

backpropagation neural networks (BPNN). The use of SVM was motivated by its great 

performance in handling both linear and high non-linear data (Singla et al., 2011), whereas BPNN 

was chosen due to flexibility of optimizing its architecture during feature selection (Bisgin et al., 

2018). The radial basis function (RBF) has been reported to outperform other kernel functions in 

nonlinear classification (Bisgin et al., 2018), and was therefore chosen as one of kernel functions 

to solve the SVM classifiers in our study.  The classifiers used the Raman measurements taken at 

the Raman shifts of 589, 594, 630, 858, 868, 1005, 1160, 1250, 1347, 1358, 1626, 1630, and 1638 

cm-1. These 13 spectral bands explained the trace spectral markers determined by the use of 

intermediate- and high-order principal components as described in section 5.2.1.2. PCA was used 

to achieve minimal redundancy during feature selection (Crow et al., 2005), which allowed better 

understanding of support vectors features that were more relevant to scores discrimination. About 

5-10 principal components were selected for SVM cross-validation procedure, where the t(= 10)-

fold cross-validation testing procedure was assessed in terms of classifier accuracy, sensitivity and 

specificity. Figure 5.26 shows the resultant SVM scatter plots for (a, b) grade 1 breast cancer, (c, 

d) grade 2 breast cancer, and (e, f) grade 3 breast cancer. Figure 5.26 (a), (c) and (e) are scatter 

plots of models based on linear SVM kernel function, whereas (b), (d) and (f) are scatter plots of 

models based on radial basis function (RBF) SVM kernel function. Details of linear and RBF-

SVM functions and respective classifier performance parameters are provided in Table 5.19 and 

5.20, respectively.  
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Figure 5.26 The SVM scatter plots for breast cancer detection of (a, b) grade 1 (n = 26), (c, d) 

grade 2 (n = 30), and (e, f) grade 3 breast cancer (n = 33) spectral datasets. Parts (a), (c) and (e):  

linear kernel function scatter plots; (b), (d) and (f): radial basis function (RBF) scatter plots. 

(c) 

(b) (a) 

(d) 

(e) (f) 
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Table 5.19 SVM models characteristics for diagnostic analysis on the Raman spectra of whole 

blood from healthy volunteers (controls) and breast cancer patients 

     SVM optimal characteristic 

Disease status   Function               Cost        PCs    Kernel parameters    Support vectors    

Grade-1   Kernel        100                5                          -                          14      

    RBF         100                5                        0.8                         19    

Grade-2   Kernel                  100                10                        -                           9       

    RBF                     100                10                       0.8                         27         

Grade-3   Kernel                  100                10                        -                           118        

    RBF                     100                10                       0.57                       67         

 

Table 5.20 Diagnostic results of linear-SVM and RBF-SVM models on the Raman spectra of 

whole blood from healthy volunteers (controls) and breast cancer patients 

     Cases 

Disease    Function   Diagnosis   Breast cancer   Controls   Total    Accuracy   Sensitivity   Specificity  

status                  (%)             (%)             (%) 

Grade-1   Linear    Breast cancer 53              0        53          100             100              100      

                    Controls  0               428        428  

     RBF       Breast cancer 52               1          53          100             98               100      

                    Controls  0               428        428       

Grade-2   Linear    Breast cancer 98               0         98          100            100              100      

                    Controls               0                423        423  

     RBF       Breast cancer 98               0           98          100             98               100      

                    Controls  0                423        423             

Grade-3   Linear    Breast cancer 163            30         193         93              84                96      

                    Controls  17              423        440  

     RBF       Breast cancer        183            10          193         98              95                99      

                    Controls  5                418        423           
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 For BPNN, learning was carried out by regulating the weights using error feedback from 

the training samples in order to bring the network prediction of the correct outputs for the training 

samples closer to the true values. For blood Raman datasets, it was observed that 2 layers, 

neurons=25, learning rate=0.001, alpha=2, and iterations=1000 training weights were useful for 

optimal classification into control and diseased scores (groups). Figure 5.27 shows scores 

classification of Raman spectra from blood of control and diseased patients based on BPNN 

diagnostic model. The accuracy, sensitivity and specificity classification parameters of BPNN 

diagnostic model are summarized in Table 5.21. 

 

 

Figure 5.27 The scatter plots of BPNN diagnostics model for detection of (a) grade 1, (b) grade 2, 

and (c) grade 3 breast cancer.  

 

(b) (a) 

(c) 
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Table 5.21 Diagnostic results of BPNN diagnostic model on the Raman spectra of whole blood 

from healthy (controls) and breast cancer patients 

     Cases 

Disease    Diagnosis         Breast     Controls       Not           Total    Accuracy   Sensitivity   Specificity   

status        cancer   assigned            (%)           (%)               (%) 

Grade-1  Breast cancer      46              1             6             53          100           98                100          

         Controls        0   402         26           428   

Grade-2  Breast cancer      93              2             2             97           99           98                 98          

         Controls        2   419         1             422           

Grade-3  Breast cancer      162            10           10           182         97           95                 96          

         Controls        7  424          3             434           

         

 

 It can be seen in Table 5.19 that both SVM models achieved optimal performance with 

same cost function (\), which suggests both models yielded similar classification error terms 

(Bouzalmat et al., 2014). However, greater number of principal components (=10) and support 

vectors (27-120) were needed for optimal analysis of grade 2 and grade 3 datasets in comparison 

to number of principal components (=5) and support vectors (14-20) required for analysis of grade 

1 dataset. This suggests that grade 2 and grade 3 breast malignancy matrices greatly suffered from 

problems of high dimensionality and collinearity which necessitated higher number of principal 

components to account for greater amount of variance in the datasets (Björklund, 2019).  

Consequently, a relatively greater number of support vectors were needed to optimally define a 

hyperplane for maximizing margins between the two classes (controls versus the diseased scores)  

(Martins et al., 2009). 

 Table 5.20 shows that diagnostic accuracies decreased with level of malignancy where it 

is observed that both SVM diagnostic models performed very well in diagnosing grade 1 and 2 

malignancy with overall classification accuracies at 100% with  sensitivities and specificities in 

the range of  98% -100%. In terms of classification accuracy (Table 5.20), RBF kernel function 

model performed better than linear kernel function model in diagnosing late (grade 3) malignancy, 

where the overall classification accuracies of linear and RBF models were 93% and 98%, 

respectively whereas the sensitivities were 84% and 95%, respectively. This suggests that the 

linear separable characteristic nature of spectral datasets decreased with malignancy.  It should be 
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noted that, in comparison to linear kernels (parametric functions), RBF is a squared exponential 

function (non-parametric function) and can therefore be viewed as powerful as an infinite order 

polynomial kernel (Chen et al., 2015). Compared to parametric model (e.g. linear kernel 

functions), the complexity of the nonparametric model (e.g. RBF kernel functions) is potentially 

infinite (Chen et al., 2015), suggesting its complexity can grow with the data and can therefore 

represent more and more complex relationships (Sajda, 2006). So asymptotically, assuming you 

have unlimited data and very weak assumptions about the problem, a nonparametric method is 

generally better and expected to have better performance in samples discrimination (Mika et al., 

2002).  

 Table 5.21 shows the overall diagnostic accuracies of the BPNN diagnostic model was 

generally excellent (> 95%). However, sensitivity of BPNN diagnostic model decreased with 

malignancy which can be attributed to the complex nature of biochemical alterations involved 

during progression of malignancy. Nevertheless, comparison of performances of SVM and BPNN 

diagnostic models on Raman spectra of whole blood samples suggests they generally achieved 

same performance. 

 Having understood the performance of SVM and BPNN models on Raman spectra, the 

SVM and BPNN prediction diagnostic models were designed with aim of predicting the disease 

status of other ‘unknown’ liquid biopsy samples (test set), randomly chosen and Raman 

measurements taken using the same configuration. In this context, the ‘unknown’ liquid biopsy 

sample (test set) refers to spectra collected from independently selected blood samples from the 

healthy (controls) and diseased (breast cancer) patients. As expected, the prediction models were 

performed on spectral measurements taken at the Raman shifts of 589, 594, 630, 858, 868, 1005, 

1160, 1250, 1347, 1358, 1626, 1630, and 1638 cm-1. When performing SVM prediction, a voting 

strategy was employed in determining the ‘selected class’ (Happillon et al., 2015), i.e., samples 

were clustered to classes chosen by majority of SVMs. For linear SVM predictor model, the 

selected optimal prediction parameters included: cost = 100, number of principal components = 5-

10, number of support vectors = 20-52, based on 10-fold cross-validation method. Similarly, it was 

observed the prediction of healthy (control) and diseased samples by RBF SVM model could be 

optimally achieved by adopting the following tuning parameters: kernel parameter = 0.57-0.8, cost 

= 100, support vectors = 20-44, number of principal components = 5-10, based on 10-fold cross-

validation method.  The prediction abilities of the SVM classifiers by linear and RBF kernel 
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functions are shown in Figure 5.28 (a, c, e) and (b, d, f), respectively. The respective confusion 

matrices for the tests data, using t-fold validation are provided in Table 5.22.  

 

Table 5.22. Diagnostic results of linear and RBF SVM predictor models on the Raman spectra of 

whole blood from healthy (controls) and breast cancer patients 

     Cases 

Disease    Function   Diagnosis   Breast cancer   Controls   Total    Accuracy   Sensitivity   Specificity  

status                  (%)           (%)              (%) 

Grade-1   Linear    Breast cancer 18              0         18 98             100              98      

                    Controls               3                145        148  

     RBF       Breast cancer 18              0            18 98             100              98      

                    Controls               3                145        148       

Grade-2   Linear    Breast cancer 32              3         35 96             91                97      

                    Controls               5                143        148  

     RBF       Breast cancer 33              2            35 95             94                95      

                    Controls                7               141        148             

Grade-3   Linear    Breast cancer        50              14         64 93             78                99      

                    Controls                1                151       156  

     RBF       Breast cancer 57               7           64 94             89               97      

                    Controls                5                147       152           

 

 For BPNN predictor model, the training weights of the number of layers = 2, neurons=25, 

learning rate=0.0001, alpha = 2, and the number of iterations=1000 were observed to deliver 

optimal prediction and classification of diseased and control samples. The scores prediction are 

shown in Figure 5.29 and prediction accuracies are summarized in Table 5.23. Based on the 

previous performance of SVM and BPNN diagnostic models during validation step (Table 5.20), 

it can be noted that the diagnostic accuracies of prediction models were >90% but decreased with 

malignancy progression. Furthermore, the sensitivity decreased with malignancy with late 

malignancy demonstrating sensitivity <90%, suggesting that there were additional spectral 

features that were insignificant for cancer discrimination.  
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Figure 5.28 SVM prediction models for breast cancer detection of (a, b) grade 1 cancer, (c, d) 

grade 2 cancer, and (e, f) grade 3 cancer, based on linear (a, c, e) and RBF (b, d, f) kernel functions.  

 

 

(a) 

(f) (e) 

(b) 

(c) (d) 
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Figure 5.29 BPNN predictor models for (a) grade 1 cancer, (b) grade 2 cancer and (c) grade 3 

cancer. For clarity, letter p explains the predicted scores. 

 

Table 5.23 Diagnostic results of BPNN predictor model on the Raman spectra of whole blood 

from healthy volunteers (controls) and breast cancer patients 

     Cases 

Disease    Diagnosis         Breast     Controls       Not           Total    Accuracy   Sensitivity   Specificity   

status       cancer   assigned          (%)            (%)               (%) 

Grade-1  Breast cancer      18              0             0             18           99             100                99         

         Controls        1   146         1             148   

Grade-2  Breast cancer      32              1             2             35           98             97                  98          

         Controls        3   144         1             147           

Grade-3  Breast cancer      57               5            2              62           97             92                 99          

         Controls        1   151         0             152           

(a) (b) 

(c) 
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 By comparison, the SVM predictor model based on RBF kernel function performed better 

in diagnosing stage 2 and stage 3 malignancy, which agrees with the performance of nonparametric 

models (Chen et al., 2015;  Sajda, 2006).  If we consider Table 5.23, the diagnostic performance 

parameters suggest that prediction accuracy of BPNN model decreased with malignancy, though 

prediction accuracies were general better than prediction accuracies achieved by SVM linear 

models, which confirms its potential strength in samples prediction. Nevertheless, in agreement 

with observations made in Table 5.21 the sensitivity parameters decreased with malignancy, 

though specificity relatively remained ≈ 100%. The comparison of SVM and BPNN predictor 

models shows that BPNN outperformed SVM for the score prediction using the present data set 

(Table 5.22, Table 5.23). This could be due to better parameter selection or the diverse and non-

linear nature of the data set or both.   

 The results obtained strengths the view that SVM and BPNN algorithms are suitable for 

handling high complexity spectral datasets (Singla et al., 2011). Ideally, SVM incorporates the 

ability to discriminate non- linearly separable classes that are not characteristic of other 

multivariate analysis such as the LDA, and is therefore suitable for classifying larger sample sizes 

whose spectra data may possess non-linear characteristics (Luo et al., 2008). It should however be 

noted that, for SVMs, the optimal generalization performance is achieved with high dimensionality 

data and / or dataset with a low training samples to input dimensionality ratio (Belousov et al., 

2002). As we have observed, despite the small sample sizes (and therefore dataset matrices), the 

lowest diagnostic accuracies was > 90%, and sensitivity ranged between 80 to 100%. This confirms 

that SVMs are suited to dealing with high dimensional spectral data, suggesting they have 

capability of handling a high degree of collinearity in the datasets. SVM employs kernel tricks and 

maximal margin concepts to perform better in non-linear and high-dimensional tasks. However, 

even a powerful model (e.g. SVM) benefit from the proper feature extraction / transformation 

techniques. The improved performance of the SVM diagnostic model can therefore be attributed 

to inclusion of PCA as a preprocessing step before cross-validation of datasets. Incorporation of 

PCA into machine learning is useful for the classification of high dimensional data, since it can 

alleviate potential problems such as high dimensionality and collinearity that are associated with 

spectral data (Björklund, 2019). In this study, PCA performed initial transformation of the dataset 

into a smaller set of PCs, and machine learning classification errors were noted to reduce with 

increased number of principal components. 
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 On the other hand, artificial neural networks have characteristic of handling multiclass 

problems and data non-linearity very well (Wang et al., 2014), which generally explain why they 

performed better in diagnosing and predicting late malignancy (stage 3). It could also be due to 

the fact that the BPNN converges on a global minimum and allows a better tolerance to the noise 

(deviation from the pattern that often inherently associated with the original spectra) therefore 

might be slightly more robust for a large set of features. This could have been facilitated by the 

careful choice of layer and neurons per layer that minimized challenges associated with model 

overfitting, greater training time and vanishing / exploding gradients problem.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



134 

 

5.2.2 Raman spectroscopy characterization of saliva for breast cancer diagnosis 

5.2.2.1 Analysis of prominent biochemical alterations in saliva spectra 

 Figure 5.30 (a) shows the optical photomicrograph of a saliva sample. The image depicts 

crystalline structures conjoined with each other, in a tree or fern-like form from the center of the 

drop. Other studies (Gonchukov et al., 2012), have suggested that the changes of morphological 

picture of dried oral saliva fluid are an indication of deviation in quantitative and quality molecular 

composition. Figure 5.30 (b) shows prominent spectral regions in saliva of healthy volunteers 

(normal) and breast cancer patients, in the 550-1800 cm-1 region. As observed, common mean (± 

standard deviations) Raman band alterations occurred at 623 ± 1.73 cm-1, 745 cm-1, 821 ± 1.73 cm-

1, 939 cm-1, 1000 ± 2.02 cm-1, 1125 ± 0.86 cm-1, 1444 ± 1.44 cm-1, 1603 ± 1.44 cm-1, and 1661 cm-

1. Besides, there were other bands associated with diseased samples at 715 cm-1, 1227 cm-1, 1499 

cm-1, 1558 cm-1 and 1637 cm-1. Further, normal samples exhibited heightened band intensity at 

1246 cm-1. The respectful biochemical assignments are detailed in Table 5.24.   

 

 

Figure 5.30 (a) Photomicrograph of dried saliva with a laser spot (+) indicated at x50 

magnification, and (b) prominent saliva Raman bands amongst the control (normal) and diseased 

samples. 

 

  

(a) (b) 
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 To better understand differences between the two groups, spectral differences were 

calculated by subtracting the normalized mean Raman intensity of control samples from the 

normalized mean Raman intensities of diseased samples (Figure 5.31 (a-d)). At 578 cm-1, 614 cm-

1, 664 cm-1, 831 cm-1, 1250 cm-1, 1306 cm-1, 1338 cm-1, 1451 cm-1, and 1665 cm-1 spectral regions 

(Students t-test, p < 0.05), the peak intensities were greater for the control group than for the breast 

cancer group, while the spectral regions at 701 cm-1, 796 cm-1, 975 cm-1, 1015 cm-1, 1096 cm-1, 

1147 cm-1, 1197 cm-1, 1496 cm-1, 1558 cm-1, 1634 cm-1, and 1705 cm-1  were more intense in the 

saliva of the breast cancer patients (Figure 5.31 (a)). If we consider Figures 5.31 (b-d), it can be 

observed that the biochemical changes due to lipids (581 cm-1, 607 ± 1.24 cm-1, 939 ± 1.24 cm-1, 

1336 ± 1.02 cm-1, 1451 ± 0.81 cm-1, 1661 ± 0.70 cm-1), proteins (834 ± 0.47 cm-1, 881 ± 2.62 cm-

1,  1248 ± 2.09 cm-1, 1336 ± 1.02 cm-1, 1451 ± 0.81 cm-1, 1598 ± 1.54 cm-1, 1661 ± 0.70 cm-1) and 

nucleic acids (1336 ± 1.02 cm-1) were consistently greater for the control group than for the breast 

cancer group, while the changes due to nucleic acids (785, 1014 ± 0.70 cm-1,  1286 ± 0.57 cm-1, 

1495),  saccharides (911 ± 1.47 cm-1, 1145 ± 0.23 cm-1), lipids (1092 ± 3.06 cm-1, 1371 ± 0.47 cm-

1), and proteins (1495, 1554 ± 0.86 cm-1) were more intense in the saliva of the breast cancer 

patients when compared to control group. Therefore, it can be concluded that biochemical changes 

of nucleic acids, proteins, and lipids in saliva can be associated with onset and progression of 

breast cancer. Detailed biochemical assignments are provided in Table 5.24.  

 

5.2.2.2 Analysis of trace biochemical alterations in saliva spectra  

 Examination of log scree plots for grade1, grade2 and grade3 spectral datasets from saliva 

samples of control and breast cancer patients (Figure 5.32 (a-c)) and categorization of PCs based 

on the cumulative percentage of total variation and the size of variances (Table 5.25) showed that 

the number of PCs with eigenvalue >1 were 350, 378, and 406, respectively. Further analysis by 

Kaiser’s method (Martinez et al., 2005) suggested that 12, 24 and 17 PCs were potentially useful 

for further spectral analysis of grade1, grade2 and grade3 spectral datasets, respectively. Further 

analysis of PCs was determined by help of canonical variable distribution plots (Figure 5.33).  

 The first (PC 1) and second principal components (PC 2) explained cumulative variances 

of 78.07%, 78.65%, and 83.87% for grade1, grade2 and grade3 spectral datasets, respectively. PCs 

9, 10 and 2 had the largest canonical loading parameters (Figure 5.33) for grade1, grade2 and grade3 

spectral datasets respectively, that suggested their potential strength for higher classification 

accuracies in samples discrimination. To better understand the influence of PCs 9, 10 and 2 in 
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scores discrimination, the statistical values were calculated (Table 5.26). Examination of Table 

5.26 shows that PCs 9, 10 and 2 were the most significant and had the largest effect sizes in their 

respective datasets. These PCs represented 0.61%, 0.38%, and 10.47% of the total variance in their 

respective input data.  

 

 

Figure 5.31 Overall spectra differences between Raman spectra of (a) the control (n = 23) and all 

diseased (n = 20) samples, (b) the control (n = 23) and grade 1 (n = 3) samples, (c) the control (n 

= 23) and grade 2 (n = 7) samples, and (d) the control (n = 23) and grade 3 (n = 10) samples.  

  

 

 

 

(a) (b) 

(c) (d) 
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Table 5.24 Raman band assignments of saliva from healthy volunteers and breast cancer patients  

Raman shift  Functional groups and molecular vibration assignments       References 

 (cm-1)       

578, 581   Symmetric stretching vibrations (phosphatidylinositol)       (Rehman et al., 2013) 

614, 607±1.24   Cholesterol esters         (Chandra et al., 2015)                                                     

664    C-C twisting modes of phospholipids and proteins,  (Pichardo-Molina et al., 2007) 

                          ring breathing modes of  DNA / RNA bases                          (Rehman et al., 2013) 

701         ν(C-S) twisting / stretch modes of cholesterol esters       (Movasaghi et al., 2007)          

785, 796   DNA: O–P–O stretch of cytosine, uracil, and thymine          (Rehman et al., 2013) 

831, 834±0.47   Asymmetric O P O stretching of tyrosine             (Pichardo-Molina et al., 2007)  

881±2.62   δ(ring)modes of tryptophan                  (Gelder et al., 2007)  

911±1.47   C-O-C skeletal mode (glucose)                          (Rehman et al., 2013)  

939±1.24   Skeletal stretch α               (Pichardo-Molina et al., 2007)  

975    δ(=CH wagging) of lipids,                            (Rehman et al., 2013) 

1015, 1014±0.70 υ(C-O) stretch of DNA ribose                (Rehman et al., 2013) 

1096, 1092±3.06 O-P-O and C-C stretch (phospholipids)               (Vargas-Obieta et al., 2016) 

1147, 1145±0.23 C–O stretching mode of saccharides                                (Gelder et al., 2007) 

1197   Antisymmetric phosphate vibrations (nucleic acids)      (Gelder et al., 2007) 

1250, 1248±2.09    β – sheet (Amide III), CH2 wagging of glycine              (Chandra et al., 2015) 

   and proline 

1286±0.57  Phosphodiester groups in nucleic acids, cytosine       (Rehman et al., 2013) 

1306   CH3 / CH2 twisting or bending mode of lipid 

   and collagen, ring breathing modes of DNA / RNA      (Rehman et al., 2013) 

1338, 1336±1.02 δ(CH3), δ(CH3), twisting of proteins, phospholipids  

   helix, ring breathing modes in the DNA bases     (Vargas-Obieta et al., 2016) 

1371±0.47  υs(CH3) stretch of phospholipids               (Chandra et al., 2015) 

1451, 1451±0.81 δ(CH2), δ(CH3), scissoring of lipids,                (Pichardo-Molina et al., 2007)

   and proteins 

1495, 1496  C-N stretch / C-N bending (proteins),               (Rehman et al., 2013) 

   ring breathing modes  of cytosine)   

1558, 1554±0.86 υ(CN) and δ(NH) amide II (protein assignment)          (Gelder et al., 2007)  
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Table 5.24 (continued) Raman band assignments of saliva from healthy volunteers and breast 

cancer patients  

Raman shift  Functional groups and molecular vibration assignments       References 

 (cm-1)       

1598±1.54 δ(C=O) stretch of amide I     (Rehman et al., 2013) 

1634  δ(C=O) stretch of amide I                (Rehman et al., 2013)         

1665, 1661±0.70 C=O stretch (proteins, lipids), C = C stretching of    (Movasaghi et al., 2007) 

   lipids               

1715   C=O stretch of amide groups, thymine    (Rehman et al., 2013)  

 

 

Figure 5.32 The log scree plots that explain overall scores discrimination in (a) grade1, (b) grade2 

and (c) grade3 spectral datasets of saliva samples from healthy volunteers (controls) and breast 

cancer patients.   

(a) (b) 

(c) 
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Table 5.25 Categorization of PCs based on the cumulative percentage of total variation and the 

size of variances: Low-order PCs (<90% of the cumulative variance and >1.0 average eigenvalue), 

Intermediate-order PCs (between 90% and 95% of the cumulative variance), Higher-order PCs 

(>95% of the cumulative variance) 

    Spectral dataset       Low-order PCs    Intermediate-order PCs       Higher-order PCs 

    Grade1   1-29   30-128    129-783 

   Grade2   1-25   26-135    136-783 

   Grade3              1-12   13-96    97-789 

  

 

 

 

Figure 5.33 Canonical variable distribution showing the low- and intermediate- order principal 

components for (a) grade1, (b) grade2, and (c) grade3 saliva spectral datasets, respectively. The PCs 

marked with a red circle were the most useful for scores discrimination. 

