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Abstract

The main focus of this research is to construct balanced asymmetrical factorial
designs in which main effects and higher order interactions are estimated with high
efficiencies if not full efficiencies. The specific objectives in this work is to illustrate
straight forward procedures for constructing balanced arrays/resolvable balanced
incomplete block designs and hence balanced asymmetrical factorial designs.

The available literature has given methods of calculating efficiencies for balanced
asymmetrical factorial designs. These methods are not clear and have used the
traditional approaches. Therefore in this work we have made a contribution in
which we have given a direct method that uses Kronecker product of matrices to
evaluate such efficiencies.

Another major contribution is the use of Resolvable balanced incomplete block
designs in construction of balanced asymmetrical factorial designs

A notable contribution in this research work is in the construction of transitive
arrays which are extensively used in the construction of balanced asymmetrical
factorial designs by the use of Latin squares. In literature, such arrays have been
constructed by using t− ply transitive groups

An additional contribution in this work is in the construction of resolvable balanced
incomplete block designs (BIBD’s) that have block size k = 3 More specifically we
have used the geometry of chords constructed in a circle. We have used resolvable
BIBD’s of block size k = 3 to construct many more balanced asymmetrical factorial
designs

This research work has come up with a noble method of constructing balanced
arrays/resolvable BIBD’s which have been used to construct a wide range of bal-
anced asymmetrical factorial designs.

This research work is however based on the construction of balanced asymmetrical
factorial designs that are connected, so the results that we have illustrated in this
thesis are not valid in the disconnected case. This calls for suitable modifications
of these results to make them applicable to the disconnected case.

In this thesis we have restricted our considerations of balanced asymmetrical fac-
torial designs to one way designs only. These concepts can also be extended to
two way designs i.e. designs with rows and columns as blocks
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Abbreviations and Notations
BLUE Best Linear Unbiased Estimator
BAFD balanced Asymmetrical Factorial Design
BIBD Balanced Incomplete Block Design
BFD Balanced Facorial Design
SUB Symmetrical Unequal Block
GD Group Divisible
PB Pairwise Balanced
PBIB Partially Balanced Incomplete Block
PBAF Partially Balanced Assymetrical Factorial
BAF Balanced Asymetrical Factorial
OFS Orthogonal Factorial Structure
EGD Extended Group Divisible
PBIBD Partially Balanced Incomplete Block Design
C - Matrix Design Matrix
⊗ Kronecker or Tensor Product
× Symbolic Direct Product
R(.) Row Space of a Matrix
SS Sum of Squares
ANOVA analysis of variance
OA[b,k,v,t;λ] Orthogonal array with b assemblies, k constraints, v symbols

and strength t with index λ
BA[b, k, v, t] Balanced Array with b assemblies, k constraints, v symbols

and strength t
TA[b, k, v, t;λ] Transitive Array with b assemblies, k constraints, v

symbols, and strength t with index λ
GF (s) Galois Field with s elements
D(r, c, s) Difference Scheme with r constraints, c assemblies and s levels

with index λ
Hn Hadarmard matrix of order n
F (k, s, t) Minimal number of runs N in any OA[N, k, s, t]
f(k, s, t) Maximal number of runs N in any OA[N, k, s, t]
(GF (s),+) Galois Field with s elements and a binary operation +
(GF (s),−) Galois Field with s elements and a binary operation ×
BA(T )[k, s, λ] A Balanced Array with (ks− 1)sλ assemblies,

ks constraints, s symbols and strength 2
BIBD(s,N, k) Balanced Incomplete Block Design with s symbols, N

assemblies, and k constraints
FD Factorial Design(
n
r

)
nCr

DFλ(k, v) Difference Family with a constant block size k and
v symbols with index λ

Ω A set of none null binary tuples of the same order
Ω∗ A set of all possible binary tuples of the same order
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Chapter 1

Introduction

This chapter reviews earlier work, gives literature review or work done by

previous authors in balanced asymmetrical factorial designs and on the

construction of some arrays useful in the construction of these designs.

The chapter also gives background information, statement of the problem

and states the main objective of the study and the specific objectives

1.1 Background Information

One major area of statistics is balanced factorial designs: their construc-

tion, properties, their efficiencies and applications. There are various meth-

ods of constructing these balanced factorial designs. There are those that

are based on orthogonal arrays, balanced arrays, curvilinear spaces or hy-

per surfaces and truncated EG(m, s) e.t.c.

In this work we wish to construct efficient balanced asymmetrical factorial

designs using transitive arrays, balanced arrays and balanced Incomplete

block designs that are resolvable.

1



Chapter 1. Introduction 2

Historical background of balanced asymmetrical factorial designs goes back

to 1937 when Yates used trial and hit methods to obtain confounded plans

for experiments of the type 3m×2n where n andm are any positive integers.

This work considers many other confounded plans of experiments of the

type: s1 × s2, s1 × s2 × . . . × ×sm where si, i = 1, 2, . . . ,m are prime

numbers.

1.2 Statement of the Problem

Nair and Rao (1948) and Lewis and Tuck. (1985), Gupta (1987b), Suen

and Chakravati (1986) are among those who reviewed work on balanced

asymmetrical factorial designs. However their ways of constructing bal-

anced arrays/resolvable balanced incomplete block designs were not very

clear.

In construction of balanced arrays/resolvable balanced incomplete block

designs and hence BAFD’s a number of issues arose and need to be ad-

dressed.

Thus some of these issues have formed part of the problem statement

described below inform of questions

i Only a few BAFD’s are obtained using balanced arrays/resolvable bal-

anced incomplete block designs that have been obtained using earlier

methods. The question therefore is, is there a direct method that can

be used to construct balanced arrays/resolvable balanced incomplete

block designs so as to obtain more BAFD’s explicitly?

ii Is there a direct method that can be used to calculate efficiencies of

BAFD’s without necessarily having to use the traditional method of

evaluating efficiencies?
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1.3 Objectives

1.3.1 Main Objective

Our main objective is to construct a subclass of Balanced Asymmetrical

Factorial Designs.

1.3.2 Specific Objectives

a. To construct balanced asymmetrical factorial designs via

i Transitive arrays

ii Balanced arrays

iii Resolvable incomplete block designs

b. To evaluate the efficiencies of the designs constructed in a above

1.4 Literature Review

In a factorial design, an interaction will be said to be balanced if either

a.) All treatment contrasts belonging to the same interaction are estimable

and the best linear unbiased estimators (BLUE’s) of all normalised con-

trasts belonging to that same interaction have the same variance; or

b.) No contrast belonging to a given interaction is estimable. The trivial

solution (b) has been included mainly for Mathematical completeness;

this situation will never arise if in particular, the design is connected.

An interpretation of balance which is useful in practice is as follows:
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In a factorial design, an interaction is balanced in the sense

of (a) above if and only if all treatment contrasts belonging

to this interaction are estimable and the BLUE’s of every two

mutually orthogonal contrasts belonging to the said interaction

are uncorrelated.

Yates (1937a), by trial and hit methods obtained confounded plans for

experiments of the type 3m×2n, where m and n are any positive integers.

Li (1944) also employed similar methods and obtained plans for confound-

ing in asymmetrical factorial experiments 4×22, 5×22, 4×3×2, 42×2, 4×32,

42×3 and 42×2.

It was however the work of Nair and Rao (1941, 1942, 1948) which yielded

a number of useful plans. They developed a set of sufficient combinatorial

conditions for this purpose.

Bose and Kishen (1940) developed the method of finite geometries for

solving the problem of confounding in the general symmetrical factorial

design sm, where s is a prime positive integer or a power of a prime and

m any positive integer.

Kishen and Srivastava (1959a,b) constructed confounded balanced asym-

metrical factorial designs (BAFDs) of the type s1×s2×· · ·×sm, where s1 is

a prime positive integer or a power of a prime, m any positive integer, the

si’s (i = 1, 2, . . . ,m) are not all equal (si ≤ s1,∀i = 2, 3, . . . ,m).

Shah (1958, 1960a) gave the exact definition of a balanced factorial exper-

iment.

To overcome the drawbacks of using finite geometries, Kishen and Sri-

vastava (1959c,b) proposed the utilisation of Balanced Incomplete Block

(BIB) designs.
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Kishen (1960), Kishen and Tyagi (1961, 1964a), Tyagi (1971b, 1972) de-

veloped the method of constructing confounding plans for BAF designs

with the help of Incomplete Block designs. They not only made extensive

use of BIB but fully used the balancing properties of Symmetrical Unequal

Block (SUB) designs developed by Bose and Kishen (1940) and pairwise

balanced (PB) designs.

Tyagi (1972) has also used the GD designs to construct BAF designs.

The use of SUB and PB designs in getting confounded plans for BAF de-

signs has led to considerable economy in the experimental resources. There

are however, situations where the experimental resources are very scarce

and only two or three replications are desired. To meet such contingencies,

Kishen and Tyagi (1961) suggested the use of partially balanced incomplete

block (PBIB) designs as developed by Bose and Nair (1939)

Kishen and Tyagi (1964b) discussed in detail the construction of partially

balanced asymmetrical factorial (PBAF) designs of the type q×22 and q×32

associated to PBIB designs and those derivable by the use of pseudofactors.

Thus, the use PBIB has enabled them to obtain 12×22 PBAF design in 3

replications only, and a large number of q×32 (q = 4, 6, 8, 9, 10, 12) PBAF

designs in 2 replications only.

The reduction in the number of replications was achieved by the use of

PB or PBIB designs in the case of asymmetrical designs of the class q×22

and q×32. However the problem of having blocks of smaller size covering a

wide class of BAF designs with varying block sizes was still there. This has

been tackled by Tyagi (1971b) by use of group divisible (G.D) designs with

parameters v, b, r, k, λ1, λ2,m, n for constructing BAF designs of the type

m×n in blocks of size k. As a number of the GD designs are available in two

or three replications, the corresponding BAF designs are also obtained with
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three replications. Some more confounded plans associated to hierarchical

group divisible designs have also been obtained.

Das (1960b) used the method of fractional replication of symmetrical fac-

torial designs to obtain BAFDs. He also gave the criteria of choosing

suitable interactions confounded in each replication so that the complete

design becomes balanced and is easily amenable to statistical analysis.

Das and Rao (1967) gave an alternative series of confounded asymmetri-

cal factorial design with factors at two and three levels which confound

interactions involving linear and quadratic components of the factors.

Banerjee and Das (1969) have also developed further methods for con-

structing BAF designs derivable from the 2n series.

In order to obtain confounded asymmetrical factorial designs with the

smallest number of replications which can provide mutually orthogonal

estimates of all effects, Banerjee (1968) advanced a method of construc-

tion of such designs by linking the main effect and interaction contrasts

of suitable groups of factors, each at two levels, forming a symmetrical

design. This method provides BAF designs even in one replication.

The problem of using a small number of treatment combinations as possible

was solved by Bohra (1970) who obtained q×22 designs in four blocks of

(q + 1) plots each in a single replication.

Puri and Nigam (1976, 1978), Nigam et al. (1988), Gupta (1988), Gupta

and Mkerjee (1989) and Mukerjee and Wu (2006a) made use of cyclic or

generalised cyclic designs and Kronecker-type products in construction of

BAFDs. These designs have orthogonal factorial structure (OFS) and if

appropriately used, are capable of ensuring high efficiencies.
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Parsad et al. (2007) generated a large number of extended group divisible

(EGD) designs for BAF experiments. These designs have orthogonal fac-

torial structure (OFS) with balance. They also generated a catalogue of

designs giving efficiency of factorial effects. But all these designs do not

ensure that main effects would be estimated with full precision, although

their efficiencies are too high.

Parsad et al. (2007) gave a series of EGD designs with three factors in

which it is possible to generate BAF designs that estimate main effects

with full efficiency. In most of these designs, however, the levels of the first

factor are two.

Parsad et al. (2007) gave a method of running a BAF experiment in an

incomplete block design. An alternative approach to generate BAF designs

with OFS is to employ Kronecker-type products of unstructured block

designs popularly known as varietal designs. These alternative approaches

were developed by David and Wolock (1965), Dean and John (1975), John

(1966, 1973, 1987), Gupta (1983, 1985, 1987a), and Mukerjee (1980b,a),

Mukerjee and Wu (2006b), Gupta and Mkerjee (1989).

Gupta et al. (2011) proposed a method of construction of resolvable block

designs for BAF experiments. These designs have orthogonal factorial

structure, have balance, estimate all main effects with full efficiency and

have control over the interaction.

Sreenath (2011b) gave a general method of obtaining block designs for

asymmetrical confounded factorial experiments using block designs for

symmetrical factorial experiments. The effects of confounded interactions

of the symmetrical factorial, in the context of association schemes and

also on the context of connectivity of the asymmetrical factorial are also

discussed.
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Using orthogonal arrays of strength 2, Nair and Rao (1948) gave meth-

ods for constructing EGD designs for an s1 × s2 experiment in block size

s1 or s2. These authors also indicated how, starting from these one can

construct EGD designs involving more than 2 factors in simple cases. Fol-

lowing Nair and Rao (1948), several authors considered various methods

for constructing these designs. Thomson and Dick (1951), starting from a

basic s1× s2 design in block size s2 (s2 < s1, s1 being a prime number or a

power of a prime), obtained three factor designs with the same block size,

and number of levels being s1, s2 or factors of s2.

Rao (1956) constructed some series of designs from orthogonal Latin squares

for s1 × s2 experiments in blocks of size s1 and s2 − 1 replications. He

also gave some designs for 2 × s2
2 experiments. Kishen (1958) has given

balanced designs with OFS of type s1 × 22 and s1 × s2
2. Kramer and

Bradley (1957) and Zelen (1958) used group divisible incomplete block de-

signs which have EGD scheme for two factors.

Kishen and Srivastava (1959a) gave some general methods for constructing

balanced designs with OFS for asymmetrical factorial experiments. They

extended the methods of finite geometries of Bose and Kishen (1940) by

using curvilinear spaces or hypersurfaces and truncating the EG(m, s) suit-

ably and by using vectors in Galois fields. They illustrated their methods

by constructing the following series of designs: (i)s1
2× s2 design in blocks

of size s1s2, balanced in (s1 − 1) replications (s1 > s2), (ii)s1 × s2 × s3 de-

sign in blocks of size s2s3, balanced in (s1−1) replications (s1 ≥ s2s3), (iii)

designs for experiments where the number of levels is a prime number or

a power of a prime number; (iv)s1 × s2 . . . × sm design in blocks of size

s1s3s4 . . . sm where s2 is a factor of s1s3s4 . . . sm and is a prime number or
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a power of a prime number (s2
2 ≥ si, i 6= 2). Several other series of de-

signs were also given by them. Das (1960a) gave a method of construction

for asymmetrical factorials by linking them with the fractions of suitable

Symmetrical factorials. Das and Giri (1986) have discussed this method

in details and also gave several examples. Tharthare (1965) gave a class of

balanced designs with OFS for s1×s2
m experiments. Similar designs were

obtained by Kishen and Tyagi (1964a) using pairwise balanced designs of

Bose et al. (1960). Shah (1960b) gave a method of construction for s1 + s2

factor experiment using balanced designs with OFS in s1 and s2 + 1 fac-

tors respectively. Shah (1960b), Kishen and Tyagi (1963) constructed a

5 × 22 design in 10 blocks of size 2 each. An alternative design for this

experiment can also be obtained by using the method of Tharthare (1965).

Muller (1966) developed designs for s1 × s2 × . . .× sm experiments where

m1 is a prime or a power of a prime number. His procedure is to replace

each factor except the first one by one or more pseudofactors each at s1

levels. He also considered the use of balanced incomplete block designs for

the construction of s1 × s2 balanced factorials with OFS, when m1 > m2.

Further construction procedures were suggetsed by Tyagi (1971a), Aggar-

wal (1974).

Among the more recent authors, Lewis and Tuck. (1985) gave some designs

with block size 2 while Gupta (1987a) presented an algorithm for obtaining

a class of EGD designs.

Suen and Chakravati (1986) constructed several series of two factor bal-

anced designs with OFS using balanced arrays of strength 2. Gupta et al.

(2011) purposed unified methods of construction of resolvable block de-

signs for factorial experiments. These designs have orthogonal factorial

structure, have balance, estimate all main effects with full efficiency and
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have control over interaction efficiencies.

Sreenath (2011a) proposed a general method for obtaining block designs

for asymmetrical confounded factorial experiments, using block designs for

symmetrical factorial experiments.

Rajarathinam et al. (2014) utilized the methods used in constructing vari-

ance balanced designs in order to construct variance balanced block designs

that are highly efficient. They proposed two methods for their construc-

tion. Specifically they used incidence matrices and also 2m symmetrical

factorial designs.

Ghosh et al. (2018) also extended on the work of Rajarathinam et al. (2014)

in the construction of variance balanced block designs using methods used

in construction of variance balanced designs i.e. designs which are balanced

and in which the BLUE’s of every two mutually orthogonal contrasts are

uncorrelated

The purpose of this thesis is to use the methods used in construction of

variance balanced designs in order to construct variance balanced asym-

metrical factorial designs that posses an additional property known as

orthogonal factorial structure(OFS). The methods used will involve uti-

lization of well known arrays viz orthogonal arrays, balanced arrays and

transitive arrays. Specifically we shall construct variance balanced asym-

metrical factorial designs with OFS where two or more factors are involved

and in which main effects and lower order interactions are estimated with

high efficiencies. However, we shall restrict designs to those with the same

replication.



Chapter 2

Treatment Contrasts (TC) and

their Relevance in defining

Balance and Orthogonal Factorial

Structure(BOFS)

This chapter shows the relevance of treatment contrasts in defining balance

and orthogonal factorial structure

2.1 Treatment Contrasts

1. There are v treatments, each replicated r times.

2. There are b blocks, each having k plots.

3. No treatment occurs more than once in a block.

The fixed effect model is assumed:

yij = µ+ Ψi + βj + εij where i = 1, . . . , v, j = 1, . . . , b (2.1.1)
11
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yij is the yield of the ith treatment applied to the jth block, µ is the overall

effect, βj is the effect of the jth block, Ψi is the effect of the ith treatment,

εij is the experimental error. εij’s are independent normal distributions

with mean 0 and variance σ2.

An experiment involving m≥2 factors F1, F2, . . ., Fm that appear at

s1, . . ., sm(≥ 2) levels is called an s1×· · ·×sm factorial experiment (or an

s1×· · ·×sm factorial for brevity).

In particular, if s1 = · · · = sm, it is called symmetrical sm factorial; other-

wise it is called an asymmetrical factorial.

For 1≤i≤m, the si levels of the ith factor Fi are denoted by si sym-

bols. Suppose that these levels are coded as 0, 1, . . ., si − 1, then a

typical treatment combination, i.e. a combination of the levels of the

m factors will be represented by an ordered m− tuple ji, . . ., jm where

ji∈{0, 1, . . ., si−1}, 1≤i≤m clearly, altogether there are ∏mi=1 si treatment

combinations.

For example, if there are three factors at two, three and three levels respec-

tively, then m = 3, s1 = 2, s2 = 3 and s3 = 3, and there are 18 treatment

combinations, namely,

000, 001, 002, 010, 011, 012, 020, 021, 022,

100, 101, 102, 110, 111, 112, 120, 121, 122
(2.1.2)

Let Ψ(j1, . . . , jm) denote the treatment effect corresponding to a treatment

combination j1 . . . jm. These treatment effects are unknown parameters in

the context of a factorial experiment; a linear parametric function

s1−1∑
j1=0
· · ·

sm−1∑
jm=0

`(j1· · ·jm)Ψ(j1· · ·jm) (2.1.3)
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where `(j1· · ·jm) are real numbers, not all zero, such that

s1−1∑
j1=0
· · ·

sm−1∑
jm=0

`(j1· · ·jm) = 0 (2.1.4)

is called a treatment contrast.

In factorial experiments, we are concerned with special type of treatment

contrasts, namely those belonging to factorial effects.

To motivate the ideas, consider a 3×4 BAF experiment. Then there are

two factors F1 and F2. The first factor is at three levels 0, 1, 2 while

the second factor is at four levels 0, 1, 2, 3. We have twelve treatment

combinations given by 00, 01, 02, 03, 10, 11, 12, 13, 20, 21, 22, 23.

The effect of changing the factor F1 from a given level to a different level

with factor 2 held fixed at level 0 is clearly given by

L(F1|F2 = 0) = Ψ(10)−Ψ(00) + Ψ(20)−Ψ(00) + Ψ(20)−Ψ(10) (2.1.5)

The effect of changing the factor F1 from a given level to a different level

with factor F2 held fixed at level 1 is clearly given by

L(F1|F2 = 1) = Ψ(11)−Ψ(01) + Ψ(21)−Ψ(01) + Ψ(21)−Ψ(11) (2.1.6)

It also follows that the effect of changing the factor F1 from a given level

to a different level with factor F2 held fixed at level 2 is clearly given by

L(F1|F2 = 2) = Ψ(12)−Ψ(02) + Ψ(22)−Ψ(02) + Ψ(22)−Ψ(12) (2.1.7)
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and that the effect of changing the factor F1 with factor F2 held fixed at

level 3 is given by

L(F1|F2 = 3) = Ψ(13)−Ψ(03) + Ψ(23)−Ψ(03) + Ψ(23)−Ψ(13) (2.1.8)

Thus the main effect of F1 is measured by the arithmetic mean of the 12

quantities (2.1.5), (2.1.6), (2.1.7) and (2.1.8) respectively which is given by

L(F1) = 1
12{Ψ(10)−Ψ(00) + Ψ(20)−Ψ(00) + Ψ(20)−Ψ(10) + Ψ(11)

−Ψ(01) + Ψ(21)−Ψ(01) + Ψ(21)−Ψ(11) + Ψ(12)−Ψ(02)

+ Ψ(22)−Ψ(02) + Ψ(22)−Ψ(12) + Ψ(13)−Ψ(03) + Ψ(23)

−Ψ(03) + Ψ(23)−Ψ(13)}

= 1
12{−2Ψ(00) + 2Ψ(20)− 2Ψ(01) + 2Ψ(21)− 2Ψ(02)

+ 2Ψ(22)− 2Ψ(03) + 2Ψ(23)}

(2.1.9)

= − 1
6Ψ(00)− 1

6Ψ(01)− 1
6Ψ(02)− 1

6Ψ(03)

+ 0Ψ(10) + 0Ψ(11) + 0Ψ(12) + 0Ψ(13) + 1
6Ψ(20)

+ 1
6Ψ(21) + 1

6Ψ(22) + 1
6Ψ(23)

(2.1.10)

=
s1−1∑
j1=0

s2−1∑
j2=0

`(j1j2)Ψ(j1j2) (2.1.11)
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is a linear parametric function where `(j1j2) are real numbers not all zero

such that

`(00) + `(01) + `(02) + `(03) + `(10) + `(11)+

`(12) + `(13) + `(20) + `(21) + `(22) + `(23)

=
s1−1∑
j1=0

s2−1∑
j2=0

`(j1j2)

= −1
6 −

1
6 −

1
6 −

1
6 + 0 + 0 + 0 + 0 + 1

6 + 1
6 + 1

6 + 1
6

= 0 (2.1.12)

where

where `(00) = `(01) = `(02) = `(03) = −1
6

and `(10) = `(11) = `(12) = `(13) = 0

while `(20) = `(21) = `(22) = `(23) = +1
6 (2.1.13)

clearly `(00), `(01), `(02), `(03), `(10), `(11), `(12),

`(13), `(20), `(21), `(22), `(23), add up to zero, i.e. satisfy (2.1.4) thus `(F1)

is a treatment contrast that measures the main effect of F1.

Now, the effect of changing factor 2 from a given level to a different level,

given that factor 1 is fixed at level 0 is given by

L(F2|F1 = 0) =Ψ(00)−Ψ(01) + Ψ(00)−Ψ(02) + Ψ(00)−Ψ(03)

+ Ψ(01)−Ψ(02) + Ψ(01)−Ψ(03) + Ψ(02)−Ψ(03)

(2.1.14)
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Similarly, the effect of changing factor 2 from a given level to a different

level, given that factor 1 is fixed at level 1 is given by

L(F2|F1 = 1) =Ψ(10)−Ψ(11) + Ψ(10)−Ψ(12) + Ψ(10)−Ψ(13)

+ Ψ(11)−Ψ(12) + Ψ(11)−Ψ(13) + Ψ(12)−Ψ(13)

(2.1.15)

and that the effect of changing factor 2 from a given level to a different

level, given that factor 1 is fixed at level 2 is given by

L(F2|F1 = 2) =Ψ(20)−Ψ(21) + Ψ(20)−Ψ(22) + Ψ(20)−Ψ(23)

+ Ψ(21)−Ψ(22) + Ψ(21)−Ψ(23) + Ψ(22)−Ψ(23)

(2.1.16)
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Hence the main effect of F2 is measured by the arithmetic mean of the 18

quantities in (2.1.14),(2.1.15),(2.1.16) given by

L(F2) = 1
18{Ψ(00)−Ψ(01) + Ψ(10)−Ψ(11) + Ψ(20)−Ψ(21)

+ Ψ(00)−Ψ(02) + Ψ(10)−Ψ(12) + Ψ(20)−Ψ(22)

+ Ψ(00)−Ψ(03) + Ψ(10)−Ψ(13) + Ψ(20)−Ψ(23)

+ Ψ(01)−Ψ(02) + Ψ(11)−Ψ(12) + Ψ(21)−Ψ(22)

+ Ψ(01)−Ψ(03) + Ψ(11)−Ψ(13) + Ψ(21)−Ψ(23)

+ Ψ(02)−Ψ(03) + Ψ(12)−Ψ(13) + Ψ(22)−Ψ(23)}

= 1
18{3Ψ(00) + 3Ψ(10) + 3Ψ(20) + Ψ(01) + Ψ(11) + Ψ(21)

−Ψ(02)−Ψ(12)−Ψ(22)− 3Ψ(03)− 3Ψ(13)− 3Ψ(23)}

=1
6Ψ(00) + 1

18Ψ(01)− 1
18Ψ(02)− 1

6Ψ(03)

+ 1
6Ψ(10) + 1

18Ψ(11)

− 1
18Ψ(12)− 1

6Ψ(13) + 1
6Ψ(20)

+ 1
18Ψ(21)− 1

18Ψ(22)− 1
6Ψ(23)

=
s1−1∑
j1=0

s2−1∑
j2=0

`(j1j2)Ψ(j1j2) (2.1.17)
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this is a linear parametric function where `(j1j2) are real numbers not all

zero such that

`(00) + `(01) + `(02) + `(03) + `(10) + `(11)+

`(12) + `(13) + `(20) + `(21) + `(22) + `(23)

=
s1−1∑
j1=0

s2−1∑
j2=0

`(j1j2)

=1
6 + 1

18 −
1
18 −

1
6 + 1

6

+ 1
18 −

1
18 −

1
6 + 1

6 + 1
18 −

1
18 −

1
6

=0 (2.1.18)

where

where `(00) = `(10) = `(20) = 1
6

and `(01) = `(11) = `(21) = 1
18

and `(02) = `(12) = `(22) = − 1
18

and `(03) = `(13) = `(23) = −1
6 (2.1.19)

The `(i, j) satisfy(2.1.4) and thus L(F2) is a treatment contrast that mea-

sures the main effect of F2.

Next, consider the interaction between F1 and F2. This is measured by the

influence of the level where F2 is held fixed on the effect of a level change

of F1. Thus
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L∗(F1F1) =L(F1|F2 = 0)− L(F1|F2 = 1)

+ L(F1|F2 = 0)− L(F1|F2 = 2)

+ L(F1|F2 = 0)− L(F1|F2 = 3)

+ L(F1|F2 = 1)− L(F1|F2 = 2)

+ L(F1|F2 = 1)− L(F1|F2 = 3)

+ L(F1|F2 = 2)− L(F1|F2 = 3)

=Ψ(10)−Ψ(00) + Ψ(20)−Ψ(00) + Ψ(20)−Ψ(10)

−Ψ(11) + Ψ(01)−Ψ(21) + Ψ(01)−Ψ(21) + Ψ(11)

+ Ψ(10)−Ψ(00) + Ψ(20)−Ψ(00) + Ψ(20)−Ψ(10)

−Ψ(12) + Ψ(02)−Ψ(22) + Ψ(02)−Ψ(22) + Ψ(12)

+ Ψ(10)−Ψ(00) + Ψ(20)−Ψ(00) + Ψ(20)−Ψ(10)

−Ψ(13) + Ψ(03)−Ψ(23) + Ψ(03)−Ψ(23) + Ψ(13)

+ Ψ(11)−Ψ(01) + Ψ(21)−Ψ(01) + Ψ(21)−Ψ(11)

−Ψ(12) + Ψ(02)−Ψ(22) + Ψ(02)−Ψ(22) + Ψ(12)

+ Ψ(11)−Ψ(01) + Ψ(21)−Ψ(01) + Ψ(21)−Ψ(11)

−Ψ(13) + Ψ(03)−Ψ(23) + Ψ(03)−Ψ(23) + Ψ(13)

+ Ψ(12)−Ψ(02) + Ψ(22)−Ψ(02) + Ψ(22)−Ψ(12)

−Ψ(13) + Ψ(03)−Ψ(23) + Ψ(03)−Ψ(23) + Ψ(13) (2.1.20)
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So the interaction between F1 and F2 is measured by the arithmetic mean

of the 36 quantities above i.e.

L(F1F2) = 1
36L

∗(F1F2)

= 1
36{−2Ψ(00) + 2Ψ(20) + 2Ψ(01)− 2Ψ(21)

− 2Ψ(00) + 2Ψ(20) + 2Ψ(02)− 2Ψ(22)

− 2Ψ(00) + 2Ψ(20) + 2Ψ(03)− 2Ψ(23)

− 2Ψ(01) + 2Ψ(21) + 2Ψ(02)− 2Ψ(22)

− 2Ψ(01) + 2Ψ(21) + 2Ψ(03)− 2Ψ(23)

− 2Ψ(02) + 2Ψ(22) + 2Ψ(03)− 2Ψ(23)}

= 1
36{−6Ψ(00)− 2Ψ(01) + 2Ψ(02)

+ 6Ψ(03) + 0Ψ(10)

+ 0Ψ(11) + 0Ψ(12) + 0Ψ(13) + 6Ψ(20)

+ 2Ψ(21)− 2Ψ(22)− 6Ψ(23)}

=− 1
6Ψ(00)− 1

18Ψ(01) + 1
18Ψ(02) + 1

6Ψ(03)

+ 0Ψ(10) + 0Ψ(11) + 0Ψ(12)

+ 0Ψ(13) + 1
6Ψ(20) + 1

18Ψ(21)

− 1
18Ψ(22)− 1

6Ψ(23)

=
s1−1∑
j1=0

s2−1∑
j2=0

`(j1j2)Ψ(j1j2) (2.1.21)
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which is also a linear parametric function where `(j1j2) are real numbers

not all zero such that

`(00) + `(01) + `(02) + `(03) + `(10) + `(11) + `(12)+

`(13) + `(20) + `(21) + `(22) + `(23)

=
s1−1∑
j1=0

s2−1∑
j2=0

`(j1j2)

=− 1
6 −

1
18 + 1

18 + 1
6 + 0 + 0 + 0 + 0 + 1

6 + 1
18 −

1
18 −

1
6

=0 (2.1.22)

where

`(00) =`(23) = −1
6 ,

`(01) =`(22) = − 1
18 ,

`(02) =`(21) = 1
18 ,

`(03) =`(20) = 1
6 ,

`(10) =`(11) = `(12) = `(13) = 0 (2.1.23)

Hence the `(j1j2)’s satisfy(2.1.4) thus L(F1F2) is a treatment contrast that

measures the interaction effect of F1F2.
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Definition 2.1.1.

A treatment contrast

s1−1∑
j1=0
· · ·

sm−1∑
jm=0

`(j1· · ·jm)Ψ(j1· · ·jm)

belongs to the factorial effect

Fi1. . .Fig (1 ≤ i1 < . . . < ig ≤ m ; 1 ≤ g ≤ m)

if

a) `(j1. . .jm) depends only on ji1. . .jig ,

b) writing `(j1. . .jm) = ¯̀(ji1. . .jig), in view of (a) above, the sum of
¯̀(ji1. . .jig) separately over each of the arguments ji1. . .jig is zero.

A factorial effect Fi1. . .Fig , as defined above, will be called a main effect if

it involves exactly one factor (i.e., g = 1) and an interaction if it involves

more than one factor (i.e., g > 1). Clearly, there are m main effects and(
m
g

)
g-factor interactions. Thus, the total number of factorial effects in

s1×· · ·×sm factorial is
m

1

 +
m

2

 + · · ·+
m
m

 = 2m − 1.

The order of a factorial effect is the number of factors that it involves. For

example, a main effect is of order 1, a two factor interaction is of order 2

and so on. Now, to motivate the ideas further, for a 3×4 BAFD taking

g = 1 and i1 = 1 in this definition, a treatment contrast belongs to the

main effect of F1 provided that it is of the form

s1−1∑
j1=0
· · ·

sm−1∑
jm=0

l̄(j1)Ψ(j1· · ·jm) (2.1.24)
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where

s1−1∑
j1=0

l̄(j1) = 0 (2.1.25)

note that (2.1.24) and(2.1.25) correspond to the requirements (a) and (b)

respectively of the definition 2.1.1. Consider now the contrast L(F1) given

in (2.1.10) and observe that it can be expressed as

L(F1) =− 1
6[Ψ(00) + Ψ(01) + Ψ(02) + Ψ(03)]

+ 0[Ψ(10) + Ψ(11) + Ψ(12) + Ψ(13)] + 1
6[Ψ(20)

+ Ψ(21) + Ψ(22) + Ψ(23)]

hence in compatibility with definition 2.1.1 (a), the coefficients of Ψ(j1j2)

in L(F1) depends only on j1. In other words, L(F1) is of the form (2.1.24),

since the coefficient of Ψ(j1j2) in L(F1) depends only on j1. We can write

l̄(0) = −1
6 , l̄(1) = 0, and l̄(2) = 1

6

obviously

l̄(0) + l̄(1) + l̄(2) = −1
6 + 0 + 1

6 = 0

as it should in view of(2.1.25).

Similarly, L(F2) given in (2.1.17) can be expressed as

L(F2) = 1
6 [Ψ(00) + Ψ(10) + Ψ(20)] + 1

18 [Ψ(01) + Ψ(11) + Ψ(21)]

− 1
18 [Ψ(02) + Ψ(12) + Ψ(22)]− 1

6 [Ψ(03) + Ψ(13) + Ψ(23)]

hence in compatibility with definition 2.1.1 (a), the coefficients of Ψ(j1j2)
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in L(F2) depends only on j2. In other words, L(F2) is of the form (2.1.24)

with

l̄(0) = 1
6 , l̄(1) = 1

18 , l̄(2) = − 1
18 and l̄(3) = −1

6

obviously

l̄(0) + l̄(1) + l̄(2) + l̄(3) = 1
6 + 1

18 −
1
18 −

1
6 = 0

as it should in view of(2.1.25).

Turning to the case of the two factor interaction F1F2, we take g = 2, l1 = 1

and l2 = 2 in definition 2.1.1. The treatment contrast F1F2 provided it is

of the form

s1−1∑
j1=0
· · ·

sm−1∑
jm=0

`(j1· · ·jm)Ψ(j1· · ·jm) =
s1−1∑
j1=0

s2−1∑
j2=0

¯̀(j1j2)Ψ(j1j2) (2.1.26)

where

s1−1∑
j1=0

l̄(j1j2) = 0 for each j2(0 ≤ j2 ≤ s2 − 1) (2.1.27)

and

s2−1∑
j2=0

l̄(j1j2) = 0 for each j1(0 ≤ j1 ≤ s1 − 1) (2.1.28)

As before (2.1.26) is dictated by requirement (a) of definition 2.1.1 where

(2.1.27) and (2.1.28) are dictated by requirement (b). The contrast

L(F1F2) defined in (2.1.21) can be expressed as

L(F1F2) = −1
6[Ψ(00) + Ψ(23)]− 1

18[Ψ(01) + Ψ(22)] + 1
6[Ψ(03) + Ψ(20)]

+ 0[Ψ(10) + Ψ(11) + Ψ(12) + Ψ(13)] + 1
18[Ψ(02) + Ψ(21)]
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where

l̄(00) = l̄(23) = −1
6 , l̄(01) = l̄(22) = − 1

18 , l̄(03) = l̄(20) = 1
6 ,

l̄(01) = l̄(11) = l̄(12) = l̄(13) = 0, and l̄(02) = l̄(21) = 1
18

obviously the sum of these coefficients is equal to zero.

2.2 Kronecker Product Formulation For Facto-

rial Effects.

Continuing with an s1×· · ·×sm factorial, we now discuss some basic prop-

erties of treatment contrasts belonging to factorial effects. An alternative

formulation for such contrasts which is equivalent to definition 2.1.1 but

involves Kronecker products of matrices, will be helpful in this context.

This formulation was introduced formally by Kurkjian and Zelen (1962,

1963). Some of their ideas were inherent in Zelen (1958) and Shah (1958).

The definition and few elementary properties of the Kronecker product

matrices are given here; more details are available in Rao (1973).

If B1 = ((b(1)
ij )) and B2 are matrices of orders p1×q1 and p2×q2 respec-

tively, then the Kronecker product of B1 and B2, denoted by B1⊗B2, is

a (p1p2)×(q1q2) matrix defined by B1⊗B2 = ((b(1)
ij B2)) in the partitioned

form.

Similarly, the Kronecker product of three matrices B1, B2 and B3 is defined

as B1⊗B2⊗B3 = B1⊗(B2⊗B3) = (B1⊗B2)⊗B3, and so on. The following

properties of Kronecker products will be useful in the sequel:
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i. For any m matrices B1, . . . , Bm,

(B1⊗· · ·⊗Bm)
′
= B

′

1⊗· · ·⊗B
′

m

where the prime denotes transpose.

ii. For any m matrices B1, . . . , Bm,

rank(B1⊗· · ·⊗Bm) =
m∏
i=1

rank(Bi)

iii. For any 2m matrices B11, . . . , B1m, B21, . . . , B2m,

(B11⊗ · · ·⊗B1m)(B21⊗ · · ·⊗B2m) = (B11B21)⊗· · ·⊗(B1mB2m)

provided that the ordinary product B1iB2i is well defined

for every i (1 ≤ i ≤ m).

We are now in a position to proceed with Kronecker product formulation

for treatment contrasts belonging to factorial effects in an s1×· · ·×sm fac-

torial. We first write

v =
m∏
i=1

si

to denote the total number of treatment combinations. Without loss

of generality, we assume that the v treatment combinations are ar-

ranged lexicographically . For example, if m = 2, they are arranged as

00, 01, . . . , 0s̄2, 10, 11, . . . , 1s̄2, . . . , s̄10, s̄11, . . . , s̄1s̄2 where s̄1 = s1 − 1 and

s̄2 = s2 − 1. Let Ψ be a column vector, of order v, with elements given

by the treatment effects Ψ(j1. . .jm)(0≤ji≤si− 1, 1≤i≤m), which are lexi-

cographically arranged. Any treatment contrast can then be expressed as

`
′Ψ, where ` is a non-null v×1 vector whose elements add up to zero.
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Observe that a typical factorial effect Fi1. . .Fig can be denoted by F (y),

where y = y1· · ·ym is a binary m−tuple such that

yi =


1, if i∈{i1, . . . , ig}

0, otherwise
(2.2.1)

This establishes a one-to-one correspondence between the set of the 2m−1

factorial effects and the set Ω of the 2m−1 non-null binary m−tuples. For

example, with m = 3, the main effect of F2 can be denoted by F (010), the

interaction F1F3 by F (101), and so on. We need some more notation.

