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ABSTRACT 

Background; Male hypogonadism, marked by low serum levels of testosterone, is a relatively 

common endocrine disorder and its prevalence differs among populations. Declining quantities 

of serum testosterone have been linked with increased risk for cardiovascular diseases. On the 

contrary, a physiological rise in testosterone level is protective against cardiovascular diseases 

and ameliorates ongoing cardiovascular events. Androgens influence the cardiovascular system 

through multipronged mechanisms, one of them being the induction of histomorphological 

changes in the vascular wall. Varying levels of androgens have been associated with structural 

modifications in vessels such as the carotid and the aorta in various studies. Of note, studies 

show a correlation of reduced testosterone levels with an increase in intimal-medial thickness, 

connective tissue density of the vascular wall, and reduced luminal diameter in key vessels. 

Physiological studies on the efficacy of testosterone on various vascular beds illustrate non-

uniformity, suggesting that its effect on the vascular structure may also not be homogenous.  

Objective; This study sought to describe histomorphologic changes that occur in the coronary 

artery of the adult male rabbit following surgical castration and subsequent testosterone 

administration. 

Design; Interventional study design 

Materials and Methods; Twenty-eight (28) one year old male rabbits were randomly divided 

into an experimental/interventional group (14) and a control group (14).  Two in each group 

were selected for baseline data. Animals in the interventional group underwent surgical 

orchidectomy while the controls underwent sham surgery (scrotal opening and closing without 

orchidectomy). Serum testosterone levels were recorded fortnightly. After the first six weeks, 

half the animals in each group were randomly picked, sacrificed and their coronary vessels 

harvested and processed for routine histology. From this point henceforth, the remaining 
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rabbits of the experimental group underwent weekly intramuscular injections of testosterone 

enanthate. At the end of the study (after another six weeks), the rest of the rabbits were 

sacrificed and their coronary vessels were harvested and processed for routine histology. 

Hematoxylin and eosin stain was used to demonstrate the intima-media span and smooth 

muscle cell nuclei. Masson’s Trichrome was used to demonstrate collagen fibers. A ZeissTM 

digital photomicroscope was used to take photomicrographs for stereological analysis.  

Data Management; Quantitative data on mean intimal-medial thicknesses, smooth muscle cell 

count, and adventitial collagen fiber density was entered into Statistical Package for Social 

Sciences (SPSS) software for analysis. After assessment for normality, a parametric test 

(Analysis of Variance, ANOVA) was used to compare the mean between groups. A p-value ≤ 

0.05 was considered statistically significant at a 95% confidence level. Data was presented in 

tables, graphs and boxplots. 

Results; Mean serum testosterone levels were 27.5 nmol/l, 0.9 nmol/l, and 15.4 nmol/l in 

controls, castrated rabbits and testosterone injected rabbits respectively. Intimal medial 

thickness was significantly increased in the castrated group (0.488mm) compared to controls 

(0.388mm) and subsequently declined to 0.440mm in the testosterone injected group. 

Adventitial collagen fiber density of the left coronary artery rose in the castrated group 

(66.63%) compared to controls (36.11%) but stayed elevated in testosterone injected group 

(65.19%). Medial smooth muscle cell count of the castrated rabbits was 26.96%, significantly 

lower than the count in the testosterone injected group (47.53%) and the controls (47.80%). 

Conclusion; Varying testosterone levels are associated with reversible changes in some 

morphometric parameters of the coronary artery. These findings suggest that the testosterone 

hormone may have a role in modifying the structure of the left coronary artery, hence 

modifying the risk for cardiovascular disease. 
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CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW 

1.1. INTRODUCTION 

Male hypogonadism, a condition that presents with reduced amounts of testosterone in 

circulation, is widely observed in elderly males (Fraietta et al., 2013). It is a relatively common 

endocrine disorder but its exact prevalence among different populations is not clear. The 

decline in serum testosterone concentrations with advancing age in men is actually with a 

function of age-related illnesses rather than chronological age per se (Harman et al., 2001). Of 

interest, chronically depleted serum testosterone is linked to a substantially higher risk of 

cardiovascular disease (Saad et al., 2016). Many biological factors utilized in the calculation 

of the Framingham risk score, a formula that estimates a patient’s ten-year risk of acquiring 

cardiovascular illness, are influenced by circulating testosterone levels (Jahangiry et al., 2017). 

According to epidemiological analyses, men in the reproductive age bracket have a higher risk 

of developing cardiovascular disease than age-matched females(Liu et al., 2003; Wu and von 

Eckardstein, 2003). This gender disparity had previously been ascribed to a cardiovascular 

protective effect of estrogen in women, versus a deleterious effect of androgens in men(Bernini 

et al., 2001). This hypothesis has since been disapproved by larger prospective studies. A 

growing body of evidence is now suggesting the converse; showing a protective effect of 

androgens in cardiovascular disease (Cai et al., 2016; Nettleship et al., 2009).  Several 

randomized clinical trials and meta-analyses demonstrate that serum levels of circulating 

androgens are inversely correlated with risk factors and mortality in cardiovascular illness ( 

Smith, 2007; Kintzel et al., 2008; Tivesten et al., 2009). In support of this, for instance, some 

studies show that patients having coronary heart disease and heart failure elicit better 

cardiovascular function after receiving testosterone treatment (Rosano et al., 2007;Morgentaler 

et al., 2015a; Gencer et al., 2021) 
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Androgens impart their beneficial effects on cardiovascular disease either by directly acting on 

the cardiovascular system or by modifying other risk factors. Experimental evidence suggests 

that physiologically high testosterone levels favorably affect the lipid profile, 

glycometabolism, hemostatic parameters, and vascular inflammation (Gyllenborg et al., 2001; 

Hak et al., 2002; Ng et al., 2002; Svartberg et al., 2006). Testosterone levels also have immune-

modulating effects that significantly influence the incidence and advancement of 

atherosclerosis(Malkin et al., 2004, 2003) (Malkin et al 2003, Malkin et al 2004). This can be 

attributed to a reduction in proinflammatory cytokines such as TNFα, IL-1β, and a concomitant 

rise in anti-inflammatory cytokines such as IL 10 following testosterone injections (Malkin et 

al., 2004). 

Most investigations on the effect of testosterone on cardiovascular disease have largely 

concentrated on acute physiological alterations resulting from endothelium and non-

endothelium mediated vasodilation (Perusquía et al., 2012; Perusquía and Stallone, 2010). 