(a) (b) 

(c) 
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 The loading vectors of PCs 9, 10 and 2 corresponded to the observed prominent peaks in 

Figure 5.31. The observed loading vectors were attributed to the major biochemical changes 

occurring during breast cancer progression.  In view of the major objective being detection and 

quantification of subtle alterations occurring during cancer progression, the study analyzed the 

loading vectors of PCs 17, 19 and 13. Analysis showed that though PCs 17, 19 and 13 accounted 

for 0.20%, 0.18%, and 0.29% of the total variance in their respective input data, they had higher 

canonical loading parameters and statistical significances (Figure 5.33, Table 5.26). These PCs 

were chosen for further analysis in order to understand the associated subtle biochemical 

alterations occurring in breast cancer progression (Figure 5.34, Figure 5.35). Examination of 

loading functions (Figure 5.35 (a-c)) suggests that the the subtle markers occurred at 643-647  

cm-1, 687-689 cm-1, 816-818 cm-1, 1022-1024 cm-1, 1125-1128 cm-1, 1145-1148 cm-1, 1164-1166 

cm-1, 1427-1430 cm-1, 1570-1572 cm-1, 1609-1619 cm-1, 1630-1657 cm-1, and 1753-1756 cm-1 

spectral regions.  If we consider Figure 5.35 (a), it can be seen that the diseased samples had subtle 

loading vectors at 689, 1127, 1147, 1428, 1500, 1570 and 1643 cm-1. In contrast, Figure 5.35 (b), 

and Figure 5.35(c) suggests that the diseased samples had strong loading vectors at (910, 1570, 

1634 cm-1) and (774, 966, 1657, 1710 cm-1), respectively. In general, control samples exhibited 

heightened loading vectors at (643, 818, 1614, 1685 cm-1), (816, 1276, 1479, 1609, 1683 cm-1) and 

(1364, 1403, 1483 cm-1), as observed in Figures 5.35(a), 5.35(b) and 5.35(c), respectively.   

 A statistical analysis on mean and standard deviations of common loading vectors were 

calculated on datasets of all stages of malignancy. The changes in ring breathing modes of DNA 

bases (690 ± 1.47 cm-1), tyrosine proteins (1159 ± 4.24 cm-1), amide II proteins (1570 ± 0.47 cm-

1), and amide I proteins (1644 ± 4.73 cm-1) were observed to increase with breast cancer 

progression. In contrast, the changes in proline / tyrosine proteins (817 ± 0.40, 1614 ±2.04 cm-1) 

and lipids (1754 ± 0.23 cm-1) were observed to decrease with cancer progression.  

 If we consider diseased samples (Figure 5.35 (a-c)), it can be seen that subtle changes in 

proteins (1126 ± 0.28 cm-1) and CH2 deformation (1428 ± 0.28 cm-1)  were detected in early stages 

of malignancy (grade 1 and grade 2), but could not be detected in late (grade 3) malignancy. 

Further, it is evident that there were subtle biochemical changes of C-C twisting mode of tyrosine 

(645 ± 1.15 cm-1) in samples of control patients when compared to diseased patients. A similar 

comparison of loading vectors in controls versus grade 2 and grade 3 breast cancer patients 

suggested subtle biochemical changes due to amide III / collagen (1281 ± 3.17 cm-1) and amide I 

(1684 ± 0.57 cm-1) were prominent in samples from control patients.   
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Table 5.26 The statistical values (t-test (p-values) and effect sizes ((Cohen-d, Pearson’s correlation 

coefficients (r)) showing relationship between the principal component scores of control and 

diseased saliva samples. For clarity, only the statistical values for statistically significant PCs (p < 

0.05) are shown 

PC     Grade 1             Grade 2                Grade 3 

         p-value     Cohen-d       r        p- value      Cohen-d       r           p-value      Cohen-d          r 

1       0.012     -0.324      -0.16     0.009       0.25         0.12 8.1 x 10-31      -0.99         -0.445 

2       0.00223     -0.4095    -0.20     p > 0.05               7.4 x 10-31      1.12     0.48 

3       p > 0.05              p > 0.05                p > 0.05            

4       0.0026      0.40          0.19     p > 0.05                7.9 x 10-16       0.67          0.31 

5       5.2 x 10-9    -0.834      -0.384   2.8 x 10-20    1.051        0.465    1.9 x 10-12     -0.58    -0.28 

6       2.5 x 10-10    0.90         0.413   0.01       -0.25        -0.12      1.4 x 10-6       0.39           0.19 

7       0.011          -0.32         -0.16    0.00018        -0.39        -0.194     0.013            0.12           0.09 

8       0.014          -0.314        0.15     4.7 x 10-20    -1.10        -0.483     p > 0.05             

9       3.0 x 10-51   -2.39        -0.76     1.8 x 10-20     1.05          0.467     5.2 x 10-25   -0.86     -0.4 

10     0.0013      0.43          0.21     2.0 x 10-38     1.53          0.60       0.002            0.23           0.11 

11     p > 0.05             p > 0.05                              p > 0.05   

12     0.0058        -0.362       -0.17     p > 0.05                 4.0 x 10-8       0.44     0.21 

13     1.3 x 10-5     0.608        0.29     p > 0.05                 2.5 x 10-10     -0.52    -0.25 

14     p > 0.05             p > 0.05                               p > 0.05   

15     2.8 x 10-14   -1.10          0.48    2.5 x 10-20       1.05          0.465      4.6 x 10-15   -0.65    -0.31 

16     2.2 x 10-12     1.01          0.45     0.00512           0.28           0.14        0.00056         0.27         0.13 

17     1.3 x 10-17   -1.254       0.53     p > 0.05                          2.4 x 10-8       0.45      0.22 

18     p > 0.05             0.00288           0.30          0.15        2.0 x 10-8      0.459       0.22         

19     p > 0.05             6.9 x 10-10      -0.68        -0.32         0.00014       0.30         0.14 

20     0.007           1.411        0.57     0.00835          -0.984      -0.44        0.00379        0.54         0.26 
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Figure 5.34 Scatter plots showing distribution of low- order PC (PC 1) scores versus (a) PC 17 

scores, (b) PC 19 scores, and (c) PC 13 scores.  

 

 

 

 

 

 

 

 

 

(a) 

(c) 

(b) 
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Figure 5.35 Loading functions explaining scores discrimination of control and diseased saliva 

spectra. It is observed that subtle band alterations mainly featured at 643-647 cm-1, 687-689 cm-1, 

816-818 cm-1, 1022-1024 cm-1, 1125-1128 cm-1, 1145-1148 cm-1, 1164-1166 cm-1, 1427-1430 cm-

1, 1570-1572 cm-1, 1609-1619 cm-1, 11630-1657 cm-1, and 1753-1756 cm-1 spectral regions. 

 

 

 

 

 

 

 

(a) 

(c) 

(b) 
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5.2.2.3 Quantitative analysis of trace biomarkers in saliva spectra using partial least- 

            squares regression 

  The calibration set design for biochemical components formulation in simulate 

saliva samples has been previously provided (Table 4.4). Spectral matrices collected from 

calibration samples at spectral regions 643-647 cm-1  (tyrosine, phenylalanine), 687-689 cm-1  

(DNA), 816-818 cm-1  (proline, hydroxyproline, tyrosine, collagen), 1022-1024 cm-1  (glycogen), 

1125-1128 cm-1  (lipids, proteins), 1145-1148 cm-1 (glycogen, carotenoids), 11164-1166 cm-1  

(tyrosine), 1427-1430 cm-1 (deoxyribose, lipids), 1570-1572 cm-1  (DNA), 1609-1619 cm-1  

(cytosine, tyrosine, phenylalanine, tryptophan), 11630-1657 cm-1  (amide I), and 1753-1756 cm-1 

(lipids) were used for model calibration. Based on the root-mean-square error of cross- validation 

(R2
val) (Høy et al., 2012), we observed the predicted versus measured regression plots suggested 

that the model worked well for RNA and glutamate components followed by glycine, glycerol, 

albumen, glycogen and triolein components (Figure 5.36). The calculated biochemical 

concentrations in a standard saliva simulate using the PLS regression model showed the 

concentration levels were in agreement within ± 10% deviation (Table 5.27). Regarding the limits 

of detection and the limit of quantification of the PLS models (Table 5.28) it was verified that the 

PLS model could detect amounts within the expected ranges in human body (Table 1) and R2 > 

0.89. As shown by other findings (Saeys et al., 2005), a calibration model with  R2
val value greater 

than 0.91 is considered to be an excellent calibration, while an R2 > 0.82 results in good prediction 

(Suhandy et al., 2012). As the concentration of biochemical components in the proposed PLS 

model ranged from 1-500 ppm, the model was effective to detect and quantify the trace nucleic 

acids, proteins, lipids and saccharides in the human body. For analysis, trace biomarkers in saliva 

were quantified in the ‘fingerprint’ (500-1800 cm-1) region (Table 5.29 (a)) and in the selected 

643-647, 687-689, 816-818, 1022-1024, 1125-1128, 1145-1148, 11164-1166, 1427-1430, 1570-

1572, 1609-1619, 11630-1657, 1753-1756 cm-1 regions (Table 5.29 (b)). For plotting, the 

determined concentration levels (in ppm) were normalized to their mean value and the levels 

correlated to cancer presence and severity.  
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Table 5.27 Comparison of biochemical components concentrations in a saliva simulate reference 

solution and the results obtained from PLS regression   

Biochemical  Concentration   Measured                   Deviation    

Components        (mg / ml)   value (± SD)                  (%)   

Albumen           0.4    0.42 ± 0.02     5         

Glycogen           0.1    0.11 ± 0.025     10                      

Glutamate           0.001   0.000971 ± 0.00012    2.9                

Glycerol           0.01   0.0104 ± 0.0024    4         

RNA            0.002   0.0021 ± 0.00011    5              

Triolein           0.3    0.303 ± 0.0036              1                 

 

 

Table 5.28 Detection limits (mg/ml) of biochemical components for Raman analysis of simulate 

saliva  

         Detection limits 

Biochemical component LOD  LOQ  ("��#$)  "  

  Albumen   0.0089  0.027    0.00172  0.996 

  Glycogen   0.0234  0.073    0.00211  0.984 

  Glutamate   1.669*10-8 5.08*10-8   1.415*10-10  1 

  Glycerol   0.0022  0.0067    0.00431  0.998 

  Glycine                                 0.00168           0.00532   0.00172                     0.997     

  RNA    0.00144 0.0043     1.178*10-11  1 

  Triolein   0.0481  0.145    0.0077  0.898 
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Figure 5.36 Regression plots for partial least squares measured versus predicted biochemical 

concentrations of the pure biochemical compounds (a) RNA, (b) glutamate, (c) glycine, (d) 

glycerol, (e) albumen, (f) glycogen, and (g) triolein. 

 

(b) (a) (c) 

(e) (f) (d) 

(g) 
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Table 5.29 Estimated amounts of biochemical components in saliva of control and breast cancer 

patients in fingerprint region (500-1800 cm-1) and the selected subtle (643-647, 687-689, 816- 818, 

1022-1024, 1125-1128, 1145-1148, 11164-1166, 1427-1430, 1570-1572, 1609-1619, 11630-1657, 

1753-1756 cm-1) spectral regions 

(a) 

500-1800 cm-1 region       Biochemical components (ppm) 

Disease status   Albumen    Glycogen   Glutamate  Glycerol  Glycine       RNA           Triolein 

  Controls           50                33.9     3.61           247.7        2.05            4.82             43.8 

  Diseased    526.4               8.3     14.3           359.2        6.30            7.31             91.5 

(b) 

  Based on subtle band regions  Biochemical components (ppm) 

Disease status   Albumen   Glycogen   Glutamate   Glycerol   Glycine       RNA           Triolein 

  Controls           27.7          33.9    3.66            145.2    2.17             7.35        43.9 

  Grade 1    62.5          13.1    9.1              147.6    19.6             7.60        45.7 

  Grade 2     78.9          12.7    5.78            150.7    18.2             8.29        59.5 

  Grade 3    126.3        11.5    4.90            359.6    20.6             9.16        61.8 

 

  It can be seen (Table 5.29(a)) that the relative amounts of glycogen biochemical 

components were greater in control patients when compared to diseased patients, meaning that the 

total amounts of saccharides were greater in control patients, which is in agreement with a previous 

biochemical-cytological study (Emekli-Altufran et al., 2008). In contrast, the relative amounts of 

albumen, glutamate, glycine, RNA, glycerol and triolein biochemical components were greater in 

diseased patients when compared to control patients which suggest that proteins, amino acids, 

nucleic acids and lipids were greater in diseased patients. If we consider Table 5.29 (b), it is seen 

that levels of glycogen decreased with progression of malignancy whereas levels of albumen, 

RNA, glycerol and triolein increased with malignancy. The decrement of glycogen content with 

malignancy can be associated with enhanced glucose uptake by cells during onset of tumor 

development for conversion to lactate molecules necessary for energy production during cell 

proliferation (Klement et al., 2013). Other studies (Gonchukov et al., 2012) have shown that 

elevated nucleic acids in saliva can be used as a biomarker for cancer progression. Moreover, 

spectral intensities of DNA and RNA related bands have been observed to increase with other 

malignancies (Stone et al., 2007; Taleb et al., 2006; Crow et al., 2003) a factor attributed to 
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abundance of DNA content in malignant samples (Taleb et al., 2006). The heightened adipocyte 

levels of membranous lipids in saliva of diseased patients can be associated with production of 

lipids via de novo lipogenesis (Long et al., 2018).     

 The ultimate diagnostic classification of each Raman spectrum was determined by PLS-

DA with the t = 10 fold cross-validation method. Figure 5.37 (a-e) shows the scatter plots of the 

linear discriminant analysis, demonstrating the clustering of biochemical alterations of saliva from 

the normal patients (controls) and malignant breast tumor categories / patients using the PLS-DA 

diagnostic algorithm. We find a clear separation between the grade 1 and grade 2 scores, and 

between grade 2 and grade 3 scores groups was achieved, primarily by the first three discriminant 

functions. Similarly, a separation of controls and malignant scores could also be observed, 

although some larger overlap existed, which presumably reflected that there were similar 

alterations in the saliva components in controls’ saliva and diseased patients’ saliva.  

 The stage-wise comparison of breast cancer (Figure 5.38 – Figure 5.40) suggests that there 

were mixed biochemical alterations that could be associated with stages of cancer progression. For 

instance (Figure 5.38 (a)), changes in RNA / amino acids (814 cm-1), glycogen (1024 cm-1), CH2 

deformation (1427 cm-1) were dominant in control samples when compared to diseased samples 

that had heightened alterations of C= N adenine (1568 cm-1), cytosine (1609 cm-1), and lipids (1754 

cm-1). Similarly (Figure 5.38 (b)), biochemical changes due to C–C twisting mode of tyrosine (646 

cm-1), DNA bases (686 cm-1), collagen, proteins (818 cm-1) were detected in control samples in 

comparison to diseased samples that were dominated by changes in lipids (1754 cm-1). In Figure 

5.39 (a), it can be seen that biochemical changes due to proteins / saccharides (1125 cm-1), amino 

acids (1162 cm-1), and lipids / tyrosine (1168 cm-1) were prominent in control samples whereas 

changes in tyrosine (646 cm-1), tryptophan (1620 cm-1), collagen / amide I (1635, 1640 cm-1) and 

lipids (1752 cm-1) were dominant in late (stage 3) malignancy.  

 As seen in Figure 5.39 (b), the intense negative loadings shows that subtle changes in urea 

/ triglycerides (1403 cm-1), and adenine / amide II (1568 cm-1) were detected in grade 1 breast 

cancer, whereas changes in tyrosine (643 cm-1), proline / tyrosine (814 cm-1), proteins (819 cm-1) 

and glycogen (1024 cm-1) were detected in grade 2 breast cancer. Comparison of breast cancer 

grade -2 and breast cancer grade -3 scores was performed by examining the third latent variable 

(LV 3) as shown in Figure 5.40. It is seen the Raman spectral features associated with breast cancer 

stage-2 included 814 cm-1 (proline / tyrosine), 819 cm-1 (proteins), 1167 cm-1 (lipids, tyrosine) and 

1608 cm-1 (cytosine), whereas subtle biochemical changes due to adenine (686 cm-1), adenine 
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(1144 cm-1), cytosine / adenine (1610 cm-1), amide I (1629 cm-1), amide I (1635 cm-1), amide I 

(1640 cm-1), amide I (1646 cm-1) and amide I (1655 cm-1) were detected in late malignancy (grade 

-3 cancer). 

 To better understand changes in malignancy, the peak ratios i.e. (IC/IN) were determined, 

where the normalized spectra peak intensities of diseased samples (IC) were divided by the 

normalized spectra peak intensities of control samples (IN). The peak ratios (IC/IN) due to changes 

in tyrosine proteins  (642-648 cm-1, 815-817 cm-1, 1165 cm-1), DNA (689 cm-1, 815-817 cm-1, 1427 

cm-1, 1620 cm-1), amide I (1631-16320 cm-1, 1652 cm-1), and lipids (1752 cm-1) were found to 

increase with breast malignancy, suggesting the potential of the saliva proteins and nucleic acids 

in breast cancer detection and screening.  

 The developed PLS-DA algorithm achieved diagnostic sensitivities of 93%, 91%, and 

91%; specificities of 96%, 93%, and 91%; and accuracies of 96%, 92%, and 91%, respectively, 

when differentiating normal saliva samples from grade 1 breast cancer in saliva samples, grade 2 

breast cancer in saliva samples, and grade 3 breast cancer in saliva samples (Table 5.30). These 

diagnostic performances (> 90%) demonstrate that the PLS-DA-based saliva Raman spectral 

classification method is powerful for the differentiation of different stages of breast cancer. 

  As a potential diagnostic media for disease detection, the biochemical composition 

of human saliva may be closely related to metabolic abnormalities when disease afflicts the body, 

which makes it possible to detect many diseases via the Raman spectral features of saliva. 

However, there are very few reports using regular Raman spectroscopy to study human saliva 

samples for cancer detection (Calado et al., 2019; Scott et al., 2010; Gonchukov et al., 2012; Li et 

al., 2012), due to its inherently small scattering cross-section and the strong background 

fluorescence interference (Feng et al., 2015). These limitations of regular Raman most likely make 

the technique not sensitive enough for detecting the subtle biochemical changes in human saliva 

samples for medical diagnosis (Feng et al., 2015). 

 With regard to breast cancer, utility of saliva proteins for the noninvasive differentiation of 

benign and malignant breast tumors has been recently reported (Feng et al., 2015; Wu et al., 2015). 

In the present study, we have observed that relative amounts of proteins, amino acids, nucleic acids 

and lipids were greater in the saliva of diseased patients whereas the the total amounts of 

saccharides were greater in saliva of control patients (Table 5.29 (a), (b)). The abundance of total 

amount of proteins and the abundance of tyrosine proteins (642-648 cm-1, 815-817 cm-1, 1165  

cm-1) and amide (1631-16320 cm-1, 1652 cm-1) components agrees with related works  
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Figure 5.37 PLS-DA scatterplots showing differentiation of (a) controls from grade 1, (b) controls 

from grade 2, (c) controls from grade 3, (d) grade 1 from grade 2, and (e) grade 2 from grade 3 

breast cancers;  based on the spectra regions: 643-647, 687-689, 816-818, 1022-1024, 1125-1128, 

1145-1148, 11164-1166, 1427-1430, 1570-1572, 1609-1619, 11630-1657, and 1753-1756 cm-1. 

 

(e) 

(c) 

(b) (a) 

(d) 
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Figure 5.38 Loading functions explaining differentiation of (a) controls from grade 1 breast 

cancer, and (b) controls from grade 2 breast cancer.   

 

 

 

 

 

(a) 

(b) 
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Figure 5.39 Loading functions explaining differentiation of (a) controls from grade 3 breast cancer 

scores, and (b) grade 1 breast cancer from grade 2 breast cancer.   

 

 

 

 

 

(a) 

(b) 
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Figure 5.40 Loading functions explaining differentiation of grade 2 breast cancer from grade 3 

breast cancer.  

   

 

Table 5.30 Diagnostic results of PLS-DA on the Raman spectra of saliva from healthy volunteers 

(controls) and breast cancer patients 

     Cases 

Disease   Diagnosis          Breast     Controls    Not             Total    Accuracy   Sensitivity   Specificity  

 status                              cancer                      assigned            (%)           (%)              (%) 

Grade-1  Breast cancer     50             2              2               54            96%         93%       96%           

               Controls       11             483          11             505                   

Grade-2  Breast cancer      88            6               3               97           92%         91%       93%           

               Controls       18             476           20             514                   

Grade-3  Breast cancer     188           14             6               208          91%         91%       91%           

               Controls       25             457          17              499                   

  

 (Feng et al., 2015; Wu et al., 2015) where the significant Raman peaks corresponding to amide 

III and amide I presented higher Raman signals in malignant breast cancer, which can be attributed 

to vibrational modes of the amino acid bonds of the secondary structure of proteins (Movasaghi et 

al., 2007).  
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 Elsewhere, Ferreira et al., (2020) observed changes in protein components by employing 

attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy on saliva samples 

to discriminate breast cancer patients from benign patients and healthy subjects. The absorbance 

levels were observed to be significantly higher in saliva of breast cancer patients compared with 

benign patients at wavenumber 1041 cm−1 (collagen proteins) and the ROC curve analysis of this 

peak showed a reasonable accuracy to discriminate breast cancer from benign and control patients. 

Moreover, the 1433–1302.9 cm−1 wavenumber region (assigned to CH2 / CH3 wagging, twisting 

and bending modes of collagen and lipids) was elevated in saliva of breast cancer patients when 

compared to control and benign patients. It is thought that due to the desmoplastic reaction, the 

deposition of abundant collagen will occur as a stromal response to breast carcinoma, which may 

be reflected in the saliva protein spectra (Feng et al., 2015). Hence, the protein signals from saliva 

samples as biomarkers observed between healthy and diseased subjects indicate that saliva protein 

Raman spectra can be employed to elucidate biomolecular and inherent changes of breast tumor 

subjects (Feng et al., 2015). Indeed, the exploitation of protein-specific Raman signals from saliva 

samples has also been put forward as a potential method of studying biomarkers for 

nasopharyngeal cancer screen (Feng et al., 2014; Qiu et al., 2016). 

 In the present study, the peaks centered at 689 cm-1, 815-817 cm-1, 1427 cm-1 and 1620  

cm-1 which are the ring breathing modes of adenine (Movasaghi et al., 2007), demonstrate a higher 

intensity in the diseased patients, indicating that the amount of RNA in the saliva of diseased 

patients was increased. This can be attributed to circulating nucleic acid contents mainly resulting 

from apoptosis of carcinoma cells and necrosis in the tumor microenvironment (Qiu et al., 2016). 

With regard to lipids, tumor cells are known to demonstrate extremely high endogenous fatty acid 

synthesis, regardless of the level of circulating fatty acids (Qiu et al., 2016). Circulating fatty acids 

may directly promote tumor cell growth and metastasis (Bauer et al., 2005) suggesting that breast 

cancer patient’s saliva may be associated with an increased levels of fatty acids.  

 

 

 

 

 



155 

 

5.2.2.4 Multivariate exploratory analysis of Independent Component Analysis (ICA), 

Multidimensional Scaling (MDS), Partial least Square Discriminant Analysis (PLS-DA) and 

kernel density estimators for breast cancer diagnostics in saliva 

 ICA by Maximum Likelihood (ML) fast fixed-point estimation algorithm on spectral 

matrices of 643-647, 687-689, 816-818, 1022-1024, 1125-1128, 1145-1148, 11164-1166, 1427-

1430, 1570-1572, 1609-1619, 11630-1657, 1753-1756 cm-1 regions shows the data could be 

majorly accounted for by 20 eigenvalues (Figure 5.41). Therefore, 20 eigenvalues, accounting for 

more than 90% variance were selected for further analysis (Table 5.31). Compared to number of 

eigenvalue determined by ICA analysis on blood datasets (Figure 5.21, Table 5.15), it can be 

concluded that saliva datasets were transformed into many directions of new feature spaces (and 

therefore magnitudes), potentially suggesting that spectral biochemical components of saliva were 

more complex by nature in comparison to components in blood samples.  

 PLS-DA was performed on corresponding coefficients of the combinations decomposed 

by ICA. In total, five latent variables (LVs) i.e., LV 1 to LV 5 were revealed to be the most 

diagnostically significant ($ < 0.05) for detecting breast cancer patients. Based on various 

combinations of significant LVs, the LV 1 versus LV 2 scatter plots were generated to compare 

breast cancer patients and healthy volunteers (Figure 5.42). The breast cancer patient scores 

(circles) and healthy volunteer scores (triangles) were distributed in 2 separate directions, and the 

distribution of the healthy volunteer scores was more compressed than that of breast cancer 

patients.  