For 1≤i≤m, let 1i be the si×1 vector with all elements unity, Ii, the

identity matrix of order si, and Mi an (si − 1)×si matrix such that

rank(Mi) = si − 1, Mi1i = 0 (2.2.2)

These equations do not specify Mi uniquely, but the present discussion

does not depend on the specific choice of Mi as long as it satisfies the

conditions(2.2.2). For any y = y1. . .ym∈Ω, the set of non-null binary m-

tuples, define

M(y) = My1
1 ⊗· · ·⊗Mym

m (2.2.3)

where, for 1≤i≤m,

Myi

i =


1′i, if yi = 0

Mi, if yi = 1
(2.2.4)

It is not hard to see that M(y) involves m(y) rows and v columns, where

m(y) =
m∏
i=1

(si − 1)yi (2.2.5)
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we state the following theorems without proof:

Theorem 2.2.1.

For any y = y1. . .ym∈Ω, a treatment contrast `′Ψ belongs to the

factorial effect F (y) if and only if `′∈R[M(y)] where R[M(y)] stands

for the row space of M(y).

Note that by (2.2.2) and (2.2.4),Myi

i has full row rank for each i (1≤i≤m).

Hence by (2.2.3), M(y) has full row rank for every y∈Ω. Since M(y) has

m(y) rows, the following result is evident from Theorem 2.2.1.

Theorem 2.2.2.

For any y = y1. . .ym∈Ω the maximal number of linearly independent

treatment contrasts belonging to factorial effect F (y) is m(y). Fur-

thermore, the m(y) elements of M(y)Ψ represents a maximal set of

linearly independent treatment contrasts belonging to F (y).

The concept of orthogonality of treatment contrasts plays a crucial role in

factorial experiments. Two treatment contrasts `(1)′Ψ and `(2)′Ψ are said

to be orthogonal if

`(1)′`(2) = 0 (2.2.6)

For example from (2.1.10),(2.1.17), and (2.1.21) any two of the contrasts

L(F1), L(F2), and L(F1F2) are orthogonal to each other since

L(F1) :`(1)′ =
[
−1

6 ,−
1
6 ,−

1
6 ,−

1
6 , 0, 0, 0, 0,

1
6 ,

1
6 ,

1
6 ,

1
6

]

L(F2) :`(2)′ =
[1
6 ,

1
18 ,−

1
18 ,−

1
6 ,

1
6 ,

1
18 ,−

1
18 ,−

1
6 ,

1
6 ,

1
18 ,−

1
18 ,−

1
6

]

L(F1F2) :`(3)′ =
[
−1

6 ,−
1
18 ,

1
18 ,

1
6 , 0, 0, 0, 0,

1
6 ,

1
18 ,−

1
18 ,−

1
6

]
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The contrasts are mutually orthogonal since they belong to different fac-

torial effects, this is actually a consequence of a more general result as

presented below

Theorem 2.2.3.

Any two treatment contrasts belonging to different factorial effects

are orthogonal

Proof. In view of (2.2.6) and Theorem 2.2.1 it is enough to show that

M(y)M(z)
′
= 0 (2.2.7)

whenever y = y1. . .ym and z = z1. . .zm are distinct members of Ω. Now,

by (2.2.3)

M(y)M(z)
′
= (My1

1 (M z1
1 )

′
)⊗· · ·⊗(Mym

m (M zm
m )

′
) (2.2.8)

If y and z are distinct members of Ω, then yi 6= zi for some i. Without loss

of generality, let y1 6= z1 and suppose y1 = 1, z1 = 0. then by (2.2.2) and

(2.2.4), My1
1 (M z1

1 )′ = 0 and (2.2.7) follows from (2.2.8).

Theorems 2.2.2 and 2.2.3 together have an interesting implication. Since

a typical treatment contrast is of the form `
′Ψ, where ` is a none-null

v×1 vector whose elements add up to zero, clearly the maximal number of

linearly independent treatment contrasts (belonging to factorial effects or

not) is v − 1 by equation (2.2.5),

v − 1 =
m∏
i=1

si − 1 =
m∏
i=1

(si − 1 + 1)− 1 =
∑
y∈Ω

m(y).



Chapter 2. TC and their Relevance in defining BOFS 30

hence, in view of theorems 2.2.2 and 2.2.3 we reach the satisfying conclu-

sions that treatment contrasts belonging to a factorial effects together span

all treatments.

Theorem 2.2.2, in conjunction with equations (2.2.3) and (2.2.4) helps

in explicitly describing treatment contrasts belonging to various factorial

effects in any given context, to motivate the ideas consider a 2×3×3 BAFD

whose treatment combinations have already been given in equation (2.1.2).

Herem = 3, following equation (2.1.2) the vector Ψ, with lexicographically

arranged elements Ψ(j1j2j3), is given by

Ψ = (Ψ(000),Ψ(001), . . . ,Ψ(121),Ψ(122))′.

Since s1 = 2, s2 = s3 = 3, we have 11 = (1, 1)′, 12 = 13 = (1, 1, 1)′. Also,

following equation (2.2.2), one can take

M1 = (−1, 1),M2 = M3 =

−1 0 1

1 −2 1


by (2.2.3) and(2.2.4).

M(100) = M1⊗1′2⊗1′3,

M(001) = 1′1⊗1′2⊗M3,

M(101) = M1⊗1′2⊗M3,

M(111) = M1⊗M2⊗M3,

M(010) = 1′1⊗M2⊗1′3,

M(110) = M1⊗M2⊗1′3,

M(011) = 1′1⊗M2⊗M3

where the matrices Mi and the vectors 1i are stated above.

By theorem 2.2.2, the elements of M(100)Ψ, M(010)Ψ, and M(001)Ψ

represents maximal sets of linearly independent treatment contrasts be-

longing to factorial effects F (100), F (010), and F (001) i.e. the main
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effects of F1, F2 and F3 respectively. Similarly, the elements of

M(110)Ψ,M(101)Ψ,M(011)Ψ and M(111)Ψ represents maximal sets of

linearly independent treatment contrasts belonging to interactions F1F2,

F1F3, F2F3 and F1F2F3 respectively.

Lemma 2.2.1.

For any g(1≤g≤m), the row spaces of the matrices M1⊗· · ·⊗Mg and

Hg =


1′1⊗I2⊗ · · · ⊗Ig

...

I1⊗ · · · ⊗Ig−1⊗1′g

 (2.2.9)

are orthogonal compliments of each other.

Proof. To motivate or to give flavour of the basic idea of proof without

making the notation too complex, we prove the lemma for g = 3 though

at the expense of heavier notation, the lemma can be proved similarly for

any g. By (2.2.9)

H3 =


1′1⊗I2⊗I3

I1⊗1′2⊗I3

I1⊗I2⊗1′3


for 1 ≤ i ≤ 3, let

M̄i =

 1′i
Mi

 (2.2.10)
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by (2.2.2), M̄i is non-singular for every i. Hence, premultiplying H3 by the

non-singular matrix diag(M̄2⊗M̄3, M̄1⊗M̄3, M̄1⊗M̄2) yields

R(H3) = R


1′1⊗M̄2⊗M̄3

M̄1⊗1′2⊗M̄3

M̄1⊗M̄2⊗1′3

 (2.2.11)

where as before R(·) stands for row space of a matrix. But by(2.2.10),

1
′

1⊗M̄2⊗M̄3 =



1′1⊗1′2⊗1′3

1′1⊗1′2⊗M3

1′1⊗M2⊗1′3

1′1⊗M2⊗M3



on the basis of similar considerations for M̄1⊗1′2⊗M̄3 and M̄1⊗M̄2⊗1′3.

It follows from(2.2.11) that

R(H3) = R(M̃), (2.2.12)

where

M̃ =



1′1⊗1′2⊗1′3

1′1⊗1′2⊗M3

1′1⊗M2⊗1′3

1′1⊗M2⊗M3

M1⊗1′2⊗1′3

M1⊗1′2⊗M3

M1⊗M2⊗1′3



(2.2.13)
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Now, by(2.2.10),
 M̃

M1⊗M2⊗M3

 = M̄1⊗M̄2⊗M̄3

is non-singular, while by (2.2.2) and (2.2.13)

M̃(M1⊗M2⊗M3)
′
= 0

hence the row spaces of M̃ andM1⊗M2⊗M3 are orthogonal compliments of

each other. Therefore, by (2.2.12), the row spaces of H3 and M1⊗M2⊗M3

are also orthogonal compliments of each other.

2.3 Elements and Operations of Calculus for

Factorial Arrangements

The calculus for factorial arrangements provides a very powerful tool for

expressing the notation in a very compact and convenient form. This

calculus was introduced by Kurkjian and Zelen (1962, 1963) although it

appears that some of their ideas were also inherent in Zelen (1958) and

Shah (1958).

Let a
¯i

= (0, 1, . . . ,mi − 1)′, 1≤i≤m. The v treatment combinations will

be considered in the lexicographic order given by a
¯1×a¯2×· · ·×a¯m

, where

× denotes symbolic direct product as defined by Shah (1958). Let Ψ

be a v×1 vector, with elements given by the Ψ(j1, j2, . . . , jm)’s arranged

lexicographically. For example, if m = 2, s1 = 2, s2 = 3, then

a
¯1 = (0, 1)

′
, a

¯2 = (0, 1, 2)
′
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then

a
¯1×a¯2 = (00, 01, 02, 10, 11, 12)

′

and

Ψ
¯

= (Ψ(0, 0),Ψ(0, 1),Ψ(0, 2),Ψ(1, 0),Ψ(1, 1),Ψ(1, 2))
′

A typical treatment contrast is of the form `
¯
′
Ψ
¯
, where the v×1 coefficient

vector `
¯
is non-null and the sum of elements of `

¯
equal to zero. Such a

contrast will be said to be normalised if `
¯
′
`
¯

= 1. Two treatment contrasts

`
¯
′

1Ψ
¯

and `
¯
′

2Ψ
¯

will be called mutually orthogonal if `
¯
′

1`¯2 = 0. A set of

treatment contrasts will be called orthonormal if the contrasts in the set

are all normalised and mutually orthogonal.

Let Ω be the set of all m-component non-null binary vectors. It is easy to

see that there is a one to one correspondence between Ω and the set of all

interactions, in the sense that a typical interaction

Fi1Fi2· · ·Fig (1 ≤ i1 < i2 < · · · < ig ≤ m, 1 ≤ g ≤ m)

corresponds to the element y = (y1, . . . , ym) of Ω such that yi1 = yi2 =

· · · = yig = 1 and yu = 0.

For u 6= i1, i2, . . . , ig. Thus the 2m − 1 interactions may be denoted by

F (y), y∈Ω. For expample, if m = 2, then the main effects F1, F2 and

the 2-factor interaction F1F2 may be denoted by F (10), F (01) and F (11)

respectively. The treatment contrasts belonging to the interactions may be

conveniently represented making use of Kronecker products, as indicated

below.

For each y = (y1, . . . , ym) ∈ Ω, let

My = My1
1 ⊗M

y2
2 ⊗· · ·⊗Mym

m = ⊗mi=1M
yi

i (2.3.1)
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where ⊗ denotes the Kronecker product and for 1 ≤ i ≤ m,

Myi

i =


Ii − s−1

i Ji, if yi = 1

s−1
i Ji, if yi = 0

(2.3.2)

here Ii is an identity matrix and Ji is a matrix of 1’s both of order si×si.

Lemma 2.3.1.

For each y ∈ Ω, the elements of MyΨ
¯

represents a complete set of

treatment contrasts belonging to the interaction F (y).

Proof. The proof may now be completed by observing that in view of

(2.3.1) and (2.3.2)

rank(My) =
m∏
i=1

rank(Myi

i ) =
m∏
i=1

(si − 1)yi,

which is the same as the maximum number of linearly independent con-

trasts belonging to F (y).

Lemma 2.3.2.

Treatment contrasts belonging to any two distinct interactions are

mutually orthogonal.

Proof. By lemma 2.3.1, it is enough to show that for every y = (y1, . . . , ym)

and x = (x1, . . . , xm) ∈ Ω, x 6= y,

MxMy = 0 (2.3.3)
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Now, by (2.3.1) and the standard rules for operations with Kronecker prod-

ucts,

MxMy = ⊗mi=1 (Mxi
i M

yi

i ) (2.3.4)

Now, x 6= y, implies that xi 6= yi for at least one i, and for this i, by (2.3.2)

(Mxi
i M

yi

i ) = 0. Hence (2.3.3) follows from(2.3.4).

Lemma 2.3.1 gives a representation for the treatment contrasts belonging

to the different interactions. Another equivalent representation in terms

of orthonormal contrasts is often helpful. For 1 ≤ i ≤ m, let 1i be si×1

vector with all elements unity and pi be an (si − 1)×si matrix such that

si×si matrix (s−
1
2

i 1i, P
′

i )
′ is orthogonal. For example, if m = 2, s1 = 2,

s2 = 3 i.e. we have a 2×3 asymmetrical factorial then one may take

P1 =
[
+ 1√

2 −
1√
2

]

P2 =

 1√
2 −

1√
2 0

1√
6

1√
6 − 2√

6


For each y = (y1, . . . , ym) ∈ Ω, let

P y = ⊗mi=1P
yi

i (2.3.5)

where, for 1 ≤ i ≤ m

P yi

i =


Pi if yi = 1

s
− 1

2
i 1′i if yi = 0

(2.3.6)
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By equations (2.3.2) and (2.3.6), the relation P y′i
i P

yi

i = Myi

i holds for every

i, whether yi equals 0 or 1. Hence, by (2.3.1) and (2.3.5), for every y ∈ Ω

P y′P y = My (2.3.7)

Analogously to (2.3.3), it may be seen that for each

x, y ∈ Ω, x 6= y,

P xP x′ = I, P xP y′ = 0 (2.3.8)

where I is the identity matrix of appropriate order.

Lemma 2.3.3.

For each y ∈ Ω, the elements of P yΨ
¯

represents a complete set of

orthonormal contrasts belonging to the interaction F y.

In the sequel, the representations as given in lemmas 2.3.1 and 2.3.3 above,

will be found to be useful.

2.4 Orthogonal Factorial Structure and Balance

Consider an arrangement of the v = ∏
si treatment combinations in a

block design involving b blocks of sizes k1, k2, . . . , kb, the jth treatment

combination being replicated rj times. The design will be called proper

if k1, k2, . . . , kb are all equal and called equi-replicate if the rj’s are all

equal. The v×b matrix N = ((njh)) will be termed the incidence matrix

of the design where njh(≥ 0) is the number of times the jth treatment

combination occurs in the hth block.

Let

r
¯

= (r1, r2, . . . , rv)
′,
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k
¯

= (k1, k2, . . . , kb)
′,

rδ = Diag(r1, r2, . . . , rv),

rδ is a v× v diagonal matrix whose main diagonal elements are r1, r2 . . . rv

kδ = Diag(k1, k2, . . . , kb). kδ is a b×b diagonal matrix whose main diagonal

elements are k1, k2 . . . kb

The fixed effects intrablock model with independent homoscedastic errors

(The constant error variance being, say σ2) and no block versus treatment

interaction will be assumed. Then it is well known (see e.g. Raghavarao

(1971)) that the intrablock reduced normal equations for the vector of

treatment effects Ψ
¯
are given by

CΨ
¯

= Q
¯

(2.4.1)

where

C = rδ −Nk−δN
′

(2.4.2)

is the usual C-matrix of the design, k−δ = (kδ)−1 and Q
¯

is the vector of

adjusted treatment totals.

From equation (2.4.2), C is a symmetric matrix with all row sums zero.

Hence rank(C) ≤ v − 1. A design is called connected if rank(C) = v − 1.

A treatment contrast `
¯
′
Ψ
¯
is estimable if `

¯
′
∈ R(C), where for any matrix

A, R(A) stands for it’s row space. Clearly, for an estimable treatment

contrast `
¯
′
Ψ
¯
, there exists a v×1 vector `

¯
∗ such that `

¯
′

= `
¯
∗′C. The best

linear unbiased estimator (BLUE) of `
¯
′
Ψ
¯

is given by `
¯
′
Ψ̂
¯

= `
¯
∗′Q
¯
. All

treatment contrasts are estimable if and only if the design is connected.

In analysing the results of a factorial design, the experimenter is primarily

interested in drawing conclusion on the contrasts belonging to different

interactions. A great simplification occurs in interpreting the results of
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analysis if the design has orthogonal factorial structure. In the sense of

definition 2.4.1 given below. Another use of OFS is realized while con-

structing confidence intervals for estimable contrasts belonging to different

interactions. A discussion on the importance of orthogonal estimation of

parameters in constructing confidence intervals can be found in Box and

Draper (1987).

Definition 2.4.1.

A factorial design will be said to have orthogonal factorial structure

(OFS) if the BLUEs of estimable treatment contrasts belonging to

distinct interactions are mutually orthogonal, i.e. uncorrelated.

In other words, by lemmas 2.3.1 and 2.3.3, OFS holds for each x, y,∈

Ω, x 6= y if the BLUE of every estimable linear combination of the elements

of MxΨ
¯
(or P xΨ

¯
) is uncorrelated with the BLUE of every estimable linear

combination of the elements of MyΨ
¯
or P yΨ

¯
. When this is realised, in the

connected case, the adjusted treatment sum of squares (SS) can be split

up orthogonally into components due to the different interactions and, as

such, these components may be shown in the same analysis of variance

(ANOVA) table. The same can be done also in the disconnected case,

provided some further conditions hold. Incidentally, in lemma 2.3.2, it

was shown that contrasts belonging to distinct interactions are mutually

orthogonal. The OFS calls for a reflection of this property in terms of the

BLUEs of such contrasts.

Another important and useful concept in the context of factorial design is

that of balance. A definition of balance along the line of Shah (1958) is as

follows:
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Definition 2.4.2.

In a factorial design, an interaction F y, y ∈ Ω, will be said to be

balanced if either

(a) all treatment contrasts belonging to F y are estimable and the

BLUEs of all normalised contrasts belonging to F y have the same

variance or;

(b) No contrast belonging to F y is estimable.

A factorial design will be called balanced if F y is balanced for every y ∈ Ω

in definition 2.4.2, the trivial situation (b) has been included mainly for

mathematical completeness; this situation will never arise if, in particular,

the design is connected. The following lemma provides an interpretation

for balance which is useful in practice.

Lemma 2.4.1.

In a factorial design, an interaction F y is balanced in the sense (a)

of definition 2.4.2 if and only if all treatment contrasts belonging to

F y are estimable and the BLUEs of every two mutually orthogonal

contrasts belonging to F y are uncorrelated.

Proof. Only if: Suppose that the interaction F y is balanced in the sense

of (a) of definition 2.4.2. Let `
′

1Ψ and `
′

2Ψ be two mutually orthogonal

treatment contrasts belonging to F y. Define εi = (`
′

i`i)−
1
2 `i, (i = 1, 2) and

ε = 1√
2(ε1 + ε2), and note that ε′1Ψ, ε′2Ψ and ε′Ψ are normalised contrasts

belonging to F y. Since F y is balanced in the sense of (a) of definition 2.4.2

V ar(ε
′
Ψ̂) = V ar(ε

′

1Ψ̂) = V ar(ε
′

2Ψ̂) (2.4.3)
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again

V ar(ε
′
Ψ̂) = 1

2V ar(ε
′

1Ψ̂ + ε
′

2Ψ̂)

= 1
2{V ar(ε

′

1Ψ̂) + V ar(ε
′

2Ψ̂)

+ 2Cov(ε
′

1Ψ̂, ε
′

2Ψ̂)}

which together with (2.4.3) yields Cov(ε′1Ψ̂, ε′2Ψ̂) = 0 and hence,

Cov(`
′

1Ψ̂, `
′

2Ψ̂) = 0, as desired.

If: Let the conditions stated in the lemma hold. Consider any two distinct

contrasts which are normalised ε′1Ψ̂ and ε′2Ψ̂ belonging to F y. If ε1 = −ε2

then trivially V ar(ε′1Ψ̂) = V ar(ε′2Ψ̂), otherwise, (ε1 +ε2)′Ψ and (ε1−ε2)′Ψ

are mutually orthogonal treatment contrasts belonging to F y, and hence

under the condition stated in the lemma

Cov{(ε1 +ε2)′Ψ̂, (ε1−ε2)′Ψ̂} = 0, which yields V ar(ε′1Ψ̂) = V ar(ε′2Ψ̂).

The following corollary is an immediate consequence of lemmas 2.3.3 and

2.4.1

Corollary 2.4.1

In a factorial design, an interaction F y is balanced in the sense (a)

of definition 2.4.2 if and only if all treatment contrasts belonging to

F y are estimable and the dispersion matrix of P yΨ̂ is proportional

to the identity matrix.
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2.5 Balanced Arrays

The concept of orthogonal arrays was first introduced by Rao (1946). They

play a vital role in the construction of asymmetrical confounded facto-

rial experiments.Rao (1946), Bose and Bush (1952),Bush (1952),Plackett

(1946) and Addelman and Kempthorne (1961) have constructed useful or-

thogonal arrays. Several authors(Masuyama (1969);Xu (1979);Jungnickel

(1979), Xiang (1983)) studied the construction of difference schemes that

are used in construction of orthogonal arrays. The recursive construction

of orthogonal arrays that makes use of a series of difference schemes is

based on the work of several authors, including Shrikhande (1964),Ma-

suyama (1969),Xu (1979) and Mukhopadhyay (1981). Further, informa-

tion about difference schemes can be found in Beth et al. (1986),Butson

(1962, 1963),Dawson (1985) and Jungnickel (1979), Launey (1986), Drake

(1979), Dulmage et al. (1961), Jungnickel (1979, 1992) and Seberry (1980).

Addelman and Kempthorne (1961), Wang and Wu. (1991), Hedayat et al.

(1992), Dey (1985), Wu et al. (1992) used expansive replacement method in

construction of mixed orthogonal arrays. While Wang and Wu. (1991), He-

dayat et al. (1992), Mendeli (1995), Wang and Wu. (1991), Dey and Midha

(1996) constructed mixed orthogonal arrays using difference schemes.

Chakravati (1956) introduced the concept of partially balanced arrays,

which generalize the concept of orthogonal arrays. He (1961) constructed

partially balanced arrays from tactical configuration and pairwise partially

balanced designs. Srivastava and Chopra (1975) made contributions to

the theory and construction of partially balanced arrays, renaming them

balanced arrays. For some constructions of balanced arrays reference may

be made to Chakravati (1961), Srivastava and Chopra (1972), Rafter and

Seiden (1974), Sinha and Nigam (1983), and Saha and Samanta (1985),

Niishi (1981), Srivastava (1990), Raktoe et al. (1980).
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Definition 2.5.1.

A k × b array with entries from a set of v symbols is called an or-

thogonal array of strength t if each t × b subarray of A contains all

possible vt column vectors with the same frequency λ = b
vt . It is de-

noted OA(b, k, v, t;λ); the number λ is called the index of the array.

The numbers b and k are known as the number of assemblies and

constraints of the orthogonal array respectively.

Example 2.5.1. OA(8,4,2,3;1)
0 1 1 1 1 0 0 0

1 0 1 1 0 1 0 0

1 1 0 1 0 0 1 0

1 1 1 0 0 0 0 1

Definition 2.5.2.

Let A be a k× b array with entries from a set of v symbols. Consider

the vt ordered t-tuples (x1, . . . , xt) that can be formed from a t-rowed

subarray of A, and let there be associated a non-negative integer

λ(x1, . . . , xt) that is invariant under permutations of x1, . . . , xt. If for

any t-rowed subarray of A the vt ordered t-tuples (x1, . . . , xt), each

occur λ(x1, . . . , xt) times as a column, then A is said to ba a balanced

array of strength t. It is denoted by BA(b, k, v, t) and the numbers

λ(x1, . . . , xt) are called the index parameters of the array.

Clearly a BA(b, k, v, t) with λ(x1, . . . , xt) = λ for all t-tuples (x1, . . . , xt) is

simply an orthogonal array OA(b, k, v, t;λ).
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Example 2.5.2. BA(10,5,2,2)
0 1 0 1 0 1 0 1 0 1

1 1 1 0 1 1 0 0 0 0

0 0 1 1 1 0 0 0 1 1

1 1 0 0 0 0 1 0 1 1

0 0 0 0 1 1 1 1 1 0

λ(0, 0) = λ(1, 1) = 2 and λ(0, 1) = λ(1, 0) = 3

Definition 2.5.3.

An OA(λs2,m, s, 2), where λ = αβ is said to be β-resolvable if it is

the juxtaposition of αs different OA(βs,m, s, 1). A 1-resolvable array

is said to be completely resolvable.

For example if m = 3, s = 3, β = 1, λ = 1 it implies that if α = 1 then

the OA[1×3×3, 3, 2; 1] = OA[9,3,3,2;1] is β = 1 resolvable if it is the jux-

taposition of αs = (1)(3) = 3 different orthogonal arrays OA[1×3, 3, 1;λ]

= OA[3,3,3,1;λ] which includes

OA1 =


0 0 0

1 1 1

2 2 2

OA2 =


0 1 2

1 2 0

2 0 1

OA3 =


0 2 1

1 0 2

2 1 0



The β = 1 resolvable (completely resolvable) OA[9,3,3,2;1] is however

0 0 0 1 1 1 2 2 2

0 1 2 1 2 0 2 0 1

0 2 1 1 0 2 2 1 0
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Definition 2.5.4.

An OA(λs2,m, s, 2) is said to be partly resolvable if there exists s

assemblies which form an OA(s,m, s, 1).

A completely resolvable orthogonal array is certainly partly resolvable.

Example 2.5.3. The completely resolvable orthogonal array OA[9,3,3,2;1]

is partly resolvable since we can obtain s=3 assemblies which form an

OA(3,3,3;1) that includes

OA1 =


0 0 0

1 1 1

2 2 2

OA2 =


0 1 2

1 2 0

2 0 1

OA3 =


0 2 1

1 0 2

2 1 0



The following example gives a partly resolvable orthogonal array which is

not completely resolvable.

Example 2.5.4. A Partly resolvable OA(12,6,2,2)
0 1 0 0 0 0 0 1 1 1 1 1

0 1 0 0 1 1 1 0 0 0 1 1

0 1 1 0 0 1 1 1 1 0 0 0

0 1 0 1 1 0 1 0 1 1 0 0

0 1 1 1 1 0 0 1 0 0 0 1

0 1 1 1 0 1 0 0 0 1 1 0

This orthogonal array is partly resolvable since it is the juxtaposition of
12

6×2 = 1 orthogonal arrays such that each factor occurs in each of these

arrays 6 times at each level

Theorem 2.5.1.

If λ and s are both powers of the same prime p, a completely resolv-

able OA(λs2, λs, s, 2) can always be constructed.
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Addelman and Kempthorne (1961) gave a method of constructing an

OA(2sn, 2(sn − 1)/(s-1)-1, s, 2) but only for the case n = 2. Mukhopad-

hyay (1981) observed that the arrays for n ≥ 3 can be obtained recursively

from those of n = 2.

Definition 2.5.5.

A transitive array TA(b, k, v, t;λ) is a k × b array of v symbols such

that for any choice of t rows, the v!
(v−t)! ordered t-tuples of distinct

symbols each occur λ times as a column.

Example 2.5.5. TA(12,4,4,2;1)
0 1 2 3 0 1 2 3 0 1 2 3

1 0 3 2 2 3 0 1 3 2 1 0

2 3 0 1 3 2 1 0 1 0 3 2

3 2 1 0 1 0 3 2 2 3 0 1

Bose et al. (1960) constructed TA(v(v − 1),k,v,2;1) from a set of k − 2

mutually orthogonal latin squares of order v. Suen (1982) constructed

TA(v(v − 1),v,v,2;1) from doubly transitive groups of order v if v is even.

Morgan and Chakravati (1988) showed that b must be a multiple of 2
(
v
2

)
=

v(v − 1) in construction of transitive arrays.



Chapter 3

Methodology of evaluating

efficiencies of Balanced

Asymmetrical Factorial Designs

BAFD’s

In this chapter balanced confounded asymmetrical factorial designs with

orthogonal factorial structure are considered. Algebraic characterization

for balance with orthogonal factorial structure is given and a methodology

of evaluating efficiencies of such designs is given

3.1 Algebraic Characterization for Balance

With Orthogonal Factorial Structure

This chapter considers asymmetrical factorial designs which are bal-

anced and have orthogonal factorial structure (OFS). Such designs have

been termed balanced asymmetrical factorial experiments by Shah (1958,

1960a). They are known as balanced confounded asymmetrical designs
47
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according to the nomenclature of Nair and Rao (1948). The main result,

namely theorem 3.1.1 gives an algebraic characterization for balance with

orthogonal factorial structure. For equireplicate and proper designs, the

efficiency part of this result was proved by Kurkjian and Zelen (1963) while

the necessity part was proved by Kshirsagar (1966). Gupta (1983) consid-

ered extensions to designs that are not necessarily equireplicate or proper.

The following definitions and lemmas will be helpful

Let F1, F2, . . . , Fm be m factors at s1, s2, . . . , sm levels respectively and N

be the incidence matrix of a BAFD

Definition 3.1.1.

Suppose we have a C− matrix of the design in v(= s1s2 . . . sm) treat-

ment combinations, then the design is said to possess property A

if

C =
∑
y∈Ω∗

g(y)(J1 − I1)y1 ⊗ (J2 − I2)y2 ⊗ . . .⊗ (Jm − Im)ym (3.1.1)

where g(y)′s are constants depending on y′is and yi = 0 or 1

and (Ji − Ii)yi = Ji − Ii if yi = 1

while (Ji − Ii)yi = Ii if yi = 0

The element which is in the (x1, x2, . . . , xm)th row and (y1, y2, . . . , ym)th

column of the matrix (the treatments are in lexicographic order) is 1 if

(x1, x2, . . . , xm) and (y1, y2, . . . , ym) are (y1, y2, . . . , ym)th associates, and 0

otherwise.

Two treatments which are (y1, y2, . . . , ym)th associates occur together in

λy1y2 . . . ym blocks; hence we have the following lemma
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Lemma 3.1.1.

Let N be the incidence matrix of a BAFD; then

NN ′ =
∑
y∈Ω∗

λy1y2 . . . ym(J1 − I1)y1 ⊗ (J2 − I2)y2 ⊗ . . .⊗ (Jm − Im)ym

(3.1.2)

where λ000...0 is defined to be r

Further let Ji = si ⊗ si to be a matrix with all elements equal to 1

Let Ω∗ be the set of all m− component binary vectors, that is

Ω∗ = Ω ∪ {(0, 0, . . . , 0)} where Ω is defined in chapter 2

for y = (y1, y2, . . . , ym) ∈ Ω∗ let

Zy = ⊗mi=1Zi
yi (3.1.3)

where for 1 ≤ i ≤ m,
Zyi

i = Ii if yi = 1

= Ji if yi = 0
(3.1.4)

Definition 3.1.2.

A v × v matrix G where v = Πsi will be said to have property A if

it is of the form

G = ∑
y∈Ω∗

h(y)Zy

where h(y), y ∈ Ω∗, are real numbers

Let M000...0 = ⊗mi=1(s−1
i Ji), (3.1.5)
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Which together with equation (2.3.1) and (2.3.2), define My for every

y ∈ Ω∗. Also let the (v − 1)× v matrix P be defined as

P = (. . . , P y′, . . .)
′
, (3.1.6)

where P y is included in P for every y ∈ Ω. For example if m = 2 then

P = (P 01
′

, P 10
′

, P 11
′

)′

Lemma 3.1.2.

a. For each y ∈ Ω∗, Zy can be expressed as a linear

combination of My, y ∈ Ω∗.

b. Conversely, for each y ∈ Ω∗,My can be expressed

as a linear combination of Zy, y ∈ Ω∗

Proof.

My = My1
1 ⊗M

y2
2 ⊗ · · · ⊗Mym

m

where

Myi

i =


Ii − s−1

i Ji, if yi = 1

s−1
i Ji, if yi = 0

Now

Zy = Zy1
1 ⊗ Z

y2
2 ⊗ · · · ⊗ Zym

m

where

Zyi

i ==


Ii, if yi = 1

Ji, if yi = 0

Thus if yi = 1

Myi

i = Z1
i − s−1

i z0
i
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and if yi = 0

Myi

i = s−1
i = s−1

i z0
i

Hence My can be expressed as a linear combination of Zy and conversely

Zy can be expressed as a linear combination of My

Lemma 3.1.3.

P ′P = I − v−1J

where I is an identity matrix and J is a matrix of 1′s both of order

v × v

Proof. It may be seen from equations (2.3.5), (2.3.6), (2.3.8) and (3.1.6)

that in the v dimensional Euclidian space, the rows of P form an orthono-

mal basis of the orthocompliment of the space of vectors having all elements

equal. Hence the lemma follows

Example 3.1.1. Consider a 2× 3 BAFD where m = 2, s1 = 2, s2 = 3

b = 4, r = 2, k = 3 and

λ01 = λ11 = 1, λ10 = 0

If we take

P1 =
[

1√
2 −

1√
2

]

P2 =

 1√
2
−1√

2 0
1√
6

1√
6
−2√

6

 then

P01 =

 1
2 −1

2 0 −1
2

1
2 0

1√
12

1√
12 −

2√
12 −

1√
12 −

1√
12

2√
12


P10 =

[
1√
6

1√
6

1√
6 −

1√
6 −

1√
6 −

1√
6

]
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P11 =

 1
2 −1

2 0 −1
2

1
2 0

1√
12

1√
12 −

2√
12 −

1√
12 −

1√
12

2√
12


but

P =
[
P 01′, P 10′, P 11′

]′
is a (v − 1)× v = 5× 6 matrix

hence

P′ =



1
2

1√
12

1√
6

1
2

1√
12

−1
2

1√
12

1√
6 −1

2
1√
12

0 − 2√
12

1√
6 0 − 2√

12

−1
2 −

1√
12 −

1√
6 −

1√
2 −

1√
12

1
2 − 1√

12 −
1√
6

1
2 − 1√

12

0 2√
12 − 1√

6 0 2√
12



hence P =



1
2 −1

2 0 −1
2

1
2 0

1√
12

1√
12 −

2√
12 −

1√
12 −

1√
12

2√
12

1√
6

1√
6

1√
6 − 1√

6 − 1√
6 − 1√

6
1
2 −1

2 0 −1
2

1
2 0

1√
12

1√
12 −

2√
12 −

1√
12 −

1√
12

2√
12


and

P′P =



5
6 −1

6 −
1
6 −

1
6 −

1
6 −

1
6

−1
6

5
6 −1

6 −
1
6 −

1
6 −

1
6

−1
6 −

1
6

5
6 −1

6 −
1
6 −

1
6

−1
6 −

1
6 −

1
6

5
6 −1

6 −
1
6

−1
6 −

1
6 −

1
6 −

1
6

5
6 −1

6

−1
6 −

1
6 −

1
6 −

1
6 −

1
6

5
6


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=



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1



− 1
6



1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1


= I − v−1J

where I is an identity matrix and J is a matrix of 1′s both of order v×v =

6× 6

and

PP
′ =



1
2 −1

2 0 −1
2

1
2 0

1√
12

1√
12 −

2√
12 −

1√
12 −

1√
12

2√
12

1√
6

1√
6

1√
6 − 1√

6 − 1√
6 − 1√

6
1
2 −1

2 0 −1
2

1
2 0

1√
2

1√
12 −

2√
12 −

1√
12 −

1√
12

2√
12





1
2

1√
12

1√
6

1
2

1√
12

−1
2

1√
12

1√
6 −1

2
1√
12

0 − 2√
12

1√
6 0 − 2√

12

−1
2 −

1√
12 −

1√
6 −

1
2 −

1√
12

1
2 − 1√

12 −
1√
6

1√
2 −

1√
12

0 2√
12 − 1√

6 0 2√
12



=



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


= I

is an identity matrix which is ((v − 1)× (v − 1) = 5× 5))
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Lemma 3.1.4.

For a connected factorial design

(a) PCP ′ is positive definite (p.d)

(b) P yCP y′ is pd for every y ∈ Ω

Proof. Since C is non-negative definite (n.n.d), for every v− 1 component

vector U
¯
,

U
¯
′
PCP

′U
¯
≥ 0

Furthermore as the design is connected equality holds in the above only if

the elements of P ′U
¯
are all equal i.e. only if

P
′
U
¯

= uo(⊗mi=11¯i
) (3.1.7)

For some constant u0. By equations (2.3.6), (2.3.8), (3.1.6), P ′P equals

an identity matrix and

P (⊗mi=11¯i
) = 0

¯

Hence on premultiplication by P

PP
′
U
¯

= Puo(⊗mi=11¯i
)

= uoP (⊗mi=11¯i
)

which yields U
¯

= 0 This proves (a). The proof of (b) now follows noting

that for each y ∈ Ω, P yCP y ′ is a principal submatrix of PCP ′.
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Lemma 3.1.5.

For a connected factorial design to be balanced with OFS, it is nec-

essary and sufficient that the C matrix of the design be of the form

C =
∑
y∈Ω

ρ(y)My (3.1.8)

where ρ(y), y ∈ Ω, are real numbers

Proof. Sufficiency

Let C be of the form (3.1.8) then by equation (2.3.7), (2.3.8), it is easy to

see that for every y, z ∈ Ω, y 6= z,

P yC = ρ(y)P y (3.1.9)

P yCP y ′ = ρ(y)I(y) (3.1.10)

P yCP z ′ = 0 (3.1.11)

where I(y) is the identity matrix of order ∏ (si − 1)yi(= α(y) say)

Example 3.1.2. Suppose y = (10)andz = (01) in example 3.1.1 then

P 10C =
[

1√
6

1√
6

1√
6 −

1√
6 −

1√
6 −

1√
6

]



4
3 −1

3 −
1
3 0 −1

3 −
1
3

−1
3

4
3 −1

3 −
1
3 0 −1

3

−1
3 −

1
3

4
3 −1

3 −
1
3 0

0 −1
3 −

1
3

4
3 −1

3 −
1
3

−1
3 0 −1

3 −
1
3

4
3 −1

3

−1
3 −

1
3 0 −1

3 −
1
3

4
3


= 4

3

[
1√
6

1√
6

1√
6 −

1√
6 −

1√
6 −

1√
6

]
= 4

3P
10 = ρ(y)P y

hence
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P10CP 10′ = 4
3

[
1√
6

1√
6

1√
6 −

1√
6 −

1√
6 −

1√
6

]



1√
6

1√
6

1√
6

− 1√
6

− 1√
6

− 1√
6



i.e.