Fewer have described the influence of chronic hypogonadism on the structure of vessels, for 

instance by highlighting morphological markers of atherosclerosis. Tsujimura et al., 2012 

characterized an association of decreased serum free testosterone with increased thickness of 

carotid intima-media in middle-age Japanese males. Geary et al., 2000 described the effect of 

low gonadal hormones on the decreased luminal diameter of cerebral arteries. Alexandersen et 

al., 1999 had earlier illustrated the reversibility of the effect of testosterone on structural 

markers of aortic atherosclerosis in rabbits. Studies on testosterone replacement therapy report 

evidence of deceleration in the progression of atherosclerosis, with one particular study 

showing decreased carotid intimal-medial thickness (IMT) in stable angina patients (Mathur et 

al., 2009).  

However, there is a scarcity of literature that describes the relationship between low serum 

testosterone and structural markers of coronary artery atherosclerosis, and whether or not this 
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relationship is reversible. The vulnerability of the coronary artery to arterial disease has been 

documented, though the focus has been on physiological and metabolic derangements, most of 

which are affected by testosterone levels (Wu and von Eckardstein, 2003). Perusquía et al., 

2012 assert that androgens have varying efficacy on different vascular beds and thus the effect 

of testosterone on morphological alterations is not necessarily a uniform pattern across all 

vessels.  For instance, increase in intima-medial thickness is a prominent structural change in 

the carotid artery in both hypogonadic animal models (Nakashima et al., 2008) as well as 

studies done with human subjects (Bernini et al., 2001) while increase in collagen fibre density 

is reported in the aorta in similar study designs (Jenkins et al., 2007; Ogeng’o, 2017). Changes 

in  structural markers like intima-media thickness are important subclinical markers of 

atherosclerosis and are useful in evaluation of risk of cardiovascular dieases (Lorenz et al., 

2007; Uthoff et al., 2008). Thus, the elucidation of the effect of testosterone on the 

histomorphology of the coronary arteries in castrated rabbits may add to the growing body of 

knowledge on how androgens influence structural risk for cardiovascular disease. 
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1.2. LITERATURE REVIEW 

The implication of hypogonadism on the reproductive function of males has traditionally been 

extensively documented (Basaria and Dobs, 2001).  Subsequent studies have described a 

connection linking low serum levels of testosterone to a risk of cardiovascular diseases 

(Maggio and Basaria, 2009). Of interest, low testosterone level has been associated with 

atherosclerosis of most large vessels, with some experimental studies showing inhibition of 

plaque development by androgens in animal experiments (Hanke et al., 2001). The coronary 

arteries, carotids, and aorta are known to be particularly vulnerable to atherosclerosis (Hayashi 

et al., 2010). Some studies describe a link between low serum testosterone and morphological 

markers of atherosclerosis such as IMT and luminal diameter in the aorta and carotid arteries 

(Hak et al., 2002; Muller et al., 2004). The association between vascular connective tissue and 

testosterone levels has attracted relatively less attention, although Jenkins et al., 2007 showed 

increased collagen synthesis by adventitial fibroblasts in the coronary artery of rats treated with 

testosterone.   

1.2.1. RELEVANT ANATOMY OF THE CORONARY ARTERY OF THE RABBIT 

The number and branching patterns of coronary arteries in rabbits bear both similarities and 

differences with the human pattern. They both have a right and left coronary artery but the left 

is always dominant in the rabbit (Podesser et al., 1997). The right coronary in the rabbit is 

considerably smaller. The left coronary artery bifurcates or trifurcates (as commonly seen in 

humans) but with even prevalence (Figure 1). Studies have preferred the left coronary artery 

due to its size and accessibility (Podesser et al., 1997). 
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Figure 1; Left coronary artery (arrow) of an adult male rabbit used in our study. Histology 

slides were processed and stained from sections of proximal, middle and distal portions of the 

artery. 

1.2.2. INTIMA-MEDIAL THICKNESS 

The thickness of intima-media is a consistent and sensitive marker in cases of asymptomatic 

atherosclerosis, while also independently predicting the risk of adverse cardiovascular sequelae 

(Lorenz et al., 2007). It varies widely among different populations, and also varies with 

morphological parameters of the respective vessel (Ogeng’o, 2015). It proves valuable in 

evaluation, stratification of risk, prognostication, and monitoring of cardiovascular disease 

(Uthoff et al., 2008). Changes in intima-medial thickness may be considered as an adaptive 

response to luminal blood imparting lateral pressure and stress on the vessel wall ( Stary et al., 

1992; Deopujari and Dixit, 2010). It is not clear how its further progression leads to 

atherosclerosis. 
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Several theories have been put forward to account for how changes in IMT develop, and most 

of these admit difficulty in determining exactly when the atherosclerotic lesion initiates. The 

“response-to-retention” hypothesis, proposed by Williams and Tabas affirms that retention of 

atherogenic lipoproteins within the intima-medial layer of the artery marks the first stage in 

atherogenesis (Tabas et al., 2007). The process is induced stimuli such as inflammatory 

cytokines and mechanical stress increase the local synthesis of proteoglycans that bind 

lipoproteins within these layers(Camejo et al., 1998; Chait and Wight, 2000; Lee et al., 2001; 

Williams, 2001; Little et al., 2002). This interaction, which is ionic in nature, occurs between 

anions in the glycosaminoglycan component of proteoglycans and cationic residues of 

lipoproteins (Camejo et al., 1998; Chait and Wight, 2000). The hypothesis additionally factors 

in the increased susceptibility of lipoprotein–proteoglycan complexes to modifications such as 

oxidation and accumulation which eventually results in phagocytosis by macrophages that 

transform into foam cells (Hurt-Camejo et al., 1992; Tabas, 1999; Kaplan and Aviram, 2001). 

Nakashima et al., 2008 classify intimal-medial thickening into two: diffuse intimal thickening 

and eccentric intimal thickening. Diffuse intimal thickening, otherwise known as 

musculoelastic intimal thickening, occurs at the non-branching sections of arteries and extends 

both longitudinally and circumferentially. Eccentric intimal thickening, or intimal cushion, 

involves a focal proliferation of the intima, especially at orifices and branching points. The 

occurrence of these classes of intimal thickenings is often simultaneous and may not always be 

distinguishable (Nakashima et al., 2008).  

Diffuse intimal thickening is the process of intimal-medial thickening that most likely occurs 

in atherosclerosis (Stary et al., 1992; Schwartz et al., 1995; Virmani et al., 2000).  The 

histological picture consistent with diffuse intimal thickening is consistently found within the 

walls of arteries prone to atherosclerosis, including the carotid arteries, coronary arteries, aorta 

and iliac arteries ( Schwartz et al., 1995; Virmani et al., 2000; Nakashima et al., 2008, 2002). 
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Such findings have pointed to the fact that diffuse intimal thickening is an important 

mechanism of atherogenesis. 

Smooth muscle cells become abundant during the process of diffuse intimal thickening and are 

principle cell types implicated in the initial steps of atheroma formation (Aikawa et al., 1993). 

Intimal smooth muscle cells produce various paracrine factors that promote cell proliferation, 

migration, and extracellular matrix transformation during atherogenesis (Nakata et al., 1996). 