 

Table 5.31 Selected dimensions (eigenvalues) and explained total variances for ICA by Maximum 

Likelihood (ML) fast fixed-point estimation on Raman spectra of saliva samples from healthy 

volunteers (control) and breast cancer patients  

Datasets  Dimensions           Sum of eigenvalues retained (%)   

Grade 1         20    90.22% 

Grade 2         20    90.78% 

Grade 3         20    92.47%   
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Figure 5.41 The eigenvalues for Raman spectra of saliva samples from healthy volunteers and (a) 

grade 1, (b) grade 2, and (c) grade 3 breast cancer patients.  

 

  

 For grade 1 datasets, the loadings on latent variables (Figure 5.42 (b, d, f)) shows the the 

fifth (IC5) and twelfth (IC12) independent components dominantly explained clustering of 

diseased and control scores, respectively. The fourteenth (IC14) and eighth (IC8) independent 

components explained the spectral regions that influenced clustering of diseased and control scores 

in grade 2 dataset, respectively. Four independent components were instrumental for clustering 

scores in stage 3 dataset. The tenth (IC10) and fourteenth (IC14) independent components greatly 

influenced clustering of control scores, whereas the first (IC1) and nineteenth (IC19) greatly 

influenced clustering of diseased scores. The respective positive and negative peaks are provided 

in Figure 5.43 to Figure 5.44. To better comprehend the molecular basis for the observed 

independent components’ positive and negative peaks (Figures 5.43 - 5.44), the tentative 

(a) 

(c) 

(b) 
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assignments of the Raman bands were done according to the known literature (Movasaghi et al., 

2007; Gelder et al., 2007). 

 It can be seen (Figure 5.43 a, b and Figure 5.43 c, d) that biochemical changes due to C-C 

twisting mode of phenylalanine proteins (647), collagen (1165) and amides (1636 / 1641) were 

detected in saliva of healthy volunteers and  breast cancer patients. However, analysis showed that 

subtle but significant changes in  nucleic acids (689 cm-1), proline / tyrosine proteins (816 cm-1) 

nucleic acids / proteins (1573 cm-1) were dominant in saliva of healthy volunteers scores whereas 

spectral markers associated with phenylalanine proteins (643 cm-1), glycogen (1023 cm-1), nucleic 

acids (1425 cm-1, 1607 cm-1), amide I (1630 cm-1, 1647 cm-1) influenced clustering of saliva spectra 

of breast cancer patients. In comparison to the breast cancer patients suffering from grade 2 breast 

cancer, biochemical changes due to lipids / proteins (1123 cm-1, 1165 cm-1, 1607 cm-1), glycogen 

(1144 cm-1), nucleic acids (1427 cm-1, 1607 cm-1) and 1638 cm-1 (amide 1) were dominant in saliva 

collected from healthy volunteers. In contrast, spectral markers assigned to proline / tyrosine 

proteins (816 cm-1), nucleic acids (1569 cm-1) and amide I (1649 cm-1) were dominantly detected 

in saliva of breast cancer patients.  

 For discrimination of saliva collected from healthy volunteers and patients suffering from 

late malignancy (Figure 5.44 (a-d)), it can be observed there were various influential prominent 

biochemical changes due to C-C twisting mode of phenylalanine proteins (645 / 647 cm-1),  proline 

/ tyrosine (815 / 818 cm-1), glycogen (1023 cm-1),  lipids / proteins (1123 / 1125 cm-1), nucleic 

acids (1425 – 1428 cm-1, 1567 / 1571 cm-1), phenylalanine / tyrosine (1617 / 1620 cm-1), and amide 

I (1645 / 1649 cm-1). Further, the spectral marker assigned to amide 1 (1632 cm-1) was dominant 

for clustering of saliva spectra from healthy volunteers, whereas the spectral markers assigned to  

carotenoids (1144 cm-1, 1148 cm-1), lipids / carotenoids (1165/67 cm-1), nucleic acids (1608 cm-1), 

and amide I (1640 cm-1) uniquely determined clustering of diseased scores.   

 A diagnostic sensitivity of 89%, 95% and 92%, with a specificity of 95%, 95% and 92%, 

were achieved for the breast cancer patients and the healthy volunteers, respectively (Table 5.32), 

when the separation lines, which classified breast cancer patients from healthy volunteers, were 

set in Figure 5.42 (a, c, e). Nevertheless, it can be seen (Table 5.32) that various scores (grade 1 = 

13; grade 2 = 18; grade 3 = 27) could not be assigned to either of the classes i.e., controls or 

diseased class, and could not therefore be used for saliva spectra discrimination, which potentially  
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Figure 5.42 The ICA followed by PLS-DA scatter plots for (a) grade 1, (c) grade 2, and (e) grade 

3 spectral datasets of saliva samples from control and breast cancer patients. The independent 

components associated with loadings are shown in parts (b), (d), and (f), respectively.   

(a) (b) 

(e) 

(c) (d) 

(f) 
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Figure 5.43 The spectral markers for independent components of Raman spectra of saliva samples 

from healthy volunteers and (a, b) grade 1, and (c, d) grade 2 breast cancer patients.  

 

 

(b) (a) 

(c) (d) 
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Figure 5.44. The spectral markers for independent components of Raman spectra of saliva samples 

from healthy volunteers and (a, d) grade 3 breast cancer patients.   

 

 

led to lower diagnostic sensitivity and specificities. Thus, a different approach which involved use 

of ICA combined with mahalanobis multidimensional metrics (MDS) and the potential functions 

(kernel density estimators) was adopted. The mathematical basis of the Mahalanobis distance 

calculation is well known (McLachlan, 1999), and widely used for spectral discrimination. In 

addition to providing spectral discrimination, it also gives a statistical measure of how well the 

unknown sample spectrum matches or does not match (Chowdary et al., 2006). Thus it is a 

statistical measure of proximity of two spectra. 

(b) (a) 

(c) (d) 
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Table 5.32 Diagnostic results of ICA followed by PLS-DA on the Raman spectra of saliva from 

healthy (controls) and breast cancer patients 

     Cases 

Disease   Diagnosis          Breast     Controls    Not             Total    Accuracy   Sensitivity   Specificity 

status                              cancer                      assigned                      (%)          (%)              (%) 

Grade-1  Breast cancer     48             4             2                54            95%         89%            95%           

               Controls       13            480         11              504                   

Grade-2  Breast cancer     92             3             2                 97           95%         95%            95%           

               Controls       8               450         16               474                   

Grade-3  Breast cancer     191           9             7                 207         92%         92%            92%           

               Controls       18            431          20               469                   

 

 The results of ICA-MDS on Raman spectra of saliva samples were fed to kernel density 

estimators (potential function) algorithm. In the present study, a percentile threshold of 95% was 

selected, and the sample was classified in a specific class space if its potential was higher than the 

potential class threshold (Forina et al., 1991). We observed that a continuous Gaussian kernel, 

smoothing parameters = 0.7-1.2, 9 principal components, and 10-fold cross-validation 

classification yielded the best model optimization.  

 Figure 5.45 (a-c) shows the potential function scatter plots of the Raman spectral data of 

the saliva samples of breast cancer patients of all different stages versus healthy (control) ones. 

Figure 5.45 (a) shows reasonably good differentiation of the Raman spectral data of healthy 

(control) and breast cancer patients. The grade 2 and grade 3 samples are well differentiated from 

controls, although it may be considered that the grade 2 samples are more differentiated in 

comparison to grade 3 samples (Figure 5.45 (b-c)). The large overlap of the healthy (control) and 

stage clusters indicates that, although they are clinically distinguished by the extent of the disease 

progression, they are spectrally, and therefore biochemically partially similar.   

 A diagnostic sensitivity of 96%, 98%, and 94%, with a specificity of 99%, 98%, and 95%, 

were achieved for the breast cancer patients and the healthy volunteers, respectively (Table 5.33), 

which are comparably better than diagnostic sensitivity of 89%, 95%, and 92%, with a specificity 

of 95%, 95% and 92%, respectively, achieved with ICA followed by PLS-DA (Table 5.32). These 

results confirms the outstanding diagnostic accuracy of the ICA-MDS-kernel density estimators -

based diagnostic algorithm for breast cancer detection.  
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Table 5.33 Diagnostic results of ICA followed by MDS and kernel density estimators (potential 

function analysis) on the Raman spectra of saliva from healthy volunteers (controls) and breast 

cancer patients 

          Cases 

Disease   Diagnosis          Breast     Controls    Not              Total    Accuracy   Sensitivity   Specificity 

status                              cancer                      assigned                    (%)           (%)              (%) 

Grade-1  Breast cancer     52             2             0               54           99             96                99           

               Controls       2            500         2               504                   

Grade-2  Breast cancer     95             1             1               97            98             98                98           

               Controls       5               466         3               474                   

Grade-3  Breast cancer     194           7             6               207          95             94                95           

               Control s       10             445         4               469                   

 

 

5.2.2.5 Multivariate statistical analysis of Support Vector Machine (SVM) and 

Backpropagation neural networks (BPNN) for breast cancer diagnostics in saliva 

 For classification of saliva spectra from healthy and breast cancer patients, a non-linear 

classifier were required for analyzing spectral matrices collected at spectral markers of 643-647, 

687-689, 816-818, 1022-1024, 1125-1128, 1145-1148, 11164-1166, 1427-1430, 1570-1572, 1609-

1619, 11630-1657, and 1753-1756 cm-1. SVM is one of the best classifiers since it finds the 

hyperplane which maximizes the separating margin between classes (Dehghan et al., 2008).  

Nonlinear SVM classifier is obtained by first using a nonlinear operators to map the input pattern 

into a higher dimensional space (Dehghan et al., 2008). We aimed to employ SVMs with Gaussian 

Radial Basis Function (RBF) kernel as component nonlinear classifier in analysis. For comparison, 

separate analysis was performed using a linear kernel function. The reason why RBF-SVM 

component classifiers are favored lies in the fact that these classifiers often have larger diversity 

than those component classifiers which may be considered accurate, suggesting  they may lead to 

a better generalization performance (Xuchun et al., 2007). Moreover, better results using RBF 

kernel can be explained due the fact it has less numerical difficulties (Hsu et al., 2016). The cross-

validation can be used to determine model parameter in order to avoid exhaustive parameter search 

by approximations or heuristics (Hertzmann et al., 2012). In the present study, the t = 10-fold  

cross validation was used to minimize the bias associated with random sampling of training and  
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Figure 5.45 The diagnostic results of ICA followed by multidimensional scaling and kernel 

density estimators for (a) grade 1 breast cancer, (b) grade 2 breast cancer, and (c) grade 3 breast 

cancer, based on Raman spectra of saliva from healthy volunteers and breast cancer patients.   

 

 

 

 

 

 

 

(c) 

(a) (b) 
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test data samples in comparing predictive accuracy of two or more methods (Delen et al., 2005). 

That is, we divided the dataset into 10 mutually exclusive partitions (folds) using a stratified 

sampling technique. Then, we used 9 of 10 folds for training and the 10th for the testing. We 

repeated this process for 10 times so that each and every data point would be used as part of the 

training and testing datasets. The accuracy measure for the model was calculated by averaging the 

10 models performance numbers. We repeated this process for each of the two prediction models. 

This provided us with a less biased prediction performance measures to compare the two models.  

 The optimal values for principal components (PCs), error penalty (cost, ‘c’) and gamma 

‘g’ (kernel parameter), calculated using 10 fold-cross validation,  came out to be 10, 100, and 0.57-

1.13, respectively as shown in Table 5.34. Table 5.35 and Table 5.36 show the accuracy success 

achieved by the training and predictive SVM models using different kernel methods, respectively.  

 

Table 5.34. SVM models characteristics for diagnostic analysis on the Raman spectra of saliva 

samples from healthy (controls) and breast cancer patients 

    SVM optimal characteristic 

Disease status   Function               Cost        PCs    Kernel parameters    Support vectors    

Grade-1   Kernel        100                 10                        -                          94      

    RBF         100                 10                        0.8                      97    

Grade-2   Kernel                  100                 10                        -                          84       

    RBF                     100                 10                       0.57                     176         

Grade-3   Kernel                  100                 10                        -                         172        

    RBF                     100                 10                       1.13                     223         

 

 Initial analysis based on the training model (Table 5.35) suggested that RBF kernel yielded 

the best performance in terms of accuracy and sensitivity, proving it can be an useful machine 

learning technique for diagnosis of breast cancer. Other works (Singla et al., 2011; Yang et al., 

2007; Lyng et al., 2019) have shown the RBF kernel to be a good classifier for eye event detection, 

detection and classification of microcalcifications, and classification of benign lesions and breast 

cancer, respectively. Figure 5.46 shows the Raman spectra of saliva from healthy volunteers 

(controls) was well separated from Raman spectra of saliva from breast cancer patients, using 

RBF-SVM training model. 
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Table 5.35. Diagnostic results of linear-SVM and RBF-SVM models on the Raman spectra of 

saliva from healthy volunteers (controls) and breast cancer patients 

     Cases 

Disease    Function   Diagnosis   Breast cancer   Controls   Total    Accuracy   Sensitivity   Specificity  

status  

Grade-1   Linear   Breast cancer 25              29         54          94              46              100      

                   Controls  2                503        505  

     RBF       Breast cancer 37              17          54          94              69               97      

                   Controls  17              487        505       

Grade-2   Linear    Breast cancer        75              22         97          94              77               98      

                   Controls  11              463        474  

     RBF       Breast cancer        76              21          97          94              78               98      

                    Controls               10              464        474             

Grade-3   Linear    Breast cancer 158            49         207        89              76               95      

                    Controls               24              445        469  

     RBF       Breast cancer        190            17          207        96              92               97      

                    Controls               13              456        469    

 

 A similar observation is made from the results of RBF-SVM predictive model (Figure 

5.47), though control and diseased scores are largely overlapped which explains low diagnostic 

accuracy in terms of sensitivity. Moreover, results of predictive model (Table 5.36) demonstrated 

relative poor performance, with the best performance in terms of sensitivity being 78%. This was 

most likely due to the low number of patient samples or / and the complexity of the model; 

particularly, the increase in the size or the number of parameters in the machine learning model, 

which could have contributed to overfitting.  Thus, artificial neural networks (ANN) was chosen 

for chemometric analysis.   

 Artificial neural networks (ANNs) are commonly known as biologically inspired, highly 

sophisticated analytical techniques, capable of modeling extremely complex non-linear functions 

(Delen et al., 2005). In the present study, we used a multi-layer perceptron (MLP)-based back-

propagation (a supervised learning algorithm) technique, a known powerful function approximator 

for prediction and classification problems (Delen et al., 2005). First, we optimized the model by 

employing different iterations with varying number of hidden layers and hidden nodes.      
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Figure 5.46 The SVM training models for breast cancer detection for (a, b) grade 1 breast cancer, 

(c, d) grade 2 breast cancer, and (e, f) grade 3 breast cancer. Parts (a), (c) and (e) are linear-SVM 

training models; (b), (d) and (f) are RBF-SVM training models.   

(b) (a) 

(e) (f) 

(c) (d) 
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Figure 5.47 SVM prediction models of breast cancer detection for (a, b) grade 1 breast cancer, (c, 

d) grade 2 breast cancer, and (e, f) grade 3 breast cancer. Parts (a), (c) and (e) are linear-SVM 

predictive models; (b), (d) and (f) are RBF-SVM predictive models.   

 

(a) 

(f) (e) 

(b) 

(c) (d) 
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Table 5.36. Diagnostic results of linear-SVM and RBF-SVM predictor models on the Raman 

spectra of saliva samples from healthy (controls) and breast cancer patients 

     Cases 

Disease    Function   Diagnosis   Breast cancer   Controls   Total    Accuracy   Sensitivity   Specificity  

status                  (%)   (%)          (%) 

Grade-1   Linear    Breast cancer 10              9        19          95             53              100      

                    Controls  0               178        178  

     RBF       Breast cancer 11             8            19          92             58               97      

                    Controls  5               173        178       

Grade-2   Linear    Breast cancer 17             16        33          88             52               94      

                    Controls  10             168        178  

     RBF       Breast cancer 19             14          33          91             58               97      

                   Controls  6               172        178             

Grade-3   Linear    Breast cancer 50             19        69           89            72               96      

                    Controls  7               171        178  

     RBF       Breast cancer 54             15          65           90            78               94      

                    Controls  10             168        178           

  

 For each training and predicting algorithm, the network architecture was varied for 2 

hidden layers, with the nodes varied from 5 to 100 at increments of 5 in each hidden layer. Exactly 

2 layers, neurons per layer =10, learning rate=0.01, alpha=0.5, and iterations=1000 training 

weights yield the best diagnostic accuracy in classifying early breast malignancy (stage 1 cancer) 

whereas 2 layers, neurons per layer =15, learning rate=0.01, alpha=0.3, and iterations=1000 

training weights performed well in training and predicting middle (stage 2 cancer) and late (stage 

3 cancer) breast malignancies.  

 Figure 5.48 shows separation of Raman spectra of saliva from the healthy volunteers 

(controls) and the breast cancer patients. It is evident there was reasonable separation of scores 

during MLP network model training and prediction analysis. As observed in Tables 5.37 and 5.38, 

the diagnostic results of BPNN training and predictive models were better than the linear-SVM 

and RBF-SVM training and predictive models (Tables 5.35, 5.36). The best accuracies and 

sensitivities that we could obtain were above 90% and 80%, respectively, for all stages of breast 

cancer under consideration, which was higher than for SVM models we developed.  We believe 
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the performance of MLP can be improved further when applied on a larger data set with more 

features.  

 

 

Figure 5.48 The BPNN training (a, c, e) and predictor (b, d, f) models for detecting (a, b) grade 1 

breast cancer, (c, d) grade 2 breast cancer, and (e, f) grade 3 breast cancer. Abbreviation: P - 

predicted samples (scores). 

(c) 

(a) 

(e) 

(b) 

(d) 

(f) 
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Table 5.37 Diagnostic results of BPNN training model on the Raman spectra of saliva samples 

from healthy volunteers (controls) and breast cancer patients 

     Cases 

Disease    Diagnosis         Breast     Controls       Not           Total    Accuracy   Sensitivity   Specificity   

status        cancer   assigned                   (%)           (%)             (%) 

Grade-1  Breast cancer      49             5              0              54            96           91                97          

         Controls        19  480          6              505   

Grade-2  Breast cancer      84             12            1              97            92           88                93          

         Controls        33  435          6              474           

Grade-3  Breast cancer      180            25           2              207          91           88                93          

         Controls        33  430          6              469              

       

 

 

Table 5.38. Diagnostic results of BPNN predictor model on the Raman spectra of saliva samples 

from healthy volunteers (controls) and breast cancer patients 

     Cases 

Disease    Diagnosis         Breast     Controls       Not           Total    Accuracy   Sensitivity   Specificity   

status        cancer   assigned          (%)         (%)              (%) 

Grade-1  Breast cancer      15             3             1             19           96           83                97          

         Controls        5  169          4             178   

Grade-2  Breast cancer      28             5              0             33           92           84                98          

         Controls        4  174          1             179           

Grade-3  Breast cancer      58             11            0             69           91           84                93          

         Controls        12  166          0             178           
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5.3 Raman spectroscopic characterization of whole blood and saliva for 

leukemia diagnostics  

5.3.1 Analysis of prominent biochemical alterations in whole blood and saliva spectra 

 For a better comparison of Raman spectral shapes in the analysis, Raman spectra for 

healthy volunteers (controls) and leukemia groups’ samples were plotted alongside their respective 

difference spectra. To better comprehend the molecular basis for the observed Raman spectra, the 

tentative assignments of the Raman bands were performed according to the known literature 

(Movasaghi et al., 2007; Rehman et al., 2013; Gelder et al., 2007). The average Raman spectra of 

whole blood and saliva samples of the leukemia and control groups are shown in Figures 5.49 (a) 

and (b), respectively. Respective difference spectra are shown in Figure 5.50 (a) and (b). 

 

 

 

Figure 5.49 Mean normalized spectra of (a) whole blood and (b) saliva for healthy volunteers / 

controls (n = 12) and leukemia (n = 9) patients. The spectra in (b) have been linearly offset for 

clarity. 

 

(a) (b) 
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Figure 5.50 The difference spectrum for (a) blood spectra, and (b) saliva spectra from healthy 

volunteers (controls) and leukemia patients.  

 

 These spectra (Figure 5.49 (a), (b)) display Raman bands associated with proteins, lipids, 

and nucleic acids as the main constituents of the cellular components, which agrees with other 

related works (Happillon et al., 2015). Examination of blood spectra (Figure 5.49 (a)) show the 

primary Raman bands featured at 664 cm-1, 746 cm-1, 970 cm-1, 999 cm-1, 1125 cm-1, 1242 cm-1, 

1338 cm-1, 1365 cm-1, 1446 cm-1, 1575 cm-1, and 1616 cm-1, which correspond to other findings 

(Vanna et al., 2014; Sheng et al., 2013). It can be observed (Figure 5.49 (b)), that the Raman 

spectra of saliva samples exhibited similar peaks at 739 / 746 cm-1, 999 / 1004 cm-1, 1130 cm-1, 

1246 / 1250 cm-1 and 1445 / 1453 cm-1. Moreover, there are notable red shifts and blue shifts of 

various Raman bands in spectra of saliva samples. For instance, the bands at 615 cm-1 and 870 cm-

1 in Raman spectra of saliva samples of healthy volunteers can be viewed to have red shifted to 

612 cm-1 and 863 cm-1 in Raman spectra of saliva samples of diseased patients. In contrast the 

bands at 739 cm-1, 947 cm-1, 999 cm-1, 1246 cm-1, 1445 cm-1 and 1539 cm-1 in Raman spectra of 

saliva samples of healthy volunteers can be viewed to have blue shifted to 746 cm-1, 950 cm-1, 

1004 cm-1, 1250 cm-1, 1453 cm-1 and 1542 cm- in Raman spectra of saliva samples of diseased 

patients.  

 Based on available literature (Movasaghi et al., 2007; Rehman et al., 2013; Gelder et al., 

2007), it can be observed in Figure 5.49 and Figure 5.50 that peak intensities and band shifts in 

spectra of whole blood and saliva can be mainly attributed to biochemical changes due to nucleic 

(a) (b) 
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acids (556, 715, 742, 746, 782, 785, 805, 826, 862, 867, 1173, 1187, 1207, 1286, 1315, 1338, 

1341, 1352, 1365, 1518, 1575, 1609 cm-1), proteins (539, 568, 648, 660, 664, 849, 851, 922, 948, 

970, 990, 1001, 1156, 1236, 1242, 1248, 1251,1443, 1449, 1531, 1533, 1540, 1548, 1616, 1630, 

1668, 1707 cm-1) and lipids (521, 613, 1063-1067, 1125, 1444-1449 cm-1). With regard to blood 

spectra, nucleic acids, proteins and lipids biochemical alterations in normal and leukemia samples 

are evident at 664 cm-1 (C-S stretch mode of collagen), 746 cm-1 (thymine), 970 cm-1 (phosphate 

monoester groups of phosphorylated proteins and cellular nucleic acids), 999 cm-1 (phenylalanine), 

1125 cm-1 (C-C skeletal backbone of lipids, C-N stretching of proteins), 1242 cm-1 (amide III), 

1338 cm-1 (CH2 / CH3 wagging, twisting  and /or bending mode of collagens and lipids),  1365  

cm-1 (guanine, tryptophan), 1446 cm-1 (CH2 bending mode of proteins and lipids), 1575 cm-1 (ring 

breathing modes in the DNA bases of guanine, adenine) and 1616 cm-1 (C=C stretching mode of 

tyrosine and tryptophan). Moreover, comparisons of the Raman intensities of the six prominent 

Raman peaks of blood spectra (664 cm-1, 746 cm-1, 970 cm-1, 1242 cm-1, 1446 cm-1, and 1616  

cm-1) showed significant differences (p <0.05; Student’s t-test).  