P 10CP 10′ = 4
3

[
1
6 + 1

6 + 1
6 + 1

6 + 1
6 + 1

6

]
= 4

3 [6
6 ] = 4

3 .1 = ρ(y)I(y)

where I(y) is an identity matrix of order ∏mi=1 (si − 1)yi which in this case∏m
i=1 (si − 1)yi = (2− 1)1(3− 1)0

= (1)(1)

= (1)

and P yCP z′ = P 10CP 01′

= 4
3

[
1√
6

1√
6

1√
6 −

1√
6 −

1√
6 −

1√
6

]



1
2

1√
12

−1
2

1√
12

0 − 2√
12

−1
2 −

1√
12

1
2 − 1√

12

0 2√
12


= 4

3

[
0 0

]
=
[
0 0

]
= 0

Example 3.1.3. For a 2× 3 BAFD where m = 2, s1 = 2, s2 = 3,

b = 4, r = 2, k = 3, λ01 = λ11 = 1, λ10 = 0 in example 3.1.1 we can obtain
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matrix C of the design as follows

NN
′
=

∑
y∈Ω∗

λy(J1 − I1)y1 ⊗ (J2 − I2)y2 ⊗ . . .⊗ (Jm − Im)ym

= λ00(J1 − I1)0 ⊗ (J2 − I2)0 + λ01(J1 − I1)0 ⊗ (J2 − I2)1

+ λ10(J1 − I1)1 ⊗ (J2 − I2)0 + λ11(J1 − I1)1 ⊗ (J2 − I2)1

= 2(J1 − I1)0 ⊗ (J2 − I2)0 + λ01(J1 − I1)0 ⊗ (J2 − I2)1

+ λ10(J1 − I1)1 ⊗ (J2 − I2)0 + λ11(J1 − I1)1 ⊗ (J2 − I2)1

= 2I1 ⊗ I2 + λ01I1 ⊗ (J2 − I2) + λ10(J1 − I1)⊗ I2

+ λ11(J1 − I1)⊗ (J2 − I2)

but in this design we have that λ01 = λ11 = 1, λ10 = 0 hence

NN
′
= 2I1 ⊗ I2 + (1)I1 ⊗ (J2 − I2) + (J1 − I1)⊗ (J2 − I2)

= 2I1 ⊗ I2 + I1 ⊗ J2 − I1 ⊗ I2 + J1 ⊗ J2 − J1 ⊗ I2

− I1 ⊗ J2 + I1 ⊗ I2

= 2I1 ⊗ I2 + 0I1 ⊗ J2 + J1 ⊗ J2 − J1 ⊗ I2

where as usual I1, I2 are 2 × 2 and 3 × 3 identity matrices and J1, J2 are

2× 2 and 3× 3 matrices of all 1′s. By (3.1.3) and (3.1.4),

NN
′ = 2Z11 + 0Z10 − Z01 + Z00

which shows that NN ′ has property A
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Furthermore

C = r(⊗mi=1Ii)− k−1NN
′

= 2(I1 ⊗ I2)− 1
3
[
2Z11 + 0Z10 − Z01 + Z00]

= 2Z11 − 2
3Z

11 + 0Z10 + 1
3Z

01 − 1
3Z

00

= 4
3Z

11 + 1
3Z

01 − 1
3Z

00

where by (3.1.3) and (3.1.4)

C = 4
3Z

11 + 1
3Z

01 − 1
3Z

00

=



4
3 0 0 0 0 0

0 4
3 0 0 0 0

0 0 4
3 0 0 0

0 0 0 4
3 0 0

0 0 0 0 4
3 0

0 0 0 0 0 4
3



+



1
3 0 0 1

3 0 0

0 1
3 0 0 1

3 0

0 0 1
3 0 0 1

3

1
3 0 0 1

3 0 0

0 1
3 0 0 1

3 0

0 0 1
3 0 0 1

3



+



−1
3

−1
3

−1
3

−1
3

−1
3

−1
3

−1
3

−1
3

−1
3

−1
3

−1
3

−1
3

−1
3

−1
3

−1
3

−1
3

−1
3

−1
3

−1
3

−1
3

−1
3

−1
3

−1
3

−1
3

−1
3

−1
3

−1
3

−1
3

−1
3

−1
3

−1
3

−1
3

−1
3

−1
3

−1
3

−1
3


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=



4
3

−1
3

−1
3 0 −1

3
−1
3

−1
3

4
3

−1
3

−1
3 0 −1

3

−1
3

−1
3

4
3

−1
3

−1
3 0

0 −1
3

−1
3

4
3

−1
3

−1
3

−1
3 0 −1

3
−1
3

4
3

−1
3

−1
3

−1
3 0 −1

3
−1
3

4
3


By Lemma 3.1.4 (b) and (3.1.10) ρ(y) > 0; hence by (3.1.9)

P y = {ρ(y)}−1P yCand from the reduced normal equations CΨ
¯

= Q
¯

it

follows that the BLUE of P yΨ
¯
is given by

P yΨ̂
¯

= {ρ(y)}−1P yQ
¯
, y ∈ Ω (3.1.12)

It is well known that the dispersion of Q
¯
is given by

Disp(Q
¯

) = σ2C (3.1.13)

σ2 being the constant error variance.

Hence (3.1.11) and (3.1.12) for every y, z ∈ Ω, y 6= z

Cov(P yΨ̂
¯
, P zΨ̂

¯
) = {ρ(y)ρ(z)}−1Cov(P yQ

¯
, P zQ

¯
)

= σ2{ρ(y)ρ(z)}−1P yCP z′

= 0

which shows that the design has OFS. Also by (3.1.10), (3.1.12) and

(3.1.13) for every y ∈ Ω

Disp(pyΨ̂
¯

) = σ2{ρ(y)}−1I(y) (3.1.14)
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So by corollary 2.4.1 the design is balanced.

Proof. necessity

Let P be as in (3.1.6) since C has all row and column sums equal to zero,

by lemma 3.1.3,

P
′
PC = C = CP

′
P (3.1.15)

hence

PC = PCP
′
P .

But by lemma 3.1.4 (a) PCP ′ is p.d. Therefore, P = (PCP ′)−1PC, and

from the reduced normal equations CΨ = Q, the BLUE of PΨ
¯
is given by

P Ψ̂
¯

= (PCP ′)−1PQ
¯
by (3.1.13)

Disp
[
P Ψ̂
¯
]

= σ2(PCP
′
)−1 (3.1.16)

Suppose now the design is balanced and has OFS. Since the design has

OFS, cov(P xΨ̂
¯
, P yΨ̂

¯
) = 0. For every x, y(x 6= y) ∈ Ω. Hence all of

diagonals blocks in Disp(P Ψ̂
¯

) must vanish so that by (3.1.16),

(PCP
′
)−1 = Diag(. . . , Ax, . . .), x ∈ Ω (3.1.17)

where Disp(P Ψ̂
¯

) = σ2Ax, x ∈ Ω

Since the design is balanced, by corollary 2.4.1 for every x ∈ Ω, Ax must

be proportional to the identity matrix.

Let Ax = axI
(x) where ax > 0 this together with (3.1.16) yields

PCP
′ = Diag(. . . , a−1

x I(x), . . .)
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Pre and post multiplying the above by P ′ and P respectively, one obtains

C = ∑
x∈Ω

a−1
x P x′P x = ∑

x∈Ω
a−1
x Mx, by (2.3.7), (3.1.6) and (3.1.15), hence the

necessity of the stated conditions follows

Now

C = ∑
x∈Ω

a−1
x P x′P x where a−1

x = ρ(x) hence

C =
∑
x∈Ω

ρ(x)P x′P x

=
∑
x∈Ω

ρ(x)Mx

hence the necessity of the stated condition follows

Example 3.1.4. For the 2× 3 BAFD in example 3.1.3

C =



4
3 −1

3 −
1
3 0 −1

3 −
1
3

−1
3

4
3 −1

3 −1
3 0 −1

3

−1
3 −

1
3

4
3 −1

3 −
1
3 0

0 −1
3 −

1
3

4
3 −1

3 −
1
3

−1
3 0 −1

3 −1
3

4
3 −1

3

−1
3 −

1
3 0 −1

3 −
1
3

4
3



P=



1
2 −1

2 0 −1
2

1
2 0

1√
12

1√
12 −

2√
12 −

1√
12 −

1√
12

2√
12

1√
6

1√
6

1√
6 − 1√

6 − 1√
6 − 1√

6

1
2

−1
2 0 −1

2
1
2 0

1√
12

1√
12 −

2√
12 −

1√
12 −

1√
12

2√
12





Chapter 3: Methodology of evaluating efficiencies of BAFD’s 62

Hence

PCP
′
=



2 0 0 0 0

0 2 0 0 0

0 0 4
3 0 0

0 0 0 4
3 0

0 0 0 0 4
3


= Diag(. . . , a−1

x Ix, . . . )

= Diag(a−1
(01)I

(01), a−1
(10)I

(10), a−1
(11)I

(11))

= Diag(2I(01),
4
3I

(10),
4
3I

(11))

where I(01) is of order (s1 − 1)0(s2 − 1)1 = (2− 1)0(3− 1)1 = 2

and I(10) is of order (s1 − 1)1(s2 − 1)0 = (2− 1)1(3− 1)0 = 1

and I(11) is of order (s1 − 1)1(s2 − 1)1 = (2− 1)1(3− 1)1 = 2
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It can also be verified that

C =
∑
x∈Ω

a−1
x Mx

= 2



1
3 −1

6 −
1
6

1
3 −1

6 −
1
6

−1
6

1
3 −1

6 −1
6

1
3 −1

6

−1
6 −

1
6

1
3 −1

6 −
1
6

1
3

1
3 −1

6 −
1
6

1
3 −1

6 −
1
6

−1
6

1
3 −1

6 −1
6

1
3 −1

6

−1
6 −

1
6

1
3 −1

6 −
1
6

1
3



+ 4
3



1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6



+ 4
3



1
3 −1

6 −
1
6 −1

3
1
6

1
6

−1
6

1
3 −1

6
1
6 −1

3
1
6

−1
6 −

1
6

1
3

1
6

1
6 −1

3

−1
3

1
6

1
6

1
3 −1

6 −
1
6

1
6 −1

3
1
6 −1

6
1
3 −1

6

1
6

1
6 −1

3 −1
6 −

1
6

1
3



=



4
3 −1

3 −
1
3 0 −1

3 −
1
3

−1
3

4
3 −1

3 −1
3 0 −1

3

−1
3 −

1
3

4
3 −1

3 −
1
3 0

0 −1
3 −

1
3

4
3 −1

3 −
1
3

−1
3 0 −1

3 −1
3

4
3 −1

3

−1
3 −

1
3 0 −1

3 −
1
3

4
3


= 2P 01′P 01 + 4

3P
10′P 10 + 4

3P
11′P 11

= ρ(0, 1)P 01′P 01 + ρ(1, 0)P 10′P 10 + ρ(1, 1)P 11′P 11

=
∑
x∈Ω

ρ(x)P x′P x

=
∑
x∈Ω

ρ(x)Mx

= C.

where ρ(0, 1) = a−1
01 = 2, ρ(1, 0) = a−1

10 = 4
3 and ρ(1, 1) = a−1

11 = 4
3
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Theorem 3.1.1.

For a connected factorial design to be balanced with OFS, it is nec-

essary and sufficient that the C matrix of the design has property

A

Proof. Necessity

This follows from lemma 3.1.2 (b) and the necessity part of lemma 3.1.5

Proof. Sufficiency

Let the C matrix have property A. Then by lemma 3.1.2 (a), it is possible

to express the C matrix as

C =
∑
x∈Ω∗

ρ(x)Mx =
∑
x∈Ω

ρ(x)Mx + ρ(0, 0, . . . , 0)M00...0 (3.1.18)

where ρ(x), x ∈ Ω∗ are constants

By (2.3.1), (2.3.2), and (3.1.5) for every y ∈ Ω

MyM00...0 = 0

also

M00...0M00...0 = M00...0(6= 0)

and

CM00...0 = 0

as each row sum of C equals zero.

Hence post multiplying equation (3.1.18) by M00...0,

it follows that ρ(0, 0, . . . , 0) = 0. The sufficiency of the stated condition

now follows from (3.1.18) and sufficiency part of lemma 3.1.5.
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To motivate the ideas further using the BAFD in example 3.1.3

M00 =



1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6



M01 =



1
3 −1

6 −
1
6

1
3 −1

6 −
1
6

−1
6

1
3 −1

6 −1
6

1
3 −1

6

−1
6 −

1
6

1
3 −1

6 −
1
6

1
3

1
3 −1

6 −
1
6

1
3 −1

6 −
1
6

−1
6

1
3 −1

6 −1
6

1
3 −1

6

−1
6 −

1
6

1
3 −1

6 −
1
6

1
3


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Then

MyM00 = 0 since for example if y = 01 then

M01M00 =



1
3 −1

6 −
1
6

1
3

−1
6 −1

6

−1
6

1
3 −1

6 −1
6

1
3 −1

6

−1
6 −

1
6

1
3 −1

6
−1
6

1
3

1
3 −1

6 −
1
6

1
3

−1
6 −1

6

−1
6

1
3 −1

6 −1
6

1
3 −1

6

−1
6 −

1
6

1
3 −1

6
−1
6

1
3





1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6



=



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


= 0
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Also M00M00 = M00 since

M00M00 =



1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6



= M00

Similarly

CM00 =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


= 0

Theorem 3.1.1 provides a characterization for balance with OFS in terms

property A of the C matrix in the connected case. Hereafter, a design will

be said to have property A if its C matrix has property A. As indicated

below, one can work out very simple formulae for the analysis of such

designs.
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Consider a connected design with property A. Then by Lemma 3.1.5 and

theorem 3.1.1 the BLUE of P yΨ
¯
and the dispersion matrix of this BLUE

are given by (3.1.12) and (3.1.14) respectively. Hence by (2.3.7) SS due

to interaction F y = SS due to P yΨ̂
¯

= (P yΨ̂
¯

)
′

Disp(P yΨ̂
¯

)
σ2

−1

(P yΨ̂
¯

)

= (P yΨ̂
¯

)
′

Cov(P yΨ̂
¯
, P yΨ̂

¯
)

σ2

−1

(P yΨ̂
¯

)

= {ρ(y)}−1Q
¯
′
P y′P yQ

¯
= {ρ(y)}−1Q

¯
′
MyQ

¯
,∈ Ω (3.1.19)

Since the BLUE of l′ is l′∗ and BLUE of Ψ̂
¯

is Q
¯

The formulae (3.1.19) is

extremely simple in the sense no matrix inversion is required.

Designs which are equireplicate or proper deserves some attention. For an

equireplicate design with common replication number r,

C = r(⊗mi=1Ii)−Nk−δN
′,

and by definition 3.1.1, C has property A if and only if NN ′ has property

A. Hence our next result follows as a consequence of theorem 3.1.1
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Theorem 3.1.2.

(a). For a connected, equireplicate factorial design

to be balanced with OFS, it is necessary and

sufffient that the matrix Nk−δN ′ has property

A

(b). For a connected, equireplicate, proper facto-

rial design to be balanced with OFS, it is nec-

essary and sufficient that the matrix NN ′ has

property A

For connected equireplicate designs with property A and a common repli-

cation number r, it is possible to give a simple formulae for interaction

efficiences. Recall that for the kind of design under consideration, the dis-

persion matrix pyΨ̂
¯

is given by (3.1.14). On the other hand, it is readily

seen that for a randomized (complete) block design with the same number

of replicates, one would have obtained

Disp(P yΨ̂
¯

) = σ2r−1I(y) (3.1.20)

A comparison of (3.1.14) and (3.1.20) shows that the efficiency with respect

to interaction F y in the design under consideration is given by

E(y) = σ2r−1I(y)

σ2{ρ(y)}−1I(y) = ρ(y)
r

y ∈ Ω (3.1.21)

To motivate the ideas further using BAFD in example 3.1.3 we have

ρ(0, 1) = 2, ρ(1, 0) = 4
3 ρ(1, 1) = 4

3

So

E(0, 1) = ρ(0,1)
r = 2.0

2.0 = 1 and

E(1, 0) = ρ(1,0)
r = 4

3(2) = 2
3
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and

E(1, 1) = ρ(1,1)
r = 4

3(2) = 2
3

Example 3.1.5. Consider a 3 × 4 factorial arranged in twelve blocks as

shown below

←−−− Blocks −−−→

00 00 00 01 01 01 02 02 02 03 03 03

11 12 13 10 12 13 10 11 13 10 11 12

22 23 21 23 20 22 21 23 20 22 20 21

The design is connected, proper with constant block size 3, and equirepli-

cate with common replication number r = 3. It may be seen, by explicit

computation, that for the above design

NN
′
=

∑
y∈Ω∗

λy(J1 − I1)y1 ⊗ (J2 − I2)y2 ⊗ . . .⊗ (Jm − Im)ym

= λ00(J1 − I1)0 ⊗ (J2 − I2)0 + λ01(J1 − I1)0 ⊗ (J2 − I2)1

+ λ10(J1 − I1)1 ⊗ (J2 − I2)0 + λ11(J1 − I1)1 ⊗ (J2 − I2)1

= 3I1 ⊗ I2 + λ01I1 ⊗ (J2 − I2) + λ10(J1 − I1)⊗ I2

+ λ11(J1 − I1)⊗ (J2 − I2)

but from the design it can be verified that λ01 = λ10 = 0 while λ11 = 1

hence
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NN
′
= 3I1 ⊗ I2 + 1(J1 − I1)⊗ (J2 − I2)

= 3I1 ⊗ I2 + J1 ⊗ J2 − J1 ⊗ I2 − I1 ⊗ J2 + I1 ⊗ I2

= 4I1 ⊗ I2 − I1 ⊗ J2 − J1 ⊗ I2 + J1 ⊗ J2

where as usual I1 and I2 are 3× 3 and 4× 4 identity matrices and J1 and

J2 are 3× 3 and 4× 4 matrices of all 1’s

By (3.1.3) and (3.1.4)

NN ′ = 4Z11 − Z10 − Z01 + Z00

which shows that NN ′ has property A. Hence by theorem 3.1.2 (b) the

design is balanced and has OFS. Furthermore

C = 3(I1 ⊗ I2)− 1
3NN

′

= r(⊗mi=1Ii)− k−1NN ′

= 5
3Z

11 + 1
3Z

10 + 1
3Z

01 − 1
3Z

00

which also shows that C has the property A

Suppose P1 =


1√
2
−1√

2 0

1√
2

1√
6
−2√

6


and P2 well chosen by (2.3.5), (2.3.6), (3.1.3), (3.1.4)

P 10 =


1

2
√

2
1

2
√

2
1

2
√

2
1

2
√

2 −
1

2
√

2 −
1

2
√

2 −
1

2
√

2 −
1

2
√

2 0 0 0 0

1
2
√

6
1

2
√

6
1

2
√

6
1

2
√

6
1

2
√

6
1

2
√

6
1

2
√

6
1

2
√

6 − 1√
6 −

1√
6 −

1√
6 −

1√
6


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and Z11 = Iv an identity matrix of order 12

hence

P 10Z11P 10′ =


1 0

0 1

 = I(10) where I(y) is identity matrix of order

∏
(si − 1)yi = (s1 − 1)1(s2 − 1)0

= (3− 1)1(4− 1)0

= 2

Similarly P 10Z10P 10′ = 4I(10),

P 10Z01P 10′ = P 10Z00P 10′ = 0

It also follows that

Z10 =



1 1 1 1 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 1 1 1 1


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Z01 =



1 0 0 0 1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1 0 0 0 1

1 0 0 0 1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1 0 0 0 1

1 0 0 0 1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1 0 0 0 1


and

Z00 =



1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1


hence

C = 5
3Z

11 + 1
3Z

10 + 1
3Z

01 − 1
3Z

00 that is,
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C =



2 0 0 0 0 −1
3 −

1
3 −

1
3 0 −1

3 −
1
3 −

1
3

0 2 0 0 −1
3 0 −1

3 −
1
3 −

1
3 0 −1

3 −
1
3

0 0 2 0 −1
3 −

1
3 0 −1

3 −
1
3 −

1
3 0 −1

3

0 0 0 2 −1
3 −

1
3 −

1
3 0 −1

3 −
1
3 −

1
3 0

0 −1
3 −

1
3 −

1
3 2 0 0 0 0 −1

3 −
1
3 −

1
3

−1
3 0 −1

3 −
1
3 0 2 0 0 −1

3 0 −1
3 −

1
3

−1
3 −

1
3 0 −1

3 0 0 2 0 −1
3 −

1
3 0 −1

3

−1
3 −

1
3 −

1
3 0 0 0 0 2 −1

3 −
1
3 −

1
3 0

0 −1
3 −

1
3 −

1
3 0 −1

3 −
1
3 −

1
3 2 0 0 0

−1
3 0 −1

3 −
1
3 −

1
3 0 −1

3 −
1
3 0 2 0 0

−1
3 −

1
3 0 −1

3 −
1
3 −

1
3 0 −1

3 0 0 2 0

−1
3 −

1
3 −

1
3 0 −1

3 −
1
3 −

1
3 0 0 0 0 2


hence

P 10CP 10′ =


3 0

0 3

 = 3


1 0

0 1

 = 3I(10)

where I(y) is the Identity matrix of order ∏ (si − 1)yi

= (s1 − 1)1(s2 − 1)0

= (3− 1)1(4− 1)0

= 2.

Similarly it may be seen that

P 01CP 01′ = 8
3I

(01), P 11CP 11′ = 5
3I

(11).

A comparison with (3.1.10) shows that ρ(1, 0) = 3, ρ(0, 1) = 8
3 and

ρ(1, 1) = 5
3 . Hence by (3.1.21) the interaction efficiencies in the design

under consideration are given by

E [1, 0] = ρ(1,0)
r = 3

3 = 1.0

E [0, 1] = ρ(0,1)
r = 8

3(3) = 8
9
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and

E [1, 1] = ρ(1,1)
r = 5

3(3) = 5
9

The characterization for balance with OFS, as given in theorem 3.1.1 has

immediate applicability in the actual construction of designs. It is possible

to derive another characterization, mainly of theoretical interest, in terms

of eigenvalues and eigenvectors for the C matrix.

Theorem 3.1.3.

For connected factorial design to be blanced with OFS, it is neces-

sary and sufficient that every x ∈ Ω, the columns of P x′ represents an

orthonomal system of eigenvectors corresponding to the same eigen-

value of C.

Proof. This is an immediate consequence of (2.3.7), (2.3.8) and lemma

3.1.5

Theorem 3.1.4.

The eigenvalues of NN ′ of a BAFD are g(y1, y2, . . . , ym)’s with

corresponding eigenvectors given by the columns of py′

where y = (y1, y2, . . . , ym) ∈ Ω

It should be noted that the multiplicity of g(y1, y2, . . . , ym) is∏m
i=1 (si − 1)yi.

Since C = r(⊗mi=1Ii)− k−1NN ′,

The columns of P y′ y ∈ Ω are also the eigenvectors of C with correspond-

ing eigenvalues
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ρ(y) = r − 1
k
g(y1, y2, . . . , ym) (3.1.22)

= r − 1
k
g(y), y ∈ Ω (3.1.23)

Let E(y) denote the interaction efficiences, then

Corollary 3.1.1.

E(y) = 1− 1
rkg(y) and E(y) = 1 if and only if g(y) = 0

3.2 A Combinatorial Charaterization

Nair and Rao (1948) and Shah (1960a,b) defined a 2m − 1 class associate

scheme for m factor experiments. Their association scheme has been re-

ferred to as the extended group divisible(EGD) scheme by Hinkelmann and

Kempthorne (1963) and binary numbers association by Paik and Federer

(1973). In this association scheme, two distinct treatment combinations are

defined as xth associates, x ∈ Ω where xi = 0 if the ith factor occurs at the

same level in both the treatment combinations and xi = 1 otherwise. The

number of xth associates of any treatment is given by α(x) = ∏(si − 1)xi

For x ∈ Ω let Bx be a v × v matrix such that its (J, J ′)th element equal

to 1 if the J th and J ′th treatment combinations are xth associates and zero

otherwise. Then Bx, x ∈ Ω, defines the 2m− 1 association matrices of the

EGD association scheme. Using the method of induction, Gupta (1988)

verified that

Bx = ⊗mi=1B
xi
i (3.2.1)
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where for 1 ≤ i ≤ m

Bxi
i = Ji − Ii if xi = 1

= Ii if xi = 0 (3.2.2)

Definition 3.2.1.

n arrangement of the v = ∏
si treatment combinations in b blocks

each of size k will be called an Extended Group Divisible (EGD)

design if

(i) The design is binary in the sense that each treatment combination

occurs at most once in each block.

(ii) Each treatment combination occurs in exactly r blocks and

(iii) Every two distict treatment combinations, which are x− th as-

sociates of each other occur together in λ(x) blocks, x ∈ Ω

For example it may be seen that the design in example 3.1.5 is an EGD

design with parameters m = 2, s1 = 3, s2 = 4, b = 12, r = k = 3, λ01 =

λ10 = 0, λ11 = 1.

It is readily seen e.g. Raghavarao (1971) that for an EGD design

NN ′ = rI +
∑
x∈Ω

λ(x)Bx (3.2.3)

where I is the v × v identity matrix.

By (3.1.3), (3.1.4), (3.2.2), for each x ∈ Ω, Bx can be expressed as a linear

combination of Zy, y ∈ Ω∗. Also, I = Z11...1. Hence by (3.2.3), for an
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EGD design, the matrix NN ′ has property A. Conversely, for each x ∈

Ω∗, Zx can be expressed as a linear combination of the I and By, y ∈ Ω.

Consequently if the NN ′ matrix of a binary proper design has property

A, then the design must be an EGD design. We thus have the following

result that was proved by Paik and Federer (1973) using an alternative

argument.

Theorem 3.2.1.

A binary proper design is an EGD design if and only if NN ′ matrix

has property A

Proof. Combining theorems 3.1.2 (b), 3.2.1, one obtains the result.

Theorem 3.2.2.

For a connected, equireplicate, proper, binary factorial design to be

balanced with OFS, it is necessary and sufficient that the design is

an EGD design.

Theorem 3.2.2 presents a combinatorial characterization for balance with

OFS in the case of connected, equireplicate, proper, binary designs. Such

a characterization is of much help in the actual construction of the de-

signs. The ’Sufficiency’ part of this theorem was proved by Nair and Rao

(1948), while the proof for ’Necessity’ part is due to Shah (1958, 1960a)and

Kshirsagar (1966).
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It is of interest to find explicit formulae for interaction efficiences in an

EGD design. To that effect note that by (3.2.3), for an EGD design

C = rI − 1
k
NN ′

= rI − 1
k

rI +
∑
x∈Ω

λ(x)Bx


= rI − 1

k
rI + 1

k

∑
x∈Ω

λ(x)Bx

= rI(1− 1
k

)− 1
k

∑
x∈Ω

λ(x)Bx

= rI(k − 1
k

)− 1
k

∑
x∈Ω

λ(x)Bx

= rIk−1(k − 1)− k−1 ∑
x∈Ω

λ(x)Bx

= k−1
r(k − 1)I −

∑
x∈Ω

λ(x)Bx

 (3.2.4)

From (2.3.5), (2.3.6), (3.2.1), (3.2.2), it may be seen after a little algebra

that for every x, y ∈ Ω

P yBxP y′ = [∏mi=1{(1− yi)si − 1}xi] I(y)

hence by (3.2.4), P yCP y′ = ρ(y)I(y)

where

ρ(y) = k−1
r(k − 1)I −

∑
x∈Ω

λ(x){
m∏
i=1

((1− yi)si − 1)xi}
 (3.2.5)

From (3.1.21), (3.2.5), the following result is evident

Theorem 3.2.3.

For a connected EGD design, with parameters as stated above, the

efficiency with respect to the interaction F y is given by

E(y) = k−1
[
(k − 1)− r−1 ∑

x∈Ω
λ(x){∏mi=1((1− yi)si − 1)xi}

]



Chapter 4

Construction of balanced Arrays

In this chapter we have given a method of constructing transitive arrays

of strength t by using orthogonal arrays of strength t. A method of con-

structing orthogonal arrays using difference schemes is also given

4.1 Construction of transitive arrays

Transitive arrays are defined in section 2.5 and transitive arrays of strength

two are useful in the construction of two-factor BAFDs. Therefore, we are

especially interested in constructing the transitive arrays of strength two.

Very important arrangements of arrays are defined by Rao (1961), these are

orthogonal arrays of type 1 and type 2, later renamed as transitive arrays

and semi-balanced arrays respectively. Bose et al. (1960), constructed

TA[v(v − 1), k, v, 2 : 1] from pairwise balanced designs while Suen (1982)

constructed TA[v(v − 1), v, v, 2 : 1] from doubly transitive groups of order

v. In this section, we shall give a method of constructing transitive arrays

of strength t by using orthogonal Arrays of strength t.

80
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Theorem 4.1.1.

If v = s is a prime number or a power of a prime number, then a

TA[λs(s− 1)...(s− t+ 1), s, s, t] can always be constructed.

Proof. Construct an orthogonal array OA[st, s, s, t] by using a suitable

method. From this orthogonal array, delete all columns whose elements are

not distinct if s is odd in order to obtain a reduced orthogonal array. The

required transitive array is the reduced orthogonal array. However, if s is

even, the required transitive array is obtained by appending the reduced

orthogonal array to the transpose of each of its columns. We would like to

construct TA[λs(s− 1), s, s, 2] hence, by theorem 4.1.1, we shall be inter-

ested in constructing OA[s2, s, s, 2] first before we construct the required

transitive arrays. Usually λ is required to be as small as possible so that

the size of the transitive array would not be too large. However, if λ is not

restricted to be too small, we can always construct a TA[λs(s− 1), s, s, 2]

for any s ≥ 2.

A few examples which illustrate the applications of theorem 4.1.1 are given

below.

Corollary 4.1.1.

If s is a prime power, then there exists a TA[s(s− 1), s, s, 2]

Proof. If we delete s columns whose elements are not distinct from the

orthogonal array OA[s2, s, s, 2], the reduced orthogonal array will be

TA[s(s− 1), s, s, 2] by theorem 4.1.1

Example 4.1.1. For s=5, we can construct a TA(20, 5, 5, 2) where λ = 1

i.e. TA(20, 5, 5, 2; 1). This is obtained by first constructing OA[25, 5, 5, 2]

and deleting five assemblies with elements that are not distinct.
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1 2 3 4 0 2 3 4 0 1 3 4 0 1 2 4 0 1 2 3
2 3 4 0 1 4 0 1 2 3 1 2 3 4 0 3 4 0 1 2
3 4 0 1 2 1 2 3 4 0 4 0 1 2 3 2 3 4 0 1
4 0 1 2 3 3 4 0 1 2 2 3 4 0 1 1 2 3 4 0
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

Table 4.1: TA[20,5,5,2;1]

Example 4.1.2. For s=3, we can construct a TA[18, 3, 3, 2], where λ = 3

this is obtained by first constructing an OA[27, 3, 3, 2] and then deleting

nine assemblies with elements which are not distinct.
1 2 0 2 0 1 1 2 0 2 0 1 1 2 0 2 0 1
2 0 1 1 2 0 2 0 1 1 2 0 2 0 1 1 2 0
0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

Table 4.2: TA[18,3,3,2;3]

The TA[s(s − 1), s, s, 2]′s constructed in corollary 4.1.1 are completely

resolvable.

Theorem 4.1.2.

The existence of a resolvable TA[s(s− 1), s− 1, s, 2 : λ] is equivalent

to the existence of s− 1 mutually orthogonal latin squares of order s

and hence also equivalent to the existence of an OA[s2, s− 1, s, 2 : λ]

Example 4.1.3. For s = 7, we can construct a TA[42, 6, 7, 2 : 1].

This transitive array is completely resolvable and it is equivalent to

OA[49, 6, 7, 2]. The transitive array TA[42, 6, 7, 2 : 1] is given below.

1 2 3 4 5 6 0 2 3 4 5 6 0 1 3 4 5 6 0 1 2 4 5 6
2 3 4 5 6 0 1 4 5 6 0 1 2 3 6 0 1 2 3 4 5 1 2 3
3 4 5 6 0 1 2 6 0 1 2 3 4 5 2 3 4 5 6 0 1 5 6 0
4 5 6 0 1 2 3 1 2 3 4 5 6 0 5 6 0 1 2 3 4 2 3 4
5 6 0 1 2 3 4 3 4 5 6 0 1 2 1 2 3 4 5 6 0 6 0 1
6 0 1 2 3 4 5 5 6 0 1 2 3 4 4 5 6 0 1 2 3 3 4 5

Continuation...
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0 1 2 3 5 6 0 1 2 3 4 6 0 1 2 2 4 5
4 5 6 0 3 4 5 6 0 1 2 5 6 0 1 3 3 4
1 2 3 4 1 2 3 4 5 6 0 4 5 6 0 1 2 3
5 6 0 1 6 0 1 2 3 4 5 3 4 5 6 0 1 2
2 3 4 5 4 5 6 0 1 2 3 2 3 4 5 6 0 1
6 0 1 2 2 3 4 5 6 0 1 1 2 3 4 5 6 0

Table 4.3: TA[42,6,7,2:1] - continued

Theorem 4.1.3.

The existence of a TA[s(s−1), s−2, s, 2] is equivalent to the existence

of s− 2 mutually orthogonal latin squares and hence also equivalent

to OA[s2, s− 2, s, 2]. The said mutually orthogonal latin squares are

of order s and all have different symbols in the diagonal.

Example 4.1.4. For s = 5, we can construct a TA[20, 3, 5, 2; 1] by first

constructing an OA[25, 3, 5, 2] and then deleting five assemblies with ele-

ments that are not distinct.

1 2 3 4 0 2 3 4 0 1 3 4 0 1 2 4 0 1 2 3
2 3 4 0 1 4 0 1 2 3 1 2 3 4 0 3 4 0 1 2
3 4 0 1 2 1 2 3 4 0 4 0 1 2 3 2 3 4 0 1

Table 4.4: TA[20,3,5,2;1]

Example 4.1.5. For s = 4, we can construct a TA[24, 4, 4, 3; 1] by first

constructing an OA[32, 4, 4, 3] and then deleting eight assemblies which

contain elements that are not distinct.

3 0 1 0 2 0 0 1 2 1 3 1 1 2 3 2 0 2 2 3 0 3 1 3
1 2 2 3 3 1 2 3 3 0 0 2 3 0 0 1 1 3 0 1 1 2 2 0
2 1 3 2 1 3 3 2 0 3 2 0 0 3 1 0 3 1 1 0 2 1 0 2
0 3 0 1 0 2 1 0 1 2 1 3 2 1 2 3 2 0 3 2 3 0 3 1

Table 4.5: TA[24,4,4,3;1]
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4.2 Difference Schemes

In this section, (A,+),or simply A, will denote a finite abelian group with

a binary operation +. A will have a cardinality denoted by s, its identity

element will be 0 and the inverse of Θ will be −Θ. The pair (A,+) will

be taken to be the additive group associated with the Galois fields with s

elements. We shall then have the following definition of a difference scheme

based on (A,+).

Definition 4.2.1.

An r× c array D with entries from A is called a difference scheme

based on (A,+) if it has the property that for all i and j with 1 ≤ i,

j ≤ c, the vector difference between the ith and jth columns contains

every element of A equally often if i 6= j

Necessarily r is a multiple of s, say, r = λs, where λ is the number of

times each element of A occurs in the difference of two columns. We will

denote such an array by D(r, c, s) and refer to it as a difference scheme

with s levels and index λ.

Example 4.2.1. Any orthogonal array OA(N, k, s, t), with t ≥ 2 may be

regarded as a difference scheme D(N, k, s), simply by taking the levels to

be integers modulo s

Example 4.2.2. Let (A,+) be the additive group associated with the Field

GF(s), whose elements, we denote by [α0, α1, · · · , αs−1]. Let D be the s×s

multiplication table of this field. (Thus the table contains a row and column

of zeros corresponding to the multiplication by 0).Then D is a difference

scheme D(s, s, s).
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Example 4.2.3. By Juxtaposing difference schemes D(r1, c, s) and

D(r2, c, s) we obtain a difference scheme D(r1 + r2, c, s). By taking

the component-wise products of the rows of different schemes D(r1, c, s1)

and D(r2, c, s2) in all possible ways we obtain a Difference scheme

D(r1r2, c, s1s2).

Theorem 4.2.1.

A difference scheme D(pm, pm, pn) exists for any prime p and integers

m ≥ n ≥ 1.

Proof. Let the elements of GF (pm) be represented by polynomials

b0 + b1x+ · · ·+ bn−1x
n−1 + · · ·+ bm−1x

m−1 (4.2.1)

where b0, · · · , bm−1 ∈ GF (p). We may regard GF (pn) as the additive

subgroup of GF (pm) by identifying it’s elements with the subset of GF (pm)

consisting of elements of the form b0 + b1x+ · · ·+ bn−1x
n−1. Note that here

we are only using the additive structure of GF (pn). Now let D∗ be the

pm× pm multiplication table of GF (pm). Map every entry b0 + b1x+ · · ·+

bm−1x
m−1 in this table to b0 + b1x + · · · + bn−1x

n−1. Let D be the array

obtained this way, and view it’s entries as elements of GF (pn). Then D is

the desired difference scheme.

Example 4.2.4. We illustrate the construction for the case p = 3,m =

2, n = 1, this will result to a difference scheme D(9, 9, 3). In this special

case the field GF (pn) in the construction is actually the subfield of GF (pm)

and the multiplication of elements of GF (pn) is the same in both fields.

Table 4.6 is a multiplication table for GF (32), based on the irreducible

polynomial f(x) = x2 + x + 2, we represent the nine elements of GF (32)

in condensed notation writing 0 as 00, 1 as 10, 1 + 2x as 01 and so on.
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(*) 00 10 20 01 11 21 02 12 22
00 00 00 00 00 00 00 00 00 00
10 00 10 20 01 11 21 02 12 22
20 00 20 10 02 22 12 01 21 11
01 00 01 02 12 10 11 21 22 20
11 00 11 22 10 21 02 20 01 12
21 00 21 12 11 02 20 22 10 01
02 00 02 01 21 20 22 12 11 10
12 00 12 21 22 01 10 11 20 02
22 00 22 11 20 12 01 10 02 21

Table 4.6: Multiplication table for GF (32)

Upon applying the map: For m = 2 : b0 + b1x is the polynomial and for

n = 1 : b0 is the polynomial hence we apply the map. b0 + b1x 7→ b0 to

the entries of this table to obtain the Difference Scheme D(9, 9, 3) based

on (GF (3),+) which is exhibited in Table 4.7

0 0 0 0 0 0 0 0 0
0 1 2 0 1 2 0 1 2
0 2 1 0 2 1 0 2 1
0 0 0 1 1 1 2 2 2
0 1 2 1 2 0 2 0 1
0 2 1 1 0 2 2 1 0
0 0 0 2 2 2 1 1 1
0 1 2 2 0 1 1 2 0
0 2 1 2 1 0 1 0 2

Table 4.7: A difference scheme based on (GF (3),+)

4.3 Orthogonal Arrays Via Difference Schemes

The procedure that converts a difference scheme into an orthogonal array

can be illustrated as follows If D is a difference scheme based on (A,+),

where A =
{
θ0, ..., θs−1

}
We will use Di to denote the array obtained from

D by adding θi to each of its entries. Obviously Di is a difference scheme

with the same parameters as D. We just juxtapose the Di’s to obtain an
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orthogonal array of strength two. We refer to this process as developing

the difference scheme into an orthogonal array.

Lemma 4.3.1.

If D is a difference scheme D(r, c, s) then

A =



D0

D1

.

.

.

Ds−1


is an orthogonal arrayOA(rs, c, s, 2)

Proof.

Select two factors from A, say F1 and F2, F1 6= F2and two elements from

A, say θ and θ
′. If c1 and c2 denote the columns of D corresponding to

the factors F1 and F2 respectively, then we know that λ entries in c1 − c2

are equal to θ -θ′. For each occurrence of θ - θ′ in c1 - c2 there is a unique

row in a unique Di in which F1 is at level θ and F2 is at level θ′. Since

these are the only runs with factor F1 at level θ and factor F2 at level θ′,

we conclude that there are indeed λ such runs in A.