Furthermore, the production of proteoglycans by smooth muscle cells increases during diffuse 

intimal thickening, hence potentiating lipid entrapment when they invade the tunica intima 

(Nakashima et al., 2008). 

1.2.3. CONNECTIVE TISSUE FIBRES IN THE TUNICA ADVENTITIA 

Previously, the tunica adventitia was assumed to play a passive role in the nutritional and 

physical integrity of the wall of an artery. Recently, evidence suggests that it plays an active 

role in the function, structure, and development of pathological processes in the arterial wall 

(Stenmark et al., 2013). Traditional descriptions of tunica adventitia describe it as being almost 

entirely composed of macrophages and fibroblasts. Ogeng’o et al., 2014 have additionally 

described immunoregulatory cells, progenitor cells, endothelial cells, and pericytes within the 

adventitia of carotid and coronary arteries. 

The tunica adventitia is richly fibroelastic, having collagen fibers that confer tensile strength 

that enable it to withstand external forces and elastic fibers that enable stretching for 

vasodilation and constriction (Ogeng’o, 2017). Disproportionate amounts of collagen increase 

vessel stiffness and is correlated with multiple vascular pathologies including atherosclerosis 

and hypertension. The collagen-elastin ratio is known to be influenced by sex hormones, partly 

contributing to the gender disparity in cardiovascular illnesses. Fischer and Swain, 1977 

demonstrated a correlation of low testosterone levels with a high collagen-elastin ratio in the 
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aorta of male rats after castration. More recently, Jenkins et al., 2007 showed increased 

collagen synthesis by adventitial fibroblasts in the coronary artery of rats treated with 

testosterone. We will attempt to illustrate how collagen fiber densities are affected by 

hypogonadism in a rabbit model.   

1.2.4. VASCULAR SMOOTH MUSCLE DENSITY 

Testosterone is known to exert acute vasodilatory effects in blood vessels through non-genomic 

pathways, including the modulation of calcium channels (Deenadayalu et al., 2001; English et 

al., 2002; Lorigo et al., 2020; Wynne and Khalil, 2003). There is however a scarcity of literature 

regarding the effect of androgens on the structure of the tunica media and density of vascular 

smooth muscles. Available data reveal a pattern of reduced vascular smooth muscle density of 

internal carotid arteries and penile erectile tissues in hypo-androgenic states (Cheruiyot et al., 

2018). Changes that are described in the smooth muscle of erectile tissues include the 

disorganization of smooth muscle cells (Traish and Kim, 2005) and decreased myofilament 

quantity (Traish et al., 2007).  

Supraphysiological levels of testosterone affect the vascular structure negatively by inducing 

hypertension and other pathological changes, through mitochondrial reactive oxygen species 

generation and NLRP3 inflammasome activation (Alves et al., 2020; Lopes et al., 2014). High 

levels of testosterone may eventually induce smooth muscle cell apoptosis leading to a 

reduction of smooth muscle density in the tunica media (Lopes et al., 2014). Interventions that 

replace testosterone levels in hypo-androgenic states should therefore be strictly limited to the 

restoration of physiological levels of serum testosterone to avoid adverse vascular effects. An 

investigation of the chronic effects of restoring the normal physiological levels of serum 

testosterone on the density of coronary arterial smooth muscle after hypo-androgenic state is 

further warranted. This study may elaborate on any potential benefit of such replacement 

therapy to the histologic structure of the coronary artery. 
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1.3. STUDY JUSTIFICATION 

Male hypogonadism is a fairly common endocrine disorder. Even though its exact prevalence 

among different populations is not known, with reports suggesting that it is underdiagnosed 

(Fraietta et al., 2013). Reports from a study of male aging in Massachusetts indicated that 

androgen deficiency had an incidence rate of 12.3 per 1000 person-years (Araujo et al., 2004). 

This was noted to rise significantly with aging and could be inferred as about 481,000 cases 

per year acquired in men between forty and sixty-nine years of age. Varying levels of 

circulating androgens induce structural modifications in key vessels like the carotid and the 

aorta, and partly predispose these vessels to cardiovascular disease (Cheruiyot et al., 2018; 

Kintzel et al., 2008; Smith, 2007; Tivesten et al., 2009b). The consistent pattern observed is 

that reduced serum androgen levels correlate with structural changes that predispose to 

cardiovascular diseases (Tsujimura et al., 2012). With increasing evidence that androgens may 

have a nonuniform effect on the structural changes across the cardiovascular system (Perusquía 

et al., 2012), data on the effect of testosterone on the structure of all vulnerable vessels need to 

be documented. This information may contribute to the growing body of knowledge regarding 

the role of androgens in modifying structural risk factors for cardiovascular illnesses. 

1.4. STUDY SIGNIFICANCE 

Emerging research shows that lower serum androgen levels consistently correlate with the 

worsening of cardiovascular risk factors (Saad et al., 2016; Bashyal et al., 2019) and on the 

contrary, physiologically high levels of testosterone are demonstrably protective against 

cardiovascular diseases (Cai et al., 2016). Administration of testosterone for therapy in 

hypogonadal men facing cardiovascular illnesses appears promising as shown by accumulating 

data from clinical trials (Morgentaler et al., 2015a; Gagliano-Jucá and Basaria, 2019). 

Demonstration of the reversible effect of testosterone on the structure of a key vessel like the 
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coronary artery will bolster the evidence that androgens are beneficial to the vascular health of 

hypogonadal men.  

1.5. NULL HYPOTHESIS 

Short term morphological changes in coronary arteries induced by hypogonadism via 

castration are not reversible with exogenous testosterone administration. 

1.6. STUDY QUESTION 

Are the morphological changes in coronary arteries induced by surgical castration reversible 

with exogenous testosterone administration? 

1.7. CONCEPTUAL FRAMEWORK 
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1.8. OBJECTIVES 

1.8.1. Broad Objective 

To demonstrate the morphological changes in the coronary arteries of adult male rabbits 

associated with changes in testosterone levels induced through surgical castration and 

subsequent testosterone administration 

1.8.2 Specific Objectives 

1. To compare intimal-medial thickness of coronary arteries between adult male rabbits 

that were surgically castrated and not treated with testosterone and those that were 

surgically castrated and subsequently injected with testosterone. 

2. To compare the density of collagen fibers in the tunica adventitia of the coronary 

arteries between adult male rabbits that were surgically castrated and not treated with 

testosterone and those that were surgically castrated and subsequently injected with 

testosterone. 

3.  To compare smooth muscle cell density of coronary arteries between adult male 

rabbits that were surgically castrated and not treated with testosterone and those that 

were surgically castrated and subsequently injected with testosterone. 
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CHAPTER 2: MATERIALS AND METHODS 

2.1. STUDY DESIGN 

The study followed an interventional design. 