 Figure 5.50 (a) shows the corresponding difference spectra of blood samples, revealing the 

significant Raman spectral changes, such as Raman peak intensities, positions, and spectral 

shoulder bands, specifically in the spectral ranges of 660 cm-1 (C-S stretching mode of cystine 

(collagen type I)), 746 cm-1 (thymine), 782 cm-1 (thymine, cytosine, uracil), 805 cm-1 (uracil), 851 

cm-1 (proline and tyrosine ring breathing), 899 cm-1 (saccharides), 922 cm-1 (C-C stretch of 

proline), 973 cm-1 (C-C backbone (collagen assignment)), 1067 cm-1 (proline (collagen 

assignment)), 1156 cm-1 (C-C, C-N stretching (protein)), 1187 cm-1 (cytosine, guanine, adenine), 

1207 cm-1 (proline, tyrosine), 1236 cm-1 (amide III), 1352 cm-1 (gunaine), 1365 cm-1 (tryptophan), 

1444 cm-1 (CH2CH3 bending modes of collagen and phospholipids) and 1500-1700 cm-1 (amides, 

DNA bases, lipids). Compared with the control group samples spectra, the leukemia group spectra 

exhibited higher intensities at 660 cm-1 (C-S stretching mode of cystine (collagen type I)), 746  

cm-1 (thymine), 851 cm-1 (proline and tyrosine ring breathing), 922 cm-1(C-C stretch of proline), 

1067 cm-1 (proline (collagen assignment)),  1156 cm-1 (C-C, C-N stretching (protein)), 1236 cm-1 

(amide III), 1518 cm-1 (β – carotene accumulation), 1533 cm-1 (β – carotene accumulation ),1548 

cm-1 (tryptophan), 1609 cm-1 (cytosine) and 1668 cm-1 (amide I), but showed much increased 

signals at 1236 cm-1, 1533 cm-1 and 1548 cm-1. In contrast, the control group samples spectra 

exhibited higher intensities at 782 cm-1 (Thymine, cytosine, uracil), 805 cm-1 (uracil),  899 cm-1 

(saccharides), 973 cm-1 (phosphate monoester groups of phosphorylated proteins and cellular 
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nucleic acids), 1187 cm-1 (cytosine, guanine, adenine), 1207 cm-1 (proline, tyrosine), 1352 cm-1 

(guanine), 1365 cm-1 (tryptophan) and 1444 cm-1 (CH2CH3 bending modes of collagen and 

phospholipids).  

 Literature on Raman spectra of saliva for leukemia diagnostics is scarce, and thus, most 

bands assignments in the spectra of Figure 5.49 (b) are based on generally known spectral 

frequencies of the biological tissues (Chandra et al., 2015), (Movasaghi et al., 2007), (Gelder et 

al., 2007). The Raman spectra of saliva for healthy volunteers (controls) and leukemia groups 

(Figure 5.50(b)) revealed common peaks (± standard deviations) at 556 cm-1 (adenine), 613 ± 0.87 

cm-1 (cholesterol esters), 742 ± 2.02 cm-1 (thymine), 867 ± 1.44 cm-1 (RNA), 948 ± 0.87 cm-1 

(proline, valine, saccharides),  1001 ± 1.44 cm-1 (phenylalanine),  1248 ± 1.15 cm-1 (guanine, 

cytosine),  1449 ± 2.31 cm-1 (CH2 bending mode of proteins and lipids)  and 1540 ± 0.87 cm-1 

(amide II) (Figure 5.50 (b)).  The respective difference spectra (Figure 5.50 (b)) indicates 

biochemical changes due to cholesterol esters (539 cm-1), C-C twisting mode of tyrosine (648 cm-

1), C-N deformation of adenine (715 cm-1), thymine (747 cm-1), tyrosine (862 cm-1), skeletal C-C 

stretch of lipids (1063 cm-1), glycogen (1146 cm-1), cytosine / guanine (1173 cm-1), amide III (1251 

cm-1), cytosine (1286 cm-1), guanine (1315 cm-1), guanine / adenine / tryptophan (1574 cm-1), 

amide I (1630, 1707 cm-1) were intense in saliva spectra of leukemia group samples whereas 

biochemical changes due to phosphatidylinositol (521 cm-1), glycerol (586 cm-1), adenine (785 cm-

1), O-P-O stretch of DNA (826 cm-1), proline / valine / saccharides (849 cm-1), phenylalanine (998 

cm-1), phenylalanine / adenine / thymine (1207 cm-1), guanine (1341 cm-1), CH2 bending mode of 

proteins and lipids (1443 cm-1), and amide II (1531 cm-1) were intense in saliva spectra of control 

group samples.   

 To assess the diagnostic accuracy of leukemia based on whole blood and saliva spectra,   

spectral differences were further explored in detail by the SVD-PCA multivariate algorithm as 

described in Section 4.6. The LDA diagnostic model coupled with the t(= 10)-fold cross-

validation method was subsequently utilized as a diagnostic algorithm. The first six principal 

components (PCs) were found to be the optimal number of reserved components (Figure 5.51 (a), 

(b)), as defined by the part minimum of the root mean square error of the cross-validation, 

accounting for 91.13% and 98.725% of the whole Raman spectral variances in whole blood spectra 

and saliva spectra, respectively. By analysis of canonical variables distribution (Figure 5.51 (c), 

(d)), t-tests, and effect sizes, it was observed that PC 2 (p < 0.05, Cohen d =1.70) and PC 5 (p < 

0.05, Cohen d =0.91) were significant for further analysis of blood spectra, whereas PC 2 (p < 
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0.05, Cohen d =2.45) and PC 6 (p < 0.05, Cohen d =0.43) were significant for analysis of saliva 

spectra.  

 

 

Figure 5.51 The scree plots showing the number of optimal number of principal components (PCs) 

for (a) blood spectra and (b) saliva spectra, and the canonical variable distributions of the first 

twenty principal components for (c) blood spectra and (d) saliva spectra. Abbreviations: CV, cross-

validation; PC, principal components.  

 

 Linear discriminate analysis was utilized to generate a diagnostic algorithm using the first 

six significant principal components. Figures 5.52 (a, b) shows the scatter plots of each sample 

according to the first two discriminant functions, with diagnostic lines of LDA clearly indicated. 

(c) 

(a) (b) 

(d) 
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The loading vectors explaining scores discrimination of blood and saliva spectra are shown in 

Figures 5.52 (c) and (d), respectively. 

 

Figure 5.52 Scatter plot of the linear discriminant analysis demonstrating the clustering of (a) 

whole blood spectra and (b) saliva spectra of healthy volunteers and leukemia patients. The loading 

vectors explaining the scores discrimination are shown in parts (c) and (d), respectively.    

 

 

 It can be seen (Figure 5.52 (a), (b)) that scores were distributed in two relatively separate 

areas i.e., control and leukemia groups in spite of some overlap between each other, which 

indicates that the Raman spectra of the different types of whole blood and saliva samples could be 

discriminated and classified for leukemia detection. As expected, the loading vectors of the PC 2 

in Figure  5.52 (a) and Figure  5.52 (b) are very similar to the difference spectrum of Figure 5.50 

(a) (b) 

(c) (d) 
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(a) and Figure 5.51 (b), respectively,  suggesting that the prominent biochemical differences 

observed between the spectra of the two groups might be sufficient to tell them apart.  

 

5.3.2 Analysis of trace biochemical alterations of blood and saliva for leukemia diagnosis 

 In the present study, subtle but discernible differences in the loading vectors of the Raman 

spectra of healthy volunteers and leukemia patients were observed, based on scores distribution of 

the fifth and sixth principal components (PCs 5, 6) as shown in Figure 5.53 (a), (b). The respective 

loading vectors are shown in Figure 5.53 (c), (d). It is clear that, despite greater overlap of control 

group and leukemia group scores, the intense loading vectors could be related to the few amount 

of scores giving rise to the positive and / or negative bands in the loading spectrum. 

 With regard to blood samples (Figure 5.53 (c)), subtle features of C-S stretching and C-C 

twisting of proteins- tyrosine at 639 cm-1, amino acids of proline and valine at 923 cm-1, 

phenylalanine at 999 cm-1, fatty acids at 1130 cm-1, carotenoids at 1158 cm-1, amide III at 1197 

cm-1, antisymmetric phosphate stretching vibration at 1227 cm-1, CH2 twisting modes of lipids at 

1301 cm-1, guanines at 1346 cm-1, guanines / tryptophan at 1369 cm-1, and nucleic acids at 1459 

cm-1 were influential for the assignment of scores into the leukemia group. On the other hand, the 

contents of cytosine / tyrosine / phenylalanine at 1605 cm-1, amide I at 1697 cm-1, ester groups at 

1729 cm-1, and lipids at 1769 cm-1 led to a classification of control group spectra.  

 If we consider saliva samples (Figure 5.53 (d)), subtle features of glycerol at 591 cm-1, C-

C twisting mode of phenylalanine at 619 cm-1, C-C stretching mode of proline and valine at 935 

cm-1, and amide I at 1660 cm-1 led to classification of leukemia group spectra whereas the subtle 

biochemical changes due to  C-C twisting mode of tyrosine at 652 cm-1, guanine at 685 cm-1, C-N 

deformation of nucleic acids at 718 cm-1, thymine / adenine / guanine at 1372 cm-1, and cytosine 

at 1507 cm-1 were influential for the assignment into the control group. In the present study, these 

subtle markers (loading vectors) represented the weak variance signals (analyte information) 

significant for leukemia diagnostics, and were therefore chosen for further analysis.  
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Figure 5.53 Scores plot for the higher order components (PC 5, 6) of (a) whole blood and (b) 

saliva Raman spectra (red leukemia samples, blue controls), and (c, d) loading vectors for PC 5 

and PC 6, respectively. 

 

 

 

 

 

 

 

 

 

(a) 
(b) 

(c) (d) 
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5.3.3 Quantitative analysis of trace biomarkers in blood and saliva using partial least-squares  

         regression 

 The biochemical assignments corresponding to the observed loading vectors (Figure 5.53 

(c) (d)) were quantified using using the partial least squares (PLS) regression model, as described 

in Section 4.6.3 The  predicted versus measured regression plots in Figure 5.54 and Figure 5.55 

show how the PLS model predicted concentration levels for the calibration samples of whole blood 

and saliva, respectively. The limits of detection for biochemical compounds in simulate whole 

blood and saliva samples are summarized in Table 5.39 and Table 5.40, respectively. The low root 

mean-square error of prediction (RMSEP) demonstrates the model had a higher predictive ability  

(Gontijo et al., 2014), which agrees with the corresponding higher "  values (> 0.9). Besides, 

limits of detection were within the acceptable range of calibration set. LOD values suggested there 

were adequate analyte concentration present to yield an analytical signal that could be well 

measured from analytical noise, whereas LOQ demonstrated quantitative results could be obtained 

with a specified degree of confidence (Taleuzzaman, 2018). Moreover, the accuracy and reliability 

of the PLS regression model assessed by analyzing concentration levels of a standard simulate 

blood fluid and saliva spiked with known concentrations of biochemical components demonstrated 

the calculated biochemical components levels were in agreement with known values in typical 

standard samples in the range of ≤ 8% and ≤ 3%, respectively (Tables 5.41, 5.42). 

  The relative amounts of biochemical components (in mg / ml) were calculated by fitting 

the basal spectra in spectral datasets of the spectra markers measured from blood sample (639  

cm-1, 923 cm-1, 999 cm-1, 1130 cm-1, 1158 cm-1, 1197 cm-1, 1227 cm-1, 1301 cm-1, 1346 cm-1, 1369 

cm-1, 1459 cm-1, 1605 cm-1, 1697 cm-1, 1729 cm-1, and 1769 cm-1) and saliva sample (591 cm-1, 

619 cm-1, 652 cm-1, 685 cm-1, 718 cm-1, 935 cm-1, 1372 cm-1, 1507 cm-1, and 1660 cm-1). The 

determined amounts of biochemical components in whole blood and saliva samples are 

summarized in Table 5.43 and Table 5.44, respectively. For comparison between the healthy 

(controls) and diseased patients, the determined concentration levels (in mg / ml) were normalized 

to their mean value.  
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Figure 5.54 Regression plots for partial least squares measured versus predicted biochemical 

concentrations of the basal compounds used in the spectral model, based on the spectra profiles of 

whole blood samples (639 cm-1, 923 cm-1, 999 cm-1, 1130 cm-1, 1158 cm-1, 1197 cm-1, 1227 cm-1, 

1301 cm-1, 1346 cm-1, 1369 cm-1, 1459 cm-1, 1605 cm-1, 1697 cm-1, 1729 cm-1, and 1769 cm-1).  

 

 

(a) (b) (c) 

(e) (d) 

(g) 

(f) 
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Figure 5.55 Regression plots for partial least squares measured versus predicted biochemical 

concentrations of the basal compounds used in the spectral model, based on the spectra profiles of 

saliva samples (591 cm-1, 619 cm-1, 652 cm-1, 685 cm-1, 718 cm-1, 935 cm-1, 1372 cm-1, 1507 cm-

1, and 1660 cm-1).  

 

(g) 

(f) (e) (d) 

(c) (b) (a) 
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Table 5.39 Detection limits of biochemical components for Raman analysis of simulate blood 

fluid  

         Detection limits (mg / ml) 

Biochemical component LOD  LOQ  ("��#$)  "  

  Albumen   0.0103  0.031    0.00013  0.994 

  Glycogen   0.009  0.027    0.00001  0.991 

  Glutamate   1.254*10-8 3.8*10-8   1.825*10-9  0.997 

  Glycerol   0.0095  0.028    1.203*10-6  0.999 

  RNA    0.00098 0.0030    1.061*10-10  0.999 

  Triolein   0.0623  0.189    0.0071  0.902 

 

 

Table 5.40 Detection limits of biochemical components for Raman analysis of simulate saliva 

fluid  

         Detection limits (mg / ml) 

Biochemical component LOD  LOQ  ("��#$)  "  

  Albumen   0.0072  0.022    0.00172  0.996 

  Glycogen   0.0276  0.084    0.00211  0.984 

  Glutamate   1.238*10-8 3.75*10-8   1.415*10-10  0.932 

  Glycerol   0.0017  0.0052    0.00431  0.998 

  Glycine                                 0.00203           0.00615   0.00172                     0.916     

  RNA    0.00082 0.0025     1.178*10-11  0.997 

  Triolein   0.0504  0.153    0.0077  1 
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Table 5.41 Comparison of biochemical components concentrations in a whole blood simulate 

reference solution and the results obtained from PLS regression chemometric enabled Raman 

spectroscopy 

Biochemical  Concentration   Measured                   Deviation     

Components        (mg / ml)   value (± SD)                  (%)   

Albumen           0.4    0.42 ± 0.01     5         

Glycogen           0.1    0.102 ± 0.022     2                      

Glutamate           0.001   0.000982 ± 0.00013    0.18                

Glycerol           0.01   0.0101 ± 0.0016    1         

RNA            0.002   0.00205 ± 0.0001    2.5              

Triolein           0.3    0.276 ± 0.0029              8                 

 

Table 5.42 Comparison of biochemical components concentrations in a standard saliva simulate 

and the results obtained from PLS regression   

Biochemical  Concentration   Measured                   Deviation    

Components        (mg / ml)   value (± SD)                  (%)   

Albumen           0.4    0.39 ± 0.03     1         

Glycogen           0.1    0.103 ± 0.01     3                      

Glutamate           0.001   0.000992 ± 0.00024    0.8                

Glycerol           0.01   0.0102 ± 0.0024    2         

RNA            0.002   0.00203 ± 0.00011    1.5              

Triolein           0.3    0.294 ± 0.0036              2                 
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Table 5.43 Estimated amounts of biochemical components in whole blood of normal (control) and 

grade 3 leukemia patients - based on the fingerprint (500-1800 cm-1) and the selected (639 cm-1, 

923 cm-1, 999 cm-1, 1130 cm-1, 1158 cm-1, 1197 cm-1, 1227 cm-1, 1301 cm-1, 1346 cm-1, 1369 cm-

1, 1459 cm-1, 1605 cm-1, 1697 cm-1, 1729 cm-1, 1769 cm-1) spectral regions 

(a) 

500-1800 cm-1 region       Biochemical components (ppm) 

Disease status   Albumen    Glycogen   Glutamate   Glycerol    Glycine        RNA           Triolein 

  Controls           14.6            12.34      18.99          7.9             14.75           12.6             10.2 

  Grade 3    25.8            17.93      14.93          18.8           25.15           38.9             11.1 

(b) 

Based on subtle band regions             Biochemical components (ppm) 

Disease status   Albumen   Glycogen   Glutamate   Glycerol   Glycine       RNA           Triolein 

  Controls           4.04            2.72    2.29       4.32         14.7            15.61        7.1565 

  Grade 3    6.14            2.8    1.89        2.21         11.1            32.25        3.9135 

 

 

Table 5.44 Estimated amounts of biochemical components in saliva of normal (control) and grade 

3 leukemia patients - based on the fingerprint (500-1800 cm-1) and the subtle bands (591 cm-1, 619 

cm-1, 652 cm-1, 685 cm-1, 718 cm-1, 935 cm-1, 1372 cm-1, 1507 cm-1, and 1660 cm-1) spectral regions 

(a) 

500-1800 cm-1 region       Biochemical components (ppm) 

Disease status   Albumen    glycogen   glutamate   glycerol    glycine        RNA           Triolein 

  Controls           17.3            23.7    10.84          25.6          15.4            4.2               23.19 

  Grade 3    44.62          47.3    52.17          40.96        30.74          17.26           66.04 

(b) 

Based on subtle band regions   Biochemical components (ppm) 

Disease status   Albumen     Glycogen   Glutamate   Glycerol      Glycine       RNA           Triolein 

  Controls           11.39          14.90      1.72             4.769           5.04            1.069          1.81 

  Grade 3    8.737          7.82            15.88           3.645           17.80          5.077          0.282 
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 If we consider the fingerprint region (500-1800 cm-1), it can be seen (Table 5.43 (a), Table 

5.44 (a)) that the relative amounts of the selected biochemical components were greater in Raman 

spectra of leukemia patients when compared to Raman spectra of control patients, meaning that 

the total amounts of proteins, nucleic acids and saccharides were greater in leukemia patients. 

However, quantification of the biochemical components in blood Raman spectra using the selected 

subtle band regions, it was observed (Figure 5.43 (b)) that the relative amounts of albumen and 

RNA were greater in Raman spectra of leukemia patients when compared to Raman spectra of 

normal (control) patients whereas the relative amounts of glutamate, glycerol, glycine and triolein 

were greater in Raman spectra of control patients when compared to amounts in Raman spectra of 

leukemia patients. In the context of the selected markers, this suggests that the amount of proteins 

in leukemia patients were greater when compared to amounts in healthy volunteers. This can be 

attributed to tentative assignments corresponding to tyrosine (639 cm-1), proline / valine (923  

cm-1) phenylalanine (999 cm-1), carotenoids (1158 cm-1), and amide III (1197 cm-1). Similarly, 

greater amounts of RNA in leukemia patients implies that leukemia samples had greater amounts 

of nucleic acids. This is well understood given the considered number of nucleic acid markers in 

leukemia samples (1227 cm-1, 1346 cm-1, 1459 cm-1) in comparison to the number of nucleic acid 

markers in control samples (1605 cm-1). Notably, examination of Figure 5.53 (c) shows that the 

spectral marker at 1227 cm-1 pointed to presence of leukemia. The spectra markers at 1225 - 1245 

cm-1 are associated with phosphate stretching modes that originate from the phosphodiester groups 

of nucleic acids, known to suggest an increase in the nucleic acids in the malignant tissues 

(Movasaghi et al., 2007).  

 Visual examination of Table 5.44 (b) shows that the relative amounts of glutamate, glycine, 

triolein and albumen were greater in saliva samples of leukemia patients when compared to normal 

(control) patients, whereas the relative amounts of glycogen, glycerol, and RNA were greater in 

samples of control patients when compared to diseased patients. It can be concluded that 

biochemical alterations associated with the selected spectral markers signify that proteins and 

membranous lipids were greater in leukemia patients whereas nucleic acids, glycogen and non-

membranous lipids were greater in control patients. 
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5.3.4 Multivariate statistical analysis of blood and saliva spectra for leukemia diagnostics 

 The SVM models are prominent for handling both linear and non-linear data. The model 

aims to draw decision boundaries between data points from different classes and separate them 

with maximum margin (Christopher et al., 1998). Due to the non-linear nature (multiple type and 

kind of patterns) of spectra datasets in the leukemia study, the radial basis function (RBF) SVM 

and backpropagation neural network (BPNN) classifiers were selected for chemometric analysis. 

For blood spectra datasets, 15 neurons per layer, learning rate=0.01, and number of iterations = 

1000 were used as variables in the BPNN for the construction of a predictive model, whereas the 

first ten PCs, explaining the 97 % of spectral variance, were used as variables in the RBF-SVM 

for the construction of a predictive model, from which the sensitivity, specificity, and overall 

accuracy of the method can be estimated. Figure 5.56 shows the scatter plots of RBF-SVM and 

BPNN diagnostic models demonstrating clustering of Raman spectra of blood samples from 

normal (control) and leukemia patients. The results of the ten-fold cross- validated RBF-SVM and 

BPNN classification are reported, in the form of a confusion matrix, in Table 5.45 and Table 5.46, 

respectively. 

 For analysis of saliva datasets, 10 neurons per layer, learning rate=0.01, and number of 

iterations = 1000 were used as variables in the BPNN for the construction of a predictive model. 

Moreover, kernel parameter = 0.4, cost=100, ≈ 148 support vectors and five principal components 

were used for construction of RBF-SVM predictive models. Figure 5.57 shows the scatter plots of 

RBF-SVM and BPNN diagnostic models demonstrating clustering of Raman spectra of saliva 

samples from normal (control) and leukemia patients. The estimated sensitivity, specificity, and 

overall accuracies of the RBF-SVM and BPNN methods are summarized in Table 5.47 and Table 

5.48, respectively.   
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Figure 5.56 Scatter plots of (a) RBF-SVM and (b) BPNN diagnostic models demonstrating 

clustering of Raman spectra of blood samples from healthy volunteers and leukemia patients. 

 

 

 

Figure 5.57 Scatter plots of (a) RBF-SVM and (b) BPNN diagnostic models demonstrating 

clustering of Raman spectra of saliva samples from healthy volunteers and leukemia patients. 

 

 

(a) (b) 

(a) (b) 
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Table 5.45 Diagnostic results of RBF-SVM predictor model on the Raman spectra of blood 

samples from healthy volunteers (controls) and leukemia patients 

     Cases 

Disease    Diagnosis         Breast     Controls       Not           Total    Accuracy   Sensitivity   Specificity   

status        cancer   assigned                   (%)           (%)             (%) 

Stage-3   Leukemia            57            7               0              64          94              89               97          

         Controls        5            147           0              152              

       

Table 5.46 Diagnostic results of BPNN predictor model on the Raman spectra of blood samples 

from healthy volunteers (controls) and leukemia patients 

     Cases 

Disease    Diagnosis         Breast     Controls       Not           Total    Accuracy   Sensitivity   Specificity   

status        cancer   assigned                   (%)           (%)             (%) 

Stage-3   Leukemia            37            27               0            64           67            58               71          

         Controls        45            107             0            152               

 

Table 5.47 Diagnostic results of RBF-SVM predictor model on the Raman spectra of saliva 

samples from healthy volunteers (controls) and leukemia patients 

     Cases 

Disease    Diagnosis         Breast     Controls       Not           Total    Accuracy   Sensitivity   Specificity   

status        cancer   assigned                   (%)           (%)             (%) 

Stage-3   Leukemia            50            17               0             67          89             76              96          

         Controls        5            137             0             142              

       

Table 5.48 Diagnostic results of BPNN predictor model on the Raman spectra of saliva samples 

from healthy volunteers (controls) and leukemia patients 

     Cases 

Disease    Diagnosis         Breast     Controls       Not           Total    Accuracy   Sensitivity   Specificity   

status        cancer   assigned                   (%)           (%)             (%) 

Stage-3   Leukemia            39            27               1            67           80            59               90          

         Controls        14            128             0            142               
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 As observed (Table 5.45 - 5.48), the RBF-SVM model performed better than the BPNN 

model in diagnosing and predicting leukemia, using Raman spectra from either blood or saliva 

samples. This can be attributed to non-parametric nature of RBF function which strengthens its 

ability in handling complex data (Chen et al., 2015; Sajda, 2006; Mika et al., 2002). Utility of 

saliva spectra in RBF-SVM and BPNN diagnostic predictor models led to poor diagnostic 

capabilities in terms of sensitivity parameters, possibly due to inherently small scattering cross-

section and the strong background fluorescence interference of Raman technique on saliva samples 

(Feng et al., 2015), which most likely make the technique not sensitive enough for detecting the 

subtle biochemical changes in human saliva samples for medical diagnosis. On a positive note, 

application of RBF-SVM and BPNN diagnostic models on blood spectra yielded the higher 

diagnostic parameters, leading to a sensitivity of 89 %, a specificity of 97 %, and an overall 

diagnostic accuracy of 94 %. These results demonstrate that the RBF-SVM-based blood Raman 

spectral classification method is powerful for the diagnosis of leukemia.  
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6.0 Conclusions and Recommendations  

 A number of findings presented in this study are of great significance and have been 

reported here for the first time.  The results obtained on data reported in this study support the idea 

that analysis of higher-order principal components is a novel multivariate analysis method of 

understanding trace biomarker alterations that point to breast cancer and leukemia progression. 