Example 4.3.1. Construct a difference scheme D[9, 9, 9] and use it to

construct OA[81, 9, 9, 2]
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0 0 0 0 0 0 0 0 0
0 1 2 3 4 5 6 7 8
0 2 3 4 5 6 7 8 1
0 3 4 5 6 7 8 1 2
0 4 5 6 7 8 1 2 3
0 5 6 7 8 1 2 3 4
0 6 7 8 1 2 3 4 5
0 7 8 1 2 3 4 5 6
0 8 1 2 3 4 5 6 7

Table 4.8: The Difference Scheme D[9,9,9]

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2
0 1 2 3 4 5 6 7 8 1 2 0 4 5 3 7 8 6 2 0 1 5 3 4
0 1 2 3 4 5 6 7 8 2 0 1 5 3 4 8 6 7 1 2 0 4 5 3
0 1 2 3 4 5 6 7 8 3 4 5 6 7 8 0 1 2 6 7 8 0 1 2
0 1 2 3 4 5 6 7 8 4 5 3 7 8 6 1 2 0 8 6 7 2 0 1
0 1 2 3 4 5 6 7 8 5 3 4 8 6 7 2 0 1 7 8 6 1 2 0
0 1 2 3 4 5 6 7 8 6 7 8 0 1 2 3 4 5 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8 7 8 6 1 2 0 4 5 3 5 3 4 8 6 7
0 1 2 3 4 5 6 7 8 8 6 7 2 0 1 5 3 4 4 5 3 7 8 6

2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5
8 6 7 3 4 5 6 7 8 0 1 2 4 5 3 7 8 6 1 2 0 5 3 4
7 8 6 6 7 8 0 1 2 3 4 5 8 6 7 2 0 1 5 3 4 7 8 6
3 4 5 4 5 3 7 8 6 1 2 0 7 8 6 1 2 0 4 5 3 1 2 0
5 3 4 7 8 6 1 2 0 4 5 3 2 0 1 5 3 4 8 6 7 3 4 5
4 5 3 1 2 0 4 5 3 7 8 6 3 4 5 6 7 8 0 1 2 8 6 7
0 1 2 8 6 7 2 0 1 5 3 4 5 3 4 8 6 7 2 0 1 2 0 1
2 0 1 2 0 1 5 3 4 8 6 7 6 7 8 0 1 2 3 4 5 4 5 3
1 2 0 5 3 4 8 6 7 2 0 1 1 2 0 4 5 3 7 8 6 6 7 8
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5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7
8 6 7 2 0 1 6 7 8 0 1 2 3 4 5 7 8 6 1 2 0 4 5 3
1 2 0 4 5 3 3 4 5 6 7 8 0 1 2 5 3 4 8 6 7 2 0 1
4 5 3 7 8 6 8 6 7 2 0 1 5 3 4 2 0 1 5 3 4 8 6 7
6 7 8 0 1 2 5 3 4 8 6 7 2 0 1 6 7 8 0 1 2 3 4 5
2 0 1 5 3 4 2 0 1 5 3 4 8 6 7 4 5 3 7 8 6 1 2 0
5 3 4 8 6 7 4 5 3 7 8 6 1 2 0 1 2 0 4 5 3 7 8 6
7 8 6 1 2 0 1 2 0 4 5 3 7 8 6 8 6 7 2 0 1 5 3 4
0 1 2 3 4 5 7 8 6 1 2 0 4 5 3 3 4 5 6 7 8 0 1 2

8 8 8 8 8 8 8 8 8
8 6 7 2 0 1 5 3 4
4 5 3 7 8 6 1 2 0
5 3 4 8 6 7 2 0 1
1 2 0 4 5 3 7 8 6
6 7 8 0 1 2 3 4 5
7 8 6 1 2 0 4 5 3
3 4 5 6 7 8 0 1 2
2 0 1 5 3 4 8 6 7

Table 4.9: An OA[81, 9, 9, 2]λ = 1

Definition 4.3.1.

An orthogonal array OA[N, k, s, 2] is said to be a -resolvable if it

is statistically equivalent to the juxtaposition of N
as arrays such that

each factor occurs in each of these arrays a times at each level. A 1

-resolvable orthogonal array is also called completely resolvable,

otherwise it is called Partly resolvable.

Example 4.3.2. The OA[9, 3, 3, 2] shown in table 4.10 is completely re-

solvable.
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0 0 0
0 1 2
0 2 1
1 1 1
1 2 0
1 0 2
2 2 2
2 0 1
2 1 0

Table 4.10: A completely resolvable OA[9, 3, 3, 2]

The N
as = 3 arrays in which each of the factors occur once at each level

and whose Juxtaposition is statistically equivalent to the OA[9, 3, 3, 2] are

A1 =


0 0 0

1 1 1

2 2 2

, A2 =


0 1 2

1 2 0

2 0 1

, A3 =


0 2 1

1 0 2

2 1 0



Theorem 4.3.1.

The existence of both an a- resolvable OA[N, k1, s, 2] and an

OA[Nas , k2, s, 2] implies the existence of an OA[N, k1 + k2, s, 2]. Fur-

thermore, if the OA[Nas , k2, s, 2] is b - resolvable, there is an (abs) -

resolvable OA[N, k1 + k2, s, 2]

Proof. Let A =
[
Aᵀ

1, ..., A
ᵀ
u

]ᵀ
be the a - resolvable OA[N, k1, s, 2] where

u = N
as and in each A1, A2, ..., Au every factor occurs a times at each

level. Let B be the OA[Nas , k2, s, 2] if B is b - resolvable we take it to

be B =
[
Bᵀ

1 , ..., B
ᵀ
v

]ᵀ
where v = N

abs2 and in each Bi every factor occurs b -

times at each level for i = 1, 2, ..., v.

Now let C be the N× [k1 +k2] array formed by following each run in Ai by

the ith run in B for i = 1, ..., u.C is an OA[N, k1 + k2, s, 2] which is (abs) -
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resolvable since B is b - resolvable.

Corollary 4.3.1.

Suppose a divides N
s2 , then, an a -resolvable OA[N, k, s, 2] can always

be extended to an (as) resolvable OA[N, k + 1, s, 2]. In particular

any completely resolvable OA[N, k, s, 2] can be extended to an s-

resolvable OA[N, k + 1, s, 2].

Theorem 4.3.2.

An orthogonal array OA[N, k, s, 2] that is obtained by developing a

difference scheme is completely resolvable.

Proof. Let the orthogonal array be as in Lemma 4.3.1, with N = rs and

k = c. Let Ai consist of the s-runs obtained by taking the ith row of each

of D0, D1, · · · , Ds−1, for i = 1, · · · , r. Thus, Ai consists of the runs formed

by taking the ith row in D and adding θ01ᵀc , · · · , θs−11ᵀc to it in turn. Every

factor occurs once at each level in each Ai and the Juxtaposition of the A′is

is statistically equivalent to the OA[rs, c, s, 2] that we obtain by developing

difference schemes.

Corollary 4.3.2.

A difference scheme D(r, c, s) can be used to construct an orthogonal

array OA[rs, c+ 1, s, 2]

Example 4.3.3. Let D be the difference scheme D(s, s, s) according to

corollary 4.3.2 D can be used to construct an OA[s2, s + 1, s, 2] of index

unity. Suppose now s = 4, as usual we denote the elements of GF (4) by

0, 1, 2, 3. The Difference Scheme D(4, 4, 4) is given by the following table.
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0 0 0 0
0 1 2 3
0 2 3 1
0 3 1 2

Table 4.11: A difference scheme D(4, 4, 4)

0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
0 1 2 3 1 0 3 2 2 3 0 1 3 2 1 0
0 2 3 1 1 3 2 0 2 0 1 3 3 1 0 2
0 3 1 2 1 2 0 3 2 1 3 0 3 0 2 1

Table 4.12: A completely resolvable OA[16, 4, 4, 2] obtained by developing a
difference scheme D(4, 4, 4) in table 4.11

0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
0 1 2 3 1 0 3 2 2 3 0 1 3 2 1 0
0 2 3 1 1 3 2 0 2 0 1 3 3 1 0 2
0 3 1 2 1 2 0 3 2 1 3 0 3 0 2 1
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Table 4.13: An OA[16, 5, 4, 2] obtained by appending a symbol to each of the
runs in the OA[16, 4, 4, 2] of table 4.12

Example 4.3.4. Let D be the difference scheme D(9, 9, 3) exhibited in

table 4.7 by developing this, we obtain a completely resolvable OA[27, 9, 3, 2]

exhibited in table 4.14. From example 4.3.2 we also know that a completely

resolvable OA[9, 3, 3, 2] exists. From theorem 4.3.1, we can then deduce the

existence of a 3 - resolvable OA[27, 12, 3, 2]. By applying corollary 4.3.1

we obtain an OA[27, 13, 3, 2].

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2
0 1 2 0 1 2 0 1 2 1 2 0 1 2 0 1 2 0 2 0 1 2 0 1 2 0 1
0 2 1 0 2 1 0 2 1 1 0 2 1 0 2 1 0 2 2 1 0 2 1 0 2 1 0
0 0 0 1 1 1 2 2 2 1 1 1 2 2 2 0 0 0 2 2 2 0 0 0 1 1 1
0 1 2 1 2 0 2 0 1 1 2 0 2 0 1 0 1 2 2 0 1 0 1 2 1 2 0
0 2 1 1 0 2 2 1 0 1 0 2 2 1 0 0 2 1 2 1 0 0 2 1 1 0 2
0 0 0 2 2 2 1 1 1 1 1 1 0 0 0 2 2 2 2 2 2 1 1 1 0 0 0
0 1 2 2 0 1 1 2 0 1 2 0 0 1 2 2 0 1 2 0 1 1 2 0 0 1 2
0 2 1 2 1 0 1 0 2 1 0 2 0 2 1 2 1 0 2 1 0 1 0 2 0 2 1

Table 4.14: An OA(27, 9, 3, 2)λ = 3
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0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2
0 1 2 0 1 2 0 1 2 1 2 0 1 2 0 1 2 0 2 0 1 2 0 1
0 2 1 0 2 1 0 2 1 1 0 2 1 0 2 1 0 2 2 1 0 2 1 0
0 0 0 1 1 1 2 2 2 1 1 1 2 2 2 0 0 0 2 2 2 0 0 0
0 1 2 1 2 0 2 0 1 1 2 0 2 0 1 0 1 2 2 0 1 0 1 2
0 2 1 1 0 2 2 1 0 1 0 2 2 1 0 0 2 1 2 1 0 0 2 1
0 0 0 2 2 2 1 1 1 1 1 1 0 0 0 2 2 2 2 2 2 1 1 1
0 1 2 2 0 1 1 2 0 1 2 0 0 1 2 2 0 1 2 0 1 1 2 0
0 2 1 2 1 0 1 0 2 1 0 2 0 2 1 2 1 0 2 1 0 1 0 2
0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2 0 0 0 1 1 1
0 1 2 1 2 0 2 0 1 0 1 2 1 2 0 2 0 1 0 1 2 1 2 0
0 2 1 1 0 2 2 1 0 0 2 1 1 0 2 2 1 0 0 2 1 1 0 2
0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

2 2 2
2 0 1
2 1 0
1 1 1
1 2 0
1 0 2
0 0 0
0 1 2
0 2 1
2 2 2
2 0 1
2 1 0
0 1 2

Table 4.15: An OA(27, 13, 3, 2)λ = 3

Definition 4.3.2.

Let A = (aij) and B = (bij) be respectively m×n and u×v matrices

with entries from an abelian group A with binary operation ∗ (usu-

ally addition or multiplication). Their tensor or kronecker product

denoted by A⊗B, is the mu× nv matrix
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A
⊗
B =



a11 ∗B . . . a1n ∗B

. .

. .

. .

am1 ∗B . . . amn ∗B



where aij ∗ B stands for the u × v matrix with entries aij ∗ brs(1 ≤ r ≤

u, 1 ≤ s ≤ v). In this chapter,∗ will denote addition. Using this definition,

we may write the array A in lemma 4.3.1 as

A = E ⊗D (4.3.1)

where E =
[
θ0, θ1, ..., θs−1

]ᵀ
however there are other choices of E in equa-

tion (4.3.1) for which A is also an orthogonal array of strength 2.

Lemma 4.3.2.

If D is a difference scheme D(r, c, s) and B is an OA[N, k, s, 2] both

based on the abelian group A, then the array A = B ⊗ D is an

orthogonal array OA[Nr, kc, s, 2]

4.4 Bose and Bush Recursive Construction

The construction to be discussed in this section due to Bose and Bush

(1952) is in the spirit of example (4.3.4). It allows us to construct orthog-

onal arrays of strength two with a large number of factors, possibly the

maximal number, provided that the number of symbols s and the index λ

are powers of the same prime p. In example 4.3.4, we took s = λ = p = 3

and obtained an orthogonal array with maximal number of factors. i.e

f(27, 3, 2) = 13
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Theorem 4.4.1.

Let s = pv and λ = pu, where p is prime and u and v are integers

with u ≥ 0, v ≥ 1.Let d =
[
u
v

]

Then there exists an OA
[
λs2, λs

d+1−1
sd−sd−1 + 1, s, 2

]

Proof. Let D(i) be the difference scheme D(λs1−i, λs1−i, s), For i =

0, 1, ..., d. Since s and λs1−i are powers of the same prime and λs1−i ≥ s,

these difference schemes can be constructed as in theorem 4.2.1. De-

velop the Difference scheme D(0) to obtain a completely resolvable

OA(λs2, λs, s, 2).If d = 0, add one more factor to this orthogonal array as in

corollary 4.3.1 to obtain the desired OA(λs2, λs+1, s, 2). If d ≥ 1, useD(1)

to construct a completely resolvableOA(λs, λ, s, 2). The completely resolv-

able OA(λs2, λs, s, 2) and the completely resolvable OA(λs, λ, s, 2) can be

used as in theorem 4.3.1 to obtain an s resolvable OA(λs2, λs + λ, s, 2).If

d = 1, we can again add one more factor as in corollary 4.3.1 to obtain

the desired OA[λs2, λs+ λ+ 1, s, 2]. If d ≥ 2, we can use the s resolvable

OA[λs2, λs+λ, s, 2] and the completely resolvable OA[λ, λs , s, 2] which can

be obtained from D(2) to obtain an s2-resolvable OA[λs2, λs+ λ+ λ
s , s, 2]

using the method described in theorem 4.3.1

If we continue in this way using all the D(i)′s after d applications of the-

orem 4.3.1 and one application of corollary 4.3.1 we obtain an array with

λs+ λ+ λ
s + · · · λ

sd−1 + 1 factors = λ(sd+1−1)
(sd−sd−1) + 1 factors.

λs+ λ+ λ
s + · · · λ

sd−1 + 1

= λ
[
s+ 1 + 1

s + · · ·+ 1
sd−1

]
+ 1

= λ
[
Sn = a[1−rn]

1−r

]
+ 1

= λ
[
s(1−( 1

s )n)
1−( 1

s )

]
+ 1

= λ
[
s{

1
1−

1
sd−1

1− 1
s

}
]

+ 1
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= λ

[
s{

sd−1−1
sd−1
s−1

s

}
]

+ 1

= λ
[
s{s

d−1−1
sd−1 . s

s−1}
]

+ 1

= λ{ s
d+1−s2

sd−sd−1}+ 1

= λ{ s
d+1−1

sd−sd−1}+ 1

since s2 = s(mods− 1)

This is the required or desired orthogonal array.

Example 4.4.1. The construction of an OA(27, 13, 3, 2) in example 4.3.4

follows the recipe of theorem 4.4.1. Since λ is a power of s (infact λ = s1),

we know that this array has maximal number of factors

The levels of the first nine factors are obtained by developing D(0), a

difference scheme D(9, 9, 3).

The levels of the next three factors are obtained by appending the appro-

priate runs of an OA[9, 3, 3, 2] which was obtained by developing D(1), a

difference scheme D(3, 3, 3).

The levels of the last factor are obtained by appending appropriate runs

of an OA[3, 1, 3, 1] which was obtained by developing D(2), a difference

scheme D(1, 1, 3) or by using corollary 4.3.1, using the 3- resolvability of

the orthogonal array formed by the first twelve factors.

Example 4.4.2. Let p = 2, s = 2v and λ = 2sn−2. This corresponds to

an orthogonal array that was mentioned following the method of the

Addelman and Kempthorne (1961). When s is a power of 2 we shall

give a general construction for an OA[2sn, 2(sn−1)
(s−1) − 1, s, 2], n ≥ 2 using
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theorem 4.4.1

First consider the case when v ≥ 2 and u = 1 + (n− 2)log2s then

λ = 2sn−2 = 2 · (2v)u−1
v = 2 · 2u−1 = 2u

d = u
v but u = (n− 2)v + 1

Thus d = u
v = (n−2)v+1

v = n− 2 + 1
v

hence

λ sd+1−1
sd−sd−1 + 1 = λ

[
sn−2+ 1

v +1−(s
1
v )0

sn−2+ 1
v−sn−2+ 1

v−1

]
+ 1

= λs
1
v [sn−1−s0]

s
1
v [sn−2−sn−3]

+ 1

= λ[sn−1−1]
sn−2−sn−3 + 1,



but λ = 2u and u = 1 + (n− 2)log2s

so λ=2u =21+(n−2)log2s

= 2.2(n−2)log2s

but

2(n−2)log2s = x

⇒ (n− 2)log2slog22 = log2x

or

(n− 2)log2s = log2x

or

log2x = log2s
n−2

⇒ x = sn−2

hence

λ = 2 · sn−2


= 2sn−2[sn−1−1]

sn−3[s−1] + 1

= 2s[sn−1−1]
s−1 + 1
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= 2s[sn−1−1]+[s−1]
s−1

= 2sn−2s+s−1
s−1

= 2sn−s−1
s−1

= 2sn−s−2+1
s−1

= 2sn−2−s+1
s−1

= 2[sn−1]−[s−1]
s−1

= 2[sn−1]
s−1 − 1

= 2[sn−1]
s−1 − 1

thus the parameters above yields

OA
[
2sn, 2[sn−1]

s−1 − 1, s, 2
]

(4.4.1)

Since

λs2 = 2 · sn−2 · s2 = Number of Assemblies

= 2 · sn · s−2 · s2

= 2 · sn · s0
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= 2 · sn

If v = 1, then s = 2v = 21 = 2

⇒ d = u
v = u

1 = d = 1 + (n− 2)log22

= 1 + (n− 2)

= n− 1

Theorem 4.4.1 yields an array

OA[2n+1, 2n+1 − 3, 2, 2]

Example 4.4.3. An orthogonal array with parameters in theorem 4.4.1 in

the case s = 4 and n = 2 can be constructed using theorem 4.4.1

Since s = 4, n = 2

⇒ 4 = 2v ,⇒ 22 = 2v

and v = 2

but u = 1 + (n− 2)log2s

i.e u = 1 + (2− 2)log24

= 1

hence

d = u
v = 1

2 /∈ N and d < 1

d = 1
2 , (0,

1
2 , 1)

so we need only D(0), a difference scheme D(8, 8, 4) to construct this array.
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The Difference Scheme

D(0) = D(8, 8, 4) = D(23, 23, 22)

can be obtained by starting with multiplication table of GF (23) using the

irreducible polynomial f(x) = x3 + x + 1 over GF (2). The entries b0 +

b1x + b2x
2 in this table will then be mapped to b0 + b1x and these images

will be considered as the elements of GF (22) with x written as 2 and x+ 1

as 3.
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3
0 1 2 3 0 1 2 3 1 0 3 2 1 0 3 2 2 3 0 1 2 3 0 1 3 2 1 0 3 2 1 0
0 2 0 2 3 1 3 1 1 3 1 3 2 0 2 0 2 0 2 0 1 3 1 3 3 1 3 1 0 2 0 2
0 3 2 1 3 0 1 2 1 2 3 0 2 1 0 3 2 1 0 3 1 2 3 0 3 0 1 2 0 3 2 1
0 0 3 3 2 2 1 1 1 1 2 2 3 3 0 0 2 2 1 1 0 0 3 3 3 3 0 0 1 1 2 2
0 1 1 0 2 3 3 2 1 0 0 1 3 2 2 3 2 3 3 2 0 1 1 0 3 2 2 3 1 0 0 1
0 2 3 1 1 3 2 0 1 3 2 0 0 2 3 1 2 0 1 3 3 1 0 2 3 1 0 2 2 0 1 3
0 3 1 2 1 2 0 3 1 2 0 3 0 3 1 2 2 1 3 0 3 0 2 1 3 0 2 1 2 1 3 0
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Table 4.16: An OA[32, 9, 4, 2]

Parameters of this orthogonal array

Number of assemblies = 32

Number of constraints = 9

Number of symbols = 4

Strength = 2

λ = 2

4.5 Difference Schemes of Index 2

Several authors Masuyama (1969), Xu (1979), Jungnickel (1979), Xi-

ang (1983) have studied the construction of index 2 difference schemes
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D(2s, 2s, s) where s is a power of a prime. The construction given below

is a modification of Xu (1979), Jungnickel (1979).

If s is a power of 2, we have already seen that a difference scheme

D(2s, 2s, s) exists (in theorem 4.2.1) and in example 4.4.2 we have shown

that an OA[2s2, 2s + 1, s, 2] can be obtained. We will therefore restrict

our consideration to the case when s is the power of an odd prime.

We will write the elements of GF (s) as k0, k1, ..., ks−1, where k0 = 0

and ki = ki, i = 1, ..., s − 1, for a primitive element k. In particular

ks−1 = ks−1 = 1.

Theorem 4.5.1.

If s is a power of an odd prime then there exists a difference scheme

D(2s, 2s, s) and an orthogonal array OA(2s2, 2s+ 1, s, 2).

Proof. We construct four s× s matrices

A = (aij), B = (bij), C = (cij), F = (fij)

0 ≤ i, j ≤ s− 1 whose entries are given by



aij = kikj

bij = kikj + hk2
j

cij = kikj +mk2
i

fij = nkikj + gk2
j + ek2

i


(4.5.1)

Where h,m, n, g, e are elements of GF (s) that satisfy the conditions
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n = 1 + 4he = e/m = n2 − 4ge, (4.5.2)

In particular we may take

n = k, h = 1
2 ,m = k − 1

2k , g = k

2 and e = k − 1
2 , (4.5.3)

Then

D =

A C

B F

 (4.5.4)

is a difference scheme D(2s, 2s, s) based on the additive group GF (s)

Example 4.5.1. We use theorem 4.5.1 to construct a difference scheme

D(10, 10, 5). We work modulo 5, taking k = 2 as the primitive element of

GF (5) and use (4.5.3) to obtain the difference scheme exhibited in table

4.17 and use this to construct an orthogonal array OA[50, 11, 5, 2] in table

4.18

0 0 0 0 0 0 0 0 0 0
0 4 3 1 2 1 0 4 2 3
0 3 1 2 4 4 2 0 1 3
0 1 2 4 3 1 2 3 0 4
0 2 4 3 1 4 1 3 2 0
0 2 3 2 3 0 4 1 4 1
0 1 1 3 0 2 4 4 3 2
0 0 4 4 2 3 3 1 1 2
0 3 0 1 1 2 3 2 4 4
0 4 2 0 4 3 1 2 3 1

Table 4.17: A difference scheme D(10, 10, 5)

where

n = k = 2
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h = 1
2

m = 2− 1
(2)(2) = 1

4 = k − 1
2k

g = k

2 = 2
2 = 1

e = k − 1
2 = 2− 1

2 = 1
2

We can check :

n = 1 + 4he = e

m
= n2 − 4ge

= 1 + 4 · 1
2 ·

1
2 =

1
2
1
4

= 22 − 4 · 1 · 1
2 = 2

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2
0 4 3 1 2 1 0 4 2 3 1 0 4 2 3 2 1 0 3 4 2 1 0 3 4
0 3 1 2 4 4 2 0 1 3 1 4 2 3 0 0 3 1 2 4 2 0 3 4 1
0 1 2 4 3 1 2 3 0 4 1 2 3 0 4 2 3 4 1 0 2 3 4 1 0
0 2 4 3 1 4 1 3 2 0 1 3 0 4 2 0 2 4 3 1 2 4 1 0 3
0 2 3 2 3 0 4 1 4 1 1 3 4 3 4 1 0 2 0 2 2 4 0 4 0
0 1 1 3 0 2 4 4 3 2 1 2 2 4 1 3 0 0 4 3 2 3 3 0 2
0 0 4 4 2 3 3 1 1 2 1 1 0 0 3 4 4 2 2 3 2 2 1 1 4
0 3 0 1 1 2 3 2 4 4 1 4 1 2 2 3 4 3 0 0 2 0 2 3 3
0 4 2 0 4 3 1 2 3 1 1 0 3 1 0 4 2 3 4 2 2 1 4 2 1
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
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2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4
3 2 1 4 0 3 2 1 4 0 4 3 2 0 1 4 3 2 0 1 0 4 3 1 2
1 4 2 3 0 3 1 4 0 2 2 0 3 4 1 4 2 0 1 3 3 1 4 0 2
3 4 0 2 1 3 4 0 2 1 3 0 1 3 2 4 0 1 3 2 0 1 2 4 3
1 3 0 4 2 3 0 2 1 4 2 4 1 0 3 4 1 3 2 0 3 0 2 1 4
2 1 3 1 3 3 0 1 0 1 3 2 4 2 4 4 1 2 1 2 4 3 0 3 0
4 1 1 0 4 3 4 4 1 3 0 2 2 1 0 4 0 0 2 4 1 3 3 2 1
0 0 3 3 4 3 3 2 2 0 1 1 4 4 0 4 4 3 3 1 2 2 0 0 1
4 0 4 1 1 3 1 3 4 4 0 1 0 2 2 4 2 4 0 0 1 2 1 3 3
0 3 4 0 3 3 2 0 3 2 1 4 0 1 4 4 3 1 4 3 2 0 1 2 0
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

Table 4.18: OA[50, 11, 5, 2] : λ = 2

Parameters of this array

• Number of assemblies = 50

• Number of constraints = 11

• Number of symbols = 4

• Strength =2

• λ = 2

Example 4.5.2. Table 4.19 shows a difference scheme D(6, 6, 3) con-

structed in a similar way from GF (3)

0 0 0 0 0 0
0 1 2 1 2 0
0 2 1 1 0 2
0 2 2 0 1 1
0 0 1 2 2 1
0 1 0 2 1 2

Table 4.19: A difference Scheme D(6, 6, 3)

Theorem 4.5.1 provides a simple way of constructing an

OA(2s2, 2s + 1, s, 2), there is an analogous construction for orthogo-

nal arrays OA(2sn, 2(sn−1)
(s−1) − 1, s, 2), with n ≥ 3 that is also very simple.
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The recursive construction that we give makes use of a series of differ-

ence schemes. This is based on the work of several authors, including

Shrikhande (1964), Masuyama (1969), Xu (1979), Mukhopadhyay (1981).

The following lemma, due to Shrikhande (1964), is a convenient tool for

recursively constructing difference schemes.

Lemma 4.5.1.

The tensor product of difference schemes D(r1, c1, s) and D(r2, c2, s)

based on the abelian group A is a difference scheme D(r1r2, c1c2, s)

based on A

Proof. Let D = (dij) be a difference scheme D(r1, c1, s) and D′ = (d′lm) a

difference scheme D(r2, c2, s). The entries of c1 − c2 where c1 and c2 are

distinct columns of D ⊗D′ are of the form

dij + d′lm − dij′ − d′lm′, i = 1, ..., r1

l = 1, ..., r2 for fixed j, j′ ∈
{

1, ..., c1

}
,

m,m′ ∈ [1, ..., c2]

and (j,m) 6= (j′,m′). If j 6= j′ then for any fixed l we see that

dij + d′lm − dij′ − d′lm′, i = `, ..., r1,
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contains every element of A equally often because D is a difference scheme.

If j = j′ then m 6= m′ and for every fixed i we see that

dij + d′lm − dij′ − d′lm′ = d′lm − d′lm′l = 1, ..., r2,

Contains every elements of A equally often, because D is a difference

scheme. This shows that D ⊗D′ is a difference scheme.

Corollary 4.5.1.

For any n ≥ 1 and prime power s, there exists a difference scheme

D(2sn, 2sn, s) based on the additive group associated with GF (s).

Proof. If s = 2v, v ≥ 1 then we know that from the proof of theorem 4.2.1

that there exists a difference scheme D(2s, 2s, s) based on the additive

group GF (s). If s is a power of an odd prime the existence of such a

difference scheme was established in the proof of theorem 4.5.1. From the

proof of theorem 4.2.1 we also know that there exists a difference scheme

D(s, s, s) based on the additive group of GF (s). The desired result now

follows by repeatedly using these difference schemes in Lemma 4.5.1

This corollary enables us to establish the claim that the family of orthog-

onal arrays OA(2sn, 2(sn−1)
(s−1) − 1, s, 2) can also be obtained via the use of

difference schemes if n ≥ 3. We already know that this is true if s is a

power of 2 from example 4.4.2. Now we need to distinguish between odd

and even values of s.
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Theorem 4.5.2.

If s is a power of a prime and n ≥ 2, then an orthogonal array

OA[2sn, 2(sn − 1)
(s− 1) − 1, s, 2]

can be obtained by using difference schemes.

Proof. From corollary 4.5.1 and theorem 4.3.2 we know how to construct a

completely resolvable OA[2sm, 2sm−1, s, 2] say A(m), For m ≥ 2 applying

theorem 4.3.1 to A(3) and A(2) results in an s resolvable OA[2s3, 2s2 +

2s, s, 2] say A(2, 3). Applying theorem 4.3.1 to A(4) and A(2, 3) results in

an s2 resolvable OA[2s4, 2s3 + 2s2 + 2s, s, 2] say A(2, 3, 4). Continuing this

way we eventually obtain an sn−2 resolvable OA[2sn, 2sn−1 + 2sn−2 + · · ·+

2s, s, 2] say A(2, 3, · · · , n). As in corollary 4.3.1 we can add one more factor

but 2sn−1 + 2sn−2 + · · ·+ 2s+ 1 = 2[sn−1 + sn−2 + · · ·+ s] + 1 = 2(sn−1)
(s−1) − 1

Hence this gives the desired orthogonal array.

4.6 Orthogonal Arrays and Hadamard Matrices

Hadamard matrices are square matrices with +1′s and −1′s as the only

elements and whose rows are orthogonal. The study of two level orthogonal

arrays of strength 2 and 3 is essentially equivalent to the study of these

matrices.
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Definition 4.6.1.

A hadamard matrix of order n is an n × n matrix Hn of +1′s and

−1′s whose rows are orthogonal, that is, which satisfies

HnH
ᵀ
n = nIn (4.6.1)

For example, here are hadamard matrices of order 1, 2 and 4.

H1 = [1], H2 =

1 1

1 −1

 , H4 =



1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1


(4.6.2)

These matrices are named after a French mathematician Jacques

hadamard. In Hadamard (1893) he showed that if A = (aij) is an

n× n matrix with |aij| ≤ 1 then

|detA| ≤ n
n
2 (4.6.3)

Hadamard matrices may be regarded as the special class of difference

schemes D(r, c, s) with s = 2, r = c and index λ = c
2 .

4.6.1 Basic Properties of Hadamard Matrices

Suppose Hn is a hadamard matrix of order n.Then H−1
n = n−1Hᵀ

n, so

Hᵀ
nHn = nIn (4.6.4)
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which implies that the columns of Hn are orthogonal. If Hn satisfies (4.6.1)

or (4.6.4), then so does any matrix obtained from Hn by permuting its rows

(or columns) and negating any of its rows or columns. All the matrices

obtained in this way are said to be isomorphic or equivalent. By transfor-

mations of this kind, we can always arrange the first row and column of Hn

to have entirely of +1s. Such a hadamard matrix is said to be Normalized.

Lemma 4.6.1.

Let Hn be a Normalized hadamard matrix of order n, n > 2 let

u = (u1, ..., un) and v = (v1, ..., vn) be any two distinct rows of Hn,

not including the first. Then

a). There are n
2 coordinates i with ui = +1 and n

2 with ui = −1;

b). There are n
4 coordinates with ui = vi = +1, n4 with ui = +1,vi =

−1, n4 with ui = −1, vi = +1, and n
4 with ui = vi = −1;

c). Similar results hold for the columns of Hn

Proof. These are the immediate consequences of orthogonal relations

(4.6.1) and (4.6.3).

Corollary 4.6.1.

If a hadamard matrix Hn exists then n is 1, 2 or a multiple of 4. The

hadamard conjencture is that the converse to this corollary holds.
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4.6.2 The Connection between hadamard matrices and or-

thogonal arrays

Rao (1946) proved f(4λ, 2, 2) ≤ 4λ − 1 and f(8λ, 2, 3) ≤ 4λ. As we shall

now show equality holds in these two bounds if and only if there exists a

hadamard matrix of order 4λ

Theorem 4.6.2.1.

Orthogonal arrays OA[4λ, 4λ − 1, 2, 2] and OA[8λ, 4λ, 2, 3] exists if

and only if there exists a hadamard matrix of order 4λ.

Proof. An OA[4λ, 4λ−1, 2, 2] exists if and only if an OA[8λ, 4λ, 2, 3] exists

as shown by Hedayat et al. (1997). Suppose H4λ is a normalized hadamard

matrix by Lemma 4.6.1 the matrix obtained by omitting the first column of

H4λ is an OA[4λ, 4λ− 1, 2, 2]. Conversely let A be an OA[4λ, 4λ− 1, 2, 2]

in which the levels are +1 and −1. It follows from the definition of an

orthogonal array that the matrix formed by adding the initial column of

+1 to A satisfies equation (4.6.1).

It can aslo be shown that F (4λ−1−µ, 2, 2) ≥ 4λ and F (4λ−µ, 2, 3) ≥ 8λ

for λ ≥ 1, 0 ≤ µ ≤ 3. These two inequalities become equalities if and only

if a hadamard matrix H4λ exists.

In view of theorem 4.6.2.1 orthogonal arrays with parameters OA(4λ, 4λ−

1, 2, 2) and OA(8λ, 4λ, 2, 3) are called hadamard arrays.

Theorem 4.6.2.2.

A hadamard matrix Hn exists if and only if a difference scheme

D(n, n, 2) exists
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Proof. By lemma 4.6.1 any two distinct columns of a hadamard matrix Hn

must agree in n/2 places and disagree in n/2 places. The component-wise

product of these columns therefore contains n/2 +1′s and n/2 −1′s and

so Hn is a difference scheme D(n, n, 2) based on the multiplicative group

[+1,−1].

4.6.3 Construction of hadamard matrices

Several classical methods for constructing hadamard matrices are available

in literature but in this thesis we shall only construct the Sylvester type

hadamard matrices using the tensor product construction of definition

4.3.2. This method can enable one to construct hadamard matrices of most

orders up to 200.

Theorem 4.6.3.1.

The tensor product of Ha⊗Hb of hadamard matrices of order a and

b is a hadamard matrix of order ab.

Proof. This is an immediate consequence of lemma 4.5.1 and theorem

4.6.2.2 So once we have a hadamard matrix of order b we can immediately

obtain matrices of order 2b, 4b, 8b, 16b, ... by repeatedly tensoring with the

matrix

H2 =

+1 +1

+1 −1



The hadamard matrices of order 2m obtained in this way by starting from

b = 1 and H1 = [1] are called sylvester type matrices.

Using lemma 4.3.1 the difference schemeD(8, 8, 2) can be used to construct

an orthogonal array OA(16, 8, 2, 2)
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+ + + + + + + +
+ - + - + - + -
+ + - - + + - -
+ - - + + - - +
+ + + + - - - -
+ - + - - + - +
+ + - - - - + +
+ - - + - + + -

Table 4.20: Sylvester type hadamard matrix of order 8

0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 1 1 0 0 1 1 0
0 0 0 0 1 1 1 1
0 1 0 1 1 0 1 0
0 0 1 1 1 1 0 0
0 1 1 0 1 0 0 1

Table 4.21: Difference Scheme D(8, 8, 2)

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0
0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0
0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1
0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0
0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1
0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1
0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0

Table 4.22: OA[16, 8, 2, 2]λ = 4

4.7 Orthogonal Arrays Of Strength t > 2

In order to obtain orthogonal arrays of higher strength by developing a

difference scheme, the scheme should posses Additional regularity property.

We call such schemes "difference schemes of strength t". The case t = 2

will correspond to ordinary difference schemes. These notions were first

formulated by Seiden (1954).

Let A be an abelian group of order s. By At, for t ≥ 1 we will denote the

abelian group of order st consisting of t−tuples of elements from A with
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the usual vector addition as the binary operation. Further, let

At0 =
{

(x1, ..., xt) : x1 = ... = xt ∈ A
}

Then At0 is a subgroup of At of order s, and we will denote its cosets by

Ati, i = 1, ..., st−1 − 1

Definition 4.7.1.

An r×c array D based on A is a difference scheme of strength t if for

every r × t subarray each set Ati, i = 0, 1, ..., st−1 − 1, is represented

equally often when the rows of the subarray are viewed as elements of

At. It follows that r is a multiple of st−1, say r = λst−1. We denote

such an array by Dt(r, c, s). For t = 2 this definition is equivalent to

definition 4.2.1. Developing a difference scheme of strength t results

in an orthogonal array of strength t, to which under certain conditions

at least one additional factor can be added.

Theorem 4.7.1.

A difference scheme Dt(r, c, s) of strength t can be used to construct

an OA[rs, c, s, t]. If the difference scheme itself is already an orthogo-

nal array of strength t−1 or if it can be written as the Juxtaposition

of s Difference schemes Dt−1(rs , c, s) then it can be used to construct

an OA[rs, c+1, s, t]. Note that corollary 4.3.2 is a special case of this

theorem, since any difference scheme D2(r, c, s) is the Juxtaposition

of s difference schemes D1(rs , c, s)

Example 4.7.1. Let D be an OA[4λ, k, s, 2] over (GF (2),+), k ≥ 3. Then

D is also a difference scheme of strength 3. So we can use it to construct

an OA[8λ, k + 1, 2, 3]
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Example 4.7.2. An OA(8, 7, 2, 2) which is also a difference scheme

DT
3 (8, 7, 2) of strength 3 over (GF (2),+) is shown below.

0 0 0 0 0 0 0
0 0 1 0 1 1 1
0 1 0 1 0 1 1
0 1 1 1 1 0 0
1 0 0 1 1 0 1
1 0 1 1 0 1 0
1 1 0 0 1 1 0
1 1 1 0 0 0 1

Table 4.23: Difference Scheme DT
3 (8, 7, 2) of Strength 3

The resulting OA(16, 8, 2, 3) is shown in table 4.24

0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0
0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0
0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0
0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1
0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1
0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1
0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Table 4.24: OA[16, 8, 2, 3] λ = 2
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4.8 The Product Of Balanced Arrays

Bush (1952) provided the following theorem for the product of orthogonal

arrays

Theorem 4.8.1.

The existence of OA[Ni, ki, si, t] for i = 1, 2, ...,m implies the exis-

tence of an OA[N, k, s, t] where N = N1N2...Nm, s = s1s2...sm and

k = min(k1, k2, ..., km).

The product of orthogonal arrays can generate orthogonal arrays

from several known orthogonal arrays. The procedure can be simi-

larly used to determine the product of balanced arrays.

Theorem 4.8.2.

The existence of BA[Ni, ki, si, t] for i = 1, 2, ...,m implies the exis-

tence of a BA[N, k, s, t] where N = N1N2...Nm, s = s1s2...sm and

k = min(k1, k2, ..., km).

If the symbols of the BA[N, k, s, t] are denoted by ordered k tuples

then the parameters are

λ((a11, a21, ..., am1)(a12, a22, ..., am2)...(a1t, a2t, ..., amt))

= λ(a11, a12, ..., a1t)λ(a21, a22, ..., a2t)...λ(am1, am2, ..., amt)

Proof. Let the BA(N1, k1, s1, t) be denoted by the k1×N1 matrix A = (aij)

and the BA[N2, k2, s2, t] be denoted by k2 ×N2 matrix B = (bij). Let A1

and B1 denote the first k rows of A and B respectively. Then form the

k ×N1N2 matrix.
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(a11, b11)...(a11, b1N2)...(a1N1, b11)...(a1N1, b1N2)

(a21, b21)...(a21, b2N2)...(a2N1, b21)...(a2N1, b2N2)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

(ak1, bk1) · · · (ak1, bkN2) · · · (akN1, bk1) · · · (akN1, bkN2)

This is a BA[N1N2, k, s1s2, t] with parameters λ((a1, b1), ..., (at, bt))

= λ(a1, ...at)λ(b1, ..., bt).

From this array by following the same procedure with BA(N3, k3, s3, t) we

get a BA(N1N2N3, k, s1s2s3, t). Continuing this procedure,we finally get a

BA[N, k, s, t].