2.2. MATERIALS 

2.2.1. Rabbits as a study model 

Rabbits remain a popular animal model in biomedical research for the study of the 

cardiovascular system due to their ease of maintenance, affordability, and similar cardio 

physiology with humans (Fan et al., 2015). Several studies have used the rabbit model to 

investigate the cardiovascular system. The White New Zealand species have been used in 

descriptive studies due to close gross morphological and histological similarities to humans 

(Podesser et al., 1997). Therefore, rabbits are a suitable model for this study. 

2.2.2. Study setting 

The rabbits were purchased from the Department of Veterinary Anatomy, at the University of 

Nairobi. The study was conducted at the Department of Veterinary Anatomy animal house and 

later processing of the specimen was done at the Department of Human Anatomy of the 

University of Nairobi. 

2.3. SAMPLING 

2.3.1. Sample Size 

A formula for interventional type study designs was suggested by Charan and Biswas, 2013, 

useful when mean values of two groups are compared. It is used to calculate sample size per 

group. 

Sample size = 2SD2 (Zα/2 + Zβ)
2 ÷ d2 
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SD = Standard deviation, derived from published or pilot studies (0.6125 from our literature) 

Zα/2 = 1.96, derived from Z tables, at type 1 error rate of 0.05 

Zβ = 0.421, derived from Z tables. at a power of 80% 

d = the effect size, derived from the difference between mean values (0.48 mm in past literature) 

Therefore; 2×0.61252 (1.96 + 0.421)2 ÷ 0.482 = 13 

The sample size calculated is 13 per group. 

For the convenience of grouping, 14 adult male rabbits per group were selected making it a 

total sample size of 28 adult male rabbits. 

2.3.2. Selection Criteria 

Twenty-eight (28) adult male rabbits of similar age and almost similar weight were used for 

this study. Animals selected for this study were about 1 year old since the male rabbit attains 

sexual maturity at that age (Steinberg, 2004).  

There were no rabbits with variant cardiac/coronary arterial system and visible pathology in 

the scrotal regions, which would have been excluded from the study. 

2.4. ETHICAL CONSIDERATIONS 

The study topic and proposal was endorsed and passed at the department of Human Anatomy 

(University of Nairobi). Ethical approval for animal use was obtained from the Biosafety, 

Animal Use and Ethics Committee (BAUEC), University of Nairobi (Appendix 1). The rabbits 

were handled in strict adherence to the guidelines provided by the ethical committee. 

Sacrificing of the study subjects followed internationally accepted standards i.e use of inhaled 

halothane for quick painless death.  
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2.5. METHODS 

All 28 animals were bought from the department of Veterinary Anatomy, University of 

Nairobi. Half (14 animals) were randomly assigned to the interventional or experimental group 

and 14 were controls. At the beginning of the study, 2 rabbits from each group were randomly 

selected and sacrificed and their coronary arteries were harvested for routine histology. Data 

obtained from these vessels were used as a baseline. All animals were tagged with coded 

numbers for randomization using a digital number generator. 

At the start of the study, all twelve (12) of the remaining rabbits in the intervention group 

underwent surgical orchidectomy, as the other 12 of the control group underwent a sham 

surgery, where the scrotum was opened and closed without actual orchidectomy. Invasiveness 

of surgical opening of the scrotum is traumatic and likely to influence the outcomes of the study 

thus a sham procedure was performed in the controls to standardize conditions and minimize 

confounders. The surgeries were performed under sterile conditions using a combination of 

ketamine (20mg/kg) and xylazine (3mg/kg) for effective general anesthesia. Phenylbutazone 

8mg/kg was also used as an analgesic. Amoxyl syrup (125mg/ml) was added to feeds after the 

operations to control infections. The animals were then allowed to heal as other conditions of 

both groups remained constant. 

Measurements of serum testosterone levels were taken fortnightly in rabbits of all groups for 

the duration of the study (12 weeks). This was done by collecting blood samples via 

venipuncture of the ear vein after which they were sent to the veterinary laboratory at 

Pathologists Lancet Kenya for assays of total testosterone. After the first 6 weeks, 6 rabbits of 

the intervention group and 6 controls were randomly selected by employing a digital random 

number generator, sacrificed and their coronary vessels harvested and processed for routine 

histology. The 6-week duration was informed by studies that demonstrate vascular 
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morphological changes occur within 4 to 6 weeks in adult rabbits which corresponds to one 

year of human life (Hayashi et al., 2010; Fan et al., 2015).  

From this point henceforth, the 6 remaining rabbits of the intervention group underwent weekly 

intramuscular injections of 25 mg testosterone enanthate (procured from a private veterinary 

pharmacy); this was similar to the method used by Alexandersen et al., 1999 with fortnightly 

measurements of serum testosterone level for all animals. Concurrently, the controls were 

given normal saline intramuscular injections. At the end of the study (after another 6 weeks) 

all remaining rabbits of both groups were sacrificed and their coronary vessels were harvested 

and processed for routine histology (Figure 2). The flow chart below illustrates the steps 

described. 

 

Figure 2; Flowchart illustrating the sequence of events during the study 
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2.5.1. Surgical induction of hypogonadism  

Hypogonadism was induced by surgical castration under local anaesthesia at the beginning of 

the study in the intervention group using the prescrotal approach. With the animal lying in the 

dorsal recumbency position under physical restrain, perineal region was identified and the 

prescrotal area shaved. The skin was then cleaned with iodine solution then local anaesthesia 

(2 ml of 1% Lignocaine) was injected at the prescrotal area and around both scrotal sacs. A 2 

cm incision was made on the midline just cranial to the base of the hemiscrotal sacs to access 

the testicle and spermatic cord, which were then gently grasped and exteriorized through the 

incision (figure 3). The ligament between the hemiscrotal sac and the tail of the epididymis 

was gently dissected, and the spermatic cord was clamped, ligated and removed en bloc with 

the testes and epididymis. The preplaced stay suture was then tied to close the vaginal process. 

The procedure was repeated on the contralateral side and the skin incision closed using Vicryl 

2.0 stitch.  The wound was covered by an Elastoplast which all the animals removed at varied 

times, from immediately to within 24 hours.  

 

 

 

 

 

 

Figure 3; Midline incision of the hemiscrotal sacs to access the testicle and spermatic cord in 

a male rabbit. 
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2.5.2. Handling of study animals 

The rabbits were fed and handled with close observation by attendants at the animal house. 

They were housed in standard rabbit-sized cages measuring 91 × 61 × 91 cms. Each cage 

contained two animals. The animals were coded and labeled for identification to prevent mixup 

during cage clean-ups. The floors of the rabbit cages were paved with wood shavings. The 

shavings were replaced every two days while cleaning the cages. The animals were fed standard 

rabbit pellets with water ad libitum and subjected to weekly inspection for good health.  