The implications of this finding are that with suitable cell lines representing breast and leukemia 

malignancy, the proposed method can be extended to study the onset stages of cancer development 

in-vitro. 

 When considering the first two aims of this study, we can conclude that our first aim - to 

identify and determine the concentrations of trace biomarkers of leukemic and breast cancer in 

saliva and blood using laser Raman microspectroscopy, and the second aim- to correlate the 

obtained biomarker levels as well as their alterations in the selected body fluids matrices to cancer 

presence and severity based on concentration levels of biochemical changes and the band ratios of 

trace spectral markers - have largely been met. Spectral analysis on Raman spectra of blood and 

saliva from healthy volunteers and breast cancer patients revealed that biochemical differences in 

healthy and diseased samples were mainly due to proteins, lipids, and nucleic acid components. 

Six spectral regions (subtle markers) were determined: 589 cm-1, 594 cm-1, 630 cm-1, 1626 cm-1, 

1630 cm-1 and 1638 cm-1, which can be used as new biomarkers of breast cancer. Evaluation of 

biochemical changes at trace peaks regions (589, 594, 630, 858, 868, 1005, 1160, 1250, 1347, 

1358, 1626, 1630, and 1638 cm-1) with the developed partial least-squares fitting regression model 

showed concentrations of proteins, nucleic acids, and lipid levels increased with breast 

malignancy. Moreover, these regions differentiated diseased from normal samples with acceptable 

levels of sensitivity using the PLS-DA algorithm. The number of correctly identified cases out of 

total cases led to an accuracy of 98%, 98% and 94% for grade-1, grade -2 and grade -3 cancers, 

respectively. The sensitivity, expressed as the number of correctly identified cancer spectra over 

the total number of diseased spectra was found to be 100% for grade 1 cancer,  98% for grade 2 

cancer and 94% for grade 3 cancer. The specificity, expressed as the number of correctly identified 

healthy (control) spectra over the total number of healthy spectra was determined to be >96%, for 

all considered stages of cancer. 

 With regard to saliva analysis, analysis of lower and intermediate analysis yielded twelve 

spectral regions: 643-647 cm-1, 687-689 cm-1, 816-818 cm-1, 1022-1024 cm-1, 1125-1128 cm-1, 
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1145-1148 cm-1, 1164-1166 cm-1, 1427-1430 cm-1, 1570-1572 cm-1, 1609-1619 cm-1, 1630-1657 

cm-1, and 1753-1756 cm-1, which were regarded as trace Raman peaks for further analysis. A 

statistical analysis on mean and standard deviations of subtle markers showed that changes in ring 

breathing modes of DNA bases (690 ± 1.47 cm-1), tyrosine proteins (1159 ± 4.24 cm-1), amide II 

proteins (1570 ± 0.47 cm-1), and amide I proteins (1644 ± 4.73 cm-1) increased with breast cancer 

progression, whereas the changes in proline / tyrosine proteins (817 ± 0.40, 1614 ±2.04 cm-1) and 

lipids (1754 ± 0.23 cm-1) decreased with breast cancer progression.  Determination of biochemical 

components associated with the observed trace Raman peaks; using PLS regression method, 

suggested that amounts of glycogen decreased with progression of malignancy, whereas the 

amounts of proteins, nucleic acids and adipocyte levels of membranous lipids increased with 

malignancy. Stage wise comparison of breast cancer was performed by PLS-DA with the t = 10 

fold cross-validation method.  The developed PLS-DA algorithm achieved diagnostic sensitivities 

of 93%, 91%, and 91%; specificities of 96%, 93%, and 91%; and accuracies of 96%, 92%, and 

91%, respectively, when differentiating normal saliva samples from grade 1 saliva samples, grade 

2 saliva samples, and grade 3 saliva samples. This strengths the view that complexity of comparing 

biochemical and morphological alterations amongst the diseased and normal / control samples 

increase with cancer progression. 

  Our third aim- to apply robust and hybridized machine learning techniques (higher-order 

PCA, ICA, MDS, PLS-DA, and kernel density estimators) in the extraction and multivariate 

exploratory analysis and interpretation of the biomarkers embedded in the measured spectra – has 

also been largely met. Analysis of blood spectra datasets in healthy volunteers and breast cancer 

patients using ICA revealed that the sum of eigenvalues (in percentage) for the number of retained 

eigenvalues decreased with stage of cancer progression. This suggests there were additional 

spectral regions in respective datasets that could be characteristically considered as noise and 

therefore could not be useful for breast cancer diagnosis (Crow et al., 2005). Analysis of ICA 

loading vectors showed aromatic acids proteins were a major factor in clustering of both healthy 

and diseased samples, meaning blood protein degradation is a major factor in breast cancer 

progression. ICA followed by PLS-DA performed better than PLS-DA alone in revealing trace 

spectral markers that were responsible for discriminating control from diseased samples, 

potentially due to characteristic property of ICA in ensuring statistical independence of markers, 

hence, minimal overlapping of biochemical information (Yao et al., 2012). The implications of 

this finding reinforce the capability of ICA in producing producing basis vectors that are 
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statistically independent and not just linearly decorrelated as it happens with PCA. Further, ICA-

MDS followed by PLS-DA marginally yielded a better diagnosis of late (grade 3) malignancy at 

sensitivity of 97% when compared to sensitivity at 96% achieved by ICA followed by PLS-DA. 

The better performance of MDS can be attributed to its strength in mapping all pairwise distances 

between data points into small dimensional Euclidean domains (Aflalo et al., 2013), while 

preserving the intrinsic information of pairwise dissimilarities between objects (Liu et al., 2019). 

 Similarly, a combination of machine learning techniques of ICA, MDS, PLS-DA and 

kernel density estimators were used for analysis of saliva spectra. The analysis was performed on 

spectral matrices measured in 643-647 cm-1, 687-689 cm-1, 816-818 cm-1, 1022-1024 cm-1, 1125-

1128 cm-1, 1145-1148 cm-1, 1164-1166 cm-1, 1427-1430 cm-1, 1570-1572 cm-1, 1609-1619 cm-1, 

1630-1657 cm-1, and 1753-1756 cm-1 regions.  A greater number of eigenvalues were needed for 

optimal ICA analysis on saliva spectra when compared to blood spectra, meaning that saliva 

datasets were transformed into many directions of new feature spaces (and therefore magnitudes), 

suggesting that spectral biochemical components of saliva were complex by nature in comparison 

to components in blood samples. ICA followed by PLS-DA yielded diagnostic sensitivities of 

89%, 95% and 92%, with a specificity of 95%, 95% and 92%, for grade 1, grade 2 and grade 3 

breast cancers, respectively. Different from diagnostic results of ICA followed by PLS-DA, utility 

of ICA followed by MDS and kernel density estimators yielded diagnostic sensitivity of 96%, 98% 

and 94%; specificity of 99%, 98% and 95%, for the breast cancer patients and the healthy 

volunteers, respectively. These results confirm the outstanding diagnostic accuracy of the ICA-

MDS-kernel density estimators-based diagnostic algorithm for breast cancer detection.  

 When considering the last two aims of this study, we can conclude that our fourth aim - to 

develop conceptual diagnostic models to detect and characterize breast and leukemia cancers in 

their various stages based based on support vector machine (SVM) and artificial neural networks 

(ANN), and the fifth aim- to test the developed diagnostic models for proof of concept, to detect 

and predict the status of breast and leukemia cancers in clinical liquid biopsies samples- have been 

fully met. In general, we observed that overall diagnostic accuracies and sensitivities decreased 

with malignancy, meaning underlying complexity of biochemical alteration in healthy and 

diseased samples increased with malignancy. Moreover, analysis of blood and saliva spectra for 

breast cancer diagnostic showed that a greater number of principal components and support vectors 

were needed for advanced stages of cancer (grade 3) in comparison to number of principal 

components and support vectors needed for analysis of early malignancy (grade 1, grade 2). This 
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suggests that late malignancy matrices greatly suffered from problems of high dimensionality and 

collinearity, thus, consideration of higher number of principal components was necessary to 

account for greater amount of variance in respective datasets (Björklund, 2019). To that effect, a 

relatively greater number of support vectors were needed to optimally define a hyperplane for 

maximizing margins between the two classes (controls versus the diseased scores) (Martins et al., 

2009).  

 Analysis of blood spectra showed that RBF kernel function model performed better than 

linear kernel function model in diagnosing late (grade 3) malignancy. This finding imply that the 

linear separable characteristic nature of spectral datasets decreased with malignancy, meaning a 

nonparametric method that can handle more complex data relationships. Further, comparison of 

SVM and BPNN predictor models diagnostic performance showed that BPNN outperformed SVM 

in predicting diseased samples. This could be due to better parameter selection or the diverse and 

non-linear nature of the data set, or both.   

  In agreement with analysis of blood spectra, enhanced optimal performance of RBF-SVM 

and BPNN diagnostic models was evident in analysis of saliva spectra. Analysis of saliva spectra 

showed that RBF-SVM performed better than linear-SVM during model training and prediction, 

in terms of diagnostic accuracy and sensitivity, proving it can be a useful machine learning 

technique for diagnosis of breast cancer. However, both RBF-SVM and linear-SVM predictive 

models yielded poor performance in saliva datasets, with the best diagnostic sensitivity being 78%. 

This was most likely due to the low number of patient samples or / and the complexity of the 

model. In particular, the increase in the size or the number of parameters in the machine learning 

model could have contributed to overfitting that led to poor performance. In contrast, BPNN 

training and predictive models performed better than the linear-SVM and RBF-SVM training and 

predictive models. 

 With regard to leukemia, salivary and blood nucleic acids, proteins and lipids can be chiefly 

regarded as biomarkers pointing to presence of leukemia. Quantification of corresponding subtle 

biochemical components in blood spectra by PLS regression model showed that the amount of 

proteins and nucleic acids in leukemia patients were greater in diseased patients when compared 

to amounts in healthy volunteers. A similar analysis on trace bands of saliva spectra demonstrated 

that proteins and membranous lipids were greater in leukemia patients whereas nucleic acids, 

glycogen and non-membranous lipids were greater in control patients.  
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 RBF-SVM model performed better than the BPNN model in diagnosing and predicting 

leukemia, upon analysing Raman spectra of blood and saliva samples. We can attribute RBF-SVM 

better performance to non-parametric nature of RBF function that strengthen its ability in handling 

complex data (Chen et al., 2015; Sajda, 2006; Mika et al., 2002).  Utility of saliva spectra in RBF-

SVM and BPNN diagnostic models yielded poor diagnostic capabilities in terms of sensitivity 

parameters. This could be due to inherently small scattering cross-section and the strong 

background fluorescence interference of Raman technique on saliva samples (Feng et al., 2015), 

which most likely made the Raman  technique not sensitive enough for detecting the subtle 

biochemical changes in human saliva samples (Feng et al., 2015). These findings strengthen the 

view that the RBF-SVM-based blood Raman spectral classification method can be a powerful 

technique for the diagnosis of leukemia.   

 This study is preliminary work as the complex structure of saliva and blood requires many 

other future investigations to find more information about changes that would occur in saliva and 

blood components during carcinogenesis. Much additional research still has to be done in order to 

elucidate the conformational properties of the nucleic acids, proteins and lipids in these samples. 

Importantly, knowing that bands corresponding to nucleic acids, proteins, and phospholipids 

played a key role in breast cancer and leukemia progression in our study, is not enough. Infact, the 

pairwise comparison of mean intensity (peak intensity ratios) revealed there were changes in 

concentration of biomolecules during cancer progression. However, from a histochemical 

perspective, our results could not determine exactly what molecules e.g., µRNA, µDNA, µprotein 

biomarkers (e.g., CA15-3, c-erB2, HSP90A) were responsible for the biochemical differences. 

Other techniques such as liquid chromatography, mass spectrometry, and enzyme-linked 

immunosorbent assay (ELISA) could be used to acquire complementary information for Raman 

microspectroscopy analysis. 

 While we achieved high overall accuracies through SVM and ANN models, low diagnostic 

accuracies, particularly for saliva datasets have remained as a challenge, which might be due to 

the high biochemical similarities within normal and diseased samples, or, perhaps, the variations 

in Raman spectra of saliva associated with multiple donors may have been significantly larger than 

variations found for blood samples (Sikirzhytski et al., 2011). The limited number of samples from 

willing volunteers per cancers in consideration not only restricted us in sample sizes, but also made 

it harder to achieve 100% diagnostic capability; both in accuracy and sensitivity. Besides the 

quantity of spectra, strong background fluorescence interference of Raman spectra on saliva 
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samples appeared to be another issue that might have introduced artifacts in the feature extraction 

stage. Even though we compared prediction models under the same conditions, this could be far 

from a real-world scenario, considering the potential effects of slight changes in experimental 

conditions of Raman spectroscopy, and the limitations of inclusion and exclusion criteria 

governing recruitment of research participants.  We believe this research can be improved further 

when future studies use a larger data set with more features, and validating the findings using large 

independent cohorts of patients before translation of the studies to a wide range of clinical 

applications. Moreover, better results can be achieved if datasets comprising both spatial and 

spectral information are included in the study. This will aid in analysis of morphological changes 

during progression of malignancy. 
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Appendix I  

Clinical diagnosis of malignant breast tumor patients and healthy subjects 

   CHT  Malignant          Healthy / control 

     breast tumor      subjects  

     (n = 20)               (n = 23)  

Mean age, years   59    51 

Carcinoma   

Stage 1   No  3    NA  

Stage 2   No  7    NA 

Stage 3   No  10    NA 

Abbreviations: n, number; NA, not applicable; CHT, chemotherapy cancer treatment  

(No, none on treatment) 

 

 

 

Appendix 11  

Clinical diagnosis of leukemia patients and healthy subjects 

   CHT  Leukemia          Healthy subjects / control  

     (n = 9)                (n = 18)  

Mean age, years   66    42 

Carcinoma   

Stage 1   No  NA    NA  

Stage 2   No  NA    NA 

Stage 3   No  9    NA 

Abbreviations: n, number; NA, not applicable; CHT, chemotherapy cancer treatment  

(No, none on treatment)   
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Appendix III  

 

Principal Component Analysis – Linear Discriminant Analysis (PCA-LDA) 

 

// Variables 

// X                   dataset [samples x variables] 

// class              class vector  

// cv_type            type of cross validation 

// cv_groups          number of cross validation groups              

// class_prob         prior probability  

// method            'linear' (LDA) or 'quadratic' (QDA) 

// pret_type          data pretreatment  

// max_comp           maximum number of components to be calculated 

// data pretreatment 

a = mean(X); 

s = std(X); 

m = min(X); 

M = max(X); 

if strcmp(pret_type,'cent') 

    amat = repmat(a,size(X,1),1); 

    X_scal = X - amat; 

elseif strcmp(pret_type,'scal') 

    f = find(s>0); 

    smat = repmat(s,size(X,1),1); 

    X_scal = zeros(size(X,1),size(X,2)); 

    X_scal = X(:,f)./smat(:,f); 

elseif strcmp(pret_type,'auto') 

    f = find(s>0); 

    amat = repmat(a,size(X,1),1); 

    smat = repmat(s,size(X,1),1); 

    X_scal = zeros(size(X,1),size(X,2)); 

    X_scal(:,f) = (X(:,f) - amat(:,f))./smat(:,f); 
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elseif strcmp(pret_type,'rang') 

    f = find(M - m > 0); 

    mmat = repmat(m,size(X,1),1); 

    Mmat = repmat(M,size(X,1),1); 

    X_scal = zeros(size(X,1),size(X,2)); 

    X_scal(:,f) = (X(:,f) - mmat(:,f))./(Mmat(:,f) - mmat(:,f));        

else 

    X_scal = X; 

end 

param.a = a; 

param.s = s; 

param.m = m; 

param.M = M; 

param.pret_type = pret_type; 

// selection of the optimal number of components for PCA coupled with DA by means of  

   cross-validation 

function res = dacompsel(X,class,cv_type,cv_groups,class_prob,method,pret_type,max_comp) 

[n,p] = size(X); 

r = min(n,p); 

if r > max_comp 

    r = max_comp; 

end  

hwait = waitbar(0,'cross validating models','CreateCancelBtn','setappdata(gcbf,''canceling'',1)'); 

setappdata(hwait,'canceling',0);  

for k = 1:r 

    if ~ishandle(hwait) 

        res.er = NaN; 

        res.ner = NaN; 

        res.not_ass = NaN; 

        break 

    elseif getappdata(hwait,'canceling') 

        res.er = NaN; 
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        res.ner = NaN; 

        res.not_ass = NaN; 

        break 

    else 

        waitbar(k/r) 

        out = dacv(X,class,cv_type,cv_groups,class_prob,method,k,pret_type); 

        res.er(k) = out.class_param.er; 

        res.ner(k) = out.class_param.ner; 

        res.not_ass(k) = out.class_param.not_ass; 

    end 

end 

if ishandle(hwait) 

    delete(hwait) 

end 

res.settings.pret_type = pret_type; 

res.settings.cv_type = cv_type; 

res.settings.cv_groups = cv_groups; 

res.settings.class_prob = class_prob; 

res.settings.method = method; 

// cross validation for Discriminant Analysis (DA) 

function cv = dacv(X,class,cv_type,cv_groups,class_prob,method,num_comp,pret_type) 

if iscell(class) 

    class_string = class; 

    [class,class_labels] = calc_class_string(class_string); 

else 

    class_string = {}; 

    class_labels = {}; 

end 

nobj = size(X,1); 

if strcmp(cv_type,'boot') 

    hwait = waitbar(0,'bootstrap validation'); 

    out_bootstrap = zeros(nobj,1); 
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    class_pred = []; 

    class_true = []; 

    for i=1:cv_groups 

        waitbar(i/cv_groups) 

        out = ones(nobj,1); 

        whos_in = []; 

        for k=1:nobj 

            r = ceil(rand*nobj); 

            whos_in(k) = r; 

        end 

        out(whos_in) = 0; 

       // counters for left out samples 

        boot_how_many_out(i)=length(find(out == 1)); 

        out_bootstrap(find(out == 1)) = out_bootstrap(find(out == 1)) + 1; 

        Xext = X(find(out == 1),:); 

        class_ext = class(find(out == 1)); 

        Xtrain  = X(whos_in,:); 

        class_train  = class(whos_in); 

        if nargin == 8 

            model = dafit(Xtrain,class_train,class_prob,method,num_comp,pret_type); 

        else 

            model = dafit(Xtrain,class_train,class_prob,method); 

            num_comp = 0; 

            pret_type = 'none'; 

        end 

        pred = dapred(Xext,model); 

        class_pred = [class_pred; pred.class_pred]; 

        class_true = [class_true; class_ext]; 

    end 

    class = class_true; 

    delete(hwait); 

elseif strcmp(cv_type,'rand') 
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    hwait = waitbar(0,'montecarlo validation'); 

    out_rand = zeros(nobj,1); 

    perc_in = 0.8; 

    take_in = round(nobj*perc_in); 

    class_pred = []; 

    class_true = []; 

    for i=1:cv_groups 

        waitbar(i/cv_groups) 

        out = ones(nobj,1); 

        whos_in = randperm(nobj); 

        whos_in = whos_in(1:take_in); 

        out(whos_in) = 0; 

       % counters for left out samples 

        out_rand(find(out == 1)) = out_rand(find(out == 1)) + 1;         

        Xext = X(find(out == 1),:); 

        class_ext = class(find(out == 1)); 

        Xtrain  = X(whos_in,:); 

        class_train  = class(whos_in); 

        if nargin == 8 

            model = dafit(Xtrain,class_train,class_prob,method,num_comp,pret_type); 

        else 

            model = dafit(Xtrain,class_train,class_prob,method); 

            num_comp = 0; 

            pret_type = 'none'; 

        end 

        pred = dapred(Xext,model); 

        class_pred = [class_pred; pred.class_pred]; 

        class_true = [class_true; class_ext]; 

    end 

    class = class_true; 

    delete(hwait); 

else 
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    class_pred = zeros(size(X,1),1); 

    obj_in_block = fix(nobj/cv_groups); 

    left_over = mod(nobj,cv_groups); 

    st = 1; 

    en = obj_in_block; 

    for i = 1:cv_groups 

        in = ones(size(X,1),1); 

        if strcmp(cv_type,'vene') % venetian blinds 

            out = [i:cv_groups:nobj]; 

        else % contiguous blocks 

            if left_over == 0 

                out = [st:en]; 

                st =  st + obj_in_block;  en = en + obj_in_block; 

            else 

                if i < cv_groups - left_over 

                    out = [st:en]; 

                    st =  st + obj_in_block;  en = en + obj_in_block; 

                elseif i < cv_groups 

                    out = [st:en + 1]; 

                    st =  st + obj_in_block + 1;  en = en + obj_in_block + 1; 

                else 

                    out = [st:nobj]; 

                end 

            end 

        end 

        in(out) = 0; 

        Xtrain = X(find(in==1),:); 

        class_train = class(find(in==1)); 

        Xext = X(find(in==0),:); 

        if nargin == 8 

            model = dafit(Xtrain,class_train,class_prob,method,num_comp,pret_type); 

        else 



223 

 

            model = dafit(Xtrain,class_train,class_prob,method); 

            num_comp = 0; 

            pret_type = 'none'; 

        end 

        pred = dapred(Xext,model); 

        class_pred(find(in==0)) = pred.class_pred; 

    end 

end  

class_param = calc_class_param(class_pred,class); 

cv.class_pred = class_pred; 

if length(class_labels) > 0 

    cv.class_pred_string = calc_class_string(cv.class_pred,class_labels); 

end 

cv.class_param = class_param; 

cv.settings.cv_groups = cv_groups; 

cv.settings.cv_type = cv_type; 

cv.settings.class_prob = class_prob; 

cv.settings.method = method; 

cv.settings.num_comp = num_comp; 

cv.settings.pret_type = pret_type; 

// fit Discriminant Analysis (DA) 

function model = dafit(X,class,class_prob,method,num_comp,pret_type) 

if iscell(class) 

    class_string = class; 

    [class,class_labels] = calc_class_string(class_string); 

else 

    class_string = {}; 

    class_labels = {}; 

end 

n = size(X,1); 

nclass = max(class);  

if class_prob == 2 
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    for g = 1:nclass  

        obj_cla(g)  = length(find(class == g)); 

    end 

    prob = obj_cla/n; 

else 

    prob = NaN; 

end  

if nargin == 6 

    modelpca = pca_model(X,num_comp,pret_type); 

    Xtrain = modelpca.T; 

else 

    Xtrain = X; 

    modelpca = NaN; 

    num_comp = 0; 

    pret_type = 'none'; 

end  

// if linear and not with PCs check for pooled estimate of covariance 

doit = 1; 

if strcmp('linear',method) & nargin < 6 

    doit = pec(X,class); 

end  

if doit 

    % fitting 

    if class_prob == 1 

        [class_calc,e,prob_calc] = classify(Xtrain,Xtrain,class,method); 

    else 

        [class_calc,e,prob_calc] = classify(Xtrain,Xtrain,class,method,prob); 

    end 

    % calculates canonical variables for lda 

    if strcmp('linear',method) 

        class_unfold = zeros(size(Xtrain,1),max(class)-1); 

        for g=1:max(class)-1 
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            class_unfold(find(class==g),g) = 1; 

        end 

        [L,B,r,S,V] = canoncorr(Xtrain,class_unfold); 

        for k=1:size(L,1); 

            for j=1:size(L,2) 

                Lstd(k,j) = L(k,j)*std(Xtrain(:,k)); 

            end 

        end 

    end 

else 

    class_calc = ones(size(X,1),1); 

    L = zeros(size(X,2),1); 

    Lstd = zeros(size(X,2),1); 

    S = zeros(size(X,1),1); 

end  

class_param = calc_class_param(class_calc,class); 

if strcmp(method,'linear') 

    if num_comp > 0 

        model.type = 'pcalda'; 

    else 

        model.type = 'lda'; 

    end 

else 

    if num_comp > 0 

        model.type = 'pcaqda'; 

    else 

        model.type = 'qda'; 

    end 

end 

model.class_calc  = class_calc; 

if length(class_labels) > 0 

    model.class_calc_string = calc_class_string(model.class_calc,class_labels); 
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end 

model.prob = prob_calc; 

model.class_param = class_param; 

if strcmp('linear',method) 

    model.L = L; 

    model.Lstd = Lstd; 

    model.S = S; 

end 

model.settings.pret_type = pret_type; 

model.settings.class_prob = class_prob; 

model.settings.prob = prob; 

model.settings.method = method; 

model.settings.modelpca = modelpca; 

model.settings.num_comp = num_comp; 

model.settings.raw_data = X; 

model.settings.class = class; 

model.cv = []; 

model.labels.variable_labels = {}; 

model.labels.sample_labels = {}; 

model.labels.class_labels = class_labels;  

 

function doit = pec(X,class) 

for g = 1:max(class) 

    gmeans(g,:) = mean(X(find(class == g),:)); 

end 

// Pooled estimate of covariance 

[Q,R] = qr(X - gmeans(class,:), 0); 

R = R / sqrt(size(X,1) - max(class)); % SigmaHat = R'*R 

s = svd(R); 

if any(s <= eps^(3/4)*max(s)) 

    doit = 0; 
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    disp('The pooled covariance matrix of training samples must be positive definite. model not 

calculated'); 

else 

    doit = 1; 

end 

// prediction with Discriminant Analysis (DA) 

function pred = dapred(X,model) 

class_prob = model.settings.class_prob; 

method = model.settings.method; 

Xtrain = model.settings.raw_data; 

num_comp = model.settings.num_comp; 

class_train = model.settings.class; 

prob = model.settings.prob;  

if num_comp > 0 

    modelpca = pca_project(X,model.settings.modelpca); 

    Xin = modelpca.Tpred; 

    Xtrain = modelpca.T; 

else 

    Xin = X; 

end  

// prediction 

if class_prob == 1 

    [class_pred,e,prob_pred] = classify(Xin,Xtrain,class_train,method); 

else 

    [class_pred,e,prob_pred] = classify(Xin,Xtrain,class_train,method,prob); 

end 

// prediction of scores on canonical variables only for LDA 

if strcmp('linear',method) 

    [a,param] = data_pretreatment(Xtrain,'cent'); 

    Xin_cent = test_pretreatment(Xin,param); 

    pred.S = Xin_cent*model.L; 

end 
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pred.class_pred = class_pred; 

if length(model.labels.class_labels) > 0 

    pred.class_pred_string = calc_class_string(pred.class_pred,model.labels.class_labels); 

end 

pred.prob = prob_pred; 

if num_comp > 0 

    pred.T = modelpca.Tpred; 

    pred.modelpca = modelpca; 

end 
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Appendix IV  

 

Independent component analysis (FASTICA_version) 

// Basic parameters in fixed-point algorithm: 

// 'approach'  decorrelation  

//'numOfIC'  number of independent components 

// Linearity  value of 'g':     Nonlinearity used: 

                         'pow3' (default)   g(u)=u^3 

                         'tanh'             g(u)=tanh(a1*u) 

                         'gauss             g(u)=u*exp(-a2*u^2/2) 

                         'skew'             g(u)=u^2  

// 'finetune'            on, off 

// 'mu'                  Step size = 1. 