Example 4.8.1. The product of the following balanced arrays

BA[2,2,2,2] BA[6,2,3,2]
0 1 0 1 2 0 1 2
1 0 1 2 0 2 0 1

λ(0, 1) = 1 = λ(1, 0) λ(0, 0) = λ(1, 1) = λ(2, 2) = 0

λ(0, 0) = λ(1, 1) = 0 λ(0, 1) = λ(0, 2) = λ(1, 0) = λ(2, 0)

= λ(1, 2) = λ(2, 1) = 1

is a BA[12, 2, 6, 2]

00 01 02 00 01 02 10 11 12 10 11 12

11 12 10 12 10 11 01 02 00 02 00 01
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with parameters

λ(a1b1, a2b2) =


0 if a1 = a2 or b1 = b2

1 Otherwise



4.9 Construction Of Some Balanced Arrays of

strength t = 2

In this section we are interested in construction of balanced arrays of

strength t = 2 with parameters λ(x, y) = λ1 or λ2 according as x = y

or not. In particular we are interested in the BA[(ks− 1)sλ, ks, s, 2] with

parameters λ(x, y) = (k − 1)λ or (kλ) according as x = y or Not. For

brevity we shall call it the balanced array of type T with index λ and

denote it by BA[T ][k, s, λ].

It is clear that a BA[T ][1, s, λ]

= BA[λs(s− 1), s, s, 2]

= TA[λs(s− 1), s, s, 2].

In constructing a BA[T ][k, s, λ] for any given k and s we would like λ to

be as small as possible so that the size of the balanced array is not too

large. However if there is no restriction on λ, we can always construct a

BA[T ][k, s, λ] for any k and s.

Theorem 4.9.1.

For all k and s,there always exists a BA[T ][k, s, λ] for some λ.

Proof. For all k and s, there exists a TA[(ks− 1)ksn, ks, ks, 2] for some n

from the discussion in section 4.1. Let the symbols of the transitive array be
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denoted by [0, 1, ..., ks−1]. If we replace each symbol in the transitive array

by x(modk). Then the transitive array becomes a BA[(ks−1)ksn, ks, s, 2]

with parameters λ(x, y) = (k − 1)kn or k2n according as x = y or not,

which is a BA[T ][ks, s, kn]. The method of construction in theorem 4.9.1

does not usually provide balanced arrays with a small number of assemblies

as we desire.

Example 4.9.1. Suppose k = 2,s = 2, and n = 1 then we can construct a

TA[(ks− 1)ksn, ks, ks, 2] = TA[12, 4, 4, 2]

3 1 0 2 1 3 2 0 2 0 1 3
1 3 2 0 2 0 1 3 3 1 0 2
2 0 1 3 3 1 0 2 1 3 2 0
0 2 3 1 0 2 3 1 0 2 3 1

Table 4.25: TA[12, 4, 4, 2]

replacing every symbol in TA[12, 4, 4, 2] by x(mod2), we shall have a

BA[12, 4, 2, 2] = BA(T )[2, 2, 2]

1 1 0 0 1 1 0 0 0 0 1 1
1 1 0 0 0 0 1 1 1 1 0 0
0 0 1 1 1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1 0 0 1 1

Table 4.26: BA[12,4,2,2]

parameters of BA[12, 4, 4, 2] are

λ(0, 0) = λ(1, 1) = 2 = (k − 1)kn and

λ(1, 0) = λ(0, 1) = 4 = k2n.

We shall now discuss methods of constructing balanced arrays of type T

with index unity.
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Theorem 4.9.2.

The existence of a partly resolvable (Definition 4.3.1)

OA[ks2, ks, s, 2]is equivalent to the existence of a BA[T ][k, s, 1]

Proof. If a partly resolvable OA[ks2, ks, s, 2] exists then there exists s as-

semblies which form OA[s, ks, s, 1]. We can permute the symbols of the

orthogonal array in each row such that these s, assemblies are of the form

(i, i, ..., i)′ for i = 0, 1, ..., s − 1. Deleting these assemblies we obtain a

BA[T ][k, s, 1]

Example 4.9.2. Suppose k = 2 and that s = 5, we can construct

OA[50, 10, 5, 2] by developing a difference scheme D(10, 10, 5) as in exam-

ple 4.5.1 and also a BA[45, 10, 5, 2]. The Difference Scheme D(10, 10, 5) is

0 0 0 0 0 0 0 0 0 0
0 4 3 1 2 1 0 4 2 3
0 3 1 2 4 4 2 0 1 3
0 1 2 4 3 1 2 3 0 4
0 2 4 3 1 4 1 3 2 0
0 2 3 2 3 0 4 1 4 1
0 1 1 3 0 2 4 4 3 2
0 0 4 4 2 3 3 1 1 2
0 3 0 1 1 2 3 2 4 4
0 4 2 0 4 3 1 2 3 1

Table 4.27: Table D(10, 10, 5)

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 2 2
4 3 1 2 1 0 4 2 3 0 4 2 3 2 1 0 3 4 1 0 3 4 3
3 1 2 4 4 2 0 1 3 4 2 3 0 0 3 1 2 4 0 3 4 1 1
1 2 4 3 1 2 3 0 4 2 3 0 4 2 3 4 1 0 3 4 1 0 3
2 4 3 1 4 1 3 2 0 3 0 4 2 0 2 4 3 1 4 1 0 3 1
2 3 2 3 0 4 1 4 1 3 4 3 4 1 0 2 0 2 4 0 4 0 2
1 1 3 0 2 4 4 3 2 2 2 4 1 3 0 0 4 3 3 3 0 2 4
0 4 4 2 3 3 1 1 2 1 0 0 3 4 4 2 2 3 2 1 1 4 0
3 0 1 1 2 3 2 4 4 4 1 2 2 3 4 3 0 0 0 2 3 3 4
4 2 0 4 3 1 2 3 1 0 3 1 0 4 2 3 4 2 1 4 2 1 0
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2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4
2 1 4 0 2 1 4 0 4 3 2 0 1 3 2 0 1 0 4 3 1 2
4 2 3 0 1 4 0 2 2 0 3 4 1 2 0 1 3 3 1 4 0 2
4 0 2 1 4 0 2 1 3 0 1 3 2 0 1 3 2 0 1 2 4 3
3 0 4 2 0 2 1 4 2 4 1 0 3 1 3 2 0 3 0 2 1 4
1 3 1 3 0 1 0 1 3 2 4 2 4 1 2 1 2 4 3 0 3 0
1 1 0 4 0 4 1 3 0 2 2 1 0 0 0 2 4 1 3 3 2 1
0 3 3 4 3 2 2 0 1 1 4 4 0 4 3 3 1 2 2 0 0 1
0 4 1 1 1 3 4 4 0 1 0 2 2 2 4 0 0 1 2 1 3 3
3 4 0 3 2 0 3 2 1 4 0 1 4 3 1 4 3 2 0 1 2 0

Table 4.28: Table BA[45, 10, 5, 2]

.λ(0, 0) = λ(1, 1) = λ(2, 2) = λ(3, 3) = λ(4, 4) = 1
.λ(0, 1) = λ(0, 2) = λ(0, 3) = λ(0, 4)

= λ(1, 0) = λ(1, 1) = λ(1, 2) = λ(1, 3) = λ(1, 4)
= λ(2, 0) = λ(2, 1) = λ(2, 2) = λ(2, 3) = λ(2, 4)
= λ(3, 0) = λ(3, 1) = λ(3, 2) = λ(3, 3) = λ(3, 4)
= λ(4, 0) = λ(4, 1) = λ(4, 2) = λ(4, 3) = λ(4, 4)

= 2


Table 4.29: Parameters of BA[45, 10, 5, 2]

Corollary 4.9.1.

Suppose there exists a BA[T ][k, s, 1] we can obtain a partly resolvable

OA[ks2, ks, s, 2] by adding s assemblies of the form (i, i, ..., i)′(i =

0, 1, ..., s− 1).

We first give a method of constructing BA(T )[k, 2, 1] by using hadamard

matrices.

Corollary 4.9.2.

If a hadamard matrix of order 4k exists, then a BA(T )[k, 2, 1] exists,

and can always be constructed.

Proof. If a hadamard matrix of order 4k exists, we can arrange its elements

such that all the elements in the first column and the first row are +1. All

other columns must then contain 2k(+1′s) and 2k(−1′s). Deleting 2k rows

whose second column is 1. We obtain OA[4k, 2k, 2, 2] with all the elements
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equal to +1 in the first column and equal to −1 in the second column. By

theorem 4.9.2 we can construct a BA(T )[k, 2, 1] since the OA[4k, 2k, 2, 2]

is partly resolvable.

Example 4.9.3. Using the Sylvester type hadamard matrix of order 8 in

table 4.20 k = 4, that leads to an OA[16, 8, 2, 2] in table 4.22. Using

theorem 4.9.2 we obtain BA[T ][4, 2, 1].

0 0 0 0 0 0 0 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 1 1 0 0 1 1 1 0 0 1 1 0 0
1 1 0 0 1 1 0 0 0 1 1 0 0 1
0 0 0 1 1 1 1 1 1 1 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 1 0 1
0 1 1 1 1 0 0 1 0 0 0 0 1 1
1 1 0 1 0 0 1 0 0 1 0 1 1 0

Table 4.30: Table BA[14, 8, 2, 2] = BA[(T )[4, 2, 1]]
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Parameters of BA(T )[4, 2, 1]

• λ(0, 0) = λ(1, 1) = 3

• λ(0, 1) = λ(1, 0) = 4

If the symbols of the BA(T )[k, 2, 1] are denoted by 0 and 1, the balanced

array becomes the incidence matrix of a balanced incomplete block design

with 2k treatments, 4k − 2 blocks of k plots each and any two treatments

occur together in k − 1 blocks. Thus we state the following theorem

without proof;

Theorem 4.9.3.

The existence of a BA(T )[k, 2, 1] is equivalent to the existence of a

BIBD[2k, 2k − 2, k].

The corollary below follows from theorem 4.9.3

Corollary 4.9.3.

If a hadamard matrix of order 4k exists, then a BIBD[2k, 2k − 2, k]

can always be constructed since it is well known that hadamard ma-

trices of order 4k exist for all k ≤ 25 we can always construct a

BA(T )[k, 2, 1] for k = 1, 2, ..., 25.

Corollary 4.9.4.

If k and s are both powers of the same prime p a BA(T )[k, s, 1] can

always be constructed.

Proof. By theorem 4.4.1 we can construct a completely resolvable orthogo-

nal array OA[λs2, λ(s+1)+1, s, 2] by deleting any λ+1 constraints(factors)

we obtain OA[λs2, λs, s, 2]. Then theorem 4.9.2 is applied.
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Example 4.9.4. For k = 3 and s = 3 we can construct a BA(T )[3, 3, 1] by

first constructing a completely resolvable OA[27, 9, 3, 2] which is exhibited

in table 4.14. Applying theorem 4.9.2, we obtain BA(T )[3, 3, 1]

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2
1 2 0 1 2 0 1 2 2 0 1 2 0 1 2 0 0 1 2 0 1 2 0 1
2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0
0 0 1 1 1 2 2 2 1 1 2 2 2 0 0 0 2 2 0 0 0 1 1 1
1 2 1 2 0 2 0 1 2 0 2 0 1 0 1 2 0 1 0 1 2 1 2 0
2 1 1 0 2 2 1 0 0 2 2 1 0 0 2 1 1 0 0 2 1 1 0 2
0 0 2 2 2 1 1 1 1 1 0 0 0 2 2 2 2 2 1 1 1 0 0 0
1 2 2 0 1 1 2 0 2 0 0 1 2 2 0 1 0 1 1 2 0 0 1 2
2 1 2 1 0 1 0 2 0 2 0 2 1 2 1 0 1 0 1 0 2 0 2 1

Table 4.31: Table BA(T )[3, 3, 1] = BA[24, 9, 3, 2]

Parameters are;

λ(0, 0) = λ(1, 1) = λ(2, 2) = 2

λ(0, 1) = λ(1, 0) = λ(0, 2) = λ(2, 0) = λ(1, 2) = λ(2, 1) = 3

Corollary 4.9.5.

If s = pn, k = 2sl where p is an odd prime, n ≥ 1 and l ≥ 0, then a

BA(T )[k, s, 1] can always be constructed.

Proof. By using theorem 4.5.1, we can construct OA[ks2, ks, s, 2] by de-

veloping a difference scheme D(2s, 2s, s). We then apply theorem 4.9.2 to

construct a BA(T )(k, s, λ)

Example 4.9.5. For s = 3 and k = 2 implies 3 = 31, k = 2.30 7→ n = 1

and l = 0 We can therefore construct

OA[2.32, 2.3, 3, 2] = OA[18, 6, 3, 2]

by developing a difference scheme D(2s, 2s, s) = D(6, 6, 3) which is exhib-

ited in table 4.19



Chapter 4. Construction of balanced arrays 124

0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2
0 1 2 1 2 0 1 2 0 2 0 1 2 0 1 0 1 2
0 2 1 1 0 2 1 0 2 2 1 0 2 1 0 0 2 1
0 2 2 0 1 1 1 0 0 1 2 2 2 1 1 2 0 0
0 0 1 2 2 1 1 1 2 0 0 2 2 2 0 1 1 0
0 1 0 2 1 2 1 2 1 0 2 0 2 0 2 1 0 1

Table 4.32: Table OA[18, 6, 3, 2]

0 0 0 0 0 1 1 1 1 1 2 2 2 2 2
1 2 1 2 0 2 0 2 0 1 0 1 0 1 2
2 1 1 0 2 0 2 2 1 0 1 0 0 2 1
2 2 0 1 1 0 0 1 2 2 1 1 2 0 0
0 1 2 2 1 1 2 0 0 2 2 0 1 1 0
1 0 2 1 2 2 1 0 2 0 0 2 1 0 1

Table 4.33: Table BA(T )[2, 3, 1] = BA[15, 6, 3, 2]

Applying theorem 4.9.2 to this orthogonal array we obtain BA(T )[2, 3, 1]

Parameters of BA(t)[2, 3, 1]

• λ(0, 0) = λ(1, 1) = λ(2, 2) = 1

• λ(0, 1) = λ(1, 0) = λ(0, 2) = λ(2, 0) = λ(1, 2) = λ(2, 1) = 2

The method of Difference Schemes used in the construction of orthogonal

arrays can also be used to construct the type of balanced arrays discussed

in this section.
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Theorem 4.9.4.

Let M be a module of s elements. It is possible to choose k rows and

N columns (N = λ1 + λ2(s− 1), λ1 and λ2 integers)

a11 a12 . . . a1N

a21 a22 . . . a2N

. . . . . .

ak1 ak2 . . . akN

with elements belonging to M such that among the differences of

the corresponding elements of any two rows, the element 0 occurs λ1

times and the other non zero elements occur λ2 times, then by adding

the elements of the module to the elements in the above array and

reducing mod s, we can generate Ns columns: this constitutes a

BA[N, k, s, 2] with parameters λ(x, y) = λ1 or λ2 according as x = y

or x 6= y.

The balanced arrays that can be constructed by theorem 4.9.4 are com-

pletely resolvable. We shall give the following four examples to illustrate

the application of theorem 4.9.4.

Example 4.9.6. Let M = [0, 1, 2]. Among the differences of the corre-

sponding elements of any two rows of the following array 0 occurs once

wheres 1 and 2 occur three times each.

0 0 0 0 0 0 0

1 2 1 2 0 1 2

2 1 2 1 0 2 1

hence we can construct a BA[21, 3, 3, 2] shown in table 4.34 below
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0 0 0 0 0 0 0 1 1 1 1 1 1 1 2 2 2 2 2 2 2
1 2 1 2 0 1 2 2 0 2 0 1 2 0 0 1 0 1 2 0 1
2 1 2 1 0 2 1 0 2 0 2 1 0 2 1 0 1 0 2 1 0

Table 4.34: Table BA[21,3,3,2]

Parameters of BA[21, 3, 3, 2] are

• λ(0, 0) = λ(1, 1) = λ(2, 2) = 1

λ(0, 1) = λ(1, 0) = λ(0, 2) = λ(2, 0) = λ(1, 2) = λ(2, 1) = 3

Example 4.9.7. Let M = [0, 1]. Among the differences of the correspond-

ing elements of any two rows of the following array 0 occurs twice wheres

1 occurs four times
0 0 0 0 0 0

1 1 0 1 0 1

0 0 1 1 1 1

1 1 1 0 1 0

hence we can construct a BA[12, 4, 2, 2] shown in table 4.35 below

0 0 0 0 0 0 1 1 1 1 1 1
1 1 0 1 0 1 0 0 1 0 1 0
0 0 1 1 1 1 1 1 0 0 0 0
1 1 1 0 1 0 0 0 0 1 0 1

Table 4.35: Table BA[12, 4, 2, 2]

Parameters of BA[12,4,2,2]

•• λ(0, 0) = λ(1, 1) = 2

λ(0, 1) = λ(1, 0) = 4

Example 4.9.8. Let M = [0, 1, 2]. Among the Differences of correspond-

ing elements of any two rows of the following array,0 occurs 6 times wheres

1 and 2 each occur 8 times.
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 2 2 0 1 0 0 2 1 2 1 2 1 1 0 2 0 0 1 2 1 2
1 1 2 2 0 1 0 0 2 1 2 2 2 1 1 0 2 0 0 1 2 1
2 1 1 2 2 0 1 0 0 2 1 1 2 2 1 1 0 2 0 0 1 2
1 2 1 1 2 2 0 1 0 0 2 2 1 2 2 1 1 0 2 0 0 1
2 1 2 1 1 2 2 0 1 0 0 1 2 1 2 2 1 1 0 2 0 0
0 2 1 2 1 1 2 2 0 1 0 0 1 2 1 2 2 1 1 0 2 0
0 0 2 1 2 1 1 2 2 0 1 0 0 1 2 1 2 2 1 1 0 2
1 0 0 2 1 2 1 1 2 2 0 2 0 0 1 2 1 2 2 1 1 0
0 1 0 0 2 1 2 1 1 2 2 0 2 0 0 1 2 1 2 2 1 1
2 0 1 0 0 2 1 2 1 1 2 1 0 2 0 0 1 2 1 2 2 1
2 2 0 1 0 0 2 1 2 1 1 1 1 0 2 0 0 1 2 1 2 2

hence we can construct a BA[66, 12, 3, 2] with parameters λ(x, y) = 6 or 8

according as x = y or not. i.e BA(T )[4, 3, 2].

Example 4.9.9. Let M = [0, 1, 2, 3]. Among the differences of the corre-

sponding elements of any two rows of the following array,0 occurs 4 times,

wheres 1, 2 and 3 occur 6 times each.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 1 2 0 2 1 1 3 2 3 1 0 3 2 0 2 3 3 1 2 1
3 3 0 1 2 0 2 1 1 3 2 1 1 0 3 2 0 2 3 3 1 2
2 3 3 0 1 2 0 2 1 1 3 2 1 1 0 3 2 0 2 3 3 1
3 2 3 3 0 1 2 0 2 1 1 1 2 1 1 0 3 2 0 2 3 3
1 3 2 3 3 0 1 2 0 2 1 3 1 2 1 1 0 3 2 0 2 3
1 1 3 2 3 3 0 1 2 0 2 3 3 1 2 1 1 0 3 2 0 2
2 1 1 3 2 3 3 0 1 2 0 2 3 3 1 2 1 1 0 3 2 0
0 2 1 1 3 2 3 3 0 1 2 0 2 3 3 1 2 1 1 0 3 2
2 0 2 1 1 3 2 3 3 0 1 2 0 2 3 3 1 2 1 1 0 3
1 2 0 2 1 1 3 2 3 3 0 3 2 0 2 3 3 1 2 1 1 0
0 1 2 0 2 1 1 3 2 3 3 0 3 2 0 2 3 3 1 2 1 1

hence we can construct a BA[88, 12, 4, 2] with parameters λ(x, y) = 4 or 6

according as x = y or not,i.e BA(T )[3, 4, 2]

Efforts have been made to reduce the number of assemblies in example

4.9.8 and 4.9.9 by a half, i.e to construct a BA(T )[4, 3, 1] and BA(T )[3, 4, 1]

but without success. Examples 4.9.3, 4.9.4, 4.9.5 can also be constructed

by using theorem 4.9.4 but certainly there are balanced arrays which
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can be constructed by corollary 4.9.3 and cannot be constructed using

theorem4.9.4. For example, a BA(T )[3, 2, 1] which can be constructed

using corollary 4.9.3, is not completely resolvable. Therefore it cannot be

constructed using theorem 4.9.4. However, all balanced arrays that can be

constructed using corollary 4.9.4 can also be constructed using theorem

4.9.4 since the orthogonal arrays used in corollary 4.9.4 are constructed

using the method of Differences.

4.10 Balanced Arrays of Strength t > 2

Using theorem 4.7.1 and theorem 4.9.2 we can construct balanced arrays

of strength t > 2.

Example 4.10.1. We can apply theorem 4.9.2 in the OA[16, 8, 2, 2] that

appears in table 4.22 to obtain BA[14, 8, 2, 3] shown below;

0 0 0 1 1 1 1 1 1 1 0 0 0 0
0 1 1 0 0 1 1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 1 1 1 1 0 0 1 0 0 0 0 1 1
1 0 1 1 0 1 0 0 1 0 0 1 0 1
1 1 0 0 1 1 0 0 0 1 1 0 0 1
1 1 0 1 0 0 1 0 0 1 0 1 1 0
0 0 0 0 0 0 0 1 1 1 1 1 1 1

Table 4.36: Table BA[14, 8, 2, 3]

parameters of BA[14, 8, 2, 3] are:

λ(x, y, z) = 1 or 2 according as

x = y = z or not.



Chapter 5

Two Factor BAFD’S

This chapter will focus on some methods of constructing balanced asym-

metrical factorial designs (BAFD’s) consisting of two factors only

5.1 s1 × s2 BAFD’S with block size s1(s1 ≤ s2)

We shall discuss the construction of two factor BAFD’s. Construction of

more than two factor BAFD’s using two factor BAFD’s will be discussed

in the next chapter. We are only interested in BAFD’s in which the main

effects are estimated with high efficiencies. These designs can usually be

constructed using arrays discussed in the previous chapter.

Let F1 and F2 be the two factors in a BAFD at s1 and s2 levels respectively.

We assume that s1 ≤ s2 without loss of generality. Let N denote the inci-

dence matrix of BAFD. By equations (3.1.3) and (3.1.4), the eigenvalues

of NNᵀ are obtained using the following

g[y1, y2] = r +
∑
x∈Ω

λ(x1, x2){
2∏
i=1

[(1− yi)si − 1]xi}

129



Chapter 5. Two Factor BAFD’S 130

where yi = 0 or 1 and xi = 0 or 1

hence

g(1, 0) = r + (s2 − 1)λ01 − λ10 − (s2 − 1)λ11 (5.1.1)

g(0, 1) = r − λ01 + (s1 − 1)λ10 − (s1 − 1)λ11 (5.1.2)

g(1, 1) = r − λ01 − λ10 + λ11 (5.1.3)

using the equality due to Nair and Rao (1948) and corollary 3.1.1

∑
(θ(k1) · θ(k2) · · · θ(km) · λk1k2···km) = r(k − 1) (5.1.4)

where θ(kt) = 1 or (st − 1) according as kt = 0 or 1 and ∑ denotes the

summation over 2m − 1 terms. We then obtain

r(k − 1) = (s1 − 1)λ10 + (s2 − 1)λ01 + (s1 − 1)(s2 − 1)λ11 (5.1.5)

we can now derive the efficiencies of the main effects as follows;-

E[0, 1] = 1− 1
rk
g[0, 1]

= 1−
[
r−λ01+(s1−1)λ10−(s1−1)λ11

rk

]

= kr − r + λ01 − (s1 − 1)λ10 + (s1 − 1)λ11

kr

=

(s1 − 1)λ10 + (s2 − 1)λ01 + (s1 − 1)(s2 − 1)λ11

+λ01 − (s1 − 1)λ10 + (s1 − 1)λ11
kr

= (s2 − 1)λ01 + (s1 − 1)(s2 − 1)λ11 + λ01 + (s1 − 1)λ11

kr

= [s2 − 1 + 1]λ01 + [s1 − 1]λ11[s2 − 1 + 1]
kr
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= s2[λ01 + (s1 − 1)λ11]
kr

= s2[λ01 + (s1 − 1)λ11]
kr[k − 1] [k − 1]

= s2[λ01 + (s1 − 1)λ11]
r[k − 1]

[k − 1]
k

= [k − 1]s2

k

[λ01 + (s1 − 1)λ11]
r[k − 1]

= [k − 1]s2

k

[λ01 + (s1 − 1)λ11]
[s1 − 1]λ10 + [s2 − 1]λ01 + [s1 − 1][s2 − 1]λ11

(5.1.6)

using equation (5.1.5)

Similarly

E[1, 0] = 1− 1
rk
g[1, 0]

= [k − 1]s1

k

[λ10 + (s2 − 1)λ11]
[s2 − 1]λ01 + [s1 − 1]λ10 + [s1 − 1][s2 − 1]λ11

(5.1.7)

If the main effect of F1 are estimated with full efficiency i.e E[1, 0] = 1 then

the block size k must be a multiple of s1. We shall assume that k = s1

throughout this section. For k = s1 equation (5.1.7) becomes

E[1, 0] = (s1 − 1) λ10 + (s2 − 1)λ11

(s2 − 1)λ01 + (s1 − 1)λ10 + (s1 − 1)(s2 − 1)λ11
(5.1.8)

E[1, 0] = 1 if and only if λ01 = 0; that is two treatments at the same level

of F1 never occur together in the same block.

Theorem 5.1.1.

In an s1×s2 BAFD with block size s1, the main effetcs are estimated

with full efficiency if and only if λ01 = 0. This design is equivalent to

a BA[λ10s2 +λ11s2(s2− 1), s1, s2, 2] with parameters λ(x, y) = λ10 or

λ11 according as x = y or not.
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• Proof.

The first part of the theorem has has been shown: we only need to prove the

latter part. Suppose such a balanced array exists: if we identify columns,

rows and symbols with blocks, the levels of F1, and the levels of F2 respec-

tively then it is the specified BAFD.

In proving theorem 5.1.1, we don’t really use the condition s1 ≤ s2;hence

the theorem is true for all s1 and s2.

For k = s1 and λ01 = 0 in equation (5.1.6), we have

E[0, 1] = [s1 − 1]s2[0 + (s1 − 1)λ11]
s1

{
(s1 − 1)λ10 + 0 + (s1 − 1)(s2 − 1)λ11

}

= (s1 − 1)2s2λ11

s1

{
(s1 − 1)λ10 + (s1 − 1)(s2 − 1)λ11

}

= (s1 − 1)2s2λ11

s1(s1 − 1)
{
λ10 + (s2 − 1)λ11

}

= (s1 − 1)s2λ11

s1

{
(s2 − 1)λ11 + λ10

} (5.1.9)

E[0, 1] has the maximum value of (s1−1)s2
s1(s2−1) when λ10 = 0
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Theorem 5.1.2.

In an s1 × s2 BAFD with block size s1(s1 ≤ s2), if the main effects

of F1 are estimated with full efficiency and the main effects F2 are

estimated with maximum efficiency (s1−1)s2
s1(s2−1) then the BAFD has pa-

rameters λ10 = λ01 = 0 and λ11 6= 0. This design is equivalent to a

TA[λ11s2(s2 − 1), s1, s2, 2].

Since λ10 = 0 means that two treatments at the same level of F2 do

not occur together in the same block, which implies s2 ≥ k = s1 we

do not need s1 ≤ s2 in the construction of the designs in theorem

5.1.2.

The construction of TA[s2(s2−1)λ11, s1, s2, 2] has been discussed in section

4.1. Deleting any (s2 − s1) constraints from a TA[s2(s2 − 1)λ11, s2, s2, 2]

we obtain a TA[s2(s2 − 1)λ11, s1, s2, 2]. If we restrict λ11 = 1 then the

existence of a TA[s2(s2−1), s1, s2, 2] is equivalent to the existence of s1−1

mutually orthogonal latin squares of order s2 or s1−2 mutually orthogonal

latin squares of order s2 with different elements in the diagonal.

Example 5.1.1. A 3× 4 BAFD with b = 12, k = 3, r = 3, λ01 = λ10 = 0

and λ11 = 1 can be constructed from a TA[12, 3, 4, 2]

Blocks 1 2 3 4 5 6 7 8 9 10 11 12
levels of F1 Levels of F2
0 0 1 2 3 0 1 2 3 0 1 2 3
1 1 0 3 2 2 3 0 1 3 2 1 0
2 2 3 0 1 3 2 1 0 1 0 3 2

Table 5.1: Table of a 3× 4 BAFD

In this design,

E[1, 0] = 1, E[0, 1] = 8
9 and E[1, 1] = 5

9
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Example 5.1.2. A 3 × 6 BAFD with b = 30, k = 3, r = 5 λ01 = λ10 = 0

and λ11 = 1 can be constructed from a TA[30, 3, 6, 2].

The efficiencies are

E[1, 0] = 1.0,E[0, 1] = 4
5 and E[1, 1] = 3

5

Example 5.1.3. A 7×20 BAFD with b = 80, k = 7, r = 4, λ01 = λ10 = 0,

λ11 = 1, can be constructed from a TA[80, 7, 20, 2]

The efficiencies are;

E[1, 0] = 1.0, E[0, 1] = 120
133 and E[1, 1] = 23

28

Example 5.1.4. A 12 × 15 BAFD with b = 630, k = 12, r = 42, λ01 =

λ10 = 0, λ11 = 3, can be constructed from a TA[630, 12, 15, 2]

the efficiencies are;

E[1, 0] = 1.0, E[0, 1] = 165
168 and E[1, 1] = 51

56

Corollary 5.1.1.

In an s2 symmetrical FD with block size s and if all the main effects

are estimated with full efficiency then the FD has parameters λ1 = 0

and λ2 6= 0.This design is equivalent to a

TA[λ2s(s− 1), s, s, 2]

.

Example 5.1.5. If s is a prime power, then there exists a TA[s(s −

1), s, s, 2] by corollary 4.1.1. Hence we can always construct an s2 symmet-

rical FD with r = s− 1, b = s(s− 1), k = s, λ1 = 0, E1 = 1 and E2 = s−2
s−1

assuming that λ2 = 1

Example 5.1.6. A 62 symmetrical FD with r = 10, b = 60, k = 6, λ1 =

0, λ2 = 2 can be constructed from a TA[60, 6, 6, 2]. The efficiencies are:

E1 = 1 and E2 = 4
5
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Example 5.1.7. A 21 × 21 FD can be constructed from a

TA[2, 100, 21, 21, 2] with λ1 = 0, λ2 = 5, b = 2, 100, k = 21 and

r = 100.

The efficiencies are E1 = 1 and E2 = 19
20 .

Similarly we can construct 102, 122, 142 BAFD’S by using

TA[360, 10, 10, 2], TA[660, 12, 12, 2] and TA[1092, 14, 14, 2] respectively.

5.2 s1 × s2 BAFD’s with blocksize s2(s1 < s2)

If the main effects of F2 are estimated with full efficiency then the block size

k must be a multiple of s2. Assume that k = s2 throughout this section.

By theorem 5.1.1, E[0, 1] = 1 if and only if λ10 = 0. Furthermore the

design is equivalent to a BA[λ01s1 +λ11s1(s1−1), s2, s1, 2] with parameters

λ(x, y) = λ01 or λ11 according as x = y or not, if we identify the columns,

rows, and symbols of the balanced array with blocks, the levels of F2 and

the levels of F1 of the design.

Example 5.2.1. A 2 × 3 BAFD with b = 4, k = 3, r = 2, λ10 = 0 and

λ01 = λ11 = 1 can be constructed from the OA[4, 3, 2, 2]

Blocks 1 2 3 4
Levels of F2 levels of F1
0 0 0 1 1
1 0 1 0 1
2 0 1 1 0

Table 5.2: Table of a 2× 3 BAFD

In this design, the efficiencies are: E[0, 1] = 1 and E[1, 0] = E[1, 1] = 2
3

Example 5.2.2. A 11 × 12 BAFD with b = 121, k = 12, r = 11, λ10 = 0

and λ01 = λ11 = 1 can be constructed from an OA[121, 12, 11, 2]

The efficiencies are;
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E[0, 1] = 1 and

E[1, 0] = 11
12

E(1, 1) = 11
12

Example 5.2.3. A 3×13 BAFD with b = 27, k = 13, r = 9, λ10 = 0, λ01 =

λ11 = 3 can be constructed from an OA[27, 13, 3, 2]

E[0, 1] = 1.0

E[1, 0] = 12
13

E[1, 1] = 12
13

Example 5.2.4. A 4 × 9 BAFD with b = 32, k = 9, r = 8, λ10 = 0, λ01 =

λ11 = 2 can be constructed from an OA[32, 9, 4, 2]

E[0, 1] = 1.0

E[1, 0] = 8
9

E[1, 1] = 8
9

Example 5.2.5. A 5 × 11 BAFD with b = 50, k = 11, r = 10, λ10 =

0, λ01 = λ11 = 2 can be constructed from an OA[50, 11, 5, 2]

E[0, 1] = 1.0

E[1, 0] = 10
11

E[1, 1] = 10
11

Example 5.2.6. A 2 × 8 BAFD with b = 16, k = 8, r = 8, λ10 = 0, λ01 =

λ11 = 4 can be constructed from an OA[16, 8, 2, 2]

E[0, 1] = 1.0

E[1, 0] = 7
8

E[1, 1] = 7
8
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For λ10 = 0 and k = s2 equation (5.1.7) becomes

E[1, 0] = (k − 1)s1

k

λ10 + (s2 − 1)λ11

(s2 − 1)λ01 + (s1 − 1)λ10 + (s1 − 1)(s2 − 1)λ11

= (s2 − 1)s1

s2

(s2 − 1)λ11

(s2 − 1)λ01 + (s1 − 1)(s2 − 1)λ11

= s1λ11(s2 − 1)2

s2(s2 − 1)[λ01 + (s1 − 1)λ11]

= s1λ11(s2 − 1)
s2[λ01 + (s1 − 1)λ11]

= (s2 − 1)s1λ11

s2[λ01 + (s1 − 1)λ11]

= (s2 − 1)s1

s2[(s1 − 1) + λ01
λ11

]

= (s2 − 1)s1

s2

1
(s1 − 1) + λ01

λ11
(5.2.1)

Note that λ01 6= 0, since k = s2 > s1 implies that at least two treatments in

a given block have the same level of F1. To maximize E(1, 0), it is required

that λ01
λ11

be as small as possible.

Theorem 5.2.1.

In an s1 × s2(s1 ≤ s2) BAFD with block size s2 and λ10 = 0 the

following inequality holds:

λ01

λ11
≥ s2 − s1

s2
(5.2.2)

when the equality holds, E(1, 0) = 1.0 and E(1, 1) = s2−2
s2−1

Proof. g(0, 1) = 0 in this BAFD since the main effect of F2 is estimated

with full efficiency. By equation (5.1.2) we have

r = λ01 + (s1 − 1)λ11 (5.2.3)
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If we substitute r in equation (5.1.1) in equation (5.2.3), we have

g(1, 0) = λ01 + (s1 − 1)λ11 + (s2 − 1)λ01 − (s2 − 1)λ11

= s2λ01 + [s1 − 1− s2 + 1]λ11

= s2λ01 − (s2 − s1)λ11

(5.2.4)

but g(1, 0) ≥ 0, since g(1, 0) is an eigenvalue of the none negative definite

matrix NN ′. Therefore we have equation (5.2.2) and the equality holds if

and only if g(1, 0) = 0. i.e E(1, 0) = 1.

i.e

g(1, 1) = r − λ01 − λ10 + λ11

= λ01 + (s1 − 1)λ11 − λ01 − 0 + λ11

= (s1 − 1)λ11 + λ11

but

E[1, 1] = 1− 1
rk

[g(1, 1)]

= 1− [s1 − 1]s2 + s2

s2[λ01 + (s1 − 1)λ11]
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if λ01
λ11

= s2−s1
s2

and using equations (5.1.5) and (5.2.3)

= 1− (s1 − 1)s2 + s2

s2[s2 − s1 + (s1 − 1)s2]

= s2[s2 − s1 + (s1 − 1)s2] +−[(s1 − 1)s2 + s2]
s2[s2 − s1 + (s1 − 1)s2]

= s2[s1s2 − s1]− s1s2

s2[s1s2 − s1]

= s2s1s2 − s1s2 − s1s2

s2[s1s2 − s1]

= s2 − 2
s2 − 1 as required.

Since a necessary condition for E[1, 0] = 1 is that block size k must be a

multiple of s1 we must assume that s2 = ms1(= k) for some integer m in

order to construct a BAFD such that all main effects are estimated with

full efficiency. When s2 = ms1 equation (5.2.2) becomes

λ01

λ11
≥ m− 1

m
(5.2.5)
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Corollary 5.2.1.

In an s1 × s2 BAFD with block size s2(> s1) the main effects

of F1 and F2 are estimated with full efficiency if and only if

s2 = ms1, λ10 = 0 and λ01
λ11

= m−1
m for some m. The design

is equivalent to a BA[(ms1 − 1)s1λ,ms1, s1, 2] with parameters

λ(x, y) = (m − 1)λ or mλ according as x = y or not, i.e. a

BA(T )(m, s1, λ).

By theorem 4.9.1 for any given m and s1 we can always construct

a BA(T )(m, s1, λ) for some λ. Thus we can always construct an

ms1 × s1 BAFD such that all main effects are estimated with full

efficiency, but a large replication may be needed. The construction

of a BA(T )(m, s1, 1) for some m and s1 are discussed in corollary

4.9.2, 4.9.4, and 4.9.5. In example 4.9.8 and 4.9.9 we also gave a

BA(T )[4, 3, 2] and a BA(T )(3, 4, 2).

Example 5.2.7. A 2 × 4 BAFD with b = 6, k = 4, r = 3, λ10 = 0, can

be constructed from a BA(T )(2, 2, 1) = BA[6, 4, 2, 2] with λ(x, y) = 1 or 2

according as x = y or not

Blocks 1 2 3 4 5 6
Levels of F2 Levels of F1
0 1 0 1 0 1 0
1 0 1 1 0 0 1
2 1 0 0 1 0 1
3 0 1 0 1 1 0

Table 5.3: Table of a 2× 4 BAFD

In this design, the efficiencies are: E[0, 1] = 1, E[1, 0] = 1 and E[1, 1] = 2
3

Example 5.2.8. A 7 × 42 BAFD with b = 287, k = 42, r = 41, λ10 =

0, λ01 = 5, λ11 = 6 can be constructed from a BA(T )[6, 7, 1] =

BA[287, 42, 7, 2]
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with λ(x, y) = 5 or 6 according as x = y or Not.

The efficiencies of this designs are: E[0, 1] = 1.0, E[1, 0] = 1.0 and

E[1, 1] = 40
41

5.3 s1 × s2 BAFD’s with block size a common

multiple of s1 and s2

In an s1 × s2 BAFD with block size s2, if s2 is not a multiple of s1, then

the main effect of F1 cannot be estimated with full efficiency. To estimate

all main effects with full efficiency, the block size k must be a common

multiple of s1 and s2. Let s1 = ps and s2 = qs where s > 1. A method is

given below to construct s1 × s2 BAFD with block size pqs such that all

the main effects are estimated with full efficiency.

Theorem 5.3.1.

If there exists a resolvable BIBD with qs treatments and block size

q, then there exists a ps× qs BAFD with block size pqs such that all

main effects are estimated with full efficiency.

Proof. Construct a BA(T )(p, s, n) for some integer n by theorem 4.9.1.