2.5.3. Occupational health 

The rabbits were held in a way to prevent any biting or scratching injuries to the handlers. To 

ensure proper restraining, the rabbits were ejected from cages by taking hold of both ears with 

one hand and their base with the other hand. The handlers wore bite-resistant leather gloves. 

Due to careful handling, there were no cases of defensive biting by the rabbit. All sharps, once 

used, were put in the safe disposal containers. Safety gloves were donned when handling 

caustic chemicals such as formalin and xylene in the histology lab. 

2.6. TISSUE HARVESTING AND PROCESSING 

The rabbits were euthanized by placing halothane-soaked cotton wool over their mouth and 

nostrils. The death of the rabbits was verified by the cessation of the heartbeat and diminished 

ocular reflexes. Subsequently, an incision was made through the midline chest and abdomen. 

Formal saline was then infused through an intra-cardiac injection. After perfusion, the heart 

was removed from the body by severing major vessels and removing it from the mediastinum. 

The coronary arteries were then carefully dissected and extracted from the heart. They were 

afterward cut into short segments. 

These tissue segments were fixed by immersing in 10% formalin saline for approximately 

twenty-four hours. After proper fixation, the heart underwent dehydration in ascending 
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concentrations of alcohol, starting from 70% up to 100% alcohol between hourly intervals. The 

heart tissue was cleared using toluene and later infiltrated by immersing in a wax container in 

a memmert oven at 60 degrees for twenty-four hours. The tissue was then embedded in paraffin 

wax before cooling. The tissues, after embedding, were blocked using plastic cassettes. They 

were then sectioned transversely into seven micrometer thick slices using a rotary microtome 

(Leica® Model SM2400, Leica Microsystems, Nussloch GmbH, Germany). The sectioned 

ribbons were put on a warm water bath and picked using a glass slide, then dried at 35 degrees 

in an oven for twelve hours. Thereafter, the slides were stained using Hematoxylin and Eosin 

and Masson’s Trichrome.  

2.6.1. Hematoxylin and Eosin staining 

The slides were dewaxed by passing through three changes of xylene, for five minutes periods 

each. The tissue in the slides was subsequently rehydrated by immersing in a series of solutions, 

beginning with 50:50 concentrated xylol followed by descending concentrations of alcohol 

from 100% to 70% with a three-minute interval per change. Thereafter, the slides were 

immersed in Iron Hematoxylin solution for a fifteen-minute interval then passed through 

running water for two minutes to clear excess stain. The slides were then stained in a 1% eosin 

solution for three minutes. This was followed by dehydration in increasing ethanol 

concentrations from 70% to 100%. The slides were finally cleared by passing in two xylene 

changes for five minutes before observing under a microscope. 

2.6.2. Masson’s Trichrome staining 

The slides were dewaxed by passing through three changes of xylene, for five minutes per 

change. The tissues in the slides were subsequently rehydrated by immersing in a series of 

solutions, beginning with 50:50 concentrated xylol followed by descending concentrations of 

alcohol from 100% to 70% with a three-minute interval per change. Thereafter, the slides were 
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immersed in Iron Hematoxylin solution for a 15-minute interval. The stained slides were then 

dipped once in acid alcohol for differentiation then immersed in a container filled with running 

tap water for an hour for blueing. The slides were thereafter immersed in Ponceau stain for six 

minutes, followed by clearing in a container with distilled water. The slides were then placed 

in a mordant for four minutes, cleared in distilled water, then immersed in the light green stain 

for two minutes. This was followed by dehydration in increasing ethanol concentrations from 

70% to 100%. The slides were finally cleared by passing in two xylene changes for five minutes 

before observing under a microscope. 

The histology slides were read and interpreted, at the department of Human Anatomy histology 

laboratory, by two technologists independent of each other and blinded to the grouping of the 

study subjects. 

2.7. MORPHOMETRIC ANALYSIS 

A photomicroscope (ZeissTM digital photomicroscope, Carl Zeiss AG, Oborkochen, 

Germany) with a 12-megapixel digital camera was used to take photomicrographs of the 

sections. Magnifications of X40, X100, and X400 were used to capture the vascular wall tunics 

with higher magnifications showing collagen fibers in the adventitia. These photographs were 

entered into with Fiji Image J software (National Institutes of Health image program) whereby 

morphometric and stereological analysis was done. 

2.7.1. Intimal-medial thickness measurement 

Four arbitrary points of the arterial wall were measured using a digital imaging software (Image 

J v1.53) to obtain the IMT and an average recorded for the proximal, middle, and distal 

segments of all the arteries (figure 4).   
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IMT= (IMTa + IMTb + IMTc + IMTd) / 4 

 

 

 

 

 

 

 

Figure 4; Transverse section of a left coronary artery of an adult male rabbit showing 

measurements of the IMT. Hematoxylin and eosin stain X 40 magnification. 

2.7.2. Collagen fibre density estimation 

Connective tissue volumetric density estimation was done using the Cavalieri principle of point 

counting (Mandarim-de-Lacerda, 2003) and data expressed as volume densities (%). The 

chosen fields of view were examined using an overlaid 42-point grid that was selected from 

the Image J app. The grid system has orthogonally arranged lines that cross at regular points, 

which enable estimation of tissue densities (Mandarim-de-Lacerda, 2003). The volumetric 

densities of the histological structures were evaluated while blinded on the animal group that 

tissue samples were from. 

By stereological principles, the distribution area of a histological component of isotropic tissue, 

when established from a two-dimensional section, is directly proportional to its volume 

distribution ( Pinheiro et al., 2000; Mandarim-de-Lacerda, 2003). The volume densities of the 
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vascular components were derived by the formula: Vv = Pp/Pt, where Vv was the volume 

density, p was the vascular component under consideration (smooth muscle, elastic or collagen 

fibers), Pp was the number of test points that cross on p, and Pt was the total number of points 

in the grid. 

2.7.3. Smooth muscle cell count 

Histological slides stained with hematoxylin and eosin were analyzed using a superimposed 

42-point grid on the digital images on the monitor screen as described in the previous section 

(Figure 5). Smooth muscle cell nuclei were counted per unit area and expressed as percentages. 

The volume density of the muscle cells was calculated by the formula Vv = Pp/Pt, where Vv 

was the volume density, p was the tissue component under consideration (smooth muscle 

nuclei), Pp was the number of test points associated with p, and Pt was the total number of 

points of the test system. 
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Figure 5: Point counting method to estimate volume densities of connective fibres in tunica 

adventitia of rabbit’s left coronary artery. Masson’s trichrome X400 magnification. 