// 'stabilization'       Values 'on' or 'off'  

// --Controlling convergence 

// 'epsilon'             (number) stopping criterion. Default is 0.0001 

// 'maxNumIterations' maximum number of iterations = 1000 

// 'maxFinetune'         maximum number of iterations = 100  

// 'sampleSize'  (number) [0 - 1] % 

// 'initGuess'  default is random 

// Check some basic requirements of the data 

if nargin == 0, 

  error ('You must supply the mixed data as input argument.'); 

end  

if length (size (mixedsig)) > 2, 

  error ('Input data can not have more than two dimensions.'); 

end  

if any (any (isnan (mixedsig))), 

  error ('Input data contains NaN''s.'); 

end  

if ~isa (mixedsig, 'double') 

  fprintf ('Warning: converting input data into regular (double) precision.\n'); 
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  mixedsig = double (mixedsig); 

end  

// Remove the mean and check the data  

[mixedsig, mixedmean] = remmean(mixedsig);  

[Dim, NumOfSampl] = size(mixedsig);  

% Default values for optional parameters 

verbose           = 'on';  

// Default values for 'pcamat' parameters 

firstEig          = 1; 

lastEig           = Dim; 

interactivePCA    = 'off';  

// Default values for 'fpica' parameters 

approach          = 'defl'; 

numOfIC           = Dim; 

g                 = 'pow3'; 

finetune          = 'off'; 

a1                = 1; 

a2                = 1; 

myy               = 1; 

stabilization     = 'off'; 

epsilon           = 0.0001; 

maxNumIterations  = 1000; 

maxFinetune       = 5; 

initState         = 'rand'; 

guess             = 0; 

sampleSize        = 1; 

displayMode       = 'off'; 

displayInterval   = 1; 

 

// Parameters for fastICA - i.e. this file 

 b_verbose = 1; 

jumpPCA = 0; 
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jumpWhitening = 0; 

only = 3; 

userNumOfIC = 0;  

// Read the optional parameters  

if (rem(length(varargin),2)==1) 

  error('Optional parameters should always go by pairs'); 

else 

  for i=1:2:(length(varargin)-1) 

    if ~ischar (varargin{i}), 

      error (['Unknown type of optional parameter name (parameter' ... 

          ' names must be strings).']); 

    end 

    % change the value of parameter 

    switch lower (varargin{i}) 

     case 'stabilization' 

      stabilization = lower (varargin{i+1}); 

     case 'maxfinetune' 

      maxFinetune = varargin{i+1}; 

     case 'samplesize' 

      sampleSize = varargin{i+1}; 

     case 'verbose' 

      verbose = lower (varargin{i+1});      

      if strcmp (verbose, 'off'), b_verbose = 0; end 

     case 'firsteig' 

      firstEig = varargin{i+1}; 

     case 'lasteig' 

      lastEig = varargin{i+1}; 

     case 'interactivepca' 

      interactivePCA = lower (varargin{i+1}); 

     case 'approach' 

      approach = lower (varargin{i+1}); 

     case 'numofic' 
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      numOfIC = varargin{i+1}; 

      // User has supplied new value for numOfIC. 

      userNumOfIC = 1; 

     case 'g' 

      g = lower (varargin{i+1}); 

     case 'finetune' 

      finetune = lower (varargin{i+1}); 

     case 'a1' 

      a1 = varargin{i+1}; 

     case 'a2' 

      a2 = varargin{i+1}; 

     case {'mu', 'myy'} 

      myy = varargin{i+1}; 

     case 'epsilon' 

      epsilon = varargin{i+1}; 

     case 'maxnumiterations' 

      maxNumIterations = varargin{i+1}; 

     case 'initguess' 

      // no use setting 'guess' if the 'initState' is not set 

      initState = 'guess'; 

      guess = varargin{i+1}; 

     case 'displaymode' 

      displayMode = lower (varargin{i+1}); 

     case 'displayinterval' 

      displayInterval = varargin{i+1}; 

     case 'pcae' 

 

      // calculate if there are enought parameters to skip PCA 

      jumpPCA = jumpPCA + 1; 

      E = varargin{i+1}; 

     case 'pcad'       

     // calculate if there are enought parameters to skip PCA 
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      jumpPCA = jumpPCA + 1; 

      D = varargin{i+1}; 

     case 'whitesig' 

      // calculate if there are enought parameters to skip PCA and whitening 

      jumpWhitening = jumpWhitening + 1; 

      whitesig = varargin{i+1}; 

     case 'whitemat' 

      % calculate if there are enought parameters to skip PCA and whitening 

      jumpWhitening = jumpWhitening + 1; 

      whiteningMatrix = varargin{i+1}; 

     case 'dewhitemat' 

      // calculate if there are enought parameters to skip PCA and whitening 

      jumpWhitening = jumpWhitening + 1; 

      dewhiteningMatrix = varargin{i+1}; 

     case 'only' 

      // if the user only wants to calculate PCA or... 

      switch lower (varargin{i+1}) 

       case 'pca' 

    only = 1; 

       case 'white' 

    only = 2; 

       case 'all' 

    only = 3; 

      end       

     otherwise 

      error(['Unrecognized parameter: ''' varargin{i} '''']); 

    end; 

  end; 

end  

// print information about data 

if b_verbose 

  fprintf('Number of signals: %d\n', Dim); 
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  fprintf('Number of samples: %d\n', NumOfSampl); 

end 

if Dim > NumOfSampl 

  if b_verbose 

    fprintf('Warning: '); 

    fprintf('The signal matrix may be oriented in the wrong way.\n'); 

    fprintf('In that case transpose the matrix.\n\n'); 

  end 

end  

// Calculating PCA 

 if jumpWhitening == 3 

  if b_verbose, 

    fprintf ('Whitened signal and corresponding matrises supplied.\n'); 

    fprintf ('PCA calculations not needed.\n'); 

  end; 

else   

  if jumpPCA == 2, 

    if b_verbose, 

      fprintf ('Values for PCA calculations supplied.\n'); 

      fprintf ('PCA calculations not needed.\n'); 

    end; 

  else 

    if (jumpPCA > 0) & (b_verbose), 

      fprintf ('You must suply all of these in order to jump PCA:\n'); 

      fprintf ('''pcaE'', ''pcaD''.\n'); 

    end;     

    [E, D]=pcamat(mixedsig, firstEig, lastEig, interactivePCA, verbose); 

  end 

end   

// Whitening the data 

    if jumpWhitening == 3, 

    if b_verbose, 
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      fprintf ('Whitening not needed.\n'); 

    end; 

  else     

    if (jumpWhitening > 0) & (b_verbose), 

      fprintf ('You must suply all of these in order to jump whitening:\n'); 

      fprintf ('''whiteSig'', ''whiteMat'', ''dewhiteMat''.\n'); 

    end; 

 [whitesig, whiteningMatrix, dewhiteningMatrix] = whitenv ... 

                             (mixedsig, E, D, verbose); 

end   

end % if only > 1   

  Dim = size(whitesig, 1);   

  if numOfIC > Dim 

    numOfIC = Dim; 

    if (b_verbose & userNumOfIC) 

      fprintf('Warning: estimating only %d independent components\n', numOfIC); 

      fprintf('(Can''t estimate more independent components than dimension of data)\n'); 

    end 

  end   

  // Calculate the ICA with fixed point algorithm. 

  [A, W] = fpica (whitesig,  whiteningMatrix, dewhiteningMatrix, approach, ... 

          numOfIC, g, finetune, a1, a2, myy, stabilization, epsilon, ... 

          maxNumIterations, maxFinetune, initState, guess, sampleSize, ... 

          displayMode, displayInterval, verbose); 

    // Check for valid return 

  if ~isempty(W) 

    % Add the mean back in. 

    if b_verbose 

      fprintf('Adding the mean back to the data.\n'); 

    end 

    icasig = W * mixedsig + (W * mixedmean) * ones(1, NumOfSampl); 

    %icasig = W * mixedsig; 
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    if b_verbose & ... 

      (max(abs(W * mixedmean)) > 1e-9) & ... 

      (strcmp(displayMode,'signals') | strcmp(displayMode,'on')) 

      fprintf('Note that the plots don''t have the mean added.\n'); 

    end 

  else 

    icasig = []; 

  end 

end % if only > 2 

if only == 1    % only PCA 

  Out1 = E; 

  Out2 = D; 

elseif only == 2  % only PCA & whitening 

  if nargout == 2 

    Out1 = whiteningMatrix; 

    Out2 = dewhiteningMatrix; 

  else 

    Out1 = whitesig; 

    Out2 = whiteningMatrix; 

    Out3 = dewhiteningMatrix; 

  end 

else      % ICA 

  if nargout == 2 

    Out1 = A; 

    Out2 = W; 

  else 

    Out1 = icasig; 

    Out2 = A; 

    Out3 = W; 

  end 

end 
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Appendix V  

 

Partial least squares discriminant analysis (PLS-DA) 

// Variables 

// X                   dataset [samples x variables] 

// class              class vector, class labels can be  

// pret_type          data pretreatment  

// cv_type            type of cross validation 

// cv_groups          number of cv groups 

// assign_method      assignation method (bayes, max) 

// model              plsda model calculated by means of plsdafit 

// selection of the optimal number of latent variables for PLSDA by means of cross-validation 

function res = plsdacompsel(X,class,pret_type,cv_type,cv_groups,assign_method) 

[n,p] = size(X); 

r = min(n,p); 

if r > 20 

    r = 20; 

end 

if r > 2 

    r = r - 1; 

end 

hwait = waitbar(0,'cross validating models','CreateCancelBtn','setappdata(gcbf,''canceling'',1)'); 

setappdata(hwait,'canceling',0); 

for k = 1:r 

    if ~ishandle(hwait) 

        res.er = NaN; 

        res.ner = NaN; 

        res.not_ass = NaN; 

        break 

    elseif getappdata(hwait,'canceling') 

        res.er = NaN; 

        res.ner = NaN; 



238 

 

        res.not_ass = NaN; 

        break 

    else 

        waitbar(k/r) 

        out = plsdacv(X,class,k,pret_type,cv_type,cv_groups,assign_method); 

        res.er(k) = out.class_param.er; 

        res.ner(k) = out.class_param.ner; 

        res.not_ass(k) = out.class_param.not_ass; 

    end 

end 

if ishandle(hwait) 

    delete(hwait) 

end 

res.settings.pret_type = pret_type; 

res.settings.cv_type = cv_type; 

res.settings.cv_groups = cv_groups; 

res.settings.assign_method = assign_method; 

// cross-validate Partial Least Squares Discriminant Analysis (PLSDA) 

function cv = plsdacv(X,class,comp,pret_type,cv_type,cv_groups,assign_method) 

if iscell(class) 

    class_string = class; 

    [class,class_labels] = calc_class_string(class_string); 

else 

    class_string = {}; 

    class_labels = {}; 

end 

y = class; 

x = X; 

nobj=size(x,1); 

if strcmp(cv_type,'boot') 

    hwait = waitbar(0,'bootstrap validation'); 

    out_bootstrap = zeros(nobj,1); 
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    assigned_class = []; 

    class_true = []; 

    for i=1:cv_groups 

        waitbar(i/cv_groups) 

        out = ones(nobj,1); 

        whos_in = []; 

        for k=1:nobj 

            r = ceil(rand*nobj); 

            whos_in(k) = r; 

        end 

        out(whos_in) = 0; 

        % counters for left out samples 

        boot_how_many_out(i)=length(find(out == 1)); 

        out_bootstrap(find(out == 1)) = out_bootstrap(find(out == 1)) + 1;         

        x_out = x(find(out == 1),:); 

        y_out = y(find(out == 1)); 

        x_in  = x(whos_in,:); 

        y_in  = y(whos_in,:);         

        model = plsdafit(x_in,y_in,comp,pret_type,assign_method,0); 

        pred = plsdapred(x_out,model); 

        assigned_class = [assigned_class; pred.class_pred]; 

        class_true = [class_true; class(find(out == 1))]; 

        for g=1:size(y,2) 

            rmsec(g) = NaN; 

            quantitative_class(g) = NaN; 

        end 

    end 

    class = class_true; 

    assigned_class = assigned_class'; 

    delete(hwait); 

elseif strcmp(cv_type,'rand') 

    hwait = waitbar(0,'montecarlo validation'); 
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    assigned_class = []; 

    out_rand = zeros(nobj,1); 

    perc_in = 0.8; 

    take_in = round(nobj*perc_in); 

    class_true = []; 

    for i=1:cv_groups 

        waitbar(i/cv_groups) 

        out = ones(nobj,1); 

        whos_in = randperm(nobj); 

        whos_in = whos_in(1:take_in); 

        out(whos_in) = 0; 

        % counters for left out samples 

        out_rand(find(out == 1)) = out_rand(find(out == 1)) + 1;         

        x_out = x(find(out == 1),:); 

        y_out = y(find(out == 1)); 

        x_in  = x(whos_in,:); 

        y_in  = y(whos_in,:);         

        model = plsdafit(x_in,y_in,comp,pret_type,assign_method,0); 

        pred = plsdapred(x_out,model); 

        assigned_class = [assigned_class; pred.class_pred]; 

        class_true = [class_true; class(find(out == 1))]; 

        for g=1:size(y,2) 

            rmsec(g) = NaN; 

            quantitative_class(g) = NaN; 

        end 

    end 

    class = class_true; 

    assigned_class = assigned_class'; 

    delete(hwait); 

else 

    quantitative_class = zeros(nobj,max(class)); 

    class_pred = zeros(nobj,1); 
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    obj_in_block = fix(nobj/cv_groups); 

    left_over = mod(nobj,cv_groups); 

    st = 1; 

    en = obj_in_block; 

    for i = 1:cv_groups 

        in = ones(size(x,1),1); 

        if strcmp(cv_type,'vene') % venetian blinds 

            out = [i:cv_groups:nobj]; 

        else % contiguous blocks 

            if left_over == 0 

                out = [st:en]; 

                st =  st + obj_in_block;  en = en + obj_in_block; 

            else 

                if i < cv_groups - left_over 

                    out = [st:en]; 

                    st =  st + obj_in_block;  en = en + obj_in_block; 

                elseif i < cv_groups 

                    out = [st:en + 1]; 

                    st =  st + obj_in_block + 1;  en = en + obj_in_block + 1; 

                else 

                    out = [st:nobj]; 

                end 

            end 

        end 

        in(out) = 0; 

        x_in = x(find(in),:); 

        y_in = y(find(in),:); 

        x_out = x(find(in == 0),:); 

        model = plsdafit(x_in,y_in,comp,pret_type,assign_method,0); 

        out = plsdapred(x_out,model); 

        assigned_class(find(in == 0)) = out.class_pred; 

        quantitative_class(find(in == 0),:) = out.yc; 
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    end 

    for g=1:size(y,2) 

        C = calc_reg_param(y(:,g),quantitative_class(:,g)); 

        rmsec(g) = C.RMSEC; 

    end 

end  

class_param = calc_class_param(assigned_class',class);  

cv.class_pred = assigned_class'; 

if length(class_labels) > 0 

    cv.class_pred_string = calc_class_string(cv.class_pred,class_labels); 

end 

cv.class_param = class_param; 

cv.yc = quantitative_class; 

cv.rmsec = rmsec; 

cv.settings.cv_groups = cv_groups; 

cv.settings.cv_type = cv_type; 

cv.settings.num_comp = comp; 

cv.settings.pret_type = pret_type; 

// assign samples for PLSDA on the basis of thresholds and calculated responses 

function assigned_class = plsdafindclass(yc,class_thr) 

nobj = size(yc,1); 

nclass = size(yc,2); 

for i = 1:nobj 

    pred = yc(i,:); 

    chk_ass = zeros(1,nclass); 

    for c = 1:nclass 

        if pred(c) > class_thr(c); chk_ass(c) = 1; end; 

    end 

    if length(find(chk_ass)) == 1 

        assigned_class(i) = find(chk_ass); 

    else 

        assigned_class(i) = 0; 



243 

 

    end 

end 

// find the class thresholds for PLSDA 

function res = plsdafindthr(yc,class) 

rsize = 100; 

for g=1:size(yc,2) 

    class_in = ones(size(class,1),1); 

    class_in(find(class ~= g)) = 2; 

    count = 0; 

    y_in = yc(:,g); 

    miny = min(y_in); 

    thr = max(y_in); 

    step = (thr - miny)/rsize; 

    spsn = []; 

    while thr > miny 

        count = count + 1; 

        class_calc_in = ones(size(class,1),1); 

        thr = thr - step; 

        sample_out_g = find(y_in < thr); 

        class_calc_in(sample_out_g) = 2; 

        cp = calc_class_param(class_calc_in,class_in); 

        sp(count,g) = cp.specificity(1); 

        sn(count,g) = cp.sensitivity(1); 

        thr_val(count,g) = thr;        

    end 

end  

% find best thr based on bayesian discrimination threshold 

for g=1:max(class) 

    P_g = yc(find(class==g),g); 

    P_notg = yc(find(class~=g),g); 

    m_g = mean(P_g); s_g = std(P_g); 

    m_notg = mean(P_notg); s_notg = std(P_notg); 
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    stp = abs(m_g - m_notg)/1000; 

    where = [m_notg:stp:m_g]; 

    % fit normal distribution 

    % npdf_g = normpdf(where,m_g,s_g); 

    x_g = (where - m_g) ./ s_g; 

    npdf_g = exp(-0.5 * x_g .^2) ./ (sqrt(2*pi) .* s_g); 

    % npdf_notg = normpdf(where,m_notg,s_notg); 

    x_notg = (where - m_notg) ./ s_notg; 

    npdf_notg = exp(-0.5 * x_notg .^2) ./ (sqrt(2*pi) .* s_notg); 

    minval = NaN; 

    for k=1:length(where) 

        diff = abs(npdf_g(k)-npdf_notg(k)); 

        if isnan(minval) || diff < minval 

             minval = diff; 

             class_thr(g) = where(k); 

        end 

    end 

    if isnan(minval) 

        class_thr(g) = mean([m_g m_notg]); 

    end   

end  

res.class_thr = class_thr; 

res.sp = sp; 

res.sn = sn; 

res.thr_val = thr_val; 

// fit Partial Least Squares Discriminant Analysis (PLSDA) 

function model = plsdafit(X,class,comp,pret_type,assign_method,doqtlimit) 

if nargin < 6 

    doqtlimit = 0; 

end 

if iscell(class) 

    class_string = class; 
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    [class,class_labels] = calc_class_string(class_string); 

else 

    class_string = {}; 

    class_labels = {}; 

end 

% unfold classes 

y = zeros(size(X,1),max(class)); 

for g=1:max(class) 

    y(find(class==g),g) = 1; 

end 

// data scaling 

[X_scal,px] = data_pretreatment(X,pret_type); 

[y_scal,py] = data_pretreatment(y,'none'); 

% pls2 

[T,P,W,U,Q,B,ssq,Ro,Rv,Lo,Lv] = mypls(X_scal,y_scal,comp); 

yscal_c = T*Q'; 

Lo = Lo(:,comp); 

yc = redo_scaling(yscal_c,py); 

cumvar = ssq; 

expvar(1,:) = cumvar(1,:); 

for k = 2:comp; expvar(k,:) = cumvar(k,:) - cumvar(k - 1,:); end 

% coefficients 

b = W(:,1:comp)*inv(P(:,1:comp)'*W(:,1:comp))*Q(:,1:comp)'; 

% T hot 

fvar = sqrt(1./(diag(T'*T)/(size(X,1) - 1))); 

Thot = sum((T*diag(fvar)).^2,2); 

Tcont = (T*diag(fvar)*P'); 

% Qres 

Xmod = T*P'; 

Qcont = X_scal - Xmod; 

for i=1:size(T,1) 

    Qres(i) = Qcont(i,:)*Qcont(i,:)'; 
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end 

% rmsec 

for g=1:size(y,2) 

    res = calc_reg_param(y(:,g),yc(:,g)); 

    rmsec(g) = res.RMSEC; 

end 

% T2 and Q limits 

if doqtlimit 

    mlim = pca_model(X,comp,pret_type); 

    tlim = mlim.settings.tlim; 

    qlim = mlim.settings.qlim; 

else 

    tlim = NaN; 

    qlim = NaN; 

end 

for g=1:max(class) 

    mc(g) = mean(yc(find(class==g),g)); 

    sc(g) = std(yc(find(class==g),g)); 

    mnc(g) = mean(yc(find(class~=g),g)); 

    snc(g) = std(yc(find(class~=g),g)); 

    for i=1:size(X,1) 

        Pc = 1./(sqrt(2*pi)*sc(g)) * exp(-0.5*((yc(i,g) - mc(g))/sc(g)).^2); 

        Pnc = 1./(sqrt(2*pi)*snc(g)) * exp(-0.5*((yc(i,g) - mnc(g))/snc(g)).^2); 

        prob(i,g) = Pc/(Pc + Pnc); 

    end 

end 

% class evaluation 

[tmp,class_true] = max(y'); 

resthr = plsdafindthr(yc,class_true'); 

if strcmp(assign_method,'max') 

    % assigns on the maximum calculated response 

    [non,assigned_class] = max(prob'); 
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else 