In the resolvable BIBD, there being s blocks in each replication , we can

number the block in each replication by 0, 1, · · · , s − 1. Replacing each

symbol in the balanced array by a group of symbols which represents blocks

in the BIBD for each replication, we obtain a pqs × [ps − 1]snr′ matrix,

where r′ is the number of replications in the BIBD. Assign ith level of F1

to the rows from the (iq + 1)th to the (i + 1)th, where i = 0, 1, · · · , ps −

1.Identifying columns and symbols with blocks and the levels of F2, we get

a ps× qs design with block size pqs.
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We shall show that all the main effects of the design constructed above

are estimated with full efficiency.Let λ′ be the number of blocks in which

two treatments occur together in the BIBD, then (qs − 1)λ′ = (q − 1)r′.

Assume that r′ = (qs − 1)m and λ′ = (q − 1)m, where m need not be an

integer. Let λ01, λ10, λ11 denote the parameters and r denote the number

of replications in the ps× qs design, then through inspection we have

λ(x, y) = (ps− 1)x+1(qs− 1)y+1(p− 1)x(q − 1)ymn+ (xy)(pq)(s− 1)xymn

x, y = 0 or 1 in mod 2 (5.3.1)

so 

λ01 = (ps− 1)(q − 1)mn

λ10 = (qs− 1)(p− 1)mn

λ11 = (p− 1)(q − 1)mn+ pq(s− 1)mn

λ00 = r = (ps− 1)(qs− 1)mn


(5.3.2)

if we substitute the parameters of the equations (5.1.1), (5.1.2) and (5.1.3)

in equations (5.3.2) and corollary 3.1.1 we get

E[0, 1] = E[1, 0] = 1 and E[1, 1] = − s− 1
(ps− 1)(qs− 1) + 1

Given any q and s, there always exists a resolvable BIBD with qs treat-

ments and block size q if the number of replications is allowed to be large.

The irreducible BIBD of qs treatments with block size q in which each of

the

qs
q

 possible q− element combinations form a block is resolvable with

parameters
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v = qs, b =

qs
q

 , r =

qs− 1

q − 1

 , k = q, λ =

qs− 2

q − 2

 (5.3.3)

Definition 5.3.1.

Suppose (F ,A) is a (v, k, λ)-BIBD, a parallel class in (F ,A) is a

subset of disjoint blocks from A whose union is F . A partition of A

into r parallel classes is called a resolution; and (F ,A) is said to be

a resolvable BIBD if A has at least one resolution. We say that F is

a finite set of points called treatments.Where

F =
{

0, 1, 2, · · · , v − 1
}

Several methods are used to construct resolvable balanced incomplete block

designs. These methods include:

To construct a resolvable BIBD with block size k = 3 and a finite number

of symbols V = v one can use the methods of one step cycles, two step

cycles or three steps cycles. The method of one step cycles is applicable

when

v = 2y + 1 = 24m+ 3

or when

v = 2y + 1 = 24m+ 9 (5.3.4)

we may denote the element 0 by k and the others by 1, 2, 3, · · · , 2y place k

at the center of the circle and the other elements 1, 2, 3, · · · , 2y at equidis-

tant intervals on their circumference. The companions of k are to be dif-

ferent on each parallel class. If we suppose that on the first parallel class
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they are 1 and y+ 1 on the second 2 and 2 + y and so on, then the diame-

ters through k will give for each parallel class a triplet in which k appears.

On each parallel class we have to find 2(y−1)
3 other triplets satisfying the

conditions of the problem. Every triplet formed from the remaining 2y−2

elements will be represented by an inscribed triangle joining the points rep-

resenting these elements. The sides of the triangles are the chords joining

these 2y − 2 points. The sides of the triangles so represented are denoted

by the letters p, q, r. The term, triad or grouping denotes any of p, q, r

which determines the dimensions of an inscribed triangle. If p, q, r are pro-

portional to the smaller arcs subtended then p+ q = r or p+ q+ r = 2y. If
(y−1)

3 scalene triangles can be inscribed in the circle so that to each triangle

corresponds an equal complimentary triangle having its equal sides paral-

lel to those of the first and its vertices at free points then the system of
2(y−1)

3 triangles with the corresponding diameter will give an arrangement

for one parallel class. If the system is permuted cyclically(y − 1) times we

get arrangements for the other (y − 1) parallel classes.

The method of two step cycles is applicable when v = 12m+ 3. When v is

of this form and m is odd we cannot get sets of complimentary triangles as

required. Hence to apply a similar method we have to find 2(y−1)
3 different

dissimilar inscribed triangles having no vertex in common and satisfying

the conditions p+ q = r or p+ q+ r = 2y. These solutions are also central.

In the first part of this solution v
3 of these triangles must be selected to form

an arrangement of the first parallel class. By rotating this arrangement

two steps at a time we obtain triples for v
3 parallel classes in all.

The method of three step cycles applies if
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v = 18m+ 3 or

v = 18m+ 9 or

v = 18m+ 15

(5.3.5)

It gives a solution for every value of v except v = 15. In this, method we

may with equal propriety represent all the elements by symbols placed at

equidistant intervals round the circumference of a circle. Such solutions

are termed as none central. The symbols may be 1, 2, 3, · · · , v, or letters

a1, b1, c1, a2, b2, c2, · · · any triplet will be represented by a triangle whose

sides are chords of a circle. The arrangement of any parallel class is to

include all the elements and therefore the triangles representing the triplets

for a given parallel class are v
3 in number, and so each element appears in

only one triplet, thus no two triangles can have a common vertex. The

complete three steps solution will require the determination of a system

of (n−1)
2 inscribed triangles. In the first part of the solution, v

3 of these

triangles must be selected to form an arrangement for the first parallel

class, so that by rotating this arrangement three steps at a time we obtain

triplets for v
3 parallel classes in all.

If q = 4t − 1 is a prime power, then there exists a resolvable balanced

incomplete block design with block size k = 2t and number of symbols

v = 4t and λ = 2t− 1.

As for the point set we take F = GF (q)⋃{∞}
. Developing the parallel

classes.

H2
0 ∪

{
0
}

and H2
1 ∪

{
∞
}

(5.3.6)

over GF (q) produces the required blocks and resolution.
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The multiplicative cosets He
0 , H

e
1 , H

e
2 ,· · · , He

e−1 are defined by

He
m =

{
xt : t ≡ m mod e

}

where x denotes a primitive element of GF (q).

If q = 4t + 1 is a prime power, then there exists a resolvable balanced

incomplete block design with block size k = 2t+ 1 and number of symbols

v = 4t + 2 and λ = 4t. As for the point set we take F = GF (q) ∪
{
∞
}
.

Developing the parallel classes.

H2
0 ∪

{
0
}

H2
1 ∪

{
∞
}andH2

0 ∪
{
∞
}

H2
1 ∪

{
0
} (5.3.7)

over GF (q) produces the required blocks and resolution.

Let λ ≤ k − 1. Suppose there is a difference family

DFλ(k, v)
{
A0, A1, A2, A3, · · · , As−1

}

over a ring R whose base blocks are mutually disjoint. If there is a set

of k distinct units
{
u0, u1, u2, · · · , uk−1

}
whose differences are all units of

R, then there exists a Resolvable balanced incomplete block design with

block size K = k and number of symbols V = kv, where s represents the

number of base blocks and that

Bj
j = Aj ×

{
i
}

=
{

(a1
j, i), (a2

j, i), · · · , (akj, i)
}

; i ∈ Ik, j ∈ Is (5.3.8)

In order to get further blocks we put
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Cx =
{

(u0, 0), (u1, 1), (u2, 2), · · · , (uk−1, k − 1)
}
· x x ∈ R (5.3.9)

where (u, i) ·x means (ux, i). We must partition the blocks into r = λ(kv−1)
(k−1)

parallel classes. The first parallel class P0 will take all the blocks uiBji

where i ∈ Ik, j ∈ Is and the blocks Cx, where x is distinct from all aji

i ∈ Ik, j ∈ Is

Other classes are given by Pg = TgP0 where Tg : (x, i) 7→ (x+ g, i), g ∈ R.

that is

Pg =
{
Tg(B) : B ∈ P0

}
(5.3.10)

We can still construct more parallel classes.

Let Qx =
{
TgCx : g ∈ R

}
with

x ∈
⋃
Aj

0≤j≤s−1
and Rx =

{
TgCx : g ∈ R

}
with x ∈ R\ ∪Aj

o≤j≤s−1
(5.3.11)

Both Qx and Rx are parallel classes. We take each parallel class Qx

λ times and each class Rx λ− 1 times.

If v is even and v ≥ 4 a resolvable balanced incomplete block design with

block size k = 2 and number of symbols V = v can be constructed as

follows

We take the point set F to be F = Zv−1 ∪
{
∞
}
.

For j ∈ Zv−1, define

πj =
{{
∞, j

}}⋃{{
i+ j mod(v − 1), j − i mod(v − 1)

}}
:
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1 ≤ i ≤ v − 2
2 (5.3.12)

πj is a parallel class and each pair of points occurs in exactly one πj

To construct a resolvable incomplete block design with block size k = q and

number of symbols V = q2 where q is a prime number, we can construct

an affine plane of order q. This is done by defining P = Fq × Fq.

For any a, b ∈ Fq, we define a block

La,b =
{

(x, y) ∈ P : y = ax+ b
}

(5.3.13)

and for any c ∈ Fq, we define

L∞,c =
{

(c, y) : y ∈ Fq
}

(5.3.14)

Finally we define

L =
{
La,b : a, b ∈ Fq

}⋃{
L∞,c : c ∈ Fq

}
(5.3.15)

Then (P,L) is the required affine plane of order q and it is also the required

resolvable balanced incomplete block design.

Definition 5.3.2.

For 0 ≤ d ≤ m, we define the Gaussian Coefficient

m
d


q

as follows

m
d


q

=


(qm−1)(qm−1−1)···(qm−d+1−1)

(qd−1)(qd−1−1)···(q−1) if d 6= 0

1 if d = 0

 (5.3.16)
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To construct a resolvable balanced incomplete block design

(qm, b, r, qd, λ)

where m ≥ 2, 1 ≤ d ≤ m− 1

b =

m
d


qm−d

q

, r =

m
d


q

, and λ =

m− 1

d− 1


q

(5.3.17)

we use equations (5.3.13) and equation (5.3.14) and (5.3.15). However,

in some cases it might not be possible to construct resolvable balanced

incomplete block designs with the given properties in (5.3.17). Like for

example there exists (8, 4, 3)−BIBDs that are not resolvable.

To construct a Resolvable balanced incomplete block design

(qd, qd−1, λ)

where q is a prime power and m ≥ 2 with λ = qd−1−1
q−1

We first construct a symmetrical BIBD

(
qd+1−1
q−1 , q

d−1
q−1 ,

qd−1−1
q−1

)
(5.3.18)

From this symmetrical BIBD, we obtain a quasi-residual BIBD. The

quasiresidual BIBD is an affine resolvable BIBD with parameters

v = qd, k = qd−1, λ = qd−1 − 1
q − 1 (5.3.19)

Example 5.3.1. A 4 × 6 BAFD with block size 12 can be constructed

using BA[10, 6, 2, 2] and a resolvable BIBD with 4 treatments and block
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size 2 as shown below

Consider the following BIBD with 4 treatments and block size 2 where

X0, X1, Y0, Y1, Z0, Z1 represents the blocks.

X0 X1 Y0 Y1 Z0 Z1
0 2 0 1 0 1
1 3 2 3 3 2

Table 5.4: Table of BIBD[4,6,2]

Also consider the BA(T )(3, 2, 1) given below

0 0 0 0 0 1 1 1 1 1
0 0 1 1 1 0 0 0 1 1
1 0 0 1 1 1 1 0 0 0
0 1 1 0 1 0 1 1 0 0
1 1 1 0 0 1 0 0 0 1
1 1 0 1 0 0 0 1 1 0

Table 5.5: Table of BA(T)[3,2,1]

By theorem 5.3.1 we can construct a 4 × 6 BAFD with

k = 12, r = λ00 = 15, b = 30, λ10 = 5, λ01 = 6, λ11 = 8 with

E[1, 0] = 1, E[0, 1] = 1, E[1, 1] = 14
15
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Example 5.3.2. A 6×8 BAFD with parameters k = 24, r = λ00 = 35, b =

70, λ01 = 15, λ10 = 14, λ11 = 18 and efficiencies E[0, 1] = 1, E[1, 0] =

1, E[1, 1] = 34
35 can be constructed by using both the BA(T )(3, 2, 1) given in

example 5.3.1 and a resolvable BIBD with 8 treatments and block of size

4 given below that has been constructed by developing parallel classes as

in equation (5.3.6). The base blocks will be H0
2 ∪

{
0
}

=
{

1, 2, 4, 0
}
and

H1
2 ∪

{
∞
}

=
{

3, 5, 6,∞
}
The resolvable BIBD will be given as follows

after replacing ∞ with 7.

1 3 2 4 3 5 4 6 5 0 6 1 0 2
2 5 3 6 4 0 5 1 6 2 0 3 1 4
4 6 5 0 6 1 0 2 1 3 2 4 3 5
0 7 1 7 2 7 3 7 4 7 5 7 6 7

Table 5.7: Table of BIBD[8,14,4]

Example 5.3.3. A 6×9 BAFD with parameters k = 18, r = λ00 = 20, b =

60, λ01 = 5, λ10 = 4, λ11 = 7 and efficiencies E[0, 1] = 1, E[1, 0] = 1,

E[1, 1] = 19
20 can be constructed by using both the BA(T )(2, 3, 1) given in

example 4.9.5 and the resolvable BIBD with 9 treatments and block size 3

given below. This has been constructed as in equations (5.3.13), (5.3.14)

and (5.3.15). That is, by constructing an affine plane of order 3.

0 1 2 0 1 2 0 1 2 0 3 6
3 4 5 4 5 3 5 3 4 1 4 7
6 7 8 8 6 7 7 8 6 2 5 8

Table 5.8: Table of a BIBD[9,12,3]

Example 5.3.4. A 10 × 15 BAFD with parameters k = 30, r = λ00 =

63, b = 315, λ01 = 9, λ10 = 7, λ11 = 13 and efficiencies E[0, 1] = 1,

E[1, 0] = 1, E[1, 1] = 61
63 can be constructed by using both the BA(T )[2, 5, 1]

given in example 4.9.2 and a resolvable BIBD with 15 treatments and block

size 3 given below which was constructed by using the method of two step
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cycles where the first parallel class gives a set of triplets

(k · 1 · 2), (3 · 7 · 10), (4 · 5 · 13), (6 · 9 · 11), (8, ·12, ·14).

From which by a cyclical two step permutation we get solution

0 3 4 6 8 0 5 6 8 10
1 7 5 9 12 3 9 7 11 14
2 10 13 11 14 4 12 1 13 2
0 7 8 10 12 0 9 10 12 14
5 11 9 13 2 7 13 11 1 4
6 14 3 1 4 8 2 5 3 6

0 13 14 2 4 0 1 2 4 6
11 3 1 5 8 13 5 3 7 10
12 6 9 7 10 14 8 11 9 12

0 11 12 14 2
9 1 13 3 6
10 4 7 5 8

Table 5.9: Table of BIBD[15,35,3]

Example 5.3.5. A 6×9 BAFD with parameters k = 27, r = λ00 = 20, b =

96, λ01 = 5, λ10 = 4, λ11 = 7 and efficiencies E[0, 1] = 1, E[1, 0] = 1,

E[1, 1] = 29
30 can be constructed by using both the BA(T )[3, 3, 1] given in

example 4.9.4 and a resolvable BIBD with 9 treatments and block size 3

given below which was constructed by using the method of one step cycles

where the first parallel class gives a set of triplets

(k · 1 · 5), (3 · 4 · 6), (7 · 8 · 2)

from which by a one cyclical one step permutation we get the solution
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0 3 7 0 4 8 0 5 1 0 6 2
1 4 8 2 5 1 3 6 2 4 7 3
5 6 2 6 7 3 7 8 4 8 1 5

Table 5.10: Table of BIBD[9,12,3]

Example 5.3.6. An 8 × 14 BAFD with parameters k = 28, r = λ00 =

91, b = 312, λ01 = 42, λ10 = 39, λ11 = 46 and efficiencies E[1, 0] =

1.0, E[0, 1] = 1.0, E[1, 1] = 89
91 can be constructed by using both the

BA(T )[4, 2, 1] which can be constructed by using theorem 4.9.1 and a resolv-

able BIBD with 14 treatments and block size 7 given below which was con-

structed by developing parallel classes as in equation 5.3.7. The base blocks

will be H0
2∪

{
0
}

=
{

1, 4, 3, 12, 9, 10, 0
}
, H1

2∪
{
∞
}

=
{

2, 8, 6, 11, 5, 7,∞
}

and H0
2 ∪

{
∞
}

=
{

1, 4, 3, 12, 9, 10,∞
}
, H1

2 ∪
{

0
}

=
{

2, 8, 6, 11, 5, 7, 0
}

The resolvable BIBD is given as follows after replacing ∞ with 13.
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1 2 2 3 3 4 4 5 5 6 6 7
4 8 5 9 6 10 7 11 8 12 9 0
3 6 4 7 5 8 6 9 7 10 8 11
12 11 0 12 1 0 2 1 3 2 4 3
9 5 10 6 11 7 12 8 0 9 1 10
10 7 11 8 12 9 0 10 1 11 2 12
0 13 1 13 2 13 3 13 4 13 5 13
7 8 8 9 9 10 10 11 11 12 12 0
10 1 11 2 12 3 0 4 1 5 2 6
9 12 10 0 11 1 12 2 0 3 1 4
5 4 6 5 7 6 8 7 9 8 10 9
2 11 3 12 4 0 5 1 6 2 7 3
3 0 4 1 5 2 6 3 7 4 8 5
6 13 7 13 8 13 9 13 10 13 11 13
0 1 1 2 2 3 3 4 4 5 5 6
3 7 4 8 5 9 6 10 7 11 8 12
2 5 3 6 4 7 5 8 6 9 7 10
11 10 12 11 0 12 1 0 2 1 3 2
8 4 9 5 10 6 11 7 12 8 0 9
9 6 10 7 11 8 12 9 0 10 1 11
12 13 13 0 13 1 13 2 13 3 13 4
6 7 7 8 8 9 9 10 10 11 11 12
9 0 10 1 11 2 12 3 0 4 1 5
8 11 9 12 10 0 11 1 12 2 0 3
4 3 5 4 6 5 7 6 8 7 9 8
1 10 2 11 3 12 4 0 5 1 6 2
2 12 3 0 4 1 5 2 6 3 7 4
13 5 13 6 13 7 13 8 13 9 13 10
12 0 0 1
2 6 3 7
1 4 2 5
10 9 11 10
7 3 8 4
8 5 9 6
13 11 13 12

Table 5.11: Table of a BIBD(14,52,7)
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Example 5.3.7. A 22 × 55 BAFD with parameters k = 110, r =

λ00 = 567, b = 6, 237 ,λ01 = 42, λ10 = 27, λ11 = 52 and efficien-

cies E[0, 1] = 1, E[1, 0] = 1, E[1, 1] = 562
567 can be constructed by us-

ing both the BA(T )[2, 11, 1] which can be constructed by using theorem

4.9.2 and a resolvable BIBD with 55 treatments and block size 5 given be-

low which was constructed by developing parallel classes as in equations

(5.3.9), (5.3.10), (5.3.11). Thus we develop parallel classes Pg, Qx, Rx.

R =
{

0, 1, 2, · · · , 10
}
. To construct a resolvable balanced incomplete block

design with block size 5 and number of treatments 55, k = 5, suppose

λ = 2 ≤ k − 1 then s = λ(v−1)
k(k−1) = 1 base block hence Pg parallel classes:

P0, P1, P2, · · ·P10 [11 blocks]. Qx parallel classes: Q0, Q1, Q2, Q3, Q4 each

of which is taken λ = 2 times. Rx parallel classes: R0, R1, R2, R3, R4, R5

each of which is taken λ − 1 = 2 − 1 = 1 times. Thus total number of

parallel classes = 11 + 2 × 5 + 6 × 1 = 27. As an example the parallel

classes P0, Q1, R0 are given by

P0

5 11 17 23 29 10 21 32 43 54 0
15 31 47 8 24 30 6 37 13 44 1
20 41 7 28 49 35 16 52 33 14 2
25 51 22 48 19 40 26 12 53 39 3
45 36 27 18 9 50 46 42 38 34 4
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Q1

5 10 15 20 25 30 35 40 45 50 0
11 16 21 26 31 36 41 46 51 1 6
17 22 27 32 37 42 47 52 2 7 12
23 28 33 38 43 48 53 3 8 13 18
29 34 39 44 49 54 4 9 14 19 24

R0

0 5 10 15 20 25 30 35 40 45 50
1 6 11 16 21 26 31 36 41 46 51
2 7 12 17 22 27 32 37 42 47 52
3 8 13 18 23 28 33 38 43 48 53
4 9 14 19 24 29 34 39 44 49 54

Table 5.12: Table of Parallel classesPo, Q1, Ro



Chapter 6

Multifactor BAFD’S

This chapter gives methods of constructing multifactor BAFD’s

6.1 Sm symmetrical BFD’s with block size s

The sm symmetrical balanced factorial design (BFD) has been shown by

Shah (1958) to be equivalent to a PBIB with a hypercubic association

scheme.We shall consider the construction of such designs with block size

s in this section, we have

r(s− 1) =
m∑
i=1

m
i

(s− 1)iλi (6.1.1)

hence

r =
m∑
i=1

m
i

(s− 1)i−1λi (6.1.2)

r is completely determined by the values of λ′is. When s is a prime power

Suen (1982) showed that there exists an sm symmetrical BFD with block

size s for any given λ1, λ2, . . . , λm.

158
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Lemma 6.1.1.

If s is a prime power, then given j (1 ≤ j ≤ m) there exists an sm

symmetrical balanced factorial design with block size s and parame-

ters λj = 1, λi = 0 for all i 6= j.

The efficiencies of the symmetrical balanced factorial design constructed

in Lemma 6.1.1 can be calculated by equation (3.2.5) and theorem 3.2.3

and hence

Ei = 1− 1
s
− Pj(i;m, s)(

m
j

)
(s− 1)j−1s

; i = 1, 2, . . . ,m (6.1.3)

In particular when j = m, Pm(i;m, s)

= (−1)i(s− 1)m−i

and equation (6.1.3) becomes (6.1.4)

Ei = 1− 1
s
− (−1)i

(s− 1)i−1s
i = 1, 2, . . . ,m. (6.1.4)

This balanced design has been constructed by Bose(1947);the main effects

are estimated with full efficiency since E1 = 1 in equation (6.1.4)

Theorem 6.1.1.

If s is a prime power, then for any given λ1, λ2, . . . , λm there exists

an sm symmetrical balanced factorial design with block size s and

parameters λ1, λ2, . . . , λm.

Proof. Let Dj denote the design constructed in Lemma 6.1.1. The sym-

metrical balanced factorial design consists of λj D′js for j = 1, 2, . . . ,m

has parameters λ1, λ2, . . . , λm.
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Now consider the case when s is not a prime power. In an s2 symmetrical

balanced factorial design with block size s if we can construct a design with

λ1 = 0 and λ2 6= 0 then the design is equivalent to a TA[λ2s(s− 1), s, s, 2]

by corollary 5.1.1 and the main effects are estimated with full efficiency.

In the case of sm symmetrical balanced factorial designs with block size

s, if we can construct a design with parameters λm 6= 0, and λi = 0 for

i = 1, 2, . . . ,m− 1, then the main effects are estimated with full efficiency.

If a TA[λs(s− 1), s, s, 2] exists,we can multiply (see theorem 4.8.2) m− 1

such transitive arrays to get a BA[λs(s − 1)m−1, s, s, 2] with parameters

λ[(x1, . . . , xm−1), (y1 . . . , ym−1)] = λm−1 if xi 6= yi for all i = 1, 2, . . . ,m− 1

and λ[(x1, . . . , xm−1), (y1 . . . , ym−1)] = 0 otherwise. Identifying rows with

the levels of F1, symbols with the levels of F2, . . . , Fm, and columns with

blocks, we obtain an sm symmetrical balanced factorial design in [λs(s −

1)]m−1 blocks of s plots each with parameters λm = λm−1 and λi = 0 for

i = 1, . . . ,m− 1.Thus we have the following theorem

Theorem 6.1.2.

The existence of a TA[λs(s−1), s, s, 2] implies the existence of an sm

symmetrical balanced factorial design with b = [λs(s − 1)]m−1, k =

s, r = [λ(s− 1)]m−1, λm = λm−1 and λi = 0, for i = 1, . . . ,m− 1.

6.2 Methods of Constructing Multifactor

BAFDS.

The methods are in form of theorems:
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Theorem 6.2.1.

If there exists a BA[Ni, sm, si, 2](i = 1, . . . ,m − 1) with parameters

λi(x, y) = µi0 or µi1 according as x = y or not then there exists an

s1×s2× . . .×sm BAFD with k = sm, b = N1 . . . Nm−1, λα1α2...αm−10=0,

λα1α2...αm−11 = µ1
α1µ

2
α2 . . . µ

m−1
αm−1

where αi = 0 or 1.

Proof. Multiply the m−1 balanced arrays to obtain a BA[N1N2 . . . Nm−1,

sm, s1s2 . . . sm−1, 2] with parameters λ[(x1, x2,. . . , xm−1), (y1, y2,. . .,

ym−1)] = µ1
α1µ

2α2 . . . µ
m−1
αm−1 where αi = 0 or 1 according as x = y or not.

Identifying the symbols with the levels of F1, F2,. . .,Fm−1, rows with the

levels of Fm and columns with blocks, we obtain an s1×s2×. . .×sm BAFD

with the specified parameters. The method used in theorem 6.2.1 can usu-

ally produce efficient BAFDS if we use balanced arrays corresponding to

efficient two factor BAFDS. While applying this method, the block size

remains the same but the number of blocks increases very rapidly. Hence

this method is used when the number of assemblies in the balanced arrays

are not too large.

Example 6.2.1. Consider the product of the OA[4, 3, 2, 2] in Example

5.2.1 and the TA[6, 3, 3, 2] given below

0 1 2 0 1 2
1 2 0 2 0 1
2 0 1 1 2 0

Table 6.1: TA[6,3,3,2]

00 01 02 01 02 00 01 02 00 00 01 02 10 11 12 10 11 12 10 11 12 10 11 12
01 02 00 00 01 11 12 10 02 12 10 11 01 02 00 02 00 01 11 12 10 12 10 11
02 00 01 02 00 12 10 11 01 11 12 10 12 10 11 11 12 10 02 00 01 01 02 00

Table 6.2: BA[24,3,6,2]
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which is a BA[24, 3, 6, 2] with parameters λ[(x1, x2), (y1, y2)] = 0 or 1 ac-

cording as x2 = y2 or not.

By theorem 6.2.1 this corresponds to a 2 × 3 × 3 BAFD with k = 3, b =

24, r = 4, λ(0, 1, 1) = λ(1, 1, 1) = 1

λ(0, 0, 1) = λ(0, 1, 0) = λ(1, 0, 0) = λ(1, 0, 1)

= λ(1, 1, 0) = 0

E[0, 1, 0] = E[0, 0, 1] = 1,

E[1, 0, 0] = E[1, 1, 0] = E[1, 0, 1] = E[1, 1, 1] = 2
3

E[0, 1, 1] = 1
2 .

Example 6.2.2. The product of BA(T )(3, 2, 1) in example 5.3.1 and a

BAT (2, 3, 1) in example 4.9.5 generates a 2× 3× 6 BAFD with

r = 25, b = 150, k = 6, λ(0, 1, 0) = λ(1, 0, 0) = λ(1, 1, 0) = 0,

λ(0, 0, 1) = 2, λ(0, 1, 1) = 4, λ(1, 0, 1) = 3 and λ(1, 1, 1) = 6.

The efficiencies are

E(0, 0, 1) = E(0, 1, 0) = E(1, 0, 0) = 1.0

E(0, 1, 1) = E(1, 0, 1) = E(1, 1, 0) = 4
5

and

E(1, 1, 1) = 21
25 .

We can also obtain an efficient 2×3×6 BAFD by collapsing the first factor

of the 62 symmetrical balanced factorial design in example 5.1.2 into two

factors one at 2 levels and the other at 3 levels. The BAFD has parameters

r = 10, b = 60, k = 6, λ(0, 0, 1) = λ(0, 1, 0) = λ(1, 0, 0) = λ(0, 1, 0) = 0

and λ(0, 1, 1) = λ(1, 0, 1) = λ(1, 1, 1) = 2
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The efficiencies are

E(0, 0, 1) = E(0, 1, 0) = E(1, 0, 0) = E(1, 1, 0) = 1.0

and

E(0, 1, 1) = E(1, 0, 1) = E(1, 1, 1) = 4
5 .

all the main effects are also estimated with full efficiency like in example

6.2.2 but we only need 10 replications in this design.

Example 6.2.3. The product of the BA(T )[4, 3, 2] in example 4.9.8 and

the BA(T )[3, 4, 2] in example 4.9.9 generates a 3 × 4 × 12 BAFD with

r = 484, b = 5808, k = 12, λ(0, 1, 0) = λ(1, 0, 0) = λ(1, 1, 0) = 0,

λ(0, 0, 1) = 24, λ(0, 1, 1) = 36, λ(1, 0, 1) = 32 and λ(1, 1, 1) = 48

The efficiencies are

E[0, 0, 1] = E[0, 1, 0] = E[1, 0, 0] = 1.0

E[0, 1, 1] = E[1, 0, 1] = E[1, 1, 0] = 10
11

and

E[1, 1, 1] = 111
121

The second method of constructing multifactor BAFD’s we shall discuss

was suggested by Yates (1937b) and employed by Nair and Rao (1941), Li

(1944), Kishen (1958).The general form with exact conditions for validity

was proved by Shah (1960a).This method replaces different levels of a

factor in one design by distinct sets of treatment combinations forming the

blocks of another design.

Assume that there exists a BAFD with m factors F1, F2, . . . , Fm at

s1, s2, . . . , sm levels respectively,each of the v ∗ (= s1s2 . . . sm) treatments

replicated r∗ times in b∗ blocks of k∗ plots each,with the incidence matrix.
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N∗ = [A∗1|A∗2| . . . |A∗b∗] (6.2.1)

Further assume that b∗ = pq, and the pq blocks can be divided into p

groups of q blocks each, such that the design consisting of p blocks formed

by adding together all the blocks of a group is a BAFD.The incidence

matrix is

N∗pq =
[∑q

j=1A
∗
j|
∑q
j=1A

∗
j+q| . . . |

∑q
j=1A

∗
pq−q+j

]
(6.2.2)

for a resolvable design N∗, the corresponding N∗pq exists with p = r∗. The

following theorem was proven by Shah (1960a).

Theorem 6.2.2.

Let there be a BAFD with the incidence matrix N in

n + 1 factors F0, Fm+1, . . . , Fm+n at q, sm+1, . . . , sm+n levels respec-

tively in b blocks of k plots each.Also let there be two BAFDs with

incidence matrices N∗ and N∗pq as given by equations (6.2.1) and

(6.2.2) respectively.If the level j − 1 of the factor F0 is replaced

by the block Aiq+j(j = 1, 2, . . . , q) in each of the treatments of N

,then the design obtained by adjoining the p designs so formed (for

i = 0, 1, 2, . . . , p− 1) is a BAFD in m+ n factors in bp blocks of kk∗

plots each.

This method generates an m+n factor BAFD from an n+ 1 factor BAFD

and an m factor BAFD.Thus from the two two-factor BAFD’s we can

generate a three-factor BAFD. If the two-factor BAFD’s are efficient, then

three-factor BAFD is also efficient. We can therefore construct efficient

multi-factor BAFD’s step by step from efficient two-factor BAFD’s. While

applying this method, the number of blocks does not increase so quickly
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as in the first method, but the block size does increase. It can be seen that

the theorem 5.3.1 is a consequence of theorem 6.2.2 if we let m = n = 1 in

theorem 6.2.2.

Example 6.2.4. Let N be the incidence matrix of the 3 × 6 BAFD con-

structed by identifying rows,columns and symbols, with the levels of the

second factor, the blocks ,and the levels of the first factors respectively in

the BA(T )(2, 3, 1) given in example 4.9.5. Let N∗ be the incidence matrix

of the resolvable 32 symmetrical balanced factorial design given below

x0 x1 x2 y0 y1 y2
00 01 02 00 01 02
11 12 10 12 10 11
22 20 21 21 22 20

Table 6.3: 32 Symmetrical BFD

where x0, x1, x2, y0, y1, y2 represents blocks.Then by theorem 6.2.2we can

construct a 32 × 6 BAFD with r = 10, b = 30, λ(2, 0) = 5, λ(0, 1) =

2,λ(2, 1) = 3, λ(1, 1) = 4, λ(1, 0) = 0, E[2, 1] = 9
10 and all main effects

and first order interactions are estimated with full efficiency.The BAFD is

given below.

Blocks 1 2 3 4 5 6 7 8 9 10
Levels of F3 Levels of F1 and F2

0 x0 x0 x0 x0 x0 x1 x1 x1 x1 x1
1 x1 x2 x1 x2 x0 x2 x0 x2 x0 x1
2 x2 x1 x1 x0 x2 x0 x2 x2 x1 x0
3 x2 x2 x0 x1 x1 x0 x0 x1 x2 x2
4 x0 x1 x2 x2 x1 x1 x2 x0 x0 x2
5 x1 x0 x2 x1 x2 x2 x1 x0 x2 x0

Blocks 11 12 13 14 15 16 17 18 19 20
Levels of F3 Levels of F1 and F2

0 x2 x2 x2 x2 x2 y0 y0 y0 y0 y0
1 x0 x1 x0 x1 x2 y1 y2 y1 y2 y0
2 x1 x0 x0 x2 x1 y2 y1 y1 y0 y2
3 x1 x1 x2 x0 x0 y2 y2 y0 y1 y1
4 x2 x0 x1 x1 x0 y0 y1 y2 y2 y1
5 x0 x2 x1 x0 x1 y1 y0 y2 y1 y2
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Blocks 21 22 23 24 25 26 27 28 29 30
Levels of F3 Levels of F1 and F2

0 y1 y1 y1 y1 y1 y2 y2 y2 y2 y2
1 y2 y0 y2 y0 y1 y0 y1 y0 y1 y2
2 y0 y2 y2 y1 y0 y1 y0 y0 y2 y1
3 y0 y0 y1 y2 y2 y1 y1 y2 y0 y0
4 y1 y2 y0 y0 y2 y2 y0 y1 y1 y0
5 y2 y1 y0 y2 y0 y0 y2 y1 y0 y1

Table 6.4: 32 × 6 BAFD

Example 6.2.5. Let N be the incidence matrix of the 3× 6 BAFD

constructed by identifying rows, columns, and symbols, with the levels of

the second factor, the blocks and the levels of the first factor respectively in

the BA(T )(2, 3, 1)given in example 4.9.5. Let N∗ be the incidence matrix

of the resolvable 2× 3 BAFD given below.

x0 x1 x2 y0 y1 y2
00 01 02 00 01 02
11 12 10 12 10 11

Table 6.5: Resolvable 2× 3 BAFD

where x0, x1, x2, y0, y1, y2 represents blocks. Then by theorem 6.2.2, we can

construct a 2× 3× 6 BAFD with r = 10, k = 12, b = 30

λ(0, 0, 1) = 2, λ(0, 1, 0) = 0

λ(0, 1, 1) = 4, λ(1, 0, 0) = 0

λ(1, 0, 1) = 4, λ(1, 1, 0) = 5

λ(1, 1, 1) = 3

and efficiencies
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E[0, 0, 1] = E[0, 1, 0] = E[1, 0, 0] = 1.00

and

E[1, 1, 0] = E[1, 0, 1] = 1.00

E[0, 1, 1] = 19
20

E[1, 1, 1] = 17
20

The BAFD is given below

Blocks 1 2 3 4 5 6 7 8 9 10
Levels of F3 Levels of F1 and F2

0 x0 x0 x0 x0 x0 x1 x1 x1 x1 x1
1 x1 x2 x1 x2 x0 x2 x0 x2 x0 x1
2 x2 x1 x1 x0 x2 x0 x2 x2 x1 x0
3 x2 x2 x0 x1 x1 x0 x0 x1 x2 x2
4 x0 x1 x2 x2 x1 x1 x2 x0 x0 x2
5 x1 x0 x2 x1 x2 x2 x1 x0 x2 x0

Blocks 11 12 13 14 15 16 17 18 19 20
Levels of F3 Levels of F1 and F2

0 x2 x2 x2 x2 x2 y0 y0 y0 y0 y0
1 x0 x1 x0 x1 x2 y1 y2 y1 y2 y0
2 x1 x0 x0 x2 x1 y2 y1 y1 y0 y2
3 x1 x1 x2 x0 x0 y2 y2 y0 y1 y1
4 x2 x0 x1 x1 x0 y0 y1 y2 y2 y1
5 x0 x2 x1 x0 x1 y1 y0 y2 y1 y2

Blocks 21 22 23 24 25 26 27 28 29 30
Levels of F3 Levels of F1 and F2

0 y1 y1 y1 y1 y1 y2 y2 y2 y2 y2
1 y2 y0 y2 y0 y1 y0 y1 y0 y1 y2
2 y0 y2 y2 y1 y0 y1 y0 y0 y2 y1
3 y0 y0 y1 y2 y2 y1 y1 y2 y0 y0
4 y1 y2 y0 y0 y2 y2 y0 y1 y1 y0
5 y2 y1 y0 y2 y0 y0 y2 y1 y0 y1

Table 6.6: 2× 3× 6 BAFD
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6.3 Examples of multifactor BAFDS

In this section, we shall use the methods discussed in the preceding section

and some known balanced factorial designs to construct examples of mul-

tifactor BAFDS. We are especially interested in BAFDS of which the main

effects and lower order interactions can be estimated with high efficiencies.

TYPE I

If there exists TA[si(si − 1), sm, si, 2] for i = 1, 2, . . . ,m − 1 then by the-

orem 6.2.1 we can construct an s1 × s2 × . . . sm BAFD with k = sm,

b = ∏m−1
i=1 si(si − 1), r = ∏m−1

i=1 (si − 1), λ(1, 1, . . . , 1) = 1 and other λ′s

being 0. By theorem 3.1.4 the eigenvalues of NNT of a BAFD are given

by

g(y1, y2, . . . , ym) = rk − kρ(y1, y2, . . . , ym)

= rk −
{
r(k − 1)−∑

x∈Ω λ(x)
{∏m

i=1

[
(1− yi)si − 1

]xi
}}

(6.3.1)

= r +
∑
x∈Ω

λ(x)
{∏m

i=1

[
(1− yi)si − 1

]xi
}

(6.3.2)

hence

E[y1, y2, . . . , ym] = 1− 1
rk
g[y1, y2, . . . , ym]

= 1− 1
rk

[
r + ∑

x∈Ω λ(x)
{∏m

i=1

[
(1− yi)si − 1

]xi
}]

= 1− 1
k
− 1
rk

(1)
{∏m

i=1

[
(1− yi)si − 1

]xi
}

(6.3.3)

= −1
sm

+ 1−
∏m
i=1[(1− yi)si − 1]xi

sm
∏m−1
i=1 (si − 1)
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= 1− 1
sm
−
∏m
i=1[(1− yi)si − 1]xi

sm
∏m−1
i=1 (si − 1)

(6.3.4)

Let yj = 1 and yi = 0 for i 6= j, equation (6.3.4) becomes

E[0, 0, . . . , 1j, . . . , 0, . . . , 0]

= 1− 1
sm
−


{

(1− 0)s1 − 1
}1 {

(1− 0)s2 − 1
}1
. . .{

(1− 1)sj − 1
}1
. . .