2.8. STATISTICAL ANALYSIS AND DATA MANAGEMENT 

Morphometric data on the coronary artery thickness was entered by coding in the Statistical 

Package for Social Sciences software (SPSS, version 21.0, Chicago, Illinois) for further 

statistical analysis. Wall thickness was expressed in millimeters, collagen density, and smooth 

muscle densities were expressed as percentages. The data was split into the control group and 

two experimental groups datasets (‘castrated’ and ‘testosterone injected’ groups) for 

comparison. Data normality was tested using Wilk-Shapiro tests and normality graphs. The 

Analysis of Variance (ANOVA) test was used to compare means among the groups. A p-value 

less than or equal to 0.05 was interpreted as statistically significant (95% confidence level).   
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CHAPTER 3: RESULTS 

The rabbit coronary artery showed features of a muscular artery with three conventional tunics; 

tunica intima, tunica media, and tunica adventitia. Mean testosterone levels for separate groups 

were as follows; Baseline (30.1nmol/l); Castrated group; 0.9 nmol/l; Testosterone injected 

group;  15.4 nmol/l; and Controls;  27.5 nmol/l. The normal range of serum testosterone levels 

in adult male rabbits is 1.59 – 32.80 nmol/l.  

 

3.1. INTIMAL-MEDIAL THICKNESS 

From a visual analysis of the photomicrographs, the thickness of the intimal-medial layer of 

the coronary arteries appeared to be greater in the castrated group compared to the controls 

(Figure 6A-B). The thickness of the intimal-medial layer was reduced when the castrated 

rabbits were administered with testosterone, with the thickness being comparable to the 

controls (Figure 6C).  
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Control group 

 

Castrated group 

 

Testosterone injected group 

 

 

Figure 6; Representative slides of left coronary artery wall from controls (A), castrated (B), 

and testosterone injected rabbits (C).  The vascular tunics are visible. The IMT is greater in the 

castrated group compared to the controls. The IMT is reduced in the testosterone administered 

group compared to the castrated group (C). Masson’s trichrome X400, tm- tunica media; ta- 

tunica adventitia 
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After a morphometric analysis, a mean IMT of 0.488 mm was recorded in the castrated group, 

0.440 mm in the testosterone injected group, and 0.388 mm in the control group (table 1). 

Standard deviation was 0.005 in all groups.  

 Group (mean 

Testosterone 

levels in nmol/l) 

Mean 

IMT 

(mm) 

Std. 

Deviation 

95% Confidence Interval 

for Mean (mm) 

Minimum 

(mm) 

Maximum 

(mm) 

Lower 

Bound 

Upper Bound 

Castrated (0.9) 0.488 .005 .487 .489 .478 .499 

Control (27.5) 0.388 .005 .386 .389 .375 .399 

Testosterone 

Injected (15.4) 

0.440 .005 .439 .441 .427 .453 

 

Table 1; Measurements for intimal-medial thickness (IMT) for each group as well as their 

means and standard deviations. 
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The data on IMT were normally distributed as assessed by the Shapiro-Wilk test (p <0.05), and 

means between groups were compared by Analysis of Variance (ANOVA) (Table 2). All 

differences were statistically significant (p= 0.000). The greatest difference in IMT was 

between the castrated gropu and the controls. 

  Mean IMT 

Difference 

(mm)  

Std. 

Error 

P-value 95% Confidence Interval 

Lower 

Bound 

Upper 

Bound 

Castrated Control .101* .0008 .000 .099 .103 

Testosterone 

injected 

.048* .0008 .000 .046 .051 

Control Castrated -.101* .0008 .000 -.103 -.099 

Testosterone 

injected 

-.052* .0008 .000 -.055 -.050 

Testosterone 

injected 

Castrated -.048* .0008 .000 -.051 -.046 

Control .052* .0008 .000 .050 .055 

Table 2; Results of the test of the differences in the mean intimal medial thickness (IMT) of 

the groups using ANOVA. Statistically significant differences among all groups (p<0.05). 

 

The difference in IMT between the castrated group and the testosterone injected group was 

significant (0.048mm; p<0.05). The difference in means between the castrated groups and the 

controls (0.101mm), as well as between the testosterone injected group and the controls 

(0.052mm) were also statistically significant (p<0.05).  A boxplot further demonstrated a 

reduction in IMT in the testosterone administered group (Figure 7). 
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Figure 7; Box plot comparing means of the intimal medial thickness of the left coronary 

artery between the baseline, control, castrated and testosterone injected groups. 

 

In summary, IMT was significantly increased in the castrated group compared to the control 

group and subsequently reduced in the testosterone injected group. However, IMT in both 

interventional groups (castrated and testosterone injected) was significantly higher compared 

to the controls. 

  

 P = 0.000 between Castrated and Controls, Testosterone injected and Controls 
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3.2. ADVENTITIAL COLLAGEN FIBRE DENSITY 

From a visual impression of the histology of the slides, the tunica adventitia of the coronary 

artery appeared to be denser in the castrated and testosterone injected groups compared to 

control. (Figure 8A-C). The density of collagen in the castrated and testosterone injected groups 

was not visually distinguishable (Figure 8B & C).  
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A. Control 

 

B. Castrated 

 

C. Testosterone Injected 

 

 

Figure 8; Representative slides of left coronary artery wall from the control group (A), 

castrated group (B), and testosterone injected groups (C). The tunica adventitia of the coronary 

artery is denser in the castrated and testosterone injected groups compared to control. The 

collagen density is not visually distinguishable between the castrated and testosterone injected 

groups. Masson’s trichrome X400, TA; - Tunica adventitia   TM; - Tunica media 
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Collagen fiber density of the tunica adventitia of the coronary artery of the adult male rabbit 

ranged from 29.2% to 74.7%.  A mean of 66.6% was recorded in the castrated group, 65.2% in 

the testosterone injected group and 36.1% in the control group (table 3).   

 Group (mean 

Testosterone 

levels in 

nmol/l) 

Mean 

(%) 

Std. 

Deviation 

Std. Error 95% Confidence 

Interval for Mean 

Minimum 

(%) 

Maximum 

(%) 

Lower 

Bound 

Upper 

Bound 

Baseline (30.1) 34.53 1.84 .41 33.67 35.39 30.43 38.58 

Castrated (0.9) 66.63 3.32 .43 65.77 67.49 59.92 74.66 

Control (27.5) 36.11 1.93 .25 35.62 36.61 29.92 40.34 

Testosterone 

injected (15.4) 

65.19 2.39 .31 64.57 65.80 61.05 71.46 

 

Table 3; Measurements for adventitial collagen fiber densities for each group as well as their 

means and standard deviations. The means of the baseline and control rabbits were almost 

50% less as compared to those of the castrated and testosterone injected rabbits. 
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The means of collagen fibre density were compared by ANOVA and a significant rise in fiber 

density among the castrated (30.5%) as well as the testosterone injected groups (29.1%) 

compared to controls were recorded (Table 4). The greatest difference in mean density was 

between the castrated group and the controls. The differences in castrated and testosterone 

injected groups was not significant (p<0.05). 