    % assigns on the bayesian discrimination threshold 

    assigned_class = plsdafindclass(yc,resthr.class_thr); 

end 

class_param = calc_class_param(assigned_class',class_true'); 

model.type = 'plsda'; 

model.yc = yc; 

model.prob = prob; 

model.class_calc = assigned_class'; 

if length(class_labels) > 0 

    model.class_calc_string = calc_class_string(model.class_calc,class_labels); 

end 

model.class_param = class_param; 

model.T = T; 

model.P = P; 

model.U = U; 

model.Q = Q; 

model.W = W; 

model.b = b; 

model.cumvar = cumvar; 

model.expvar = expvar; 

model.rmsec = rmsec; 

model.H = Lo; 

model.Thot = Thot; 

model.Tcont = Tcont; 

model.Qres = Qres; 

model.Qcont = Qcont; 

model.settings.pret_type = pret_type; 

model.settings.px = px; 

model.settings.py = py; 

model.settings.y = y; 

model.settings.tlim = tlim; 
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model.settings.qlim = qlim; 

model.settings.thr_val = resthr.thr_val'; 

model.settings.sp = resthr.sp; 

model.settings.sn = resthr.sn; 

model.settings.thr = resthr.class_thr; 

model.settings.assign_method = assign_method; 

model.settings.raw_data = X; 

model.settings.class = class; 

model.settings.class_string = class_string; 

model.settings.mc = mc; 

model.settings.sc = sc; 

model.settings.mnc = mnc; 

model.settings.snc = snc; 

model.cv = []; 

model.labels.variable_labels = {}; 

model.labels.sample_labels = {}; 

model.labels.class_labels = class_labels; 

// prediction with Partial Least Squares Discriminant Analysis (PLSDA) 

function pred = plsdapred(X,model) 

W = model.W; 

Q = model.Q; 

P = model.P; 

nF = size(model.T,2); 

T = model.T; 

X_scal = test_pretreatment(X,model.settings.px); 

% prediction 

yscal_c = 0; 

for k = 1:nF 

    Ttest(:,k) = X_scal*W(:,k)/(W(:,k)'*W(:,k)); 

    yscal_c = yscal_c + Ttest(:,k)*Q(:,k)'; 

    X_scal = X_scal - Ttest(:,k)*P(:,k)'; 

end 
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pred.yc = redo_scaling(yscal_c,model.settings.py); 

pred.T = Ttest; 

% probability 

for g=1:size(pred.yc,2) 

    mc(g) = model.settings.mc(g); 

    sc(g) = model.settings.sc(g); 

    mnc(g) = model.settings.mnc(g); 

    snc(g) = model.settings.snc(g); 

    for i=1:size(X,1) 

        Pc = 1./(sqrt(2*pi)*sc(g)) * exp(-0.5*((pred.yc(i,g) - mc(g))/sc(g)).^2); 

        Pnc = 1./(sqrt(2*pi)*snc(g)) * exp(-0.5*((pred.yc(i,g) - mnc(g))/snc(g)).^2); 

        prob(i,g) = Pc/(Pc + Pnc); 

    end 

end 

pred.prob = prob; 

if strcmp(model.settings.assign_method,'max') 

    [non,assigned_class] = max(prob'); 

else 

    assigned_class = plsdafindclass(pred.yc,model.settings.thr); 

end 

pred.class_pred = assigned_class'; 

if length(model.labels.class_labels) > 0 

    pred.class_pred_string = calc_class_string(pred.class_pred,model.labels.class_labels); 

end 

% leverages 

X_scal = test_pretreatment(X,model.settings.px); 

pred.H = diag(Ttest*pinv(T'*T)*Ttest'); 

% T hot 

fvar = sqrt(1./(diag(T'*T)/(size(T,1) - 1))); 

pred.Thot = sum((Ttest*diag(fvar)).^2,2); 

pred.Tcont = Ttest*diag(fvar)*P'; 

% Qres 



250 

 

Xmod = Ttest*P'; 

Qcont = X_scal - Xmod; 

for i=1:size(X,1) 

    pred.Qres(i) = Qcont(i,:)*Qcont(i,:)'; 

end 

pred.Qcont = Qcont; 
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Appendix VI 

 

MDS: Euclidean, mahalanobis, minkowski 

// Variables 

// dist_type      'euclidean', 'mahalanobis', ‘minkowski' 

// X               dataset [samples x variables] 

// calculation of distances between samples of X and Xnew 

function D = knn_calc_dist(X,Xnew,dist_type) 

if strcmp(dist_type,'mahalanobis') 

    inv_covX = pinv(cov(X)); 

end 

for i=1:size(Xnew,1) 

    if strcmp(dist_type,'euclidean') 

        x_in = Xnew(i,:); 

        D_squares_x = (sum(x_in'.^2))'*ones(1,size(X,1)); 

        D_squares_w = sum(X'.^2); 

        D_product   = - 2*(x_in*X'); 

        D(i,:) = (D_squares_x + D_squares_w + D_product).^0.5;  

    else 

        for j=1:size(X,1) 

            x = Xnew(i,:); 

            y = X(j,:); 

            if strcmp(dist_type,'mahalanobis') 

                D(i,j) = ((x - y)*inv_covX*(x - y)')^0.5; 

            elseif strcmp(dist_type,'cityblock') 

                D(i,j) = sum(abs(x - y)); 

            elseif strcmp(dist_type,'minkowski') 

                p = 2; 

                D(i,j) = (sum((abs(x - y)).^p))^(1/p); 

            else 

                [a,bc,d,p] = calcbinary(x,y); 

                if strcmp(dist_type,'sm') 
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                    D(i,j)=1-((a+d)/p); 

                elseif strcmp(dist_type,'rt') 

                    D(i,j)=1-((a+d)/(p+bc)); 

                elseif strcmp(dist_type,'jt') 

                    D(i,j)=1-(a/(a+bc)); 

                elseif strcmp(dist_type,'gle') 

                    D(i,j)=1-(2*a/(2*a+bc)); 

                elseif strcmp(dist_type,'ct4') 

                    D(i,j)=1-(log2(1+a)/log2(1+a+bc)); 

                elseif strcmp(dist_type,'ac') 

                    D(i,j)=1-((2/pi)*asin(sqrt((a+d)/p))); 

                end 

            end 

        end 

    end 

end 

  

function [a,bc,d,p] = calcbinary(x,y) 

p = length(x); 

s = sum([x; y]); 

a = length(find(s==2)); 

bc = length(find(s==1)); 

d = length(find(s==0)); 
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Appendix VII  

 

Potential functions 

// Variables 

//X                   dataset [samples x variables] 

// class             class vector  

// type               kernel type (gaussian, triangular) 

// smoot            smoothing parameter [1 x classes]  

// perc               percentile to define the class boundary (95%) 

// pret_type         data pretreatment  

// cv_type           type of cross validation 

// cv_groups         number of cv groups 

// num_comp          define the number of PCs to apply Potential Functions on 

// selection of optimal smoothing parameter for Potential Functions by means of cross-validation 

function res = potsmootsel(X,class,type,perc,pret_type,cv_type,cv_groups,num_comp) 

if nargin < 8; num_comp = NaN; end 

smoot_range = [0.1:0.1:1.2]; 

hwait = waitbar(0,'cross validating models','CreateCancelBtn','setappdata(gcbf,''canceling'',1)'); 

setappdata(hwait,'canceling',0) 

for k = 1:length(smoot_range) 

    if ~ishandle(hwait) 

        res.er = NaN; 

        res.sensitivity = NaN; 

        res.specificity = NaN; 

        res.smoot_prod = NaN; 

        break 

    elseif getappdata(hwait,'canceling') 

        res.er = NaN; 

        res.sensitivity = NaN; 

        res.specificity = NaN; 

        res.smoot_prod = NaN; 

        break 
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    else 

        waitbar(k/length(smoot_range)) 

        smoot_here = ones(1,max(class))*smoot_range(k); 

        out = potcv(X,class,type,smoot_here,perc,pret_type,cv_type,cv_groups,num_comp); 

        res.er(k,:) = out.class_param.er_smootsel; 

        res.sensitivity(k,:) = out.class_param.sn_smootsel; 

        res.specificity(k,:) = out.class_param.sp_smootsel; 

        res.smoot_prod(k,:) = out.smoot_prod; 

    end 

end 

if ishandle(hwait) 

    delete(hwait) 

end 

res.settings.smoot_range = smoot_range; 

res.settings.type = type; 

res.settings.perc = perc; 

res.settings.pret_type = pret_type; 

res.settings.cv_type = cv_type; 

res.settings.cv_groups = cv_groups; 

res.settings.num_comp = num_comp; 

end 

// kernel calculation for potential functions 

p = 0; 

s = std(X); 

if strcmp(type,'gaus') 

    for i=1:size(X,1) 

        n = 1; 

        for j=1:size(X,2) 

            d = (X(i,j) - v(j)); 

            r = smoot*s(j); 

            n1 = 1/(r*(2*pi)^(1/2)); 

            n2 = -(d^2)/(2*(r^2)); 
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            n = n*n1*exp(n2); 

        end 

        p = p + n/size(X,1); 

    end 

elseif strcmp(type,'tria') 

    for i=1:size(X,1) 

        n = norm(X(i,:) - v); 

        n = n/smoot; 

        if n <= 1 

            n = 1 - n; 

        else 

            n = 0; 

        end 

        p = p + n; 

    end 

    p = p/size(X,1); 

end  

end 

// cross validation for class modeling Potential Functions 

if iscell(class) 

    class_string = class; 

    [class,class_labels] = calc_class_string(class_string); 

else 

    class_string = {}; 

    class_labels = {}; 

end 

if nargin < 9; num_comp = NaN; end 

y = class; 

x = X; 

nobj=size(x,1); 

if strcmp(cv_type,'boot') 

    hwait = waitbar(0,'bootstrap validation'); 
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    out_bootstrap = zeros(nobj,1); 

    assigned_class = []; 

    binary_class = []; 

    class_true = []; 

    smoot_prod = ones(1,max(class)); 

    for i=1:cv_groups 

        waitbar(i/cv_groups) 

        out = ones(nobj,1); 

        whos_in = []; 

        for k=1:nobj 

            r = ceil(rand*nobj); 

            whos_in(k) = r; 

        end 

        out(whos_in) = 0; 

        % counters for left out samples 

        out_bootstrap(find(out == 1)) = out_bootstrap(find(out == 1)) + 1; 

        x_out = x(find(out == 1),:); 

        x_in  = x(whos_in,:); 

        y_in  = y(whos_in,:); 

        y_out = y(find(out == 1),:); 

        model = potfit(x_in,y_in,type,smoot,perc,pret_type,num_comp); 

        pred = potpred(x_out,model); 

        assigned_class = [assigned_class; pred.class_pred]; 

        binary_class = [binary_class; pred.binary_assignation]; 

        class_true = [class_true; class(find(out == 1))]; 

        for g=1:size(pred.P,2) 

            smoot_prod(g) = smoot_prod(g)*prod(pred.P(find(y_out == g),g)); 

        end 

    end 

    class = class_true; 

    assigned_class = assigned_class'; 

    delete(hwait); 
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elseif strcmp(cv_type,'rand') 

    hwait = waitbar(0,'montecarlo validation'); 

    assigned_class = []; 

    binary_class = []; 

    smoot_prod = ones(1,max(class)); 

    out_rand = zeros(nobj,1); 

    perc_in = 0.8; 

    take_in = round(nobj*perc_in); 

    class_true = []; 

    for i=1:cv_groups 

        waitbar(i/cv_groups) 

        out = ones(nobj,1); 

        whos_in = randperm(nobj); 

        whos_in = whos_in(1:take_in); 

        out(whos_in) = 0; 

        % counters for left out samples 

        out_rand(find(out == 1)) = out_rand(find(out == 1)) + 1; 

        x_out = x(find(out == 1),:); 

        x_in  = x(whos_in,:); 

        y_in  = y(whos_in,:); 

        y_out = y(find(out == 1),:); 

        model = potfit(x_in,y_in,type,smoot,perc,pret_type,num_comp); 

        pred = potpred(x_out,model); 

        assigned_class = [assigned_class; pred.class_pred]; 

        binary_class = [binary_class; pred.binary_assignation]; 

        class_true = [class_true; class(find(out == 1))]; 

        for g=1:size(pred.P,2) 

            smoot_prod(g) = smoot_prod(g)*prod(pred.P(find(y_out == g),g)); 

        end 

    end 

    class = class_true; 

    assigned_class = assigned_class'; 
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    delete(hwait); 

else 

    obj_in_block = fix(nobj/cv_groups); 

    left_over = mod(nobj,cv_groups); 

    smoot_prod = ones(1,max(class)); 

    st = 1; 

    en = obj_in_block; 

    for i = 1:cv_groups 

        in = ones(size(x,1),1); 

        if strcmp(cv_type,'vene') % venetian blinds 

            out = [i:cv_groups:nobj]; 

        else % contiguous blocks 

            if left_over == 0 

                out = [st:en]; 

                st =  st + obj_in_block;  en = en + obj_in_block; 

            else 

                if i < cv_groups - left_over 

                    out = [st:en]; 

                    st =  st + obj_in_block;  en = en + obj_in_block; 

                elseif i < cv_groups 

                    out = [st:en + 1]; 

                    st =  st + obj_in_block + 1;  en = en + obj_in_block + 1; 

                else 

                    out = [st:nobj]; 

                end 

            end 

        end 

        in(out) = 0; 

        x_in = x(find(in),:); 

        y_in = y(find(in),:); 

        x_out = x(find(in == 0),:); 

        y_out = y(find(in == 0),:); 
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        model = potfit(x_in,y_in,type,smoot,perc,pret_type,num_comp); 

        pred = potpred(x_out,model); 

        assigned_class(find(in == 0)) = pred.class_pred; 

        binary_class(find(in == 0),:) = pred.binary_assignation; 

        for g=1:size(pred.P,2) 

            smoot_prod(g) = smoot_prod(g)*prod(pred.P(find(y_out == g),g)); 

        end 

    end 

end 

cv.class_param = calc_class_param(assigned_class',class); 

for g=1:size(binary_class,2) 

    class_here = 2*ones(length(class),1); 

    class_here(find(class == g)) = 1; 

    class_here_calc = binary_class(:,g); 

    class_here_calc(find(class_here_calc == 0)) = 2; 

    cp_class = calc_class_param(class_here_calc,class_here); 

    cv.class_param.sn_smootsel(g) = cp_class.sensitivity(1); 

    cv.class_param.sp_smootsel(g) = cp_class.specificity(1); 

    cv.class_param.er_smootsel(g) = cp_class.er; 

end 

cv.class_pred = assigned_class'; 

if length(class_labels) > 0 

    cv.class_pred_string = calc_class_string(cv.class_pred,class_labels); 

end 

cv.smoot_prod = smoot_prod; 

cv.settings.type = type; 

cv.settings.perc = perc; 

cv.settings.smoot = smoot; 

cv.settings.cv_groups = cv_groups; 

cv.settings.cv_type = cv_type; 

cv.settings.pret_type = pret_type; 

cv.settings.num_comp =num_comp; 
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// class identification with potential functions 

function [assigned_class,binary_assignation] = potfindclass(P,thr) 

for k=1:size(P,1) 

    which_class = zeros(1,size(P,2)); 

    for g=1:size(P,2) 

        if P(k,g) > thr(g) 

            which_class(g) = 1; 

        end 

    end 

    if length(find(which_class == 1)) == 1 

        assigned_class(k,1) = find(which_class == 1); 

    else 

        assigned_class(k,1) = 0; 

    end 

    binary_assignation(k,:) = which_class; 

end  

end 

// fit class modeling Potential Functions 

if iscell(class) 

    class_string = class; 

    [class,class_labels] = calc_class_string(class_string); 

else 

    class_string = {}; 

    class_labels = {}; 

end 

if nargin < 7; num_comp = NaN; end 

if isnan(num_comp) 

    [X_scal,param] = data_pretreatment(X,pret_type); 

    model_pca = NaN; 

else 

    param = NaN; 

    if num_comp == 0 
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        comphere = 10;  

    else 

        comphere = num_comp;  

    end 

    model_pca = pca_model(X,comphere,pret_type); 

    if num_comp == 0 

        compin = length(find(model_pca.E > mean(model_pca.settings.Efull))); 

        model_pca = pca_model(X,compin,pret_type); 

    end 

    X_scal = model_pca.T; 

end 

for g=1:max(class) 

    % potential function 

    Xclass{g} = X_scal(find(class == g),:); 

    for i=1:size(X_scal,1) 

        P(i,g) = potcalc(X_scal(i,:),Xclass{g},type,smoot(g)); 

    end 

    Pin = P(find(class == g),g); 

    thr(g) = find_thr(Pin,perc); 

end 

class_calc = potfindclass(P,thr); 

class_param = calc_class_param(class_calc,class);  

model.type = 'pf'; 

model.P = P; 

model.class_calc = class_calc; 

if length(class_labels) > 0 

    model.class_calc_string = calc_class_string(model.class_calc,class_labels); 

end 

model.class_param = class_param; 

model.settings.thr = thr; 

model.settings.smoot = smoot; 

model.settings.type = type; 
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model.settings.perc = perc; 

model.settings.Xclass = Xclass; 

model.settings.num_comp = num_comp; 

model.settings.pret_type = pret_type; 

model.settings.param = param; 

model.settings.model_pca = model_pca; 

model.settings.raw_data = X; 

model.settings.class = class; 

model.cv = []; 

model.labels.variable_labels = {}; 

model.labels.sample_labels = {}; 

model.labels.class_labels = class_labels;  

end 

function thr = find_thr(P,perc) 

% class thresholds based on percentiles 

q = perc*length(P)/100; 

j = fix(q); 

Ssort = -sort(-P); 

thr = Ssort(j) + (q - j)*(Ssort(j+1) - Ssort(j)); 

end 

// prediction with class modeling Potential Functions 

smoot = model.settings.smoot; 

kernel_type = model.settings.type; 

if isnan(model.settings.num_comp) 

    X_scal = test_pretreatment(X,model.settings.param); 

else 

    [model_pca] = pca_project(X,model.settings.model_pca); 

    X_scal = model_pca.Tpred; 

end 

% calc potential 

for g=1:length(model.settings.Xclass) 

    for i=1:size(X_scal,1) 
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        P(i,g) = potcalc(X_scal(i,:),model.settings.Xclass{g},kernel_type,smoot(g)); 

    end 

end 

 [class_pred,binary_assignation] = potfindclass(P,model.settings.thr); 

pred.P = P; 

pred.class_pred =class_pred; 

if length(model.labels.class_labels) > 0 

    pred.class_pred_string = calc_class_string(pred.class_pred,model.labels.class_labels); 

end 

pred.binary_assignation = binary_assignation; 

end 
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Appendix VIII  

 

Backpropagation neural networks 

//Variables 

// X    dataset; 

// class   class vector; 

// settings  defined with the backpropagation settings routine; 

// cv_type   type of cross validation; 

// cv_groups  number of cv groups; 

// cross-validation of Backpropagation Neural Networks (BPNN) 

function cv = backpropagationcv(X,class,settings,cv_type,cv_groups); 

if iscell(class) 

    class_string = class; 

    [class,class_labels] = calc_class_string(class_string); 

else 

    class_string = {}; 

    class_labels = {}; 

end 

settings.doplot = 0; 

nobj = size(X,1); 

if strcmp(cv_type,'boot') 

    hwait = waitbar(0,'bootstrap validation'); 

    out_bootstrap = zeros(nobj,1); 

    class_pred = []; 

    class_true = []; 

    for i=1:cv_groups 

        waitbar(i/cv_groups) 

        out = ones(nobj,1); 

        whos_in = []; 

        for k=1:nobj 

            r = ceil(rand*nobj); 

            whos_in(k) = r; 
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        end 

        out(whos_in) = 0; 

        % counters for left out samples 

        boot_how_many_out(i)=length(find(out == 1)); 

        out_bootstrap(find(out == 1)) = out_bootstrap(find(out == 1)) + 1; 

        Xext = X(find(out == 1),:); 

        class_ext = class(find(out == 1)); 

        Xtrain  = X(whos_in,:); 

        class_train  = class(whos_in); 

        model = backpropagationfit(Xtrain,class_train,settings); 

        pred = backpropagationpred(Xext,model); 

        class_pred = [class_pred; pred.class_pred]; 

        class_true = [class_true; class_ext]; 

    end 

    class = class_true; 

    delete(hwait); 

elseif strcmp(cv_type,'rand') 

    hwait = waitbar(0,'montecarlo validation'); 

    out_rand = zeros(nobj,1); 

    perc_in = 0.8; 

    take_in = round(nobj*perc_in); 

    class_pred = []; 

    class_true = []; 

    for i=1:cv_groups 

        waitbar(i/cv_groups) 

        out = ones(nobj,1); 

        whos_in = randperm(nobj); 

        whos_in = whos_in(1:take_in); 

        out(whos_in) = 0; 

        % counters for left out samples 

        out_rand(find(out == 1)) = out_rand(find(out == 1)) + 1; 

        Xext = X(find(out == 1),:); 
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        class_ext = class(find(out == 1)); 

        Xtrain  = X(whos_in,:); 

        class_train  = class(whos_in); 

        model = backpropagationfit(Xtrain,class_train,settings); 

        pred = backpropagationpred(Xext,model); 

        class_pred = [class_pred; pred.class_pred]; 

        class_true = [class_true; class_ext]; 

    end 

    class = class_true; 

    delete(hwait); 

else 

    class_pred = zeros(size(X,1),1); 

    obj_in_block = fix(nobj/cv_groups); 

    left_over = mod(nobj,cv_groups); 

    st = 1; 

    en = obj_in_block; 

    for i = 1:cv_groups 

        in = ones(size(X,1),1); 

        if strcmp(cv_type,'vene') % venetian blinds 

            out = [i:cv_groups:nobj]; 

        else % contiguous blocks 

            if left_over == 0 

                out = [st:en]; 

                st =  st + obj_in_block;  en = en + obj_in_block; 

            else 

                if i < cv_groups - left_over 

                    out = [st:en]; 

                    st =  st + obj_in_block;  en = en + obj_in_block; 

                elseif i < cv_groups 

                    out = [st:en + 1]; 

                    st =  st + obj_in_block + 1;  en = en + obj_in_block + 1; 

                else 
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                    out = [st:nobj]; 

                end 

            end 

        end 

        in(out) = 0; 

        Xtrain = X(find(in==1),:); 

        class_train = class(find(in==1)); 

        Xext = X(find(in==0),:); 

        class_ext = class(find(in==0)); 

        model = backpropagationfit(Xtrain,class_train,settings); 

        pred = backpropagationpred(Xext,model); 

        class_pred(find(in==0)) = pred.class_pred; 

    end 

end 

class_param = calc_class_param(class_pred,class); 

cv.class_pred = class_pred; 

if length(class_labels) > 0 

    cv.class_pred_string = calc_class_string(cv.class_pred,class_labels); 

end 

cv.class_param = class_param; 

cv.settings.cv_groups = cv_groups; 

cv.settings.cv_type = cv_type; 

cv.settings.backpropagation_settings = settings; 

// assign samples for Backpropagation Neural Networks on the basis of   thresholds and  

   calculated responses 

function assigned_class = backpropagationfindclass(yc,class_thr,assignation_type,yc_scal); 

nobj = size(yc,1); 

nclass = size(yc,2); 

if strcmp(assignation_type,'thr') 

    for i = 1:nobj 

        pred = yc(i,:); 

        chk_ass = zeros(1,nclass); 



268 

 

        for c = 1:nclass 

            if pred(c) > class_thr(c); chk_ass(c) = 1; end 

        end 

        if length(find(chk_ass)) == 1 

            assigned_class(i,1) = find(chk_ass); 

        else 

            assigned_class(i,1) = 0; 

        end 

    end 

elseif strcmp(assignation_type,'max') 

    [~,param] = data_pretreatment(yc_scal,'rang'); 

    yc_range = test_pretreatment(yc,param); 

    for i = 1:nobj 

        pred = yc_range(i,:); 

        [a,b] = max(pred); 

        assigned_class(i,1) = b; 

    end 

end 

end 

function model = backpropagationfit(X,class,settings); 

if iscell(class) 

    class_string = class; 

    [class,class_labels] = calc_class_string(class_string); 

else 

    class_string = {}; 

    class_labels = {}; 

end 

% backpropagation settings 

scaling = 'auto'; 

num_hidden_neurons = settings.num_hidden_neurons; 

learning_rate = settings.learning_rate;  

alpha = settings.alpha;                           
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iter_max = settings.iter; 

assignation_type = settings.assignation_type; 

doplot = settings.doplot;  

output = zeros(size(X,1),max(class)); 

for g=1:max(class) 

    output(find(class==g),g) = 1; 

end 

 

%STEP 1 : Normalize the Input 

[X_scal,param] = data_pretreatment(X,scaling); 

% add ones for bias 

X_scal = [X_scal ones(size(X,1),1)];  