{
(1− 0)sm − 1

}1


sm

∏m−1
i−1 (si − 1)

= 1− 1
sm
−

{
(s1 − 1)(s2 − 1) . . . (−1) . . . (sm − 1)

}
sm

∏m−1
i−1 (si − 1)

= 1− 1
sm
− (s1 − 1)(s2 − 1) . . . (−1) . . . (sm−1 − 1)(sm − 1)

sm(s1 − 1)(s2 − 1) . . . (sj − 1) . . . (sm−1 − 1)

= 1− 1
sm
− −(1)(sm − 1)

sm(sj − 1)

= 1− 1
sm

+ sm − 1
sm(sj − 1)

= 1 + sm − sj
sm(sj − 1)

= 1− sj − sm
sm(sj − 1)

(6.3.5)

This is the efficiency of the main effects of the factor Fj and it is 1 when

j = m. Hence the main effects of Fm are estimated with full efficiency.

In general, let yji = 1 for i = 1,. . . ,q(q ≤ m) and other y′s be 0, then
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equation (6.3.5) is

E[y1, y2, . . . , ym] = E[1, 1, . . . , 1q, 0, 0, . . . , 0]

= 1− 1
sm
−
∏m
i=1[(1− yi)si − 1]xi

sm
∏m−1
i=1 (si − 1)

= 1− 1
sm
−


{

(1− 1)s1 − 1
}1 {

(1− 1)s2 − 1
}1

. . .

{
(1− 1)sq − 1

}1 {
(1− 0)sq+1 − 1

}1
. . .

{
(1− 0)sm − 1

}1


sm

{
(s1 − 1)(s2 − 1) . . . (sq − 1)(sq+1 − 1) . . . (sm−1 − 1)

}
= 1− 1

sm
− (−1)1(−1)1 . . . (−1)1(sq+1 − 1) . . . (sm−1 − 1)(sm − 1)
sm(s1 − 1)(s2 − 1)(s3 − 1) . . . (sq − 1)(sq+1 − 1) . . . (sm−1 − 1)

= 1− 1
sm
− (−1)q(sm − 1)
sm
∏q
i=1(sji − 1)

= 1− 1
sm
− (−1)q(sm − 1)
sm
∏q
i=1(sji − 1)

(6.3.6)

which is efficiency of the (q−1)th order interaction between Fj1, Fj2, . . . Fjq.

Example 6.3.1. For any given si ≥ 3, (i = 1, 2, 3, . . . ,m − 1). The

TA[si(si − 1), 3, si, 2]′s always exists. Hence we can always construct an

s1 × s2 × . . . × sm−1 × 3 BAFD with k = 3, b = ∏m−1
i=1 si(si − 1), r =∏m−1

i=1 (si − 1), λ(1, 1, . . . 1) = 1 and all other λ′s being 0.

Example 6.3.2. Using the TA[20, 3, 5, 2] in example 4.1.4 and the

TA[6, 3, 3, 2], we can construct a 5× 3× 3 BAFD using theorem 6.2.1.The

parameters of this BAFD are k = 3, b = 120, r = 8, λ(0, 0, 1) = λ(0, 1, 0) =

λ(0, 1, 1) = λ(1, 0, 0) = λ(1, 0, 1) = λ(1, 1, 0) = 0, λ(1, 1, 1) = 1.0 The

efficiencies of this design are

E[0, 0, 1] = E[0, 1, 0] = 1.00

E[1, 0, 0] = 5
6

E[0, 1, 1] = 1
2

E[1, 0, 1] = E[1, 1, 0] = 7
12

E[1, 1, 1] = 17
24
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Other examples of this type include 5× 4× 4,5× 5× 4, 7× 5× 4, 7× 5×

4,7× 7× 5,. . . , BAFD’s and so on.

TYPE II

Let sm = n1s1 = n2s2 = . . . = nm−1sm−1 and there exists BA(T )[ni, si, 1]

for i = 1, 2, . . . ,m− 1. By theorem 6.2.1 there exists an s1× s2× . . .× sm
BAFD with k = sm, b = (sm − 1)m−1s1s2 . . . sm−1, r = [sm − 1]m−1,

λ(y1, y2, . . . ym−1, 0) = 0 and λ(y1, y2, . . . ym−1, 1) = ∏m−1
i=1 nxi

i (ni − 1)1−xi.

By theorem 3.1.4 the eigenvalues of the NNT of the BAFD are given by

g[y1, y2, . . . , ym] = r +
∑
x∈Ω

λ(x)
{∏m

i=1[(1− yi)si − 1]xi

}
(6.3.7)

= r +
∑
x∈Ω

m−1∏
i−1

nxi
i (ni − 1)1−xi

{∏m
i=1[(1− yi)si − 1]xi

}
(6.3.8)

Let ym = 1, yi = 0 for i = 1, 2, . . . ,m− 1 in equation (6.3.8)
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g(0, 0, . . . , 0, 1) = r+

λ1(x1, x2, . . . , xm−1, 1)[
{

(1− 0)s1 − 1
}x1 {

(1− 0)s2 − 1
}x2

. . .{
(1− 1)sm − 1

}1
] + λ2(x1, x2, . . .

xm−1, 1)[
{

(1− 0)s1 − 1
}x1 {

(1− 0)s2 − 1
}x2

. . .{
(1− 1)sm − 1

}1
] + . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .+ λm−1(x1, x2, . . . , xm−1, 1)

[
{

(1− 0)s1 − 1
}x1 {

(1− 0)s2 − 1
}x2

. . .{
(1− 1)sm − 1

}1
]



(6.3.9)

where λh(x1, x2, . . . xm−1, 1), h = 1, 2, . . ., m − 1 is the hth distinct

term of λ(x1, x2, . . . , xm−1, 1) and hence we have 2m − 1 distinct terms

of λ(x1, x2, . . . , xm−1, 1).

After expanding equation (6.3.9) we have

g(0, 0, . . . , 0, 1)

= r +
{
−sm−1

m + (m− 1)sm−2
m − (m−1)(m−2)

2 sm−3
m + . . .− s0

m(−1)m−1
}

= r −
{
sm−1
m − (m− 1)sm−2

m + (m−1)(m−2)
2 sm−3

m − . . .+ s0
m(−1)m−1

}

= r −


m−1c0s

m−1
m (−1)0 +m−1 c1s

m−2
m (−1)1 +m−1 c2s

m−3
m (−1)2 + . . .+

m−1cm−1s
0
m(−1)m−1


= r − (sm − 1)m−1 = r − r = 0

similarly we can show that g(1, 0, 0, . . . , 0) = g(0, 1, 0, . . . , 0) = . . . =

g(0, 0, 0, . . . , 1, 0) = 0. Thus all main effects are estimated with full ef-

ficiency. Let ym−1 = ym = 1 and yi = 0 for i = 1, 2, . . .m− 2 then (6.3.8)

becomes
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g(0, 0, . . . , 0, 1, 1) = r+

λ1(x1, x2, . . . , xm−1, 1)[
{

(1− 0)s1 − 1
}x1 {

(1− 0)s2 − 1
}x2

. . . (a)
{

(1− 1)sm − 1
}1

] + λ2(x1, x2, . . . xm−1, 1)[


(1− 0

)s1 − 1


x1 {

(1− 0)s2 − 1
}x2

. . . (a)
{

(1− 1)sm − 1
}1

] + . . .

+λ2m−1(x1, x2, . . . , xm−1, 1)
{

(1− 0)s1 − 1
}x1 {

(1− 0)s2 − 1
}x2

. . .{
(1− 1)sm−1 − 1

}xm−1 {
(1− 1)sm − 1

}1


(6.3.10)

(In the above equation (6.3.10), let
{

(1− 1)sm−1 − 1
}xm−1

be a value rep-

resented by (a))

where λh(x1, x2, . . . , xm−1, 1), h = 1, 2, . . . , 2m − 1 is the hth distinct term

of λ(x1, x2,. . . , xm−1, 1) and hence we have 2m − 1 distinct terms of

λ(x1, x2, . . . , xm−1, 1).

After expanding equation (6.3.10) we have

g(0, 0, . . . , 0, 1, 1)

= r +
{
sm−2
m − (m− 2)sm−3

m + (m−2)(m−3)
2 sm−4

m − . . .+ s0
m(−1)m−2

}

= r +


m−2c0s

m−2
m (−1)0 +m−2 c1s

m−3
m (−1)1 +m−2 c2s

m−4
m (−1)2 + . . .+

m−2cm−2s
0
m(−1)m−2


= r + (sm − 1)m−2

= (sm − 1)m−1 + (sm − 1)m−2

In general, when ∑m
i=1 yi = q equation (6.3.8) is

g(y1, y2, . . . , ym) = (sm − 1)m−1 + (−1)q(sm − 1)m−q (6.3.11)
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hence by corollary 3.1.1

E[y1, y2, . . . , ym] = 1− g[y1, y2, . . . , ym]
rk

= 1− (sm − 1)m−1 + (−1)q(sm − 1)m−q
(sm − 1)m−1sm

= 1− 1
sm
− (−1)q
sm(sm − 1)q−1 (6.3.12)

where ∑m
i=1 yi = q.

It can be seen that equation (6.3.12) is the same as the equation (6.1.4)

with sm = s, hence the efficiencies are equal to those of smm symmetrical

balanced factorial design in lemma 6.1.1 with j = m.

Example 6.3.3. A BA(T)(3,2,1) given in example 5.3.1 can be used to

construct a 22×6 BAFD with k = 6, b = 100, r = 25, λ(1, 0) = λ(2, 0) = 0,

λ(0, 1) = 4, λ(1, 1) = 6, λ(2, 1) = 9

The efficiencies are;

E[0, 1] = E[1, 0] = 1.0

E[1, 1] = E[2, 0] = 4
5

E[2, 1] = 21
25

Example 6.3.4. A BA(T)(2,3,1) given in example 4.9.5 can be used to

construct a 33 × 6 BAFD with

k = 6, b = 3, 375, r = 125, λ(1, 0) = λ(2, 0) = λ(3, 0) = 0,

λ(0, 1) = 1, λ(1, 1) = 2, λ(2, 1) = 4, λ(3, 1) = 8
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The efficiencies are;

E[0, 1] = E[1, 0] = 1.0

E[1, 1] = E[2, 1] = 4
5

E[2, 1] = 21
25

E[3, 1] = 104
125

Example 6.3.5. Example 6.2.2 is also of this type. Other examples include

2× 2× 4, 2× 4× 4, 3× 3× 6, 2× 5× 10, . . . and so on.

The following example is also a 22 × 6 BAFD with only 5 replications;the

main effects are estimated with full efficiencies and some interactions are

not estimable.

Example 6.3.6. A 22 × 6 BAFD with k = 6, b = 20, r = 5, λ(1, 1) =

λ(1, 0) = λ(2, 0) = 0 and λ(0, 1) = 2, λ(2, 1) = 3

The efficiencies are;

E[0, 1] = E[1, 0] = E[2, 1] = 1.0

and

E[1, 1] = 4
5 , E[2, 0] = 0

can be constructed using theorem 6.2.2 and by letting N be the incidence

matrix of the 2×6 BAFD that was corresponding to a BA(T )[3, 2, 1] which

was given in example 5.3.1. In this case, we shall let N∗ be the incidence

matrix of the following 22 design with block size 1.

00 11 01 10

Table 6.7: resolvable 22 Symmetrical design
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and we shall let N∗22 be the following 22 balanced factorial design with in-

teraction confounded

00 01
11 10

Table 6.8: 22 balanced factorial design with interactions confounded

Applying theorem 6.2.2 we get the following 22 × 6 BAFD.

Blocks 1 2 3 4 5 6 7 8 9 10
Levels of F3 Levels of F1 and F2

0 00 00 00 00 00 11 11 11 11 11
1 00 00 11 11 11 00 00 00 11 11
2 11 00 00 11 11 11 11 00 00 00
3 00 11 11 00 11 00 11 11 00 00
4 11 11 11 00 00 11 00 00 00 11
5 11 11 00 11 00 00 00 11 11 00

Blocks 11 12 13 14 15 16 17 18 19 20
Levels of F3 Levels of F1 and F2

0 01 01 01 01 01 10 10 10 10 10
1 01 01 10 10 10 01 01 01 10 10
2 10 01 01 10 10 10 10 01 01 01
3 01 10 10 01 10 01 10 10 01 01
4 10 10 10 01 01 10 01 01 01 10
5 10 10 01 10 01 01 01 10 10 01

Table 6.9: 22 × 6 BAFD
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Example 6.3.7. A 22 × 4 BAFD with k = 4, b = 24, r = 6, λ(1, 1) =

λ(1, 0) = λ(2, 0) = 0 and λ(0, 1) = 2,λ(2, 1) = 4 and efficiencies are;

E[0, 1] = E[1, 0] = E[2, 1] = 1.0

and

E[1, 1] = 2
3 , E[2, 0] = 0

can be constructed by letting N be the incidence matrix of the 2× 4 BAFD

that corresponds to the BA[12, 4, 2, 2] in example 4.9.7. In this case, we

shall let N∗ be the incidence matrix of the following 22 design with block

size 1

00 11 01 10

Table 6.10: 22 design

and we shall let N∗22 be the following 22 balanced factorial design with in-

teraction confounded

00 01
11 10

Table 6.11: 22 BFD with interactions confounded



Chapter 6. Multifactor BAFD’S 178

Applying theorem 6.2.2 we get the following 22 × 4 BAFD.

Blocks 1 2 3 4 5 6 7 8 9 10 11 12
Levels of F3 Levels of F1 and F2

0 00 00 00 00 00 00 11 11 11 11 11 11
1 11 11 00 11 00 11 00 00 11 00 11 00
2 00 00 11 11 11 11 11 11 00 00 00 00
3 11 11 11 00 11 00 00 00 00 11 00 11

Blocks 13 14 15 16 17 18 19 20 21 22 23 24
Levels of F3 Levels of F1 and F2

0 01 01 01 01 01 01 10 10 10 10 10 10
1 10 10 01 10 01 10 01 01 10 01 10 01
2 01 01 10 10 10 10 10 10 01 01 01 01
3 10 10 10 01 10 01 01 01 01 10 01 10

Table 6.12: 22 × 4 BAFD

Example 6.3.8. A 32 × 9 BAFD with k = 9, b = 144, r = 16, λ(1, 1) =

λ(1, 0) = λ(2, 0) = 0 and λ(0, 1) = 4, λ(2, 1) = 3

and efficiencies;

E[0, 1] = E[1, 0] = 1.0

E[1, 1] = 7
8 , E[2, 0] = 1

2
E[2, 1] = 15

16

can be constructed by letting N be the incidence matrix of the 3× 9 BAFD

that corresponds to the BA(T )[3, 3, 1] in example 4.9.4. In this case, we

shall let N∗ be the incidence matrix of the following 32 design with block

size 1.
00 12 21 01 10 22 02 11 20 00 11 22 02
10 21 01 12 20

Table 6.13: 32 design with block size 1

and we shall let N∗22 be the incidence matrix of the following 32 balanced

factorial design with interaction confounded.
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00 01 02 00 02 01
12 10 11 11 10 12
21 22 20 22 21 20

Table 6.14: 32 BFD with interactions confounded

Applying theorem 6.2.2 we get the following 32 × 9 BAFD.

Blocks 1 2 3 4 5 6 7 8 9 10 11 12
Levels of F3 Levels of F1 and F2

0 00 00 00 00 00 00 00 00 12 12 12 12
1 12 21 00 12 21 00 12 21 21 00 12 21
2 21 12 00 21 12 00 21 12 00 21 12 00
3 00 00 12 12 12 21 21 21 12 12 21 21
4 12 21 12 21 00 21 00 12 21 00 21 00
5 21 12 12 00 21 21 12 00 00 21 21 12
6 00 00 21 21 21 12 12 12 12 12 00 00
7 12 21 21 00 12 12 21 00 21 00 00 12
8 21 12 21 12 00 12 00 21 00 21 00 21

Blocks 13 14 15 16 17 18 19 20 21 22 23 24
Levels of F3 Levels of F1 and F2

0 12 12 12 12 21 21 21 21 21 21 21 21
1 00 12 21 00 00 12 21 00 12 21 00 12
2 21 12 00 21 12 00 21 12 00 21 12 00
3 21 00 00 00 21 21 00 00 00 12 12 12
4 12 00 12 21 00 12 00 12 21 12 21 00
5 00 00 21 12 12 00 00 21 12 12 00 21
6 00 21 21 21 21 21 12 12 12 00 00 00
7 21 21 00 12 00 12 12 21 00 00 12 21
8 12 21 12 00 12 00 12 00 21 00 21 12
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Blocks 25 26 27 28 29 30 31 32 33 34 35 36
Levels of F3 Levels of F1 and F2

0 01 01 01 01 01 01 01 01 10 10 10 10
1 10 22 01 10 22 01 10 22 22 01 10 22
2 22 10 01 22 10 01 22 10 01 22 10 01
3 01 01 10 10 10 22 22 22 10 10 22 22
4 10 22 10 22 01 22 01 10 22 01 22 01
5 22 10 10 01 22 22 10 01 01 22 22 10
6 01 01 22 22 22 10 10 10 10 10 01 01
7 10 22 22 01 10 10 22 01 22 01 01 10
8 22 10 22 10 01 10 01 22 01 22 01 22

Blocks 37 38 39 40 41 42 43 44 45 46 47 48
Levels of F3 Levels of F1 and F2

0 10 10 10 10 22 22 22 22 22 22 22 22
1 01 10 22 01 01 10 22 01 10 22 01 10
2 22 10 01 22 10 01 22 10 01 22 10 01
3 22 01 01 01 22 22 01 01 01 10 10 10
4 10 01 10 22 01 10 01 10 22 10 22 01
5 01 01 22 10 10 01 01 22 10 10 01 22
6 01 22 22 22 22 22 10 10 10 01 01 01
7 22 22 01 10 01 10 10 22 01 01 10 22
8 10 22 10 01 10 01 10 01 22 01 22 10

Blocks 49 50 51 52 53 54 55 56 57 58 59 60
Levels of F3 Levels of F1 and F2

0 02 02 02 02 02 02 02 02 11 11 11 11
1 11 20 02 11 20 02 11 20 20 02 11 20
2 20 11 02 20 11 02 20 11 02 20 11 02
3 02 02 11 11 11 20 20 20 11 11 20 20
4 11 20 11 20 02 20 02 11 20 02 20 02
5 20 11 11 02 20 20 11 02 02 20 20 11
6 02 02 20 20 20 11 11 11 11 11 02 02
7 11 20 20 02 11 11 20 02 20 02 02 11
8 20 11 20 11 02 11 02 20 02 20 02 20

Blocks 61 62 63 64 65 66 67 68 69 70 71 72
Levels of F3 Levels of F1 and F2

0 11 11 11 11 20 20 20 20 20 20 20 20
1 02 11 20 02 02 11 20 02 11 20 02 11
2 20 11 02 20 11 02 20 11 02 20 11 02
3 20 02 02 02 20 20 02 02 02 11 11 11
4 11 02 11 20 02 11 02 11 20 11 20 02
5 02 02 20 11 11 02 02 20 11 11 02 20
6 02 20 20 20 20 20 11 11 11 02 02 02
7 20 20 02 11 02 11 11 20 02 02 11 20
8 11 20 11 02 11 02 11 02 20 02 20 11



Chapter 6. Multifactor BAFD’S 181

Blocks 73 74 75 76 77 78 79 80 81 82 83 84
Levels of F3 Levels of F1 and F2

0 00 00 00 00 00 00 00 00 11 11 11 11
1 11 22 00 11 22 00 11 22 22 00 11 22
2 22 11 00 22 11 00 22 11 00 22 11 00
3 00 00 11 11 11 22 22 22 11 11 11∗ 22
4 11 22 11 22 00 22 00 11 22 00 22 00
5 22 11 11 00 22 22 11 00 00 22 22 11
6 00 00 22 22 22 11 11 11 11 11 22 00
7 11 22 22 00 11 11 22 00 22 00 00 11
8 22 11 22 11 00 11 00 22 00 22 00 22

Blocks 85 86 87 88 89 90 91 92 93 94 95 96
Levels of F3 Levels of F1 and F2

0 11 11 11 11 22 22 22 22 22 22 22 22
1 00 11 22 00 00 11 22 00 11 22 00 11
2 22 11 00 22 11 00 22 11 00 22 11 00
3 22 00 00 00 22 22 00 00 00 11 11 11
4 11 00 11 22 00 11 00 11 22 11 22 00
5 00 00 22 11 11 00 00 22 11 11 00 22
6 00 22 22 22 22 22 11 11 11 00 00 00
7 22 22 00 11 00 11 11 22 00 00 11 22
8 11 22 11 00 11 00 11 00 22 00 22 11

Blocks 97 98 99 100 101 102 103 104 105 106 107 108
Levels of F3 Levels of F1 and F2

0 02 02 02 02 02 02 02 02 10 10 10 10
1 10 21 02 10 21 02 10 21 21 02 10 21
2 21 10 02 21 10 02 21 10 02 21 10 02
3 02 02 10 10 10 21 21 21 10 10 21 21
4 10 21 10 21 02 21 02 10 21 02 21 02
5 21 10 10 02 21 21 10 02 02 21 21 10
6 02 02 21 21 21 10 10 10 10 10 02 02
7 10 21 21 02 10 10 21 02 21 02 02 10
8 21 10 21 10 02 10 02 21 02 21 02 21
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Blocks 109 110 111 112 113 114 115 116 117 118 119 120
Levels of F3 Levels of F1 and F2

0 10 10 10 10 21 21 21 21 21 21 21 21
1 02 10 21 02 02 10 21 02 10 21 02 10
2 21 10 02 21 10 02 21 10 02 21 10 02
3 21 02 02 02 21 21 02 02 02 10 10 10
4 10 02 10 21 02 10 02 10 21 10 21 02
5 02 02 21 10 10 02 02 21 10 10 02 21
6 02 21 21 21 21 21 10 10 10 02 02 02
7 21 21 02 10 02 10 10 21 02 02 10 21
8 10 21 10 02 10 02 10 02 21 02 21 10

Blocks 121 122 123 124 125 126 127 128 129 130 131 132
Levels of F3 Levels of F1 and F2

0 01 01 01 01 01 01 01 01 12 12 12 12
1 12 20 01 12 20 01 12 20 20 01 12 20
2 20 12 01 20 12 01 20 12 01 20 12 01
3 01 01 12 12 12 20 20 20 12 12 20 20
4 12 20 12 20 01 20 01 12 20 01 20 01
5 20 12 12 01 20 20 12 01 01 20 20 12
6 01 01 20 20 20 12 12 12 12 12 01 01
7 12 20 20 01 12 12 20 01 20 01 01 12
8 20 12 20 12 01 12 01 20 01 20 01 20

Blocks 133 134 135 136 137 138 139 140 141 142 143 144
Levels of F3 Levels of F1 and F2

0 12 12 12 12 20 20 20 20 20 20 20 20
1 01 12 20 01 01 12 20 01 12 20 01 12
2 20 12 01 20 12 01 20 12 01 20 12 01
3 20 01 01 01 20 20 01 01 01 12 12 12
4 12 01 12 20 01 12 01 12 20 12 20 01
5 01 01 20 12 12 01 01 20 12 12 01 20
6 01 20 20 20 20 20 12 12 12 01 01 01
7 20 20 01 12 01 12 12 20 01 01 12 20
8 12 20 12 01 12 01 12 01 20 01 20 12

Table 6.15: 32 × 9 BAFD
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TYPE III

Let there exist a BA(T )(n1, s, 1), by corollary (5.2.1). This corresponds to

n1s× s BAFD with k = n1s, b = (n1s− 1)s, and λ(0, 0) = n1s− 1 = r

λ(0, 1) = 0

λ(1, 0) = n1 − 1 (6.3.13)

λ(1, 1) = n1

by equations (5.1.1), (5.1.2) and (5.1.3), the eigenvalues of NNT are

g(1, 0) = 0

g(0, 1) = 0

g(1, 1) = n1s (6.3.14)

If there exists a resolvable BA(T )(n2, s, 1),then this corresponds to a re-

solvable n2s × s BAFD. By theorem 6.2.2, if we replace the levels of the

second factor of the n1s× s BAFD by the blocks of the n2s× s BAFD, we

get an n1s× n2s× s BAFD with k = n1n2s
2, b = (n1s− 1)(n2s− 1)s, and

λ(0, 0, 0) = λ(0, 0)(n2s− 1) = (n1s− 1)(n2s− 1)
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λ(0, 0, 1) = λ(0, 1)(n2s− 1) = 0

λ(0, 1, 0) = λ(0, 0)(n2 − 1) + λ(0, 1)(n2s− n2) = (n1s− 1)(n2 − 1)

λ(0, 1, 1) = λ(0, 0)n2 + λ(0, 1)(n2s− n2 − 1) = (n1s− 1)n2

λ(1, 0, 0) = λ(1, 0)(n2s− 1) = (n1 − 1)(n2s− 1)

λ(1, 0, 1) = λ(1, 1)(n2s− 1) = n1(n2s− 1)

λ(1, 1, 0) = λ(1, 0)(n2 − 1) + λ(1, 1)(n2s− 1)

= (n1 − 1)(n2 − 1) + n1(n2s− n2)

λ(1, 1, 1) = λ(1, 0)n2 + λ(1, 1)(n2s− n2 − 1)

= (n1 − 1)n2 + n1(n2s− n2 − 1)
(6.3.15)

where λ(0, 0), λ(0, 1), λ(1, 0), λ(1, 1) are given by equation (6.3.13). The

eigenvalues of NNT are

g[y1, y2, y3] = n1n2s
2 if y1 = y2 = y3 = 1

= n1n2s
2(n1s− 1)(n2s− 1) if y1 = y2 = y3 = 0 (6.3.16)

= 0 Otherwise

hence E[1, 1, 1] = 1− 1
(n1s−1)(n2s−1) , and all the main effects and first order

interactions are estimated with full efficiency.

If further there exists a resolvable BA(T )(n3, s, 1), we can replace the levels

of the third factor of the n1s× n2s× s BAFD by the blocks of the n3s× s

BAFD to obtain n1s × n2s × n3s × s BAFD with k = n1n2n3s
3 such

that all the main effects and interactions are estimated with full efficiency

except the third order interactions, which are estimated with efficiency,

1− 1
(n1s−1)(n2s−1)(n3s−1) .

continuing this procedure, we can get an n1s× n2s× . . .× nLs× s BAFD

with k = sLn1n2 . . . nL, b = s(n1s− 1)(n2s− 1) . . . (nLs− 1). The λ′s can

be calculated recursively by the following formulae:
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Note: Replace yi with xi.

λ(y1, y2, . . . , yL−2, 0, 0) = λ(y1, y2, . . . , yL−2, 0)(nLs− 1)

λ(y1, y2, . . . , yL−2, 0, 1) = λ(y1, y2, . . . , yL−2, 1)(nLs− 1)

λ(y1, y2, . . . , yL−2, 1, 0) = λ(y1, y2, . . . , yL−2, 0)(nL − 1)

+ λ(y1, y2, . . . , yL−2, 1)(nLs− nL)

λ(y1, y2, . . . , yL−2, 1, 1) = λ(y1, y2, . . . , yL−2, 0)(nL)

+ λ(y1, y2, . . . , yL−2, 1)(nLs− nL − 1)

(6.3.17)

we shall prove that

E[1, 1, . . . , 1] = 1− 1
(n1s− 1)(n2s− 1) . . . (nLs− 1)

and all other efficiencies are 1. The proof is given by induction. Equation

(6.3.2) can be written as

g[y1, y2, . . . , yL+1]

=
∑

x1,x2,...,xL−1

{∏L−1
i=1

{
(1− yi)nis− 1

}xi
}
×

[
λ(x1, x2, . . . , xL−1, 0, 0)×

{
(1− yL)nLs− 1

}xL
{

(1− yL+1)s− 1
}xL+1

+ λ(x1, x2, . . . , xL−1, 0, 1)
{

(1− yL)nLs− 1
}xL

{
(1− yL+1)s− 1

}xL+1

+ λ(x1, x2, . . . , xL−1, 1, 0)
{

(1− yL)nLs− 1
}xL

{
(1− yL+1)s− 1

}xL+1

+ λ(x1, x2, . . . , xL−1, 1, 1)
{

(1− yL)nLs− 1
}xL

{
(1− yL+1)s− 1

}xL+1 ]

using equation (6.3.16) we have
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g[y1, y2, . . . , yL−1, 0, 0]

=
∑

x1,x2,...,xL−1

{∏L−1
i=1

{
(1− yi)nis− 1

}xi
} λ(x1, x2, . . . , xL−1, 0)(nLs− 1)

+ λ(x1, x2, . . . , xL−1, 1)(nLs− 1)
{

(1− 0)s− 1
}1

+


λ(x1, x2, . . . , xL−1, 0)(nL − 1) + λ(x1, x2, . . . , xL−1, 1)

(nLs− nL)


{
nLs− 1

}

+


λ(x1, x2, . . . , xL−1, 0)(nL) + λ(x1, x2, . . . , xL−1, 1)

(nLs− nL − 1)

 (nLs− 1)(s− 1)


= nLs(nLs− 1)
∑

x1,x2,...,xL−1

{∏L−1
i=1

{
(1− yi)nis− 1

}xi
} λ(x1, x2, . . . , xL−1, 0)

+ λ(x1, x2, . . . , xL−1, 1)(s− 1)


= nLs(nLs− 1)g[y1, y2, . . . , yL−1, 0]
(6.3.18)
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g[y1, y2, . . . , yL−1, 0, 1]

=
∑

x1,x2,...,xL−1

{∏L−1
i=1

{
(1− yi)nis− 1

}xi
}[

λ(x1, x2, . . . , xL−1, 0)(nLs− 1)

+ λ(x1, x2, . . . , xL−1, 1)(nLs− 1)
{

(1− 1)s− 1
}1

+
[
λ(x1, x2, . . . , xL−1, 0)(nL − 1) + λ(x1, x2, . . . , xL−1, 1)(nLs− nL)

]
×
{

(1− 0)nLs− 1
}1

+
[
λ(x1, x2, . . . , xL−1, 0)(nL) + λ(x1, x2, . . . , xL−1, 1)(nLs− nL − 1)

]

×
{

(1− 0)nLs− 1
}1 {

(1− 1)s− 1
}]

= (nLs− 1)
∑

x1,x2,...,xL−1

{∏L−1
i=1

{
(1− yi)nis− 1

}xi
}[

λ(x1, x2, . . . , xL−1, 0)

− λ(x1, x2, . . . , xL−1, 1) + λ(x1, x2, . . . , xL−1, 0)(nL − 1)

+ λ(x1, x2, . . . , xL−1, 1)(nLs− nL)

− λ(x1, x2, . . . , xL−1, 0)(nL)− λ(x1, x2, . . . , xL−1, 1)(nLs− nL − 1)
]

= (nLs− 1)(0) = 0

(6.3.19)
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g[y1, y2, . . . , yL−1, 1, 0]

=
∑

x1,x2,...,xL−1

{∏L−1
i=1

{
(1− yi)nis− 1

}xi
}[

λ(x1, x2, . . . , xL−1, 0)(nLs− 1)

+ λ(x1, x2, . . . , xL−1, 1)(nLs− 1)
{

(1− 0)s− 1
}1

+
[
λ(x1, x2, . . . , xL−1, 0)(nL − 1) + λ(x1, x2, . . . , xL−1, 1)(nLs− nL)

]
×
{

(1− 1)s− 1
}1

+
[
λ(x1, x2, . . . , xL−1, 0)(nL) + λ(x1, x2, . . . , xL−1, 1)(nLs− nL − 1)

]

×
{

(1− 1)nLs− 1
}1 {

(1− 0)s− 1
}1
]

=
∑

x1,x2,...,xL−1

{∏L−1
i=1

{
(1− yi)nis− 1

}xi
}[

λ(x1, x2, . . . , xL−1, 0)(nLs− 1)

+ λ(x1, x2, . . . , xL−1, 1)(nLs− 1)(s− 1)

− λ(x1, x2, . . . , xL−1, 0)(nL − 1)− λ(x1, x2, . . . , xL−1, 1)(nLs− nL)

− λ(x1, x2, . . . , xL−1, 0)(nL)(s− 1)− λ(x1, x2, . . . , xL−1, 1)(nLs− nL − 1)(s− 1)
]

=
∑

x1,x2,...,xL−1

{∏L−1
i=1

{
(1− yi)nis− 1

}xi
}

×
[
k0nLs− k0 + k1nLs

2 − k1nLs− k1s+ k1 − k0nL + k0 − k1nLs+ k1nL

]
+
[
−k0nLs+ k0nL − k1nLs

2 + k1nLs+ k1nLs− k1nL +K1s− k1

]
= 0

(6.3.20)

where k0 = λ(x1, x2, . . . , xL−1, 0) and k1 = λ(x1, x2, . . . , xL−1, 1)
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g[y1, y2, . . . , yL−1, 1, 1]

=
∑

x1,x2,...,xL−1

{∏L−1
i=1

{
(1− yi)nis− 1

}xi
}[

λ(x1, x2, . . . , xL−1, 0, 0)

+ λ(x1, x2, . . . , xL−1, 0, 1)
{

(1− yL+1)s− 1
}xL+1

+ λ(x1, x2, . . . , xL−1, 1, 0)
{

(1− yL)nLs− 1
}xL

+ λ(x1, x2, . . . , xL−1, 1, 1)
{

(1− yL)nLs− 1
}xL

{
(1− yL+1)s− 1

}xL+1
]

=
∑

x1,x2,...,xL−1

{∏L−1
i=1

{
(1− yi)nis− 1

}xi
}[

λ(x1, x2, . . . , xL−1, 0)(nLs− 1)

+ λ(x1, x2, . . . , xL−1, 1)(nLs− 1)
{

(1− 1)s− 1
}1

+
[
λ(x1, x2, . . . , xL−1, 0)(nL − 1) + λ(x1, x2, . . . , xL−1, 1)(nLs− nL)

]
×{

(1− 1)nLs− 1
}1

+
[
λ(x1, x2, . . . , xL−1, 0)(nL) + λ(x1, x2, . . . , xL−1, 1)(nLs− nL − 1)

]

×
{

(1− 1)nLs− 1
}1 {

(1− 1)s− 1
}1
]

=
∑

x1,x2,...,xL−1

{∏L−1
i=1

{
(1− yi)nis− 1

}xi
}[

λ(x1, x2, . . . , xL−1, 0)(nLs− 1)

− λ(x1, x2, . . . , xL−1, 1)(nLs− 1)

− λ(x1, x2, . . . , xL−1, 0)(nL − 1)− λ(x1, x2, . . . , xL−1, 1)(nLs− nL)

+
[
λ(x1, x2, . . . , xL−1, 0)(nL) + λ(x1, x2, . . . , xL−1, 1)(nLs− nL − 1)

] ]

=
∑

x1,x2,...,xL−1

{∏L−1
i=1

{
(1− yi)nis− 1

}xi
}

×

k0nLs− k0 − k1nLs+ k1 − k0nL + k0 − k1nLs

+k1nL + k0nL + k1nLs− k1nL − k1


=

∑
x1,x2,...,xL−1

{∏L−1
i=1

{
(1− yi)nis− 1

}xi
}[

k0nLs− k1nLs

]

= nLs
∑

x1,x2,...,xL−1

{∏L−1
i=1

{
(1− yi)nis− 1

}xi
}[

k0 − k1

]

= nLs
∑

x1,x2,...,xL−1

{∏L−1
i=1

{
(1− yi)nis− 1

}xi
} λ(x1, x2, . . . , xL−1, 0)

−λ(x1, x2, . . . , xL−1, 1)


= nLsg[y1, y2, . . . , yL−1, 1]

(6.3.21)
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where k0 = λ(x1, x2, . . . , xL−1, 0) and k1 = λ(x1, x2, . . . , xL−1, 1).

By the recursive formulae (6.3.18), (6.3.19), (6.3.20), (6.3.21) and the ini-

tial values (6.3.16) we have

g(y1, y2, . . . , yL+1) = sL
L∏
i=1

ni if y1 = y2 = . . . = yL+1 = 1

= sL
L∏
i=1

ni(nis− 1) if y1 = y2 = . . . = yL+1 = 0

= 0 otherwise

(6.3.22)

hence the efficiencies are

E[y1, y2, . . . , yL+1] = 1− 1∏L
i=1(nis− 1)

(6.3.23)

If y1 = y2 = . . . = yL+1 = 1 and 0 otherwise. From the discussion of the

type III designs, we state the following theorem;

Theorem 6.3.1.

If there exists a BA(T )(n1, s, 1), and a resolvable BA(T )(ni, s, 1) for

i = 2, 3, . . ., l then we can always construct an n1s × n2s × . . . nLs

BAFD with

k = sL
L∏
i=1

ni, b = s
L∏
i=1

(nis− 1)

and

r =
L∏
i=1

(nis− 1)

such that

E[1, 1, . . . , 1] = −1
r

+ 1

and all other efficiencies are 1.0.
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Proof. If there exist a BA(T )(n1, s, 1) by corollary (5.2.1) this corre-

sponds to n1s × s BAFD with k = n1s, b = (n1s − 1)s If there exist a

BA(T )(n2, s, 1) by theorem (6.2.2) we can replace levels of the second

factor in n1s× s by blocks of n2s× s to obtain

k = (n1s)(n2s) = s2n1n2, b = (n1s− 1)(n2s− 1)s

Continuing with this procedure

If there exist a BA(T )(nL, s, 1) this corresponds to nLs × s BAFD. If we

replace the levels of Lth factor in n1s×n2s×· · ·×nL−1s×s by using blocks

of nLs we obtain n1s× n2s× · · ·nL−1s× nLs BAFD with k = sL
∏L
i=1 ni,

b = (n1−1)(n2−1) · · · (nLs−1)s = s
∏L
i=1(nis−1) and by using equations

(6.3.22) and (6.3.23) it follows that E[1, 1, · · · , 1] = −1
r + 1 and all other

efficiencies are 1.00.

Example 6.3.9. A BA(T )(3, 2, 1) is given in example 5.3.1 and a re-

solvable BA(T )(2, 2, 1) given in example 5.2.7 which is equivalent to the

following 4× 2 resolvable BAFD.

x0 x1 y0 y1 z0 z1
00 01 00 01 00 01
10 11 11 10 11 10
21 20 20 21 21 20
31 30 31 30 30 31

Table 6.16: 4× 2 Resolvable BAFD

where x0, x1, y0, y1, z0, z1 represent the blocks can be used to construct a

6× 4× 2 BAFD with k = 24, b = 30, r = 15, λ(0, 0, 1) = 0, λ(0, 1, 0) = 5,

λ(0, 1, 1) = 10, λ(1, 0, 0) = 6, λ(1, 0, 1) = 9, λ(1, 1, 0) = 8, λ(1, 1, 1) = 7.

The efficiencies are E(1, 1, 1) = 14
15 , and all other efficiencies are 1.0. The

design can be expressed as the same table in example 5.3.1 the differences

are the rows representing the levels of the first factor and the x0, x1, y0,

y1, z0, z1 representing the blocks as shown above.
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Example 6.3.10. A BA(T )(2, 2, 2) given in example 4.9.7 and a resolvable

BA(T )(2, 2, 1) given in example 5.2.7 which is equivalent to the following

4× 2 resolvable BAFD.

x0 x1 y0 y1 z0 z1
00 01 00 01 00 01
10 11 11 10 11 10
21 20 20 21 21 20
31 30 31 30 30 31

Table 6.17: 4× 2 Resolvable BAFD

where x0, x1, y0, y1, z0, z1 represent the blocks can be used to construct a

4 × 4 × 2 BAFD with different parameters as the ones given in theorem

6.3.1 and hence with different values of λ as the ones given in equation

(6.3.15). For this design k = 16, b = 36, r = 18, λ(1, 0) = 6, λ(1, 1) = 12,

λ(2, 0) = 10, λ(2, 1) = 8 and the efficiencies are

E[1, 0] = E[1, 1] = E[2, 0] = E[0, 1] = 1.00 and

E[2, 1] = 8
9 ≈ 1− 1

r
.