 

  Mean 

Difference  

Std. 

Error 

P-value 95% Confidence Interval 

Lower 

Bound 

Upper 

Bound 

Castrated Control 30.5* .50 .000 29.22 31.81 

 Testosterone 1.4 .53 .036 0.07 2.82 

Control Castrated -30.5* .50 .000 -31.81 -29.22 

 Testosterone -29.1* .40 .000 -30.10 -28.04 

Testosterone Castrated -1.4 .53 .036 -2.82 -0.07 

 Control 29.1* .40 .000 28.04 30.10 

Table 4; Results of test of differences in the mean collagen fiber densities of the groups using 

ANOVA. Notably, differences in castrated and testosterone injected groups was not 

significant (p<0.05).  

 

The difference in means collagen fiber density between the two interventional groups (castrated 

rabbits and the testosterone injected rabbits) was not significant. A boxplot demonstrated a 

higher density of collagen fibers in the adventitia of coronary arteries of castrated and 

testosterone administered rabbits compared to controls, with density in testosterone 

administered rabbits being slightly lower (Figure 9). 
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Figure 9; Boxplot comparison of mean collagen fiber densities among baseline, castrated, 

testosterone injected, and control groups. 

 

In summary, mean collagen fiber density in the adventitia of the left coronary artery of adult 

male rabbits rose after castration but did not decline with subsequent testosterone injections as 

compared to controls. 

  

 
P = 0.000 between Castrated and Controls, Testosterone injected and controls 
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3.3. SMOOTH MUSCLE CELL COUNT  

From a histological analysis, the density of smooth muscle cell nuclei appeared to be lower in 

the tunica media of coronary arteries of the castrated group compared to the controls. (Figure 

10A-B). The density of smooth muscle cells was not visually distinguishable between the 

castrated and testosterone injected groups in the photomicrographs (Figure 10 B & C).  
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control group 

 

castrated group 

 

testosterone injected group 

Figure 10; Sample slides of left coronary artery wall from the control group (A), castrated 

group (B) and testosterone injected groups (C).  The smooth muscle density is lower in the 

castrated group compared to the controls and comparable between the castrated and 

testosterone injected groups in the photomicrographs. Hematoxylin and eosin X100 TA; - 

Tunica adventitia   TM; - Tunica media 
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Smooth muscle cell count of the tunica media of the coronary artery of the adult male rabbit 

was measured in percentages of cell nuclei numbers over the unit area and ranged from 23.43% 

to 50.69%.  A mean of 26.96% was recorded in the castrated group, 47.53% in the testosterone 

injected group, and 47.80% in the control group (table 5).   

 

 Group (mean 

Testosterone levels 

in nmol/l) 

Mean Std. 

Deviation 

Std. 

Error 

95% Confidence 

Interval for Mean 

Minimum Maximum 

Lower 

Bound 

Upper 

Bound 

Baseline (30.1) 43.98 1.53 0.34 43.26 44.69 39.29 46.10 

Castrated (0.9) 26.96 1.57 0.20 26.56 27.37 23.43 30.68 

Control (27.5) 47.80 1.18 0.15 47.50 48.11 43.58 50.69 

Testosterone (15.4) 47.53 0.94 0.12 47.28 47.77 45.26 50.19 

Total 41.08 9.42 0.67 39.77 42.40 23.43 50.69 

Table 5; Recordings of smooth muscle cell counts for each group as well as their means and 

standard deviations. The mean density of castrated rabbits was almost 50% less as compared 

to those of the other groups. 
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The means were compared by ANOVA and a significant reduction in smooth muscle cell 

density among the castrated was (20.84% compared to controls and 20.56% compared to 

testosterone injected group) was recorded (Table 6).  

 

Rabbit category Mean 

Difference  

Std. 

Error 

Sig. 95% Confidence Interval 

Lower 

Bound 

Upper 

Bound 

Castrated Control -20.84* .25 .000 -21.49 -20.18 

Testosterone -20.56* .24 .000 -21.18 -19.95 

Control Castrated 20.84* .25 .000 20.18 21.50 

Testosterone .27 .19 .495 -.2327 .7810 

Testosterone Castrated 20.56* .24 .000 19.95 21.18 

Control -0.27 .19 .495 -0.78 .23 

Table 6; Results of test of differences in the mean smooth muscle cell count of the groups 

using ANOVA. Notably, differences in means between testosterone injected and control groups 

was not significant (p<0.05). 
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The difference in means smooth muscle cell density between the testosterone injected group 

and the controls was not significant. A boxplot further corroborated these findings (Figure 11). 

 

Figure 11; Boxplot comparison of mean smooth muscle cell counts among baseline, castrated, 

testosterone injected, and control groups. There was a significant drop in smooth muscle 

density in the castrated rabbits while the mean values of the other groups were almost similar 

(p<0.05). 

 

In summary, smooth muscle cell density of the tunica media of the coronary artery significantly 

dropped in castrated adult male rabbits but rose to near control levels in adult male rabbits that 

were castrated and subsequently injected with testosterone. 

 
P = 0.000 between Castratrated and Controls, p= 0.495 testosterone and controls  
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CHAPTER 4: DISCUSSION 

The association of low testosterone levels with morphological markers of atherosclerosis such 

as IMT has been observed in the aorta (Hak et al., 2002) and the carotid (Muller et al., 2004). 

Jenkins et al., 2007 have also demonstrated increased collagen synthesis by adventitial 

fibroblasts in the coronary artery of rats treated with testosterone. It remains largely unexplored 

as to whether these structural changes induced by hypogonadism can be reversed with the 

administration of testosterone within a physiological range, an effect that this study tries to 

describe.  

4.1. INTIMAL-MEDIAL THICKNESS  

This study found an increase in IMT in hypoandrogenic castrated rabbits and a comparative 

reduction of the same in castrated rabbits that had received testosterone injections. Cheruiyot 

et al., 2018 similarly demonstrated increased IMT in common carotid arteries of hypogonadic 

rats. This study additionally shows a significant reversal of IMT in castrated animals that had 

later received testosterone injections, though their mean values were still higher than baseline 

values. It is possible that if we extended the study period, then interventional findings closer to 

baseline values could have been reached. Multiple studies demonstrate an inverse relationship 

between IMT and serum testosterone levels (Malkin et al., 2003; Tsujimura et al., 2012), but 

an indication of whether testosterone administration would reverse the effects of an induced 

hypoandrogenic vascular structure is hardly reported. Our findings suggest a possible role for 

exogenous testosterone in reversing structural markers for cardiovascular diseases. 