%Find the size of Input and Output Vectors 

num_var = size(X_scal,2); 

num_responses = size(output,2);  

%Initialize the weight matrices with random weights 

init_weights = [num_var num_hidden_neurons num_responses]; 

for k=1:length(init_weights)-1 

    W{k} = randn(init_weights(k),init_weights(k+1)); 

end  

% initialize weights 

for k=1:length(W); delta_W{k} = zeros(size(W{k})); end 

iter = 0; 

error_latest = 1; 

%Calling function for training the neural network 

if doplot; figure; set(gcf,'color','white'); end 

while iter < iter_max 

    iter = iter + 1; 

    % Change the weight metrix W by adding delta values to them 

    for k=1:length(W); W{k} = W{k} + delta_W{k}; end 

    [error(iter), delta_W, ~,output_pred_tmp] = 

nettrain(X_scal,output,W,learning_rate,alpha,delta_W); 
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    error_latest = error(iter); 

    if doplot > 0 

        thr_tmp = findthr(output_pred_tmp{end},class,1); 

        class_calc_tmp = 

backpropagationfindclass(output_pred_tmp{end},thr_tmp.class_thr,assignation_type,output_pre

d_tmp{end}); 

        class_param_tmp = calc_class_param(class_calc_tmp,class); 

        ner(iter) = class_param_tmp.ner; 

        sensitivity(iter,:) = class_param_tmp.sensitivity; 

        if doplot > 1 

            updateplot(error(1:iter),1,iter_max,ner,sensitivity); 

        end 

    end 

end 

output_pred = backpropagationproject(X_scal,W); 

res = findthr(output_pred{end},class); 

class_calc = 

backpropagationfindclass(output_pred{end},res.class_thr,assignation_type,output_pred{end}); 

class_param = calc_class_param(class_calc,class); 

if doplot > 0; updateplot(error(1:iter),1,iter_max,ner,sensitivity);end 

model.type = 'backprop'; 

model.W = W; 

model.output_pred = output_pred{end}; 

model.class_calc = class_calc; 

if length(class_labels) > 0 

    model.class_calc_string = calc_class_string(model.class_calc,class_labels); 

end 

model.class_param = class_param; 

model.settings.network_settings = settings; 

model.settings.param = param; 

model.settings.thr = res.class_thr; 

model.settings.thr_val = res.thr_val'; 



271 

 

model.settings.sp = res.sp; 

model.settings.sn = res.sn; 

model.settings.error = error; 

model.settings.raw_data = X; 

model.settings.class = class; 

model.cv = []; 

model.labels.variable_labels = {}; 

model.labels.sample_labels = {}; 

model.labels.class_labels = class_labels;  

end  

function [E, delta_W, residuals, Output_of_HiddenLayer]  

= nettrain(X,Output,W,learning_rate,alpha,delta_W) 

%Calculating the Output of Input Layer 

%Output of Input Layer is same as the Input of Input  Layer 

[Output_of_HiddenLayer,Input_of_HiddenLayer] = backpropagationproject(X,W); 

%Now we need to calculate the Error using Root Mean Square method 

[E, residuals] = calc_errors(Output,Output_of_HiddenLayer{end}); 

%Calculate the matrix 'd' with respect to the desired output 

d = (Output - Output_of_HiddenLayer{end}); 

d = d.*Output_of_HiddenLayer{end}; 

d = d.*(1-Output_of_HiddenLayer{end}); 

%Calculating delta output layer 

delta_W{end} = alpha*delta_W{end} + learning_rate.*(d'*Output_of_HiddenLayer{end-1})'; 

%Calculating error matrix 

error = (W{end}*d')'; 

for k = 1:length(W) - 2 

    %Calculating d* 

    d_star = []; 

    d_star = error.*Output_of_HiddenLayer{end-k}; 

    d_star = d_star.*(1-Output_of_HiddenLayer{end-k}); 

    %Calculating delta W 
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    delta_W{end-k} = alpha*delta_W{end-k} + learning_rate*Input_of_HiddenLayer{end-k-

1}'*d_star; 

    % updating error for next correction  

    error = (W{end-k}*d_star')'; 

end 

d_star = []; 

d_star = error.*Output_of_HiddenLayer{1}; 

d_star = d_star.*(1-Output_of_HiddenLayer{1}); 

% Calculating delta W 

s1 = alpha*delta_W{1}; 

s2 = X'*d_star; 

delta_W{1} = s1+learning_rate*s2; 

end  

%-------------------------------------------------------------------------- 

function [E, residuals] = calc_errors(Output,Output_of_HiddenLayer) 

difference = Output - Output_of_HiddenLayer; 

square = difference.*difference; 

E = sum(square(:))/size(Output,1); 

residuals = sum(square,2); 

end  

%-------------------------------------------------------------------------- 

function res = findthr(yc,class,dofast) 

if nargin < 3 

    dofast = 0; 

end 

if dofast == 0 

    % calc values for AUC 

    rsize = 100; 

    for g=1:size(yc,2) 

        class_in = ones(size(class,1),1); 

        class_in(find(class ~= g)) = 2; 

        count = 0; 
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        y_in = yc(:,g); 

        miny = min(y_in) - min(y_in)/10; 

        thr = max(y_in) + max(y_in)/10; 

        step = (thr - miny)/rsize; 

        if (thr - miny) > 0.01 

            while thr > miny 

                count = count + 1; 

                class_calc_in = ones(size(class,1),1); 

                thr = thr - step; 

                sample_out_g = find(y_in < thr); 

                class_calc_in(sample_out_g) = 2; 

                cp = calc_class_param(class_calc_in,class_in); 

                sp(count,g) = cp.specificity(1); 

                sn(count,g) = cp.sensitivity(1); 

                thr_val(count,g) = thr; 

            end 

        else 

            sp = NaN; 

            sn = NaN; 

            thr_val = NaN; 

        end 

    end 

    res.sp = sp; 

    res.sn = sn; 

    res.thr_val = thr_val; 

end 

% find best thr based on bayesian discrimination threshold 

for g=1:max(class) 

    P_g = yc(find(class==g),g); 

    P_notg = yc(find(class~=g),g); 

    m_g = mean(P_g); s_g = std(P_g); 

    m_notg = mean(P_notg); s_notg = std(P_notg); 
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    stp = abs(m_g - m_notg)/1000; 

    where = [m_notg:stp:m_g]; 

    % fit normal distribution 

    % npdf_g = normpdf(where,m_g,s_g); 

    x_g = (where - m_g) ./ s_g; 

    npdf_g = exp(-0.5 * x_g .^2) ./ (sqrt(2*pi) .* s_g); 

    %npdf_notg = normpdf(where,m_notg,s_notg); 

    x_notg = (where - m_notg) ./ s_notg; 

    npdf_notg = exp(-0.5 * x_notg .^2) ./ (sqrt(2*pi) .* s_notg); 

    minval = NaN; 

    for k=1:length(where) 

        diff = abs(npdf_g(k)-npdf_notg(k)); 

        if isnan(minval)|diff < minval 

             minval = diff; 

             class_thr(g) = where(k); 

        end 

    end 

    if isnan(minval) 

        class_thr(g) = mean([m_g m_notg]); 

    end   

end 

res.class_thr = class_thr; 

end  

%-------------------------------------------------------------------------- 

function updateplot(error,start_epoch,end_epoch,ner,sensitivity) 

% plot residuals 

subplot(2,1,1) 

drawnow 

cla 

hold on 

plot(error,'LineWidth',1.5,'Color',c1); 

plot(length(error),error(end),'o','MarkerEdgeColor',c1,'MarkerSize',4,'MarkerFaceColor',c1); 
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% grid and axis 

grid on 

ax = gca; 

ax.GridLineStyle = ':'; 

ax.GridAlpha = 0.5; 

M = max(error); M = M*1.1; 

axis([start_epoch end_epoch 0 M]) 

ylabel('error') 

xlabel('epochs') 

title(['training epochs: ' num2str(length(error)) ' of ' num2str(end_epoch)]) 

hold off 

box on 

% plot ner 

subplot(2,1,2) 

drawnow 

cla 

hold on 

c2 = [0.8500 0.3250 0.0980]; 

c3 = [1 0.6 0.4]; 

for g=1:size(sensitivity,2) 

    plot(sensitivity(:,g),'LineWidth',1,'Color',c3);    

plot(length(ner),sensitivity(end,g),'o','MarkerEdgeColor',c3,'MarkerSize',2.5,'MarkerFaceColor',c

3); 

end 

plot(ner,'LineWidth',1.5,'Color',c2); 

plot(length(ner),ner(end),'o','MarkerEdgeColor',c2,'MarkerSize',4,'MarkerFaceColor',c2); 

grid on 

ax = gca; 

ax.GridLineStyle = ':'; 

ax.GridAlpha = 0.5; 

m = min(ner); m = m*0.9; 

axis([start_epoch end_epoch m 1]) 
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ylabel('NER and sensitivities') 

xlabel('epochs') 

hold off 

box on 

end 

// prediction with Backpropagation Neural Networks (BPNN) 

function pred = backpropagationpred(X,model; 

%STEP 1 : Normalize the Input 

[X_scal] = test_pretreatment(X,model.settings.param); 

X_scal = [X_scal ones(size(X,1),1)]; 

output_pred = backpropagationproject(X_scal,model.W); 

class_pred = 

backpropagationfindclass(output_pred{end},model.settings.thr,model.settings.network_settings.

assignation_type,model.output_pred); 

pred.output_pred = output_pred{end}; 

pred.class_pred = class_pred; 

if length(model.labels.class_labels) > 0 

    pred.class_pred_string = calc_class_string(pred.class_pred,model.labels.class_labels); 

end 

end 

// define network settings for Backpropagation Neural Networks (BPNN) 

function settings = backpropagationsettings(num_hidden_neurons,learning_rate) 

settings.num_hidden_neurons = num_hidden_neurons; 

settings.learning_rate = learning_rate; 

settings.alpha = 0.5; 

settings.iter = 1000; 

settings.assignation_type = 'thr';                            

settings.doplot = 1; 

end 

function class_param = calc_class_param(class_calc,class) 

num_class = max([max(class) max(class_calc)]); 

nobj = size(class,1); 
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 conf_mat = zeros(num_class,num_class+1); 

for g = 1:num_class 

    in_class = find(class==g); 

    for k = 1:num_class 

        conf_mat(g,k) = length(find(class_calc(in_class) == k)); 

    end 

    conf_mat(g,num_class + 1) = length(find(class_calc(in_class) == 0)); 

end  

// sensitivity, specificity, precision, class error, accuracy 

accuracy = 0; 

for g = 1:num_class 

    if sum(conf_mat(:,g)) > 0 

        precision(g)   = conf_mat(g,g)/sum(conf_mat(:,g)); 

        sensitivity(g) = conf_mat(g,g)/sum(conf_mat(g,1:num_class)); 

    else 

        precision(g)   = 0; 

        sensitivity(g) = 0; 

    end 

    in = ones(num_class,1); in(g) = 0; 

    red_mat = conf_mat(find(in),1:num_class); 

    specificity(g) = 0; 

    for k = 1:size(red_mat,2) 

        if k ~= g; specificity(g) = specificity(g) + sum(red_mat(:,k)); end; 

    end 

    if sum(sum(red_mat)) > 0 

        specificity(g) = specificity(g)/sum(sum(red_mat)); 

    else 

        specificity(g) = 0; 

    end 

    accuracy = accuracy + conf_mat(g,g); 

end 

accuracy = accuracy/sum(sum(conf_mat(:,1:num_class))); 
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% error rates 

not_ass = sum(conf_mat(:,end))/nobj; 

ner = mean(sensitivity); 

er = 1 - ner;  

class_param.conf_mat = conf_mat; 

class_param.ner = ner; 

class_param.er  = er; 

class_param.accuracy  = accuracy; 

class_param.not_ass = not_ass; 

class_param.precision = precision; 

class_param.sensitivity = sensitivity; 

class_param.specificity = specificity; 
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Appendix IX 

  

Support vector machine (SVM) 

// Variables 

// X                   dataset [samples x variables] 

// class              class vector  

// kernel             type of kernel (linear, polynomial, rbf) 

// pret_type          data pretreatment  

// cv_type            type of cross validation 

// cv_groups          number of cv groups  

// num_comp           define the number of PCs to apply SVM (integer_number) 

// C                   upper bound for the coefficients alpha during training (cost) 

// kernelpar          parameter for rbf and poly kernels  

// model              SVM model calculated by means of svmfit 

// selection of the optimal C (cost, upper bound for the coefficients alpha)    and kernal param (only  

   for rbf and poly kernels) for Support Vector  Machines by means of cross validation 

function res = svmcostsel(X,class,kernel,pret_type,cv_type,cv_groups,num_comp) 

if nargin < 7; num_comp = NaN; end 

C_seq = [0.1 1 10 100 1000]; 

if strcmp('linear',kernel) 

    kernalparam_seq = []; 

else 

    kernalparam_seq = [0.05 0.07    0.10    0.14    0.20    0.28    0.40    0.57    0.80    1.13    1.60     

   2.26    3.20    4.53    6.40    9.00]; 

end 

hwait = waitbar(0,'cross validating models','CreateCancelBtn','setappdata(gcbf,''canceling'',1)'); 

setappdata(hwait,'canceling',0) 

for c = 1:length(C_seq) 

    if ~ishandle(hwait) 

        res.er = NaN; 

        res.ner = NaN; 

        res.average_svind = NaN; 
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        break 

    elseif getappdata(hwait,'canceling') 

        res.er = NaN; 

        res.ner = NaN; 

        res.average_svind = NaN; 

        break 

    else 

        waitbar(c/length(C_seq)) 

        C = C_seq(c); 

        if strcmp('linear',kernel) 

            kernelpar = []; 

            out = svmcv(X,class,kernel,C,kernelpar,pret_type,cv_type,cv_groups,num_comp); 

            res.er(c) = out.class_param.er; 

            res.ner(c) = out.class_param.ner; 

            res.average_svind(c) = out.average_svind; 

        else 

            for k = 1:length(kernalparam_seq) 

                kernelpar = kernalparam_seq(k); 

                % disp(['cross validating C: ' num2str(C) ' and param: ' num2str(kernelpar)]) 

                out = svmcv(X,class,kernel,C,kernelpar,pret_type,cv_type,cv_groups,num_comp); 

                res.er(c,k) = out.class_param.er; 

                res.ner(c,k) = out.class_param.ner; 

                res.average_svind(c,k) = out.average_svind; 

            end 

        end 

    end 

end 

if ishandle(hwait) 

    delete(hwait) 

end 

res.kernalparam_seq = kernalparam_seq; 

res.cost_seq = C_seq; 
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res.settings.kernel = kernel; 

res.settings.cv_type = cv_type; 

res.settings.cv_groups = cv_groups; 

res.settings.num_comp = num_comp; 

res.settings.pret_type = pret_type; 

// cross-validation for Support Vector Machines (only two classes allowed) 

function cv = svmcv(X,class,kernel,C,kernelpar,pret_type,cv_type,cv_groups,num_comp) 

if iscell(class) 

    class_string = class; 

    [class,class_labels] = calc_class_string(class_string); 

else 

    class_string = {}; 

    class_labels = {}; 

end 

if nargin < 9; num_comp = NaN; end 

nobj = size(X,1); 

if strcmp(cv_type,'boot') 

    hwait = waitbar(0,'bootstrap validation'); 

    svind = zeros(cv_groups,1); 

    out_bootstrap = zeros(nobj,1); 

    class_pred = []; 

    class_true = []; 

    for i=1:cv_groups 

        waitbar(i/cv_groups) 

        out = ones(nobj,1); 

        whos_in = []; 

        for k=1:nobj 

            r = ceil(rand*nobj); 

            whos_in(k) = r; 

        end 

        out(whos_in) = 0; 

        % counters for left out samples 
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        boot_how_many_out(i)=length(find(out == 1)); 

        out_bootstrap(find(out == 1)) = out_bootstrap(find(out == 1)) + 1;         

        Xext = X(find(out == 1),:); 

        class_ext = class(find(out == 1)); 

        Xtrain  = X(whos_in,:); 

        class_train  = class(whos_in);         

        model = svmfit(Xtrain,class_train,kernel,C,kernelpar,pret_type,num_comp); 

        pred = svmpred(Xext,model); 

        class_pred = [class_pred; pred.class_pred]; 

        class_true = [class_true; class_ext]; 

        svind(i) = length(model.svind); 

    end 

    class = class_true; 

    delete(hwait); 

elseif strcmp(cv_type,'rand') 

    hwait = waitbar(0,'montecarlo validation'); 

    svind = zeros(cv_groups,1); 

    out_rand = zeros(nobj,1); 

    perc_in = 0.8; 

    take_in = round(nobj*perc_in); 

    class_pred = []; 

    class_true = []; 

    for i=1:cv_groups 

        waitbar(i/cv_groups) 

        out = ones(nobj,1); 

        whos_in = randperm(nobj); 

        whos_in = whos_in(1:take_in); 

        out(whos_in) = 0; 

        % counters for left out samples 

        out_rand(find(out == 1)) = out_rand(find(out == 1)) + 1;         

        Xext = X(find(out == 1),:); 

        class_ext = class(find(out == 1)); 
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        Xtrain  = X(whos_in,:); 

        class_train  = class(whos_in);         

        model = svmfit(Xtrain,class_train,kernel,C,kernelpar,pret_type,num_comp); 

        pred = svmpred(Xext,model); 

        class_pred = [class_pred; pred.class_pred]; 

        class_true = [class_true; class_ext]; 

        svind(i) = length(model.svind); 

    end 

    class = class_true; 

    delete(hwait); 

else 

    svind = zeros(cv_groups,1); 

    class_pred = zeros(size(X,1),1); 

    obj_in_block = fix(nobj/cv_groups); 

    left_over = mod(nobj,cv_groups); 

    st = 1; 

    en = obj_in_block; 

    for i = 1:cv_groups 

        in = ones(size(X,1),1); 

        if strcmp(cv_type,'vene') % venetian blinds 

            out = [i:cv_groups:nobj]; 

        else % contiguous blocks 

            if left_over == 0 

                out = [st:en]; 

                st =  st + obj_in_block;  en = en + obj_in_block; 

            else 

                if i < cv_groups - left_over 

                    out = [st:en]; 

                    st =  st + obj_in_block;  en = en + obj_in_block; 

                elseif i < cv_groups 

                    out = [st:en + 1]; 

                    st =  st + obj_in_block + 1;  en = en + obj_in_block + 1; 
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                else 

                    out = [st:nobj]; 

                end 

            end 

        end 

        in(out) = 0; 

        Xtrain = X(find(in==1),:); 

        class_train = class(find(in==1)); 

        Xext = X(find(in==0),:); 

        model = svmfit(Xtrain,class_train,kernel,C,kernelpar,pret_type,num_comp); 

        pred = svmpred(Xext,model); 

        class_pred(find(in==0)) = pred.class_pred; 

        svind(i) = length(model.svind); 

    end 

end  

class_param = calc_class_param(class_pred,class); 

cv.class_pred = class_pred; 

if length(class_labels) > 0 

    cv.class_pred_string = calc_class_string(cv.class_pred,class_labels); 

end 

cv.average_svind = mean(svind); 

cv.class_param = class_param; 

cv.settings.cv_groups = cv_groups; 

cv.settings.cv_type = cv_type; 

cv.settings.kernel = kernel; 

cv.settings.C = C; 

cv.settings.kernelpar = kernelpar; 

cv.settings.pret_type = pret_type; 

cv.settings.num_comp = num_comp; 

// fit Support Vector Machines (only two classes allowed) 

function model = svmfit(X,class,kernel,C,kernelpar,pret_type,num_comp) 

if iscell(class) 
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    class_string = class; 

    [class,class_labels] = calc_class_string(class_string); 

else 

    class_string = {}; 

    class_labels = {}; 

end 

if nargin < 7; num_comp = NaN; end 

if max(class) > 2 

    disp('more than two classes detected, but only two classes allowed! model wont be calculated') 

    model = NaN; 

    return; 

end 

class(find(class == 2)) = -1; 

tol = 1e-2; 

% pretreat data 

if isnan(num_comp) 

    [X_scal,param] = data_pretreatment(X,pret_type); 

    model_pca = NaN; 

else 

    param = NaN; 

    if num_comp == 0 

        comphere = 10;  

    else 

        comphere = num_comp;  

    end 

    model_pca = pca_model(X,comphere,pret_type); 

    if num_comp == 0 

        compin = length(find(model_pca.E > mean(model_pca.settings.Efull))); 

        model_pca = pca_model(X,compin,pret_type); 

    end 

    X_scal = model_pca.T; 

end  
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net = fitcsvm(X_scal,class,'KernelFunction',kernel,'KernelScale',kernelpar,'BoxConstraint',C); 

[~,dist] = predict(net,X_scal); 

dist = dist(:,2); 

net_scores = fitPosterior(net,X_scal,class); 

[~,prob] = predict(net_scores,X_scal); 

prob = prob(:,[2 1]); 

alpha = zeros(size(X,1),1); 

alpha(find(net.IsSupportVector)) = net.Alpha; 

% class prediction 

class_calc = sign(dist); 

class(find(class == -1)) = 2; 

class_calc(find(class_calc == -1)) = 2; 

class_param = calc_class_param(class_calc,class); 

% store linear coefficents and bias 

model.type = 'svm'; 

model.alpha = alpha; 

model.svind = find(net.IsSupportVector); 

model.b = net.Beta; 

model.bias = net.Bias; 

model.dist = dist; 

model.prob = prob; 

model.class_calc = class_calc; 

if length(class_labels) > 0 

    model.class_calc_string = calc_class_string(model.class_calc,class_labels); 

end 

model.class_param = class_param; 

model.settings.net = net; 

model.settings.net_scores = net_scores; 

model.settings.param = param; 

model.settings.pret_type = pret_type; 

model.settings.C = C; 

model.settings.kernel = kernel; 
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model.settings.kernelpar = kernelpar; 

model.settings.svind_data_scaled = X_scal(model.svind,:); 

model.settings.svind_data = X(model.svind,:); 

model.settings.data_scaled = X_scal; 

model.settings.num_comp = num_comp; 

model.settings.model_pca = model_pca; 

model.settings.raw_data = X; 

model.settings.class = class; 

model.cv = []; 

model.labels.variable_labels = {}; 

model.labels.sample_labels = {}; 

model.labels.class_labels = class_labels; 

// prediction with Support Vector Machines 

function pred = svmpred(X,model) 

if isnan(model.settings.num_comp) 

    X_scal = test_pretreatment(X,model.settings.param); 

else 

    [model_pca] = pca_project(X,model.settings.model_pca); 

    X_scal = model_pca.Tpred; 

end  

[~,dist] = predict(model.settings.net,X_scal); 

dist = dist(:,2); 

[~,prob] = predict(model.settings.net_scores,X_scal); 

prob = prob(:,[2 1]); 

% class prediction 

class_pred = sign(dist); 

% put 2 instead of -1 

class_pred(find(class_pred == -1)) = 2; 

pred.class_pred = class_pred; 

if length(model.labels.class_labels) > 0 

    pred.class_pred_string = calc_class_string (pred.class_pred,model.labels.class_labels); 

end 
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pred.prob = prob; 

pred.dist = dist; 

// pretreatment for test data 

// X:        data matrix [samples x variables] 

// param:    output data structure from data_pretreatment routine 

function [X_scal] = test_pretreatment(X,param) 

a = param.a; 

s = param.s; 

m = param.m; 

M = param.M; 

pret_type = param.pret_type; 

if strcmp(pret_type,'cent') 

    amat = repmat(a,size(X,1),1); 

    X_scal = X - amat; 

elseif strcmp(pret_type,'scal') 

    f = find(s>0); 

    smat = repmat(s,size(X,1),1); 

    X_scal = zeros(size(X,1),size(X,2)); 

    X_scal = X(:,f)./smat(:,f); 

elseif strcmp(pret_type,'auto') 

    f = find(s>0); 

    amat = repmat(a,size(X,1),1); 

    smat = repmat(s,size(X,1),1); 

    X_scal = zeros(size(X,1),size(X,2)); 

    X_scal(:,f) = (X(:,f) - amat(:,f))./smat(:,f); 

elseif strcmp(pret_type,'rang') 

    f = find(M - m > 0); 

    mmat = repmat(m,size(X,1),1); 

    Mmat = repmat(M,size(X,1),1); 

    X_scal = zeros(size(X,1),size(X,2)); 

    X_scal(:,f) = (X(:,f) - mmat(:,f))./(Mmat(:,f) - mmat(:,f));        

else 
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    X_scal = X; 

end 
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