The 4× 4× 2 BAFD is given below

Blocks 1 2 3 4 5 6 7 8 9 10 11 12
Levels of F1 Levels of F2 and F3

0 x0 x0 x0 x0 x0 x0 x1 x1 x1 x1 x1 x1
1 x1 x1 x0 x1 x0 x1 x0 x0 x1 x0 x1 x0
2 x0 x0 x1 x1 x1 x1 x1 x1 x0 x0 x0 x0
3 x1 x1 x1 x0 x1 x0 x0 x0 x0 x1 x0 x1
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Block 13 14 15 16 17 18 19 20 21 22 23 24
Levels of F1 Levels of F2 and F3

0 y0 y0 y0 y0 y0 y0 y1 y1 y1 y1 y1 y1
1 y1 y1 y0 y1 y0 y1 y0 y0 y1 y0 y1 y0
2 y0 y0 y1 y1 y1 y1 y1 y1 y0 y0 y0 y0
3 y1 y1 y1 y0 y1 y0 y0 y0 y0 y1 y0 y1

Block 25 26 27 28 29 30 31 32 33 34 35 36
Levels of F1 Levels of F2 and F3

0 z0 z0 z0 z0 z0 z0 z1 z1 z1 z1 z1 z1
1 z1 z1 z0 z1 z0 z1 z0 z0 z1 z0 z1 z0
2 z0 z0 z1 z1 z1 z1 z1 z1 z0 z0 z0 z0
3 z1 z1 z1 z0 z1 z0 z0 z0 z0 z1 z0 z1

Table 6.18: 4× 4× 2 BAFD

Other BAFDs that can be constructed by using theorem 6.3.1 include

4× 4× 2, 6× 6× 3, 6× 3× 3, 6× 9× 3, 8× 4× 4 . . .e.t.c

Corollary 6.3.1.

If s is a prime power,then there exists a (2s)L × sm(m ≥ 1) BAFD

with k = 2LsL+m−1, r = (2s−1)L(s−1)m−1, b = (2s−1)L(s−1)m−1,

E(L,m) = 1− 1
r , and all other efficiencies are 1.

Proof. This is a consequence of theorem 6.3.1 since a resolvable

BA(T )(2, s, 1) and a BA(T )(1, s, 1)i.e a TA[s(s − 1), s, s, 2] exists for s

a prime power.

If in addition to the conditions in theorem 6.3.1, there exists a resolvable

BIBD with nL+1s treatments and block size nL+1, then we can replace the

levels of the last factor of the n1s×n2s× . . .×nLs×s BAFD by the blocks

of the BIBD to get an n1s× n2s× . . . nLs× nL+1s BAFD with block size

n1 . . . nLnL+1s
L. All the main effects and interactions are estimated with

full efficiency except the Lth order interactions.
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TYPE IV

If there exists a BA[Ps2 − s, u, s, 2] with parameters λ(x, y) = p − 1 or

p according as x = y or not and a resolvable BA[qs2 − s, t, s, 2] with

parameters λ(x, y) = q − 1 or q according as x = y or not, then similar to

theorem 6.3.1, we can construct a u× t× s BAFD with k = ut,

r = (ps− 1)(qs− 1), b = s(ps− 1)(qs− 1),

λ(0, 0, 1) = 0, λ(0, 1, 0) = (ps− 1)(q − 1)

λ(0, 1, 1) = (ps− 1)q, λ(1, 0, 0) = (p− 1)(qs− 1),

λ(1, 0, 1) = p(qs− 1), λ(1, 1, 0) = (p− 1)(q − 1) + p(qs− q)

= pqs− p− q + 1

λ(1, 1, 1) = (p− 1)q + p(qs− q − 1)

= pqs− p− q.

The efficiencies are given below assuming ps = u and qs = t.

E[1, 0, 0] = 1
ut

{
ut− 1− 1

(u−1)(t−1)

}
×

(ps− 1)(q − 1)
{

(1− 1)u− 1
}0 {

(1− 0)t− 1
}1 {

(1− 0)s− 1
}0

+(ps− 1)q
{

(1− 1)u− 1
}0 {

(1− 0)t− 1
}1 {

(1− 0)s− 1
}1

+(p− 1)(qs− 1)
{

(1− 1)u− 1
}1 {

(1− 0)t− 1
}0 {

(1− 0)s− 1
}0

+p(qs− 1)
{

(1− 1)u− 1
}1 {

(1− 0)t− 1
}0 {

(1− 0)s− 1
}1

+(pqs− p− q + 1)
{

(1− 1)u− 1
}1 {

(1− 0)t− 1
}1 {

(1− 0)s− 1
}0

+(pqs− p− q)
{

(1− 1)u− 1
}1 {

(1− 0)t− 1
}1 {

(1− 0)s− 1
}1


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= 1
ut

{
ut− 1− 1

(u−1)(t−1)

}



(ps− 1)(q − 1)(1)(t− 1)(1)

+(ps− 1)q(1)(t− 1)(s− 1)

+(p− 1)(qs− 1)(−1)(1)(1)

+p(qs− 1)(−1)(1)(s− 1)

+(pqs− p− q + 1)(−1)(t− 1)(1)

+(pqs− p− q)(−1)(t− 1)(s− 1)



so sum =
∑
λ(x)

{∏m
i=1

{
(1− yi)si − 1

}xi
}

= −pqs2 + ps+ qs− 1

= −
{
pqs2 − ps− qs+ 1

}
= −[ps− 1][qs− 1] = −(u− 1)(t− 1)

Thus

E[1, 0, 0] = 1
ut

{
ut− 1− 1

(u−1)(t−1)

{
sum

}}

= 1
ut

ut− 1−

{
−(u− 1)(t− 1)

}
(u−1)(t−1)


= 1
ut

{
ut− 1 + (u−1)(t−1)

(u−1)(t−1)

}
= 1
ut

{
ut− 1 + 1

}
= 1
ut

{
ut
}

= ut

ut

= 1.00

E[0, 1, 0] = 1
ut

{
ut− 1− 1

(u−1)(t−1)

}
×
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

(ps− 1)(q − 1)
{

(1− 0)u− 1
}0 {

(1− 1)t− 1
}1 {

(1− 0)s− 1
}0

+(ps− 1)q
{

(1− 0)u− 1
}0 {

(1− 1)t− 1
}1 {

(1− 0)s− 1
}1

+(p− 1)(qs− 1)
{

(1− 0)u− 1
}1 {

(1− 1)t− 1
}0 {

(1− 0)s− 1
}0

+p(qs− 1)
{

(1− 0)u− 1
}1 {

(1− 1)t− 1
}0 {

(1− 0)s− 1
}1

+(pqs− p− q + 1)
{

(1− 0)u− 1
}1 {

(1− 1)t− 1
}1 {

(1− 0)s− 1
}0

+(pqs− p− q)
{

(1− 0)u− 1
}1 {

(1− 1)t− 1
}1 {

(1− 0)s− 1
}1



= 1
ut

{
ut− 1− 1

(u−1)(t−1)

}



(ps− 1)(q − 1)(1)(−1)(1)

+(ps− 1)q(1)(−1)(s− 1)

+(p− 1)(qs− 1)(u− 1)(1)(1)

+p(qs− 1)(u− 1)(1)(s− 1)

+(pqs− p− q + 1)(u− 1)(−1)(1)

+(pqs− p− q)(u− 1)(−1)(s− 1)



and sum =
∑{

λ(x)∏mi=1

{
(1− yi)si − 1

}xi
}

= −pqs2 + ps+ qs− 1

= −[ps− 1][qs− 1] = −(u− 1)(t− 1)

Thus

E[0, 1, 0] = 1
ut

{
ut− 1− 1

(u−1)(t−1)

{
sum

}}
= 1
ut

{
ut− 1− 1(−[u−1][t−1])

(u−1)(t−1)

}
= 1
ut

{
ut− 1 + (u−1)(t−1)

(u−1)(t−1)

}
= 1
ut

{
ut− 1 + 1

}
= 1
ut

{
ut
}

= ut

ut
= 1.00
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E[0, 0, 1] = 1
ut

{
ut− 1− 1

(u−1)(t−1)

}
×

(ps− 1)(q − 1)
{

(1− 0)u− 1
}0 {

(1− 0)t− 1
}1 {

(1− 1)s− 1
}0

+(ps− 1)q
{

(1− 0)u− 1
}0 {

(1− 0)t− 1
}1 {

(1− 1)s− 1
}1

+(p− 1)(qs− 1)
{

(1− 0)u− 1
}1 {

(1− 0)t− 1
}0 {

(1− 1)s− 1
}0

+p(qs− 1)
{

(1− 0)u− 1
}1 {

(1− 0)t− 1
}0 {

(1− 1)s− 1
}1

+(pqs− p− q + 1)
{

(1− 0)u− 1
}1 {

(1− 0)t− 1
}1 {

(1− 1)s− 1
}0

+(pqs− p− q)
{

(1− 0)u− 1
}1 {

(1− 0)t− 1
}1 {

(1− 1)s− 1
}1



= 1
ut

{
ut− 1− 1

(u−1)(t−1)

}



(ps− 1)(q − 1)(1)(t− 1)(1)

+(ps− 1)q(1)(t− 1)(−1)

+(p− 1)(qs− 1)(u− 1)(1)(1)

+p(qs− 1)(u− 1)(1)(−1)

+(pqs− p− q + 1)(u− 1)(t− 1)(1)

+(pqs− p− q)(u− 1)(t− 1)(−1)


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so sum =
∑
λ(x)

{∏m
i=1

{
(1− yi)si − 1

}xi
}

= ps− pst− qsu+ qs− 1 + ut

Thus

E[0, 0, 1] = 1
ut

{
ut− 1− 1

(u−1)(t−1)

{
sum

}}
= ut

ut
− 1
ut
− sum

(u− 1)(t− 1)ut

= 1− 1
ut
− sum

(u− 1)(t− 1)ut

= 1−
{

1
ut + sum

(u−1)(t−1)ut

}
= 1−

{
(u−1)(t−1)+sum

(u−1)(t−1)ut

}
= 1−

{
ut−u−t+1+ps−pst−qsu+qs−1+ut

(u−1)(t−1)ut

}
= 1−

{
ut−pst−qsu+ut
(u−1)(t−1)ut

}
= 1−

{
ut−qsu−pst+ut
(u−1)(t−1)ut

}
= 1−

{
u(t−qs)−t(ps−u)

(u−1)(t−1)ut

}
= 1−

{
u(t−t)−t(u−u)
(u−1)(t−1)ut

}
= 1−

{
u(0)−t(0)

(u−1)(t−1)ut

}
= 1.00

E[0, 1, 1] = 1
ut

{
ut− 1− 1

(u−1)(t−1)

}
×
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

(ps− 1)(q − 1)
{

(1− 0)u− 1
}0 {

(1− 1)t− 1
}1 {

(1− 1)s− 1
}0

+(ps− 1)q
{

(1− 0)u− 1
}0 {

(1− 1)t− 1
}1 {

(1− 1)s− 1
}1

+(p− 1)(qs− 1)
{

(1− 0)u− 1
}1 {

(1− 1)t− 1
}0 {

(1− 1)s− 1
}0

+p(qs− 1)
{

(1− 0)u− 1
}1 {

(1− 1)t− 1
}0 {

(1− 1)s− 1
}1

+(pqs− p− q + 1)
{

(1− 0)u− 1
}1 {

(1− 1)t− 1
}1 {

(1− 1)s− 1
}0

+(pqs− p− q)
{

(1− 0)u− 1
}1 {

(1− 1)t− 1
}1 {

(1− 1)s− 1
}1



= 1
ut

{
ut− 1− 1

(u−1)(t−1)

}



(ps− 1)(q − 1)(1)(−1)(1)

+(ps− 1)q(1)(−1)(−1)

+(p− 1)(qs− 1)(u− 1)(1)(1)

+p(qs− 1)(u− 1)(1)(−1)

+(pqs− p− q + 1)(u− 1)(−1)(1)

+(pqs− p− q)(u− 1)(−1)(−1)


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sum =
∑
λ(x)

{∏m
i=1

{
(1− yi)si − 1

}xi
}

= ps− qsu+ qs− 1

Thus E[0, 1, 1] = 1
ut

{
ut− 1− 1

(u−1)(t−1)

{
sum

}}
= ut

ut
− 1
ut
− sum

(u− 1)(t− 1)ut

= 1− 1
ut
− sum

(u− 1)(t− 1)ut

= 1−
{

1
ut + sum

(u−1)(t−1)ut

}
= 1−

{
(u−1)(t−1)+sum

(u−1)(t−1)ut

}
= 1−

{
ut−u−t+1+sum

(u−1)(t−1)ut

}
= 1−

{
ut−u−t+1+ps−qsu+qs−1

(u−1)(t−1)ut

}
= 1−

{
ut−qsu+ps−u+qs−t

(u−1)(t−1)ut

}
= 1−

{
u(t−qs)+(u−u)+(t−t)

(u−1)(t−1)ut

}
= 1−

{
u(t−t)+0+0

(u−1)(t−1)ut

}
= 1−

{
u(0)+0+0

(u−1)(t−1)ut

}
= 1−

{
0+0+0

(u−1)(t−1)ut

}
= 1− 0 = 1.00

E[1, 0, 1] = 1
ut

{
ut− 1− 1

(u−1)(t−1)

}
×
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

(ps− 1)(q − 1)
{

(1− 1)u− 1
}0 {

(1− 0)t− 1
}1 {

(1− 1)s− 1
}0

+(ps− 1)q
{

(1− 1)u− 1
}0 {

(1− 0)t− 1
}1 {

(1− 1)s− 1
}1

+(p− 1)(qs− 1)
{

(1− 1)u− 1
}1 {

(1− 0)t− 1
}0 {

(1− 1)s− 1
}0

+p(qs− 1)
{

(1− 1)u− 1
}1 {

(1− 0)t− 1
}0 {

(1− 1)s− 1
}1

+(pqs− p− q + 1)
{

(1− 1)u− 1
}1 {

(1− 0)t− 1
}1 {

(1− 1)s− 1
}0

+(pqs− p− q)
{

(1− 1)u− 1
}1 {

(1− 0)t− 1
}1 {

(1− 1)s− 1
}1



= 1
ut

{
ut− 1− 1

(u−1)(t−1)

}



(ps− 1)(q − 1)(1)(t− 1)(1)

+(ps− 1)q(1)(t− 1)(−1)

+(p− 1)(qs− 1)(−1)(1)(1)

+p(qs− 1)(−1)(1)(−1)

+(pqs− p− q + 1)(−1)(t− 1)(1)

+(pqs− p− q)(−1)(t− 1)(−1)


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sum =
∑
λ(x)

{∏m
i=1

{
(1− yi)si − 1

}xi
}

= −pst+ ps+ qs− 1

hence

E[1, 0, 1] = 1
ut

{
ut− 1− 1

(u−1)(t−1)

{
sum

}}
= 1
ut

{
ut− 1− sum

(u−1)(t−1)

}
= ut

ut
− 1
ut
− sum

(u− 1)(t− 1)ut

= 1− 1
ut
− sum

(u− 1)(t− 1)ut

= 1−
{

1
ut + sum

(u−1)(t−1)ut

}
= 1−

{
(u−1)(t−1)+sum

(u−1)(t−1)ut

}
= 1−

{
ut−u−t+1+sum

(u−1)(t−1)ut

}
= 1−

{
ut−u−t+1−pst+ps+qs−1

(u−1)(t−1)ut

}
= 1−

{
ut−pst+(ps−u)+(qs−t)

(u−1)(t−1)ut

}
= 1−

{
t(u−ps)+(u−u)+(t−t)

(u−1)(t−1)ut

}
= 1−

{
t(u−u)+0+0
(u−1)(t−1)ut

}
= 1−

{
t(0)+0+0

(u−1)(t−1)ut

}
= 1− 0

(u− 1)(t− 1)ut = 1− 0 = 1.00
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E[1, 1, 0] = 1
ut

{
ut− 1− 1

(u−1)(t−1)

}
×



(ps− 1)(q − 1)
{

(1− 1)u− 1
}0 {

(1− 1)t− 1
}1 {

(1− 0)s− 1
}0

+(ps− 1)q
{

(1− 1)u− 1
}0 {

(1− 1)t− 1
}1 {

(1− 0)s− 1
}1

+(p− 1)(qs− 1)
{

(1− 1)u− 1
}1 {

(1− 1)t− 1
}0 {

(1− 0)s− 1
}0

+p(qs− 1)
{

(1− 1)u− 1
}1 {

(1− 1)t− 1
}0 {

(1− 0)s− 1
}1

+(pqs− p− q + 1)
{

(1− 1)u− 1
}1 {

(1− 1)t− 1
}1 {

(1− 0)s− 1
}0

+(pqs− p− q)
{

(1− 1)u− 1
}1 {

(1− 1)t− 1
}1 {

(1− 0)s− 1
}1



= 1
ut

{
ut− 1− 1

(u−1)(t−1)

}



(ps− 1)(q − 1)(1)(−1)(1)

+(ps− 1)q(1)(−1)(s− 1)

+(p− 1)(qs− 1)(−1)(1)(1)

+p(qs− 1)(−1)(1)(s− 1)

+(pqs− p− q + 1)(−1)(−1)(1)

+(pqs− p− q)(−1)(−1)(s− 1)


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sum =
∑
λ(x)

{∏m
i=1

{
(1− yi)si − 1

}xi
}

= qs− 1− pqs2 + ps

Thus E[1, 1, 0] = 1
ut

{
ut− 1− 1

(u−1)(t−1)

{
sum

}}
= ut

ut
− 1
ut
− sum

(u− 1)(t− 1)ut

= 1− 1
ut
− sum

(u− 1)(t− 1)ut

= 1−
{

1
ut + sum

(u−1)(t−1)ut

}
= 1−

{
(u−1)(t−1)+sum

(u−1)(t−1)ut

}
= 1−

{
ut−u−t+1+sum

(u−1)(t−1)ut

}
= 1−

{
ut−u−t+1+qs−1−pqs2+ps

(u−1)(t−1)ut

}
= 1−

{
ut−u−t+u+t−pqs2

(u−1)(t−1)ut

}
= 1−

{
ut−pqs2

(u−1)(t−1)ut

}
= 1−

{
ut−(ps)(qs)

(u−1)(t−1)ut

}
= 1−

{
ut−(u)(t)

(u−1)(t−1)ut

}
= 1−

{
ut−ut

(u−1)(t−1)ut

}
= 1−

{
0

(u−1)(t−1)ut

}
= 1− 0 = 1.00
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E[1, 1, 1] = 1
ut

{
ut− 1− 1

(u−1)(t−1)

}
×



(ps− 1)(q − 1)
{

(1− 1)u− 1
}0 {

(1− 1)t− 1
}1 {

(1− 1)s− 1
}0

+(ps− 1)q
{

(1− 1)u− 1
}0 {

(1− 1)t− 1
}1 {

(1− 1)s− 1
}1

+(p− 1)(qs− 1)
{

(1− 1)u− 1
}1 {

(1− 1)t− 1
}0 {

(1− 1)s− 1
}0

+p(qs− 1)
{

(1− 1)u− 1
}1 {

(1− 1)t− 1
}0 {

(1− 1)s− 1
}1

+(pqs− p− q + 1)
{

(1− 1)u− 1
}1 {

(1− 1)t− 1
}1 {

(1− 1)s− 1
}0

+(pqs− p− q)
{

(1− 1)u− 1
}1 {

(1− 1)t− 1
}1 {

(1− 1)s− 1
}1



= 1
ut

{
ut− 1− 1

(u−1)(t−1)

}



(ps− 1)(q − 1)(1)(−1)(1)

+(ps− 1)q(1)(−1)(−1)

+(p− 1)(qs− 1)(−1)(1)(1)

+p(qs− 1)(−1)(1)(−1)

+(pqs− p− q + 1)(−1)(−1)(1)

+(pqs− p− q)(−1)(−1)(−1)





Chapter 6. Multifactor BAFD’S 206

sum =
∑
λ(x)

{∏m
i=1

{
(1− yi)si − 1

}xi
}

= ps+ qs− 1

Thus

E[1, 1, 1] = 1
ut

{
ut− 1− 1

(u−1)(t−1)

{
sum

}}
= 1
ut

{
ut− 1− sum

(u−1)(t−1)

}
= ut

ut
− 1
ut
− sum

(u− 1)(t− 1)ut

= 1− 1
ut
− sum

(u− 1)(t− 1)ut

= 1−
{

1
ut + sum

(u−1)(t−1)ut

}
= 1−

{
(u−1)(t−1)+sum

(u−1)(t−1)ut

}
= 1−

{
ut−u−t+1+ps+qs−1

(u−1)(t−1)ut

}
= 1−

{
ut+ps+qs−u−t
(u−1)(t−1)ut

}
= 1−

{
ut+u+t−u−t
(u−1)(t−1)ut

}
= 1− ut

(u− 1)(t− 1)ut

= 1− (ps)(qs)
(ps− 1)(qs− 1)ut

= 1− pqs2

(ps− 1)(qs− 1)ut

Usually the BA[ps2 − s, u, s, 2] can be obtained by deleting ps − u con-

straints in a BA(T )(p, s, 1) if it exists; Similarly,the resolvable BA[qs2 −

s, t, s, 2] can be obtained by deleting qs − t constraints in a resolvable

BA(T )(q, s, 1).Other methods of constructing these type of balanced ar-

rays are still to be developed.
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If ps 6= u and qs 6= t then

·E[1, 0, 0] = 1
ut

{
ut− 1− 1

(ps−1)(qs−1)

{
sum

}}
= ut

ut
− 1
ut
− sum

(ps− 1)(qs− 1)ut

= 1− 1
ut
− sum

(ps− 1)(qs− 1)ut

= 1−
{

1
ut + sum

(ps−1)(qs−1)ut

}
= 1−

{
(ps−1)(qs−1)+sum

(ps−1)(qs−1)ut

}
= 1−

{
(ps−1)(qs−1)+−(ps−1)(qs−1)

(ps−1)(qs−1)ut

}
= 1− 0

(ps− 1)(qs− 1)ut = 1− 0

= 1.00

·E[0, 1, 0] = 1
ut

{
ut− 1− 1

(ps−1)(qs−1)

{
sum

}}
= 1
ut

{
ut− 1− 1

(ps−1)(qs−1)

{
−(ps− 1)(qs− 1)

}}
= 1
ut

{
ut− 1 + (ps−1)(qs−1)

(ps−1)(qs−1)

}
= 1
ut

{
ut− 1 + 1

}
= 1
ut

{
ut
}

= ut

ut

= 1.00
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·E[0, 0, 1] = 1
ut

{
ut− 1− 1

(ps−1)(qs−1)

{
sum

}}
= ut

ut
− 1
ut
− sum

(ps− 1)(qs− 1)ut

= 1− 1
ut
− sum

(ps− 1)(qs− 1)ut

= 1−
{

1
ut + sum

(ps−1)(qs−1)ut

}
= 1−

{
(ps−1)(qs−1)+sum

(ps−1)(qs−1)ut

}
= 1−

{
pqs2−ps−qs+1+ps−pst−qsu+qs−1+ut

(ps−1)(qs−1)ut

}
= 1−

{
pqs2−pst−qsu+ut
(ps−1)(qs−1)ut

}
= 1−

{
pqs2−qsu+ut−pst
(ps−1)(qs−1)ut

}
= 1−

{
qs(ps−u)+t(u−ps)

(ps−1)(qs−1)ut

}
= 1−

{
qs(ps−u)−t(ps−u)

(ps−1)(qs−1)ut

}
= 1−

{
(ps−u)(qs−t)

(ps−1)(qs−1)ut

}
= 1− (ps− u)(qs− t)

(ps− 1)(qs− 1)ut



Chapter 6. Multifactor BAFD’S 209

·E[0, 1, 1] = 1
ut

{
ut− 1− 1

(ps−1)(qs−1)

{
sum

}}
= ut

ut
− 1
ut
− sum

(ps− 1)(qs− 1)ut

= 1− 1
ut
− sum

(ps− 1)(qs− 1)ut

= 1−
{

1
ut + sum

(ps−1)(qs−1)ut

}
= 1−

{
(ps−1)(qs−1)+sum

(ps−1)(qs−1)ut

}
= 1−

{
pqs2−ps−qs+1+sum

(ps−1)(qs−1)ut

}
= 1−

{
pqs2−ps−qs+1+ps−qsu+qs−1

(ps−1)(qs−1)ut

}
= 1−

{
pqs2−qsu

(ps−1)(qs−1)ut

}
= 1− qs(ps− u)

(ps− 1)(qs− 1)ut

. · E[1, 0, 1] = 1
ut

{
ut− 1− 1

(ps−1)(qs−1)

{
sum

}}
= ut

ut
− 1
ut
− sum

(ps− 1)(qs− 1)ut

= 1− 1
ut
− sum

(ps− 1)(qs− 1)ut

= 1−
{

1
ut + sum

(ps−1)(qs−1)ut

}
= 1−

{
(ps−1)(qs−1)+sum

(ps−1)(qs−1)ut

}
= 1−

{
pqs2−ps−qs+1+ps−pst+qs−1

(ps−1)(qs−1)ut

}
= 1−

{
pqs2−pst

(ps−1)(qs−1)ut

}
= 1− ps(qs− t)

(ps− 1)(qs− 1)ut
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·E[1, 1, 0] = 1
ut

{
ut− 1− 1

(ps−1)(qs−1)

{
sum

}}
= ut

ut
− 1
ut
− sum

(ps− 1)(qs− 1)ut

= 1− 1
ut
− sum

(ps− 1)(qs− 1)ut

= 1−
{

1
ut + sum

(ps−1)(qs−1)ut

}
= 1−

{
(ps−1)(qs−1)+sum

(ps−1)(qs−1)ut

}
= 1−

{
pqs2−ps−qs+1+qs−1−pqs2+ps

(ps−1)(qs−1)ut

}
= 1− 0

(ps− 1)(qs− 1)ut

= 1− 0 = 1.00

·E[1, 1, 1] = 1
ut

{
ut− 1− 1

(ps−1)(qs−1)

{
sum

}}
= ut

ut
− 1
ut
− sum

(ps− 1)(qs− 1)ut

= 1− 1
ut
− sum

(ps− 1)(qs− 1)ut

= 1−
{

1
ut + sum

(ps−1)(qs−1)ut

}
= 1−

{
(ps−1)(qs−1)+sum

(ps−1)(qs−1)ut

}
= 1−

{
pqs2−ps−qs+1+ps+qs−1

(ps−1)(qs−1)ut

}
= 1−

{
pqs2

(ps−1)(qs−1)ut

}

= 1− pqs2

(ps− 1)(qs− 1)ut

Example 6.3.11. As in example 6.3.9 if we use the BA[10, 5, 3, 2]

obtained by deleting a constraint in BA(T )(3, 2, 1), and other procedures
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being the same, then we get a 5 × 4 × 2 BAFD with k = 20, b = 30,

r = 15 and λ(0, 0, 1) = 0, λ(0, 1, 0) = 5, λ(0, 1, 1) = 10, λ(1, 0, 0) = 6,

λ(1, 0, 1) = 9, λ(1, 1, 0) = 8, λ(1, 1, 1) = 7

The efficiencies are as follows

E[0, 0, 1] = E[0, 1, 0] = E[1, 0, 0] = E[1, 1, 0]

= 1.00

E[0, 1, 1] = 74
75 , E[1, 1, 1] = 23

25 .
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The 5× 4× 2 BAFD is given below.

Blocks 1 2 3 4 5 6 7 8 9 10
Levels of F1 Levels of F2 and F3

0 x0 x0 x0 x0 x0 x1 x1 x1 x1 x1
1 x0 x0 x1 x1 x1 x0 x0 x0 x1 x1
2 x1 x0 x0 x1 x1 x1 x1 x0 x0 x0
3 x0 x1 x1 x0 x1 x0 x1 x1 x0 x0
4 x1 x1 x1 x0 x0 x1 x0 x0 x0 x1

Block 11 12 13 14 15 16 17 18 19 20
Levels of F1 Levels of F2 and F3

0 y0 y0 y0 y0 y0 y1 y1 y1 y1 y1
1 y0 y0 y1 y1 y1 y0 y0 y0 y1 y1
2 y1 y0 y0 y1 y1 y1 y1 y0 y0 y0
3 y0 y1 y1 y0 y1 y0 y1 y1 y0 y0
4 y1 y1 y1 y0 y0 y1 y0 y0 y0 y1

Block 21 22 23 24 25 26 27 28 29 30
Levels of F1 Levels of F2 and F3

0 z0 z0 z0 z0 z0 z1 z1 z1 z1 z1
1 z0 z0 z1 z1 z1 z0 z0 z0 z1 z1
2 z1 z0 z0 z1 z1 z1 z1 z0 z0 z0
3 z0 z1 z1 z0 z1 z0 z1 z1 z0 z0
4 z1 z1 z1 z0 z0 z1 z0 z0 z0 z1

Table 6.19: 5× 4× 2 BAFD

Example 6.3.12. As in example 6.3.9, if we use a BA[24, 7, 3, 2]

obtained by deleting two constraints in BA(T )[3, 3, 1] which is in example
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4.9.4, and also a resolvable BA(T )(1, 3, 1).

= BA[(s− 1)s, s, s, 2]

= TA[s(s− 1), s, s, 2]

= TA[(6, 3, 3, 2]

which can be constructed by using corollary 4.1.1. We can construct a

7× 3× 3 BAFD.The TA[(6, 3, 3, 2] is given by

0 1 2 0 1 2
1 2 0 2 0 1
2 0 1 1 2 0

Table 6.20: TA[6,3,3,2]

and it is equivalent to the following resolvable BAFD.

x0 x1 x2 y0 y1 y2
00 01 02 00 01 02
11 12 10 12 10 11
22 20 21 21 22 20

Table 6.21: 32 Resolvable BFD
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where x0, x1, x2, y0, y1, y2 represents the blocks.The parameters of the 7 ×

3× 3 BAFD are k = 21, r = 16, b = 48,

λ(0, 1) = 0,

λ(0, 2) = 8,

λ(1, 0) = 4,

λ(1, 1) = 6,

λ(1, 2) = 5

with efficiencies

E[0, 1] = E[1, 0] = E[1, 1] = 1.00

E[0, 2] = 55
56

E[1, 2] = 103
112
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The 7× 3× 3 BAFD is given below.

Blocks 1 2 3 4 5 6 7 8 9 10
Levels of F1 Levels of F2 and F3

0 x0 x0 x0 x0 x0 x0 x0 x0 x1 x1
1 x1 x2 x0 x1 x2 x0 x1 x2 x2 x0
2 x2 x1 x0 x2 x1 x0 x2 x1 x0 x2
3 x0 x0 x1 x1 x1 x2 x2 x2 x1 x1
4 x1 x2 x1 x2 x0 x2 x0 x1 x2 x0
5 x2 x1 x1 x0 x2 x2 x1 x0 x0 x2
6 x0 x0 x2 x2 x2 x1 x1 x1 x1 x1

Blocks 11 12 13 14 15 16 17 18 19 20
Levels of F1 Levels of F2 and F3

0 x1 x1 x1 x1 x1 x1 x2 x2 x2 x2
1 x1 x2 x0 x1 x2 x0 x0 x1 x2 x0
2 x1 x0 x2 x1 x0 x2 x1 x0 x2 x1
3 x2 x2 x2 x0 x0 x0 x2 x2 x0 x0
4 x2 x0 x1 x0 x1 x2 x0 x1 x0 x1
5 x2 x1 x0 x0 x2 x1 x1 x0 x0 x2
6 x0 x0 x0 x2 x2 x2 x2 x2 x1 x1

Blocks 21 22 23 24 25 26 27 28 29 30
Levels of F1 Levels of F2 and F3

0 x2 x2 x2 x2 y0 y0 y0 y0 y0 y0
1 x1 x2 x0 x1 y1 y2 y0 y1 y2 y0
2 x0 x2 x1 x0 y2 y1 y0 y2 y1 y0
3 x0 x1 x1 x1 y0 y0 y1 y1 y1 y2
4 x2 x1 x2 x0 y1 y2 y1 y2 y0 y2
5 x1 x1 x0 x2 y2 y1 y1 y0 y2 y2
6 x1 x0 x0 x0 y0 y0 y2 y2 y2 y1
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Blocks 31 32 33 34 35 36 37 38 39 40
Levels of F1 Levels of F2 and F3

0 y0 y0 y1 y1 y1 y1 y1 y1 y1 y1
1 y1 y2 y2 y0 y1 y2 y0 y1 y2 y0
2 y2 y1 y0 y2 y1 y0 y2 y1 y0 y2
3 y2 y2 y1 y1 y2 y2 y2 y0 y0 y0
4 y0 y1 y2 y0 y2 y0 y1 y0 y1 y2
5 y1 y0 y0 y2 y2 y1 y0 y0 y2 y1
6 y1 y1 y1 y1 y0 y0 y0 y2 y2 y2

Blocks 41 42 43 44 45 46 47 48
Levels of F1 Levels of F2 and F3

0 y2 y2 y2 y2 y2 y2 y2 y2
1 y0 y1 y2 y0 y1 y2 y0 y1
2 y1 y0 y2 y1 y0 y2 y1 y0
3 y2 y2 y0 y0 y0 y1 y1 y1
4 y0 y1 y0 y1 y2 y1 y2 y0
5 y1 y0 y0 y2 y1 y1 y0 y2
6 y2 y2 y1 y1 y1 y0 y0 y0

Table 6.22: 7× 3× 3 BAFD

Other examples include BAFD’s 4× 3× 2, 6× 5× 3, 5× 3× 3, 6× 8× 3,

7× 4× 4, . . . and so on.



Chapter 7

Summary,Conclusions,

Contributions and

Recommendations

This chapter covers, summary, conclusions, contributions and recommen-

dations

7.1 Summary, Results and Challenges

The objective of this research was to construct efficient balanced asymmet-

rical factorial designs via three methods namely, balanced arrays, transitive

arrays, and resolvable balanced incomplete block designs.

Balanced Arrays

By using balanced arrays, efficient balanced asymmetrical factorial designs

were constructed. Balanced arrays were achieved by using galois fields.

The construction of balanced arrays was challenging.

Transitive Arrays

217
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By using transitive arrays, efficient balanced asymmetrical factorial designs

were constructed. Transitive arrays were achieved using s − 1 mutually

orthogonal latin squares of order s. The construction of transitive arrays

was however not challenging.

Resolvable Balanced Incomplete Block Designs

By using balanced arrays and resolvable balanced incomplete block designs

or transitive arrays and resolvable balanced incomplete block designs, two

factor and multifactor balanced asymmetrical factorial designs were con-

structed. The construction of resolvable balanced incomplete block designs

was achieved by using galois fields and also by using geometry of chords

constructed inside circles. Their construction was however not as challeng-

ing.

7.2 Conclusions

The results presented in this thesis relate to connected factorial designs.The

disconnected case posses special problems. In particular then, the conclu-

sions of lemma 3.1.4, which is helpful in providing subsequent results, no

more remain valid.Of course one may work with generalized inverses of ma-

trices but even then, some special considerations are required.As a matter

of fact, the results proved in chapter three, at least in their present forms,

do not remain valid in the disconnected case.The following example illus-

trates the point.

Consider a disconnected 23 design in two blocks as shown below.

BLOCK I: 000, 100, 010, 001
BLOCKII: 110, 101, 011, 111

Table 7.1: Disconnected 23 Design
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Clearly, each interaction is represented by a single contrast.It may be seen

from the elementary considerations that the contrasts belonging to inter-

actions F (1, 1, 0), F (1, 0, 1), F (0, 1, 1) are estimable while those belonging

to F (1, 0, 0), F (0, 1, 0), F (0, 0, 1), F (1, 1, 1) are not estimable.Moreover,

the BLUE’s of the contrasts belonging to F (1, 1, 0), F (1, 0, 1), F (0, 1, 1)

may be seen to be mutually orthogonal, i.e Uncorrelated. Hence the design

has OFS. Also trivially, the design is balanced since each interaction is

represented by a single contrast. Thus the design is balanced and has OFS.

However, the C-matrix is not of the form, (3.1.8). In order to appreciate

this point, note that if the C-matrix be of the form, (3.1.8), then by

(2.3.7), (2.3.8), one must have MyC = CMy for every y ∈ Ω. For this

design, explicit computation shows that, in particular M(0, 0, 1) = M001

does not commute with C. The above example demonstrates that the

necessity part of lemma 3.1.5 does not necessarily remain valid. Similarly,

it may be shown that the necessity part of theorems 3.1.1, 3.1.2, 3.1.3,

3.2.2 may not remain valid for the disconnected designs. In chapter

four, we have shown the usefulness of difference schemes in constructing

orthogonal arrays of any strength. We have shown that several families

of arrays, often with maximal number of factors can be constructed in

this way. Difference Schemes are therefore an important tool to consider

in cases where the maximal number factors has not been determined.

Another advantage is that an orthogonal array obtained in this way

has a concise description since D(r, c, s) yields an OA[rs, c + 1, s, 2].

Although constructing a new difference scheme is probably easier than

the direct construction of the corresponding orthogonal array, it remains

a very challenging problem. No general algorithm is known. However,

it seems likely that the group-theoretic approach of L. and P. (1986,

1987, 1990) and Kreher (1990) (see also Kreher and Stinson (1998))

could successfully be applied here. An n × n array based on s symbols
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is called a Frequency square or an F-Square if each symbol appearsns
times in each row and in each column. Some orthogonal arrays in chapter

four can be constructed by using F-Squares and pairwise orthogonal

F-Squares or by using Latin Squares and Pairwise Orthogonal Latin

Squares. However, although the connections between orthogonal arrays

and pairwise orthogonal F-Squares are fascinating, it is debatable how

important these connections are for the construction of new orthogonal

arrays. Orthogonal arrays constructed by using various types of combi-

natorial structures are typically larger than the combinatorial structures

used to construct them and hence the constructions of orthogonal arrays

using these structures is perceived to be a more tractable problem than

the direct construction of orthogonal arrays. This reduction in complexity

is no longer apparent when constructing orthogonal arrays using F-

Squares. After all, each of the F-Square presents the levels for a factor in

an orthogonal array merely displaying them in a square instead of a vector.

7.3 Recommendation

Since the results in this thesis relate to connected BAFD’s, this calls for

suitable modifications of these results to make them applicable to the dis-

connected case. Efforts have been made to reduce the number of assemblies

in example 4.9.8 and 4.9.9 by half i.e., to construct a BA(T )[4, 3, 1] and

BA(T )[3, 4, 1] but without success. In chapter four, examples 4.9.3, 4.9.4,

4.9.5 can also be constructed by using theorem 4.9.4, but certainly there

are balanced arrays which can be constructed by corollary 4.9.3 and cannot

be constructed by theorem 4.9.4. For example, a BA(T )[3, 2, 1] which can

be constructed by corollary 4.9.3 is not completely resolvable. Therefore it

cannot be constructed by theorem 4.9.4. However, all balanced arrays that
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can be constructed by corollary 4.9.4 can also be constructed by theorem

4.9.4 since the orthogonal arrays used in corollary 4.9.4 are constructed by

the method of differences.

In the previous chapters, we restricted our consideration of BAFD’s to one-

way designs only.These concepts can also be extended to two way designs

i.e. designs with rows and columns as blocks. Designs with two-way elim-

ination of heterogeneity are designs that satisfy the following conditions:

(a) Each treatment is replicated the same number of times, say r

(b) There are k−rows and b−columns.At a given row and column, there

exists u plots.

(c) Estimates of contrasts belonging to different interactions are uncorre-

lated with each other.

(d) All the normalized contrasts belonging to the same interaction are

estimated with the same variance.

In designs with two-way elimination of heterogeneity, we do not need the

condition that each treatment occur at most once in each row or each

column. In most cases, u = 1, but for generality, we do not make this

assumption.
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