IMT is a reliable and sensitive marker of subclinical atherosclerosis and an independent 

predictor of cardiovascular events and target organ damage (Lorenz et al., 2007). It is valuable 

in the evaluation and stratification of cardiovascular disease risk, prediction of long-term 

outcomes, and monitoring ongoing disease progression and regression (Uthoff et al., 2008). 
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Intimal thickness can be regarded as an adaptive mechanism for increasing blood flow volume 

imparting lateral pressure and stress on the vessel wall (Stary et al., 1992; Deopujari and Dixit, 

2010). It is not clear how its further progression leads to atherosclerosis. 

The immunomodulatory effect of testosterone and its effect on programmed cell death of 

vascular smooth muscle cells may explain the association of increased IMT with 

hypoandrogenic states and vice versa. Experimental studies indicate that testosterone 

suppresses the activity of pro-inflammatory cytokines and enhances that of anti-inflammatory 

factors ( Ng et al., 2002; Malkin et al., 2004). Testosterone also regulates apoptosis of vascular 

smooth muscle cells, an event that contributes to the progression of intimal hyperplasia and 

atherosclerosis (Bennett et al., 2010).  

Although testosterone therapy has been used for many years to manage male hypogonadism, 

there is evidence to suggest that testosterone therapy would also be beneficial to 

hypoandrogenic men at risk of cardiovascular disease (Morgentaler et al., 2015a). Routine use 

of testosterone in clinical settings of hypoandrogenic patients who have cardiovascular disease 

has not been adopted due to the absence of large, prospective, placebo-controlled studies. 

Nevertheless, our observation of reversal of structural changes of the coronary artery after 

testosterone administration in hypoandrogenic models supports the mounting evidence that 

testosterone therapy should be considered where appropriate (Corona et al., 2014; Morgentaler 

et al., 2015b; Shabsigh et al., 2005). 

4.2. ADVENTITIAL COLLAGEN FIBRE DENSITY  

The present study demonstrates an increase in collagen fiber density in the tunica adventitia of 

the coronary artery in hypoandrogenic rabbits. Other studies have reported similar changes in 

the common carotid artery (Cheruiyot et al., 2018) and the penis (Olabu, 2014), under the 

setting of induced androgen deficiency. We also found that vascular collagen fiber density 
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remained elevated after the administration of testosterone to castrated rabbits. It is plausible 

that an increase in collagen deposition is a long-term phenomenon, not easily reversible with 

readjustment of hormone levels. 

Multiple mechanisms have been proposed to explain how androgens influence vascular 

collagen deposition, one of which is the regulation of production of transforming growth factor 

β (TGFβ) (Chipuk et al., 2002). Testosterone suppresses expression of TGFβ, thus in settings 

of low androgen levels, upregulation of TGFβ results in fibroblast activation and deposition of 

collagen fiber. TGF-β also induces the differentiation of fibroblasts into the more synthetic 

myofibroblast phenotype.  Hypoandrogenic states also upregulate angiotensin 2 receptors on 

smooth muscle leading to myofibroblast differentiation and increased collagen deposition 

(Kang et al., 2012). 

The tunica adventitia is now known to play an active role in the structural integrity of the 

vascular wall and is not a passive participant as earlier thought (Stenmark et al., 2013;  

Ogeng’o, 2017). Tunica adventitia is richly fibroelastic with collagen fibers responsible for 

high tensile strength to enable it to withstand high pressures and elastic fibers to allow 

reversible stretchability. Changes in collagen increase vessel stiffness and have been associated 

with multiple cardiovascular diseases such as hypertension and atherosclerosis. This may be 

worsened in hypo-androgenic states. The presence of immunoregulatory cells, progenitor cells, 

endothelial cells, and pericytes within the adventitia of the aorta has additionally described, 

further elaborating the role of this layer as an active vascular component (Ogeng’o et al., 2015). 

Further studies may be necessary to investigate if androgens have an influence on these other 

cellular components of the tunica adventitia in the coronary arteries and other vessels. 
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4.3. SMOOTH MUSCLE CELL COUNT 

This study reports a reduction of smooth muscle cell counts of the tunica media of the coronary 

artery in castrated adult male rabbits. Similar findings have been reported in the common 

carotid artery (Cheruiyot et al., 2018) and the penis (Olabu, 2014) under settings of induced 

hypogonadism. Smooth muscle cell counts increased to near control levels in adult male rabbits 

that were castrated and subsequently injected with testosterone, suggesting a reversible effect 

of testosterone on numbers of vascular smooth muscle cells. 

A reduction in myofilament quantity is one of the described mechanisms through which 

reduction muscle volume is achieved in hypogonadal states (Traish et al., 2007). Further studies 

pinpoint programmed cell death as a key response of smooth muscle cells to the reduction of 

androgen levels (Ikeda et al., 2009; Kang et al., 2012). This has been demonstrated to be 

effected by caspases activated through angiotensin 2 receptors, which are upregulated in 

hypogonadic states. Others have touted an ‘androgen deficiency- associated atrophy’ of smooth 

muscle cells as seen in the penile corpus cavernosum (Traish and Kim, 2005; Olabu, 2014) 

similar to atrophy seen in skeletal muscle in men with low testosterone levels (Dandona and 

Rosenberg, 2010).  

Experimental studies that performed blockade of 5α reductase also describe the 

dedifferentiation of smooth muscle cells into other phenotypes such as fibroblasts and 

adipocytes and partially explain the reduction of muscle mass in hypogonadic states (Arnold 

and Isaacs, 2002; Corradi et al., 2004). Loss of medial smooth muscle density in the coronary 

artery may increase the chances of aneurysms, calcification, and rupture of atherosclerotic 

plaques in arteries. Our observation that there is a reversal of muscle cell count with a return 

to normo-androgenic state further supports the notion that testosterone could have a therapeutic 

role in the management of cardiovascular diseases in hypogonadic states. 
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4.4. CONCLUSIONS AND NOVEL FINDINGS 

In agreement with other studies, this study has shown that reduced testosterone levels are 

associated with alteration of the vascular structure.  We further demonstrated that changes in 

IMT and vascular smooth muscle density can be reversed with the administration of 

testosterone within physiological ranges. Thus the null hypothesis was negated. 

4.5. RECOMMENDATIONS 

Further molecular studies regarding the mechanisms of the reversible effect of androgens on 

vascular structure may explain our observations. Further pharmacological studies are also 

required in human subjects to elucidate if testosterone administration may have some benefit 

in the reduction of risk of cardiovascular diseases. 

4.6. STUDY LIMITATIONS AND DELIMITATIONS 

Tissue injury caused by surgical castration may have caused reactive changes in the coronary 

vessels. We were also unable to determine whether the decrease in smooth muscle composition 

as a result of atrophy, apoptosis, or both. To delimit these, all experimental groups underwent 

scrotal opening with the actual removal of the testes done for the cases. The standardization of 

conditions for all subjects allowed for a direct comparison of the outcomes.  
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